hugetlb: allow to free gigantic pages regardless of the configuration
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
98fa15f3 36#include <linux/numa.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
7635d9cb
MH
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
68 if (vma_is_anonymous(vma))
69 return __transparent_hugepage_enabled(vma);
70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 return __transparent_hugepage_enabled(vma);
72
73 return false;
74}
75
6fcb52a5 76static struct page *get_huge_zero_page(void)
97ae1749
KS
77{
78 struct page *zero_page;
79retry:
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 81 return READ_ONCE(huge_zero_page);
97ae1749
KS
82
83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 84 HPAGE_PMD_ORDER);
d8a8e1f0
KS
85 if (!zero_page) {
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 87 return NULL;
d8a8e1f0
KS
88 }
89 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 90 preempt_disable();
5918d10a 91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 92 preempt_enable();
5ddacbe9 93 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
94 goto retry;
95 }
96
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount, 2);
99 preempt_enable();
4db0c3c2 100 return READ_ONCE(huge_zero_page);
4a6c1297
KS
101}
102
6fcb52a5 103static void put_huge_zero_page(void)
4a6c1297 104{
97ae1749
KS
105 /*
106 * Counter should never go to zero here. Only shrinker can put
107 * last reference.
108 */
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
110}
111
6fcb52a5
AL
112struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 return READ_ONCE(huge_zero_page);
116
117 if (!get_huge_zero_page())
118 return NULL;
119
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 put_huge_zero_page();
122
123 return READ_ONCE(huge_zero_page);
124}
125
126void mm_put_huge_zero_page(struct mm_struct *mm)
127{
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 put_huge_zero_page();
130}
131
48896466
GC
132static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 struct shrink_control *sc)
4a6c1297 134{
48896466
GC
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137}
97ae1749 138
48896466
GC
139static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 struct shrink_control *sc)
141{
97ae1749 142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
143 struct page *zero_page = xchg(&huge_zero_page, NULL);
144 BUG_ON(zero_page == NULL);
5ddacbe9 145 __free_pages(zero_page, compound_order(zero_page));
48896466 146 return HPAGE_PMD_NR;
97ae1749
KS
147 }
148
149 return 0;
4a6c1297
KS
150}
151
97ae1749 152static struct shrinker huge_zero_page_shrinker = {
48896466
GC
153 .count_objects = shrink_huge_zero_page_count,
154 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
155 .seeks = DEFAULT_SEEKS,
156};
157
71e3aac0 158#ifdef CONFIG_SYSFS
71e3aac0
AA
159static ssize_t enabled_show(struct kobject *kobj,
160 struct kobj_attribute *attr, char *buf)
161{
444eb2a4
MG
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "always [madvise] never\n");
166 else
167 return sprintf(buf, "always madvise [never]\n");
71e3aac0 168}
444eb2a4 169
71e3aac0
AA
170static ssize_t enabled_store(struct kobject *kobj,
171 struct kobj_attribute *attr,
172 const char *buf, size_t count)
173{
21440d7e 174 ssize_t ret = count;
ba76149f 175
21440d7e
DR
176 if (!memcmp("always", buf,
177 min(sizeof("always")-1, count))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 } else if (!memcmp("madvise", buf,
181 min(sizeof("madvise")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("never", buf,
185 min(sizeof("never")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else
189 ret = -EINVAL;
ba76149f
AA
190
191 if (ret > 0) {
b46e756f 192 int err = start_stop_khugepaged();
ba76149f
AA
193 if (err)
194 ret = err;
195 }
ba76149f 196 return ret;
71e3aac0
AA
197}
198static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
200
b46e756f 201ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
204{
e27e6151
BH
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 207}
e27e6151 208
b46e756f 209ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
213{
e27e6151
BH
214 unsigned long value;
215 int ret;
216
217 ret = kstrtoul(buf, 10, &value);
218 if (ret < 0)
219 return ret;
220 if (value > 1)
221 return -EINVAL;
222
223 if (value)
71e3aac0 224 set_bit(flag, &transparent_hugepage_flags);
e27e6151 225 else
71e3aac0 226 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
227
228 return count;
229}
230
71e3aac0
AA
231static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
233{
444eb2a4 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 243}
21440d7e 244
71e3aac0
AA
245static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248{
21440d7e
DR
249 if (!memcmp("always", buf,
250 min(sizeof("always")-1, count))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
255 } else if (!memcmp("defer+madvise", buf,
256 min(sizeof("defer+madvise")-1, count))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
261 } else if (!memcmp("defer", buf,
262 min(sizeof("defer")-1, count))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
71e3aac0
AA
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
79da5407
KS
287static ssize_t use_zero_page_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
b46e756f 290 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292}
293static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295{
b46e756f 296 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298}
299static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
301
302static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 struct kobj_attribute *attr, char *buf)
304{
305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306}
307static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
71e3aac0
AA
310#ifdef CONFIG_DEBUG_VM
311static ssize_t debug_cow_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313{
b46e756f 314 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316}
317static ssize_t debug_cow_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
b46e756f 321 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323}
324static struct kobj_attribute debug_cow_attr =
325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326#endif /* CONFIG_DEBUG_VM */
327
328static struct attribute *hugepage_attr[] = {
329 &enabled_attr.attr,
330 &defrag_attr.attr,
79da5407 331 &use_zero_page_attr.attr,
49920d28 332 &hpage_pmd_size_attr.attr,
e496cf3d 333#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
334 &shmem_enabled_attr.attr,
335#endif
71e3aac0
AA
336#ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr.attr,
338#endif
339 NULL,
340};
341
8aa95a21 342static const struct attribute_group hugepage_attr_group = {
71e3aac0 343 .attrs = hugepage_attr,
ba76149f
AA
344};
345
569e5590 346static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 347{
71e3aac0
AA
348 int err;
349
569e5590
SL
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 352 pr_err("failed to create transparent hugepage kobject\n");
569e5590 353 return -ENOMEM;
ba76149f
AA
354 }
355
569e5590 356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 357 if (err) {
ae3a8c1c 358 pr_err("failed to register transparent hugepage group\n");
569e5590 359 goto delete_obj;
ba76149f
AA
360 }
361
569e5590 362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 363 if (err) {
ae3a8c1c 364 pr_err("failed to register transparent hugepage group\n");
569e5590 365 goto remove_hp_group;
ba76149f 366 }
569e5590
SL
367
368 return 0;
369
370remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375}
376
377static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378{
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382}
383#else
384static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385{
386 return 0;
387}
388
389static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390{
391}
392#endif /* CONFIG_SYSFS */
393
394static int __init hugepage_init(void)
395{
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags = 0;
401 return -EINVAL;
402 }
403
ff20c2e0
KS
404 /*
405 * hugepages can't be allocated by the buddy allocator
406 */
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 /*
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413
569e5590
SL
414 err = hugepage_init_sysfs(&hugepage_kobj);
415 if (err)
65ebb64f 416 goto err_sysfs;
ba76149f 417
b46e756f 418 err = khugepaged_init();
ba76149f 419 if (err)
65ebb64f 420 goto err_slab;
ba76149f 421
65ebb64f
KS
422 err = register_shrinker(&huge_zero_page_shrinker);
423 if (err)
424 goto err_hzp_shrinker;
9a982250
KS
425 err = register_shrinker(&deferred_split_shrinker);
426 if (err)
427 goto err_split_shrinker;
97ae1749 428
97562cd2
RR
429 /*
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
433 */
ca79b0c2 434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 435 transparent_hugepage_flags = 0;
79553da2
KS
436 return 0;
437 }
97562cd2 438
79553da2 439 err = start_stop_khugepaged();
65ebb64f
KS
440 if (err)
441 goto err_khugepaged;
ba76149f 442
569e5590 443 return 0;
65ebb64f 444err_khugepaged:
9a982250
KS
445 unregister_shrinker(&deferred_split_shrinker);
446err_split_shrinker:
65ebb64f
KS
447 unregister_shrinker(&huge_zero_page_shrinker);
448err_hzp_shrinker:
b46e756f 449 khugepaged_destroy();
65ebb64f 450err_slab:
569e5590 451 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 452err_sysfs:
ba76149f 453 return err;
71e3aac0 454}
a64fb3cd 455subsys_initcall(hugepage_init);
71e3aac0
AA
456
457static int __init setup_transparent_hugepage(char *str)
458{
459 int ret = 0;
460 if (!str)
461 goto out;
462 if (!strcmp(str, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 }
481out:
482 if (!ret)
ae3a8c1c 483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
484 return ret;
485}
486__setup("transparent_hugepage=", setup_transparent_hugepage);
487
f55e1014 488pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 489{
f55e1014 490 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
491 pmd = pmd_mkwrite(pmd);
492 return pmd;
493}
494
9a982250
KS
495static inline struct list_head *page_deferred_list(struct page *page)
496{
fa3015b7
MW
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page[2].deferred_list;
9a982250
KS
499}
500
501void prep_transhuge_page(struct page *page)
502{
503 /*
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
506 */
9a982250
KS
507
508 INIT_LIST_HEAD(page_deferred_list(page));
509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510}
511
74d2fad1
TK
512unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 loff_t off, unsigned long flags, unsigned long size)
514{
515 unsigned long addr;
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 off >> PAGE_SHIFT, flags);
529 if (IS_ERR_VALUE(addr))
530 return 0;
531
532 addr += (off - addr) & (size - 1);
533 return addr;
534}
535
536unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 unsigned long len, unsigned long pgoff, unsigned long flags)
538{
539 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540
541 if (addr)
542 goto out;
543 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 goto out;
545
546 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 if (addr)
548 return addr;
549
550 out:
551 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552}
553EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554
2b740303
SJ
555static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 struct page *page, gfp_t gfp)
71e3aac0 557{
82b0f8c3 558 struct vm_area_struct *vma = vmf->vma;
00501b53 559 struct mem_cgroup *memcg;
71e3aac0 560 pgtable_t pgtable;
82b0f8c3 561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 562 vm_fault_t ret = 0;
71e3aac0 563
309381fe 564 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 565
2cf85583 566 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
567 put_page(page);
568 count_vm_event(THP_FAULT_FALLBACK);
569 return VM_FAULT_FALLBACK;
570 }
00501b53 571
4cf58924 572 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 573 if (unlikely(!pgtable)) {
6b31d595
MH
574 ret = VM_FAULT_OOM;
575 goto release;
00501b53 576 }
71e3aac0 577
c79b57e4 578 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
579 /*
580 * The memory barrier inside __SetPageUptodate makes sure that
581 * clear_huge_page writes become visible before the set_pmd_at()
582 * write.
