Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/mm.h>
12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
c0b12405
JG
29static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
30
704f3f2c
JG
31/**
32 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
33 *
34 * @mm: mm struct to attach to
704f3f2c
JG
35 * Returns: returns an HMM object, either by referencing the existing
36 * (per-process) object, or by creating a new one.
133ff0ea 37 *
704f3f2c
JG
38 * This is not intended to be used directly by device drivers. If mm already
39 * has an HMM struct then it get a reference on it and returns it. Otherwise
40 * it allocates an HMM struct, initializes it, associate it with the mm and
41 * returns it.
133ff0ea 42 */
704f3f2c 43static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 44{
8a9320b7 45 struct hmm *hmm;
133ff0ea 46
fec88ab0 47 lockdep_assert_held_write(&mm->mmap_sem);
133ff0ea 48
8a9320b7
JG
49 /* Abuse the page_table_lock to also protect mm->hmm. */
50 spin_lock(&mm->page_table_lock);
51 hmm = mm->hmm;
52 if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref))
53 goto out_unlock;
54 spin_unlock(&mm->page_table_lock);
c0b12405
JG
55
56 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
57 if (!hmm)
58 return NULL;
a3e0d41c 59 init_waitqueue_head(&hmm->wq);
c0b12405
JG
60 INIT_LIST_HEAD(&hmm->mirrors);
61 init_rwsem(&hmm->mirrors_sem);
c0b12405 62 hmm->mmu_notifier.ops = NULL;
da4c3c73 63 INIT_LIST_HEAD(&hmm->ranges);
5a136b4a 64 spin_lock_init(&hmm->ranges_lock);
704f3f2c 65 kref_init(&hmm->kref);
a3e0d41c 66 hmm->notifiers = 0;
c0b12405
JG
67 hmm->mm = mm;
68
8a9320b7
JG
69 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
70 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
71 kfree(hmm);
72 return NULL;
73 }
c0b12405 74
8a9320b7 75 mmgrab(hmm->mm);
86a2d598
RC
76
77 /*
8a9320b7
JG
78 * We hold the exclusive mmap_sem here so we know that mm->hmm is
79 * still NULL or 0 kref, and is safe to update.
86a2d598 80 */
86a2d598 81 spin_lock(&mm->page_table_lock);
8a9320b7 82 mm->hmm = hmm;
c0b12405 83
8a9320b7 84out_unlock:
86a2d598 85 spin_unlock(&mm->page_table_lock);
704f3f2c 86 return hmm;
133ff0ea 87}
86a2d598 88
6d7c3cde
JG
89static void hmm_free_rcu(struct rcu_head *rcu)
90{
8a9320b7
JG
91 struct hmm *hmm = container_of(rcu, struct hmm, rcu);
92
93 mmdrop(hmm->mm);
86a2d598 94 kfree(hmm);
133ff0ea
JG
95}
96
704f3f2c
JG
97static void hmm_free(struct kref *kref)
98{
99 struct hmm *hmm = container_of(kref, struct hmm, kref);
704f3f2c 100
8a9320b7
JG
101 spin_lock(&hmm->mm->page_table_lock);
102 if (hmm->mm->hmm == hmm)
103 hmm->mm->hmm = NULL;
104 spin_unlock(&hmm->mm->page_table_lock);
704f3f2c 105
8a9320b7 106 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm);
6d7c3cde 107 mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
704f3f2c
JG
108}
109
110static inline void hmm_put(struct hmm *hmm)
111{
112 kref_put(&hmm->kref, hmm_free);
113}
114
a3e0d41c 115static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
133ff0ea 116{
6d7c3cde 117 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 118 struct hmm_mirror *mirror;
704f3f2c 119
6d7c3cde
JG
120 /* Bail out if hmm is in the process of being freed */
121 if (!kref_get_unless_zero(&hmm->kref))
704f3f2c 122 return;
6d7c3cde 123
47f24598
JG
124 /*
125 * Since hmm_range_register() holds the mmget() lock hmm_release() is
126 * prevented as long as a range exists.
127 */
128 WARN_ON(!list_empty_careful(&hmm->ranges));
e1401513 129
14331726
JG
130 down_read(&hmm->mirrors_sem);
131 list_for_each_entry(mirror, &hmm->mirrors, list) {
132 /*
133 * Note: The driver is not allowed to trigger
134 * hmm_mirror_unregister() from this thread.
