mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections
[linux-2.6-block.git] / mm / hmm.c
CommitLineData
133ff0ea
JG
1/*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
f813f219 14 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
15 */
16/*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20#include <linux/mm.h>
21#include <linux/hmm.h>
858b54da 22#include <linux/init.h>
da4c3c73
JG
23#include <linux/rmap.h>
24#include <linux/swap.h>
133ff0ea
JG
25#include <linux/slab.h>
26#include <linux/sched.h>
4ef589dc
JG
27#include <linux/mmzone.h>
28#include <linux/pagemap.h>
da4c3c73
JG
29#include <linux/swapops.h>
30#include <linux/hugetlb.h>
4ef589dc 31#include <linux/memremap.h>
7b2d55d2 32#include <linux/jump_label.h>
55c0ece8 33#include <linux/dma-mapping.h>
c0b12405 34#include <linux/mmu_notifier.h>
4ef589dc
JG
35#include <linux/memory_hotplug.h>
36
37#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
133ff0ea 38
6b368cd4 39#if IS_ENABLED(CONFIG_HMM_MIRROR)
c0b12405
JG
40static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
41
704f3f2c
JG
42static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
43{
44 struct hmm *hmm = READ_ONCE(mm->hmm);
45
46 if (hmm && kref_get_unless_zero(&hmm->kref))
47 return hmm;
48
49 return NULL;
50}
51
52/**
53 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
54 *
55 * @mm: mm struct to attach to
704f3f2c
JG
56 * Returns: returns an HMM object, either by referencing the existing
57 * (per-process) object, or by creating a new one.
133ff0ea 58 *
704f3f2c
JG
59 * This is not intended to be used directly by device drivers. If mm already
60 * has an HMM struct then it get a reference on it and returns it. Otherwise
61 * it allocates an HMM struct, initializes it, associate it with the mm and
62 * returns it.
133ff0ea 63 */
704f3f2c 64static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 65{
704f3f2c 66 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 67 bool cleanup = false;
133ff0ea 68
c0b12405
JG
69 if (hmm)
70 return hmm;
71
72 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
73 if (!hmm)
74 return NULL;
a3e0d41c 75 init_waitqueue_head(&hmm->wq);
c0b12405
JG
76 INIT_LIST_HEAD(&hmm->mirrors);
77 init_rwsem(&hmm->mirrors_sem);
c0b12405 78 hmm->mmu_notifier.ops = NULL;
da4c3c73 79 INIT_LIST_HEAD(&hmm->ranges);
a3e0d41c 80 mutex_init(&hmm->lock);
704f3f2c 81 kref_init(&hmm->kref);
a3e0d41c
JG
82 hmm->notifiers = 0;
83 hmm->dead = false;
c0b12405
JG
84 hmm->mm = mm;
85
c0b12405
JG
86 spin_lock(&mm->page_table_lock);
87 if (!mm->hmm)
88 mm->hmm = hmm;
89 else
90 cleanup = true;
91 spin_unlock(&mm->page_table_lock);
92
86a2d598
RC
93 if (cleanup)
94 goto error;
95
96 /*
97 * We should only get here if hold the mmap_sem in write mode ie on
98 * registration of first mirror through hmm_mirror_register()
99 */
100 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
101 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
102 goto error_mm;
c0b12405 103
704f3f2c 104 return hmm;
86a2d598
RC
105
106error_mm:
107 spin_lock(&mm->page_table_lock);
108 if (mm->hmm == hmm)
109 mm->hmm = NULL;
110 spin_unlock(&mm->page_table_lock);
111error:
112 kfree(hmm);
113 return NULL;
133ff0ea
JG
114}
115
704f3f2c
JG
116static void hmm_free(struct kref *kref)
117{
118 struct hmm *hmm = container_of(kref, struct hmm, kref);
119 struct mm_struct *mm = hmm->mm;
120
121 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
122
123 spin_lock(&mm->page_table_lock);
124 if (mm->hmm == hmm)
125 mm->hmm = NULL;
126 spin_unlock(&mm->page_table_lock);
127
128 kfree(hmm);
129}
130
131static inline void hmm_put(struct hmm *hmm)
132{
133 kref_put(&hmm->kref, hmm_free);
134}
135
133ff0ea
JG
136void hmm_mm_destroy(struct mm_struct *mm)
137{
704f3f2c
JG
138 struct hmm *hmm;
139
140 spin_lock(&mm->page_table_lock);
141 hmm = mm_get_hmm(mm);
142 mm->hmm = NULL;
143 if (hmm) {
144 hmm->mm = NULL;
a3e0d41c 145 hmm->dead = true;
704f3f2c
JG
146 spin_unlock(&mm->page_table_lock);
147 hmm_put(hmm);
148 return;
149 }
150
151 spin_unlock(&mm->page_table_lock);
133ff0ea 152}
c0b12405 153
a3e0d41c 154static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
c0b12405 155{
a3e0d41c 156 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 157 struct hmm_mirror *mirror;
da4c3c73
JG
158 struct hmm_range *range;
159
a3e0d41c
JG
160 /* Report this HMM as dying. */
161 hmm->dead = true;
da4c3c73 162
a3e0d41c
JG
163 /* Wake-up everyone waiting on any range. */
164 mutex_lock(&hmm->lock);
165 list_for_each_entry(range, &hmm->ranges, list) {
da4c3c73 166 range->valid = false;
da4c3c73 167 }
a3e0d41c
JG
168 wake_up_all(&hmm->wq);
169 mutex_unlock(&hmm->lock);
e1401513
RC
170
171 down_write(&hmm->mirrors_sem);
172 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
173 list);
174 while (mirror) {
175 list_del_init(&mirror->list);
176 if (mirror->ops->release) {
177 /*
178 * Drop mirrors_sem so callback can wait on any pending
179 * work that might itself trigger mmu_notifier callback
180 * and thus would deadlock with us.