583 */
71e3aac0
AA
584 __SetPageUptodate(page);
585
82b0f8c3
JK
586 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 588 goto unlock_release;
71e3aac0
AA
589 } else {
590 pmd_t entry;
6b251fc9 591
6b31d595
MH
592 ret = check_stable_address_space(vma->vm_mm);
593 if (ret)
594 goto unlock_release;
595
6b251fc9
AA
596 /* Deliver the page fault to userland */
597 if (userfaultfd_missing(vma)) {
2b740303 598 vm_fault_t ret2;
6b251fc9 599
82b0f8c3 600 spin_unlock(vmf->ptl);
f627c2f5 601 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 602 put_page(page);
bae473a4 603 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
604 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 return ret2;
6b251fc9
AA
607 }
608
3122359a 609 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 610 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 611 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 612 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 613 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
614 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 617 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 618 spin_unlock(vmf->ptl);
6b251fc9 619 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 620 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
621 }
622
aa2e878e 623 return 0;
6b31d595
MH
624unlock_release:
625 spin_unlock(vmf->ptl);
626release:
627 if (pgtable)
628 pte_free(vma->vm_mm, pgtable);
629 mem_cgroup_cancel_charge(page, memcg, true);
630 put_page(page);
631 return ret;
632
71e3aac0
AA
633}
634
444eb2a4 635/*
21440d7e
DR
636 * always: directly stall for all thp allocations
637 * defer: wake kswapd and fail if not immediately available
638 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639 * fail if not immediately available
640 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
641 * available
642 * never: never stall for any thp allocation
444eb2a4 643 */
356ff8a9 644static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 645{
21440d7e 646 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 647
2f0799a0 648 /* Always do synchronous compaction */
21440d7e 649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 650 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
651
652 /* Kick kcompactd and fail quickly */
21440d7e 653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
655
656 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
658 return GFP_TRANSHUGE_LIGHT |
659 (vma_madvised ? __GFP_DIRECT_RECLAIM :
660 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
661
662 /* Only do synchronous compaction if madvised */
21440d7e 663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
664 return GFP_TRANSHUGE_LIGHT |
665 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 666
356ff8a9 667 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
668}
669
c4088ebd 670/* Caller must hold page table lock. */
d295e341 671static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 672 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 673 struct page *zero_page)
fc9fe822
KS
674{
675 pmd_t entry;
7c414164
AM
676 if (!pmd_none(*pmd))
677 return false;
5918d10a 678 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 679 entry = pmd_mkhuge(entry);
12c9d70b
MW
680 if (pgtable)
681 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 682 set_pmd_at(mm, haddr, pmd, entry);
c4812909 683 mm_inc_nr_ptes(mm);
7c414164 684 return true;
fc9fe822
KS
685}
686
2b740303 687vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 688{
82b0f8c3 689 struct vm_area_struct *vma = vmf->vma;
077fcf11 690 gfp_t gfp;
71e3aac0 691 struct page *page;
82b0f8c3 692 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 693
128ec037 694 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 695 return VM_FAULT_FALLBACK;
128ec037
KS
696 if (unlikely(anon_vma_prepare(vma)))
697 return VM_FAULT_OOM;
6d50e60c 698 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 699 return VM_FAULT_OOM;
82b0f8c3 700 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 701 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
702 transparent_hugepage_use_zero_page()) {
703 pgtable_t pgtable;
704 struct page *zero_page;
705 bool set;
2b740303 706 vm_fault_t ret;
4cf58924 707 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 708 if (unlikely(!pgtable))
ba76149f 709 return VM_FAULT_OOM;
6fcb52a5 710 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 711 if (unlikely(!zero_page)) {
bae473a4 712 pte_free(vma->vm_mm, pgtable);
81ab4201 713 count_vm_event(THP_FAULT_FALLBACK);
c0292554 714 return VM_FAULT_FALLBACK;
b9bbfbe3 715 }
82b0f8c3 716 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
717 ret = 0;
718 set = false;
82b0f8c3 719 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
720 ret = check_stable_address_space(vma->vm_mm);
721 if (ret) {
722 spin_unlock(vmf->ptl);
723 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
724 spin_unlock(vmf->ptl);
725 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
726 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 } else {
bae473a4 728 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
729 haddr, vmf->pmd, zero_page);
730 spin_unlock(vmf->ptl);
6b251fc9
AA
731 set = true;
732 }
733 } else
82b0f8c3 734 spin_unlock(vmf->ptl);
6fcb52a5 735 if (!set)
bae473a4 736 pte_free(vma->vm_mm, pgtable);
6b251fc9 737 return ret;
71e3aac0 738 }
356ff8a9
DR
739 gfp = alloc_hugepage_direct_gfpmask(vma);
740 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
741 if (unlikely(!page)) {
742 count_vm_event(THP_FAULT_FALLBACK);
c0292554 743 return VM_FAULT_FALLBACK;
128ec037 744 }
9a982250 745 prep_transhuge_page(page);
82b0f8c3 746 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
747}
748
ae18d6dc 749static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
750 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 pgtable_t pgtable)
5cad465d
MW
752{
753 struct mm_struct *mm = vma->vm_mm;
754 pmd_t entry;
755 spinlock_t *ptl;
756
757 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
758 if (!pmd_none(*pmd)) {
759 if (write) {
760 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
761 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
762 goto out_unlock;
763 }
764 entry = pmd_mkyoung(*pmd);
765 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
766 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
767 update_mmu_cache_pmd(vma, addr, pmd);
768 }
769
770 goto out_unlock;
771 }
772
f25748e3
DW
773 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
774 if (pfn_t_devmap(pfn))
775 entry = pmd_mkdevmap(entry);
01871e59 776 if (write) {
f55e1014
LT
777 entry = pmd_mkyoung(pmd_mkdirty(entry));
778 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 779 }
3b6521f5
OH
780
781 if (pgtable) {
782 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 783 mm_inc_nr_ptes(mm);
c6f3c5ee 784 pgtable = NULL;
3b6521f5
OH
785 }
786
01871e59
RZ
787 set_pmd_at(mm, addr, pmd, entry);
788 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
789
790out_unlock:
5cad465d 791 spin_unlock(ptl);
c6f3c5ee
AK
792 if (pgtable)
793 pte_free(mm, pgtable);
5cad465d
MW
794}
795
fce86ff5 796vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 797{
fce86ff5
DW
798 unsigned long addr = vmf->address & PMD_MASK;
799 struct vm_area_struct *vma = vmf->vma;
5cad465d 800 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 801 pgtable_t pgtable = NULL;
fce86ff5 802
5cad465d
MW
803 /*
804 * If we had pmd_special, we could avoid all these restrictions,
805 * but we need to be consistent with PTEs and architectures that
806 * can't support a 'special' bit.
807 */
e1fb4a08
DJ
808 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
809 !pfn_t_devmap(pfn));
5cad465d
MW
810 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
811 (VM_PFNMAP|VM_MIXEDMAP));
812 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
813
814 if (addr < vma->vm_start || addr >= vma->vm_end)
815 return VM_FAULT_SIGBUS;
308a047c 816
3b6521f5 817 if (arch_needs_pgtable_deposit()) {
4cf58924 818 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
819 if (!pgtable)
820 return VM_FAULT_OOM;
821 }
822
308a047c
BP
823 track_pfn_insert(vma, &pgprot, pfn);
824
fce86ff5 825 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 826 return VM_FAULT_NOPAGE;
5cad465d 827}
dee41079 828EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 829
a00cc7d9 830#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 831static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 832{
f55e1014 833 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
834 pud = pud_mkwrite(pud);
835 return pud;
836}
837
838static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
839 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
840{
841 struct mm_struct *mm = vma->vm_mm;
842 pud_t entry;
843 spinlock_t *ptl;
844
845 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
846 if (!pud_none(*pud)) {
847 if (write) {
848 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
849 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
850 goto out_unlock;
851 }
852 entry = pud_mkyoung(*pud);
853 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
854 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
855 update_mmu_cache_pud(vma, addr, pud);
856 }
857 goto out_unlock;
858 }
859
a00cc7d9
MW
860 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
861 if (pfn_t_devmap(pfn))
862 entry = pud_mkdevmap(entry);
863 if (write) {
f55e1014
LT
864 entry = pud_mkyoung(pud_mkdirty(entry));
865 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
866 }
867 set_pud_at(mm, addr, pud, entry);
868 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
869
870out_unlock:
a00cc7d9
MW
871 spin_unlock(ptl);
872}
873
fce86ff5 874vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 875{
fce86ff5
DW
876 unsigned long addr = vmf->address & PUD_MASK;
877 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 878 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 879
a00cc7d9
MW
880 /*
881 * If we had pud_special, we could avoid all these restrictions,
882 * but we need to be consistent with PTEs and architectures that
883 * can't support a 'special' bit.
884 */
62ec0d8c
DJ
885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
886 !pfn_t_devmap(pfn));
a00cc7d9
MW
887 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
888 (VM_PFNMAP|VM_MIXEDMAP));
889 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
890
891 if (addr < vma->vm_start || addr >= vma->vm_end)
892 return VM_FAULT_SIGBUS;
893
894 track_pfn_insert(vma, &pgprot, pfn);
895
fce86ff5 896 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
897 return VM_FAULT_NOPAGE;
898}
899EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
900#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
901
3565fce3 902static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 903 pmd_t *pmd, int flags)
3565fce3
DW
904{
905 pmd_t _pmd;
906
a8f97366
KS
907 _pmd = pmd_mkyoung(*pmd);
908 if (flags & FOLL_WRITE)
909 _pmd = pmd_mkdirty(_pmd);
3565fce3 910 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 911 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
912 update_mmu_cache_pmd(vma, addr, pmd);
913}
914
915struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 916 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
917{
918 unsigned long pfn = pmd_pfn(*pmd);
919 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
920 struct page *page;
921
922 assert_spin_locked(pmd_lockptr(mm, pmd));
923
8310d48b
KF
924 /*
925 * When we COW a devmap PMD entry, we split it into PTEs, so we should
926 * not be in this function with `flags & FOLL_COW` set.
927 */
928 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
929
f6f37321 930 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
931 return NULL;
932
933 if (pmd_present(*pmd) && pmd_devmap(*pmd))
934 /* pass */;
935 else
936 return NULL;
937
938 if (flags & FOLL_TOUCH)
a8f97366 939 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
940
941 /*
942 * device mapped pages can only be returned if the
943 * caller will manage the page reference count.
