More helpers
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
6a46079c
AK
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
1da177e4
LT
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 116 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
117 */
118void __remove_from_page_cache(struct page *page)
119{
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
347ce434 125 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
45426812 128 BUG_ON(page_mapped(page));
3a692790
LT
129
130 /*
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
133 *
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
136 */
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 }
1da177e4
LT
141}
142
143void remove_from_page_cache(struct page *page)
144{
145 struct address_space *mapping = page->mapping;
146
cd7619d6 147 BUG_ON(!PageLocked(page));
1da177e4 148
19fd6231 149 spin_lock_irq(&mapping->tree_lock);
1da177e4 150 __remove_from_page_cache(page);
19fd6231 151 spin_unlock_irq(&mapping->tree_lock);
e767e056 152 mem_cgroup_uncharge_cache_page(page);
1da177e4
LT
153}
154
a3b3d134 155static int sync_page(void *word)
1da177e4
LT
156{
157 struct address_space *mapping;
158 struct page *page;
159
07808b74 160 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
161
162 /*
dd1d5afc
WLII
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 178 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
181 * -- wli
1da177e4
LT
182 */
183 smp_mb();
184 mapping = page_mapping(page);
185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 mapping->a_ops->sync_page(page);
3001eabb 187
a3b3d134
JA
188 if (!in_aio(current))
189 io_schedule();
190
1da177e4
LT
191 return 0;
192}
193
a3b3d134 194static int sync_page_killable(void *word)
3001eabb 195{
a3b3d134 196 int ret = sync_page(word);
3001eabb 197
a3b3d134
JA
198 if (!ret && fatal_signal_pending(current))
199 ret = -EINTR;
3001eabb 200
a3b3d134 201 return ret;
2687a356
MW
202}
203
1da177e4 204/**
485bb99b 205 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
206 * @mapping: address space structure to write
207 * @start: offset in bytes where the range starts
469eb4d0 208 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 209 * @sync_mode: enable synchronous operation
1da177e4 210 *
485bb99b
RD
211 * Start writeback against all of a mapping's dirty pages that lie
212 * within the byte offsets <start, end> inclusive.
213 *
1da177e4 214 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 215 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
216 * these two operations is that if a dirty page/buffer is encountered, it must
217 * be waited upon, and not just skipped over.
218 */
ebcf28e1
AM
219int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220 loff_t end, int sync_mode)
1da177e4
LT
221{
222 int ret;
223 struct writeback_control wbc = {
224 .sync_mode = sync_mode,
05fe478d 225 .nr_to_write = LONG_MAX,
111ebb6e
OH
226 .range_start = start,
227 .range_end = end,
1da177e4
LT
228 };
229
230 if (!mapping_cap_writeback_dirty(mapping))
231 return 0;
232
233 ret = do_writepages(mapping, &wbc);
234 return ret;
235}
236
237static inline int __filemap_fdatawrite(struct address_space *mapping,
238 int sync_mode)
239{
111ebb6e 240 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
241}
242
243int filemap_fdatawrite(struct address_space *mapping)
244{
245 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
246}
247EXPORT_SYMBOL(filemap_fdatawrite);
248
f4c0a0fd 249int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 250 loff_t end)
1da177e4
LT
251{
252 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
253}
f4c0a0fd 254EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 255
485bb99b
RD
256/**
257 * filemap_flush - mostly a non-blocking flush
258 * @mapping: target address_space
259 *
1da177e4
LT
260 * This is a mostly non-blocking flush. Not suitable for data-integrity
261 * purposes - I/O may not be started against all dirty pages.
262 */
263int filemap_flush(struct address_space *mapping)
264{
265 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
266}
267EXPORT_SYMBOL(filemap_flush);
268
485bb99b
RD
269/**
270 * wait_on_page_writeback_range - wait for writeback to complete
271 * @mapping: target address_space
272 * @start: beginning page index
273 * @end: ending page index
274 *
1da177e4
LT
275 * Wait for writeback to complete against pages indexed by start->end
276 * inclusive
277 */
ebcf28e1 278int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
279 pgoff_t start, pgoff_t end)
280{
281 struct pagevec pvec;
282 int nr_pages;
283 int ret = 0;
284 pgoff_t index;
285
286 if (end < start)
287 return 0;
288
289 pagevec_init(&pvec, 0);
290 index = start;
291 while ((index <= end) &&
292 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
293 PAGECACHE_TAG_WRITEBACK,
294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
295 unsigned i;
296
297 for (i = 0; i < nr_pages; i++) {
298 struct page *page = pvec.pages[i];
299
300 /* until radix tree lookup accepts end_index */
301 if (page->index > end)
302 continue;
303
304 wait_on_page_writeback(page);
305 if (PageError(page))
306 ret = -EIO;
307 }
308 pagevec_release(&pvec);
309 cond_resched();
310 }
311
312 /* Check for outstanding write errors */
313 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
314 ret = -ENOSPC;
315 if (test_and_clear_bit(AS_EIO, &mapping->flags))
316 ret = -EIO;
317
318 return ret;
319}
320
d3bccb6f
JK
321/**
322 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
323 * @mapping: address space structure to wait for
324 * @start: offset in bytes where the range starts
325 * @end: offset in bytes where the range ends (inclusive)
326 *
327 * Walk the list of under-writeback pages of the given address space
328 * in the given range and wait for all of them.
329 *
330 * This is just a simple wrapper so that callers don't have to convert offsets
331 * to page indexes themselves
332 */
333int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
334 loff_t end)
335{
336 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
337 end >> PAGE_CACHE_SHIFT);
338}
339EXPORT_SYMBOL(filemap_fdatawait_range);
340
1da177e4 341/**
485bb99b 342 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 343 * @mapping: address space structure to wait for
485bb99b
RD
344 *
345 * Walk the list of under-writeback pages of the given address space
346 * and wait for all of them.
1da177e4
LT
347 */
348int filemap_fdatawait(struct address_space *mapping)
349{
350 loff_t i_size = i_size_read(mapping->host);
351
352 if (i_size == 0)
353 return 0;
354
355 return wait_on_page_writeback_range(mapping, 0,
356 (i_size - 1) >> PAGE_CACHE_SHIFT);
357}
358EXPORT_SYMBOL(filemap_fdatawait);
359
360int filemap_write_and_wait(struct address_space *mapping)
361{
28fd1298 362 int err = 0;
1da177e4
LT
363
364 if (mapping->nrpages) {
28fd1298
OH
365 err = filemap_fdatawrite(mapping);
366 /*
367 * Even if the above returned error, the pages may be
368 * written partially (e.g. -ENOSPC), so we wait for it.
369 * But the -EIO is special case, it may indicate the worst
370 * thing (e.g. bug) happened, so we avoid waiting for it.
371 */
372 if (err != -EIO) {
373 int err2 = filemap_fdatawait(mapping);
374 if (!err)
375 err = err2;
376 }
1da177e4 377 }
28fd1298 378 return err;
1da177e4 379}
28fd1298 380EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 381
485bb99b
RD
382/**
383 * filemap_write_and_wait_range - write out & wait on a file range
384 * @mapping: the address_space for the pages
385 * @lstart: offset in bytes where the range starts
386 * @lend: offset in bytes where the range ends (inclusive)
387 *
469eb4d0
AM
388 * Write out and wait upon file offsets lstart->lend, inclusive.
389 *
390 * Note that `lend' is inclusive (describes the last byte to be written) so
391 * that this function can be used to write to the very end-of-file (end = -1).
392 */
1da177e4
LT
393int filemap_write_and_wait_range(struct address_space *mapping,
394 loff_t lstart, loff_t lend)
395{
28fd1298 396 int err = 0;
1da177e4
LT
397
398 if (mapping->nrpages) {
28fd1298
OH
399 err = __filemap_fdatawrite_range(mapping, lstart, lend,
400 WB_SYNC_ALL);
401 /* See comment of filemap_write_and_wait() */
402 if (err != -EIO) {
403 int err2 = wait_on_page_writeback_range(mapping,
404 lstart >> PAGE_CACHE_SHIFT,
405 lend >> PAGE_CACHE_SHIFT);
406 if (!err)
407 err = err2;
408 }
1da177e4 409 }
28fd1298 410 return err;
1da177e4 411}
f6995585 412EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 413
485bb99b 414/**
e286781d 415 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
416 * @page: page to add
417 * @mapping: the page's address_space
418 * @offset: page index
419 * @gfp_mask: page allocation mode
420 *
e286781d 421 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
422 * This function does not add the page to the LRU. The caller must do that.
423 */
e286781d 424int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 425 pgoff_t offset, gfp_t gfp_mask)
1da177e4 426{
e286781d
NP
427 int error;
428
429 VM_BUG_ON(!PageLocked(page));
430
431 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 432 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
433 if (error)
434 goto out;
1da177e4 435
35c754d7 436 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 437 if (error == 0) {
e286781d
NP
438 page_cache_get(page);
439 page->mapping = mapping;
440 page->index = offset;
441
19fd6231 442 spin_lock_irq(&mapping->tree_lock);
1da177e4 443 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 444 if (likely(!error)) {
1da177e4 445 mapping->nrpages++;
347ce434 446 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
447 if (PageSwapBacked(page))
448 __inc_zone_page_state(page, NR_SHMEM);
e767e056 449 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
450 } else {
451 page->mapping = NULL;
e767e056 452 spin_unlock_irq(&mapping->tree_lock);
69029cd5 453 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
454 page_cache_release(page);
455 }
1da177e4 456 radix_tree_preload_end();
35c754d7 457 } else
69029cd5 458 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 459out:
1da177e4
LT
460 return error;
461}
e286781d 462EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
463
464int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 465 pgoff_t offset, gfp_t gfp_mask)
1da177e4 466{
4f98a2fe
RR
467 int ret;
468
469 /*
470 * Splice_read and readahead add shmem/tmpfs pages into the page cache
471 * before shmem_readpage has a chance to mark them as SwapBacked: they
472 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
473 * (called in add_to_page_cache) needs to know where they're going too.
474 */
475 if (mapping_cap_swap_backed(mapping))
476 SetPageSwapBacked(page);
477
478 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
479 if (ret == 0) {
480 if (page_is_file_cache(page))
481 lru_cache_add_file(page);
482 else
483 lru_cache_add_active_anon(page);
484 }
1da177e4
LT
485 return ret;
486}
18bc0bbd 487EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 488
44110fe3 489#ifdef CONFIG_NUMA
2ae88149 490struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
491{
492 if (cpuset_do_page_mem_spread()) {
493 int n = cpuset_mem_spread_node();
6484eb3e 494 return alloc_pages_exact_node(n, gfp, 0);
44110fe3 495 }
2ae88149 496 return alloc_pages(gfp, 0);
44110fe3 497}
2ae88149 498EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
499#endif
500
db37648c
NP
501static int __sleep_on_page_lock(void *word)
502{
503 io_schedule();
504 return 0;
505}
506
1da177e4
LT
507/*
508 * In order to wait for pages to become available there must be
509 * waitqueues associated with pages. By using a hash table of
510 * waitqueues where the bucket discipline is to maintain all
511 * waiters on the same queue and wake all when any of the pages
512 * become available, and for the woken contexts to check to be
513 * sure the appropriate page became available, this saves space
514 * at a cost of "thundering herd" phenomena during rare hash
515 * collisions.
516 */
517static wait_queue_head_t *page_waitqueue(struct page *page)
518{
519 const struct zone *zone = page_zone(page);
520
521 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
522}
523
524static inline void wake_up_page(struct page *page, int bit)
525{
526 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
527}
528
f80e69e7
JA
529int wait_on_page_bit_async(struct page *page, int bit_nr,
530 struct wait_bit_queue *wait)
3001eabb
JA
531{
532 int ret = 0;
533
534 if (test_bit(bit_nr, &page->flags)) {
f80e69e7 535 DEFINE_WAIT_BIT(stack_wait, &page->flags, bit_nr);
3001eabb
JA
536 int (*fn)(void *) = sync_page;
537
f80e69e7
JA
538 if (!wait) {
539 fn = sync_page;
540 wait = &stack_wait;
541 } else {
a3b3d134 542 fn = sync_page_killable;
f80e69e7
JA
543 wait->key.flags = &page->flags;
544 wait->key.bit_nr = bit_nr;
3001eabb
JA
545 }
546
f80e69e7 547 ret = __wait_on_bit(page_waitqueue(page), wait, fn,
3001eabb
JA
548 TASK_UNINTERRUPTIBLE);
549 }
550
551 return ret;
552}
f80e69e7 553EXPORT_SYMBOL(wait_on_page_bit_async);
3001eabb 554
920c7a5d 555void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4 556{
f80e69e7 557 wait_on_page_bit_async(page, bit_nr, NULL);
1da177e4
LT
558}
559EXPORT_SYMBOL(wait_on_page_bit);
560
3001eabb 561
385e1ca5
DH
562/**
563 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
564 * @page: Page defining the wait queue of interest
565 * @waiter: Waiter to add to the queue
385e1ca5
DH
566 *
567 * Add an arbitrary @waiter to the wait queue for the nominated @page.
568 */
569void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
570{
571 wait_queue_head_t *q = page_waitqueue(page);
572 unsigned long flags;
573
574 spin_lock_irqsave(&q->lock, flags);
575 __add_wait_queue(q, waiter);
576 spin_unlock_irqrestore(&q->lock, flags);
577}
578EXPORT_SYMBOL_GPL(add_page_wait_queue);
579
1da177e4 580/**
485bb99b 581 * unlock_page - unlock a locked page
1da177e4
LT
582 * @page: the page
583 *
584 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
585 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
586 * mechananism between PageLocked pages and PageWriteback pages is shared.
587 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
588 *
8413ac9d
NP
589 * The mb is necessary to enforce ordering between the clear_bit and the read
590 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 591 */
920c7a5d 592void unlock_page(struct page *page)
1da177e4 593{
8413ac9d
NP
594 VM_BUG_ON(!PageLocked(page));
595 clear_bit_unlock(PG_locked, &page->flags);
596 smp_mb__after_clear_bit();
1da177e4
LT
597 wake_up_page(page, PG_locked);
598}
599EXPORT_SYMBOL(unlock_page);
600
485bb99b
RD
601/**
602 * end_page_writeback - end writeback against a page
603 * @page: the page
1da177e4
LT
604 */
605void end_page_writeback(struct page *page)
606{
ac6aadb2
MS
607 if (TestClearPageReclaim(page))
608 rotate_reclaimable_page(page);
609
610 if (!test_clear_page_writeback(page))
611 BUG();
612
1da177e4
LT
613 smp_mb__after_clear_bit();
614 wake_up_page(page, PG_writeback);
615}
616EXPORT_SYMBOL(end_page_writeback);
617
485bb99b 618/**
0dea3635 619 * __lock_page_async - get a lock on the page, assuming we need to sleep to get it
485bb99b 620 * @page: the page to lock
1da177e4 621 *
485bb99b 622 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
623 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
624 * chances are that on the second loop, the block layer's plug list is empty,
625 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
626 */
a3b3d134 627int __lock_page_async(struct page *page, struct wait_bit_queue *wq)
2687a356 628{
81433ee6 629 int (*fn)(void *) = sync_page;
0dea3635 630
81433ee6 631 if (!is_sync_wait_bit_queue(wq))
0dea3635 632 fn = sync_page_killable;
2687a356 633
0dea3635 634 return __wait_on_bit_lock(page_waitqueue(page), wq, fn,
a3b3d134
JA
635 TASK_UNINTERRUPTIBLE);
636 }
637EXPORT_SYMBOL(__lock_page_async);
2687a356 638
7682486b
RD
639/**
640 * __lock_page_nosync - get a lock on the page, without calling sync_page()
641 * @page: the page to lock
642 *
db37648c
NP
643 * Variant of lock_page that does not require the caller to hold a reference
644 * on the page's mapping.
645 */
920c7a5d 646void __lock_page_nosync(struct page *page)
db37648c
NP
647{
648 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
649 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
650 TASK_UNINTERRUPTIBLE);
651}
652
485bb99b
RD
653/**
654 * find_get_page - find and get a page reference
655 * @mapping: the address_space to search
656 * @offset: the page index
657 *
da6052f7
NP
658 * Is there a pagecache struct page at the given (mapping, offset) tuple?
659 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 660 */
a60637c8 661struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 662{
a60637c8 663 void **pagep;
1da177e4
LT
664 struct page *page;
665
a60637c8
NP
666 rcu_read_lock();
667repeat:
668 page = NULL;
669 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
670 if (pagep) {
671 page = radix_tree_deref_slot(pagep);
672 if (unlikely(!page || page == RADIX_TREE_RETRY))
673 goto repeat;
674
675 if (!page_cache_get_speculative(page))
676 goto repeat;
677
678 /*
679 * Has the page moved?
680 * This is part of the lockless pagecache protocol. See
681 * include/linux/pagemap.h for details.
682 */
683 if (unlikely(page != *pagep)) {
684 page_cache_release(page);
685 goto repeat;
686 }
687 }
688 rcu_read_unlock();
689
1da177e4
LT
690 return page;
691}
1da177e4
LT
692EXPORT_SYMBOL(find_get_page);
693
1da177e4
LT
694/**
695 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
696 * @mapping: the address_space to search
697 * @offset: the page index
1da177e4
LT
698 *
699 * Locates the desired pagecache page, locks it, increments its reference
700 * count and returns its address.
701 *
702 * Returns zero if the page was not present. find_lock_page() may sleep.
703 */
a60637c8 704struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
705{
706 struct page *page;
707
1da177e4 708repeat:
a60637c8 709 page = find_get_page(mapping, offset);
1da177e4 710 if (page) {
a60637c8
NP
711 lock_page(page);
712 /* Has the page been truncated? */
713 if (unlikely(page->mapping != mapping)) {
714 unlock_page(page);
715 page_cache_release(page);
716 goto repeat;
1da177e4 717 }
a60637c8 718 VM_BUG_ON(page->index != offset);
1da177e4 719 }
1da177e4
LT
720 return page;
721}
1da177e4
LT
722EXPORT_SYMBOL(find_lock_page);
723
724/**
725 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
726 * @mapping: the page's address_space
727 * @index: the page's index into the mapping
728 * @gfp_mask: page allocation mode
1da177e4
LT
729 *
730 * Locates a page in the pagecache. If the page is not present, a new page
731 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
732 * LRU list. The returned page is locked and has its reference count
733 * incremented.
734 *
735 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
736 * allocation!
737 *
738 * find_or_create_page() returns the desired page's address, or zero on
739 * memory exhaustion.
740 */
741struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 742 pgoff_t index, gfp_t gfp_mask)
1da177e4 743{
eb2be189 744 struct page *page;
1da177e4
LT
745 int err;
746repeat:
747 page = find_lock_page(mapping, index);
748 if (!page) {
eb2be189
NP
749 page = __page_cache_alloc(gfp_mask);
750 if (!page)
751 return NULL;
67d58ac4
NP
752 /*
753 * We want a regular kernel memory (not highmem or DMA etc)
754 * allocation for the radix tree nodes, but we need to honour
755 * the context-specific requirements the caller has asked for.
756 * GFP_RECLAIM_MASK collects those requirements.
757 */
758 err = add_to_page_cache_lru(page, mapping, index,
759 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
760 if (unlikely(err)) {
761 page_cache_release(page);
762 page = NULL;
763 if (err == -EEXIST)
764 goto repeat;
1da177e4 765 }
1da177e4 766 }
1da177e4
LT
767 return page;
768}
1da177e4
LT
769EXPORT_SYMBOL(find_or_create_page);
770
771/**
772 * find_get_pages - gang pagecache lookup
773 * @mapping: The address_space to search
774 * @start: The starting page index
775 * @nr_pages: The maximum number of pages
776 * @pages: Where the resulting pages are placed
777 *
778 * find_get_pages() will search for and return a group of up to
779 * @nr_pages pages in the mapping. The pages are placed at @pages.
780 * find_get_pages() takes a reference against the returned pages.
781 *
782 * The search returns a group of mapping-contiguous pages with ascending
783 * indexes. There may be holes in the indices due to not-present pages.
784 *
785 * find_get_pages() returns the number of pages which were found.
786 */
787unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
788 unsigned int nr_pages, struct page **pages)
789{
790 unsigned int i;
791 unsigned int ret;
a60637c8
NP
792 unsigned int nr_found;
793
794 rcu_read_lock();
795restart:
796 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
797 (void ***)pages, start, nr_pages);
798 ret = 0;
799 for (i = 0; i < nr_found; i++) {
800 struct page *page;
801repeat:
802 page = radix_tree_deref_slot((void **)pages[i]);
803 if (unlikely(!page))
804 continue;
805 /*
806 * this can only trigger if nr_found == 1, making livelock
807 * a non issue.
808 */
809 if (unlikely(page == RADIX_TREE_RETRY))
810 goto restart;
811
812 if (!page_cache_get_speculative(page))
813 goto repeat;
814
815 /* Has the page moved? */
816 if (unlikely(page != *((void **)pages[i]))) {
817 page_cache_release(page);
818 goto repeat;
819 }
1da177e4 820
a60637c8
NP
821 pages[ret] = page;
822 ret++;
823 }
824 rcu_read_unlock();
1da177e4
LT
825 return ret;
826}
827
ebf43500
JA
828/**
829 * find_get_pages_contig - gang contiguous pagecache lookup
830 * @mapping: The address_space to search
831 * @index: The starting page index
832 * @nr_pages: The maximum number of pages
833 * @pages: Where the resulting pages are placed
834 *
835 * find_get_pages_contig() works exactly like find_get_pages(), except
836 * that the returned number of pages are guaranteed to be contiguous.
837 *
838 * find_get_pages_contig() returns the number of pages which were found.
839 */
840unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
841 unsigned int nr_pages, struct page **pages)
842{
843 unsigned int i;
844 unsigned int ret;
a60637c8
NP
845 unsigned int nr_found;
846
847 rcu_read_lock();
848restart:
849 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
850 (void ***)pages, index, nr_pages);
851 ret = 0;
852 for (i = 0; i < nr_found; i++) {
853 struct page *page;
854repeat:
855 page = radix_tree_deref_slot((void **)pages[i]);
856 if (unlikely(!page))
857 continue;
858 /*
859 * this can only trigger if nr_found == 1, making livelock
860 * a non issue.
861 */
862 if (unlikely(page == RADIX_TREE_RETRY))
863 goto restart;
ebf43500 864
a60637c8 865 if (page->mapping == NULL || page->index != index)
ebf43500
JA
866 break;
867
a60637c8
NP
868 if (!page_cache_get_speculative(page))
869 goto repeat;
870
871 /* Has the page moved? */
872 if (unlikely(page != *((void **)pages[i]))) {
873 page_cache_release(page);
874 goto repeat;
875 }
876
877 pages[ret] = page;
878 ret++;
ebf43500
JA
879 index++;
880 }
a60637c8
NP
881 rcu_read_unlock();
882 return ret;
ebf43500 883}
ef71c15c 884EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 885
485bb99b
RD
886/**
887 * find_get_pages_tag - find and return pages that match @tag
888 * @mapping: the address_space to search
889 * @index: the starting page index
890 * @tag: the tag index
891 * @nr_pages: the maximum number of pages
892 * @pages: where the resulting pages are placed
893 *
1da177e4 894 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 895 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
896 */
897unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
898 int tag, unsigned int nr_pages, struct page **pages)
899{
900 unsigned int i;
901 unsigned int ret;
a60637c8
NP
902 unsigned int nr_found;
903
904 rcu_read_lock();
905restart:
906 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
907 (void ***)pages, *index, nr_pages, tag);
908 ret = 0;
909 for (i = 0; i < nr_found; i++) {
910 struct page *page;
911repeat:
912 page = radix_tree_deref_slot((void **)pages[i]);
913 if (unlikely(!page))
914 continue;
915 /*
916 * this can only trigger if nr_found == 1, making livelock
917 * a non issue.
918 */
919 if (unlikely(page == RADIX_TREE_RETRY))
920 goto restart;
921
922 if (!page_cache_get_speculative(page))
923 goto repeat;
924
925 /* Has the page moved? */
926 if (unlikely(page != *((void **)pages[i]))) {
927 page_cache_release(page);
928 goto repeat;
929 }
930
931 pages[ret] = page;
932 ret++;
933 }
934 rcu_read_unlock();
1da177e4 935
1da177e4
LT
936 if (ret)
937 *index = pages[ret - 1]->index + 1;
a60637c8 938
1da177e4
LT
939 return ret;
940}
ef71c15c 941EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 942
485bb99b
RD
943/**
944 * grab_cache_page_nowait - returns locked page at given index in given cache
945 * @mapping: target address_space
946 * @index: the page index
947 *
72fd4a35 948 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
949 * This is intended for speculative data generators, where the data can
950 * be regenerated if the page couldn't be grabbed. This routine should
951 * be safe to call while holding the lock for another page.
952 *
953 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
954 * and deadlock against the caller's locked page.
955 */
956struct page *
57f6b96c 957grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
958{
959 struct page *page = find_get_page(mapping, index);
1da177e4
LT
960
961 if (page) {
529ae9aa 962 if (trylock_page(page))
1da177e4
LT
963 return page;
964 page_cache_release(page);
965 return NULL;
966 }
2ae88149 967 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 968 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
969 page_cache_release(page);
970 page = NULL;
971 }
972 return page;
973}
1da177e4
LT
974EXPORT_SYMBOL(grab_cache_page_nowait);
975
76d42bd9
WF
976/*
977 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
978 * a _large_ part of the i/o request. Imagine the worst scenario:
979 *
980 * ---R__________________________________________B__________
981 * ^ reading here ^ bad block(assume 4k)
982 *
983 * read(R) => miss => readahead(R...B) => media error => frustrating retries
984 * => failing the whole request => read(R) => read(R+1) =>
985 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
986 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
987 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
988 *
989 * It is going insane. Fix it by quickly scaling down the readahead size.
990 */
991static void shrink_readahead_size_eio(struct file *filp,
992 struct file_ra_state *ra)
993{
76d42bd9 994 ra->ra_pages /= 4;
76d42bd9
WF
995}
996
485bb99b 997/**
36e78914 998 * do_generic_file_read - generic file read routine
485bb99b
RD
999 * @filp: the file to read
1000 * @ppos: current file position
1001 * @desc: read_descriptor
1002 * @actor: read method
1003 *
1da177e4 1004 * This is a generic file read routine, and uses the
485bb99b 1005 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1006 *
1007 * This is really ugly. But the goto's actually try to clarify some
1008 * of the logic when it comes to error handling etc.
1da177e4 1009 */
36e78914
CH
1010static void do_generic_file_read(struct file *filp, loff_t *ppos,
1011 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1012{
36e78914 1013 struct address_space *mapping = filp->f_mapping;
1da177e4 1014 struct inode *inode = mapping->host;
36e78914 1015 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1016 pgoff_t index;
1017 pgoff_t last_index;
1018 pgoff_t prev_index;
1019 unsigned long offset; /* offset into pagecache page */
ec0f1637 1020 unsigned int prev_offset;
1da177e4 1021 int error;
1da177e4 1022
1da177e4 1023 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1024 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1025 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1026 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1027 offset = *ppos & ~PAGE_CACHE_MASK;
1028
1da177e4
LT
1029 for (;;) {
1030 struct page *page;
57f6b96c 1031 pgoff_t end_index;
a32ea1e1 1032 loff_t isize;
1da177e4
LT
1033 unsigned long nr, ret;
1034
1da177e4 1035 cond_resched();
1da177e4
LT
1036find_page:
1037 page = find_get_page(mapping, index);
3ea89ee8 1038 if (!page) {
cf914a7d 1039 page_cache_sync_readahead(mapping,
7ff81078 1040 ra, filp,
3ea89ee8
FW
1041 index, last_index - index);
1042 page = find_get_page(mapping, index);
1043 if (unlikely(page == NULL))
1044 goto no_cached_page;
1045 }
1046 if (PageReadahead(page)) {
cf914a7d 1047 page_cache_async_readahead(mapping,
7ff81078 1048 ra, filp, page,
3ea89ee8 1049 index, last_index - index);
1da177e4 1050 }
8ab22b9a
HH
1051 if (!PageUptodate(page)) {
1052 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1053 !mapping->a_ops->is_partially_uptodate)
1054 goto page_not_up_to_date;
529ae9aa 1055 if (!trylock_page(page))
8ab22b9a
HH
1056 goto page_not_up_to_date;
1057 if (!mapping->a_ops->is_partially_uptodate(page,
1058 desc, offset))
1059 goto page_not_up_to_date_locked;
1060 unlock_page(page);
1061 }
1da177e4 1062page_ok:
a32ea1e1
N
1063 /*
1064 * i_size must be checked after we know the page is Uptodate.
1065 *
1066 * Checking i_size after the check allows us to calculate
1067 * the correct value for "nr", which means the zero-filled
1068 * part of the page is not copied back to userspace (unless
1069 * another truncate extends the file - this is desired though).
1070 */
1071
1072 isize = i_size_read(inode);
1073 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1074 if (unlikely(!isize || index > end_index)) {
1075 page_cache_release(page);
1076 goto out;
1077 }
1078
1079 /* nr is the maximum number of bytes to copy from this page */
1080 nr = PAGE_CACHE_SIZE;
1081 if (index == end_index) {
1082 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1083 if (nr <= offset) {
1084 page_cache_release(page);
1085 goto out;
1086 }
1087 }
1088 nr = nr - offset;
1da177e4
LT
1089
1090 /* If users can be writing to this page using arbitrary
1091 * virtual addresses, take care about potential aliasing
1092 * before reading the page on the kernel side.
1093 */
1094 if (mapping_writably_mapped(mapping))
1095 flush_dcache_page(page);
1096
1097 /*
ec0f1637
JK
1098 * When a sequential read accesses a page several times,
1099 * only mark it as accessed the first time.
1da177e4 1100 */
ec0f1637 1101 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1102 mark_page_accessed(page);
1103 prev_index = index;
1104
1105 /*
1106 * Ok, we have the page, and it's up-to-date, so
1107 * now we can copy it to user space...
1108 *
1109 * The actor routine returns how many bytes were actually used..
1110 * NOTE! This may not be the same as how much of a user buffer
1111 * we filled up (we may be padding etc), so we can only update
1112 * "pos" here (the actor routine has to update the user buffer
1113 * pointers and the remaining count).
1114 */
1115 ret = actor(desc, page, offset, nr);
1116 offset += ret;
1117 index += offset >> PAGE_CACHE_SHIFT;
1118 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1119 prev_offset = offset;
1da177e4
LT
1120
1121 page_cache_release(page);
1122 if (ret == nr && desc->count)
1123 continue;
1124 goto out;
1125
1126page_not_up_to_date:
1127 /* Get exclusive access to the page ... */
81433ee6 1128 error = lock_page_async(page, current->io_wait);
85462323
ON
1129 if (unlikely(error))
1130 goto readpage_error;
1da177e4 1131
8ab22b9a 1132page_not_up_to_date_locked:
da6052f7 1133 /* Did it get truncated before we got the lock? */
1da177e4
LT
1134 if (!page->mapping) {
1135 unlock_page(page);
1136 page_cache_release(page);
1137 continue;
1138 }
1139
1140 /* Did somebody else fill it already? */
1141 if (PageUptodate(page)) {
1142 unlock_page(page);
1143 goto page_ok;
1144 }
1145
1146readpage:
1147 /* Start the actual read. The read will unlock the page. */
1148 error = mapping->a_ops->readpage(filp, page);
1149
994fc28c
ZB
1150 if (unlikely(error)) {
1151 if (error == AOP_TRUNCATED_PAGE) {
1152 page_cache_release(page);
1153 goto find_page;
1154 }
1da177e4 1155 goto readpage_error;
994fc28c 1156 }
1da177e4
LT
1157
1158 if (!PageUptodate(page)) {
81433ee6 1159 error = lock_page_async(page, current->io_wait);
85462323
ON
1160 if (unlikely(error))
1161 goto readpage_error;
1da177e4
LT
1162 if (!PageUptodate(page)) {
1163 if (page->mapping == NULL) {
1164 /*
1165 * invalidate_inode_pages got it
1166 */
1167 unlock_page(page);
1168 page_cache_release(page);
1169 goto find_page;
1170 }
1171 unlock_page(page);
7ff81078 1172 shrink_readahead_size_eio(filp, ra);
85462323
ON
1173 error = -EIO;
1174 goto readpage_error;
1da177e4
LT
1175 }
1176 unlock_page(page);
1177 }
1178
1da177e4
LT
1179 goto page_ok;
1180
1181readpage_error:
1182 /* UHHUH! A synchronous read error occurred. Report it */
1183 desc->error = error;
1184 page_cache_release(page);
1185 goto out;
1186
1187no_cached_page:
1188 /*
1189 * Ok, it wasn't cached, so we need to create a new
1190 * page..
1191 */
eb2be189
NP
1192 page = page_cache_alloc_cold(mapping);
1193 if (!page) {
1194 desc->error = -ENOMEM;
1195 goto out;
1da177e4 1196 }
eb2be189 1197 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1198 index, GFP_KERNEL);
1199 if (error) {
eb2be189 1200 page_cache_release(page);
1da177e4
LT
1201 if (error == -EEXIST)
1202 goto find_page;
1203 desc->error = error;
1204 goto out;
1205 }
1da177e4
LT
1206 goto readpage;
1207 }
1208
1209out:
7ff81078
FW
1210 ra->prev_pos = prev_index;
1211 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1212 ra->prev_pos |= prev_offset;
1da177e4 1213
f4e6b498 1214 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1215 file_accessed(filp);
1da177e4 1216}
1da177e4
LT
1217
1218int file_read_actor(read_descriptor_t *desc, struct page *page,
1219 unsigned long offset, unsigned long size)
1220{
1221 char *kaddr;
1222 unsigned long left, count = desc->count;
1223
1224 if (size > count)
1225 size = count;
1226
1227 /*
1228 * Faults on the destination of a read are common, so do it before
1229 * taking the kmap.
1230 */
1231 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1232 kaddr = kmap_atomic(page, KM_USER0);
1233 left = __copy_to_user_inatomic(desc->arg.buf,
1234 kaddr + offset, size);
1235 kunmap_atomic(kaddr, KM_USER0);
1236 if (left == 0)
1237 goto success;
1238 }
1239
1240 /* Do it the slow way */
1241 kaddr = kmap(page);
1242 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1243 kunmap(page);
1244
1245 if (left) {
1246 size -= left;
1247 desc->error = -EFAULT;
1248 }
1249success:
1250 desc->count = count - size;
1251 desc->written += size;
1252 desc->arg.buf += size;
1253 return size;
1254}
1255
0ceb3314
DM
1256/*
1257 * Performs necessary checks before doing a write
1258 * @iov: io vector request
1259 * @nr_segs: number of segments in the iovec
1260 * @count: number of bytes to write
1261 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1262 *
1263 * Adjust number of segments and amount of bytes to write (nr_segs should be
1264 * properly initialized first). Returns appropriate error code that caller
1265 * should return or zero in case that write should be allowed.
1266 */
1267int generic_segment_checks(const struct iovec *iov,
1268 unsigned long *nr_segs, size_t *count, int access_flags)
1269{
1270 unsigned long seg;
1271 size_t cnt = 0;
1272 for (seg = 0; seg < *nr_segs; seg++) {
1273 const struct iovec *iv = &iov[seg];
1274
1275 /*
1276 * If any segment has a negative length, or the cumulative
1277 * length ever wraps negative then return -EINVAL.
1278 */
1279 cnt += iv->iov_len;
1280 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1281 return -EINVAL;
1282 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1283 continue;
1284 if (seg == 0)
1285 return -EFAULT;
1286 *nr_segs = seg;
1287 cnt -= iv->iov_len; /* This segment is no good */
1288 break;
1289 }
1290 *count = cnt;
1291 return 0;
1292}
1293EXPORT_SYMBOL(generic_segment_checks);
1294
485bb99b 1295/**
b2abacf3 1296 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1297 * @iocb: kernel I/O control block
1298 * @iov: io vector request
1299 * @nr_segs: number of segments in the iovec
b2abacf3 1300 * @pos: current file position
485bb99b 1301 *
1da177e4
LT
1302 * This is the "read()" routine for all filesystems
1303 * that can use the page cache directly.
1304 */
1305ssize_t
543ade1f
BP
1306generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1307 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1308{
1309 struct file *filp = iocb->ki_filp;
1310 ssize_t retval;
1311 unsigned long seg;
1312 size_t count;
543ade1f 1313 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1314
1315 count = 0;
0ceb3314
DM
1316 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1317 if (retval)
1318 return retval;
1da177e4
LT
1319
1320 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1321 if (filp->f_flags & O_DIRECT) {
543ade1f 1322 loff_t size;
1da177e4
LT
1323 struct address_space *mapping;
1324 struct inode *inode;
1325
1326 mapping = filp->f_mapping;
1327 inode = mapping->host;
1da177e4
LT
1328 if (!count)
1329 goto out; /* skip atime */
1330 size = i_size_read(inode);
1331 if (pos < size) {
48b47c56
NP
1332 retval = filemap_write_and_wait_range(mapping, pos,
1333 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1334 if (!retval) {
1335 retval = mapping->a_ops->direct_IO(READ, iocb,
1336 iov, pos, nr_segs);
1337 }
1da177e4
LT
1338 if (retval > 0)
1339 *ppos = pos + retval;
11fa977e
HD
1340 if (retval) {
1341 file_accessed(filp);
1342 goto out;
1343 }
0e0bcae3 1344 }
1da177e4
LT
1345 }
1346
11fa977e
HD
1347 for (seg = 0; seg < nr_segs; seg++) {
1348 read_descriptor_t desc;
1da177e4 1349
11fa977e
HD
1350 desc.written = 0;
1351 desc.arg.buf = iov[seg].iov_base;
1352 desc.count = iov[seg].iov_len;
1353 if (desc.count == 0)
1354 continue;
1355 desc.error = 0;
1356 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1357 retval += desc.written;
1358 if (desc.error) {
1359 retval = retval ?: desc.error;
1360 break;
1da177e4 1361 }
11fa977e
HD
1362 if (desc.count > 0)
1363 break;
1da177e4
LT
1364 }
1365out:
1366 return retval;
1367}
1da177e4
LT
1368EXPORT_SYMBOL(generic_file_aio_read);
1369
1da177e4
LT
1370static ssize_t
1371do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1372 pgoff_t index, unsigned long nr)
1da177e4
LT
1373{
1374 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1375 return -EINVAL;
1376
f7e839dd 1377 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1378 return 0;
1379}
1380
6673e0c3 1381SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1382{
1383 ssize_t ret;
1384 struct file *file;
1385
1386 ret = -EBADF;
1387 file = fget(fd);
1388 if (file) {
1389 if (file->f_mode & FMODE_READ) {
1390 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1391 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1392 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1393 unsigned long len = end - start + 1;
1394 ret = do_readahead(mapping, file, start, len);
1395 }
1396 fput(file);
1397 }
1398 return ret;
1399}
6673e0c3
HC
1400#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1401asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1402{
1403 return SYSC_readahead((int) fd, offset, (size_t) count);
1404}
1405SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1406#endif
1da177e4
LT
1407
1408#ifdef CONFIG_MMU
485bb99b
RD
1409/**
1410 * page_cache_read - adds requested page to the page cache if not already there
1411 * @file: file to read
1412 * @offset: page index
1413 *
1da177e4
LT
1414 * This adds the requested page to the page cache if it isn't already there,
1415 * and schedules an I/O to read in its contents from disk.
1416 */
920c7a5d 1417static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1418{
1419 struct address_space *mapping = file->f_mapping;
1420 struct page *page;
994fc28c 1421 int ret;
1da177e4 1422
994fc28c
ZB
1423 do {
1424 page = page_cache_alloc_cold(mapping);
1425 if (!page)
1426 return -ENOMEM;
1427
1428 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1429 if (ret == 0)
1430 ret = mapping->a_ops->readpage(file, page);
1431 else if (ret == -EEXIST)
1432 ret = 0; /* losing race to add is OK */
1da177e4 1433
1da177e4 1434 page_cache_release(page);
1da177e4 1435
994fc28c
ZB
1436 } while (ret == AOP_TRUNCATED_PAGE);
1437
1438 return ret;
1da177e4
LT
1439}
1440
1441#define MMAP_LOTSAMISS (100)
1442
ef00e08e
LT
1443/*
1444 * Synchronous readahead happens when we don't even find
1445 * a page in the page cache at all.
1446 */
1447static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1448 struct file_ra_state *ra,
1449 struct file *file,
1450 pgoff_t offset)
1451{
1452 unsigned long ra_pages;
1453 struct address_space *mapping = file->f_mapping;
1454
1455 /* If we don't want any read-ahead, don't bother */
1456 if (VM_RandomReadHint(vma))
1457 return;
1458
70ac23cf
WF
1459 if (VM_SequentialReadHint(vma) ||
1460 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1461 page_cache_sync_readahead(mapping, ra, file, offset,
1462 ra->ra_pages);
ef00e08e
LT
1463 return;
1464 }
1465
1466 if (ra->mmap_miss < INT_MAX)
1467 ra->mmap_miss++;
1468
1469 /*
1470 * Do we miss much more than hit in this file? If so,
1471 * stop bothering with read-ahead. It will only hurt.
1472 */
1473 if (ra->mmap_miss > MMAP_LOTSAMISS)
1474 return;
1475
d30a1100
WF
1476 /*
1477 * mmap read-around
1478 */
ef00e08e
LT
1479 ra_pages = max_sane_readahead(ra->ra_pages);
1480 if (ra_pages) {
d30a1100
WF
1481 ra->start = max_t(long, 0, offset - ra_pages/2);
1482 ra->size = ra_pages;
1483 ra->async_size = 0;
1484 ra_submit(ra, mapping, file);
ef00e08e
LT
1485 }
1486}
1487
1488/*
1489 * Asynchronous readahead happens when we find the page and PG_readahead,
1490 * so we want to possibly extend the readahead further..
1491 */
1492static void do_async_mmap_readahead(struct vm_area_struct *vma,
1493 struct file_ra_state *ra,
1494 struct file *file,
1495 struct page *page,
1496 pgoff_t offset)
1497{
1498 struct address_space *mapping = file->f_mapping;
1499
1500 /* If we don't want any read-ahead, don't bother */
1501 if (VM_RandomReadHint(vma))
1502 return;
1503 if (ra->mmap_miss > 0)
1504 ra->mmap_miss--;
1505 if (PageReadahead(page))
2fad6f5d
WF
1506 page_cache_async_readahead(mapping, ra, file,
1507 page, offset, ra->ra_pages);
ef00e08e
LT
1508}
1509
485bb99b 1510/**
54cb8821 1511 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1512 * @vma: vma in which the fault was taken
1513 * @vmf: struct vm_fault containing details of the fault
485bb99b 1514 *
54cb8821 1515 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1516 * mapped memory region to read in file data during a page fault.
1517 *
1518 * The goto's are kind of ugly, but this streamlines the normal case of having
1519 * it in the page cache, and handles the special cases reasonably without
1520 * having a lot of duplicated code.
1521 */
d0217ac0 1522int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1523{
1524 int error;
54cb8821 1525 struct file *file = vma->vm_file;
1da177e4
LT
1526 struct address_space *mapping = file->f_mapping;
1527 struct file_ra_state *ra = &file->f_ra;
1528 struct inode *inode = mapping->host;
ef00e08e 1529 pgoff_t offset = vmf->pgoff;
1da177e4 1530 struct page *page;
2004dc8e 1531 pgoff_t size;
83c54070 1532 int ret = 0;
1da177e4 1533
1da177e4 1534 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1535 if (offset >= size)
5307cc1a 1536 return VM_FAULT_SIGBUS;
1da177e4 1537
1da177e4
LT
1538 /*
1539 * Do we have something in the page cache already?
1540 */
ef00e08e
LT
1541 page = find_get_page(mapping, offset);
1542 if (likely(page)) {
1da177e4 1543 /*
ef00e08e
LT
1544 * We found the page, so try async readahead before
1545 * waiting for the lock.
1da177e4 1546 */
ef00e08e
LT
1547 do_async_mmap_readahead(vma, ra, file, page, offset);
1548 lock_page(page);
1da177e4 1549
ef00e08e
LT
1550 /* Did it get truncated? */
1551 if (unlikely(page->mapping != mapping)) {
1552 unlock_page(page);
1553 put_page(page);
1554 goto no_cached_page;
1da177e4 1555 }
ef00e08e
LT
1556 } else {
1557 /* No page in the page cache at all */
1558 do_sync_mmap_readahead(vma, ra, file, offset);
1559 count_vm_event(PGMAJFAULT);
1560 ret = VM_FAULT_MAJOR;
1561retry_find:
1562 page = find_lock_page(mapping, offset);
1da177e4
LT
1563 if (!page)
1564 goto no_cached_page;
1565 }
1566
1da177e4 1567 /*
d00806b1
NP
1568 * We have a locked page in the page cache, now we need to check
1569 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1570 */
d00806b1 1571 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1572 goto page_not_uptodate;
1573
ef00e08e
LT
1574 /*
1575 * Found the page and have a reference on it.
1576 * We must recheck i_size under page lock.
1577 */
d00806b1 1578 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1579 if (unlikely(offset >= size)) {
d00806b1 1580 unlock_page(page);
745ad48e 1581 page_cache_release(page);
5307cc1a 1582 return VM_FAULT_SIGBUS;
d00806b1
NP
1583 }
1584
ef00e08e 1585 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1586 vmf->page = page;
83c54070 1587 return ret | VM_FAULT_LOCKED;
1da177e4 1588
1da177e4
LT
1589no_cached_page:
1590 /*
1591 * We're only likely to ever get here if MADV_RANDOM is in
1592 * effect.
1593 */
ef00e08e 1594 error = page_cache_read(file, offset);
1da177e4
LT
1595
1596 /*
1597 * The page we want has now been added to the page cache.
1598 * In the unlikely event that someone removed it in the
1599 * meantime, we'll just come back here and read it again.
1600 */
1601 if (error >= 0)
1602 goto retry_find;
1603
1604 /*
1605 * An error return from page_cache_read can result if the
1606 * system is low on memory, or a problem occurs while trying
1607 * to schedule I/O.
1608 */
1609 if (error == -ENOMEM)
d0217ac0
NP
1610 return VM_FAULT_OOM;
1611 return VM_FAULT_SIGBUS;
1da177e4
LT
1612
1613page_not_uptodate:
1da177e4
LT
1614 /*
1615 * Umm, take care of errors if the page isn't up-to-date.
1616 * Try to re-read it _once_. We do this synchronously,
1617 * because there really aren't any performance issues here
1618 * and we need to check for errors.
1619 */
1da177e4 1620 ClearPageError(page);
994fc28c 1621 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1622 if (!error) {
1623 wait_on_page_locked(page);
1624 if (!PageUptodate(page))
1625 error = -EIO;
1626 }
d00806b1
NP
1627 page_cache_release(page);
1628
1629 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1630 goto retry_find;
1da177e4 1631
d00806b1 1632 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1633 shrink_readahead_size_eio(file, ra);
d0217ac0 1634 return VM_FAULT_SIGBUS;
54cb8821
NP
1635}
1636EXPORT_SYMBOL(filemap_fault);
1637
1da177e4 1638struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1639 .fault = filemap_fault,
1da177e4
LT
1640};
1641
1642/* This is used for a general mmap of a disk file */
1643
1644int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1645{
1646 struct address_space *mapping = file->f_mapping;
1647
1648 if (!mapping->a_ops->readpage)
1649 return -ENOEXEC;
1650 file_accessed(file);
1651 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1652 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1653 return 0;
1654}
1da177e4
LT
1655
1656/*
1657 * This is for filesystems which do not implement ->writepage.
1658 */
1659int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1660{
1661 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1662 return -EINVAL;
1663 return generic_file_mmap(file, vma);
1664}
1665#else
1666int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1667{
1668 return -ENOSYS;
1669}
1670int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1671{
1672 return -ENOSYS;
1673}
1674#endif /* CONFIG_MMU */
1675
1676EXPORT_SYMBOL(generic_file_mmap);
1677EXPORT_SYMBOL(generic_file_readonly_mmap);
1678
6fe6900e 1679static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1680 pgoff_t index,
1da177e4
LT
1681 int (*filler)(void *,struct page*),
1682 void *data)
1683{
eb2be189 1684 struct page *page;
1da177e4
LT
1685 int err;
1686repeat:
1687 page = find_get_page(mapping, index);
1688 if (!page) {
eb2be189
NP
1689 page = page_cache_alloc_cold(mapping);
1690 if (!page)
1691 return ERR_PTR(-ENOMEM);
1692 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1693 if (unlikely(err)) {
1694 page_cache_release(page);
1695 if (err == -EEXIST)
1696 goto repeat;
1da177e4 1697 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1698 return ERR_PTR(err);
1699 }
1da177e4
LT
1700 err = filler(data, page);
1701 if (err < 0) {
1702 page_cache_release(page);
1703 page = ERR_PTR(err);
1704 }
1705 }
1da177e4
LT
1706 return page;
1707}
1708
7682486b
RD
1709/**
1710 * read_cache_page_async - read into page cache, fill it if needed
1711 * @mapping: the page's address_space
1712 * @index: the page index
1713 * @filler: function to perform the read
1714 * @data: destination for read data
1715 *
6fe6900e
NP
1716 * Same as read_cache_page, but don't wait for page to become unlocked
1717 * after submitting it to the filler.
7682486b
RD
1718 *
1719 * Read into the page cache. If a page already exists, and PageUptodate() is
1720 * not set, try to fill the page but don't wait for it to become unlocked.
1721 *
1722 * If the page does not get brought uptodate, return -EIO.
1da177e4 1723 */
6fe6900e 1724struct page *read_cache_page_async(struct address_space *mapping,
57f6b96c 1725 pgoff_t index,
1da177e4
LT
1726 int (*filler)(void *,struct page*),
1727 void *data)
1728{
1729 struct page *page;
1730 int err;
1731
1732retry:
1733 page = __read_cache_page(mapping, index, filler, data);
1734 if (IS_ERR(page))
c855ff37 1735 return page;
1da177e4
LT
1736 if (PageUptodate(page))
1737 goto out;
1738
1739 lock_page(page);
1740 if (!page->mapping) {
1741 unlock_page(page);
1742 page_cache_release(page);
1743 goto retry;
1744 }
1745 if (PageUptodate(page)) {
1746 unlock_page(page);
1747 goto out;
1748 }
1749 err = filler(data, page);
1750 if (err < 0) {
1751 page_cache_release(page);
c855ff37 1752 return ERR_PTR(err);
1da177e4 1753 }
c855ff37 1754out:
6fe6900e
NP
1755 mark_page_accessed(page);
1756 return page;
1757}
1758EXPORT_SYMBOL(read_cache_page_async);
1759
1760/**
1761 * read_cache_page - read into page cache, fill it if needed
1762 * @mapping: the page's address_space
1763 * @index: the page index
1764 * @filler: function to perform the read
1765 * @data: destination for read data
1766 *
1767 * Read into the page cache. If a page already exists, and PageUptodate() is
1768 * not set, try to fill the page then wait for it to become unlocked.
1769 *
1770 * If the page does not get brought uptodate, return -EIO.
1771 */
1772struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1773 pgoff_t index,
6fe6900e
NP
1774 int (*filler)(void *,struct page*),
1775 void *data)
1776{
1777 struct page *page;
f80e69e7 1778 int err;
6fe6900e
NP
1779
1780 page = read_cache_page_async(mapping, index, filler, data);
1781 if (IS_ERR(page))
1782 goto out;
f80e69e7
JA
1783 err = wait_on_page_locked_async(page, current->io_wait);
1784 if (err) {
1785 page = ERR_PTR(err);
1786 goto out;
1787 }
6fe6900e
NP
1788 if (!PageUptodate(page)) {
1789 page_cache_release(page);
1790 page = ERR_PTR(-EIO);
1791 }
1da177e4
LT
1792 out:
1793 return page;
1794}
1da177e4
LT
1795EXPORT_SYMBOL(read_cache_page);
1796
1da177e4
LT
1797/*
1798 * The logic we want is
1799 *
1800 * if suid or (sgid and xgrp)
1801 * remove privs
1802 */
01de85e0 1803int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1804{
1805 mode_t mode = dentry->d_inode->i_mode;
1806 int kill = 0;
1da177e4
LT
1807
1808 /* suid always must be killed */
1809 if (unlikely(mode & S_ISUID))
1810 kill = ATTR_KILL_SUID;
1811
1812 /*
1813 * sgid without any exec bits is just a mandatory locking mark; leave
1814 * it alone. If some exec bits are set, it's a real sgid; kill it.
1815 */
1816 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1817 kill |= ATTR_KILL_SGID;
1818
7f5ff766 1819 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1820 return kill;
1da177e4 1821
01de85e0
JA
1822 return 0;
1823}
d23a147b 1824EXPORT_SYMBOL(should_remove_suid);
01de85e0 1825
7f3d4ee1 1826static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1827{
1828 struct iattr newattrs;
1829
1830 newattrs.ia_valid = ATTR_FORCE | kill;
1831 return notify_change(dentry, &newattrs);
1832}
1833
2f1936b8 1834int file_remove_suid(struct file *file)
01de85e0 1835{
2f1936b8 1836 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1837 int killsuid = should_remove_suid(dentry);
1838 int killpriv = security_inode_need_killpriv(dentry);
1839 int error = 0;
01de85e0 1840
b5376771
SH
1841 if (killpriv < 0)
1842 return killpriv;
1843 if (killpriv)
1844 error = security_inode_killpriv(dentry);
1845 if (!error && killsuid)
1846 error = __remove_suid(dentry, killsuid);
01de85e0 1847
b5376771 1848 return error;
1da177e4 1849}
2f1936b8 1850EXPORT_SYMBOL(file_remove_suid);
1da177e4 1851
2f718ffc 1852static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1853 const struct iovec *iov, size_t base, size_t bytes)
1854{
f1800536 1855 size_t copied = 0, left = 0;
1da177e4
LT
1856
1857 while (bytes) {
1858 char __user *buf = iov->iov_base + base;
1859 int copy = min(bytes, iov->iov_len - base);
1860
1861 base = 0;
f1800536 1862 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1863 copied += copy;
1864 bytes -= copy;
1865 vaddr += copy;
1866 iov++;
1867
01408c49 1868 if (unlikely(left))
1da177e4 1869 break;
1da177e4
LT
1870 }
1871 return copied - left;
1872}
1873
2f718ffc
NP
1874/*
1875 * Copy as much as we can into the page and return the number of bytes which
1876 * were sucessfully copied. If a fault is encountered then return the number of
1877 * bytes which were copied.
1878 */
1879size_t iov_iter_copy_from_user_atomic(struct page *page,
1880 struct iov_iter *i, unsigned long offset, size_t bytes)
1881{
1882 char *kaddr;
1883 size_t copied;
1884
1885 BUG_ON(!in_atomic());
1886 kaddr = kmap_atomic(page, KM_USER0);
1887 if (likely(i->nr_segs == 1)) {
1888 int left;
1889 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1890 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1891 copied = bytes - left;
1892 } else {
1893 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1894 i->iov, i->iov_offset, bytes);
1895 }
1896 kunmap_atomic(kaddr, KM_USER0);
1897
1898 return copied;
1899}
89e10787 1900EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1901
1902/*
1903 * This has the same sideeffects and return value as
1904 * iov_iter_copy_from_user_atomic().
1905 * The difference is that it attempts to resolve faults.
1906 * Page must not be locked.
1907 */
1908size_t iov_iter_copy_from_user(struct page *page,
1909 struct iov_iter *i, unsigned long offset, size_t bytes)
1910{
1911 char *kaddr;
1912 size_t copied;
1913
1914 kaddr = kmap(page);
1915 if (likely(i->nr_segs == 1)) {
1916 int left;
1917 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1918 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1919 copied = bytes - left;
1920 } else {
1921 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1922 i->iov, i->iov_offset, bytes);
1923 }
1924 kunmap(page);
1925 return copied;
1926}
89e10787 1927EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1928
f7009264 1929void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1930{
f7009264
NP
1931 BUG_ON(i->count < bytes);
1932
2f718ffc
NP
1933 if (likely(i->nr_segs == 1)) {
1934 i->iov_offset += bytes;
f7009264 1935 i->count -= bytes;
2f718ffc
NP
1936 } else {
1937 const struct iovec *iov = i->iov;
1938 size_t base = i->iov_offset;
1939
124d3b70
NP
1940 /*
1941 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1942 * zero-length segments (without overruning the iovec).
124d3b70 1943 */
94ad374a 1944 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1945 int copy;
2f718ffc 1946
f7009264
NP
1947 copy = min(bytes, iov->iov_len - base);
1948 BUG_ON(!i->count || i->count < copy);
1949 i->count -= copy;
2f718ffc
NP
1950 bytes -= copy;
1951 base += copy;
1952 if (iov->iov_len == base) {
1953 iov++;
1954 base = 0;
1955 }
1956 }
1957 i->iov = iov;
1958 i->iov_offset = base;
1959 }
1960}
89e10787 1961EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1962
afddba49
NP
1963/*
1964 * Fault in the first iovec of the given iov_iter, to a maximum length
1965 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1966 * accessed (ie. because it is an invalid address).
1967 *
1968 * writev-intensive code may want this to prefault several iovecs -- that
1969 * would be possible (callers must not rely on the fact that _only_ the
1970 * first iovec will be faulted with the current implementation).
1971 */
1972int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1973{
2f718ffc 1974 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
1975 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1976 return fault_in_pages_readable(buf, bytes);
2f718ffc 1977}
89e10787 1978EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
1979
1980/*
1981 * Return the count of just the current iov_iter segment.
1982 */
1983size_t iov_iter_single_seg_count(struct iov_iter *i)
1984{
1985 const struct iovec *iov = i->iov;
1986 if (i->nr_segs == 1)
1987 return i->count;
1988 else
1989 return min(i->count, iov->iov_len - i->iov_offset);
1990}
89e10787 1991EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 1992
1da177e4
LT
1993/*
1994 * Performs necessary checks before doing a write
1995 *
485bb99b 1996 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1997 * Returns appropriate error code that caller should return or
1998 * zero in case that write should be allowed.
1999 */
2000inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2001{
2002 struct inode *inode = file->f_mapping->host;
2003 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2004
2005 if (unlikely(*pos < 0))
2006 return -EINVAL;
2007
1da177e4
LT
2008 if (!isblk) {
2009 /* FIXME: this is for backwards compatibility with 2.4 */
2010 if (file->f_flags & O_APPEND)
2011 *pos = i_size_read(inode);
2012
2013 if (limit != RLIM_INFINITY) {
2014 if (*pos >= limit) {
2015 send_sig(SIGXFSZ, current, 0);
2016 return -EFBIG;
2017 }
2018 if (*count > limit - (typeof(limit))*pos) {
2019 *count = limit - (typeof(limit))*pos;
2020 }
2021 }
2022 }
2023
2024 /*
2025 * LFS rule
2026 */
2027 if (unlikely(*pos + *count > MAX_NON_LFS &&
2028 !(file->f_flags & O_LARGEFILE))) {
2029 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2030 return -EFBIG;
2031 }
2032 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2033 *count = MAX_NON_LFS - (unsigned long)*pos;
2034 }
2035 }
2036
2037 /*
2038 * Are we about to exceed the fs block limit ?
2039 *
2040 * If we have written data it becomes a short write. If we have
2041 * exceeded without writing data we send a signal and return EFBIG.
2042 * Linus frestrict idea will clean these up nicely..
2043 */
2044 if (likely(!isblk)) {
2045 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2046 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2047 return -EFBIG;
2048 }
2049 /* zero-length writes at ->s_maxbytes are OK */
2050 }
2051
2052 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2053 *count = inode->i_sb->s_maxbytes - *pos;
2054 } else {
9361401e 2055#ifdef CONFIG_BLOCK
1da177e4
LT
2056 loff_t isize;
2057 if (bdev_read_only(I_BDEV(inode)))
2058 return -EPERM;
2059 isize = i_size_read(inode);
2060 if (*pos >= isize) {
2061 if (*count || *pos > isize)
2062 return -ENOSPC;
2063 }
2064
2065 if (*pos + *count > isize)
2066 *count = isize - *pos;
9361401e
DH
2067#else
2068 return -EPERM;
2069#endif
1da177e4
LT
2070 }
2071 return 0;
2072}
2073EXPORT_SYMBOL(generic_write_checks);
2074
afddba49
NP
2075int pagecache_write_begin(struct file *file, struct address_space *mapping,
2076 loff_t pos, unsigned len, unsigned flags,
2077 struct page **pagep, void **fsdata)
2078{
2079 const struct address_space_operations *aops = mapping->a_ops;
2080
4e02ed4b 2081 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2082 pagep, fsdata);
afddba49
NP
2083}
2084EXPORT_SYMBOL(pagecache_write_begin);
2085
2086int pagecache_write_end(struct file *file, struct address_space *mapping,
2087 loff_t pos, unsigned len, unsigned copied,
2088 struct page *page, void *fsdata)
2089{
2090 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2091
4e02ed4b
NP
2092 mark_page_accessed(page);
2093 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2094}
2095EXPORT_SYMBOL(pagecache_write_end);
2096
1da177e4
LT
2097ssize_t
2098generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2099 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2100 size_t count, size_t ocount)
2101{
2102 struct file *file = iocb->ki_filp;
2103 struct address_space *mapping = file->f_mapping;
2104 struct inode *inode = mapping->host;
2105 ssize_t written;
a969e903
CH
2106 size_t write_len;
2107 pgoff_t end;
1da177e4
LT
2108
2109 if (count != ocount)
2110 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2111
a969e903
CH
2112 write_len = iov_length(iov, *nr_segs);
2113 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2114
48b47c56 2115 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2116 if (written)
2117 goto out;
2118
2119 /*
2120 * After a write we want buffered reads to be sure to go to disk to get
2121 * the new data. We invalidate clean cached page from the region we're
2122 * about to write. We do this *before* the write so that we can return
6ccfa806 2123 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2124 */
2125 if (mapping->nrpages) {
2126 written = invalidate_inode_pages2_range(mapping,
2127 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2128 /*
2129 * If a page can not be invalidated, return 0 to fall back
2130 * to buffered write.
2131 */
2132 if (written) {
2133 if (written == -EBUSY)
2134 return 0;
a969e903 2135 goto out;
6ccfa806 2136 }
a969e903
CH
2137 }
2138
2139 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2140
2141 /*
2142 * Finally, try again to invalidate clean pages which might have been
2143 * cached by non-direct readahead, or faulted in by get_user_pages()
2144 * if the source of the write was an mmap'ed region of the file
2145 * we're writing. Either one is a pretty crazy thing to do,
2146 * so we don't support it 100%. If this invalidation
2147 * fails, tough, the write still worked...
2148 */
2149 if (mapping->nrpages) {
2150 invalidate_inode_pages2_range(mapping,
2151 pos >> PAGE_CACHE_SHIFT, end);
2152 }
2153
1da177e4
LT
2154 if (written > 0) {
2155 loff_t end = pos + written;
2156 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2157 i_size_write(inode, end);
2158 mark_inode_dirty(inode);
2159 }
2160 *ppos = end;
2161 }
a969e903 2162out:
1da177e4
LT
2163 return written;
2164}
2165EXPORT_SYMBOL(generic_file_direct_write);
2166
eb2be189
NP
2167/*
2168 * Find or create a page at the given pagecache position. Return the locked
2169 * page. This function is specifically for buffered writes.
2170 */
54566b2c
NP
2171struct page *grab_cache_page_write_begin(struct address_space *mapping,
2172 pgoff_t index, unsigned flags)
eb2be189
NP
2173{
2174 int status;
2175 struct page *page;
54566b2c
NP
2176 gfp_t gfp_notmask = 0;
2177 if (flags & AOP_FLAG_NOFS)
2178 gfp_notmask = __GFP_FS;
eb2be189
NP
2179repeat:
2180 page = find_lock_page(mapping, index);
2181 if (likely(page))
2182 return page;
2183
54566b2c 2184 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2185 if (!page)
2186 return NULL;
54566b2c
NP
2187 status = add_to_page_cache_lru(page, mapping, index,
2188 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2189 if (unlikely(status)) {
2190 page_cache_release(page);
2191 if (status == -EEXIST)
2192 goto repeat;
2193 return NULL;
2194 }
2195 return page;
2196}
54566b2c 2197EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2198
afddba49
NP
2199static ssize_t generic_perform_write(struct file *file,
2200 struct iov_iter *i, loff_t pos)
2201{
2202 struct address_space *mapping = file->f_mapping;
2203 const struct address_space_operations *a_ops = mapping->a_ops;
2204 long status = 0;
2205 ssize_t written = 0;
674b892e
NP
2206 unsigned int flags = 0;
2207
2208 /*
2209 * Copies from kernel address space cannot fail (NFSD is a big user).