181 */
182 up_write(&hmm->mirrors_sem);
183 mirror->ops->release(mirror);
184 down_write(&hmm->mirrors_sem);
185 }
186 mirror = list_first_entry_or_null(&hmm->mirrors,
187 struct hmm_mirror, list);
188 }
189 up_write(&hmm->mirrors_sem);
704f3f2c
JG
190
191 hmm_put(hmm);
e1401513
RC
192}
193
93065ac7 194static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 195 const struct mmu_notifier_range *nrange)
c0b12405 196{
a3e0d41c
JG
197 struct hmm *hmm = mm_get_hmm(nrange->mm);
198 struct hmm_mirror *mirror;
ec131b2d 199 struct hmm_update update;
a3e0d41c
JG
200 struct hmm_range *range;
201 int ret = 0;
c0b12405
JG
202
203 VM_BUG_ON(!hmm);
204
a3e0d41c
JG
205 update.start = nrange->start;
206 update.end = nrange->end;
ec131b2d 207 update.event = HMM_UPDATE_INVALIDATE;
dfcd6660 208 update.blockable = mmu_notifier_range_blockable(nrange);
a3e0d41c 209
dfcd6660 210 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
211 mutex_lock(&hmm->lock);
212 else if (!mutex_trylock(&hmm->lock)) {
213 ret = -EAGAIN;
214 goto out;
215 }
216 hmm->notifiers++;
217 list_for_each_entry(range, &hmm->ranges, list) {
218 if (update.end < range->start || update.start >= range->end)
219 continue;
220
221 range->valid = false;
222 }
223 mutex_unlock(&hmm->lock);
224
dfcd6660 225 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
226 down_read(&hmm->mirrors_sem);
227 else if (!down_read_trylock(&hmm->mirrors_sem)) {
228 ret = -EAGAIN;
229 goto out;
230 }
231 list_for_each_entry(mirror, &hmm->mirrors, list) {
232 int ret;
233
234 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
235 if (!update.blockable && ret == -EAGAIN) {
236 up_read(&hmm->mirrors_sem);
237 ret = -EAGAIN;
238 goto out;
239 }
240 }
241 up_read(&hmm->mirrors_sem);
242
243out:
704f3f2c
JG
244 hmm_put(hmm);
245 return ret;
c0b12405
JG
246}
247
248static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 249 const struct mmu_notifier_range *nrange)
c0b12405 250{
a3e0d41c 251 struct hmm *hmm = mm_get_hmm(nrange->mm);
c0b12405
JG
252
253 VM_BUG_ON(!hmm);
254
a3e0d41c
JG
255 mutex_lock(&hmm->lock);
256 hmm->notifiers--;
257 if (!hmm->notifiers) {
258 struct hmm_range *range;
259
260 list_for_each_entry(range, &hmm->ranges, list) {
261 if (range->valid)
262 continue;
263 range->valid = true;
264 }
265 wake_up_all(&hmm->wq);
266 }
267 mutex_unlock(&hmm->lock);
268
704f3f2c 269 hmm_put(hmm);
c0b12405
JG
270}
271
272static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 273 .release = hmm_release,
c0b12405
JG
274 .invalidate_range_start = hmm_invalidate_range_start,
275 .invalidate_range_end = hmm_invalidate_range_end,
276};
277
278/*
279 * hmm_mirror_register() - register a mirror against an mm
280 *
281 * @mirror: new mirror struct to register
282 * @mm: mm to register against
283 *
284 * To start mirroring a process address space, the device driver must register
285 * an HMM mirror struct.
286 *
287 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
288 */
289int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
290{
291 /* Sanity check */
292 if (!mm || !mirror || !mirror->ops)
293 return -EINVAL;
294
704f3f2c 295 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
296 if (!mirror->hmm)
297 return -ENOMEM;
298
299 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
300 list_add(&mirror->list, &mirror->hmm->mirrors);
301 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
302
303 return 0;
304}
305EXPORT_SYMBOL(hmm_mirror_register);
306
307/*
308 * hmm_mirror_unregister() - unregister a mirror
309 *
310 * @mirror: new mirror struct to register
311 *
312 * Stop mirroring a process address space, and cleanup.
313 */
314void hmm_mirror_unregister(struct hmm_mirror *mirror)
315{
704f3f2c 316 struct hmm *hmm = READ_ONCE(mirror->hmm);
c01cbba2 317
704f3f2c 318 if (hmm == NULL)
c01cbba2 319 return;
c0b12405
JG
320
321 down_write(&hmm->mirrors_sem);
e1401513 322 list_del_init(&mirror->list);
704f3f2c 323 /* To protect us against double unregister ... */
c01cbba2 324 mirror->hmm = NULL;
c0b12405 325 up_write(&hmm->mirrors_sem);
c01cbba2 326
704f3f2c 327 hmm_put(hmm);
c0b12405
JG
328}
329EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 330
74eee180
JG
331struct hmm_vma_walk {
332 struct hmm_range *range;
992de9a8 333 struct dev_pagemap *pgmap;
74eee180
JG
334 unsigned long last;
335 bool fault;
336 bool block;
74eee180
JG
337};
338
2aee09d8
JG
339static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340 bool write_fault, uint64_t *pfn)
74eee180
JG
341{
342 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
343 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 344 struct hmm_range *range = hmm_vma_walk->range;
74eee180 345 struct vm_area_struct *vma = walk->vma;
50a7ca3c 346 vm_fault_t ret;
74eee180
JG
347
348 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 349 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
350 ret = handle_mm_fault(vma, addr, flags);
351 if (ret & VM_FAULT_RETRY)
73231612 352 return -EAGAIN;
50a7ca3c 353 if (ret & VM_FAULT_ERROR) {
f88a1e90 354 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
355 return -EFAULT;
356 }
357
73231612 358 return -EBUSY;
74eee180
JG
359}
360
da4c3c73
JG
361static int hmm_pfns_bad(unsigned long addr,
362 unsigned long end,
363 struct mm_walk *walk)
364{
c719547f
JG
365 struct hmm_vma_walk *hmm_vma_walk = walk->private;
366 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 367 uint64_t *pfns = range->pfns;
da4c3c73
JG
368 unsigned long i;
369
370 i = (addr - range->start) >> PAGE_SHIFT;
371 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 372 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
373
374 return 0;
375}
376
5504ed29
JG
377/*
378 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379 * @start: range virtual start address (inclusive)
380 * @end: range virtual end address (exclusive)
2aee09d8
JG
381 * @fault: should we fault or not ?
382 * @write_fault: write fault ?
5504ed29 383 * @walk: mm_walk structure
73231612 384 * Returns: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
385 *
386 * This function will be called whenever pmd_none() or pte_none() returns true,
387 * or whenever there is no page directory covering the virtual address range.
