mm,memory_hotplug: unlock 1GB-hugetlb on x86_64
[linux-2.6-block.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
174cd4b1 13#include <linux/sched/signal.h>
2667f50e 14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
9a4e9f3b
AK
16#include <linux/migrate.h>
17#include <linux/mm_inline.h>
18#include <linux/sched/mm.h>
1027e443 19
33a709b2 20#include <asm/mmu_context.h>
2667f50e 21#include <asm/pgtable.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
69e68b4f
KS
31static struct page *no_page_table(struct vm_area_struct *vma,
32 unsigned int flags)
4bbd4c77 33{
69e68b4f
KS
34 /*
35 * When core dumping an enormous anonymous area that nobody
36 * has touched so far, we don't want to allocate unnecessary pages or
37 * page tables. Return error instead of NULL to skip handle_mm_fault,
38 * then get_dump_page() will return NULL to leave a hole in the dump.
39 * But we can only make this optimization where a hole would surely
40 * be zero-filled if handle_mm_fault() actually did handle it.
41 */
42 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
43 return ERR_PTR(-EFAULT);
44 return NULL;
45}
4bbd4c77 46
1027e443
KS
47static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
48 pte_t *pte, unsigned int flags)
49{
50 /* No page to get reference */
51 if (flags & FOLL_GET)
52 return -EFAULT;
53
54 if (flags & FOLL_TOUCH) {
55 pte_t entry = *pte;
56
57 if (flags & FOLL_WRITE)
58 entry = pte_mkdirty(entry);
59 entry = pte_mkyoung(entry);
60
61 if (!pte_same(*pte, entry)) {
62 set_pte_at(vma->vm_mm, address, pte, entry);
63 update_mmu_cache(vma, address, pte);
64 }
65 }
66
67 /* Proper page table entry exists, but no corresponding struct page */
68 return -EEXIST;
69}
70
19be0eaf
LT
71/*
72 * FOLL_FORCE can write to even unwritable pte's, but only
73 * after we've gone through a COW cycle and they are dirty.
74 */
75static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
76{
f6f37321 77 return pte_write(pte) ||
19be0eaf
LT
78 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
79}
80
69e68b4f 81static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
82 unsigned long address, pmd_t *pmd, unsigned int flags,
83 struct dev_pagemap **pgmap)
69e68b4f
KS
84{
85 struct mm_struct *mm = vma->vm_mm;
86 struct page *page;
87 spinlock_t *ptl;
88 pte_t *ptep, pte;
4bbd4c77 89
69e68b4f 90retry:
4bbd4c77 91 if (unlikely(pmd_bad(*pmd)))
69e68b4f 92 return no_page_table(vma, flags);
4bbd4c77
KS
93
94 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
95 pte = *ptep;
96 if (!pte_present(pte)) {
97 swp_entry_t entry;
98 /*
99 * KSM's break_ksm() relies upon recognizing a ksm page
100 * even while it is being migrated, so for that case we
101 * need migration_entry_wait().
102 */
103 if (likely(!(flags & FOLL_MIGRATION)))
104 goto no_page;
0661a336 105 if (pte_none(pte))
4bbd4c77
KS
106 goto no_page;
107 entry = pte_to_swp_entry(pte);
108 if (!is_migration_entry(entry))
109 goto no_page;
110 pte_unmap_unlock(ptep, ptl);
111 migration_entry_wait(mm, pmd, address);
69e68b4f 112 goto retry;
4bbd4c77 113 }
8a0516ed 114 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 115 goto no_page;
19be0eaf 116 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
117 pte_unmap_unlock(ptep, ptl);
118 return NULL;
119 }
4bbd4c77
KS
120
121 page = vm_normal_page(vma, address, pte);
3565fce3
DW
122 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
123 /*
124 * Only return device mapping pages in the FOLL_GET case since
125 * they are only valid while holding the pgmap reference.
126 */
df06b37f
KB
127 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
128 if (*pgmap)
3565fce3
DW
129 page = pte_page(pte);
130 else
131 goto no_page;
132 } else if (unlikely(!page)) {
1027e443
KS
133 if (flags & FOLL_DUMP) {
134 /* Avoid special (like zero) pages in core dumps */
135 page = ERR_PTR(-EFAULT);
136 goto out;
137 }
138
139 if (is_zero_pfn(pte_pfn(pte))) {
140 page = pte_page(pte);
141 } else {
142 int ret;
143
144 ret = follow_pfn_pte(vma, address, ptep, flags);
145 page = ERR_PTR(ret);
146 goto out;
147 }
4bbd4c77
KS
148 }
149
6742d293
KS
150 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
151 int ret;
152 get_page(page);
153 pte_unmap_unlock(ptep, ptl);
154 lock_page(page);
155 ret = split_huge_page(page);
156 unlock_page(page);
157 put_page(page);
158 if (ret)
159 return ERR_PTR(ret);
160 goto retry;
161 }
162
8fde12ca
LT
163 if (flags & FOLL_GET) {
164 if (unlikely(!try_get_page(page))) {
165 page = ERR_PTR(-ENOMEM);
166 goto out;
167 }
168 }
4bbd4c77
KS
169 if (flags & FOLL_TOUCH) {
170 if ((flags & FOLL_WRITE) &&
171 !pte_dirty(pte) && !PageDirty(page))
172 set_page_dirty(page);
173 /*
174 * pte_mkyoung() would be more correct here, but atomic care
175 * is needed to avoid losing the dirty bit: it is easier to use
176 * mark_page_accessed().
177 */
178 mark_page_accessed(page);
179 }
de60f5f1 180 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
181 /* Do not mlock pte-mapped THP */
182 if (PageTransCompound(page))
183 goto out;
184
4bbd4c77
KS
185 /*
186 * The preliminary mapping check is mainly to avoid the
187 * pointless overhead of lock_page on the ZERO_PAGE
188 * which might bounce very badly if there is contention.
189 *
190 * If the page is already locked, we don't need to
191 * handle it now - vmscan will handle it later if and
192 * when it attempts to reclaim the page.
193 */
194 if (page->mapping && trylock_page(page)) {
195 lru_add_drain(); /* push cached pages to LRU */
196 /*
197 * Because we lock page here, and migration is
198 * blocked by the pte's page reference, and we
199 * know the page is still mapped, we don't even
200 * need to check for file-cache page truncation.
201 */
202 mlock_vma_page(page);
203 unlock_page(page);
204 }
205 }
1027e443 206out:
4bbd4c77 207 pte_unmap_unlock(ptep, ptl);
4bbd4c77 208 return page;
4bbd4c77
KS
209no_page:
210 pte_unmap_unlock(ptep, ptl);
211 if (!pte_none(pte))
69e68b4f
KS
212 return NULL;
213 return no_page_table(vma, flags);
214}
215
080dbb61
AK
216static struct page *follow_pmd_mask(struct vm_area_struct *vma,
217 unsigned long address, pud_t *pudp,
df06b37f
KB
218 unsigned int flags,
219 struct follow_page_context *ctx)
69e68b4f 220{
68827280 221 pmd_t *pmd, pmdval;
69e68b4f
KS
222 spinlock_t *ptl;
223 struct page *page;
224 struct mm_struct *mm = vma->vm_mm;
225
080dbb61 226 pmd = pmd_offset(pudp, address);
68827280
HY
227 /*
228 * The READ_ONCE() will stabilize the pmdval in a register or
229 * on the stack so that it will stop changing under the code.