2210 */
2211 if (segment_eq(get_fs(), KERNEL_DS))
2212 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2213
2214 do {
2215 struct page *page;
2216 pgoff_t index; /* Pagecache index for current page */
2217 unsigned long offset; /* Offset into pagecache page */
2218 unsigned long bytes; /* Bytes to write to page */
2219 size_t copied; /* Bytes copied from user */
2220 void *fsdata;
2221
2222 offset = (pos & (PAGE_CACHE_SIZE - 1));
2223 index = pos >> PAGE_CACHE_SHIFT;
2224 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2225 iov_iter_count(i));
2226
2227again:
2228
2229 /*
2230 * Bring in the user page that we will copy from _first_.
2231 * Otherwise there's a nasty deadlock on copying from the
2232 * same page as we're writing to, without it being marked
2233 * up-to-date.
2234 *
2235 * Not only is this an optimisation, but it is also required
2236 * to check that the address is actually valid, when atomic
2237 * usercopies are used, below.
2238 */
2239 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2240 status = -EFAULT;
2241 break;
2242 }
2243
674b892e 2244 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2245 &page, &fsdata);
2246 if (unlikely(status))
2247 break;
2248
2249 pagefault_disable();
2250 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2251 pagefault_enable();
2252 flush_dcache_page(page);
2253
c8236db9 2254 mark_page_accessed(page);
afddba49
NP
2255 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2256 page, fsdata);
2257 if (unlikely(status < 0))
2258 break;
2259 copied = status;
2260
2261 cond_resched();
2262
124d3b70 2263 iov_iter_advance(i, copied);
afddba49
NP
2264 if (unlikely(copied == 0)) {
2265 /*
2266 * If we were unable to copy any data at all, we must
2267 * fall back to a single segment length write.
2268 *
2269 * If we didn't fallback here, we could livelock
2270 * because not all segments in the iov can be copied at
2271 * once without a pagefault.
2272 */
2273 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2274 iov_iter_single_seg_count(i));
2275 goto again;
2276 }
afddba49
NP
2277 pos += copied;
2278 written += copied;
2279
2280 balance_dirty_pages_ratelimited(mapping);
2281
2282 } while (iov_iter_count(i));
2283
2284 return written ? written : status;
2285}
2286
2287ssize_t
2288generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2289 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2290 size_t count, ssize_t written)
2291{
2292 struct file *file = iocb->ki_filp;
2293 struct address_space *mapping = file->f_mapping;
afddba49
NP
2294 ssize_t status;
2295 struct iov_iter i;
2296
2297 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2298 status = generic_perform_write(file, &i, pos);
1da177e4 2299
1da177e4 2300 if (likely(status >= 0)) {
afddba49
NP
2301 written += status;
2302 *ppos = pos + status;
1da177e4
LT
2303 }
2304
2305 /*
2306 * If we get here for O_DIRECT writes then we must have fallen through
2307 * to buffered writes (block instantiation inside i_size). So we sync
2308 * the file data here, to try to honour O_DIRECT expectations.
2309 */
2310 if (unlikely(file->f_flags & O_DIRECT) && written)
48b47c56
NP
2311 status = filemap_write_and_wait_range(mapping,
2312 pos, pos + written - 1);
1da177e4 2313
1da177e4
LT
2314 return written ? written : status;
2315}
2316EXPORT_SYMBOL(generic_file_buffered_write);
2317
e4dd9de3
JK
2318/**
2319 * __generic_file_aio_write - write data to a file
2320 * @iocb: IO state structure (file, offset, etc.)
2321 * @iov: vector with data to write
2322 * @nr_segs: number of segments in the vector
2323 * @ppos: position where to write
2324 *
2325 * This function does all the work needed for actually writing data to a
2326 * file. It does all basic checks, removes SUID from the file, updates
2327 * modification times and calls proper subroutines depending on whether we
2328 * do direct IO or a standard buffered write.
2329 *
2330 * It expects i_mutex to be grabbed unless we work on a block device or similar
2331 * object which does not need locking at all.
2332 *
2333 * This function does *not* take care of syncing data in case of O_SYNC write.
2334 * A caller has to handle it. This is mainly due to the fact that we want to
2335 * avoid syncing under i_mutex.
2336 */
2337ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2338 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2339{
2340 struct file *file = iocb->ki_filp;
fb5527e6 2341 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2342 size_t ocount; /* original count */
2343 size_t count; /* after file limit checks */
2344 struct inode *inode = mapping->host;
1da177e4
LT
2345 loff_t pos;
2346 ssize_t written;
2347 ssize_t err;
2348
2349 ocount = 0;
0ceb3314
DM
2350 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2351 if (err)
2352 return err;
1da177e4
LT
2353
2354 count = ocount;
2355 pos = *ppos;
2356
2357 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2358
2359 /* We can write back this queue in page reclaim */
2360 current->backing_dev_info = mapping->backing_dev_info;
2361 written = 0;
2362
2363 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2364 if (err)
2365 goto out;
2366
2367 if (count == 0)
2368 goto out;
2369
2f1936b8 2370 err = file_remove_suid(file);
1da177e4
LT
2371 if (err)
2372 goto out;
2373
870f4817 2374 file_update_time(file);
1da177e4
LT
2375
2376 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2377 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2378 loff_t endbyte;
2379 ssize_t written_buffered;
2380
2381 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2382 ppos, count, ocount);
1da177e4
LT
2383 if (written < 0 || written == count)
2384 goto out;
2385 /*
2386 * direct-io write to a hole: fall through to buffered I/O
2387 * for completing the rest of the request.
2388 */
2389 pos += written;
2390 count -= written;
fb5527e6
JM
2391 written_buffered = generic_file_buffered_write(iocb, iov,
2392 nr_segs, pos, ppos, count,
2393 written);
2394 /*
2395 * If generic_file_buffered_write() retuned a synchronous error
2396 * then we want to return the number of bytes which were
2397 * direct-written, or the error code if that was zero. Note
2398 * that this differs from normal direct-io semantics, which
2399 * will return -EFOO even if some bytes were written.
2400 */
2401 if (written_buffered < 0) {
2402 err = written_buffered;
2403 goto out;
2404 }
1da177e4 2405
fb5527e6
JM
2406 /*
2407 * We need to ensure that the page cache pages are written to
2408 * disk and invalidated to preserve the expected O_DIRECT
2409 * semantics.
2410 */
2411 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2412 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2413 SYNC_FILE_RANGE_WAIT_BEFORE|
2414 SYNC_FILE_RANGE_WRITE|
2415 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2416 if (err == 0) {
2417 written = written_buffered;
2418 invalidate_mapping_pages(mapping,
2419 pos >> PAGE_CACHE_SHIFT,
2420 endbyte >> PAGE_CACHE_SHIFT);
2421 } else {
2422 /*
2423 * We don't know how much we wrote, so just return
2424 * the number of bytes which were direct-written
2425 */
2426 }
2427 } else {
2428 written = generic_file_buffered_write(iocb, iov, nr_segs,
2429 pos, ppos, count, written);
2430 }
1da177e4
LT
2431out:
2432 current->backing_dev_info = NULL;
2433 return written ? written : err;
2434}
e4dd9de3
JK
2435EXPORT_SYMBOL(__generic_file_aio_write);
2436
e4dd9de3
JK
2437/**
2438 * generic_file_aio_write - write data to a file
2439 * @iocb: IO state structure
2440 * @iov: vector with data to write
2441 * @nr_segs: number of segments in the vector
2442 * @pos: position in file where to write
2443 *
2444 * This is a wrapper around __generic_file_aio_write() to be used by most
2445 * filesystems. It takes care of syncing the file in case of O_SYNC file
2446 * and acquires i_mutex as needed.
2447 */
027445c3
BP
2448ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2449 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2450{
2451 struct file *file = iocb->ki_filp;
148f948b 2452 struct inode *inode = file->f_mapping->host;
1da177e4 2453 ssize_t ret;
1da177e4
LT
2454
2455 BUG_ON(iocb->ki_pos != pos);
2456
1b1dcc1b 2457 mutex_lock(&inode->i_mutex);
e4dd9de3 2458 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2459 mutex_unlock(&inode->i_mutex);
1da177e4 2460
148f948b 2461 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2462 ssize_t err;
2463
148f948b 2464 err = generic_write_sync(file, pos, ret);
c7b50db2 2465 if (err < 0 && ret > 0)
1da177e4
LT
2466 ret = err;
2467 }
2468 return ret;
2469}
2470EXPORT_SYMBOL(generic_file_aio_write);
2471
cf9a2ae8
DH
2472/**
2473 * try_to_release_page() - release old fs-specific metadata on a page
2474 *
2475 * @page: the page which the kernel is trying to free
2476 * @gfp_mask: memory allocation flags (and I/O mode)
2477 *
2478 * The address_space is to try to release any data against the page
2479 * (presumably at page->private). If the release was successful, return `1'.
2480 * Otherwise return zero.
2481 *
266cf658
DH
2482 * This may also be called if PG_fscache is set on a page, indicating that the
2483 * page is known to the local caching routines.
2484 *
cf9a2ae8 2485 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2486 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2487 *
cf9a2ae8
DH
2488 */
2489int try_to_release_page(struct page *page, gfp_t gfp_mask)
2490{
2491 struct address_space * const mapping = page->mapping;
2492
2493 BUG_ON(!PageLocked(page));
2494 if (PageWriteback(page))
2495 return 0;
2496
2497 if (mapping && mapping->a_ops->releasepage)
2498 return mapping->a_ops->releasepage(page, gfp_mask);
2499 return try_to_free_buffers(page);
2500}
2501
2502EXPORT_SYMBOL(try_to_release_page);