944 */
945 if (!(flags & FOLL_GET))
946 return ERR_PTR(-EEXIST);
947
948 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
949 *pgmap = get_dev_pagemap(pfn, *pgmap);
950 if (!*pgmap)
3565fce3
DW
951 return ERR_PTR(-EFAULT);
952 page = pfn_to_page(pfn);
953 get_page(page);
3565fce3
DW
954
955 return page;
956}
957
71e3aac0
AA
958int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
960 struct vm_area_struct *vma)
961{
c4088ebd 962 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
963 struct page *src_page;
964 pmd_t pmd;
12c9d70b 965 pgtable_t pgtable = NULL;
628d47ce 966 int ret = -ENOMEM;
71e3aac0 967
628d47ce
KS
968 /* Skip if can be re-fill on fault */
969 if (!vma_is_anonymous(vma))
970 return 0;
971
4cf58924 972 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
973 if (unlikely(!pgtable))
974 goto out;
71e3aac0 975
c4088ebd
KS
976 dst_ptl = pmd_lock(dst_mm, dst_pmd);
977 src_ptl = pmd_lockptr(src_mm, src_pmd);
978 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
979
980 ret = -EAGAIN;
981 pmd = *src_pmd;
84c3fc4e
ZY
982
983#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
984 if (unlikely(is_swap_pmd(pmd))) {
985 swp_entry_t entry = pmd_to_swp_entry(pmd);
986
987 VM_BUG_ON(!is_pmd_migration_entry(pmd));
988 if (is_write_migration_entry(entry)) {
989 make_migration_entry_read(&entry);
990 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
991 if (pmd_swp_soft_dirty(*src_pmd))
992 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
993 set_pmd_at(src_mm, addr, src_pmd, pmd);
994 }
dd8a67f9 995 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 996 mm_inc_nr_ptes(dst_mm);
dd8a67f9 997 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
998 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
999 ret = 0;
1000 goto out_unlock;
1001 }
1002#endif
1003
628d47ce 1004 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1005 pte_free(dst_mm, pgtable);
1006 goto out_unlock;
1007 }
fc9fe822 1008 /*
c4088ebd 1009 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1010 * under splitting since we don't split the page itself, only pmd to
1011 * a page table.
1012 */
1013 if (is_huge_zero_pmd(pmd)) {
5918d10a 1014 struct page *zero_page;
97ae1749
KS
1015 /*
1016 * get_huge_zero_page() will never allocate a new page here,
1017 * since we already have a zero page to copy. It just takes a
1018 * reference.
1019 */
6fcb52a5 1020 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1021 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1022 zero_page);
fc9fe822
KS
1023 ret = 0;
1024 goto out_unlock;
1025 }
de466bd6 1026
628d47ce
KS
1027 src_page = pmd_page(pmd);
1028 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1029 get_page(src_page);
1030 page_dup_rmap(src_page, true);
1031 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1032 mm_inc_nr_ptes(dst_mm);
628d47ce 1033 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1034
1035 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1036 pmd = pmd_mkold(pmd_wrprotect(pmd));
1037 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1038
1039 ret = 0;
1040out_unlock:
c4088ebd
KS
1041 spin_unlock(src_ptl);
1042 spin_unlock(dst_ptl);
71e3aac0
AA
1043out:
1044 return ret;
1045}
1046
a00cc7d9
MW
1047#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1048static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1049 pud_t *pud, int flags)
a00cc7d9
MW
1050{
1051 pud_t _pud;
1052
a8f97366
KS
1053 _pud = pud_mkyoung(*pud);
1054 if (flags & FOLL_WRITE)
1055 _pud = pud_mkdirty(_pud);
a00cc7d9 1056 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1057 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1058 update_mmu_cache_pud(vma, addr, pud);
1059}
1060
1061struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1062 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1063{
1064 unsigned long pfn = pud_pfn(*pud);
1065 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1066 struct page *page;
1067
1068 assert_spin_locked(pud_lockptr(mm, pud));
1069
f6f37321 1070 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1071 return NULL;
1072
1073 if (pud_present(*pud) && pud_devmap(*pud))
1074 /* pass */;
1075 else
1076 return NULL;
1077
1078 if (flags & FOLL_TOUCH)
a8f97366 1079 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1080
1081 /*
1082 * device mapped pages can only be returned if the
1083 * caller will manage the page reference count.
1084 */
1085 if (!(flags & FOLL_GET))
1086 return ERR_PTR(-EEXIST);
1087
1088 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1089 *pgmap = get_dev_pagemap(pfn, *pgmap);
1090 if (!*pgmap)
a00cc7d9
MW
1091 return ERR_PTR(-EFAULT);
1092 page = pfn_to_page(pfn);
1093 get_page(page);
a00cc7d9
MW
1094
1095 return page;
1096}
1097
1098int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1099 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1100 struct vm_area_struct *vma)
1101{
1102 spinlock_t *dst_ptl, *src_ptl;
1103 pud_t pud;
1104 int ret;
1105
1106 dst_ptl = pud_lock(dst_mm, dst_pud);
1107 src_ptl = pud_lockptr(src_mm, src_pud);
1108 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1109
1110 ret = -EAGAIN;
1111 pud = *src_pud;
1112 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1113 goto out_unlock;
1114
1115 /*
1116 * When page table lock is held, the huge zero pud should not be
1117 * under splitting since we don't split the page itself, only pud to
1118 * a page table.
1119 */
1120 if (is_huge_zero_pud(pud)) {
1121 /* No huge zero pud yet */
1122 }
1123
1124 pudp_set_wrprotect(src_mm, addr, src_pud);
1125 pud = pud_mkold(pud_wrprotect(pud));
1126 set_pud_at(dst_mm, addr, dst_pud, pud);
1127
1128 ret = 0;
1129out_unlock:
1130 spin_unlock(src_ptl);
1131 spin_unlock(dst_ptl);
1132 return ret;
1133}
1134
1135void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1136{
1137 pud_t entry;
1138 unsigned long haddr;
1139 bool write = vmf->flags & FAULT_FLAG_WRITE;
1140
1141 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1142 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1143 goto unlock;
1144
1145 entry = pud_mkyoung(orig_pud);
1146 if (write)
1147 entry = pud_mkdirty(entry);
1148 haddr = vmf->address & HPAGE_PUD_MASK;
1149 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1150 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1151
1152unlock:
1153 spin_unlock(vmf->ptl);
1154}
1155#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1156
82b0f8c3 1157void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1158{
1159 pmd_t entry;
1160 unsigned long haddr;
20f664aa 1161 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1162
82b0f8c3
JK
1163 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1164 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1165 goto unlock;
1166
1167 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1168 if (write)
1169 entry = pmd_mkdirty(entry);
82b0f8c3 1170 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1171 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1172 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1173
1174unlock:
82b0f8c3 1175 spin_unlock(vmf->ptl);
a1dd450b
WD
1176}
1177
2b740303
SJ
1178static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1179 pmd_t orig_pmd, struct page *page)
71e3aac0 1180{
82b0f8c3
JK
1181 struct vm_area_struct *vma = vmf->vma;
1182 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1183 struct mem_cgroup *memcg;
71e3aac0
AA
1184 pgtable_t pgtable;
1185 pmd_t _pmd;
2b740303
SJ
1186 int i;
1187 vm_fault_t ret = 0;
71e3aac0 1188 struct page **pages;
ac46d4f3 1189 struct mmu_notifier_range range;
71e3aac0 1190
6da2ec56
KC
1191 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1192 GFP_KERNEL);
71e3aac0
AA
1193 if (unlikely(!pages)) {
1194 ret |= VM_FAULT_OOM;
1195 goto out;
1196 }
1197
1198 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1199 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1200 vmf->address, page_to_nid(page));
b9bbfbe3 1201 if (unlikely(!pages[i] ||
2cf85583 1202 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1203 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1204 if (pages[i])
71e3aac0 1205 put_page(pages[i]);
b9bbfbe3 1206 while (--i >= 0) {
00501b53
JW
1207 memcg = (void *)page_private(pages[i]);
1208 set_page_private(pages[i], 0);
f627c2f5
KS
1209 mem_cgroup_cancel_charge(pages[i], memcg,
1210 false);
b9bbfbe3
AA
1211 put_page(pages[i]);
1212 }
71e3aac0
AA
1213 kfree(pages);
1214 ret |= VM_FAULT_OOM;
1215 goto out;
1216 }
00501b53 1217 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1218 }
1219
1220 for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 copy_user_highpage(pages[i], page + i,
0089e485 1222 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1223 __SetPageUptodate(pages[i]);
1224 cond_resched();
1225 }
1226
ac46d4f3
JG
1227 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1228 haddr + HPAGE_PMD_SIZE);
1229 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1230
82b0f8c3
JK
1231 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1232 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1233 goto out_free_pages;
309381fe 1234 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1235
0f10851e
JG
1236 /*
1237 * Leave pmd empty until pte is filled note we must notify here as
1238 * concurrent CPU thread might write to new page before the call to
1239 * mmu_notifier_invalidate_range_end() happens which can lead to a
1240 * device seeing memory write in different order than CPU.
1241 *
ad56b738 1242 * See Documentation/vm/mmu_notifier.rst
0f10851e 1243 */
82b0f8c3 1244 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1245
82b0f8c3 1246 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1247 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1248
1249 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1250 pte_t entry;
71e3aac0
AA
1251 entry = mk_pte(pages[i], vma->vm_page_prot);
1252 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1253 memcg = (void *)page_private(pages[i]);
1254 set_page_private(pages[i], 0);
82b0f8c3 1255 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1256 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1257 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1258 vmf->pte = pte_offset_map(&_pmd, haddr);
1259 VM_BUG_ON(!pte_none(*vmf->pte));
1260 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1261 pte_unmap(vmf->pte);
71e3aac0
AA
1262 }
1263 kfree(pages);
1264
71e3aac0 1265 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1266 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1267 page_remove_rmap(page, true);
82b0f8c3 1268 spin_unlock(vmf->ptl);
71e3aac0 1269
4645b9fe
JG
1270 /*
1271 * No need to double call mmu_notifier->invalidate_range() callback as
1272 * the above pmdp_huge_clear_flush_notify() did already call it.
1273 */
ac46d4f3 1274 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1275
71e3aac0
AA
1276 ret |= VM_FAULT_WRITE;
1277 put_page(page);
1278
1279out:
1280 return ret;
1281
1282out_free_pages:
82b0f8c3 1283 spin_unlock(vmf->ptl);
ac46d4f3 1284 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1285 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1286 memcg = (void *)page_private(pages[i]);
1287 set_page_private(pages[i], 0);
f627c2f5 1288 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1289 put_page(pages[i]);
b9bbfbe3 1290 }
71e3aac0
AA
1291 kfree(pages);
1292 goto out;
1293}
1294
2b740303 1295vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1296{
82b0f8c3 1297 struct vm_area_struct *vma = vmf->vma;
93b4796d 1298 struct page *page = NULL, *new_page;
00501b53 1299 struct mem_cgroup *memcg;
82b0f8c3 1300 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1301 struct mmu_notifier_range range;
3b363692 1302 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1303 vm_fault_t ret = 0;
71e3aac0 1304
82b0f8c3 1305 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1306 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1307 if (is_huge_zero_pmd(orig_pmd))
1308 goto alloc;
82b0f8c3
JK
1309 spin_lock(vmf->ptl);
1310 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1311 goto out_unlock;
1312
1313 page = pmd_page(orig_pmd);
309381fe 1314 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1315 /*
1316 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1317 * part.
