rtw88: remove redundant null pointer check on arrays
[linux-2.6-block.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
a520110e 11#include <linux/pagewalk.h>
133ff0ea 12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
c7d8b782 29static struct mmu_notifier *hmm_alloc_notifier(struct mm_struct *mm)
133ff0ea 30{
8a9320b7 31 struct hmm *hmm;
133ff0ea 32
c7d8b782 33 hmm = kzalloc(sizeof(*hmm), GFP_KERNEL);
c0b12405 34 if (!hmm)
c7d8b782
JG
35 return ERR_PTR(-ENOMEM);
36
a3e0d41c 37 init_waitqueue_head(&hmm->wq);
c0b12405
JG
38 INIT_LIST_HEAD(&hmm->mirrors);
39 init_rwsem(&hmm->mirrors_sem);
da4c3c73 40 INIT_LIST_HEAD(&hmm->ranges);
5a136b4a 41 spin_lock_init(&hmm->ranges_lock);
a3e0d41c 42 hmm->notifiers = 0;
c7d8b782 43 return &hmm->mmu_notifier;
133ff0ea 44}
86a2d598 45
c7d8b782 46static void hmm_free_notifier(struct mmu_notifier *mn)
6d7c3cde 47{
c7d8b782 48 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
8a9320b7 49
c7d8b782
JG
50 WARN_ON(!list_empty(&hmm->ranges));
51 WARN_ON(!list_empty(&hmm->mirrors));
86a2d598 52 kfree(hmm);
133ff0ea
JG
53}
54
a3e0d41c 55static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
133ff0ea 56{
6d7c3cde 57 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 58 struct hmm_mirror *mirror;
704f3f2c 59
47f24598
JG
60 /*
61 * Since hmm_range_register() holds the mmget() lock hmm_release() is
62 * prevented as long as a range exists.
63 */
64 WARN_ON(!list_empty_careful(&hmm->ranges));
e1401513 65
14331726
JG
66 down_read(&hmm->mirrors_sem);
67 list_for_each_entry(mirror, &hmm->mirrors, list) {
68 /*
69 * Note: The driver is not allowed to trigger
70 * hmm_mirror_unregister() from this thread.
71 */
72 if (mirror->ops->release)
e1401513 73 mirror->ops->release(mirror);
704f3f2c 74 }
14331726 75 up_read(&hmm->mirrors_sem);
133ff0ea 76}
c0b12405 77
5a136b4a 78static void notifiers_decrement(struct hmm *hmm)
c0b12405 79{
5a136b4a 80 unsigned long flags;
da4c3c73 81
5a136b4a
JG
82 spin_lock_irqsave(&hmm->ranges_lock, flags);
83 hmm->notifiers--;
84 if (!hmm->notifiers) {
85 struct hmm_range *range;
e1401513 86
5a136b4a
JG
87 list_for_each_entry(range, &hmm->ranges, list) {
88 if (range->valid)
89 continue;
90 range->valid = true;
e1401513 91 }
5a136b4a 92 wake_up_all(&hmm->wq);
e1401513 93 }
5a136b4a 94 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
e1401513
RC
95}
96
93065ac7 97static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 98 const struct mmu_notifier_range *nrange)
c0b12405 99{
6d7c3cde 100 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
a3e0d41c 101 struct hmm_mirror *mirror;
a3e0d41c 102 struct hmm_range *range;
5a136b4a 103 unsigned long flags;
a3e0d41c 104 int ret = 0;
c0b12405 105
5a136b4a 106 spin_lock_irqsave(&hmm->ranges_lock, flags);
a3e0d41c
JG
107 hmm->notifiers++;
108 list_for_each_entry(range, &hmm->ranges, list) {
1f961807 109 if (nrange->end < range->start || nrange->start >= range->end)
a3e0d41c
JG
110 continue;
111
112 range->valid = false;
113 }
5a136b4a 114 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
a3e0d41c 115
dfcd6660 116 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
117 down_read(&hmm->mirrors_sem);
118 else if (!down_read_trylock(&hmm->mirrors_sem)) {
119 ret = -EAGAIN;
120 goto out;
121 }
5a136b4a 122
a3e0d41c 123 list_for_each_entry(mirror, &hmm->mirrors, list) {
5a136b4a 124 int rc;
a3e0d41c 125
1f961807 126 rc = mirror->ops->sync_cpu_device_pagetables(mirror, nrange);
5a136b4a 127 if (rc) {
1f961807
RC
128 if (WARN_ON(mmu_notifier_range_blockable(nrange) ||
129 rc != -EAGAIN))
5a136b4a 130 continue;
a3e0d41c 131 ret = -EAGAIN;
085ea250 132 break;
a3e0d41c
JG
133 }
134 }
135 up_read(&hmm->mirrors_sem);
136
137out:
5a136b4a
JG
138 if (ret)
139 notifiers_decrement(hmm);
704f3f2c 140 return ret;
c0b12405
JG
141}
142
143static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 144 const struct mmu_notifier_range *nrange)
c0b12405 145{
6d7c3cde 146 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 147
5a136b4a 148 notifiers_decrement(hmm);
c0b12405
JG
149}
150
151static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 152 .release = hmm_release,
c0b12405
JG
153 .invalidate_range_start = hmm_invalidate_range_start,
154 .invalidate_range_end = hmm_invalidate_range_end,
c7d8b782
JG
155 .alloc_notifier = hmm_alloc_notifier,
156 .free_notifier = hmm_free_notifier,
c0b12405
JG
157};
158
159/*
160 * hmm_mirror_register() - register a mirror against an mm
161 *
162 * @mirror: new mirror struct to register
163 * @mm: mm to register against
085ea250 164 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
c0b12405
JG
165 *
166 * To start mirroring a process address space, the device driver must register
167 * an HMM mirror struct.