230 */
231 pmdval = READ_ONCE(*pmd);
232 if (pmd_none(pmdval))
69e68b4f 233 return no_page_table(vma, flags);
68827280 234 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
235 page = follow_huge_pmd(mm, address, pmd, flags);
236 if (page)
237 return page;
238 return no_page_table(vma, flags);
69e68b4f 239 }
68827280 240 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 241 page = follow_huge_pd(vma, address,
68827280 242 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
243 PMD_SHIFT);
244 if (page)
245 return page;
246 return no_page_table(vma, flags);
247 }
84c3fc4e 248retry:
68827280 249 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
250 if (likely(!(flags & FOLL_MIGRATION)))
251 return no_page_table(vma, flags);
252 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
253 !is_pmd_migration_entry(pmdval));
254 if (is_pmd_migration_entry(pmdval))
84c3fc4e 255 pmd_migration_entry_wait(mm, pmd);
68827280
HY
256 pmdval = READ_ONCE(*pmd);
257 /*
258 * MADV_DONTNEED may convert the pmd to null because
259 * mmap_sem is held in read mode
260 */
261 if (pmd_none(pmdval))
262 return no_page_table(vma, flags);
84c3fc4e
ZY
263 goto retry;
264 }
68827280 265 if (pmd_devmap(pmdval)) {
3565fce3 266 ptl = pmd_lock(mm, pmd);
df06b37f 267 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
268 spin_unlock(ptl);
269 if (page)
270 return page;
271 }
68827280 272 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 273 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 274
68827280 275 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
276 return no_page_table(vma, flags);
277
84c3fc4e 278retry_locked:
6742d293 279 ptl = pmd_lock(mm, pmd);
68827280
HY
280 if (unlikely(pmd_none(*pmd))) {
281 spin_unlock(ptl);
282 return no_page_table(vma, flags);
283 }
84c3fc4e
ZY
284 if (unlikely(!pmd_present(*pmd))) {
285 spin_unlock(ptl);
286 if (likely(!(flags & FOLL_MIGRATION)))
287 return no_page_table(vma, flags);
288 pmd_migration_entry_wait(mm, pmd);
289 goto retry_locked;
290 }
6742d293
KS
291 if (unlikely(!pmd_trans_huge(*pmd))) {
292 spin_unlock(ptl);
df06b37f 293 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 294 }
6742d293
KS
295 if (flags & FOLL_SPLIT) {
296 int ret;
297 page = pmd_page(*pmd);
298 if (is_huge_zero_page(page)) {
299 spin_unlock(ptl);
300 ret = 0;
78ddc534 301 split_huge_pmd(vma, pmd, address);
337d9abf
NH
302 if (pmd_trans_unstable(pmd))
303 ret = -EBUSY;
6742d293 304 } else {
8fde12ca
LT
305 if (unlikely(!try_get_page(page))) {
306 spin_unlock(ptl);
307 return ERR_PTR(-ENOMEM);
308 }
69e68b4f 309 spin_unlock(ptl);
6742d293
KS
310 lock_page(page);
311 ret = split_huge_page(page);
312 unlock_page(page);
313 put_page(page);
baa355fd
KS
314 if (pmd_none(*pmd))
315 return no_page_table(vma, flags);
6742d293
KS
316 }
317
318 return ret ? ERR_PTR(ret) :
df06b37f 319 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 320 }
6742d293
KS
321 page = follow_trans_huge_pmd(vma, address, pmd, flags);
322 spin_unlock(ptl);
df06b37f 323 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 324 return page;
4bbd4c77
KS
325}
326
080dbb61
AK
327static struct page *follow_pud_mask(struct vm_area_struct *vma,
328 unsigned long address, p4d_t *p4dp,
df06b37f
KB
329 unsigned int flags,
330 struct follow_page_context *ctx)
080dbb61
AK
331{
332 pud_t *pud;
333 spinlock_t *ptl;
334 struct page *page;
335 struct mm_struct *mm = vma->vm_mm;
336
337 pud = pud_offset(p4dp, address);
338 if (pud_none(*pud))
339 return no_page_table(vma, flags);
340 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
341 page = follow_huge_pud(mm, address, pud, flags);
342 if (page)
343 return page;
344 return no_page_table(vma, flags);
345 }
4dc71451
AK
346 if (is_hugepd(__hugepd(pud_val(*pud)))) {
347 page = follow_huge_pd(vma, address,
348 __hugepd(pud_val(*pud)), flags,
349 PUD_SHIFT);
350 if (page)
351 return page;
352 return no_page_table(vma, flags);
353 }
080dbb61
AK
354 if (pud_devmap(*pud)) {
355 ptl = pud_lock(mm, pud);
df06b37f 356 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
357 spin_unlock(ptl);
358 if (page)
359 return page;
360 }
361 if (unlikely(pud_bad(*pud)))
362 return no_page_table(vma, flags);
363
df06b37f 364 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
365}
366
080dbb61
AK
367static struct page *follow_p4d_mask(struct vm_area_struct *vma,
368 unsigned long address, pgd_t *pgdp,
df06b37f
KB
369 unsigned int flags,
370 struct follow_page_context *ctx)
080dbb61
AK
371{
372 p4d_t *p4d;
4dc71451 373 struct page *page;
080dbb61
AK
374
375 p4d = p4d_offset(pgdp, address);
376 if (p4d_none(*p4d))
377 return no_page_table(vma, flags);
378 BUILD_BUG_ON(p4d_huge(*p4d));
379 if (unlikely(p4d_bad(*p4d)))
380 return no_page_table(vma, flags);
381
4dc71451
AK
382 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
383 page = follow_huge_pd(vma, address,
384 __hugepd(p4d_val(*p4d)), flags,
385 P4D_SHIFT);
386 if (page)
387 return page;
388 return no_page_table(vma, flags);
389 }
df06b37f 390 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
391}
392
393/**
394 * follow_page_mask - look up a page descriptor from a user-virtual address
395 * @vma: vm_area_struct mapping @address
396 * @address: virtual address to look up
397 * @flags: flags modifying lookup behaviour
78179556
MR
398 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
399 * pointer to output page_mask
080dbb61
AK
400 *
401 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
402 *
78179556
MR
403 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
404 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
405 *
406 * On output, the @ctx->page_mask is set according to the size of the page.
407 *
408 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
409 * an error pointer if there is a mapping to something not represented
410 * by a page descriptor (see also vm_normal_page()).
411 */
412struct page *follow_page_mask(struct vm_area_struct *vma,
413 unsigned long address, unsigned int flags,
df06b37f 414 struct follow_page_context *ctx)
080dbb61
AK
415{
416 pgd_t *pgd;
417 struct page *page;
418 struct mm_struct *mm = vma->vm_mm;
419
df06b37f 420 ctx->page_mask = 0;
080dbb61
AK
421
422 /* make this handle hugepd */
423 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
424 if (!IS_ERR(page)) {
425 BUG_ON(flags & FOLL_GET);
426 return page;
427 }
428
429 pgd = pgd_offset(mm, address);
430
431 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
432 return no_page_table(vma, flags);
433
faaa5b62
AK
434 if (pgd_huge(*pgd)) {
435 page = follow_huge_pgd(mm, address, pgd, flags);
436 if (page)
437 return page;
438 return no_page_table(vma, flags);
439 }
4dc71451
AK
440 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
441 page = follow_huge_pd(vma, address,
442 __hugepd(pgd_val(*pgd)), flags,
443 PGDIR_SHIFT);
444 if (page)
445 return page;
446 return no_page_table(vma, flags);
447 }
faaa5b62 448
df06b37f
KB
449 return follow_p4d_mask(vma, address, pgd, flags, ctx);
450}
451
452struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
453 unsigned int foll_flags)
454{
455 struct follow_page_context ctx = { NULL };
456 struct page *page;
457
458 page = follow_page_mask(vma, address, foll_flags, &ctx);
459 if (ctx.pgmap)
460 put_dev_pagemap(ctx.pgmap);
461 return page;
080dbb61
AK
462}
463
f2b495ca
KS
464static int get_gate_page(struct mm_struct *mm, unsigned long address,
465 unsigned int gup_flags, struct vm_area_struct **vma,
466 struct page **page)
467{
468 pgd_t *pgd;
c2febafc 469 p4d_t *p4d;
f2b495ca
KS
470 pud_t *pud;
471 pmd_t *pmd;
472 pte_t *pte;
473 int ret = -EFAULT;
474
475 /* user gate pages are read-only */
476 if (gup_flags & FOLL_WRITE)
477 return -EFAULT;
478 if (address > TASK_SIZE)
479 pgd = pgd_offset_k(address);
480 else
481 pgd = pgd_offset_gate(mm, address);
482 BUG_ON(pgd_none(*pgd));
c2febafc
KS
483 p4d = p4d_offset(pgd, address);
484 BUG_ON(p4d_none(*p4d));
485 pud = pud_offset(p4d, address);
f2b495ca
KS
486 BUG_ON(pud_none(*pud));
487 pmd = pmd_offset(pud, address);
84c3fc4e 488 if (!pmd_present(*pmd))
f2b495ca
KS
489 return -EFAULT;
490 VM_BUG_ON(pmd_trans_huge(*pmd));
491 pte = pte_offset_map(pmd, address);
492 if (pte_none(*pte))
493 goto unmap;
494 *vma = get_gate_vma(mm);
495 if (!page)
496 goto out;
497 *page = vm_normal_page(*vma, address, *pte);
498 if (!*page) {
499 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
500 goto unmap;
501 *page = pte_page(*pte);
df6ad698
JG
502
503 /*
504 * This should never happen (a device public page in the gate
505 * area).