1f25fe20 1318 */
ba3c4ce6
HY
1319 if (!trylock_page(page)) {
1320 get_page(page);
1321 spin_unlock(vmf->ptl);
1322 lock_page(page);
1323 spin_lock(vmf->ptl);
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 unlock_page(page);
1326 put_page(page);
1327 goto out_unlock;
1328 }
1329 put_page(page);
1330 }
1331 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1332 pmd_t entry;
1333 entry = pmd_mkyoung(orig_pmd);
f55e1014 1334 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1335 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1336 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1337 ret |= VM_FAULT_WRITE;
ba3c4ce6 1338 unlock_page(page);
71e3aac0
AA
1339 goto out_unlock;
1340 }
ba3c4ce6 1341 unlock_page(page);
ddc58f27 1342 get_page(page);
82b0f8c3 1343 spin_unlock(vmf->ptl);
93b4796d 1344alloc:
7635d9cb 1345 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1346 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1347 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1348 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1349 } else
71e3aac0
AA
1350 new_page = NULL;
1351
9a982250
KS
1352 if (likely(new_page)) {
1353 prep_transhuge_page(new_page);
1354 } else {
eecc1e42 1355 if (!page) {
82b0f8c3 1356 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1357 ret |= VM_FAULT_FALLBACK;
93b4796d 1358 } else {
82b0f8c3 1359 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1360 if (ret & VM_FAULT_OOM) {
82b0f8c3 1361 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1362 ret |= VM_FAULT_FALLBACK;
1363 }
ddc58f27 1364 put_page(page);
93b4796d 1365 }
17766dde 1366 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1367 goto out;
1368 }
1369
2cf85583 1370 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1371 huge_gfp, &memcg, true))) {
b9bbfbe3 1372 put_page(new_page);
82b0f8c3 1373 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1374 if (page)
ddc58f27 1375 put_page(page);
9845cbbd 1376 ret |= VM_FAULT_FALLBACK;
17766dde 1377 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1378 goto out;
1379 }
1380
17766dde 1381 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1382 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1383
eecc1e42 1384 if (!page)
c79b57e4 1385 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1386 else
c9f4cd71
HY
1387 copy_user_huge_page(new_page, page, vmf->address,
1388 vma, HPAGE_PMD_NR);
71e3aac0
AA
1389 __SetPageUptodate(new_page);
1390
ac46d4f3
JG
1391 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1392 haddr + HPAGE_PMD_SIZE);
1393 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1394
82b0f8c3 1395 spin_lock(vmf->ptl);
93b4796d 1396 if (page)
ddc58f27 1397 put_page(page);
82b0f8c3
JK
1398 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1399 spin_unlock(vmf->ptl);
f627c2f5 1400 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1401 put_page(new_page);
2ec74c3e 1402 goto out_mn;
b9bbfbe3 1403 } else {
71e3aac0 1404 pmd_t entry;
3122359a 1405 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1406 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1407 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1408 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1409 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1410 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1411 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1412 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1413 if (!page) {
bae473a4 1414 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1415 } else {
309381fe 1416 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1417 page_remove_rmap(page, true);
93b4796d
KS
1418 put_page(page);
1419 }
71e3aac0
AA
1420 ret |= VM_FAULT_WRITE;
1421 }
82b0f8c3 1422 spin_unlock(vmf->ptl);
2ec74c3e 1423out_mn:
4645b9fe
JG
1424 /*
1425 * No need to double call mmu_notifier->invalidate_range() callback as
1426 * the above pmdp_huge_clear_flush_notify() did already call it.
1427 */
ac46d4f3 1428 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1429out:
1430 return ret;
2ec74c3e 1431out_unlock:
82b0f8c3 1432 spin_unlock(vmf->ptl);
2ec74c3e 1433 return ret;
71e3aac0
AA
1434}
1435
8310d48b
KF
1436/*
1437 * FOLL_FORCE can write to even unwritable pmd's, but only
1438 * after we've gone through a COW cycle and they are dirty.
1439 */
1440static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1441{
f6f37321 1442 return pmd_write(pmd) ||
8310d48b
KF
1443 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1444}
1445
b676b293 1446struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1447 unsigned long addr,
1448 pmd_t *pmd,
1449 unsigned int flags)
1450{
b676b293 1451 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1452 struct page *page = NULL;
1453
c4088ebd 1454 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1455
8310d48b 1456 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1457 goto out;
1458
85facf25
KS
1459 /* Avoid dumping huge zero page */
1460 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1461 return ERR_PTR(-EFAULT);
1462
2b4847e7 1463 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1464 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1465 goto out;
1466
71e3aac0 1467 page = pmd_page(*pmd);
ca120cf6 1468 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1469 if (flags & FOLL_TOUCH)
a8f97366 1470 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1471 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1472 /*
1473 * We don't mlock() pte-mapped THPs. This way we can avoid
1474 * leaking mlocked pages into non-VM_LOCKED VMAs.
1475 *
9a73f61b
KS
1476 * For anon THP:
1477 *
e90309c9
KS
1478 * In most cases the pmd is the only mapping of the page as we
1479 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1480 * writable private mappings in populate_vma_page_range().
1481 *
1482 * The only scenario when we have the page shared here is if we
1483 * mlocking read-only mapping shared over fork(). We skip
1484 * mlocking such pages.
9a73f61b
KS
1485 *
1486 * For file THP:
1487 *
1488 * We can expect PageDoubleMap() to be stable under page lock:
1489 * for file pages we set it in page_add_file_rmap(), which
1490 * requires page to be locked.
e90309c9 1491 */
9a73f61b
KS
1492
1493 if (PageAnon(page) && compound_mapcount(page) != 1)
1494 goto skip_mlock;
1495 if (PageDoubleMap(page) || !page->mapping)
1496 goto skip_mlock;
1497 if (!trylock_page(page))
1498 goto skip_mlock;
1499 lru_add_drain();
1500 if (page->mapping && !PageDoubleMap(page))
1501 mlock_vma_page(page);
1502 unlock_page(page);
b676b293 1503 }
9a73f61b 1504skip_mlock:
71e3aac0 1505 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1506 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1507 if (flags & FOLL_GET)
ddc58f27 1508 get_page(page);
71e3aac0
AA
1509
1510out:
1511 return page;
1512}
1513
d10e63f2 1514/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1515vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1516{
82b0f8c3 1517 struct vm_area_struct *vma = vmf->vma;
b8916634 1518 struct anon_vma *anon_vma = NULL;
b32967ff 1519 struct page *page;
82b0f8c3 1520 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1521 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1522 int target_nid, last_cpupid = -1;
8191acbd
MG
1523 bool page_locked;
1524 bool migrated = false;
b191f9b1 1525 bool was_writable;
6688cc05 1526 int flags = 0;
d10e63f2 1527
82b0f8c3
JK
1528 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1529 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1530 goto out_unlock;
1531
de466bd6
MG
1532 /*
1533 * If there are potential migrations, wait for completion and retry
1534 * without disrupting NUMA hinting information. Do not relock and
1535 * check_same as the page may no longer be mapped.
1536 */
82b0f8c3
JK
1537 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1538 page = pmd_page(*vmf->pmd);
3c226c63
MR
1539 if (!get_page_unless_zero(page))
1540 goto out_unlock;
82b0f8c3 1541 spin_unlock(vmf->ptl);
9a1ea439 1542 put_and_wait_on_page_locked(page);
de466bd6
MG
1543 goto out;
1544 }
1545
d10e63f2 1546 page = pmd_page(pmd);
a1a46184 1547 BUG_ON(is_huge_zero_page(page));
8191acbd 1548 page_nid = page_to_nid(page);
90572890 1549 last_cpupid = page_cpupid_last(page);
03c5a6e1 1550 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1551 if (page_nid == this_nid) {
03c5a6e1 1552 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1553 flags |= TNF_FAULT_LOCAL;
1554 }
4daae3b4 1555
bea66fbd 1556 /* See similar comment in do_numa_page for explanation */
288bc549 1557 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1558 flags |= TNF_NO_GROUP;
1559
ff9042b1
MG
1560 /*
1561 * Acquire the page lock to serialise THP migrations but avoid dropping
1562 * page_table_lock if at all possible
1563 */
b8916634
MG
1564 page_locked = trylock_page(page);
1565 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1566 if (target_nid == NUMA_NO_NODE) {
b8916634 1567 /* If the page was locked, there are no parallel migrations */
a54a407f 1568 if (page_locked)
b8916634 1569 goto clear_pmdnuma;
2b4847e7 1570 }
4daae3b4 1571
de466bd6 1572 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1573 if (!page_locked) {
98fa15f3 1574 page_nid = NUMA_NO_NODE;
3c226c63
MR
1575 if (!get_page_unless_zero(page))
1576 goto out_unlock;
82b0f8c3 1577 spin_unlock(vmf->ptl);
9a1ea439 1578 put_and_wait_on_page_locked(page);
b8916634
MG
1579 goto out;
1580 }
1581
2b4847e7
MG
1582 /*
1583 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1584 * to serialises splits
1585 */
b8916634 1586 get_page(page);
82b0f8c3 1587 spin_unlock(vmf->ptl);
b8916634 1588 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1589
c69307d5 1590 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1591 spin_lock(vmf->ptl);
1592 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1593 unlock_page(page);
1594 put_page(page);
98fa15f3 1595 page_nid = NUMA_NO_NODE;
4daae3b4 1596 goto out_unlock;
b32967ff 1597 }
ff9042b1 1598
c3a489ca
MG
1599 /* Bail if we fail to protect against THP splits for any reason */
1600 if (unlikely(!anon_vma)) {
1601 put_page(page);
98fa15f3 1602 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1603 goto clear_pmdnuma;
1604 }
1605
8b1b436d
PZ
1606 /*
1607 * Since we took the NUMA fault, we must have observed the !accessible
1608 * bit. Make sure all other CPUs agree with that, to avoid them
1609 * modifying the page we're about to migrate.
1610 *
1611 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1612 * inc_tlb_flush_pending().
1613 *
1614 * We are not sure a pending tlb flush here is for a huge page
1615 * mapping or not. Hence use the tlb range variant
8b1b436d 1616 */
7066f0f9 1617 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1618 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1619 /*
1620 * change_huge_pmd() released the pmd lock before
1621 * invalidating the secondary MMUs sharing the primary
1622 * MMU pagetables (with ->invalidate_range()). The
1623 * mmu_notifier_invalidate_range_end() (which
1624 * internally calls ->invalidate_range()) in
1625 * change_pmd_range() will run after us, so we can't
1626 * rely on it here and we need an explicit invalidate.
1627 */
1628 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1629 haddr + HPAGE_PMD_SIZE);
1630 }
8b1b436d 1631
a54a407f
MG
1632 /*
1633 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1634 * and access rights restored.
a54a407f 1635 */
82b0f8c3 1636 spin_unlock(vmf->ptl);
8b1b436d 1637
bae473a4 1638 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1639 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1640 if (migrated) {
1641 flags |= TNF_MIGRATED;
8191acbd 1642 page_nid = target_nid;
074c2381
MG
1643 } else
1644 flags |= TNF_MIGRATE_FAIL;
b32967ff 1645
8191acbd 1646 goto out;
b32967ff 1647clear_pmdnuma:
a54a407f 1648 BUG_ON(!PageLocked(page));
288bc549 1649 was_writable = pmd_savedwrite(pmd);
4d942466 1650 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1651 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1652 if (was_writable)
1653 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1654 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1655 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1656 unlock_page(page);
d10e63f2 1657out_unlock:
82b0f8c3 1658 spin_unlock(vmf->ptl);
b8916634
MG
1659
1660out:
1661 if (anon_vma)
1662 page_unlock_anon_vma_read(anon_vma);
1663
98fa15f3 1664 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1665 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1666 flags);
8191acbd 1667
d10e63f2
MG
1668 return 0;
1669}
1670
319904ad
HY
1671/*
1672 * Return true if we do MADV_FREE successfully on entire pmd page.