c7d8b782
JG
168 *
169 * The caller cannot unregister the hmm_mirror while any ranges are
170 * registered.
171 *
172 * Callers using this function must put a call to mmu_notifier_synchronize()
173 * in their module exit functions.
c0b12405
JG
174 */
175int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
176{
c7d8b782
JG
177 struct mmu_notifier *mn;
178
fec88ab0 179 lockdep_assert_held_write(&mm->mmap_sem);
8a1a0cd0 180
c0b12405
JG
181 /* Sanity check */
182 if (!mm || !mirror || !mirror->ops)
183 return -EINVAL;
184
c7d8b782
JG
185 mn = mmu_notifier_get_locked(&hmm_mmu_notifier_ops, mm);
186 if (IS_ERR(mn))
187 return PTR_ERR(mn);
188 mirror->hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405
JG
189
190 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
191 list_add(&mirror->list, &mirror->hmm->mirrors);
192 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
193
194 return 0;
195}
196EXPORT_SYMBOL(hmm_mirror_register);
197
198/*
199 * hmm_mirror_unregister() - unregister a mirror
200 *
085ea250 201 * @mirror: mirror struct to unregister
c0b12405
JG
202 *
203 * Stop mirroring a process address space, and cleanup.
204 */
205void hmm_mirror_unregister(struct hmm_mirror *mirror)
206{
187229c2 207 struct hmm *hmm = mirror->hmm;
c0b12405
JG
208
209 down_write(&hmm->mirrors_sem);
14331726 210 list_del(&mirror->list);
c0b12405 211 up_write(&hmm->mirrors_sem);
c7d8b782 212 mmu_notifier_put(&hmm->mmu_notifier);
c0b12405
JG
213}
214EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 215
74eee180
JG
216struct hmm_vma_walk {
217 struct hmm_range *range;
992de9a8 218 struct dev_pagemap *pgmap;
74eee180 219 unsigned long last;
9a4903e4 220 unsigned int flags;
74eee180
JG
221};
222
2aee09d8
JG
223static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
224 bool write_fault, uint64_t *pfn)
74eee180 225{
9b1ae605 226 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 227 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 228 struct hmm_range *range = hmm_vma_walk->range;
74eee180 229 struct vm_area_struct *vma = walk->vma;
50a7ca3c 230 vm_fault_t ret;
74eee180 231
6c64f2bb
RC
232 if (!vma)
233 goto err;
234
9a4903e4
CH
235 if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
236 flags |= FAULT_FLAG_ALLOW_RETRY;
237 if (write_fault)
238 flags |= FAULT_FLAG_WRITE;
239
50a7ca3c 240 ret = handle_mm_fault(vma, addr, flags);
e709accc
JG
241 if (ret & VM_FAULT_RETRY) {
242 /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
73231612 243 return -EAGAIN;
e709accc 244 }
6c64f2bb
RC
245 if (ret & VM_FAULT_ERROR)
246 goto err;
74eee180 247
73231612 248 return -EBUSY;
6c64f2bb
RC
249
250err:
251 *pfn = range->values[HMM_PFN_ERROR];
252 return -EFAULT;
74eee180
JG
253}
254
da4c3c73
JG
255static int hmm_pfns_bad(unsigned long addr,
256 unsigned long end,
257 struct mm_walk *walk)
258{
c719547f
JG
259 struct hmm_vma_walk *hmm_vma_walk = walk->private;
260 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 261 uint64_t *pfns = range->pfns;
da4c3c73
JG
262 unsigned long i;
263
264 i = (addr - range->start) >> PAGE_SHIFT;
265 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 266 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
267
268 return 0;
269}
270
5504ed29 271/*
d2e8d551
RC
272 * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
273 * @addr: range virtual start address (inclusive)
5504ed29 274 * @end: range virtual end address (exclusive)
2aee09d8
JG
275 * @fault: should we fault or not ?