388 */
2aee09d8
JG
389static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390 bool fault, bool write_fault,
391 struct mm_walk *walk)
da4c3c73 392{
74eee180
JG
393 struct hmm_vma_walk *hmm_vma_walk = walk->private;
394 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 395 uint64_t *pfns = range->pfns;
63d5066f 396 unsigned long i, page_size;
da4c3c73 397
74eee180 398 hmm_vma_walk->last = addr;
63d5066f
JG
399 page_size = hmm_range_page_size(range);
400 i = (addr - range->start) >> range->page_shift;
401
402 for (; addr < end; addr += page_size, i++) {
f88a1e90 403 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 404 if (fault || write_fault) {
74eee180 405 int ret;
da4c3c73 406
2aee09d8
JG
407 ret = hmm_vma_do_fault(walk, addr, write_fault,
408 &pfns[i]);
73231612 409 if (ret != -EBUSY)
74eee180
JG
410 return ret;
411 }
412 }
413
73231612 414 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
415}
416
417static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418 uint64_t pfns, uint64_t cpu_flags,
419 bool *fault, bool *write_fault)
420{
f88a1e90
JG
421 struct hmm_range *range = hmm_vma_walk->range;
422
2aee09d8
JG
423 if (!hmm_vma_walk->fault)
424 return;
425
023a019a
JG
426 /*
427 * So we not only consider the individual per page request we also
428 * consider the default flags requested for the range. The API can
429 * be use in 2 fashions. The first one where the HMM user coalesce
430 * multiple page fault into one request and set flags per pfns for
431 * of those faults. The second one where the HMM user want to pre-
432 * fault a range with specific flags. For the latter one it is a
433 * waste to have the user pre-fill the pfn arrays with a default
434 * flags value.
435 */
436 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
437
2aee09d8 438 /* We aren't ask to do anything ... */
f88a1e90 439 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 440 return;
f88a1e90
JG
441 /* If this is device memory than only fault if explicitly requested */
442 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443 /* Do we fault on device memory ? */
444 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
446 *fault = true;
447 }
2aee09d8
JG
448 return;
449 }
f88a1e90
JG
450
451 /* If CPU page table is not valid then we need to fault */
452 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453 /* Need to write fault ? */
454 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
456 *write_fault = true;
2aee09d8
JG
457 *fault = true;
458 }
459}
460
461static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462 const uint64_t *pfns, unsigned long npages,
463 uint64_t cpu_flags, bool *fault,
464 bool *write_fault)
465{
466 unsigned long i;
467
468 if (!hmm_vma_walk->fault) {
469 *fault = *write_fault = false;
470 return;
471 }
472
a3e0d41c 473 *fault = *write_fault = false;
2aee09d8
JG
474 for (i = 0; i < npages; ++i) {
475 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
476 fault, write_fault);
a3e0d41c 477 if ((*write_fault))
2aee09d8
JG
478 return;
479 }
480}
481
482static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483 struct mm_walk *walk)
484{
485 struct hmm_vma_walk *hmm_vma_walk = walk->private;
486 struct hmm_range *range = hmm_vma_walk->range;
487 bool fault, write_fault;
488 unsigned long i, npages;
489 uint64_t *pfns;
490
491 i = (addr - range->start) >> PAGE_SHIFT;
492 npages = (end - addr) >> PAGE_SHIFT;
493 pfns = &range->pfns[i];
494 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495 0, &fault, &write_fault);
496 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
497}
498
f88a1e90 499static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
500{
501 if (pmd_protnone(pmd))
502 return 0;
f88a1e90
JG
503 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504 range->flags[HMM_PFN_WRITE] :
505 range->flags[HMM_PFN_VALID];
da4c3c73
JG
506}
507
992de9a8
JG
508static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
509{
510 if (!pud_present(pud))
511 return 0;
512 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513 range->flags[HMM_PFN_WRITE] :
514 range->flags[HMM_PFN_VALID];
515}
516
53f5c3f4
JG
517static int hmm_vma_handle_pmd(struct mm_walk *walk,
518 unsigned long addr,
519 unsigned long end,
520 uint64_t *pfns,
521 pmd_t pmd)
522{
992de9a8 523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
53f5c3f4 524 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 525 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 526 unsigned long pfn, npages, i;
2aee09d8 527 bool fault, write_fault;
f88a1e90 528 uint64_t cpu_flags;
53f5c3f4 529
2aee09d8 530 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 531 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
532 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533 &fault, &write_fault);
53f5c3f4 534
2aee09d8
JG
535 if (pmd_protnone(pmd) || fault || write_fault)
536 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
537
538 pfn = pmd_pfn(pmd) + pte_index(addr);
992de9a8
JG
539 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540 if (pmd_devmap(pmd)) {
541 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542 hmm_vma_walk->pgmap);
543 if (unlikely(!hmm_vma_walk->pgmap))
544 return -EBUSY;
545 }
391aab11 546 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
547 }
548 if (hmm_vma_walk->pgmap) {
549 put_dev_pagemap(hmm_vma_walk->pgmap);
550 hmm_vma_walk->pgmap = NULL;
551 }
53f5c3f4
JG
552 hmm_vma_walk->last = end;
553 return 0;
992de9a8
JG
554#else
555 /* If THP is not enabled then we should never reach that code ! */
556 return -EINVAL;
557#endif
53f5c3f4
JG
558}
559
f88a1e90 560static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8
JG
561{
562 if (pte_none(pte) || !pte_present(pte))
563 return 0;
f88a1e90
JG
564 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565 range->flags[HMM_PFN_WRITE] :
566 range->flags[HMM_PFN_VALID];
2aee09d8
JG
567}
568
53f5c3f4
JG
569static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570 unsigned long end, pmd_t *pmdp, pte_t *ptep,
571 uint64_t *pfn)
572{
573 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 574 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 575 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
576 bool fault, write_fault;
577 uint64_t cpu_flags;
53f5c3f4 578 pte_t pte = *ptep;
f88a1e90 579 uint64_t orig_pfn = *pfn;
53f5c3f4 580
f88a1e90 581 *pfn = range->values[HMM_PFN_NONE];
73231612 582 fault = write_fault = false;
53f5c3f4
JG
583
584 if (pte_none(pte)) {
73231612
JG
585 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586 &fault, &write_fault);
2aee09d8 587 if (fault || write_fault)
53f5c3f4
JG
588 goto fault;
589 return 0;
590 }
591
592 if (!pte_present(pte)) {
593 swp_entry_t entry = pte_to_swp_entry(pte);
594
595 if (!non_swap_entry(entry)) {
2aee09d8 596 if (fault || write_fault)
53f5c3f4
JG
597 goto fault;
598 return 0;
599 }
600
601 /*
602 * This is a special swap entry, ignore migration, use
603 * device and report anything else as error.