1673 * Otherwise, return false.
1674 */
1675bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1676 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1677{
1678 spinlock_t *ptl;
1679 pmd_t orig_pmd;
1680 struct page *page;
1681 struct mm_struct *mm = tlb->mm;
319904ad 1682 bool ret = false;
b8d3c4c3 1683
ed6a7935 1684 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1685
b6ec57f4
KS
1686 ptl = pmd_trans_huge_lock(pmd, vma);
1687 if (!ptl)
25eedabe 1688 goto out_unlocked;
b8d3c4c3
MK
1689
1690 orig_pmd = *pmd;
319904ad 1691 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1692 goto out;
b8d3c4c3 1693
84c3fc4e
ZY
1694 if (unlikely(!pmd_present(orig_pmd))) {
1695 VM_BUG_ON(thp_migration_supported() &&
1696 !is_pmd_migration_entry(orig_pmd));
1697 goto out;
1698 }
1699
b8d3c4c3
MK
1700 page = pmd_page(orig_pmd);
1701 /*
1702 * If other processes are mapping this page, we couldn't discard
1703 * the page unless they all do MADV_FREE so let's skip the page.
1704 */
1705 if (page_mapcount(page) != 1)
1706 goto out;
1707
1708 if (!trylock_page(page))
1709 goto out;
1710
1711 /*
1712 * If user want to discard part-pages of THP, split it so MADV_FREE
1713 * will deactivate only them.
1714 */
1715 if (next - addr != HPAGE_PMD_SIZE) {
1716 get_page(page);
1717 spin_unlock(ptl);
9818b8cd 1718 split_huge_page(page);
b8d3c4c3 1719 unlock_page(page);
bbf29ffc 1720 put_page(page);
b8d3c4c3
MK
1721 goto out_unlocked;
1722 }
1723
1724 if (PageDirty(page))
1725 ClearPageDirty(page);
1726 unlock_page(page);
1727
b8d3c4c3 1728 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1729 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1730 orig_pmd = pmd_mkold(orig_pmd);
1731 orig_pmd = pmd_mkclean(orig_pmd);
1732
1733 set_pmd_at(mm, addr, pmd, orig_pmd);
1734 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1735 }
802a3a92
SL
1736
1737 mark_page_lazyfree(page);
319904ad 1738 ret = true;
b8d3c4c3
MK
1739out:
1740 spin_unlock(ptl);
1741out_unlocked:
1742 return ret;
1743}
1744
953c66c2
AK
1745static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1746{
1747 pgtable_t pgtable;
1748
1749 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1750 pte_free(mm, pgtable);
c4812909 1751 mm_dec_nr_ptes(mm);
953c66c2
AK
1752}
1753
71e3aac0 1754int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1755 pmd_t *pmd, unsigned long addr)
71e3aac0 1756{
da146769 1757 pmd_t orig_pmd;
bf929152 1758 spinlock_t *ptl;
71e3aac0 1759
ed6a7935 1760 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1761
b6ec57f4
KS
1762 ptl = __pmd_trans_huge_lock(pmd, vma);
1763 if (!ptl)
da146769
KS
1764 return 0;
1765 /*
1766 * For architectures like ppc64 we look at deposited pgtable
1767 * when calling pmdp_huge_get_and_clear. So do the
1768 * pgtable_trans_huge_withdraw after finishing pmdp related
1769 * operations.
1770 */
1771 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1772 tlb->fullmm);
1773 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1774 if (vma_is_dax(vma)) {
3b6521f5
OH
1775 if (arch_needs_pgtable_deposit())
1776 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1777 spin_unlock(ptl);
1778 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1779 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1780 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1781 zap_deposited_table(tlb->mm, pmd);
da146769 1782 spin_unlock(ptl);
c0f2e176 1783 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1784 } else {
616b8371
ZY
1785 struct page *page = NULL;
1786 int flush_needed = 1;
1787
1788 if (pmd_present(orig_pmd)) {
1789 page = pmd_page(orig_pmd);
1790 page_remove_rmap(page, true);
1791 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1792 VM_BUG_ON_PAGE(!PageHead(page), page);
1793 } else if (thp_migration_supported()) {
1794 swp_entry_t entry;
1795
1796 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1797 entry = pmd_to_swp_entry(orig_pmd);
1798 page = pfn_to_page(swp_offset(entry));
1799 flush_needed = 0;
1800 } else
1801 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1802
b5072380 1803 if (PageAnon(page)) {
c14a6eb4 1804 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1805 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1806 } else {
953c66c2
AK
1807 if (arch_needs_pgtable_deposit())
1808 zap_deposited_table(tlb->mm, pmd);
fadae295 1809 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1810 }
616b8371 1811
da146769 1812 spin_unlock(ptl);
616b8371
ZY
1813 if (flush_needed)
1814 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1815 }
da146769 1816 return 1;
71e3aac0
AA
1817}
1818
1dd38b6c
AK
1819#ifndef pmd_move_must_withdraw
1820static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1821 spinlock_t *old_pmd_ptl,
1822 struct vm_area_struct *vma)
1823{
1824 /*
1825 * With split pmd lock we also need to move preallocated
1826 * PTE page table if new_pmd is on different PMD page table.
1827 *
1828 * We also don't deposit and withdraw tables for file pages.
1829 */
1830 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1831}
1832#endif
1833
ab6e3d09
NH
1834static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1835{
1836#ifdef CONFIG_MEM_SOFT_DIRTY
1837 if (unlikely(is_pmd_migration_entry(pmd)))
1838 pmd = pmd_swp_mksoft_dirty(pmd);
1839 else if (pmd_present(pmd))
1840 pmd = pmd_mksoft_dirty(pmd);
1841#endif
1842 return pmd;
1843}
1844
bf8616d5 1845bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1846 unsigned long new_addr, unsigned long old_end,
eb66ae03 1847 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1848{
bf929152 1849 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1850 pmd_t pmd;
37a1c49a 1851 struct mm_struct *mm = vma->vm_mm;
5d190420 1852 bool force_flush = false;
37a1c49a
AA
1853
1854 if ((old_addr & ~HPAGE_PMD_MASK) ||
1855 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1856 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1857 return false;
37a1c49a
AA
1858
1859 /*
1860 * The destination pmd shouldn't be established, free_pgtables()
1861 * should have release it.
1862 */
1863 if (WARN_ON(!pmd_none(*new_pmd))) {
1864 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1865 return false;
37a1c49a
AA
1866 }
1867
bf929152
KS
1868 /*
1869 * We don't have to worry about the ordering of src and dst
1870 * ptlocks because exclusive mmap_sem prevents deadlock.
1871 */
b6ec57f4
KS
1872 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1873 if (old_ptl) {
bf929152
KS
1874 new_ptl = pmd_lockptr(mm, new_pmd);
1875 if (new_ptl != old_ptl)
1876 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1877 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1878 if (pmd_present(pmd))
a2ce2666 1879 force_flush = true;
025c5b24 1880 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1881
1dd38b6c 1882 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1883 pgtable_t pgtable;
3592806c
KS
1884 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1885 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1886 }
ab6e3d09
NH
1887 pmd = move_soft_dirty_pmd(pmd);
1888 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1889 if (force_flush)
1890 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1891 if (new_ptl != old_ptl)
1892 spin_unlock(new_ptl);
bf929152 1893 spin_unlock(old_ptl);
4b471e88 1894 return true;
37a1c49a 1895 }
4b471e88 1896 return false;
37a1c49a
AA
1897}
1898
f123d74a
MG
1899/*
1900 * Returns
1901 * - 0 if PMD could not be locked
1902 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1903 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1904 */
cd7548ab 1905int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1906 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1907{
1908 struct mm_struct *mm = vma->vm_mm;
bf929152 1909 spinlock_t *ptl;
0a85e51d
KS
1910 pmd_t entry;
1911 bool preserve_write;
1912 int ret;
cd7548ab 1913
b6ec57f4 1914 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1915 if (!ptl)
1916 return 0;
e944fd67 1917
0a85e51d
KS
1918 preserve_write = prot_numa && pmd_write(*pmd);
1919 ret = 1;
e944fd67 1920
84c3fc4e
ZY
1921#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1922 if (is_swap_pmd(*pmd)) {
1923 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1924
1925 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1926 if (is_write_migration_entry(entry)) {
1927 pmd_t newpmd;
1928 /*
1929 * A protection check is difficult so
1930 * just be safe and disable write
1931 */
1932 make_migration_entry_read(&entry);
1933 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1934 if (pmd_swp_soft_dirty(*pmd))
1935 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1936 set_pmd_at(mm, addr, pmd, newpmd);
1937 }
1938 goto unlock;
1939 }
1940#endif
1941
0a85e51d
KS
1942 /*
1943 * Avoid trapping faults against the zero page. The read-only
1944 * data is likely to be read-cached on the local CPU and
1945 * local/remote hits to the zero page are not interesting.
1946 */
1947 if (prot_numa && is_huge_zero_pmd(*pmd))
1948 goto unlock;
025c5b24 1949
0a85e51d
KS
1950 if (prot_numa && pmd_protnone(*pmd))
1951 goto unlock;
1952
ced10803
KS
1953 /*
1954 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1955 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1956 * which is also under down_read(mmap_sem):
1957 *
1958 * CPU0: CPU1:
1959 * change_huge_pmd(prot_numa=1)
1960 * pmdp_huge_get_and_clear_notify()
1961 * madvise_dontneed()
1962 * zap_pmd_range()
1963 * pmd_trans_huge(*pmd) == 0 (without ptl)
1964 * // skip the pmd
1965 * set_pmd_at();
1966 * // pmd is re-established
1967 *
1968 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1969 * which may break userspace.
1970 *
1971 * pmdp_invalidate() is required to make sure we don't miss
1972 * dirty/young flags set by hardware.
1973 */
a3cf988f 1974 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1975
0a85e51d
KS
1976 entry = pmd_modify(entry, newprot);
1977 if (preserve_write)
1978 entry = pmd_mk_savedwrite(entry);
1979 ret = HPAGE_PMD_NR;
1980 set_pmd_at(mm, addr, pmd, entry);
1981 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1982unlock:
1983 spin_unlock(ptl);
025c5b24
NH
1984 return ret;
1985}
1986
1987/*
8f19b0c0 1988 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1989 *
8f19b0c0
HY
1990 * Note that if it returns page table lock pointer, this routine returns without
1991 * unlocking page table lock. So callers must unlock it.