276 * @write_fault: write fault ?
5504ed29 277 * @walk: mm_walk structure
085ea250 278 * Return: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
279 *
280 * This function will be called whenever pmd_none() or pte_none() returns true,
281 * or whenever there is no page directory covering the virtual address range.
282 */
2aee09d8
JG
283static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
284 bool fault, bool write_fault,
285 struct mm_walk *walk)
da4c3c73 286{
74eee180
JG
287 struct hmm_vma_walk *hmm_vma_walk = walk->private;
288 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 289 uint64_t *pfns = range->pfns;
7f08263d 290 unsigned long i;
da4c3c73 291
74eee180 292 hmm_vma_walk->last = addr;
7f08263d 293 i = (addr - range->start) >> PAGE_SHIFT;
63d5066f 294
c18ce674
RC
295 if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
296 return -EPERM;
297
7f08263d 298 for (; addr < end; addr += PAGE_SIZE, i++) {
f88a1e90 299 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 300 if (fault || write_fault) {
74eee180 301 int ret;
da4c3c73 302
2aee09d8
JG
303 ret = hmm_vma_do_fault(walk, addr, write_fault,
304 &pfns[i]);
73231612 305 if (ret != -EBUSY)
74eee180
JG
306 return ret;
307 }
308 }
309
73231612 310 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
311}
312
313static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
314 uint64_t pfns, uint64_t cpu_flags,
315 bool *fault, bool *write_fault)
316{
f88a1e90
JG
317 struct hmm_range *range = hmm_vma_walk->range;
318
d45d464b 319 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
2aee09d8
JG
320 return;
321
023a019a
JG
322 /*
323 * So we not only consider the individual per page request we also
324 * consider the default flags requested for the range. The API can
d2e8d551
RC
325 * be used 2 ways. The first one where the HMM user coalesces
326 * multiple page faults into one request and sets flags per pfn for
327 * those faults. The second one where the HMM user wants to pre-
023a019a
JG
328 * fault a range with specific flags. For the latter one it is a
329 * waste to have the user pre-fill the pfn arrays with a default
330 * flags value.
331 */
332 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
333
2aee09d8 334 /* We aren't ask to do anything ... */
f88a1e90 335 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 336 return;
d2e8d551 337 /* If this is device memory then only fault if explicitly requested */
f88a1e90
JG
338 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
339 /* Do we fault on device memory ? */
340 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
341 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
342 *fault = true;
343 }
2aee09d8
JG
344 return;
345 }
f88a1e90
JG
346
347 /* If CPU page table is not valid then we need to fault */
348 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
349 /* Need to write fault ? */
350 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
351 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
352 *write_fault = true;
2aee09d8
JG
353 *fault = true;
354 }
355}
356
357static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
358 const uint64_t *pfns, unsigned long npages,
359 uint64_t cpu_flags, bool *fault,
360 bool *write_fault)
361{
362 unsigned long i;
363
d45d464b 364 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
2aee09d8
JG
365 *fault = *write_fault = false;
366 return;
367 }
368
a3e0d41c 369 *fault = *write_fault = false;
2aee09d8
JG
370 for (i = 0; i < npages; ++i) {
371 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
372 fault, write_fault);
a3e0d41c 373 if ((*write_fault))
2aee09d8
JG
374 return;
375 }
376}
377
378static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
379 struct mm_walk *walk)
380{
381 struct hmm_vma_walk *hmm_vma_walk = walk->private;
382 struct hmm_range *range = hmm_vma_walk->range;
383 bool fault, write_fault;
384 unsigned long i, npages;
385 uint64_t *pfns;
386
387 i = (addr - range->start) >> PAGE_SHIFT;
388 npages = (end - addr) >> PAGE_SHIFT;
389 pfns = &range->pfns[i];
390 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
391 0, &fault, &write_fault);
392 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
393}
394
f88a1e90 395static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
396{
397 if (pmd_protnone(pmd))
398 return 0;
f88a1e90
JG
399 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
400 range->flags[HMM_PFN_WRITE] :
401 range->flags[HMM_PFN_VALID];
da4c3c73
JG
402}
403
992de9a8 404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9d3973d6
CH
405static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
406 unsigned long end, uint64_t *pfns, pmd_t pmd)
407{
53f5c3f4 408 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 409 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 410 unsigned long pfn, npages, i;