604 */
605 if (is_device_private_entry(entry)) {
f88a1e90
JG
606 cpu_flags = range->flags[HMM_PFN_VALID] |
607 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 608 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
609 range->flags[HMM_PFN_WRITE] : 0;
610 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611 &fault, &write_fault);
612 if (fault || write_fault)
613 goto fault;
391aab11
JG
614 *pfn = hmm_device_entry_from_pfn(range,
615 swp_offset(entry));
f88a1e90 616 *pfn |= cpu_flags;
53f5c3f4
JG
617 return 0;
618 }
619
620 if (is_migration_entry(entry)) {
2aee09d8 621 if (fault || write_fault) {
53f5c3f4
JG
622 pte_unmap(ptep);
623 hmm_vma_walk->last = addr;
624 migration_entry_wait(vma->vm_mm,
2aee09d8 625 pmdp, addr);
73231612 626 return -EBUSY;
53f5c3f4
JG
627 }
628 return 0;
629 }
630
631 /* Report error for everything else */
f88a1e90 632 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 633 return -EFAULT;
73231612
JG
634 } else {
635 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637 &fault, &write_fault);
53f5c3f4
JG
638 }
639
2aee09d8 640 if (fault || write_fault)
53f5c3f4
JG
641 goto fault;
642
992de9a8
JG
643 if (pte_devmap(pte)) {
644 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645 hmm_vma_walk->pgmap);
646 if (unlikely(!hmm_vma_walk->pgmap))
647 return -EBUSY;
648 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649 *pfn = range->values[HMM_PFN_SPECIAL];
650 return -EFAULT;
651 }
652
391aab11 653 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
654 return 0;
655
656fault:
992de9a8
JG
657 if (hmm_vma_walk->pgmap) {
658 put_dev_pagemap(hmm_vma_walk->pgmap);
659 hmm_vma_walk->pgmap = NULL;
660 }
53f5c3f4
JG
661 pte_unmap(ptep);
662 /* Fault any virtual address we were asked to fault */
2aee09d8 663 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
664}
665
da4c3c73
JG
666static int hmm_vma_walk_pmd(pmd_t *pmdp,
667 unsigned long start,
668 unsigned long end,
669 struct mm_walk *walk)
670{
74eee180
JG
671 struct hmm_vma_walk *hmm_vma_walk = walk->private;
672 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 673 struct vm_area_struct *vma = walk->vma;
ff05c0c6 674 uint64_t *pfns = range->pfns;
da4c3c73 675 unsigned long addr = start, i;
da4c3c73 676 pte_t *ptep;
d08faca0 677 pmd_t pmd;
da4c3c73 678
da4c3c73
JG
679
680again:
d08faca0
JG
681 pmd = READ_ONCE(*pmdp);
682 if (pmd_none(pmd))
da4c3c73
JG
683 return hmm_vma_walk_hole(start, end, walk);
684
d08faca0 685 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
686 return hmm_pfns_bad(start, end, walk);
687
d08faca0
JG
688 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689 bool fault, write_fault;
690 unsigned long npages;
691 uint64_t *pfns;
692
693 i = (addr - range->start) >> PAGE_SHIFT;
694 npages = (end - addr) >> PAGE_SHIFT;
695 pfns = &range->pfns[i];
696
697 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698 0, &fault, &write_fault);
699 if (fault || write_fault) {
700 hmm_vma_walk->last = addr;
701 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 702 return -EBUSY;
d08faca0
JG
703 }
704 return 0;
705 } else if (!pmd_present(pmd))
706 return hmm_pfns_bad(start, end, walk);
da4c3c73 707
d08faca0 708 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
709 /*
710 * No need to take pmd_lock here, even if some other threads
711 * is splitting the huge pmd we will get that event through
712 * mmu_notifier callback.
713 *
714 * So just read pmd value and check again its a transparent
715 * huge or device mapping one and compute corresponding pfn
716 * values.
717 */
718 pmd = pmd_read_atomic(pmdp);
719 barrier();
720 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
721 goto again;
74eee180 722
d08faca0 723 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 724 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
725 }
726
d08faca0
JG
727 /*
728 * We have handled all the valid case above ie either none, migration,
729 * huge or transparent huge. At this point either it is a valid pmd
730 * entry pointing to pte directory or it is a bad pmd that will not
731 * recover.
732 */
733 if (pmd_bad(pmd))
da4c3c73
JG
734 return hmm_pfns_bad(start, end, walk);
735
736 ptep = pte_offset_map(pmdp, addr);
d08faca0 737 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 738 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 739 int r;
74eee180 740
53f5c3f4
JG
741 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
742 if (r) {
743 /* hmm_vma_handle_pte() did unmap pte directory */
744 hmm_vma_walk->last = addr;
745 return r;
74eee180 746 }
da4c3c73 747 }
992de9a8
JG
748 if (hmm_vma_walk->pgmap) {
749 /*
750 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751 * so that we can leverage get_dev_pagemap() optimization which
752 * will not re-take a reference on a pgmap if we already have
753 * one.
754 */
755 put_dev_pagemap(hmm_vma_walk->pgmap);
756 hmm_vma_walk->pgmap = NULL;
757 }
da4c3c73
JG
758 pte_unmap(ptep - 1);
759
53f5c3f4 760 hmm_vma_walk->last = addr;
da4c3c73
JG
761 return 0;
762}
763
992de9a8
JG
764static int hmm_vma_walk_pud(pud_t *pudp,
765 unsigned long start,
766 unsigned long end,
767 struct mm_walk *walk)
768{
769 struct hmm_vma_walk *hmm_vma_walk = walk->private;
770 struct hmm_range *range = hmm_vma_walk->range;
771 unsigned long addr = start, next;
772 pmd_t *pmdp;
773 pud_t pud;
774 int ret;
775
776again:
777 pud = READ_ONCE(*pudp);
778 if (pud_none(pud))
779 return hmm_vma_walk_hole(start, end, walk);
780
781 if (pud_huge(pud) && pud_devmap(pud)) {
782 unsigned long i, npages, pfn;
783 uint64_t *pfns, cpu_flags;
784 bool fault, write_fault;
785
786 if (!pud_present(pud))
787 return hmm_vma_walk_hole(start, end, walk);
788
789 i = (addr - range->start) >> PAGE_SHIFT;
790 npages = (end - addr) >> PAGE_SHIFT;
791 pfns = &range->pfns[i];
792
793 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795 cpu_flags, &fault, &write_fault);
796 if (fault || write_fault)
797 return hmm_vma_walk_hole_(addr, end, fault,
798 write_fault, walk);
799
800#ifdef CONFIG_HUGETLB_PAGE
801 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
802 for (i = 0; i < npages; ++i, ++pfn) {
803 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