506 */
507 if (is_device_public_page(*page))
508 goto unmap;
f2b495ca 509 }
8fde12ca
LT
510 if (unlikely(!try_get_page(*page))) {
511 ret = -ENOMEM;
512 goto unmap;
513 }
f2b495ca
KS
514out:
515 ret = 0;
516unmap:
517 pte_unmap(pte);
518 return ret;
519}
520
9a95f3cf
PC
521/*
522 * mmap_sem must be held on entry. If @nonblocking != NULL and
523 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
524 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
525 */
16744483
KS
526static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
527 unsigned long address, unsigned int *flags, int *nonblocking)
528{
16744483 529 unsigned int fault_flags = 0;
2b740303 530 vm_fault_t ret;
16744483 531
de60f5f1
EM
532 /* mlock all present pages, but do not fault in new pages */
533 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
534 return -ENOENT;
16744483
KS
535 if (*flags & FOLL_WRITE)
536 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
537 if (*flags & FOLL_REMOTE)
538 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
539 if (nonblocking)
540 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
541 if (*flags & FOLL_NOWAIT)
542 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
543 if (*flags & FOLL_TRIED) {
544 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
545 fault_flags |= FAULT_FLAG_TRIED;
546 }
16744483 547
dcddffd4 548 ret = handle_mm_fault(vma, address, fault_flags);
16744483 549 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
550 int err = vm_fault_to_errno(ret, *flags);
551
552 if (err)
553 return err;
16744483
KS
554 BUG();
555 }
556
557 if (tsk) {
558 if (ret & VM_FAULT_MAJOR)
559 tsk->maj_flt++;
560 else
561 tsk->min_flt++;
562 }
563
564 if (ret & VM_FAULT_RETRY) {
96312e61 565 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
566 *nonblocking = 0;
567 return -EBUSY;
568 }
569
570 /*
571 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
572 * necessary, even if maybe_mkwrite decided not to set pte_write. We
573 * can thus safely do subsequent page lookups as if they were reads.
574 * But only do so when looping for pte_write is futile: in some cases
575 * userspace may also be wanting to write to the gotten user page,
576 * which a read fault here might prevent (a readonly page might get
577 * reCOWed by userspace write).
578 */
579 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 580 *flags |= FOLL_COW;
16744483
KS
581 return 0;
582}
583
fa5bb209
KS
584static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
585{
586 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
587 int write = (gup_flags & FOLL_WRITE);
588 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
589
590 if (vm_flags & (VM_IO | VM_PFNMAP))
591 return -EFAULT;
592
7f7ccc2c
WT
593 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
594 return -EFAULT;
595
1b2ee126 596 if (write) {
fa5bb209
KS
597 if (!(vm_flags & VM_WRITE)) {
598 if (!(gup_flags & FOLL_FORCE))
599 return -EFAULT;
600 /*
601 * We used to let the write,force case do COW in a
602 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
603 * set a breakpoint in a read-only mapping of an
604 * executable, without corrupting the file (yet only
605 * when that file had been opened for writing!).
606 * Anon pages in shared mappings are surprising: now
607 * just reject it.
608 */
46435364 609 if (!is_cow_mapping(vm_flags))
fa5bb209 610 return -EFAULT;
fa5bb209
KS
611 }
612 } else if (!(vm_flags & VM_READ)) {
613 if (!(gup_flags & FOLL_FORCE))
614 return -EFAULT;
615 /*
616 * Is there actually any vma we can reach here which does not
617 * have VM_MAYREAD set?
618 */
619 if (!(vm_flags & VM_MAYREAD))
620 return -EFAULT;
621 }
d61172b4
DH
622 /*
623 * gups are always data accesses, not instruction
624 * fetches, so execute=false here
625 */
626 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 627 return -EFAULT;
fa5bb209
KS
628 return 0;
629}
630
4bbd4c77
KS
631/**
632 * __get_user_pages() - pin user pages in memory
633 * @tsk: task_struct of target task
634 * @mm: mm_struct of target mm
635 * @start: starting user address
636 * @nr_pages: number of pages from start to pin
637 * @gup_flags: flags modifying pin behaviour
638 * @pages: array that receives pointers to the pages pinned.
639 * Should be at least nr_pages long. Or NULL, if caller
640 * only intends to ensure the pages are faulted in.
641 * @vmas: array of pointers to vmas corresponding to each page.
642 * Or NULL if the caller does not require them.
643 * @nonblocking: whether waiting for disk IO or mmap_sem contention
644 *
645 * Returns number of pages pinned. This may be fewer than the number
646 * requested. If nr_pages is 0 or negative, returns 0. If no pages
647 * were pinned, returns -errno. Each page returned must be released
648 * with a put_page() call when it is finished with. vmas will only
649 * remain valid while mmap_sem is held.
650 *
9a95f3cf 651 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
652 *
653 * __get_user_pages walks a process's page tables and takes a reference to
654 * each struct page that each user address corresponds to at a given
655 * instant. That is, it takes the page that would be accessed if a user
656 * thread accesses the given user virtual address at that instant.
657 *
658 * This does not guarantee that the page exists in the user mappings when
659 * __get_user_pages returns, and there may even be a completely different
660 * page there in some cases (eg. if mmapped pagecache has been invalidated
661 * and subsequently re faulted). However it does guarantee that the page
662 * won't be freed completely. And mostly callers simply care that the page
663 * contains data that was valid *at some point in time*. Typically, an IO
664 * or similar operation cannot guarantee anything stronger anyway because
665 * locks can't be held over the syscall boundary.
666 *
667 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
668 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
669 * appropriate) must be called after the page is finished with, and
670 * before put_page is called.
671 *
672 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
673 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
674 * *@nonblocking will be set to 0. Further, if @gup_flags does not
675 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
676 * this case.
677 *
678 * A caller using such a combination of @nonblocking and @gup_flags
679 * must therefore hold the mmap_sem for reading only, and recognize
680 * when it's been released. Otherwise, it must be held for either
681 * reading or writing and will not be released.
4bbd4c77
KS
682 *
683 * In most cases, get_user_pages or get_user_pages_fast should be used
684 * instead of __get_user_pages. __get_user_pages should be used only if
685 * you need some special @gup_flags.
686 */
0d731759 687static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
688 unsigned long start, unsigned long nr_pages,
689 unsigned int gup_flags, struct page **pages,
690 struct vm_area_struct **vmas, int *nonblocking)
691{
df06b37f 692 long ret = 0, i = 0;
fa5bb209 693 struct vm_area_struct *vma = NULL;
df06b37f 694 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
695
696 if (!nr_pages)
697 return 0;
698
699 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
700
701 /*
702 * If FOLL_FORCE is set then do not force a full fault as the hinting
703 * fault information is unrelated to the reference behaviour of a task
704 * using the address space
705 */
706 if (!(gup_flags & FOLL_FORCE))
707 gup_flags |= FOLL_NUMA;
708
4bbd4c77 709 do {
fa5bb209
KS
710 struct page *page;
711 unsigned int foll_flags = gup_flags;
712 unsigned int page_increm;
713
714 /* first iteration or cross vma bound */
715 if (!vma || start >= vma->vm_end) {
716 vma = find_extend_vma(mm, start);
717 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
718 ret = get_gate_page(mm, start & PAGE_MASK,
719 gup_flags, &vma,
720 pages ? &pages[i] : NULL);
721 if (ret)
08be37b7 722 goto out;
df06b37f 723 ctx.page_mask = 0;
fa5bb209
KS
724 goto next_page;
725 }
4bbd4c77 726
df06b37f
KB
727 if (!vma || check_vma_flags(vma, gup_flags)) {
728 ret = -EFAULT;
729 goto out;
730 }
fa5bb209
KS
731 if (is_vm_hugetlb_page(vma)) {
732 i = follow_hugetlb_page(mm, vma, pages, vmas,
733 &start, &nr_pages, i,
87ffc118 734 gup_flags, nonblocking);
fa5bb209 735 continue;
4bbd4c77 736 }
fa5bb209
KS
737 }
738retry:
739 /*
740 * If we have a pending SIGKILL, don't keep faulting pages and
741 * potentially allocating memory.
742 */
fa45f116 743 if (fatal_signal_pending(current)) {
df06b37f
KB
744 ret = -ERESTARTSYS;
745 goto out;
746 }
fa5bb209 747 cond_resched();
df06b37f
KB
748
749 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 750 if (!page) {
fa5bb209
KS
751 ret = faultin_page(tsk, vma, start, &foll_flags,
752 nonblocking);
753 switch (ret) {
754 case 0:
755 goto retry;
df06b37f
KB
756 case -EBUSY:
757 ret = 0;
758 /* FALLTHRU */
fa5bb209
KS
759 case -EFAULT:
760 case -ENOMEM:
761 case -EHWPOISON:
df06b37f 762 goto out;
fa5bb209
KS
763 case -ENOENT:
764 goto next_page;
4bbd4c77 765 }
fa5bb209 766 BUG();
1027e443
KS
767 } else if (PTR_ERR(page) == -EEXIST) {
768 /*
769 * Proper page table entry exists, but no corresponding
770 * struct page.
771 */
772 goto next_page;
773 } else if (IS_ERR(page)) {
df06b37f
KB
774 ret = PTR_ERR(page);
775 goto out;
1027e443 776 }
fa5bb209
KS
777 if (pages) {
778 pages[i] = page;
779 flush_anon_page(vma, page, start);
780 flush_dcache_page(page);
df06b37f 781 ctx.page_mask = 0;
4bbd4c77 782 }
4bbd4c77 783next_page:
fa5bb209
KS
784 if (vmas) {
785 vmas[i] = vma;
df06b37f 786 ctx.page_mask = 0;
fa5bb209 787 }
df06b37f 788 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
789 if (page_increm > nr_pages)
790 page_increm = nr_pages;
791 i += page_increm;
792 start += page_increm * PAGE_SIZE;
793 nr_pages -= page_increm;
4bbd4c77 794 } while (nr_pages);
df06b37f
KB
795out:
796 if (ctx.pgmap)
797 put_dev_pagemap(ctx.pgmap);
798 return i ? i : ret;
4bbd4c77 799}
4bbd4c77 800
771ab430
TK
801static bool vma_permits_fault(struct vm_area_struct *vma,
802 unsigned int fault_flags)
d4925e00 803{
1b2ee126
DH
804 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
805 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 806 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
807
808 if (!(vm_flags & vma->vm_flags))
809 return false;
810
33a709b2
DH
811 /*
812 * The architecture might have a hardware protection
1b2ee126 813 * mechanism other than read/write that can deny access.
d61172b4
DH
814 *
815 * gup always represents data access, not instruction
816 * fetches, so execute=false here:
33a709b2 817 */
d61172b4 818 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
819 return false;
820
d4925e00
DH
821 return true;
822}
823
4bbd4c77
KS
824/*
825 * fixup_user_fault() - manually resolve a user page fault
826 * @tsk: the task_struct to use for page fault accounting, or
827 * NULL if faults are not to be recorded.
828 * @mm: mm_struct of target mm
829 * @address: user address
830 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
831 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
832 * does not allow retry
4bbd4c77
KS
833 *
834 * This is meant to be called in the specific scenario where for locking reasons
835 * we try to access user memory in atomic context (within a pagefault_disable()
836 * section), this returns -EFAULT, and we want to resolve the user fault before
837 * trying again.
838 *
839 * Typically this is meant to be used by the futex code.
840 *
841 * The main difference with get_user_pages() is that this function will
842 * unconditionally call handle_mm_fault() which will in turn perform all the
843 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 844 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
845 *
846 * This is important for some architectures where those bits also gate the
847 * access permission to the page because they are maintained in software. On
848 * such architectures, gup() will not be enough to make a subsequent access
849 * succeed.
850 *
4a9e1cda
DD
851 * This function will not return with an unlocked mmap_sem. So it has not the
852 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
853 */
854int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
855 unsigned long address, unsigned int fault_flags,
856 bool *unlocked)
4bbd4c77
KS
857{
858 struct vm_area_struct *vma;
2b740303 859 vm_fault_t ret, major = 0;
4a9e1cda
DD
860
861 if (unlocked)
862 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 863
4a9e1cda 864retry:
4bbd4c77
KS
865 vma = find_extend_vma(mm, address);
866 if (!vma || address < vma->vm_start)
867 return -EFAULT;
868
d4925e00 869 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
870 return -EFAULT;
871
dcddffd4 872 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 873 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 874 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
875 int err = vm_fault_to_errno(ret, 0);
876
877 if (err)
878 return err;
4bbd4c77
KS
879 BUG();
880 }
4a9e1cda
DD
881
882 if (ret & VM_FAULT_RETRY) {
883 down_read(&mm->mmap_sem);
884 if (!(fault_flags & FAULT_FLAG_TRIED)) {
885 *unlocked = true;
886 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
887 fault_flags |= FAULT_FLAG_TRIED;
888 goto retry;
889 }
890 }
891
4bbd4c77 892 if (tsk) {
4a9e1cda 893 if (major)
4bbd4c77
KS
894 tsk->maj_flt++;
895 else
896 tsk->min_flt++;
897 }
898 return 0;
899}
add6a0cd 900EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 901
f0818f47
AA
902static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
903 struct mm_struct *mm,
904 unsigned long start,
905 unsigned long nr_pages,
f0818f47
AA
906 struct page **pages,
907 struct vm_area_struct **vmas,
e716712f 908 int *locked,
0fd71a56 909 unsigned int flags)
f0818f47 910{
f0818f47
AA
911 long ret, pages_done;
912 bool lock_dropped;
913
914 if (locked) {
915 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
916 BUG_ON(vmas);
917 /* check caller initialized locked */
918 BUG_ON(*locked != 1);
919 }
920
921 if (pages)
922 flags |= FOLL_GET;
f0818f47
AA
923
924 pages_done = 0;
925 lock_dropped = false;
926 for (;;) {
927 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
928 vmas, locked);
929 if (!locked)
930 /* VM_FAULT_RETRY couldn't trigger, bypass */
931 return ret;
932
933 /* VM_FAULT_RETRY cannot return errors */
934 if (!*locked) {
935 BUG_ON(ret < 0);
936 BUG_ON(ret >= nr_pages);
937 }
938
939 if (!pages)
940 /* If it's a prefault don't insist harder */
941 return ret;
942
943 if (ret > 0) {
944 nr_pages -= ret;
945 pages_done += ret;
946 if (!nr_pages)
947 break;
948 }
949 if (*locked) {
96312e61
AA
950 /*
951 * VM_FAULT_RETRY didn't trigger or it was a
952 * FOLL_NOWAIT.
953 */
f0818f47
AA
954 if (!pages_done)
955 pages_done = ret;
956 break;
957 }
958 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
959 pages += ret;
960 start += ret << PAGE_SHIFT;
961
962 /*
963 * Repeat on the address that fired VM_FAULT_RETRY
964 * without FAULT_FLAG_ALLOW_RETRY but with
965 * FAULT_FLAG_TRIED.
966 */
967 *locked = 1;
968 lock_dropped = true;
969 down_read(&mm->mmap_sem);
970 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
971 pages, NULL, NULL);
972 if (ret != 1) {
973 BUG_ON(ret > 1);
974 if (!pages_done)
975 pages_done = ret;
976 break;
977 }
978 nr_pages--;
979 pages_done++;
980 if (!nr_pages)
981 break;
982 pages++;
983 start += PAGE_SIZE;
984 }
e716712f 985 if (lock_dropped && *locked) {
f0818f47
AA
986 /*
987 * We must let the caller know we temporarily dropped the lock
988 * and so the critical section protected by it was lost.
989 */
990 up_read(&mm->mmap_sem);
991 *locked = 0;
992 }
993 return pages_done;
994}
995
996/*
997 * We can leverage the VM_FAULT_RETRY functionality in the page fault
998 * paths better by using either get_user_pages_locked() or
999 * get_user_pages_unlocked().
1000 *
1001 * get_user_pages_locked() is suitable to replace the form:
1002 *
1003 * down_read(&mm->mmap_sem);
1004 * do_something()
1005 * get_user_pages(tsk, mm, ..., pages, NULL);
1006 * up_read(&mm->mmap_sem);
1007 *
1008 * to:
1009 *
1010 * int locked = 1;
1011 * down_read(&mm->mmap_sem);
1012 * do_something()
1013 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1014 * if (locked)
1015 * up_read(&mm->mmap_sem);
1016 */
c12d2da5 1017long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1018 unsigned int gup_flags, struct page **pages,
f0818f47
AA
1019 int *locked)
1020{
932f4a63
IW
1021 /*
1022 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1023 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1024 * vmas. As there are no users of this flag in this call we simply
1025 * disallow this option for now.
1026 */
1027 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1028 return -EINVAL;
1029
cde70140 1030 return __get_user_pages_locked(current, current->mm, start, nr_pages,
e716712f 1031 pages, NULL, locked,
3b913179 1032 gup_flags | FOLL_TOUCH);
f0818f47 1033}
c12d2da5 1034EXPORT_SYMBOL(get_user_pages_locked);
f0818f47
AA
1035
1036/*
1037 * get_user_pages_unlocked() is suitable to replace the form:
1038 *
1039 * down_read(&mm->mmap_sem);
1040 * get_user_pages(tsk, mm, ..., pages, NULL);
1041 * up_read(&mm->mmap_sem);
1042 *
1043 * with:
1044 *
1045 * get_user_pages_unlocked(tsk, mm, ..., pages);
1046 *
1047 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
1048 * get_user_pages_fast should be used instead if specific gup_flags
1049 * (e.g. FOLL_FORCE) are not required.
f0818f47 1050 */
c12d2da5 1051long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1052 struct page **pages, unsigned int gup_flags)
f0818f47 1053{
c803c9c6
AV
1054 struct mm_struct *mm = current->mm;
1055 int locked = 1;
1056 long ret;
1057
932f4a63
IW
1058 /*
1059 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1060 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1061 * vmas. As there are no users of this flag in this call we simply
1062 * disallow this option for now.
1063 */
1064 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1065 return -EINVAL;
1066
c803c9c6
AV
1067 down_read(&mm->mmap_sem);
1068 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
e716712f 1069 &locked, gup_flags | FOLL_TOUCH);
c803c9c6
AV
1070 if (locked)
1071 up_read(&mm->mmap_sem);
1072 return ret;
f0818f47 1073}
c12d2da5 1074EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 1075
4bbd4c77 1076/*
1e987790 1077 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1078 * @tsk: the task_struct to use for page fault accounting, or
1079 * NULL if faults are not to be recorded.
1080 * @mm: mm_struct of target mm
1081 * @start: starting user address
1082 * @nr_pages: number of pages from start to pin
9beae1ea 1083 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1084 * @pages: array that receives pointers to the pages pinned.
1085 * Should be at least nr_pages long. Or NULL, if caller
1086 * only intends to ensure the pages are faulted in.
1087 * @vmas: array of pointers to vmas corresponding to each page.
1088 * Or NULL if the caller does not require them.
5b56d49f
LS
1089 * @locked: pointer to lock flag indicating whether lock is held and
1090 * subsequently whether VM_FAULT_RETRY functionality can be
1091 * utilised. Lock must initially be held.
4bbd4c77
KS
1092 *
1093 * Returns number of pages pinned. This may be fewer than the number
1094 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1095 * were pinned, returns -errno. Each page returned must be released
1096 * with a put_page() call when it is finished with. vmas will only
1097 * remain valid while mmap_sem is held.
1098 *
1099 * Must be called with mmap_sem held for read or write.
1100 *
1101 * get_user_pages walks a process's page tables and takes a reference to
1102 * each struct page that each user address corresponds to at a given
1103 * instant. That is, it takes the page that would be accessed if a user
1104 * thread accesses the given user virtual address at that instant.
1105 *
1106 * This does not guarantee that the page exists in the user mappings when
1107 * get_user_pages returns, and there may even be a completely different
1108 * page there in some cases (eg. if mmapped pagecache has been invalidated
1109 * and subsequently re faulted). However it does guarantee that the page
1110 * won't be freed completely. And mostly callers simply care that the page
1111 * contains data that was valid *at some point in time*. Typically, an IO
1112 * or similar operation cannot guarantee anything stronger anyway because
1113 * locks can't be held over the syscall boundary.
1114 *
9beae1ea
LS
1115 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1116 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1117 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1118 *
1119 * get_user_pages is typically used for fewer-copy IO operations, to get a
1120 * handle on the memory by some means other than accesses via the user virtual
1121 * addresses. The pages may be submitted for DMA to devices or accessed via
1122 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1123 * use the correct cache flushing APIs.
1124 *
1125 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1126 *
1127 * get_user_pages should be phased out in favor of
1128 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1129 * should use get_user_pages because it cannot pass
1130 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1131 */
1e987790
DH
1132long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1133 unsigned long start, unsigned long nr_pages,
9beae1ea 1134 unsigned int gup_flags, struct page **pages,
5b56d49f 1135 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1136{
932f4a63
IW
1137 /*
1138 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1139 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1140 * vmas. As there are no users of this flag in this call we simply
1141 * disallow this option for now.
1142 */
1143 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1144 return -EINVAL;
1145
859110d7 1146 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1147 locked,
9beae1ea 1148 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1149}
1150EXPORT_SYMBOL(get_user_pages_remote);
1151
9a4e9f3b 1152#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1153static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1154{
1155 long i;
1156 struct vm_area_struct *vma_prev = NULL;
1157
1158 for (i = 0; i < nr_pages; i++) {
1159 struct vm_area_struct *vma = vmas[i];
1160
1161 if (vma == vma_prev)
1162 continue;
1163
1164 vma_prev = vma;
1165
1166 if (vma_is_fsdax(vma))
1167 return true;
1168 }
1169 return false;
1170}
9a4e9f3b
AK
1171
1172#ifdef CONFIG_CMA
1173static struct page *new_non_cma_page(struct page *page, unsigned long private)
1174{
1175 /*
1176 * We want to make sure we allocate the new page from the same node
1177 * as the source page.
1178 */
1179 int nid = page_to_nid(page);
1180 /*
1181 * Trying to allocate a page for migration. Ignore allocation
1182 * failure warnings. We don't force __GFP_THISNODE here because
1183 * this node here is the node where we have CMA reservation and
1184 * in some case these nodes will have really less non movable
1185 * allocation memory.
1186 */
1187 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1188
1189 if (PageHighMem(page))
1190 gfp_mask |= __GFP_HIGHMEM;
1191
1192#ifdef CONFIG_HUGETLB_PAGE
1193 if (PageHuge(page)) {
1194 struct hstate *h = page_hstate(page);
1195 /*
1196 * We don't want to dequeue from the pool because pool pages will
1197 * mostly be from the CMA region.
1198 */
1199 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1200 }
1201#endif
1202 if (PageTransHuge(page)) {
1203 struct page *thp;
1204 /*
1205 * ignore allocation failure warnings
1206 */
1207 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1208
1209 /*
1210 * Remove the movable mask so that we don't allocate from
1211 * CMA area again.
1212 */
1213 thp_gfpmask &= ~__GFP_MOVABLE;
1214 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1215 if (!thp)
1216 return NULL;
1217 prep_transhuge_page(thp);
1218 return thp;
1219 }
1220
1221 return __alloc_pages_node(nid, gfp_mask, 0);
1222}
1223
932f4a63
IW
1224static long check_and_migrate_cma_pages(struct task_struct *tsk,
1225 struct mm_struct *mm,
1226 unsigned long start,
1227 unsigned long nr_pages,
9a4e9f3b 1228 struct page **pages,
932f4a63
IW
1229 struct vm_area_struct **vmas,
1230 unsigned int gup_flags)
9a4e9f3b
AK
1231{
1232 long i;
1233 bool drain_allow = true;
1234 bool migrate_allow = true;
1235 LIST_HEAD(cma_page_list);
1236
1237check_again:
1238 for (i = 0; i < nr_pages; i++) {
1239 /*
1240 * If we get a page from the CMA zone, since we are going to
1241 * be pinning these entries, we might as well move them out
1242 * of the CMA zone if possible.
1243 */
1244 if (is_migrate_cma_page(pages[i])) {
1245
1246 struct page *head = compound_head(pages[i]);
1247
1248 if (PageHuge(head)) {
1249 isolate_huge_page(head, &cma_page_list);
1250 } else {
1251 if (!PageLRU(head) && drain_allow) {
1252 lru_add_drain_all();
1253 drain_allow = false;
1254 }
1255
1256 if (!isolate_lru_page(head)) {
1257 list_add_tail(&head->lru, &cma_page_list);
1258 mod_node_page_state(page_pgdat(head),
1259 NR_ISOLATED_ANON +
1260 page_is_file_cache(head),
1261 hpage_nr_pages(head));
1262 }
1263 }
1264 }
1265 }
1266
1267 if (!list_empty(&cma_page_list)) {
1268 /*
1269 * drop the above get_user_pages reference.
1270 */
1271 for (i = 0; i < nr_pages; i++)
1272 put_page(pages[i]);
1273
1274 if (migrate_pages(&cma_page_list, new_non_cma_page,
1275 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1276 /*
1277 * some of the pages failed migration. Do get_user_pages
1278 * without migration.
1279 */
1280 migrate_allow = false;
1281
1282 if (!list_empty(&cma_page_list))
1283 putback_movable_pages(&cma_page_list);
1284 }
1285 /*
932f4a63
IW
1286 * We did migrate all the pages, Try to get the page references
1287 * again migrating any new CMA pages which we failed to isolate
1288 * earlier.
9a4e9f3b 1289 */
932f4a63
IW
1290 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1291 pages, vmas, NULL,
1292 gup_flags);
1293
9a4e9f3b
AK
1294 if ((nr_pages > 0) && migrate_allow) {
1295 drain_allow = true;
1296 goto check_again;
1297 }
1298 }
1299
1300 return nr_pages;
1301}
1302#else
932f4a63
IW
1303static long check_and_migrate_cma_pages(struct task_struct *tsk,
1304 struct mm_struct *mm,
1305 unsigned long start,
1306 unsigned long nr_pages,
1307 struct page **pages,
1308 struct vm_area_struct **vmas,
1309 unsigned int gup_flags)
9a4e9f3b
AK
1310{
1311 return nr_pages;
1312}
1313#endif
1314
2bb6d283 1315/*
932f4a63
IW
1316 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1317 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1318 */
932f4a63
IW
1319static long __gup_longterm_locked(struct task_struct *tsk,
1320 struct mm_struct *mm,
1321 unsigned long start,
1322 unsigned long nr_pages,
1323 struct page **pages,
1324 struct vm_area_struct **vmas,
1325 unsigned int gup_flags)
2bb6d283 1326{
932f4a63
IW
1327 struct vm_area_struct **vmas_tmp = vmas;
1328 unsigned long flags = 0;
2bb6d283
DW
1329 long rc, i;
1330
932f4a63
IW
1331 if (gup_flags & FOLL_LONGTERM) {
1332 if (!pages)
1333 return -EINVAL;
1334
1335 if (!vmas_tmp) {
1336 vmas_tmp = kcalloc(nr_pages,
1337 sizeof(struct vm_area_struct *),
1338 GFP_KERNEL);
1339 if (!vmas_tmp)
1340 return -ENOMEM;
1341 }
1342 flags = memalloc_nocma_save();
2bb6d283
DW
1343 }
1344
932f4a63
IW
1345 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1346 vmas_tmp, NULL, gup_flags);
2bb6d283 1347
932f4a63
IW
1348 if (gup_flags & FOLL_LONGTERM) {
1349 memalloc_nocma_restore(flags);
1350 if (rc < 0)
1351 goto out;
1352
1353 if (check_dax_vmas(vmas_tmp, rc)) {
1354 for (i = 0; i < rc; i++)
1355 put_page(pages[i]);
1356 rc = -EOPNOTSUPP;
1357 goto out;
1358 }
1359
1360 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1361 vmas_tmp, gup_flags);
9a4e9f3b 1362 }
2bb6d283 1363
2bb6d283 1364out:
932f4a63
IW
1365 if (vmas_tmp != vmas)
1366 kfree(vmas_tmp);
2bb6d283
DW
1367 return rc;
1368}
932f4a63
IW
1369#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1370static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1371 struct mm_struct *mm,
1372 unsigned long start,
1373 unsigned long nr_pages,
1374 struct page **pages,
1375 struct vm_area_struct **vmas,
1376 unsigned int flags)
1377{
1378 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1379 NULL, flags);
1380}
1381#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1382
1383/*
1384 * This is the same as get_user_pages_remote(), just with a
1385 * less-flexible calling convention where we assume that the task
1386 * and mm being operated on are the current task's and don't allow
1387 * passing of a locked parameter. We also obviously don't pass
1388 * FOLL_REMOTE in here.
1389 */
1390long get_user_pages(unsigned long start, unsigned long nr_pages,
1391 unsigned int gup_flags, struct page **pages,
1392 struct vm_area_struct **vmas)
1393{
1394 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1395 pages, vmas, gup_flags | FOLL_TOUCH);
1396}
1397EXPORT_SYMBOL(get_user_pages);
2bb6d283 1398
acc3c8d1
KS
1399/**
1400 * populate_vma_page_range() - populate a range of pages in the vma.
1401 * @vma: target vma
1402 * @start: start address
1403 * @end: end address
1404 * @nonblocking:
1405 *
1406 * This takes care of mlocking the pages too if VM_LOCKED is set.
1407 *
1408 * return 0 on success, negative error code on error.
1409 *
1410 * vma->vm_mm->mmap_sem must be held.
1411 *
1412 * If @nonblocking is NULL, it may be held for read or write and will
1413 * be unperturbed.
1414 *
1415 * If @nonblocking is non-NULL, it must held for read only and may be
1416 * released. If it's released, *@nonblocking will be set to 0.
1417 */
1418long populate_vma_page_range(struct vm_area_struct *vma,
1419 unsigned long start, unsigned long end, int *nonblocking)
1420{
1421 struct mm_struct *mm = vma->vm_mm;
1422 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1423 int gup_flags;
1424
1425 VM_BUG_ON(start & ~PAGE_MASK);
1426 VM_BUG_ON(end & ~PAGE_MASK);
1427 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1428 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1429 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1430
de60f5f1
EM
1431 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1432 if (vma->vm_flags & VM_LOCKONFAULT)
1433 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1434 /*
1435 * We want to touch writable mappings with a write fault in order
1436 * to break COW, except for shared mappings because these don't COW
1437 * and we would not want to dirty them for nothing.
1438 */
1439 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1440 gup_flags |= FOLL_WRITE;
1441
1442 /*
1443 * We want mlock to succeed for regions that have any permissions
1444 * other than PROT_NONE.
1445 */
1446 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1447 gup_flags |= FOLL_FORCE;
1448
1449 /*
1450 * We made sure addr is within a VMA, so the following will
1451 * not result in a stack expansion that recurses back here.
1452 */
1453 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1454 NULL, NULL, nonblocking);
1455}
1456
1457/*
1458 * __mm_populate - populate and/or mlock pages within a range of address space.
1459 *
1460 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1461 * flags. VMAs must be already marked with the desired vm_flags, and
1462 * mmap_sem must not be held.
1463 */
1464int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465{
1466 struct mm_struct *mm = current->mm;
1467 unsigned long end, nstart, nend;
1468 struct vm_area_struct *vma = NULL;
1469 int locked = 0;
1470 long ret = 0;
1471
acc3c8d1
KS
1472 end = start + len;
1473
1474 for (nstart = start; nstart < end; nstart = nend) {
1475 /*
1476 * We want to fault in pages for [nstart; end) address range.
1477 * Find first corresponding VMA.
1478 */
1479 if (!locked) {
1480 locked = 1;
1481 down_read(&mm->mmap_sem);
1482 vma = find_vma(mm, nstart);
1483 } else if (nstart >= vma->vm_end)
1484 vma = vma->vm_next;
1485 if (!vma || vma->vm_start >= end)
1486 break;
1487 /*
1488 * Set [nstart; nend) to intersection of desired address
1489 * range with the first VMA. Also, skip undesirable VMA types.
1490 */
1491 nend = min(end, vma->vm_end);
1492 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1493 continue;
1494 if (nstart < vma->vm_start)
1495 nstart = vma->vm_start;
1496 /*
1497 * Now fault in a range of pages. populate_vma_page_range()
1498 * double checks the vma flags, so that it won't mlock pages
1499 * if the vma was already munlocked.
1500 */
1501 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1502 if (ret < 0) {
1503 if (ignore_errors) {
1504 ret = 0;
1505 continue; /* continue at next VMA */
1506 }
1507 break;
1508 }
1509 nend = nstart + ret * PAGE_SIZE;
1510 ret = 0;
1511 }
1512 if (locked)
1513 up_read(&mm->mmap_sem);
1514 return ret; /* 0 or negative error code */
1515}
1516
4bbd4c77
KS
1517/**
1518 * get_dump_page() - pin user page in memory while writing it to core dump
1519 * @addr: user address
1520 *
1521 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1522 * to be freed afterwards by put_page().
4bbd4c77
KS
1523 *
1524 * Returns NULL on any kind of failure - a hole must then be inserted into
1525 * the corefile, to preserve alignment with its headers; and also returns
1526 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1527 * allowing a hole to be left in the corefile to save diskspace.
1528 *
1529 * Called without mmap_sem, but after all other threads have been killed.
1530 */
1531#ifdef CONFIG_ELF_CORE
1532struct page *get_dump_page(unsigned long addr)
1533{
1534 struct vm_area_struct *vma;
1535 struct page *page;
1536
1537 if (__get_user_pages(current, current->mm, addr, 1,
1538 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1539 NULL) < 1)
1540 return NULL;
1541 flush_cache_page(vma, addr, page_to_pfn(page));
1542 return page;
1543}
1544#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1545
1546/*
e585513b 1547 * Generic Fast GUP
2667f50e
SC
1548 *
1549 * get_user_pages_fast attempts to pin user pages by walking the page
1550 * tables directly and avoids taking locks. Thus the walker needs to be
1551 * protected from page table pages being freed from under it, and should
1552 * block any THP splits.
1553 *
1554 * One way to achieve this is to have the walker disable interrupts, and
1555 * rely on IPIs from the TLB flushing code blocking before the page table
1556 * pages are freed. This is unsuitable for architectures that do not need
1557 * to broadcast an IPI when invalidating TLBs.
1558 *
1559 * Another way to achieve this is to batch up page table containing pages
1560 * belonging to more than one mm_user, then rcu_sched a callback to free those
1561 * pages. Disabling interrupts will allow the fast_gup walker to both block
1562 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1563 * (which is a relatively rare event). The code below adopts this strategy.
1564 *
1565 * Before activating this code, please be aware that the following assumptions
1566 * are currently made:
1567 *
e585513b
KS
1568 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1569 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1570 *
2667f50e
SC
1571 * *) ptes can be read atomically by the architecture.
1572 *
1573 * *) access_ok is sufficient to validate userspace address ranges.
1574 *
1575 * The last two assumptions can be relaxed by the addition of helper functions.
1576 *
1577 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1578 */
e585513b 1579#ifdef CONFIG_HAVE_GENERIC_GUP
2667f50e 1580
0005d20b
KS
1581#ifndef gup_get_pte
1582/*
1583 * We assume that the PTE can be read atomically. If this is not the case for
1584 * your architecture, please provide the helper.
1585 */
1586static inline pte_t gup_get_pte(pte_t *ptep)
1587{
1588 return READ_ONCE(*ptep);
1589}
1590#endif
1591
b59f65fa
KS
1592static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1593{
1594 while ((*nr) - nr_start) {
1595 struct page *page = pages[--(*nr)];
1596
1597 ClearPageReferenced(page);
1598 put_page(page);
1599 }
1600}
1601
8fde12ca
LT
1602/*
1603 * Return the compund head page with ref appropriately incremented,
1604 * or NULL if that failed.
1605 */
1606static inline struct page *try_get_compound_head(struct page *page, int refs)
1607{
1608 struct page *head = compound_head(page);
1609 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1610 return NULL;
1611 if (unlikely(!page_cache_add_speculative(head, refs)))
1612 return NULL;
1613 return head;
1614}
1615
3010a5ea 1616#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1617static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1618 unsigned int flags, struct page **pages, int *nr)
2667f50e 1619{
b59f65fa
KS
1620 struct dev_pagemap *pgmap = NULL;
1621 int nr_start = *nr, ret = 0;
2667f50e 1622 pte_t *ptep, *ptem;
2667f50e
SC
1623
1624 ptem = ptep = pte_offset_map(&pmd, addr);
1625 do {
0005d20b 1626 pte_t pte = gup_get_pte(ptep);
7aef4172 1627 struct page *head, *page;
2667f50e
SC
1628
1629 /*
1630 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1631 * path using the pte_protnone check.
2667f50e 1632 */
e7884f8e
KS
1633 if (pte_protnone(pte))
1634 goto pte_unmap;
1635
b798bec4 1636 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
1637 goto pte_unmap;
1638
b59f65fa 1639 if (pte_devmap(pte)) {
7af75561
IW
1640 if (unlikely(flags & FOLL_LONGTERM))
1641 goto pte_unmap;
1642
b59f65fa
KS
1643 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1644 if (unlikely(!pgmap)) {
1645 undo_dev_pagemap(nr, nr_start, pages);
1646 goto pte_unmap;
1647 }
1648 } else if (pte_special(pte))
2667f50e
SC
1649 goto pte_unmap;
1650
1651 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1652 page = pte_page(pte);
1653
8fde12ca
LT
1654 head = try_get_compound_head(page, 1);
1655 if (!head)
2667f50e
SC
1656 goto pte_unmap;
1657
1658 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1659 put_page(head);
2667f50e
SC
1660 goto pte_unmap;
1661 }
1662
7aef4172 1663 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1664
1665 SetPageReferenced(page);
2667f50e
SC
1666 pages[*nr] = page;
1667 (*nr)++;
1668
1669 } while (ptep++, addr += PAGE_SIZE, addr != end);
1670
1671 ret = 1;
1672
1673pte_unmap:
832d7aa0
CH
1674 if (pgmap)
1675 put_dev_pagemap(pgmap);
2667f50e
SC
1676 pte_unmap(ptem);
1677 return ret;
1678}
1679#else
1680
1681/*
1682 * If we can't determine whether or not a pte is special, then fail immediately
1683 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1684 * to be special.
1685 *
1686 * For a futex to be placed on a THP tail page, get_futex_key requires a
1687 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1688 * useful to have gup_huge_pmd even if we can't operate on ptes.
1689 */
1690static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1691 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1692{
1693 return 0;
1694}
3010a5ea 1695#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1696
09180ca4 1697#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1698static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1699 unsigned long end, struct page **pages, int *nr)
1700{
1701 int nr_start = *nr;
1702 struct dev_pagemap *pgmap = NULL;
1703
1704 do {
1705 struct page *page = pfn_to_page(pfn);
1706
1707 pgmap = get_dev_pagemap(pfn, pgmap);
1708 if (unlikely(!pgmap)) {
1709 undo_dev_pagemap(nr, nr_start, pages);
1710 return 0;
1711 }
1712 SetPageReferenced(page);
1713 pages[*nr] = page;
1714 get_page(page);
b59f65fa
KS
1715 (*nr)++;
1716 pfn++;
1717 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1718
1719 if (pgmap)
1720 put_dev_pagemap(pgmap);
b59f65fa
KS
1721 return 1;
1722}
1723
a9b6de77 1724static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1725 unsigned long end, struct page **pages, int *nr)
1726{
1727 unsigned long fault_pfn;
a9b6de77
DW
1728 int nr_start = *nr;
1729
1730 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1731 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1732 return 0;
b59f65fa 1733
a9b6de77
DW
1734 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1735 undo_dev_pagemap(nr, nr_start, pages);
1736 return 0;
1737 }
1738 return 1;
b59f65fa
KS
1739}
1740
a9b6de77 1741static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1742 unsigned long end, struct page **pages, int *nr)
1743{
1744 unsigned long fault_pfn;
a9b6de77
DW
1745 int nr_start = *nr;
1746
1747 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1748 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1749 return 0;
b59f65fa 1750
a9b6de77
DW
1751 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1752 undo_dev_pagemap(nr, nr_start, pages);
1753 return 0;
1754 }
1755 return 1;
b59f65fa
KS
1756}
1757#else
a9b6de77 1758static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1759 unsigned long end, struct page **pages, int *nr)
1760{
1761 BUILD_BUG();
1762 return 0;
1763}
1764
a9b6de77 1765static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1766 unsigned long end, struct page **pages, int *nr)
1767{
1768 BUILD_BUG();
1769 return 0;
1770}
1771#endif
1772
2667f50e 1773static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b798bec4 1774 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 1775{
ddc58f27 1776 struct page *head, *page;
2667f50e
SC
1777 int refs;
1778
b798bec4 1779 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
1780 return 0;
1781
7af75561
IW
1782 if (pmd_devmap(orig)) {
1783 if (unlikely(flags & FOLL_LONGTERM))
1784 return 0;
a9b6de77 1785 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
7af75561 1786 }
b59f65fa 1787
2667f50e 1788 refs = 0;
d63206ee 1789 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 1790 do {
2667f50e
SC
1791 pages[*nr] = page;
1792 (*nr)++;
1793 page++;
1794 refs++;
1795 } while (addr += PAGE_SIZE, addr != end);
1796
8fde12ca
LT
1797 head = try_get_compound_head(pmd_page(orig), refs);
1798 if (!head) {
2667f50e
SC
1799 *nr -= refs;
1800 return 0;
1801 }
1802
1803 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1804 *nr -= refs;
1805 while (refs--)
1806 put_page(head);
1807 return 0;
1808 }
1809
e9348053 1810 SetPageReferenced(head);
2667f50e
SC
1811 return 1;
1812}
1813
1814static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b798bec4 1815 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 1816{
ddc58f27 1817 struct page *head, *page;
2667f50e
SC
1818 int refs;
1819
b798bec4 1820 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
1821 return 0;
1822
7af75561
IW
1823 if (pud_devmap(orig)) {
1824 if (unlikely(flags & FOLL_LONGTERM))
1825 return 0;
a9b6de77 1826 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
7af75561 1827 }
b59f65fa 1828
2667f50e 1829 refs = 0;
d63206ee 1830 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 1831 do {
2667f50e
SC
1832 pages[*nr] = page;
1833 (*nr)++;
1834 page++;
1835 refs++;
1836 } while (addr += PAGE_SIZE, addr != end);
1837
8fde12ca
LT
1838 head = try_get_compound_head(pud_page(orig), refs);
1839 if (!head) {
2667f50e
SC
1840 *nr -= refs;
1841 return 0;
1842 }
1843
1844 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1845 *nr -= refs;
1846 while (refs--)
1847 put_page(head);
1848 return 0;
1849 }
1850
e9348053 1851 SetPageReferenced(head);
2667f50e
SC
1852 return 1;
1853}
1854
f30c59e9 1855static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 1856 unsigned long end, unsigned int flags,
f30c59e9
AK
1857 struct page **pages, int *nr)
1858{
1859 int refs;
ddc58f27 1860 struct page *head, *page;
f30c59e9 1861
b798bec4 1862 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
1863 return 0;
1864
b59f65fa 1865 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 1866 refs = 0;
d63206ee 1867 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 1868 do {
f30c59e9
AK
1869 pages[*nr] = page;
1870 (*nr)++;
1871 page++;
1872 refs++;
1873 } while (addr += PAGE_SIZE, addr != end);
1874
8fde12ca
LT
1875 head = try_get_compound_head(pgd_page(orig), refs);
1876 if (!head) {
f30c59e9
AK
1877 *nr -= refs;
1878 return 0;
1879 }
1880
1881 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1882 *nr -= refs;
1883 while (refs--)
1884 put_page(head);
1885 return 0;
1886 }
1887
e9348053 1888 SetPageReferenced(head);
f30c59e9
AK
1889 return 1;
1890}
1891
2667f50e 1892static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 1893 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1894{
1895 unsigned long next;
1896 pmd_t *pmdp;
1897
1898 pmdp = pmd_offset(&pud, addr);
1899 do {
38c5ce93 1900 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1901
1902 next = pmd_addr_end(addr, end);
84c3fc4e 1903 if (!pmd_present(pmd))
2667f50e
SC
1904 return 0;
1905
414fd080
YZ
1906 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1907 pmd_devmap(pmd))) {
2667f50e
SC
1908 /*
1909 * NUMA hinting faults need to be handled in the GUP
1910 * slowpath for accounting purposes and so that they
1911 * can be serialised against THP migration.