2aee09d8 411 bool fault, write_fault;
f88a1e90 412 uint64_t cpu_flags;
53f5c3f4 413
2aee09d8 414 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 415 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
416 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
417 &fault, &write_fault);
53f5c3f4 418
2aee09d8
JG
419 if (pmd_protnone(pmd) || fault || write_fault)
420 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4 421
309f9a4f 422 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
992de9a8
JG
423 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
424 if (pmd_devmap(pmd)) {
425 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
426 hmm_vma_walk->pgmap);
427 if (unlikely(!hmm_vma_walk->pgmap))
428 return -EBUSY;
429 }
391aab11 430 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
431 }
432 if (hmm_vma_walk->pgmap) {
433 put_dev_pagemap(hmm_vma_walk->pgmap);
434 hmm_vma_walk->pgmap = NULL;
435 }
53f5c3f4
JG
436 hmm_vma_walk->last = end;
437 return 0;
438}
9d3973d6
CH
439#else /* CONFIG_TRANSPARENT_HUGEPAGE */
440/* stub to allow the code below to compile */
441int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
442 unsigned long end, uint64_t *pfns, pmd_t pmd);
443#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
53f5c3f4 444
f88a1e90 445static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 446{
789c2af8 447 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 448 return 0;
f88a1e90
JG
449 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
450 range->flags[HMM_PFN_WRITE] :
451 range->flags[HMM_PFN_VALID];
2aee09d8
JG
452}
453
53f5c3f4
JG
454static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
455 unsigned long end, pmd_t *pmdp, pte_t *ptep,
456 uint64_t *pfn)
457{
458 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 459 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8
JG
460 bool fault, write_fault;
461 uint64_t cpu_flags;
53f5c3f4 462 pte_t pte = *ptep;
f88a1e90 463 uint64_t orig_pfn = *pfn;
53f5c3f4 464
f88a1e90 465 *pfn = range->values[HMM_PFN_NONE];
73231612 466 fault = write_fault = false;
53f5c3f4
JG
467
468 if (pte_none(pte)) {
73231612
JG
469 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
470 &fault, &write_fault);
2aee09d8 471 if (fault || write_fault)
53f5c3f4
JG
472 goto fault;
473 return 0;
474 }
475
476 if (!pte_present(pte)) {
477 swp_entry_t entry = pte_to_swp_entry(pte);
478
479 if (!non_swap_entry(entry)) {
e3fe8e55
YP
480 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
481 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
482 &fault, &write_fault);
2aee09d8 483 if (fault || write_fault)
53f5c3f4
JG
484 goto fault;
485 return 0;
486 }
487
488 /*
489 * This is a special swap entry, ignore migration, use
490 * device and report anything else as error.
491 */
492 if (is_device_private_entry(entry)) {
f88a1e90
JG
493 cpu_flags = range->flags[HMM_PFN_VALID] |
494 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 495 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
496 range->flags[HMM_PFN_WRITE] : 0;
497 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
498 &fault, &write_fault);
499 if (fault || write_fault)
500 goto fault;
391aab11
JG
501 *pfn = hmm_device_entry_from_pfn(range,
502 swp_offset(entry));
f88a1e90 503 *pfn |= cpu_flags;
53f5c3f4
JG
504 return 0;
505 }
506
507 if (is_migration_entry(entry)) {
2aee09d8 508 if (fault || write_fault) {
53f5c3f4
JG
509 pte_unmap(ptep);
510 hmm_vma_walk->last = addr;
d2e8d551 511 migration_entry_wait(walk->mm, pmdp, addr);
73231612 512 return -EBUSY;
53f5c3f4
JG
513 }
514 return 0;
515 }
516
517 /* Report error for everything else */
f88a1e90 518 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 519 return -EFAULT;
73231612
JG
520 } else {
521 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
522 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
523 &fault, &write_fault);
53f5c3f4
JG
524 }
525
2aee09d8 526 if (fault || write_fault)
53f5c3f4
JG
527 goto fault;
528
992de9a8
JG
529 if (pte_devmap(pte)) {
530 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
531 hmm_vma_walk->pgmap);
532 if (unlikely(!hmm_vma_walk->pgmap))
533 return -EBUSY;
534 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
535 *pfn = range->values[HMM_PFN_SPECIAL];
536 return -EFAULT;
537 }
538
391aab11 539 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
540 return 0;
541
542fault:
992de9a8
JG
543 if (hmm_vma_walk->pgmap) {
544 put_dev_pagemap(hmm_vma_walk->pgmap);
545 hmm_vma_walk->pgmap = NULL;
546 }
53f5c3f4
JG
547 pte_unmap(ptep);
548 /* Fault any virtual address we were asked to fault */
2aee09d8 549 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
550}
551
da4c3c73
JG
552static int hmm_vma_walk_pmd(pmd_t *pmdp,
553 unsigned long start,
554 unsigned long end,
555 struct mm_walk *walk)