025c5b24 1992 */
b6ec57f4 1993spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1994{
b6ec57f4
KS
1995 spinlock_t *ptl;
1996 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1997 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1998 pmd_devmap(*pmd)))
b6ec57f4
KS
1999 return ptl;
2000 spin_unlock(ptl);
2001 return NULL;
cd7548ab
JW
2002}
2003
a00cc7d9
MW
2004/*
2005 * Returns true if a given pud maps a thp, false otherwise.
2006 *
2007 * Note that if it returns true, this routine returns without unlocking page
2008 * table lock. So callers must unlock it.
2009 */
2010spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2011{
2012 spinlock_t *ptl;
2013
2014 ptl = pud_lock(vma->vm_mm, pud);
2015 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2016 return ptl;
2017 spin_unlock(ptl);
2018 return NULL;
2019}
2020
2021#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2022int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2023 pud_t *pud, unsigned long addr)
2024{
a00cc7d9
MW
2025 spinlock_t *ptl;
2026
2027 ptl = __pud_trans_huge_lock(pud, vma);
2028 if (!ptl)
2029 return 0;
2030 /*
2031 * For architectures like ppc64 we look at deposited pgtable
2032 * when calling pudp_huge_get_and_clear. So do the
2033 * pgtable_trans_huge_withdraw after finishing pudp related
2034 * operations.
2035 */
70516b93 2036 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2037 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2038 if (vma_is_dax(vma)) {
2039 spin_unlock(ptl);
2040 /* No zero page support yet */
2041 } else {
2042 /* No support for anonymous PUD pages yet */
2043 BUG();
2044 }
2045 return 1;
2046}
2047
2048static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2049 unsigned long haddr)
2050{
2051 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2052 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2053 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2054 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2055
ce9311cf 2056 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2057
2058 pudp_huge_clear_flush_notify(vma, haddr, pud);
2059}
2060
2061void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2062 unsigned long address)
2063{
2064 spinlock_t *ptl;
ac46d4f3 2065 struct mmu_notifier_range range;
a00cc7d9 2066
ac46d4f3
JG
2067 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2068 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2069 mmu_notifier_invalidate_range_start(&range);
2070 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2071 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2072 goto out;
ac46d4f3 2073 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2074
2075out:
2076 spin_unlock(ptl);
4645b9fe
JG
2077 /*
2078 * No need to double call mmu_notifier->invalidate_range() callback as
2079 * the above pudp_huge_clear_flush_notify() did already call it.
2080 */
ac46d4f3 2081 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2082}
2083#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2084
eef1b3ba
KS
2085static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2086 unsigned long haddr, pmd_t *pmd)
2087{
2088 struct mm_struct *mm = vma->vm_mm;
2089 pgtable_t pgtable;
2090 pmd_t _pmd;
2091 int i;
2092
0f10851e
JG
2093 /*
2094 * Leave pmd empty until pte is filled note that it is fine to delay
2095 * notification until mmu_notifier_invalidate_range_end() as we are
2096 * replacing a zero pmd write protected page with a zero pte write
2097 * protected page.
2098 *
ad56b738 2099 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2100 */
2101 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2102
2103 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2104 pmd_populate(mm, &_pmd, pgtable);
2105
2106 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2107 pte_t *pte, entry;
2108 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2109 entry = pte_mkspecial(entry);
2110 pte = pte_offset_map(&_pmd, haddr);
2111 VM_BUG_ON(!pte_none(*pte));
2112 set_pte_at(mm, haddr, pte, entry);
2113 pte_unmap(pte);
2114 }
2115 smp_wmb(); /* make pte visible before pmd */
2116 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2117}
2118
2119static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2120 unsigned long haddr, bool freeze)
eef1b3ba
KS
2121{
2122 struct mm_struct *mm = vma->vm_mm;
2123 struct page *page;
2124 pgtable_t pgtable;
423ac9af 2125 pmd_t old_pmd, _pmd;
a3cf988f 2126 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2127 unsigned long addr;
eef1b3ba
KS
2128 int i;
2129
2130 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2131 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2132 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2133 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2134 && !pmd_devmap(*pmd));
eef1b3ba
KS
2135
2136 count_vm_event(THP_SPLIT_PMD);
2137
d21b9e57
KS
2138 if (!vma_is_anonymous(vma)) {
2139 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2140 /*
2141 * We are going to unmap this huge page. So
2142 * just go ahead and zap it
2143 */
2144 if (arch_needs_pgtable_deposit())
2145 zap_deposited_table(mm, pmd);
d21b9e57
KS
2146 if (vma_is_dax(vma))
2147 return;
2148 page = pmd_page(_pmd);
e1f1b157
HD
2149 if (!PageDirty(page) && pmd_dirty(_pmd))
2150 set_page_dirty(page);
d21b9e57
KS
2151 if (!PageReferenced(page) && pmd_young(_pmd))
2152 SetPageReferenced(page);
2153 page_remove_rmap(page, true);
2154 put_page(page);
fadae295 2155 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2156 return;
2157 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2158 /*
2159 * FIXME: Do we want to invalidate secondary mmu by calling
2160 * mmu_notifier_invalidate_range() see comments below inside
2161 * __split_huge_pmd() ?
2162 *
2163 * We are going from a zero huge page write protected to zero
2164 * small page also write protected so it does not seems useful
2165 * to invalidate secondary mmu at this time.
2166 */
eef1b3ba
KS
2167 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2168 }
2169
423ac9af
AK
2170 /*
2171 * Up to this point the pmd is present and huge and userland has the
2172 * whole access to the hugepage during the split (which happens in
2173 * place). If we overwrite the pmd with the not-huge version pointing
2174 * to the pte here (which of course we could if all CPUs were bug
2175 * free), userland could trigger a small page size TLB miss on the
2176 * small sized TLB while the hugepage TLB entry is still established in
2177 * the huge TLB. Some CPU doesn't like that.
2178 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2179 * 383 on page 93. Intel should be safe but is also warns that it's
2180 * only safe if the permission and cache attributes of the two entries
2181 * loaded in the two TLB is identical (which should be the case here).
2182 * But it is generally safer to never allow small and huge TLB entries
2183 * for the same virtual address to be loaded simultaneously. So instead
2184 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2185 * current pmd notpresent (atomically because here the pmd_trans_huge
2186 * must remain set at all times on the pmd until the split is complete
2187 * for this pmd), then we flush the SMP TLB and finally we write the
2188 * non-huge version of the pmd entry with pmd_populate.
2189 */
2190 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2191
423ac9af 2192 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2193 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2194 swp_entry_t entry;
2195
423ac9af 2196 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2197 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2198 write = is_write_migration_entry(entry);
2199 young = false;
2200 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2201 } else {
423ac9af 2202 page = pmd_page(old_pmd);
2e83ee1d
PX
2203 if (pmd_dirty(old_pmd))
2204 SetPageDirty(page);
2205 write = pmd_write(old_pmd);
2206 young = pmd_young(old_pmd);
2207 soft_dirty = pmd_soft_dirty(old_pmd);
2208 }
eef1b3ba 2209 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2210 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2211
423ac9af
AK
2212 /*
2213 * Withdraw the table only after we mark the pmd entry invalid.
2214 * This's critical for some architectures (Power).
2215 */
eef1b3ba
KS
2216 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2217 pmd_populate(mm, &_pmd, pgtable);
2218
2ac015e2 2219 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2220 pte_t entry, *pte;
2221 /*
2222 * Note that NUMA hinting access restrictions are not
2223 * transferred to avoid any possibility of altering
2224 * permissions across VMAs.
2225 */
84c3fc4e 2226 if (freeze || pmd_migration) {
ba988280
KS
2227 swp_entry_t swp_entry;
2228 swp_entry = make_migration_entry(page + i, write);
2229 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2230 if (soft_dirty)
2231 entry = pte_swp_mksoft_dirty(entry);
ba988280 2232 } else {
6d2329f8 2233 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2234 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2235 if (!write)
2236 entry = pte_wrprotect(entry);
2237 if (!young)
2238 entry = pte_mkold(entry);
804dd150
AA
2239 if (soft_dirty)
2240 entry = pte_mksoft_dirty(entry);
ba988280 2241 }
2ac015e2 2242 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2243 BUG_ON(!pte_none(*pte));
2ac015e2 2244 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2245 atomic_inc(&page[i]._mapcount);
2246 pte_unmap(pte);
2247 }
2248
2249 /*
2250 * Set PG_double_map before dropping compound_mapcount to avoid
2251 * false-negative page_mapped().
2252 */
2253 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2254 for (i = 0; i < HPAGE_PMD_NR; i++)
2255 atomic_inc(&page[i]._mapcount);
2256 }
2257
2258 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2259 /* Last compound_mapcount is gone. */
11fb9989 2260 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2261 if (TestClearPageDoubleMap(page)) {
2262 /* No need in mapcount reference anymore */
2263 for (i = 0; i < HPAGE_PMD_NR; i++)
2264 atomic_dec(&page[i]._mapcount);
2265 }
2266 }
2267
2268 smp_wmb(); /* make pte visible before pmd */
2269 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2270
2271 if (freeze) {
2ac015e2 2272 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2273 page_remove_rmap(page + i, false);
2274 put_page(page + i);
2275 }
2276 }
eef1b3ba
KS
2277}
2278
2279void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2280 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2281{
2282 spinlock_t *ptl;
ac46d4f3 2283 struct mmu_notifier_range range;
eef1b3ba 2284
ac46d4f3
JG
2285 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2286 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2287 mmu_notifier_invalidate_range_start(&range);
2288 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2289
2290 /*
2291 * If caller asks to setup a migration entries, we need a page to check
2292 * pmd against. Otherwise we can end up replacing wrong page.
2293 */
2294 VM_BUG_ON(freeze && !page);
2295 if (page && page != pmd_page(*pmd))
2296 goto out;
2297
5c7fb56e 2298 if (pmd_trans_huge(*pmd)) {
33f4751e 2299 page = pmd_page(*pmd);
5c7fb56e 2300 if (PageMlocked(page))
5f737714 2301 clear_page_mlock(page);
84c3fc4e 2302 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2303 goto out;
ac46d4f3 2304 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2305out:
eef1b3ba 2306 spin_unlock(ptl);
4645b9fe
JG
2307 /*
2308 * No need to double call mmu_notifier->invalidate_range() callback.
2309 * They are 3 cases to consider inside __split_huge_pmd_locked():
2310 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2311 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2312 * fault will trigger a flush_notify before pointing to a new page
2313 * (it is fine if the secondary mmu keeps pointing to the old zero
2314 * page in the meantime)
2315 * 3) Split a huge pmd into pte pointing to the same page. No need
2316 * to invalidate secondary tlb entry they are all still valid.