135 */
136 if (mirror->ops->release)
e1401513 137 mirror->ops->release(mirror);
704f3f2c 138 }
14331726 139 up_read(&hmm->mirrors_sem);
704f3f2c 140
704f3f2c 141 hmm_put(hmm);
133ff0ea 142}
c0b12405 143
5a136b4a 144static void notifiers_decrement(struct hmm *hmm)
c0b12405 145{
5a136b4a 146 unsigned long flags;
da4c3c73 147
5a136b4a
JG
148 spin_lock_irqsave(&hmm->ranges_lock, flags);
149 hmm->notifiers--;
150 if (!hmm->notifiers) {
151 struct hmm_range *range;
e1401513 152
5a136b4a
JG
153 list_for_each_entry(range, &hmm->ranges, list) {
154 if (range->valid)
155 continue;
156 range->valid = true;
e1401513 157 }
5a136b4a 158 wake_up_all(&hmm->wq);
e1401513 159 }
5a136b4a 160 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
e1401513
RC
161}
162
93065ac7 163static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 164 const struct mmu_notifier_range *nrange)
c0b12405 165{
6d7c3cde 166 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
a3e0d41c 167 struct hmm_mirror *mirror;
ec131b2d 168 struct hmm_update update;
a3e0d41c 169 struct hmm_range *range;
5a136b4a 170 unsigned long flags;
a3e0d41c 171 int ret = 0;
c0b12405 172
6d7c3cde
JG
173 if (!kref_get_unless_zero(&hmm->kref))
174 return 0;
c0b12405 175
a3e0d41c
JG
176 update.start = nrange->start;
177 update.end = nrange->end;
ec131b2d 178 update.event = HMM_UPDATE_INVALIDATE;
dfcd6660 179 update.blockable = mmu_notifier_range_blockable(nrange);
a3e0d41c 180
5a136b4a 181 spin_lock_irqsave(&hmm->ranges_lock, flags);
a3e0d41c
JG
182 hmm->notifiers++;
183 list_for_each_entry(range, &hmm->ranges, list) {
184 if (update.end < range->start || update.start >= range->end)
185 continue;
186
187 range->valid = false;
188 }
5a136b4a 189 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
a3e0d41c 190
dfcd6660 191 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
192 down_read(&hmm->mirrors_sem);
193 else if (!down_read_trylock(&hmm->mirrors_sem)) {
194 ret = -EAGAIN;
195 goto out;
196 }
5a136b4a 197
a3e0d41c 198 list_for_each_entry(mirror, &hmm->mirrors, list) {
5a136b4a 199 int rc;
a3e0d41c 200
5a136b4a
JG
201 rc = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
202 if (rc) {
203 if (WARN_ON(update.blockable || rc != -EAGAIN))
204 continue;
a3e0d41c 205 ret = -EAGAIN;
085ea250 206 break;
a3e0d41c
JG
207 }
208 }
209 up_read(&hmm->mirrors_sem);
210
211out:
5a136b4a
JG
212 if (ret)
213 notifiers_decrement(hmm);
704f3f2c
JG
214 hmm_put(hmm);
215 return ret;
c0b12405
JG
216}
217
218static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 219 const struct mmu_notifier_range *nrange)
c0b12405 220{
6d7c3cde 221 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 222
6d7c3cde
JG
223 if (!kref_get_unless_zero(&hmm->kref))
224 return;
a3e0d41c 225
5a136b4a 226 notifiers_decrement(hmm);
704f3f2c 227 hmm_put(hmm);
c0b12405
JG
228}
229
230static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 231 .release = hmm_release,
c0b12405
JG
232 .invalidate_range_start = hmm_invalidate_range_start,
233 .invalidate_range_end = hmm_invalidate_range_end,
234};
235
236/*
237 * hmm_mirror_register() - register a mirror against an mm
238 *
239 * @mirror: new mirror struct to register
240 * @mm: mm to register against
085ea250 241 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
c0b12405
JG
242 *
243 * To start mirroring a process address space, the device driver must register
244 * an HMM mirror struct.
c0b12405
JG
245 */
246int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
247{
fec88ab0 248 lockdep_assert_held_write(&mm->mmap_sem);
8a1a0cd0 249
c0b12405
JG
250 /* Sanity check */
251 if (!mm || !mirror || !mirror->ops)
252 return -EINVAL;
253
704f3f2c 254 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
255 if (!mirror->hmm)
256 return -ENOMEM;
257
258 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
259 list_add(&mirror->list, &mirror->hmm->mirrors);
260 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
261
262 return 0;
263}
264EXPORT_SYMBOL(hmm_mirror_register);
265
266/*
267 * hmm_mirror_unregister() - unregister a mirror
268 *
085ea250 269 * @mirror: mirror struct to unregister
c0b12405
JG
270 *
271 * Stop mirroring a process address space, and cleanup.
272 */
273void hmm_mirror_unregister(struct hmm_mirror *mirror)
274{
187229c2 275 struct hmm *hmm = mirror->hmm;
c0b12405
JG
276
277 down_write(&hmm->mirrors_sem);
14331726 278 list_del(&mirror->list);
c0b12405 279 up_write(&hmm->mirrors_sem);
704f3f2c 280 hmm_put(hmm);
c0b12405
JG
281}
282EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 283
74eee180
JG
284struct hmm_vma_walk {
285 struct hmm_range *range;
992de9a8 286 struct dev_pagemap *pgmap;
74eee180
JG
287 unsigned long last;
288 bool fault;
289 bool block;
74eee180
JG
290};
291
2aee09d8
JG
292static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
293 bool write_fault, uint64_t *pfn)
74eee180 294{
9b1ae605 295 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 296 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 297 struct hmm_range *range = hmm_vma_walk->range;
74eee180 298 struct vm_area_struct *vma = walk->vma;
50a7ca3c 299 vm_fault_t ret;
74eee180
JG
300
301 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 302 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
303 ret = handle_mm_fault(vma, addr, flags);
304 if (ret & VM_FAULT_RETRY)
73231612 305 return -EAGAIN;
50a7ca3c 306 if (ret & VM_FAULT_ERROR) {
f88a1e90 307 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
308 return -EFAULT;
309 }
310
73231612 311 return -EBUSY;
74eee180
JG
312}
313
da4c3c73
JG
314static int hmm_pfns_bad(unsigned long addr,
315 unsigned long end,
316 struct mm_walk *walk)
317{
c719547f
JG
318 struct hmm_vma_walk *hmm_vma_walk = walk->private;
319 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 320 uint64_t *pfns = range->pfns;
da4c3c73
JG
321 unsigned long i;
322
323 i = (addr - range->start) >> PAGE_SHIFT;
324 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 325 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
326
327 return 0;
328}
329
5504ed29
JG
330/*
331 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
332 * @start: range virtual start address (inclusive)
333 * @end: range virtual end address (exclusive)
2aee09d8
JG
334 * @fault: should we fault or not ?