556{
74eee180
JG
557 struct hmm_vma_walk *hmm_vma_walk = walk->private;
558 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 559 uint64_t *pfns = range->pfns;
da4c3c73 560 unsigned long addr = start, i;
da4c3c73 561 pte_t *ptep;
d08faca0 562 pmd_t pmd;
da4c3c73 563
da4c3c73 564again:
d08faca0
JG
565 pmd = READ_ONCE(*pmdp);
566 if (pmd_none(pmd))
da4c3c73
JG
567 return hmm_vma_walk_hole(start, end, walk);
568
d08faca0
JG
569 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
570 bool fault, write_fault;
571 unsigned long npages;
572 uint64_t *pfns;
573
574 i = (addr - range->start) >> PAGE_SHIFT;
575 npages = (end - addr) >> PAGE_SHIFT;
576 pfns = &range->pfns[i];
577
578 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
579 0, &fault, &write_fault);
580 if (fault || write_fault) {
581 hmm_vma_walk->last = addr;
d2e8d551 582 pmd_migration_entry_wait(walk->mm, pmdp);
73231612 583 return -EBUSY;
d08faca0
JG
584 }
585 return 0;
586 } else if (!pmd_present(pmd))
587 return hmm_pfns_bad(start, end, walk);
da4c3c73 588
d08faca0 589 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73 590 /*
d2e8d551 591 * No need to take pmd_lock here, even if some other thread
da4c3c73
JG
592 * is splitting the huge pmd we will get that event through
593 * mmu_notifier callback.
594 *
d2e8d551 595 * So just read pmd value and check again it's a transparent
da4c3c73
JG
596 * huge or device mapping one and compute corresponding pfn
597 * values.
598 */
599 pmd = pmd_read_atomic(pmdp);
600 barrier();
601 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
602 goto again;
74eee180 603
d08faca0 604 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 605 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
606 }
607
d08faca0 608 /*
d2e8d551 609 * We have handled all the valid cases above ie either none, migration,
d08faca0
JG
610 * huge or transparent huge. At this point either it is a valid pmd
611 * entry pointing to pte directory or it is a bad pmd that will not
612 * recover.
613 */
614 if (pmd_bad(pmd))
da4c3c73
JG
615 return hmm_pfns_bad(start, end, walk);
616
617 ptep = pte_offset_map(pmdp, addr);
d08faca0 618 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 619 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 620 int r;
74eee180 621
53f5c3f4
JG
622 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
623 if (r) {
624 /* hmm_vma_handle_pte() did unmap pte directory */
625 hmm_vma_walk->last = addr;
626 return r;
74eee180 627 }
da4c3c73 628 }
992de9a8
JG
629 if (hmm_vma_walk->pgmap) {
630 /*
631 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
632 * so that we can leverage get_dev_pagemap() optimization which
633 * will not re-take a reference on a pgmap if we already have
634 * one.
635 */
636 put_dev_pagemap(hmm_vma_walk->pgmap);
637 hmm_vma_walk->pgmap = NULL;
638 }
da4c3c73
JG
639 pte_unmap(ptep - 1);
640
53f5c3f4 641 hmm_vma_walk->last = addr;
da4c3c73
JG
642 return 0;
643}
644
f0b3c45c
CH
645#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
646 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
647static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
648{
649 if (!pud_present(pud))
650 return 0;
651 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
652 range->flags[HMM_PFN_WRITE] :
653 range->flags[HMM_PFN_VALID];
654}
655
656static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
657 struct mm_walk *walk)
992de9a8
JG
658{
659 struct hmm_vma_walk *hmm_vma_walk = walk->private;
660 struct hmm_range *range = hmm_vma_walk->range;
661 unsigned long addr = start, next;
662 pmd_t *pmdp;
663 pud_t pud;
664 int ret;
665
666again:
667 pud = READ_ONCE(*pudp);
668 if (pud_none(pud))
669 return hmm_vma_walk_hole(start, end, walk);
670
671 if (pud_huge(pud) && pud_devmap(pud)) {
672 unsigned long i, npages, pfn;
673 uint64_t *pfns, cpu_flags;
674 bool fault, write_fault;
675
676 if (!pud_present(pud))
677 return hmm_vma_walk_hole(start, end, walk);
678
679 i = (addr - range->start) >> PAGE_SHIFT;
680 npages = (end - addr) >> PAGE_SHIFT;
681 pfns = &range->pfns[i];
682
683 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
684 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
685 cpu_flags, &fault, &write_fault);
686 if (fault || write_fault)
687 return hmm_vma_walk_hole_(addr, end, fault,
688 write_fault, walk);
689
992de9a8
JG
690 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
691 for (i = 0; i < npages; ++i, ++pfn) {
692 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
693 hmm_vma_walk->pgmap);
694 if (unlikely(!hmm_vma_walk->pgmap))
695 return -EBUSY;
391aab11
JG
696 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
697 cpu_flags;
992de9a8
JG
698 }
699 if (hmm_vma_walk->pgmap) {
700 put_dev_pagemap(hmm_vma_walk->pgmap);
701 hmm_vma_walk->pgmap = NULL;
702 }