804 hmm_vma_walk->pgmap);
805 if (unlikely(!hmm_vma_walk->pgmap))
806 return -EBUSY;
391aab11
JG
807 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
808 cpu_flags;
992de9a8
JG
809 }
810 if (hmm_vma_walk->pgmap) {
811 put_dev_pagemap(hmm_vma_walk->pgmap);
812 hmm_vma_walk->pgmap = NULL;
813 }
814 hmm_vma_walk->last = end;
815 return 0;
816#else
817 return -EINVAL;
818#endif
819 }
820
821 split_huge_pud(walk->vma, pudp, addr);
822 if (pud_none(*pudp))
823 goto again;
824
825 pmdp = pmd_offset(pudp, addr);
826 do {
827 next = pmd_addr_end(addr, end);
828 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
829 if (ret)
830 return ret;
831 } while (pmdp++, addr = next, addr != end);
832
833 return 0;
834}
835
63d5066f
JG
836static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
837 unsigned long start, unsigned long end,
838 struct mm_walk *walk)
839{
840#ifdef CONFIG_HUGETLB_PAGE
841 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
842 struct hmm_vma_walk *hmm_vma_walk = walk->private;
843 struct hmm_range *range = hmm_vma_walk->range;
844 struct vm_area_struct *vma = walk->vma;
845 struct hstate *h = hstate_vma(vma);
846 uint64_t orig_pfn, cpu_flags;
847 bool fault, write_fault;
848 spinlock_t *ptl;
849 pte_t entry;
850 int ret = 0;
851
852 size = 1UL << huge_page_shift(h);
853 mask = size - 1;
854 if (range->page_shift != PAGE_SHIFT) {
855 /* Make sure we are looking at full page. */
856 if (start & mask)
857 return -EINVAL;
858 if (end < (start + size))
859 return -EINVAL;
860 pfn_inc = size >> PAGE_SHIFT;
861 } else {
862 pfn_inc = 1;
863 size = PAGE_SIZE;
864 }
865
866
867 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
868 entry = huge_ptep_get(pte);
869
870 i = (start - range->start) >> range->page_shift;
871 orig_pfn = range->pfns[i];
872 range->pfns[i] = range->values[HMM_PFN_NONE];
873 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
874 fault = write_fault = false;
875 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
876 &fault, &write_fault);
877 if (fault || write_fault) {
878 ret = -ENOENT;
879 goto unlock;
880 }
881
882 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
883 for (; addr < end; addr += size, i++, pfn += pfn_inc)
391aab11
JG
884 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
885 cpu_flags;
63d5066f
JG
886 hmm_vma_walk->last = end;
887
888unlock:
889 spin_unlock(ptl);
890
891 if (ret == -ENOENT)
892 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
893
894 return ret;
895#else /* CONFIG_HUGETLB_PAGE */
896 return -EINVAL;
897#endif
898}
899
f88a1e90
JG
900static void hmm_pfns_clear(struct hmm_range *range,
901 uint64_t *pfns,
33cd47dc
JG
902 unsigned long addr,
903 unsigned long end)
904{
905 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 906 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
907}
908
da4c3c73 909/*
a3e0d41c 910 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 911 * @range: range
a3e0d41c
JG
912 * @mm: the mm struct for the range of virtual address
913 * @start: start virtual address (inclusive)
914 * @end: end virtual address (exclusive)
63d5066f 915 * @page_shift: expect page shift for the range
a3e0d41c 916 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 917 *
a3e0d41c 918 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 919 */
a3e0d41c
JG
920int hmm_range_register(struct hmm_range *range,
921 struct mm_struct *mm,
922 unsigned long start,
63d5066f
JG
923 unsigned long end,
924 unsigned page_shift)
da4c3c73 925{
63d5066f
JG
926 unsigned long mask = ((1UL << page_shift) - 1UL);
927
a3e0d41c 928 range->valid = false;
704f3f2c
JG
929 range->hmm = NULL;
930
63d5066f
JG
931 if ((start & mask) || (end & mask))
932 return -EINVAL;
933 if (start >= end)
da4c3c73
JG
934 return -EINVAL;
935
63d5066f 936 range->page_shift = page_shift;
a3e0d41c
JG
937 range->start = start;
938 range->end = end;
939
940 range->hmm = hmm_get_or_create(mm);
941 if (!range->hmm)
942 return -EFAULT;
704f3f2c
JG
943
944 /* Check if hmm_mm_destroy() was call. */
a3e0d41c
JG
945 if (range->hmm->mm == NULL || range->hmm->dead) {
946 hmm_put(range->hmm);
947 return -EFAULT;
704f3f2c 948 }
da4c3c73 949
a3e0d41c
JG
950 /* Initialize range to track CPU page table update */
951 mutex_lock(&range->hmm->lock);
855ce7d2 952
a3e0d41c 953 list_add_rcu(&range->list, &range->hmm->ranges);
86586a41 954
704f3f2c 955 /*
a3e0d41c
JG
956 * If there are any concurrent notifiers we have to wait for them for
957 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 958 */
a3e0d41c
JG
959 if (!range->hmm->notifiers)
960 range->valid = true;
961 mutex_unlock(&range->hmm->lock);
962
963 return 0;
da4c3c73 964}
a3e0d41c 965EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
966
967/*
a3e0d41c
JG
968 * hmm_range_unregister() - stop tracking change to CPU page table over a range
969 * @range: range
da4c3c73
JG
970 *
971 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 972 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 973 */
a3e0d41c 974void hmm_range_unregister(struct hmm_range *range)
da4c3c73 975{
704f3f2c 976 /* Sanity check this really should not happen. */
a3e0d41c
JG
977 if (range->hmm == NULL || range->end <= range->start)
978 return;
da4c3c73 979
a3e0d41c 980 mutex_lock(&range->hmm->lock);
da4c3c73 981 list_del_rcu(&range->list);
a3e0d41c 982 mutex_unlock(&range->hmm->lock);
da4c3c73 983
a3e0d41c
JG
984 /* Drop reference taken by hmm_range_register() */
985 range->valid = false;
704f3f2c
JG
986 hmm_put(range->hmm);
987 range->hmm = NULL;
da4c3c73 988}
a3e0d41c
JG
989EXPORT_SYMBOL(hmm_range_unregister);
990
991/*
992 * hmm_range_snapshot() - snapshot CPU page table for a range
993 * @range: range
994 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
995 * permission (for instance asking for write and range is read only),
996 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997 * vma or it is illegal to access that range), number of valid pages
998 * in range->pfns[] (from range start address).
999 *
1000 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001 * validity is tracked by range struct. See in include/linux/hmm.h for example
1002 * on how to use.