335 * @write_fault: write fault ?
5504ed29 336 * @walk: mm_walk structure
085ea250 337 * Return: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
338 *
339 * This function will be called whenever pmd_none() or pte_none() returns true,
340 * or whenever there is no page directory covering the virtual address range.
341 */
2aee09d8
JG
342static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
343 bool fault, bool write_fault,
344 struct mm_walk *walk)
da4c3c73 345{
74eee180
JG
346 struct hmm_vma_walk *hmm_vma_walk = walk->private;
347 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 348 uint64_t *pfns = range->pfns;
63d5066f 349 unsigned long i, page_size;
da4c3c73 350
74eee180 351 hmm_vma_walk->last = addr;
63d5066f
JG
352 page_size = hmm_range_page_size(range);
353 i = (addr - range->start) >> range->page_shift;
354
355 for (; addr < end; addr += page_size, i++) {
f88a1e90 356 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 357 if (fault || write_fault) {
74eee180 358 int ret;
da4c3c73 359
2aee09d8
JG
360 ret = hmm_vma_do_fault(walk, addr, write_fault,
361 &pfns[i]);
73231612 362 if (ret != -EBUSY)
74eee180
JG
363 return ret;
364 }
365 }
366
73231612 367 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
368}
369
370static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
371 uint64_t pfns, uint64_t cpu_flags,
372 bool *fault, bool *write_fault)
373{
f88a1e90
JG
374 struct hmm_range *range = hmm_vma_walk->range;
375
2aee09d8
JG
376 if (!hmm_vma_walk->fault)
377 return;
378
023a019a
JG
379 /*
380 * So we not only consider the individual per page request we also
381 * consider the default flags requested for the range. The API can
382 * be use in 2 fashions. The first one where the HMM user coalesce
383 * multiple page fault into one request and set flags per pfns for
384 * of those faults. The second one where the HMM user want to pre-
385 * fault a range with specific flags. For the latter one it is a
386 * waste to have the user pre-fill the pfn arrays with a default
387 * flags value.
388 */
389 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
390
2aee09d8 391 /* We aren't ask to do anything ... */
f88a1e90 392 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 393 return;
f88a1e90
JG
394 /* If this is device memory than only fault if explicitly requested */
395 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
396 /* Do we fault on device memory ? */
397 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
398 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
399 *fault = true;
400 }
2aee09d8
JG
401 return;
402 }
f88a1e90
JG
403
404 /* If CPU page table is not valid then we need to fault */
405 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
406 /* Need to write fault ? */
407 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
408 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
409 *write_fault = true;
2aee09d8
JG
410 *fault = true;
411 }
412}
413
414static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
415 const uint64_t *pfns, unsigned long npages,
416 uint64_t cpu_flags, bool *fault,
417 bool *write_fault)
418{
419 unsigned long i;
420
421 if (!hmm_vma_walk->fault) {
422 *fault = *write_fault = false;
423 return;
424 }
425
a3e0d41c 426 *fault = *write_fault = false;
2aee09d8
JG
427 for (i = 0; i < npages; ++i) {
428 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
429 fault, write_fault);
a3e0d41c 430 if ((*write_fault))
2aee09d8
JG
431 return;
432 }
433}
434
435static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
436 struct mm_walk *walk)
437{
438 struct hmm_vma_walk *hmm_vma_walk = walk->private;
439 struct hmm_range *range = hmm_vma_walk->range;
440 bool fault, write_fault;
441 unsigned long i, npages;
442 uint64_t *pfns;
443
444 i = (addr - range->start) >> PAGE_SHIFT;
445 npages = (end - addr) >> PAGE_SHIFT;
446 pfns = &range->pfns[i];
447 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
448 0, &fault, &write_fault);
449 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
450}
451
f88a1e90 452static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
453{
454 if (pmd_protnone(pmd))
455 return 0;
f88a1e90
JG
456 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
457 range->flags[HMM_PFN_WRITE] :
458 range->flags[HMM_PFN_VALID];
da4c3c73
JG
459}
460
992de9a8
JG
461static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
462{
463 if (!pud_present(pud))
464 return 0;
465 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
466 range->flags[HMM_PFN_WRITE] :
467 range->flags[HMM_PFN_VALID];
468}
469
53f5c3f4
JG
470static int hmm_vma_handle_pmd(struct mm_walk *walk,
471 unsigned long addr,
472 unsigned long end,
473 uint64_t *pfns,
474 pmd_t pmd)
475{
992de9a8 476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
53f5c3f4 477 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 478 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 479 unsigned long pfn, npages, i;
2aee09d8 480 bool fault, write_fault;
f88a1e90 481 uint64_t cpu_flags;
53f5c3f4 482
2aee09d8 483 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 484 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
485 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
486 &fault, &write_fault);
53f5c3f4 487
2aee09d8
JG
488 if (pmd_protnone(pmd) || fault || write_fault)
489 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
490
491 pfn = pmd_pfn(pmd) + pte_index(addr);
992de9a8
JG
492 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