703 hmm_vma_walk->last = end;
704 return 0;
992de9a8
JG
705 }
706
707 split_huge_pud(walk->vma, pudp, addr);
708 if (pud_none(*pudp))
709 goto again;
710
711 pmdp = pmd_offset(pudp, addr);
712 do {
713 next = pmd_addr_end(addr, end);
714 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
715 if (ret)
716 return ret;
717 } while (pmdp++, addr = next, addr != end);
718
719 return 0;
720}
f0b3c45c
CH
721#else
722#define hmm_vma_walk_pud NULL
723#endif
992de9a8 724
251bbe59 725#ifdef CONFIG_HUGETLB_PAGE
63d5066f
JG
726static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
727 unsigned long start, unsigned long end,
728 struct mm_walk *walk)
729{
05c23af4 730 unsigned long addr = start, i, pfn;
63d5066f
JG
731 struct hmm_vma_walk *hmm_vma_walk = walk->private;
732 struct hmm_range *range = hmm_vma_walk->range;
733 struct vm_area_struct *vma = walk->vma;
63d5066f
JG
734 uint64_t orig_pfn, cpu_flags;
735 bool fault, write_fault;
736 spinlock_t *ptl;
737 pte_t entry;
738 int ret = 0;
739
d2e8d551 740 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
63d5066f
JG
741 entry = huge_ptep_get(pte);
742
7f08263d 743 i = (start - range->start) >> PAGE_SHIFT;
63d5066f
JG
744 orig_pfn = range->pfns[i];
745 range->pfns[i] = range->values[HMM_PFN_NONE];
746 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
747 fault = write_fault = false;
748 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
749 &fault, &write_fault);
750 if (fault || write_fault) {
751 ret = -ENOENT;
752 goto unlock;
753 }
754
05c23af4 755 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
7f08263d 756 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
391aab11
JG
757 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
758 cpu_flags;
63d5066f
JG
759 hmm_vma_walk->last = end;
760
761unlock:
762 spin_unlock(ptl);
763
764 if (ret == -ENOENT)
765 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
766
767 return ret;
63d5066f 768}
251bbe59
CH
769#else
770#define hmm_vma_walk_hugetlb_entry NULL
771#endif /* CONFIG_HUGETLB_PAGE */
63d5066f 772
f88a1e90
JG
773static void hmm_pfns_clear(struct hmm_range *range,
774 uint64_t *pfns,
33cd47dc
JG
775 unsigned long addr,
776 unsigned long end)
777{
778 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 779 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
780}
781
da4c3c73 782/*
a3e0d41c 783 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 784 * @range: range
a3e0d41c 785 * @mm: the mm struct for the range of virtual address
fac555ac 786 *
d2e8d551 787 * Return: 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 788 *
a3e0d41c 789 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 790 */
fac555ac 791int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror)
da4c3c73 792{
e36acfe6 793 struct hmm *hmm = mirror->hmm;
5a136b4a 794 unsigned long flags;
63d5066f 795
a3e0d41c 796 range->valid = false;
704f3f2c
JG
797 range->hmm = NULL;
798
7f08263d 799 if ((range->start & (PAGE_SIZE - 1)) || (range->end & (PAGE_SIZE - 1)))
63d5066f 800 return -EINVAL;
fac555ac 801 if (range->start >= range->end)
da4c3c73
JG
802 return -EINVAL;
803
47f24598 804 /* Prevent hmm_release() from running while the range is valid */
c7d8b782 805 if (!mmget_not_zero(hmm->mmu_notifier.mm))
a3e0d41c 806 return -EFAULT;
da4c3c73 807
085ea250 808 /* Initialize range to track CPU page table updates. */
5a136b4a 809 spin_lock_irqsave(&hmm->ranges_lock, flags);
855ce7d2 810
085ea250 811 range->hmm = hmm;
157816f3 812 list_add(&range->list, &hmm->ranges);
86586a41 813
704f3f2c 814 /*
a3e0d41c
JG
815 * If there are any concurrent notifiers we have to wait for them for
816 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 817 */
085ea250 818 if (!hmm->notifiers)
a3e0d41c 819 range->valid = true;
5a136b4a 820 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
a3e0d41c
JG
821
822 return 0;
da4c3c73 823}
a3e0d41c 824EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
825
826/*
a3e0d41c
JG
827 * hmm_range_unregister() - stop tracking change to CPU page table over a range
828 * @range: range
da4c3c73
JG
829 *
830 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 831 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 832 */
a3e0d41c 833void hmm_range_unregister(struct hmm_range *range)
da4c3c73 834{
085ea250 835 struct hmm *hmm = range->hmm;
5a136b4a 836 unsigned long flags;
da4c3c73 837
5a136b4a 838 spin_lock_irqsave(&hmm->ranges_lock, flags);
47f24598 839 list_del_init(&range->list);
5a136b4a 840 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
da4c3c73 841
a3e0d41c 842 /* Drop reference taken by hmm_range_register() */
c7d8b782 843 mmput(hmm->mmu_notifier.mm);
2dcc3eb8
JG
844
845 /*
846 * The range is now invalid and the ref on the hmm is dropped, so
847 * poison the pointer. Leave other fields in place, for the caller's
848 * use.
849 */
a3e0d41c 850 range->valid = false;
2dcc3eb8 851 memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
da4c3c73 852}
a3e0d41c
JG
853EXPORT_SYMBOL(hmm_range_unregister);
854
7b86ac33
CH
855static const struct mm_walk_ops hmm_walk_ops = {
856 .pud_entry = hmm_vma_walk_pud,
857 .pmd_entry = hmm_vma_walk_pmd,
858 .pte_hole = hmm_vma_walk_hole,
859 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
860};
861
9a4903e4
CH
862/**
863 * hmm_range_fault - try to fault some address in a virtual address range
864 * @range: range being faulted
865 * @flags: HMM_FAULT_* flags
866 *
867 * Return: the number of valid pages in range->pfns[] (from range start
868 * address), which may be zero. On error one of the following status codes
869 * can be returned:
73231612 870 *
9a4903e4
CH
871 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
872 * (e.g., device file vma).
873 * -ENOMEM: Out of memory.
874 * -EPERM: Invalid permission (e.g., asking for write and range is read
875 * only).
876 * -EAGAIN: A page fault needs to be retried and mmap_sem was dropped.
877 * -EBUSY: The range has been invalidated and the caller needs to wait for
878 * the invalidation to finish.
879 * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access
880 * that range) number of valid pages in range->pfns[] (from
881 * range start address).
74eee180
JG
882 *
883 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
884 * any memory migration if the memory being faulted is not accessible by CPUs
885 * and caller does not ask for migration.
74eee180 886 *
ff05c0c6
JG
887 * On error, for one virtual address in the range, the function will mark the
888 * corresponding HMM pfn entry with an error flag.
74eee180 889 */
9a4903e4 890long hmm_range_fault(struct hmm_range *range, unsigned int flags)
74eee180 891{
63d5066f 892 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 893 unsigned long start = range->start, end;
74eee180 894 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
895 struct hmm *hmm = range->hmm;
896 struct vm_area_struct *vma;
74eee180
JG
897 int ret;
898
c7d8b782 899 lockdep_assert_held(&hmm->mmu_notifier.mm->mmap_sem);
704f3f2c 900
a3e0d41c
JG
901 do {
902 /* If range is no longer valid force retry. */
2bcbeaef
CH
903 if (!range->valid)
904 return -EBUSY;
74eee180 905
c7d8b782 906 vma = find_vma(hmm->mmu_notifier.mm, start);
63d5066f 907 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 908 return -EFAULT;
704f3f2c 909
a3e0d41c
JG
910 if (!(vma->vm_flags & VM_READ)) {
911 /*
912 * If vma do not allow read access, then assume that it
913 * does not allow write access, either. HMM does not
914 * support architecture that allow write without read.
915 */
916 hmm_pfns_clear(range, range->pfns,
917 range->start, range->end);
918 return -EPERM;
919 }
74eee180 920
992de9a8 921 hmm_vma_walk.pgmap = NULL;
a3e0d41c 922 hmm_vma_walk.last = start;
9a4903e4 923 hmm_vma_walk.flags = flags;
a3e0d41c 924 hmm_vma_walk.range = range;
a3e0d41c
JG
925 end = min(range->end, vma->vm_end);
926
7b86ac33
CH
927 walk_page_range(vma->vm_mm, start, end, &hmm_walk_ops,
928 &hmm_vma_walk);
a3e0d41c
JG
929
930 do {
7b86ac33
CH
931 ret = walk_page_range(vma->vm_mm, start, end,
932 &hmm_walk_ops, &hmm_vma_walk);
a3e0d41c
JG
933 start = hmm_vma_walk.last;
934
935 /* Keep trying while the range is valid. */
936 } while (ret == -EBUSY && range->valid);
937
938 if (ret) {
939 unsigned long i;
940
941 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
942 hmm_pfns_clear(range, &range->pfns[i],
943 hmm_vma_walk.last, range->end);
944 return ret;
945 }
946 start = end;
74eee180 947
a3e0d41c 948 } while (start < range->end);
704f3f2c 949
73231612 950 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 951}
73231612 952EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
953
954/**
9a4903e4
CH
955 * hmm_range_dma_map - hmm_range_fault() and dma map page all in one.
956 * @range: range being faulted
957 * @device: device to map page to
958 * @daddrs: array of dma addresses for the mapped pages
959 * @flags: HMM_FAULT_*
55c0ece8 960 *
9a4903e4
CH
961 * Return: the number of pages mapped on success (including zero), or any
962 * status return from hmm_range_fault() otherwise.
55c0ece8 963 */
9a4903e4
CH
964long hmm_range_dma_map(struct hmm_range *range, struct device *device,
965 dma_addr_t *daddrs, unsigned int flags)
55c0ece8
JG
966{
967 unsigned long i, npages, mapped;
968 long ret;
969
9a4903e4 970 ret = hmm_range_fault(range, flags);
55c0ece8
JG
971 if (ret <= 0)
972 return ret ? ret : -EBUSY;
973
974 npages = (range->end - range->start) >> PAGE_SHIFT;
975 for (i = 0, mapped = 0; i < npages; ++i) {
976 enum dma_data_direction dir = DMA_TO_DEVICE;
977 struct page *page;
978
979 /*
980 * FIXME need to update DMA API to provide invalid DMA address
981 * value instead of a function to test dma address value. This
982 * would remove lot of dumb code duplicated accross many arch.
983 *
984 * For now setting it to 0 here is good enough as the pfns[]
985 * value is what is use to check what is valid and what isn't.
986 */
987 daddrs[i] = 0;
988
391aab11 989 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
990 if (page == NULL)
991 continue;
992
993 /* Check if range is being invalidated */
994 if (!range->valid) {
995 ret = -EBUSY;
996 goto unmap;
997 }
998
999 /* If it is read and write than map bi-directional. */
1000 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1001 dir = DMA_BIDIRECTIONAL;
1002
1003 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1004 if (dma_mapping_error(device, daddrs[i])) {
1005 ret = -EFAULT;
1006 goto unmap;
1007 }
1008
1009 mapped++;
1010 }
1011
1012 return mapped;
1013
1014unmap:
1015 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1016 enum dma_data_direction dir = DMA_TO_DEVICE;
1017 struct page *page;
1018
391aab11 1019 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1020 if (page == NULL)
1021 continue;
1022
1023 if (dma_mapping_error(device, daddrs[i]))
1024 continue;
1025
1026 /* If it is read and write than map bi-directional. */
1027 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1028 dir = DMA_BIDIRECTIONAL;
1029
1030 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1031 mapped--;
1032 }
1033
1034 return ret;
1035}
1036EXPORT_SYMBOL(hmm_range_dma_map);
1037
1038/**
1039 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1040 * @range: range being unmapped
55c0ece8
JG
1041 * @device: device against which dma map was done
1042 * @daddrs: dma address of mapped pages
1043 * @dirty: dirty page if it had the write flag set
085ea250 1044 * Return: number of page unmapped on success, -EINVAL otherwise
55c0ece8
JG
1045 *
1046 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1047 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1048 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1049 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1050 */
1051long hmm_range_dma_unmap(struct hmm_range *range,
55c0ece8
JG
1052 struct device *device,
1053 dma_addr_t *daddrs,
1054 bool dirty)
1055{
1056 unsigned long i, npages;
1057 long cpages = 0;
1058
1059 /* Sanity check. */
1060 if (range->end <= range->start)
1061 return -EINVAL;
1062 if (!daddrs)
1063 return -EINVAL;
1064 if (!range->pfns)
1065 return -EINVAL;
1066
1067 npages = (range->end - range->start) >> PAGE_SHIFT;
1068 for (i = 0; i < npages; ++i) {
1069 enum dma_data_direction dir = DMA_TO_DEVICE;
1070 struct page *page;
1071
391aab11 1072 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1073 if (page == NULL)
1074 continue;
1075
1076 /* If it is read and write than map bi-directional. */
1077 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1078 dir = DMA_BIDIRECTIONAL;
1079
1080 /*
1081 * See comments in function description on why it is
1082 * safe here to call set_page_dirty()
1083 */
1084 if (dirty)
1085 set_page_dirty(page);
1086 }
1087
1088 /* Unmap and clear pfns/dma address */
1089 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1090 range->pfns[i] = range->values[HMM_PFN_NONE];
1091 /* FIXME see comments in hmm_vma_dma_map() */
1092 daddrs[i] = 0;
1093 cpages++;
1094 }
1095
1096 return cpages;
1097}
1098EXPORT_SYMBOL(hmm_range_dma_unmap);