2317 * any further changes to individual pte will notify. So no need
2318 * to call mmu_notifier->invalidate_range()
2319 */
ac46d4f3 2320 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2321}
2322
fec89c10
KS
2323void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2324 bool freeze, struct page *page)
94fcc585 2325{
f72e7dcd 2326 pgd_t *pgd;
c2febafc 2327 p4d_t *p4d;
f72e7dcd 2328 pud_t *pud;
94fcc585
AA
2329 pmd_t *pmd;
2330
78ddc534 2331 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2332 if (!pgd_present(*pgd))
2333 return;
2334
c2febafc
KS
2335 p4d = p4d_offset(pgd, address);
2336 if (!p4d_present(*p4d))
2337 return;
2338
2339 pud = pud_offset(p4d, address);
f72e7dcd
HD
2340 if (!pud_present(*pud))
2341 return;
2342
2343 pmd = pmd_offset(pud, address);
fec89c10 2344
33f4751e 2345 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2346}
2347
e1b9996b 2348void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2349 unsigned long start,
2350 unsigned long end,
2351 long adjust_next)
2352{
2353 /*
2354 * If the new start address isn't hpage aligned and it could
2355 * previously contain an hugepage: check if we need to split
2356 * an huge pmd.
2357 */
2358 if (start & ~HPAGE_PMD_MASK &&
2359 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2360 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2361 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2362
2363 /*
2364 * If the new end address isn't hpage aligned and it could
2365 * previously contain an hugepage: check if we need to split
2366 * an huge pmd.
2367 */
2368 if (end & ~HPAGE_PMD_MASK &&
2369 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2370 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2371 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2372
2373 /*
2374 * If we're also updating the vma->vm_next->vm_start, if the new
2375 * vm_next->vm_start isn't page aligned and it could previously
2376 * contain an hugepage: check if we need to split an huge pmd.
2377 */
2378 if (adjust_next > 0) {
2379 struct vm_area_struct *next = vma->vm_next;
2380 unsigned long nstart = next->vm_start;
2381 nstart += adjust_next << PAGE_SHIFT;
2382 if (nstart & ~HPAGE_PMD_MASK &&
2383 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2384 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2385 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2386 }
2387}
e9b61f19 2388
906f9cdf 2389static void unmap_page(struct page *page)
e9b61f19 2390{
baa355fd 2391 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2392 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2393 bool unmap_success;
e9b61f19
KS
2394
2395 VM_BUG_ON_PAGE(!PageHead(page), page);
2396
baa355fd 2397 if (PageAnon(page))
b5ff8161 2398 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2399
666e5a40
MK
2400 unmap_success = try_to_unmap(page, ttu_flags);
2401 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2402}
2403
906f9cdf 2404static void remap_page(struct page *page)
e9b61f19 2405{
fec89c10 2406 int i;
ace71a19
KS
2407 if (PageTransHuge(page)) {
2408 remove_migration_ptes(page, page, true);
2409 } else {
2410 for (i = 0; i < HPAGE_PMD_NR; i++)
2411 remove_migration_ptes(page + i, page + i, true);
2412 }
e9b61f19
KS
2413}
2414
8df651c7 2415static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2416 struct lruvec *lruvec, struct list_head *list)
2417{
e9b61f19
KS
2418 struct page *page_tail = head + tail;
2419
8df651c7 2420 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2421
2422 /*
605ca5ed
KK
2423 * Clone page flags before unfreezing refcount.
2424 *
2425 * After successful get_page_unless_zero() might follow flags change,
2426 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2427 */
e9b61f19
KS
2428 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2429 page_tail->flags |= (head->flags &
2430 ((1L << PG_referenced) |
2431 (1L << PG_swapbacked) |
38d8b4e6 2432 (1L << PG_swapcache) |
e9b61f19
KS
2433 (1L << PG_mlocked) |
2434 (1L << PG_uptodate) |
2435 (1L << PG_active) |
1899ad18 2436 (1L << PG_workingset) |
e9b61f19 2437 (1L << PG_locked) |
b8d3c4c3
MK
2438 (1L << PG_unevictable) |
2439 (1L << PG_dirty)));
e9b61f19 2440
173d9d9f
HD
2441 /* ->mapping in first tail page is compound_mapcount */
2442 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2443 page_tail);
2444 page_tail->mapping = head->mapping;
2445 page_tail->index = head->index + tail;
2446
605ca5ed 2447 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2448 smp_wmb();
2449
605ca5ed
KK
2450 /*
2451 * Clear PageTail before unfreezing page refcount.
2452 *
2453 * After successful get_page_unless_zero() might follow put_page()
2454 * which needs correct compound_head().
2455 */
e9b61f19
KS
2456 clear_compound_head(page_tail);
2457
605ca5ed
KK
2458 /* Finally unfreeze refcount. Additional reference from page cache. */
2459 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2460 PageSwapCache(head)));
2461
e9b61f19
KS
2462 if (page_is_young(head))
2463 set_page_young(page_tail);
2464 if (page_is_idle(head))
2465 set_page_idle(page_tail);
2466
e9b61f19 2467 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2468
2469 /*
2470 * always add to the tail because some iterators expect new
2471 * pages to show after the currently processed elements - e.g.
2472 * migrate_pages
2473 */
e9b61f19 2474 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2475}
2476
baa355fd 2477static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2478 pgoff_t end, unsigned long flags)
e9b61f19
KS
2479{
2480 struct page *head = compound_head(page);
f4b7e272 2481 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2482 struct lruvec *lruvec;
8df651c7 2483 int i;
e9b61f19 2484
f4b7e272 2485 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2486
2487 /* complete memcg works before add pages to LRU */
2488 mem_cgroup_split_huge_fixup(head);
2489
baa355fd 2490 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2491 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2492 /* Some pages can be beyond i_size: drop them from page cache */
2493 if (head[i].index >= end) {
2d077d4b 2494 ClearPageDirty(head + i);
baa355fd 2495 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2496 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2497 shmem_uncharge(head->mapping->host, 1);
baa355fd 2498 put_page(head + i);
5fd4ca2d
MW
2499 } else if (!PageAnon(page)) {
2500 __xa_store(&head->mapping->i_pages, head[i].index,
2501 head + i, 0);
baa355fd
KS
2502 }
2503 }
e9b61f19
KS
2504
2505 ClearPageCompound(head);
baa355fd
KS
2506 /* See comment in __split_huge_page_tail() */
2507 if (PageAnon(head)) {
aa5dc07f 2508 /* Additional pin to swap cache */
38d8b4e6
HY
2509 if (PageSwapCache(head))
2510 page_ref_add(head, 2);
2511 else
2512 page_ref_inc(head);
baa355fd 2513 } else {
aa5dc07f 2514 /* Additional pin to page cache */
baa355fd 2515 page_ref_add(head, 2);
b93b0163 2516 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2517 }
2518
f4b7e272 2519 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2520
906f9cdf 2521 remap_page(head);
e9b61f19
KS
2522
2523 for (i = 0; i < HPAGE_PMD_NR; i++) {
2524 struct page *subpage = head + i;
2525 if (subpage == page)
2526 continue;
2527 unlock_page(subpage);
2528
2529 /*
2530 * Subpages may be freed if there wasn't any mapping
2531 * like if add_to_swap() is running on a lru page that
2532 * had its mapping zapped. And freeing these pages
2533 * requires taking the lru_lock so we do the put_page
2534 * of the tail pages after the split is complete.
2535 */
2536 put_page(subpage);
2537 }
2538}
2539
b20ce5e0
KS
2540int total_mapcount(struct page *page)
2541{
dd78fedd 2542 int i, compound, ret;
b20ce5e0
KS
2543
2544 VM_BUG_ON_PAGE(PageTail(page), page);
2545
2546 if (likely(!PageCompound(page)))
2547 return atomic_read(&page->_mapcount) + 1;
2548
dd78fedd 2549 compound = compound_mapcount(page);
b20ce5e0 2550 if (PageHuge(page))
dd78fedd
KS
2551 return compound;
2552 ret = compound;
b20ce5e0
KS
2553 for (i = 0; i < HPAGE_PMD_NR; i++)
2554 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2555 /* File pages has compound_mapcount included in _mapcount */
2556 if (!PageAnon(page))
2557 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2558 if (PageDoubleMap(page))
2559 ret -= HPAGE_PMD_NR;
2560 return ret;
2561}
2562
6d0a07ed
AA
2563/*
2564 * This calculates accurately how many mappings a transparent hugepage
2565 * has (unlike page_mapcount() which isn't fully accurate). This full
2566 * accuracy is primarily needed to know if copy-on-write faults can
2567 * reuse the page and change the mapping to read-write instead of
2568 * copying them. At the same time this returns the total_mapcount too.
2569 *
2570 * The function returns the highest mapcount any one of the subpages
2571 * has. If the return value is one, even if different processes are
2572 * mapping different subpages of the transparent hugepage, they can
2573 * all reuse it, because each process is reusing a different subpage.
2574 *
2575 * The total_mapcount is instead counting all virtual mappings of the
2576 * subpages. If the total_mapcount is equal to "one", it tells the
2577 * caller all mappings belong to the same "mm" and in turn the
2578 * anon_vma of the transparent hugepage can become the vma->anon_vma
2579 * local one as no other process may be mapping any of the subpages.
2580 *
2581 * It would be more accurate to replace page_mapcount() with
2582 * page_trans_huge_mapcount(), however we only use
2583 * page_trans_huge_mapcount() in the copy-on-write faults where we
2584 * need full accuracy to avoid breaking page pinning, because
2585 * page_trans_huge_mapcount() is slower than page_mapcount().
2586 */
2587int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2588{
2589 int i, ret, _total_mapcount, mapcount;
2590
2591 /* hugetlbfs shouldn't call it */
2592 VM_BUG_ON_PAGE(PageHuge(page), page);
2593
2594 if (likely(!PageTransCompound(page))) {
2595 mapcount = atomic_read(&page->_mapcount) + 1;
2596 if (total_mapcount)
2597 *total_mapcount = mapcount;
2598 return mapcount;
2599 }
2600
2601 page = compound_head(page);
2602
2603 _total_mapcount = ret = 0;
2604 for (i = 0; i < HPAGE_PMD_NR; i++) {
2605 mapcount = atomic_read(&page[i]._mapcount) + 1;
2606 ret = max(ret, mapcount);
2607 _total_mapcount += mapcount;
2608 }
2609 if (PageDoubleMap(page)) {
2610 ret -= 1;
2611 _total_mapcount -= HPAGE_PMD_NR;
2612 }
2613 mapcount = compound_mapcount(page);
2614 ret += mapcount;
2615 _total_mapcount += mapcount;
2616 if (total_mapcount)
2617 *total_mapcount = _total_mapcount;
2618 return ret;
2619}
2620
b8f593cd
HY
2621/* Racy check whether the huge page can be split */
2622bool can_split_huge_page(struct page *page, int *pextra_pins)
2623{
2624 int extra_pins;
2625
aa5dc07f 2626 /* Additional pins from page cache */
b8f593cd
HY
2627 if (PageAnon(page))
2628 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2629 else
2630 extra_pins = HPAGE_PMD_NR;
2631 if (pextra_pins)
2632 *pextra_pins = extra_pins;
2633 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2634}
2635
e9b61f19
KS
2636/*
2637 * This function splits huge page into normal pages. @page can point to any
2638 * subpage of huge page to split. Split doesn't change the position of @page.
2639 *
2640 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2641 * The huge page must be locked.