1912 */
8a0516ed 1913 if (pmd_protnone(pmd))
2667f50e
SC
1914 return 0;
1915
b798bec4 1916 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
1917 pages, nr))
1918 return 0;
1919
f30c59e9
AK
1920 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1921 /*
1922 * architecture have different format for hugetlbfs
1923 * pmd format and THP pmd format
1924 */
1925 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 1926 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 1927 return 0;
b798bec4 1928 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 1929 return 0;
2667f50e
SC
1930 } while (pmdp++, addr = next, addr != end);
1931
1932 return 1;
1933}
1934
c2febafc 1935static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 1936 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1937{
1938 unsigned long next;
1939 pud_t *pudp;
1940
c2febafc 1941 pudp = pud_offset(&p4d, addr);
2667f50e 1942 do {
e37c6982 1943 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1944
1945 next = pud_addr_end(addr, end);
1946 if (pud_none(pud))
1947 return 0;
f30c59e9 1948 if (unlikely(pud_huge(pud))) {
b798bec4 1949 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
1950 pages, nr))
1951 return 0;
1952 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1953 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 1954 PUD_SHIFT, next, flags, pages, nr))
2667f50e 1955 return 0;
b798bec4 1956 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
1957 return 0;
1958 } while (pudp++, addr = next, addr != end);
1959
1960 return 1;
1961}
1962
c2febafc 1963static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 1964 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
1965{
1966 unsigned long next;
1967 p4d_t *p4dp;
1968
1969 p4dp = p4d_offset(&pgd, addr);
1970 do {
1971 p4d_t p4d = READ_ONCE(*p4dp);
1972
1973 next = p4d_addr_end(addr, end);
1974 if (p4d_none(p4d))
1975 return 0;
1976 BUILD_BUG_ON(p4d_huge(p4d));
1977 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1978 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 1979 P4D_SHIFT, next, flags, pages, nr))
c2febafc 1980 return 0;
b798bec4 1981 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
1982 return 0;
1983 } while (p4dp++, addr = next, addr != end);
1984
1985 return 1;
1986}
1987
5b65c467 1988static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 1989 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
1990{
1991 unsigned long next;
1992 pgd_t *pgdp;
1993
1994 pgdp = pgd_offset(current->mm, addr);
1995 do {
1996 pgd_t pgd = READ_ONCE(*pgdp);
1997
1998 next = pgd_addr_end(addr, end);
1999 if (pgd_none(pgd))
2000 return;
2001 if (unlikely(pgd_huge(pgd))) {
b798bec4 2002 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2003 pages, nr))
2004 return;
2005 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2006 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2007 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2008 return;
b798bec4 2009 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2010 return;
2011 } while (pgdp++, addr = next, addr != end);
2012}
2013
2014#ifndef gup_fast_permitted
2015/*
2016 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2017 * we need to fall back to the slow version:
2018 */
ad8cfb9c 2019bool gup_fast_permitted(unsigned long start, int nr_pages)
5b65c467
KS
2020{
2021 unsigned long len, end;
2022
2023 len = (unsigned long) nr_pages << PAGE_SHIFT;
2024 end = start + len;
2025 return end >= start;
2026}
2027#endif
2028
2667f50e
SC
2029/*
2030 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2031 * the regular GUP.
2032 * Note a difference with get_user_pages_fast: this always returns the
2033 * number of pages pinned, 0 if no pages were pinned.
2667f50e
SC
2034 */
2035int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2036 struct page **pages)
2037{
d4faa402 2038 unsigned long len, end;
5b65c467 2039 unsigned long flags;
2667f50e
SC
2040 int nr = 0;
2041
2042 start &= PAGE_MASK;
2667f50e
SC
2043 len = (unsigned long) nr_pages << PAGE_SHIFT;
2044 end = start + len;
2045
96d4f267 2046 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2047 return 0;
2048
2049 /*
2050 * Disable interrupts. We use the nested form as we can already have
2051 * interrupts disabled by get_futex_key.
2052 *
2053 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2054 * freed from under us. See struct mmu_table_batch comments in
2055 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2056 *
2057 * We do not adopt an rcu_read_lock(.) here as we also want to
2058 * block IPIs that come from THPs splitting.
2059 */
2060
ad8cfb9c 2061 if (gup_fast_permitted(start, nr_pages)) {
5b65c467 2062 local_irq_save(flags);
b798bec4 2063 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
5b65c467
KS
2064 local_irq_restore(flags);
2065 }
2667f50e
SC
2066
2067 return nr;
2068}
2069
7af75561
IW
2070static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2071 unsigned int gup_flags, struct page **pages)
2072{
2073 int ret;
2074
2075 /*
2076 * FIXME: FOLL_LONGTERM does not work with
2077 * get_user_pages_unlocked() (see comments in that function)
2078 */
2079 if (gup_flags & FOLL_LONGTERM) {
2080 down_read(&current->mm->mmap_sem);
2081 ret = __gup_longterm_locked(current, current->mm,
2082 start, nr_pages,
2083 pages, NULL, gup_flags);
2084 up_read(&current->mm->mmap_sem);
2085 } else {
2086 ret = get_user_pages_unlocked(start, nr_pages,
2087 pages, gup_flags);
2088 }
2089
2090 return ret;
2091}
2092
2667f50e
SC
2093/**
2094 * get_user_pages_fast() - pin user pages in memory
2095 * @start: starting user address
2096 * @nr_pages: number of pages from start to pin
73b0140b 2097 * @gup_flags: flags modifying pin behaviour
2667f50e
SC
2098 * @pages: array that receives pointers to the pages pinned.
2099 * Should be at least nr_pages long.
2100 *
2101 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2102 * If not successful, it will fall back to taking the lock and
2103 * calling get_user_pages().
2104 *
2105 * Returns number of pages pinned. This may be fewer than the number
2106 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2107 * were pinned, returns -errno.
2108 */
73b0140b
IW
2109int get_user_pages_fast(unsigned long start, int nr_pages,
2110 unsigned int gup_flags, struct page **pages)
2667f50e 2111{
5b65c467 2112 unsigned long addr, len, end;
73e10a61 2113 int nr = 0, ret = 0;
2667f50e
SC
2114
2115 start &= PAGE_MASK;
5b65c467
KS
2116 addr = start;
2117 len = (unsigned long) nr_pages << PAGE_SHIFT;
2118 end = start + len;
2119
c61611f7
MT
2120 if (nr_pages <= 0)
2121 return 0;
2122
96d4f267 2123 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2124 return -EFAULT;
73e10a61 2125
ad8cfb9c 2126 if (gup_fast_permitted(start, nr_pages)) {
5b65c467 2127 local_irq_disable();
73b0140b 2128 gup_pgd_range(addr, end, gup_flags, pages, &nr);
5b65c467 2129 local_irq_enable();
73e10a61
KS
2130 ret = nr;
2131 }
2667f50e
SC
2132
2133 if (nr < nr_pages) {
2134 /* Try to get the remaining pages with get_user_pages */
2135 start += nr << PAGE_SHIFT;
2136 pages += nr;
2137
7af75561
IW
2138 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2139 gup_flags, pages);
2667f50e
SC
2140
2141 /* Have to be a bit careful with return values */
2142 if (nr > 0) {
2143 if (ret < 0)
2144 ret = nr;
2145 else
2146 ret += nr;
2147 }
2148 }
2149
2150 return ret;
2151}
2152
e585513b 2153#endif /* CONFIG_HAVE_GENERIC_GUP */