493 if (pmd_devmap(pmd)) {
494 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
495 hmm_vma_walk->pgmap);
496 if (unlikely(!hmm_vma_walk->pgmap))
497 return -EBUSY;
498 }
391aab11 499 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
500 }
501 if (hmm_vma_walk->pgmap) {
502 put_dev_pagemap(hmm_vma_walk->pgmap);
503 hmm_vma_walk->pgmap = NULL;
504 }
53f5c3f4
JG
505 hmm_vma_walk->last = end;
506 return 0;
992de9a8
JG
507#else
508 /* If THP is not enabled then we should never reach that code ! */
509 return -EINVAL;
510#endif
53f5c3f4
JG
511}
512
f88a1e90 513static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 514{
789c2af8 515 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 516 return 0;
f88a1e90
JG
517 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
518 range->flags[HMM_PFN_WRITE] :
519 range->flags[HMM_PFN_VALID];
2aee09d8
JG
520}
521
53f5c3f4
JG
522static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
523 unsigned long end, pmd_t *pmdp, pte_t *ptep,
524 uint64_t *pfn)
525{
526 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 527 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 528 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
529 bool fault, write_fault;
530 uint64_t cpu_flags;
53f5c3f4 531 pte_t pte = *ptep;
f88a1e90 532 uint64_t orig_pfn = *pfn;
53f5c3f4 533
f88a1e90 534 *pfn = range->values[HMM_PFN_NONE];
73231612 535 fault = write_fault = false;
53f5c3f4
JG
536
537 if (pte_none(pte)) {
73231612
JG
538 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
539 &fault, &write_fault);
2aee09d8 540 if (fault || write_fault)
53f5c3f4
JG
541 goto fault;
542 return 0;
543 }
544
545 if (!pte_present(pte)) {
546 swp_entry_t entry = pte_to_swp_entry(pte);
547
548 if (!non_swap_entry(entry)) {
2aee09d8 549 if (fault || write_fault)
53f5c3f4
JG
550 goto fault;
551 return 0;
552 }
553
554 /*
555 * This is a special swap entry, ignore migration, use
556 * device and report anything else as error.
557 */
558 if (is_device_private_entry(entry)) {
f88a1e90
JG
559 cpu_flags = range->flags[HMM_PFN_VALID] |
560 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 561 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
562 range->flags[HMM_PFN_WRITE] : 0;
563 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
564 &fault, &write_fault);
565 if (fault || write_fault)
566 goto fault;
391aab11
JG
567 *pfn = hmm_device_entry_from_pfn(range,
568 swp_offset(entry));
f88a1e90 569 *pfn |= cpu_flags;
53f5c3f4
JG
570 return 0;
571 }
572
573 if (is_migration_entry(entry)) {
2aee09d8 574 if (fault || write_fault) {
53f5c3f4
JG
575 pte_unmap(ptep);
576 hmm_vma_walk->last = addr;
577 migration_entry_wait(vma->vm_mm,
2aee09d8 578 pmdp, addr);
73231612 579 return -EBUSY;
53f5c3f4
JG
580 }
581 return 0;
582 }
583
584 /* Report error for everything else */
f88a1e90 585 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 586 return -EFAULT;
73231612
JG
587 } else {
588 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
589 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
590 &fault, &write_fault);
53f5c3f4
JG
591 }
592
2aee09d8 593 if (fault || write_fault)
53f5c3f4
JG
594 goto fault;
595
992de9a8
JG
596 if (pte_devmap(pte)) {
597 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
598 hmm_vma_walk->pgmap);
599 if (unlikely(!hmm_vma_walk->pgmap))
600 return -EBUSY;
601 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
602 *pfn = range->values[HMM_PFN_SPECIAL];
603 return -EFAULT;
604 }
605
391aab11 606 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
607 return 0;
608
609fault:
992de9a8
JG
610 if (hmm_vma_walk->pgmap) {
611 put_dev_pagemap(hmm_vma_walk->pgmap);
612 hmm_vma_walk->pgmap = NULL;
613 }
53f5c3f4
JG
614 pte_unmap(ptep);
615 /* Fault any virtual address we were asked to fault */
2aee09d8 616 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
617}
618
da4c3c73
JG
619static int hmm_vma_walk_pmd(pmd_t *pmdp,
620 unsigned long start,
621 unsigned long end,
622 struct mm_walk *walk)
623{
74eee180
JG
624 struct hmm_vma_walk *hmm_vma_walk = walk->private;
625 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 626 struct vm_area_struct *vma = walk->vma;
ff05c0c6 627 uint64_t *pfns = range->pfns;
da4c3c73 628 unsigned long addr = start, i;
da4c3c73 629 pte_t *ptep;
d08faca0 630 pmd_t pmd;
da4c3c73 631
da4c3c73
JG
632
633again:
d08faca0
JG
634 pmd = READ_ONCE(*pmdp);
635 if (pmd_none(pmd))
da4c3c73
JG
636 return hmm_vma_walk_hole(start, end, walk);
637
d08faca0 638 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
639 return hmm_pfns_bad(start, end, walk);
640
d08faca0
JG
641 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
642 bool fault, write_fault;
643 unsigned long npages;
644 uint64_t *pfns;
645
646 i = (addr - range->start) >> PAGE_SHIFT;
647 npages = (end - addr) >> PAGE_SHIFT;
648 pfns = &range->pfns[i];
649
650 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
651 0, &fault, &write_fault);
652 if (fault || write_fault) {
653 hmm_vma_walk->last = addr;
654 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 655 return -EBUSY;
d08faca0
JG
656 }
657 return 0;
658 } else if (!pmd_present(pmd))
659 return hmm_pfns_bad(start, end, walk);
da4c3c73 660
d08faca0 661 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
662 /*
663 * No need to take pmd_lock here, even if some other threads
664 * is splitting the huge pmd we will get that event through
665 * mmu_notifier callback.