2642 *
2643 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2644 *
2645 * Both head page and tail pages will inherit mapping, flags, and so on from
2646 * the hugepage.
2647 *
2648 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2649 * they are not mapped.
2650 *
2651 * Returns 0 if the hugepage is split successfully.
2652 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2653 * us.
2654 */
2655int split_huge_page_to_list(struct page *page, struct list_head *list)
2656{
2657 struct page *head = compound_head(page);
a3d0a918 2658 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2659 struct anon_vma *anon_vma = NULL;
2660 struct address_space *mapping = NULL;
2661 int count, mapcount, extra_pins, ret;
d9654322 2662 bool mlocked;
0b9b6fff 2663 unsigned long flags;
006d3ff2 2664 pgoff_t end;
e9b61f19
KS
2665
2666 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2667 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2668 VM_BUG_ON_PAGE(!PageCompound(page), page);
2669
59807685
HY
2670 if (PageWriteback(page))
2671 return -EBUSY;
2672
baa355fd
KS
2673 if (PageAnon(head)) {
2674 /*
2675 * The caller does not necessarily hold an mmap_sem that would
2676 * prevent the anon_vma disappearing so we first we take a
2677 * reference to it and then lock the anon_vma for write. This
2678 * is similar to page_lock_anon_vma_read except the write lock
2679 * is taken to serialise against parallel split or collapse
2680 * operations.
2681 */
2682 anon_vma = page_get_anon_vma(head);
2683 if (!anon_vma) {
2684 ret = -EBUSY;
2685 goto out;
2686 }
006d3ff2 2687 end = -1;
baa355fd
KS
2688 mapping = NULL;
2689 anon_vma_lock_write(anon_vma);
2690 } else {
2691 mapping = head->mapping;
2692
2693 /* Truncated ? */
2694 if (!mapping) {
2695 ret = -EBUSY;
2696 goto out;
2697 }
2698
baa355fd
KS
2699 anon_vma = NULL;
2700 i_mmap_lock_read(mapping);
006d3ff2
HD
2701
2702 /*
2703 *__split_huge_page() may need to trim off pages beyond EOF:
2704 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2705 * which cannot be nested inside the page tree lock. So note
2706 * end now: i_size itself may be changed at any moment, but
2707 * head page lock is good enough to serialize the trimming.
2708 */
2709 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2710 }
e9b61f19
KS
2711
2712 /*
906f9cdf 2713 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2714 * split PMDs
2715 */
b8f593cd 2716 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2717 ret = -EBUSY;
2718 goto out_unlock;
2719 }
2720
d9654322 2721 mlocked = PageMlocked(page);
906f9cdf 2722 unmap_page(head);
e9b61f19
KS
2723 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2724
d9654322
KS
2725 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2726 if (mlocked)
2727 lru_add_drain();
2728
baa355fd 2729 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2730 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2731
2732 if (mapping) {
aa5dc07f 2733 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2734
baa355fd 2735 /*
aa5dc07f 2736 * Check if the head page is present in page cache.
baa355fd
KS
2737 * We assume all tail are present too, if head is there.
2738 */
aa5dc07f
MW
2739 xa_lock(&mapping->i_pages);
2740 if (xas_load(&xas) != head)
baa355fd
KS
2741 goto fail;
2742 }
2743
0139aa7b 2744 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2745 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2746 count = page_count(head);
2747 mapcount = total_mapcount(head);
baa355fd 2748 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2749 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2750 pgdata->split_queue_len--;
9a982250
KS
2751 list_del(page_deferred_list(head));
2752 }
65c45377 2753 if (mapping)
11fb9989 2754 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2755 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2756 __split_huge_page(page, list, end, flags);
59807685
HY
2757 if (PageSwapCache(head)) {
2758 swp_entry_t entry = { .val = page_private(head) };
2759
2760 ret = split_swap_cluster(entry);
2761 } else
2762 ret = 0;
e9b61f19 2763 } else {
baa355fd
KS
2764 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2765 pr_alert("total_mapcount: %u, page_count(): %u\n",
2766 mapcount, count);
2767 if (PageTail(page))
2768 dump_page(head, NULL);
2769 dump_page(page, "total_mapcount(head) > 0");
2770 BUG();
2771 }
2772 spin_unlock(&pgdata->split_queue_lock);
2773fail: if (mapping)
b93b0163 2774 xa_unlock(&mapping->i_pages);
f4b7e272 2775 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2776 remap_page(head);
e9b61f19
KS
2777 ret = -EBUSY;
2778 }
2779
2780out_unlock:
baa355fd
KS
2781 if (anon_vma) {
2782 anon_vma_unlock_write(anon_vma);
2783 put_anon_vma(anon_vma);
2784 }
2785 if (mapping)
2786 i_mmap_unlock_read(mapping);
e9b61f19
KS
2787out:
2788 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2789 return ret;
2790}
9a982250
KS
2791
2792void free_transhuge_page(struct page *page)
2793{
a3d0a918 2794 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2795 unsigned long flags;
2796
a3d0a918 2797 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2798 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2799 pgdata->split_queue_len--;
9a982250
KS
2800 list_del(page_deferred_list(page));
2801 }
a3d0a918 2802 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2803 free_compound_page(page);
2804}
2805
2806void deferred_split_huge_page(struct page *page)
2807{
a3d0a918 2808 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2809 unsigned long flags;
2810
2811 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2812
a3d0a918 2813 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2814 if (list_empty(page_deferred_list(page))) {
f9719a03 2815 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2816 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2817 pgdata->split_queue_len++;
9a982250 2818 }
a3d0a918 2819 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2820}
2821
2822static unsigned long deferred_split_count(struct shrinker *shrink,
2823 struct shrink_control *sc)
2824{
a3d0a918 2825 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2826 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2827}
2828
2829static unsigned long deferred_split_scan(struct shrinker *shrink,
2830 struct shrink_control *sc)
2831{
a3d0a918 2832 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2833 unsigned long flags;
2834 LIST_HEAD(list), *pos, *next;
2835 struct page *page;
2836 int split = 0;
2837
a3d0a918 2838 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2839 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2840 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2841 page = list_entry((void *)pos, struct page, mapping);
2842 page = compound_head(page);
e3ae1953
KS
2843 if (get_page_unless_zero(page)) {
2844 list_move(page_deferred_list(page), &list);
2845 } else {
2846 /* We lost race with put_compound_page() */
9a982250 2847 list_del_init(page_deferred_list(page));
a3d0a918 2848 pgdata->split_queue_len--;
9a982250 2849 }
e3ae1953
KS
2850 if (!--sc->nr_to_scan)
2851 break;
9a982250 2852 }
a3d0a918 2853 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2854
2855 list_for_each_safe(pos, next, &list) {
2856 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2857 if (!trylock_page(page))
2858 goto next;
9a982250
KS
2859 /* split_huge_page() removes page from list on success */
2860 if (!split_huge_page(page))
2861 split++;
2862 unlock_page(page);
fa41b900 2863next:
9a982250
KS
2864 put_page(page);
2865 }
2866
a3d0a918
KS
2867 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2868 list_splice_tail(&list, &pgdata->split_queue);
2869 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2870
cb8d68ec
KS
2871 /*
2872 * Stop shrinker if we didn't split any page, but the queue is empty.
2873 * This can happen if pages were freed under us.
2874 */
2875 if (!split && list_empty(&pgdata->split_queue))
2876 return SHRINK_STOP;
2877 return split;
9a982250
KS
2878}
2879
2880static struct shrinker deferred_split_shrinker = {
2881 .count_objects = deferred_split_count,
2882 .scan_objects = deferred_split_scan,
2883 .seeks = DEFAULT_SEEKS,
a3d0a918 2884 .flags = SHRINKER_NUMA_AWARE,
9a982250 2885};
49071d43
KS
2886
2887#ifdef CONFIG_DEBUG_FS
2888static int split_huge_pages_set(void *data, u64 val)
2889{
2890 struct zone *zone;
2891 struct page *page;
2892 unsigned long pfn, max_zone_pfn;
2893 unsigned long total = 0, split = 0;
2894
2895 if (val != 1)
2896 return -EINVAL;
2897
2898 for_each_populated_zone(zone) {
2899 max_zone_pfn = zone_end_pfn(zone);
2900 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2901 if (!pfn_valid(pfn))
2902 continue;
2903
2904 page = pfn_to_page(pfn);
2905 if (!get_page_unless_zero(page))
2906 continue;
2907
2908 if (zone != page_zone(page))
2909 goto next;
2910
baa355fd 2911 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2912 goto next;
2913
2914 total++;
2915 lock_page(page);
2916 if (!split_huge_page(page))
2917 split++;
2918 unlock_page(page);
2919next:
2920 put_page(page);
2921 }
2922 }
2923
145bdaa1 2924 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2925
2926 return 0;
2927}
2928DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2929 "%llu\n");
2930
2931static int __init split_huge_pages_debugfs(void)
2932{
d9f7979c
GKH
2933 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2934 &split_huge_pages_fops);
49071d43
KS
2935 return 0;
2936}
2937late_initcall(split_huge_pages_debugfs);
2938#endif
616b8371
ZY
2939
2940#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2941void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2942 struct page *page)
2943{
2944 struct vm_area_struct *vma = pvmw->vma;
2945 struct mm_struct *mm = vma->vm_mm;
2946 unsigned long address = pvmw->address;
2947 pmd_t pmdval;
2948 swp_entry_t entry;
ab6e3d09 2949 pmd_t pmdswp;
616b8371
ZY
2950
2951 if (!(pvmw->pmd && !pvmw->pte))
2952 return;
2953
616b8371
ZY
2954 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2955 pmdval = *pvmw->pmd;
2956 pmdp_invalidate(vma, address, pvmw->pmd);
2957 if (pmd_dirty(pmdval))
2958 set_page_dirty(page);
2959 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2960 pmdswp = swp_entry_to_pmd(entry);
2961 if (pmd_soft_dirty(pmdval))
2962 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2963 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2964 page_remove_rmap(page, true);
2965 put_page(page);
616b8371
ZY
2966}
2967
2968void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2969{
2970 struct vm_area_struct *vma = pvmw->vma;
2971 struct mm_struct *mm = vma->vm_mm;
2972 unsigned long address = pvmw->address;
2973 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2974 pmd_t pmde;
2975 swp_entry_t entry;
2976
2977 if (!(pvmw->pmd && !pvmw->pte))
2978 return;
2979
2980 entry = pmd_to_swp_entry(*pvmw->pmd);
2981 get_page(new);
2982 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2983 if (pmd_swp_soft_dirty(*pvmw->pmd))
2984 pmde = pmd_mksoft_dirty(pmde);
616b8371 2985 if (is_write_migration_entry(entry))
f55e1014 2986 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2987
2988 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2989 if (PageAnon(new))
2990 page_add_anon_rmap(new, vma, mmun_start, true);
2991 else
2992 page_add_file_rmap(new, true);
616b8371 2993 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2994 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2995 mlock_vma_page(new);
2996 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2997}
2998#endif