1003 */
1004long hmm_range_snapshot(struct hmm_range *range)
1005{
63d5066f 1006 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
1007 unsigned long start = range->start, end;
1008 struct hmm_vma_walk hmm_vma_walk;
1009 struct hmm *hmm = range->hmm;
1010 struct vm_area_struct *vma;
1011 struct mm_walk mm_walk;
1012
1013 /* Check if hmm_mm_destroy() was call. */
1014 if (hmm->mm == NULL || hmm->dead)
1015 return -EFAULT;
1016
1017 do {
1018 /* If range is no longer valid force retry. */
1019 if (!range->valid)
1020 return -EAGAIN;
1021
1022 vma = find_vma(hmm->mm, start);
63d5066f 1023 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
1024 return -EFAULT;
1025
63d5066f
JG
1026 if (is_vm_hugetlb_page(vma)) {
1027 struct hstate *h = hstate_vma(vma);
1028
1029 if (huge_page_shift(h) != range->page_shift &&
1030 range->page_shift != PAGE_SHIFT)
1031 return -EINVAL;
1032 } else {
1033 if (range->page_shift != PAGE_SHIFT)
1034 return -EINVAL;
1035 }
1036
a3e0d41c
JG
1037 if (!(vma->vm_flags & VM_READ)) {
1038 /*
1039 * If vma do not allow read access, then assume that it
1040 * does not allow write access, either. HMM does not
1041 * support architecture that allow write without read.
1042 */
1043 hmm_pfns_clear(range, range->pfns,
1044 range->start, range->end);
1045 return -EPERM;
1046 }
1047
1048 range->vma = vma;
992de9a8 1049 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1050 hmm_vma_walk.last = start;
1051 hmm_vma_walk.fault = false;
1052 hmm_vma_walk.range = range;
1053 mm_walk.private = &hmm_vma_walk;
1054 end = min(range->end, vma->vm_end);
1055
1056 mm_walk.vma = vma;
1057 mm_walk.mm = vma->vm_mm;
1058 mm_walk.pte_entry = NULL;
1059 mm_walk.test_walk = NULL;
1060 mm_walk.hugetlb_entry = NULL;
992de9a8 1061 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1062 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1063 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1064 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1065
1066 walk_page_range(start, end, &mm_walk);
1067 start = end;
1068 } while (start < range->end);
1069
1070 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1071}
1072EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
1073
1074/*
73231612 1075 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 1076 * @range: range being faulted
74eee180 1077 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
73231612
JG
1078 * Returns: number of valid pages in range->pfns[] (from range start
1079 * address). This may be zero. If the return value is negative,
1080 * then one of the following values may be returned:
1081 *
1082 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 1083 * invalid vma (for instance device file vma).
73231612
JG
1084 * -ENOMEM: Out of memory.
1085 * -EPERM: Invalid permission (for instance asking for write and
1086 * range is read only).
1087 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1088 * happens if block argument is false.
1089 * -EBUSY: If the the range is being invalidated and you should wait
1090 * for invalidation to finish.
1091 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1092 * that range), number of valid pages in range->pfns[] (from
1093 * range start address).
74eee180
JG
1094 *
1095 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
1096 * any memory migration if the memory being faulted is not accessible by CPUs
1097 * and caller does not ask for migration.
74eee180 1098 *
ff05c0c6
JG
1099 * On error, for one virtual address in the range, the function will mark the
1100 * corresponding HMM pfn entry with an error flag.
74eee180 1101 */
73231612 1102long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 1103{
63d5066f 1104 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 1105 unsigned long start = range->start, end;
74eee180 1106 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
1107 struct hmm *hmm = range->hmm;
1108 struct vm_area_struct *vma;
74eee180 1109 struct mm_walk mm_walk;
74eee180
JG
1110 int ret;
1111
a3e0d41c
JG
1112 /* Check if hmm_mm_destroy() was call. */
1113 if (hmm->mm == NULL || hmm->dead)
1114 return -EFAULT;
704f3f2c 1115
a3e0d41c
JG
1116 do {
1117 /* If range is no longer valid force retry. */
1118 if (!range->valid) {
1119 up_read(&hmm->mm->mmap_sem);
1120 return -EAGAIN;
1121 }
74eee180 1122
a3e0d41c 1123 vma = find_vma(hmm->mm, start);
63d5066f 1124 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1125 return -EFAULT;
704f3f2c 1126
63d5066f
JG
1127 if (is_vm_hugetlb_page(vma)) {
1128 if (huge_page_shift(hstate_vma(vma)) !=
1129 range->page_shift &&
1130 range->page_shift != PAGE_SHIFT)
1131 return -EINVAL;
1132 } else {
1133 if (range->page_shift != PAGE_SHIFT)
1134 return -EINVAL;
1135 }
1136
a3e0d41c
JG
1137 if (!(vma->vm_flags & VM_READ)) {
1138 /*
1139 * If vma do not allow read access, then assume that it
1140 * does not allow write access, either. HMM does not
1141 * support architecture that allow write without read.
1142 */
1143 hmm_pfns_clear(range, range->pfns,
1144 range->start, range->end);
1145 return -EPERM;
1146 }
74eee180 1147
a3e0d41c 1148 range->vma = vma;
992de9a8 1149 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1150 hmm_vma_walk.last = start;
1151 hmm_vma_walk.fault = true;
1152 hmm_vma_walk.block = block;
1153 hmm_vma_walk.range = range;
1154 mm_walk.private = &hmm_vma_walk;
1155 end = min(range->end, vma->vm_end);
1156
1157 mm_walk.vma = vma;
1158 mm_walk.mm = vma->vm_mm;
1159 mm_walk.pte_entry = NULL;
1160 mm_walk.test_walk = NULL;
1161 mm_walk.hugetlb_entry = NULL;
992de9a8 1162 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1163 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1164 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1165 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1166
1167 do {
1168 ret = walk_page_range(start, end, &mm_walk);
1169 start = hmm_vma_walk.last;
1170
1171 /* Keep trying while the range is valid. */
1172 } while (ret == -EBUSY && range->valid);
1173
1174 if (ret) {
1175 unsigned long i;
1176
1177 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 hmm_pfns_clear(range, &range->pfns[i],
1179 hmm_vma_walk.last, range->end);
1180 return ret;
1181 }
1182 start = end;
74eee180 1183
a3e0d41c 1184 } while (start < range->end);
704f3f2c 1185
73231612 1186 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1187}
73231612 1188EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
1189
1190/**
1191 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1192 * @range: range being faulted
1193 * @device: device against to dma map page to
1194 * @daddrs: dma address of mapped pages
1195 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1196 * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1197 * drop and you need to try again, some other error value otherwise
1198 *
1199 * Note same usage pattern as hmm_range_fault().