666 *
667 * So just read pmd value and check again its a transparent
668 * huge or device mapping one and compute corresponding pfn
669 * values.
670 */
671 pmd = pmd_read_atomic(pmdp);
672 barrier();
673 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
674 goto again;
74eee180 675
d08faca0 676 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 677 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
678 }
679
d08faca0
JG
680 /*
681 * We have handled all the valid case above ie either none, migration,
682 * huge or transparent huge. At this point either it is a valid pmd
683 * entry pointing to pte directory or it is a bad pmd that will not
684 * recover.
685 */
686 if (pmd_bad(pmd))
da4c3c73
JG
687 return hmm_pfns_bad(start, end, walk);
688
689 ptep = pte_offset_map(pmdp, addr);
d08faca0 690 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 691 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 692 int r;
74eee180 693
53f5c3f4
JG
694 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
695 if (r) {
696 /* hmm_vma_handle_pte() did unmap pte directory */
697 hmm_vma_walk->last = addr;
698 return r;
74eee180 699 }
da4c3c73 700 }
992de9a8
JG
701 if (hmm_vma_walk->pgmap) {
702 /*
703 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
704 * so that we can leverage get_dev_pagemap() optimization which
705 * will not re-take a reference on a pgmap if we already have
706 * one.
707 */
708 put_dev_pagemap(hmm_vma_walk->pgmap);
709 hmm_vma_walk->pgmap = NULL;
710 }
da4c3c73
JG
711 pte_unmap(ptep - 1);
712
53f5c3f4 713 hmm_vma_walk->last = addr;
da4c3c73
JG
714 return 0;
715}
716
992de9a8
JG
717static int hmm_vma_walk_pud(pud_t *pudp,
718 unsigned long start,
719 unsigned long end,
720 struct mm_walk *walk)
721{
722 struct hmm_vma_walk *hmm_vma_walk = walk->private;
723 struct hmm_range *range = hmm_vma_walk->range;
724 unsigned long addr = start, next;
725 pmd_t *pmdp;
726 pud_t pud;
727 int ret;
728
729again:
730 pud = READ_ONCE(*pudp);
731 if (pud_none(pud))
732 return hmm_vma_walk_hole(start, end, walk);
733
734 if (pud_huge(pud) && pud_devmap(pud)) {
735 unsigned long i, npages, pfn;
736 uint64_t *pfns, cpu_flags;
737 bool fault, write_fault;
738
739 if (!pud_present(pud))
740 return hmm_vma_walk_hole(start, end, walk);
741
742 i = (addr - range->start) >> PAGE_SHIFT;
743 npages = (end - addr) >> PAGE_SHIFT;
744 pfns = &range->pfns[i];
745
746 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
747 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
748 cpu_flags, &fault, &write_fault);
749 if (fault || write_fault)
750 return hmm_vma_walk_hole_(addr, end, fault,
751 write_fault, walk);
752
992de9a8
JG
753 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
754 for (i = 0; i < npages; ++i, ++pfn) {
755 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
756 hmm_vma_walk->pgmap);
757 if (unlikely(!hmm_vma_walk->pgmap))
758 return -EBUSY;
391aab11
JG
759 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
760 cpu_flags;
992de9a8
JG
761 }
762 if (hmm_vma_walk->pgmap) {
763 put_dev_pagemap(hmm_vma_walk->pgmap);
764 hmm_vma_walk->pgmap = NULL;
765 }
766 hmm_vma_walk->last = end;
767 return 0;
992de9a8
JG
768 }
769
770 split_huge_pud(walk->vma, pudp, addr);
771 if (pud_none(*pudp))
772 goto again;
773
774 pmdp = pmd_offset(pudp, addr);
775 do {
776 next = pmd_addr_end(addr, end);
777 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
778 if (ret)
779 return ret;
780 } while (pmdp++, addr = next, addr != end);
781
782 return 0;
783}
784
63d5066f
JG
785static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
786 unsigned long start, unsigned long end,
787 struct mm_walk *walk)
788{
789#ifdef CONFIG_HUGETLB_PAGE
790 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
791 struct hmm_vma_walk *hmm_vma_walk = walk->private;
792 struct hmm_range *range = hmm_vma_walk->range;
793 struct vm_area_struct *vma = walk->vma;
794 struct hstate *h = hstate_vma(vma);
795 uint64_t orig_pfn, cpu_flags;
796 bool fault, write_fault;
797 spinlock_t *ptl;
798 pte_t entry;
799 int ret = 0;
800
801 size = 1UL << huge_page_shift(h);
802 mask = size - 1;
803 if (range->page_shift != PAGE_SHIFT) {
804 /* Make sure we are looking at full page. */
805 if (start & mask)
806 return -EINVAL;
807 if (end < (start + size))
808 return -EINVAL;
809 pfn_inc = size >> PAGE_SHIFT;
810 } else {
811 pfn_inc = 1;
812 size = PAGE_SIZE;
813 }
814
815
816 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
817 entry = huge_ptep_get(pte);
818
819 i = (start - range->start) >> range->page_shift;
820 orig_pfn = range->pfns[i];
821 range->pfns[i] = range->values[HMM_PFN_NONE];
822 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
823 fault = write_fault = false;
824 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
825 &fault, &write_fault);
826 if (fault || write_fault) {
827 ret = -ENOENT;
828 goto unlock;
829 }
830
831 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
832 for (; addr < end; addr += size, i++, pfn += pfn_inc)
391aab11
JG
833 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
834 cpu_flags;
63d5066f
JG
835 hmm_vma_walk->last = end;
836
837unlock:
838 spin_unlock(ptl);
839
840 if (ret == -ENOENT)
841 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
842
843 return ret;
844#else /* CONFIG_HUGETLB_PAGE */
845 return -EINVAL;
846#endif
847}
848
f88a1e90
JG
849static void hmm_pfns_clear(struct hmm_range *range,
850 uint64_t *pfns,
33cd47dc
JG
851 unsigned long addr,
852 unsigned long end)
853{
854 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 855 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
856}
857
da4c3c73 858/*
a3e0d41c 859 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 860 * @range: range
a3e0d41c
JG
861 * @mm: the mm struct for the range of virtual address
862 * @start: start virtual address (inclusive)
863 * @end: end virtual address (exclusive)
63d5066f 864 * @page_shift: expect page shift for the range
a3e0d41c 865 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 866 *
a3e0d41c 867 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 868 */
a3e0d41c 869int hmm_range_register(struct hmm_range *range,
e36acfe6 870 struct hmm_mirror *mirror,
a3e0d41c 871 unsigned long start,
63d5066f
JG
872 unsigned long end,
873 unsigned page_shift)
da4c3c73 874{
63d5066f 875 unsigned long mask = ((1UL << page_shift) - 1UL);
e36acfe6 876 struct hmm *hmm = mirror->hmm;
5a136b4a 877 unsigned long flags;
63d5066f 878
a3e0d41c 879 range->valid = false;
704f3f2c
JG
880 range->hmm = NULL;
881
63d5066f
JG
882 if ((start & mask) || (end & mask))
883 return -EINVAL;
884 if (start >= end)
da4c3c73
JG
885 return -EINVAL;
886
63d5066f 887 range->page_shift = page_shift;
a3e0d41c
JG
888 range->start = start;
889 range->end = end;
890
47f24598
JG
891 /* Prevent hmm_release() from running while the range is valid */
892 if (!mmget_not_zero(hmm->mm))
a3e0d41c 893 return -EFAULT;
da4c3c73 894
085ea250 895 /* Initialize range to track CPU page table updates. */
5a136b4a 896 spin_lock_irqsave(&hmm->ranges_lock, flags);
855ce7d2 897
085ea250 898 range->hmm = hmm;
e36acfe6 899 kref_get(&hmm->kref);
157816f3 900 list_add(&range->list, &hmm->ranges);
86586a41 901
704f3f2c 902 /*
a3e0d41c
JG
903 * If there are any concurrent notifiers we have to wait for them for
904 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 905 */
085ea250 906 if (!hmm->notifiers)
a3e0d41c 907 range->valid = true;
5a136b4a 908 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
a3e0d41c
JG
909
910 return 0;
da4c3c73 911}
a3e0d41c 912EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
913
914/*
a3e0d41c
JG
915 * hmm_range_unregister() - stop tracking change to CPU page table over a range
916 * @range: range
da4c3c73
JG
917 *
918 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 919 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 920 */
a3e0d41c 921void hmm_range_unregister(struct hmm_range *range)
da4c3c73 922{
085ea250 923 struct hmm *hmm = range->hmm;
5a136b4a 924 unsigned long flags;
da4c3c73 925
5a136b4a 926 spin_lock_irqsave(&hmm->ranges_lock, flags);
47f24598 927 list_del_init(&range->list);
5a136b4a 928 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
da4c3c73 929
a3e0d41c 930 /* Drop reference taken by hmm_range_register() */
47f24598 931 mmput(hmm->mm);
085ea250 932 hmm_put(hmm);
2dcc3eb8
JG
933
934 /*
935 * The range is now invalid and the ref on the hmm is dropped, so
936 * poison the pointer. Leave other fields in place, for the caller's
937 * use.
938 */
a3e0d41c 939 range->valid = false;
2dcc3eb8 940 memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
da4c3c73 941}
a3e0d41c
JG
942EXPORT_SYMBOL(hmm_range_unregister);
943
944/*
945 * hmm_range_snapshot() - snapshot CPU page table for a range
946 * @range: range
085ea250 947 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
a3e0d41c 948 * permission (for instance asking for write and range is read only),
2bcbeaef 949 * -EBUSY if you need to retry, -EFAULT invalid (ie either no valid
a3e0d41c
JG
950 * vma or it is illegal to access that range), number of valid pages
951 * in range->pfns[] (from range start address).
952 *
953 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
954 * validity is tracked by range struct. See in include/linux/hmm.h for example
955 * on how to use.
956 */
957long hmm_range_snapshot(struct hmm_range *range)
958{
63d5066f 959 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
960 unsigned long start = range->start, end;
961 struct hmm_vma_walk hmm_vma_walk;
962 struct hmm *hmm = range->hmm;
963 struct vm_area_struct *vma;
964 struct mm_walk mm_walk;
965
47f24598 966 lockdep_assert_held(&hmm->mm->mmap_sem);
a3e0d41c
JG
967 do {
968 /* If range is no longer valid force retry. */
969 if (!range->valid)
2bcbeaef 970 return -EBUSY;
a3e0d41c
JG
971
972 vma = find_vma(hmm->mm, start);
63d5066f 973 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
974 return -EFAULT;
975
63d5066f 976 if (is_vm_hugetlb_page(vma)) {
1c2308f0
JG
977 if (huge_page_shift(hstate_vma(vma)) !=
978 range->page_shift &&
63d5066f
JG
979 range->page_shift != PAGE_SHIFT)
980 return -EINVAL;
981 } else {
982 if (range->page_shift != PAGE_SHIFT)
983 return -EINVAL;
984 }
985
a3e0d41c
JG
986 if (!(vma->vm_flags & VM_READ)) {
987 /*
988 * If vma do not allow read access, then assume that it
989 * does not allow write access, either. HMM does not
990 * support architecture that allow write without read.
991 */
992 hmm_pfns_clear(range, range->pfns,
993 range->start, range->end);
994 return -EPERM;
995 }
996
997 range->vma = vma;
992de9a8 998 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
999 hmm_vma_walk.last = start;
1000 hmm_vma_walk.fault = false;
1001 hmm_vma_walk.range = range;
1002 mm_walk.private = &hmm_vma_walk;
1003 end = min(range->end, vma->vm_end);
1004
1005 mm_walk.vma = vma;
1006 mm_walk.mm = vma->vm_mm;
1007 mm_walk.pte_entry = NULL;
1008 mm_walk.test_walk = NULL;
1009 mm_walk.hugetlb_entry = NULL;
992de9a8 1010 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1011 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1012 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1013 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1014
1015 walk_page_range(start, end, &mm_walk);
1016 start = end;
1017 } while (start < range->end);
1018
1019 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1020}
1021EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
1022
1023/*
73231612 1024 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 1025 * @range: range being faulted
74eee180 1026 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1027 * Return: number of valid pages in range->pfns[] (from range start
73231612
JG
1028 * address). This may be zero. If the return value is negative,
1029 * then one of the following values may be returned:
1030 *
1031 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 1032 * invalid vma (for instance device file vma).
73231612
JG
1033 * -ENOMEM: Out of memory.
1034 * -EPERM: Invalid permission (for instance asking for write and
1035 * range is read only).
1036 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1037 * happens if block argument is false.
1038 * -EBUSY: If the the range is being invalidated and you should wait
1039 * for invalidation to finish.
1040 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1041 * that range), number of valid pages in range->pfns[] (from
1042 * range start address).
74eee180
JG
1043 *
1044 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
1045 * any memory migration if the memory being faulted is not accessible by CPUs
1046 * and caller does not ask for migration.
74eee180 1047 *
ff05c0c6
JG
1048 * On error, for one virtual address in the range, the function will mark the
1049 * corresponding HMM pfn entry with an error flag.
74eee180 1050 */
73231612 1051long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 1052{
63d5066f 1053 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 1054 unsigned long start = range->start, end;
74eee180 1055 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
1056 struct hmm *hmm = range->hmm;
1057 struct vm_area_struct *vma;
74eee180 1058 struct mm_walk mm_walk;
74eee180
JG
1059 int ret;
1060
47f24598 1061 lockdep_assert_held(&hmm->mm->mmap_sem);
704f3f2c 1062
a3e0d41c
JG
1063 do {
1064 /* If range is no longer valid force retry. */
2bcbeaef
CH
1065 if (!range->valid)
1066 return -EBUSY;
74eee180 1067
a3e0d41c 1068 vma = find_vma(hmm->mm, start);
63d5066f 1069 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1070 return -EFAULT;
704f3f2c 1071
63d5066f
JG
1072 if (is_vm_hugetlb_page(vma)) {
1073 if (huge_page_shift(hstate_vma(vma)) !=
1074 range->page_shift &&
1075 range->page_shift != PAGE_SHIFT)
1076 return -EINVAL;
1077 } else {
1078 if (range->page_shift != PAGE_SHIFT)
1079 return -EINVAL;
1080 }
1081
a3e0d41c
JG
1082 if (!(vma->vm_flags & VM_READ)) {
1083 /*
1084 * If vma do not allow read access, then assume that it
1085 * does not allow write access, either. HMM does not
1086 * support architecture that allow write without read.
1087 */
1088 hmm_pfns_clear(range, range->pfns,
1089 range->start, range->end);
1090 return -EPERM;
1091 }
74eee180 1092
a3e0d41c 1093 range->vma = vma;
992de9a8 1094 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1095 hmm_vma_walk.last = start;
1096 hmm_vma_walk.fault = true;
1097 hmm_vma_walk.block = block;
1098 hmm_vma_walk.range = range;
1099 mm_walk.private = &hmm_vma_walk;
1100 end = min(range->end, vma->vm_end);
1101
1102 mm_walk.vma = vma;
1103 mm_walk.mm = vma->vm_mm;
1104 mm_walk.pte_entry = NULL;
1105 mm_walk.test_walk = NULL;
1106 mm_walk.hugetlb_entry = NULL;
992de9a8 1107 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1108 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1109 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1110 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1111
1112 do {
1113 ret = walk_page_range(start, end, &mm_walk);
1114 start = hmm_vma_walk.last;
1115
1116 /* Keep trying while the range is valid. */
1117 } while (ret == -EBUSY && range->valid);
1118
1119 if (ret) {
1120 unsigned long i;
1121
1122 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1123 hmm_pfns_clear(range, &range->pfns[i],
1124 hmm_vma_walk.last, range->end);
1125 return ret;
1126 }
1127 start = end;
74eee180 1128
a3e0d41c 1129 } while (start < range->end);
704f3f2c 1130
73231612 1131 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1132}
73231612 1133EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
1134
1135/**
1136 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1137 * @range: range being faulted
1138 * @device: device against to dma map page to
1139 * @daddrs: dma address of mapped pages
1140 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1141 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
55c0ece8
JG
1142 * drop and you need to try again, some other error value otherwise
1143 *
1144 * Note same usage pattern as hmm_range_fault().
1145 */
1146long hmm_range_dma_map(struct hmm_range *range,
1147 struct device *device,
1148 dma_addr_t *daddrs,
1149 bool block)
1150{
1151 unsigned long i, npages, mapped;
1152 long ret;
1153
1154 ret = hmm_range_fault(range, block);
1155 if (ret <= 0)
1156 return ret ? ret : -EBUSY;
1157
1158 npages = (range->end - range->start) >> PAGE_SHIFT;
1159 for (i = 0, mapped = 0; i < npages; ++i) {
1160 enum dma_data_direction dir = DMA_TO_DEVICE;
1161 struct page *page;
1162
1163 /*
1164 * FIXME need to update DMA API to provide invalid DMA address
1165 * value instead of a function to test dma address value. This
1166 * would remove lot of dumb code duplicated accross many arch.
1167 *
1168 * For now setting it to 0 here is good enough as the pfns[]
1169 * value is what is use to check what is valid and what isn't.
1170 */
1171 daddrs[i] = 0;
1172
391aab11 1173 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1174 if (page == NULL)
1175 continue;
1176
1177 /* Check if range is being invalidated */
1178 if (!range->valid) {
1179 ret = -EBUSY;
1180 goto unmap;
1181 }
1182
1183 /* If it is read and write than map bi-directional. */
1184 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1185 dir = DMA_BIDIRECTIONAL;
1186
1187 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1188 if (dma_mapping_error(device, daddrs[i])) {
1189 ret = -EFAULT;
1190 goto unmap;
1191 }
1192
1193 mapped++;
1194 }
1195
1196 return mapped;
1197
1198unmap:
1199 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1200 enum dma_data_direction dir = DMA_TO_DEVICE;
1201 struct page *page;
1202
391aab11 1203 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1204 if (page == NULL)
1205 continue;
1206
1207 if (dma_mapping_error(device, daddrs[i]))
1208 continue;
1209
1210 /* If it is read and write than map bi-directional. */
1211 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1212 dir = DMA_BIDIRECTIONAL;
1213
1214 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1215 mapped--;
1216 }
1217
1218 return ret;
1219}
1220EXPORT_SYMBOL(hmm_range_dma_map);
1221
1222/**
1223 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1224 * @range: range being unmapped
1225 * @vma: the vma against which the range (optional)
1226 * @device: device against which dma map was done
1227 * @daddrs: dma address of mapped pages
1228 * @dirty: dirty page if it had the write flag set
085ea250 1229 * Return: number of page unmapped on success, -EINVAL otherwise
55c0ece8
JG
1230 *
1231 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1232 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1233 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1234 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1235 */
1236long hmm_range_dma_unmap(struct hmm_range *range,
1237 struct vm_area_struct *vma,
1238 struct device *device,
1239 dma_addr_t *daddrs,
1240 bool dirty)
1241{
1242 unsigned long i, npages;
1243 long cpages = 0;
1244
1245 /* Sanity check. */
1246 if (range->end <= range->start)
1247 return -EINVAL;
1248 if (!daddrs)
1249 return -EINVAL;
1250 if (!range->pfns)
1251 return -EINVAL;
1252
1253 npages = (range->end - range->start) >> PAGE_SHIFT;
1254 for (i = 0; i < npages; ++i) {
1255 enum dma_data_direction dir = DMA_TO_DEVICE;
1256 struct page *page;
1257
391aab11 1258 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1259 if (page == NULL)
1260 continue;
1261
1262 /* If it is read and write than map bi-directional. */
1263 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1264 dir = DMA_BIDIRECTIONAL;
1265
1266 /*
1267 * See comments in function description on why it is
1268 * safe here to call set_page_dirty()
1269 */
1270 if (dirty)
1271 set_page_dirty(page);
1272 }
1273
1274 /* Unmap and clear pfns/dma address */
1275 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1276 range->pfns[i] = range->values[HMM_PFN_NONE];
1277 /* FIXME see comments in hmm_vma_dma_map() */
1278 daddrs[i] = 0;
1279 cpages++;
1280 }
1281
1282 return cpages;
1283}
1284EXPORT_SYMBOL(hmm_range_dma_unmap);