1200 */
1201long hmm_range_dma_map(struct hmm_range *range,
1202 struct device *device,
1203 dma_addr_t *daddrs,
1204 bool block)
1205{
1206 unsigned long i, npages, mapped;
1207 long ret;
1208
1209 ret = hmm_range_fault(range, block);
1210 if (ret <= 0)
1211 return ret ? ret : -EBUSY;
1212
1213 npages = (range->end - range->start) >> PAGE_SHIFT;
1214 for (i = 0, mapped = 0; i < npages; ++i) {
1215 enum dma_data_direction dir = DMA_TO_DEVICE;
1216 struct page *page;
1217
1218 /*
1219 * FIXME need to update DMA API to provide invalid DMA address
1220 * value instead of a function to test dma address value. This
1221 * would remove lot of dumb code duplicated accross many arch.
1222 *
1223 * For now setting it to 0 here is good enough as the pfns[]
1224 * value is what is use to check what is valid and what isn't.
1225 */
1226 daddrs[i] = 0;
1227
391aab11 1228 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1229 if (page == NULL)
1230 continue;
1231
1232 /* Check if range is being invalidated */
1233 if (!range->valid) {
1234 ret = -EBUSY;
1235 goto unmap;
1236 }
1237
1238 /* If it is read and write than map bi-directional. */
1239 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1240 dir = DMA_BIDIRECTIONAL;
1241
1242 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1243 if (dma_mapping_error(device, daddrs[i])) {
1244 ret = -EFAULT;
1245 goto unmap;
1246 }
1247
1248 mapped++;
1249 }
1250
1251 return mapped;
1252
1253unmap:
1254 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1255 enum dma_data_direction dir = DMA_TO_DEVICE;
1256 struct page *page;
1257
391aab11 1258 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1259 if (page == NULL)
1260 continue;
1261
1262 if (dma_mapping_error(device, daddrs[i]))
1263 continue;
1264
1265 /* If it is read and write than map bi-directional. */
1266 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1267 dir = DMA_BIDIRECTIONAL;
1268
1269 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1270 mapped--;
1271 }
1272
1273 return ret;
1274}
1275EXPORT_SYMBOL(hmm_range_dma_map);
1276
1277/**
1278 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1279 * @range: range being unmapped
1280 * @vma: the vma against which the range (optional)
1281 * @device: device against which dma map was done
1282 * @daddrs: dma address of mapped pages
1283 * @dirty: dirty page if it had the write flag set
1284 * Returns: number of page unmapped on success, -EINVAL otherwise
1285 *
1286 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1287 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1288 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1289 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1290 */
1291long hmm_range_dma_unmap(struct hmm_range *range,
1292 struct vm_area_struct *vma,
1293 struct device *device,
1294 dma_addr_t *daddrs,
1295 bool dirty)
1296{
1297 unsigned long i, npages;
1298 long cpages = 0;
1299
1300 /* Sanity check. */
1301 if (range->end <= range->start)
1302 return -EINVAL;
1303 if (!daddrs)
1304 return -EINVAL;
1305 if (!range->pfns)
1306 return -EINVAL;
1307
1308 npages = (range->end - range->start) >> PAGE_SHIFT;
1309 for (i = 0; i < npages; ++i) {
1310 enum dma_data_direction dir = DMA_TO_DEVICE;
1311 struct page *page;
1312
391aab11 1313 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1314 if (page == NULL)
1315 continue;
1316
1317 /* If it is read and write than map bi-directional. */
1318 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1319 dir = DMA_BIDIRECTIONAL;
1320
1321 /*
1322 * See comments in function description on why it is
1323 * safe here to call set_page_dirty()
1324 */
1325 if (dirty)
1326 set_page_dirty(page);
1327 }
1328
1329 /* Unmap and clear pfns/dma address */
1330 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1331 range->pfns[i] = range->values[HMM_PFN_NONE];
1332 /* FIXME see comments in hmm_vma_dma_map() */
1333 daddrs[i] = 0;
1334 cpages++;
1335 }
1336
1337 return cpages;
1338}
1339EXPORT_SYMBOL(hmm_range_dma_unmap);
c0b12405 1340#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
4ef589dc
JG
1341
1342
df6ad698 1343#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
4ef589dc
JG
1344struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1345 unsigned long addr)
1346{
1347 struct page *page;
1348
1349 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1350 if (!page)
1351 return NULL;
1352 lock_page(page);
1353 return page;
1354}
1355EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1356
1357
1358static void hmm_devmem_ref_release(struct percpu_ref *ref)
1359{
1360 struct hmm_devmem *devmem;
1361
1362 devmem = container_of(ref, struct hmm_devmem, ref);
1363 complete(&devmem->completion);
1364}
1365
1366static void hmm_devmem_ref_exit(void *data)
1367{
1368 struct percpu_ref *ref = data;
1369 struct hmm_devmem *devmem;
1370
1371 devmem = container_of(ref, struct hmm_devmem, ref);
bbecd94e 1372 wait_for_completion(&devmem->completion);
4ef589dc 1373 percpu_ref_exit(ref);
4ef589dc
JG
1374}
1375
bbecd94e 1376static void hmm_devmem_ref_kill(struct percpu_ref *ref)
4ef589dc 1377{
4ef589dc 1378 percpu_ref_kill(ref);
4ef589dc
JG
1379}
1380
b57e622e 1381static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
4ef589dc
JG
1382 unsigned long addr,
1383 const struct page *page,
1384 unsigned int flags,
1385 pmd_t *pmdp)
1386{
1387 struct hmm_devmem *devmem = page->pgmap->data;
1388
1389 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1390}
1391
1392static void hmm_devmem_free(struct page *page, void *data)
1393{
1394 struct hmm_devmem *devmem = data;
1395
2fa147bd
DW
1396 page->mapping = NULL;
1397
4ef589dc
JG
1398 devmem->ops->free(devmem, page);
1399}
1400
4ef589dc
JG
1401/*
1402 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1403 *
1404 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1405 * @device: device struct to bind the resource too
1406 * @size: size in bytes of the device memory to add
1407 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1408 *
1409 * This function first finds an empty range of physical address big enough to
1410 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1411 * in turn allocates struct pages. It does not do anything beyond that; all
1412 * events affecting the memory will go through the various callbacks provided
1413 * by hmm_devmem_ops struct.
1414 *
1415 * Device driver should call this function during device initialization and
1416 * is then responsible of memory management. HMM only provides helpers.
1417 */
1418struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1419 struct device *device,
1420 unsigned long size)
1421{
1422 struct hmm_devmem *devmem;
1423 resource_size_t addr;
bbecd94e 1424 void *result;
4ef589dc
JG
1425 int ret;
1426
e7638488 1427 dev_pagemap_get_ops();
4ef589dc 1428
58ef15b7 1429 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
4ef589dc
JG
1430 if (!devmem)
1431 return ERR_PTR(-ENOMEM);
1432
1433 init_completion(&devmem->completion);
1434 devmem->pfn_first = -1UL;
1435 devmem->pfn_last = -1UL;
1436 devmem->resource = NULL;
1437 devmem->device = device;
1438 devmem->ops = ops;
1439
1440 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1441 0, GFP_KERNEL);
1442 if (ret)
58ef15b7 1443 return ERR_PTR(ret);
4ef589dc 1444
58ef15b7 1445 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
4ef589dc 1446 if (ret)
58ef15b7 1447 return ERR_PTR(ret);
4ef589dc
JG
1448
1449 size = ALIGN(size, PA_SECTION_SIZE);
1450 addr = min((unsigned long)iomem_resource.end,
1451 (1UL << MAX_PHYSMEM_BITS) - 1);
1452 addr = addr - size + 1UL;
1453
1454 /*
1455 * FIXME add a new helper to quickly walk resource tree and find free
1456 * range
1457 *
1458 * FIXME what about ioport_resource resource ?
1459 */
1460 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1461 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1462 if (ret != REGION_DISJOINT)
1463 continue;
1464
1465 devmem->resource = devm_request_mem_region(device, addr, size,
1466 dev_name(device));
58ef15b7
DW
1467 if (!devmem->resource)
1468 return ERR_PTR(-ENOMEM);
4ef589dc
JG
1469 break;
1470 }
58ef15b7
DW
1471 if (!devmem->resource)
1472 return ERR_PTR(-ERANGE);
4ef589dc
JG
1473
1474 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1475 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1476 devmem->pfn_last = devmem->pfn_first +
1477 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1478 devmem->page_fault = hmm_devmem_fault;
4ef589dc 1479
bbecd94e
DW
1480 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1481 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1482 devmem->pagemap.page_free = hmm_devmem_free;
1483 devmem->pagemap.altmap_valid = false;
1484 devmem->pagemap.ref = &devmem->ref;
1485 devmem->pagemap.data = devmem;
1486 devmem->pagemap.kill = hmm_devmem_ref_kill;
4ef589dc 1487
bbecd94e
DW
1488 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1489 if (IS_ERR(result))
1490 return result;
4ef589dc 1491 return devmem;
4ef589dc 1492}
02917e9f 1493EXPORT_SYMBOL_GPL(hmm_devmem_add);
4ef589dc 1494
d3df0a42
JG
1495struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1496 struct device *device,
1497 struct resource *res)
1498{
1499 struct hmm_devmem *devmem;
bbecd94e 1500 void *result;
d3df0a42
JG
1501 int ret;
1502
1503 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1504 return ERR_PTR(-EINVAL);
1505
e7638488 1506 dev_pagemap_get_ops();
d3df0a42 1507
58ef15b7 1508 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
d3df0a42
JG
1509 if (!devmem)
1510 return ERR_PTR(-ENOMEM);
1511
1512 init_completion(&devmem->completion);
1513 devmem->pfn_first = -1UL;
1514 devmem->pfn_last = -1UL;
1515 devmem->resource = res;
1516 devmem->device = device;
1517 devmem->ops = ops;
1518
1519 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1520 0, GFP_KERNEL);
1521 if (ret)
58ef15b7 1522 return ERR_PTR(ret);
d3df0a42 1523
58ef15b7
DW
1524 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1525 &devmem->ref);
d3df0a42 1526 if (ret)
58ef15b7 1527 return ERR_PTR(ret);
d3df0a42
JG
1528
1529 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1530 devmem->pfn_last = devmem->pfn_first +
1531 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1532 devmem->page_fault = hmm_devmem_fault;
d3df0a42 1533
bbecd94e
DW
1534 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1535 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1536 devmem->pagemap.page_free = hmm_devmem_free;
1537 devmem->pagemap.altmap_valid = false;
1538 devmem->pagemap.ref = &devmem->ref;
1539 devmem->pagemap.data = devmem;
1540 devmem->pagemap.kill = hmm_devmem_ref_kill;
d3df0a42 1541
bbecd94e
DW
1542 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1543 if (IS_ERR(result))
1544 return result;
d3df0a42 1545 return devmem;
d3df0a42 1546}
02917e9f 1547EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
d3df0a42 1548
858b54da
JG
1549/*
1550 * A device driver that wants to handle multiple devices memory through a
1551 * single fake device can use hmm_device to do so. This is purely a helper
1552 * and it is not needed to make use of any HMM functionality.
1553 */
1554#define HMM_DEVICE_MAX 256
1555
1556static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1557static DEFINE_SPINLOCK(hmm_device_lock);
1558static struct class *hmm_device_class;
1559static dev_t hmm_device_devt;
1560
1561static void hmm_device_release(struct device *device)
1562{
1563 struct hmm_device *hmm_device;
1564
1565 hmm_device = container_of(device, struct hmm_device, device);
1566 spin_lock(&hmm_device_lock);
1567 clear_bit(hmm_device->minor, hmm_device_mask);
1568 spin_unlock(&hmm_device_lock);
1569
1570 kfree(hmm_device);
1571}
1572
1573struct hmm_device *hmm_device_new(void *drvdata)
1574{
1575 struct hmm_device *hmm_device;
1576
1577 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1578 if (!hmm_device)
1579 return ERR_PTR(-ENOMEM);
1580
1581 spin_lock(&hmm_device_lock);
1582 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1583 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1584 spin_unlock(&hmm_device_lock);
1585 kfree(hmm_device);
1586 return ERR_PTR(-EBUSY);
1587 }
1588 set_bit(hmm_device->minor, hmm_device_mask);
1589 spin_unlock(&hmm_device_lock);
1590
1591 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1592 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1593 hmm_device->minor);
1594 hmm_device->device.release = hmm_device_release;
1595 dev_set_drvdata(&hmm_device->device, drvdata);
1596 hmm_device->device.class = hmm_device_class;
1597 device_initialize(&hmm_device->device);
1598
1599 return hmm_device;
1600}
1601EXPORT_SYMBOL(hmm_device_new);
1602
1603void hmm_device_put(struct hmm_device *hmm_device)
1604{
1605 put_device(&hmm_device->device);
1606}
1607EXPORT_SYMBOL(hmm_device_put);
1608
1609static int __init hmm_init(void)
1610{
1611 int ret;
1612
1613 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1614 HMM_DEVICE_MAX,
1615 "hmm_device");
1616 if (ret)
1617 return ret;
1618
1619 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1620 if (IS_ERR(hmm_device_class)) {
1621 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1622 return PTR_ERR(hmm_device_class);
1623 }
1624 return 0;
1625}
1626
1627device_initcall(hmm_init);
df6ad698 1628#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */