fs: buffer: do not use unnecessary atomic operations when discarding buffers
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
3d48ae45 64 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
3d48ae45 70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
3d48ae45 73 * ->i_mmap_mutex
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
3d48ae45 87 * ->i_mmap_mutex
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
9a3c531d
AK
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
109 */
110
91b0abe3
JW
111static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113{
449dd698
JW
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
91b0abe3 119
449dd698
JW
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
91b0abe3
JW
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
449dd698 133 }
91b0abe3 134 mapping->nrpages--;
449dd698
JW
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
91b0abe3
JW
172}
173
1da177e4 174/*
e64a782f 175 * Delete a page from the page cache and free it. Caller has to make
1da177e4 176 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 177 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 178 */
91b0abe3 179void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
180{
181 struct address_space *mapping = page->mapping;
182
fe0bfaaf 183 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
3167760f 192 cleancache_invalidate_page(mapping, page);
c515e1fd 193
91b0abe3
JW
194 page_cache_tree_delete(mapping, page, shadow);
195
1da177e4 196 page->mapping = NULL;
b85e0eff 197 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 198
347ce434 199 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
45426812 202 BUG_ON(page_mapped(page));
3a692790
LT
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
1da177e4
LT
215}
216
702cfbf9
MK
217/**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225void delete_from_page_cache(struct page *page)
1da177e4
LT
226{
227 struct address_space *mapping = page->mapping;
6072d13c 228 void (*freepage)(struct page *);
1da177e4 229
cd7619d6 230 BUG_ON(!PageLocked(page));
1da177e4 231
6072d13c 232 freepage = mapping->a_ops->freepage;
19fd6231 233 spin_lock_irq(&mapping->tree_lock);
91b0abe3 234 __delete_from_page_cache(page, NULL);
19fd6231 235 spin_unlock_irq(&mapping->tree_lock);
e767e056 236 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
237
238 if (freepage)
239 freepage(page);
97cecb5a
MK
240 page_cache_release(page);
241}
242EXPORT_SYMBOL(delete_from_page_cache);
243
7eaceacc 244static int sleep_on_page(void *word)
1da177e4 245{
1da177e4
LT
246 io_schedule();
247 return 0;
248}
249
7eaceacc 250static int sleep_on_page_killable(void *word)
2687a356 251{
7eaceacc 252 sleep_on_page(word);
2687a356
MW
253 return fatal_signal_pending(current) ? -EINTR : 0;
254}
255
865ffef3
DM
256static int filemap_check_errors(struct address_space *mapping)
257{
258 int ret = 0;
259 /* Check for outstanding write errors */
7fcbbaf1
JA
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 262 ret = -ENOSPC;
7fcbbaf1
JA
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
265 ret = -EIO;
266 return ret;
267}
268
1da177e4 269/**
485bb99b 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
469eb4d0 273 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 274 * @sync_mode: enable synchronous operation
1da177e4 275 *
485bb99b
RD
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
1da177e4 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 280 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
ebcf28e1
AM
284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
1da177e4
LT
286{
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
05fe478d 290 .nr_to_write = LONG_MAX,
111ebb6e
OH
291 .range_start = start,
292 .range_end = end,
1da177e4
LT
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300}
301
302static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304{
111ebb6e 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
306}
307
308int filemap_fdatawrite(struct address_space *mapping)
309{
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311}
312EXPORT_SYMBOL(filemap_fdatawrite);
313
f4c0a0fd 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 315 loff_t end)
1da177e4
LT
316{
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318}
f4c0a0fd 319EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 320
485bb99b
RD
321/**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
1da177e4
LT
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328int filemap_flush(struct address_space *mapping)
329{
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331}
332EXPORT_SYMBOL(filemap_flush);
333
485bb99b 334/**
94004ed7
CH
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 339 *
94004ed7
CH
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
1da177e4 342 */
94004ed7
CH
343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
1da177e4 345{
94004ed7
CH
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
348 struct pagevec pvec;
349 int nr_pages;
865ffef3 350 int ret2, ret = 0;
1da177e4 351
94004ed7 352 if (end_byte < start_byte)
865ffef3 353 goto out;
1da177e4
LT
354
355 pagevec_init(&pvec, 0);
1da177e4
LT
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
212260aa 370 if (TestClearPageError(page))
1da177e4
LT
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
865ffef3
DM
376out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
1da177e4
LT
380
381 return ret;
382}
d3bccb6f
JK
383EXPORT_SYMBOL(filemap_fdatawait_range);
384
1da177e4 385/**
485bb99b 386 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 387 * @mapping: address space structure to wait for
485bb99b
RD
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
1da177e4
LT
391 */
392int filemap_fdatawait(struct address_space *mapping)
393{
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
94004ed7 399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
400}
401EXPORT_SYMBOL(filemap_fdatawait);
402
403int filemap_write_and_wait(struct address_space *mapping)
404{
28fd1298 405 int err = 0;
1da177e4
LT
406
407 if (mapping->nrpages) {
28fd1298
OH
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
865ffef3
DM
420 } else {
421 err = filemap_check_errors(mapping);
1da177e4 422 }
28fd1298 423 return err;
1da177e4 424}
28fd1298 425EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 426
485bb99b
RD
427/**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
469eb4d0
AM
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
1da177e4
LT
438int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440{
28fd1298 441 int err = 0;
1da177e4
LT
442
443 if (mapping->nrpages) {
28fd1298
OH
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
94004ed7
CH
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
28fd1298
OH
450 if (!err)
451 err = err2;
452 }
865ffef3
DM
453 } else {
454 err = filemap_check_errors(mapping);
1da177e4 455 }
28fd1298 456 return err;
1da177e4 457}
f6995585 458EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 459
ef6a3c63
MS
460/**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476{
477 int error;
ef6a3c63 478
309381fe
SL
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 482
ef6a3c63
MS
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
91b0abe3 496 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
ef6a3c63
MS
510 }
511
512 return error;
513}
514EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
0cd6144a 516static int page_cache_tree_insert(struct address_space *mapping,
a528910e 517 struct page *page, void **shadowp)
0cd6144a 518{
449dd698 519 struct radix_tree_node *node;
0cd6144a
JW
520 void **slot;
521 int error;
522
449dd698
JW
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
0cd6144a
JW
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
a528910e
JW
533 if (shadowp)
534 *shadowp = p;
449dd698
JW
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
0cd6144a 538 }
449dd698
JW
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
0cd6144a
JW
556}
557
a528910e
JW
558static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
1da177e4 562{
e286781d
NP
563 int error;
564
309381fe
SL
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 567
d715ae08 568 error = mem_cgroup_charge_file(page, current->mm,
2c26fdd7 569 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 570 if (error)
66a0c8ee 571 return error;
1da177e4 572
5e4c0d97 573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 574 if (error) {
69029cd5 575 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
a528910e 584 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
66a0c8ee
KS
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
1da177e4
LT
598 return error;
599}
a528910e
JW
600
601/**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613{
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616}
e286781d 617EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
618
619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 620 pgoff_t offset, gfp_t gfp_mask)
1da177e4 621{
a528910e 622 void *shadow = NULL;
4f98a2fe
RR
623 int ret;
624
a528910e
JW
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
1da177e4
LT
643 return ret;
644}
18bc0bbd 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 646
44110fe3 647#ifdef CONFIG_NUMA
2ae88149 648struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 649{
c0ff7453
MX
650 int n;
651 struct page *page;
652
44110fe3 653 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
654 unsigned int cpuset_mems_cookie;
655 do {
d26914d1 656 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 660
c0ff7453 661 return page;
44110fe3 662 }
2ae88149 663 return alloc_pages(gfp, 0);
44110fe3 664}
2ae88149 665EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
666#endif
667
1da177e4
LT
668/*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678static wait_queue_head_t *page_waitqueue(struct page *page)
679{
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683}
684
685static inline void wake_up_page(struct page *page, int bit)
686{
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688}
689
920c7a5d 690void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
691{
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
7eaceacc 695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
696 TASK_UNINTERRUPTIBLE);
697}
698EXPORT_SYMBOL(wait_on_page_bit);
699
f62e00cc
KM
700int wait_on_page_bit_killable(struct page *page, int bit_nr)
701{
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709}
710
385e1ca5
DH
711/**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
385e1ca5
DH
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719{
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726}
727EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
1da177e4 729/**
485bb99b 730 * unlock_page - unlock a locked page
1da177e4
LT
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
8413ac9d
NP
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 740 */
920c7a5d 741void unlock_page(struct page *page)
1da177e4 742{
309381fe 743 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 744 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 745 smp_mb__after_atomic();
1da177e4
LT
746 wake_up_page(page, PG_locked);
747}
748EXPORT_SYMBOL(unlock_page);
749
485bb99b
RD
750/**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
1da177e4
LT
753 */
754void end_page_writeback(struct page *page)
755{
ac6aadb2
MS
756 if (TestClearPageReclaim(page))
757 rotate_reclaimable_page(page);
758
759 if (!test_clear_page_writeback(page))
760 BUG();
761
4e857c58 762 smp_mb__after_atomic();
1da177e4
LT
763 wake_up_page(page, PG_writeback);
764}
765EXPORT_SYMBOL(end_page_writeback);
766
57d99845
MW
767/*
768 * After completing I/O on a page, call this routine to update the page
769 * flags appropriately
770 */
771void page_endio(struct page *page, int rw, int err)
772{
773 if (rw == READ) {
774 if (!err) {
775 SetPageUptodate(page);
776 } else {
777 ClearPageUptodate(page);
778 SetPageError(page);
779 }
780 unlock_page(page);
781 } else { /* rw == WRITE */
782 if (err) {
783 SetPageError(page);
784 if (page->mapping)
785 mapping_set_error(page->mapping, err);
786 }
787 end_page_writeback(page);
788 }
789}
790EXPORT_SYMBOL_GPL(page_endio);
791
485bb99b
RD
792/**
793 * __lock_page - get a lock on the page, assuming we need to sleep to get it
794 * @page: the page to lock
1da177e4 795 */
920c7a5d 796void __lock_page(struct page *page)
1da177e4
LT
797{
798 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
799
7eaceacc 800 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
801 TASK_UNINTERRUPTIBLE);
802}
803EXPORT_SYMBOL(__lock_page);
804
b5606c2d 805int __lock_page_killable(struct page *page)
2687a356
MW
806{
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 810 sleep_on_page_killable, TASK_KILLABLE);
2687a356 811}
18bc0bbd 812EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 813
d065bd81
ML
814int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
815 unsigned int flags)
816{
37b23e05
KM
817 if (flags & FAULT_FLAG_ALLOW_RETRY) {
818 /*
819 * CAUTION! In this case, mmap_sem is not released
820 * even though return 0.
821 */
822 if (flags & FAULT_FLAG_RETRY_NOWAIT)
823 return 0;
824
825 up_read(&mm->mmap_sem);
826 if (flags & FAULT_FLAG_KILLABLE)
827 wait_on_page_locked_killable(page);
828 else
318b275f 829 wait_on_page_locked(page);
d065bd81 830 return 0;
37b23e05
KM
831 } else {
832 if (flags & FAULT_FLAG_KILLABLE) {
833 int ret;
834
835 ret = __lock_page_killable(page);
836 if (ret) {
837 up_read(&mm->mmap_sem);
838 return 0;
839 }
840 } else
841 __lock_page(page);
842 return 1;
d065bd81
ML
843 }
844}
845
e7b563bb
JW
846/**
847 * page_cache_next_hole - find the next hole (not-present entry)
848 * @mapping: mapping
849 * @index: index
850 * @max_scan: maximum range to search
851 *
852 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
853 * lowest indexed hole.
854 *
855 * Returns: the index of the hole if found, otherwise returns an index
856 * outside of the set specified (in which case 'return - index >=
857 * max_scan' will be true). In rare cases of index wrap-around, 0 will
858 * be returned.
859 *
860 * page_cache_next_hole may be called under rcu_read_lock. However,
861 * like radix_tree_gang_lookup, this will not atomically search a
862 * snapshot of the tree at a single point in time. For example, if a
863 * hole is created at index 5, then subsequently a hole is created at
864 * index 10, page_cache_next_hole covering both indexes may return 10
865 * if called under rcu_read_lock.
866 */
867pgoff_t page_cache_next_hole(struct address_space *mapping,
868 pgoff_t index, unsigned long max_scan)
869{
870 unsigned long i;
871
872 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
873 struct page *page;
874
875 page = radix_tree_lookup(&mapping->page_tree, index);
876 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
877 break;
878 index++;
879 if (index == 0)
880 break;
881 }
882
883 return index;
884}
885EXPORT_SYMBOL(page_cache_next_hole);
886
887/**
888 * page_cache_prev_hole - find the prev hole (not-present entry)
889 * @mapping: mapping
890 * @index: index
891 * @max_scan: maximum range to search
892 *
893 * Search backwards in the range [max(index-max_scan+1, 0), index] for
894 * the first hole.
895 *
896 * Returns: the index of the hole if found, otherwise returns an index
897 * outside of the set specified (in which case 'index - return >=
898 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
899 * will be returned.
900 *
901 * page_cache_prev_hole may be called under rcu_read_lock. However,
902 * like radix_tree_gang_lookup, this will not atomically search a
903 * snapshot of the tree at a single point in time. For example, if a
904 * hole is created at index 10, then subsequently a hole is created at
905 * index 5, page_cache_prev_hole covering both indexes may return 5 if
906 * called under rcu_read_lock.
907 */
908pgoff_t page_cache_prev_hole(struct address_space *mapping,
909 pgoff_t index, unsigned long max_scan)
910{
911 unsigned long i;
912
913 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
914 struct page *page;
915
916 page = radix_tree_lookup(&mapping->page_tree, index);
917 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
918 break;
919 index--;
920 if (index == ULONG_MAX)
921 break;
922 }
923
924 return index;
925}
926EXPORT_SYMBOL(page_cache_prev_hole);
927
485bb99b 928/**
0cd6144a 929 * find_get_entry - find and get a page cache entry
485bb99b 930 * @mapping: the address_space to search
0cd6144a
JW
931 * @offset: the page cache index
932 *
933 * Looks up the page cache slot at @mapping & @offset. If there is a
934 * page cache page, it is returned with an increased refcount.
485bb99b 935 *
139b6a6f
JW
936 * If the slot holds a shadow entry of a previously evicted page, or a
937 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
938 *
939 * Otherwise, %NULL is returned.
1da177e4 940 */
0cd6144a 941struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 942{
a60637c8 943 void **pagep;
1da177e4
LT
944 struct page *page;
945
a60637c8
NP
946 rcu_read_lock();
947repeat:
948 page = NULL;
949 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
950 if (pagep) {
951 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
952 if (unlikely(!page))
953 goto out;
a2c16d6c 954 if (radix_tree_exception(page)) {
8079b1c8
HD
955 if (radix_tree_deref_retry(page))
956 goto repeat;
957 /*
139b6a6f
JW
958 * A shadow entry of a recently evicted page,
959 * or a swap entry from shmem/tmpfs. Return
960 * it without attempting to raise page count.
8079b1c8
HD
961 */
962 goto out;
a2c16d6c 963 }
a60637c8
NP
964 if (!page_cache_get_speculative(page))
965 goto repeat;
966
967 /*
968 * Has the page moved?
969 * This is part of the lockless pagecache protocol. See
970 * include/linux/pagemap.h for details.
971 */
972 if (unlikely(page != *pagep)) {
973 page_cache_release(page);
974 goto repeat;
975 }
976 }
27d20fdd 977out:
a60637c8
NP
978 rcu_read_unlock();
979
1da177e4
LT
980 return page;
981}
0cd6144a 982EXPORT_SYMBOL(find_get_entry);
1da177e4 983
1da177e4 984/**
0cd6144a 985 * find_get_page - find and get a page reference
67be2dd1
MW
986 * @mapping: the address_space to search
987 * @offset: the page index
1da177e4 988 *
0cd6144a
JW
989 * Looks up the page cache slot at @mapping & @offset. If there is a
990 * page cache page, it is returned with an increased refcount.
1da177e4 991 *
0cd6144a 992 * Otherwise, %NULL is returned.
1da177e4 993 */
0cd6144a
JW
994struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
995{
996 struct page *page = find_get_entry(mapping, offset);
997
998 if (radix_tree_exceptional_entry(page))
999 page = NULL;
1000 return page;
1001}
1002EXPORT_SYMBOL(find_get_page);
1003
1004/**
1005 * find_lock_entry - locate, pin and lock a page cache entry
1006 * @mapping: the address_space to search
1007 * @offset: the page cache index
1008 *
1009 * Looks up the page cache slot at @mapping & @offset. If there is a
1010 * page cache page, it is returned locked and with an increased
1011 * refcount.
1012 *
139b6a6f
JW
1013 * If the slot holds a shadow entry of a previously evicted page, or a
1014 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1015 *
1016 * Otherwise, %NULL is returned.
1017 *
1018 * find_lock_entry() may sleep.
1019 */
1020struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1021{
1022 struct page *page;
1023
1da177e4 1024repeat:
0cd6144a 1025 page = find_get_entry(mapping, offset);
a2c16d6c 1026 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1027 lock_page(page);
1028 /* Has the page been truncated? */
1029 if (unlikely(page->mapping != mapping)) {
1030 unlock_page(page);
1031 page_cache_release(page);
1032 goto repeat;
1da177e4 1033 }
309381fe 1034 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1035 }
1da177e4
LT
1036 return page;
1037}
0cd6144a
JW
1038EXPORT_SYMBOL(find_lock_entry);
1039
1040/**
1041 * find_lock_page - locate, pin and lock a pagecache page
1042 * @mapping: the address_space to search
1043 * @offset: the page index
1044 *
1045 * Looks up the page cache slot at @mapping & @offset. If there is a
1046 * page cache page, it is returned locked and with an increased
1047 * refcount.
1048 *
1049 * Otherwise, %NULL is returned.
1050 *
1051 * find_lock_page() may sleep.
1052 */
1053struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1054{
1055 struct page *page = find_lock_entry(mapping, offset);
1056
1057 if (radix_tree_exceptional_entry(page))
1058 page = NULL;
1059 return page;
1060}
1da177e4
LT
1061EXPORT_SYMBOL(find_lock_page);
1062
1063/**
1064 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
1065 * @mapping: the page's address_space
1066 * @index: the page's index into the mapping
1067 * @gfp_mask: page allocation mode
1da177e4 1068 *
0cd6144a
JW
1069 * Looks up the page cache slot at @mapping & @offset. If there is a
1070 * page cache page, it is returned locked and with an increased
1071 * refcount.
1072 *
1073 * If the page is not present, a new page is allocated using @gfp_mask
1074 * and added to the page cache and the VM's LRU list. The page is
1075 * returned locked and with an increased refcount.
1da177e4 1076 *
0cd6144a 1077 * On memory exhaustion, %NULL is returned.
1da177e4 1078 *
0cd6144a
JW
1079 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1080 * atomic allocation!
1da177e4
LT
1081 */
1082struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 1083 pgoff_t index, gfp_t gfp_mask)
1da177e4 1084{
eb2be189 1085 struct page *page;
1da177e4
LT
1086 int err;
1087repeat:
1088 page = find_lock_page(mapping, index);
1089 if (!page) {
eb2be189
NP
1090 page = __page_cache_alloc(gfp_mask);
1091 if (!page)
1092 return NULL;
67d58ac4
NP
1093 /*
1094 * We want a regular kernel memory (not highmem or DMA etc)
1095 * allocation for the radix tree nodes, but we need to honour
1096 * the context-specific requirements the caller has asked for.
1097 * GFP_RECLAIM_MASK collects those requirements.
1098 */
1099 err = add_to_page_cache_lru(page, mapping, index,
1100 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
1101 if (unlikely(err)) {
1102 page_cache_release(page);
1103 page = NULL;
1104 if (err == -EEXIST)
1105 goto repeat;
1da177e4 1106 }
1da177e4 1107 }
1da177e4
LT
1108 return page;
1109}
1da177e4
LT
1110EXPORT_SYMBOL(find_or_create_page);
1111
0cd6144a
JW
1112/**
1113 * find_get_entries - gang pagecache lookup
1114 * @mapping: The address_space to search
1115 * @start: The starting page cache index
1116 * @nr_entries: The maximum number of entries
1117 * @entries: Where the resulting entries are placed
1118 * @indices: The cache indices corresponding to the entries in @entries
1119 *
1120 * find_get_entries() will search for and return a group of up to
1121 * @nr_entries entries in the mapping. The entries are placed at
1122 * @entries. find_get_entries() takes a reference against any actual
1123 * pages it returns.
1124 *
1125 * The search returns a group of mapping-contiguous page cache entries
1126 * with ascending indexes. There may be holes in the indices due to
1127 * not-present pages.
1128 *
139b6a6f
JW
1129 * Any shadow entries of evicted pages, or swap entries from
1130 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1131 *
1132 * find_get_entries() returns the number of pages and shadow entries
1133 * which were found.
1134 */
1135unsigned find_get_entries(struct address_space *mapping,
1136 pgoff_t start, unsigned int nr_entries,
1137 struct page **entries, pgoff_t *indices)
1138{
1139 void **slot;
1140 unsigned int ret = 0;
1141 struct radix_tree_iter iter;
1142
1143 if (!nr_entries)
1144 return 0;
1145
1146 rcu_read_lock();
1147restart:
1148 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1149 struct page *page;
1150repeat:
1151 page = radix_tree_deref_slot(slot);
1152 if (unlikely(!page))
1153 continue;
1154 if (radix_tree_exception(page)) {
1155 if (radix_tree_deref_retry(page))
1156 goto restart;
1157 /*
139b6a6f
JW
1158 * A shadow entry of a recently evicted page,
1159 * or a swap entry from shmem/tmpfs. Return
1160 * it without attempting to raise page count.
0cd6144a
JW
1161 */
1162 goto export;
1163 }
1164 if (!page_cache_get_speculative(page))
1165 goto repeat;
1166
1167 /* Has the page moved? */
1168 if (unlikely(page != *slot)) {
1169 page_cache_release(page);
1170 goto repeat;
1171 }
1172export:
1173 indices[ret] = iter.index;
1174 entries[ret] = page;
1175 if (++ret == nr_entries)
1176 break;
1177 }
1178 rcu_read_unlock();
1179 return ret;
1180}
1181
1da177e4
LT
1182/**
1183 * find_get_pages - gang pagecache lookup
1184 * @mapping: The address_space to search
1185 * @start: The starting page index
1186 * @nr_pages: The maximum number of pages
1187 * @pages: Where the resulting pages are placed
1188 *
1189 * find_get_pages() will search for and return a group of up to
1190 * @nr_pages pages in the mapping. The pages are placed at @pages.
1191 * find_get_pages() takes a reference against the returned pages.
1192 *
1193 * The search returns a group of mapping-contiguous pages with ascending
1194 * indexes. There may be holes in the indices due to not-present pages.
1195 *
1196 * find_get_pages() returns the number of pages which were found.
1197 */
1198unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1199 unsigned int nr_pages, struct page **pages)
1200{
0fc9d104
KK
1201 struct radix_tree_iter iter;
1202 void **slot;
1203 unsigned ret = 0;
1204
1205 if (unlikely(!nr_pages))
1206 return 0;
a60637c8
NP
1207
1208 rcu_read_lock();
1209restart:
0fc9d104 1210 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1211 struct page *page;
1212repeat:
0fc9d104 1213 page = radix_tree_deref_slot(slot);
a60637c8
NP
1214 if (unlikely(!page))
1215 continue;
9d8aa4ea 1216
a2c16d6c 1217 if (radix_tree_exception(page)) {
8079b1c8
HD
1218 if (radix_tree_deref_retry(page)) {
1219 /*
1220 * Transient condition which can only trigger
1221 * when entry at index 0 moves out of or back
1222 * to root: none yet gotten, safe to restart.
1223 */
0fc9d104 1224 WARN_ON(iter.index);
8079b1c8
HD
1225 goto restart;
1226 }
a2c16d6c 1227 /*
139b6a6f
JW
1228 * A shadow entry of a recently evicted page,
1229 * or a swap entry from shmem/tmpfs. Skip
1230 * over it.
a2c16d6c 1231 */
8079b1c8 1232 continue;
27d20fdd 1233 }
a60637c8
NP
1234
1235 if (!page_cache_get_speculative(page))
1236 goto repeat;
1237
1238 /* Has the page moved? */
0fc9d104 1239 if (unlikely(page != *slot)) {
a60637c8
NP
1240 page_cache_release(page);
1241 goto repeat;
1242 }
1da177e4 1243
a60637c8 1244 pages[ret] = page;
0fc9d104
KK
1245 if (++ret == nr_pages)
1246 break;
a60637c8 1247 }
5b280c0c 1248
a60637c8 1249 rcu_read_unlock();
1da177e4
LT
1250 return ret;
1251}
1252
ebf43500
JA
1253/**
1254 * find_get_pages_contig - gang contiguous pagecache lookup
1255 * @mapping: The address_space to search
1256 * @index: The starting page index
1257 * @nr_pages: The maximum number of pages
1258 * @pages: Where the resulting pages are placed
1259 *
1260 * find_get_pages_contig() works exactly like find_get_pages(), except
1261 * that the returned number of pages are guaranteed to be contiguous.
1262 *
1263 * find_get_pages_contig() returns the number of pages which were found.
1264 */
1265unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1266 unsigned int nr_pages, struct page **pages)
1267{
0fc9d104
KK
1268 struct radix_tree_iter iter;
1269 void **slot;
1270 unsigned int ret = 0;
1271
1272 if (unlikely(!nr_pages))
1273 return 0;
a60637c8
NP
1274
1275 rcu_read_lock();
1276restart:
0fc9d104 1277 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1278 struct page *page;
1279repeat:
0fc9d104
KK
1280 page = radix_tree_deref_slot(slot);
1281 /* The hole, there no reason to continue */
a60637c8 1282 if (unlikely(!page))
0fc9d104 1283 break;
9d8aa4ea 1284
a2c16d6c 1285 if (radix_tree_exception(page)) {
8079b1c8
HD
1286 if (radix_tree_deref_retry(page)) {
1287 /*
1288 * Transient condition which can only trigger
1289 * when entry at index 0 moves out of or back
1290 * to root: none yet gotten, safe to restart.
1291 */
1292 goto restart;
1293 }
a2c16d6c 1294 /*
139b6a6f
JW
1295 * A shadow entry of a recently evicted page,
1296 * or a swap entry from shmem/tmpfs. Stop
1297 * looking for contiguous pages.
a2c16d6c 1298 */
8079b1c8 1299 break;
a2c16d6c 1300 }
ebf43500 1301
a60637c8
NP
1302 if (!page_cache_get_speculative(page))
1303 goto repeat;
1304
1305 /* Has the page moved? */
0fc9d104 1306 if (unlikely(page != *slot)) {
a60637c8
NP
1307 page_cache_release(page);
1308 goto repeat;
1309 }
1310
9cbb4cb2
NP
1311 /*
1312 * must check mapping and index after taking the ref.
1313 * otherwise we can get both false positives and false
1314 * negatives, which is just confusing to the caller.
1315 */
0fc9d104 1316 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1317 page_cache_release(page);
1318 break;
1319 }
1320
a60637c8 1321 pages[ret] = page;
0fc9d104
KK
1322 if (++ret == nr_pages)
1323 break;
ebf43500 1324 }
a60637c8
NP
1325 rcu_read_unlock();
1326 return ret;
ebf43500 1327}
ef71c15c 1328EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1329
485bb99b
RD
1330/**
1331 * find_get_pages_tag - find and return pages that match @tag
1332 * @mapping: the address_space to search
1333 * @index: the starting page index
1334 * @tag: the tag index
1335 * @nr_pages: the maximum number of pages
1336 * @pages: where the resulting pages are placed
1337 *
1da177e4 1338 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1339 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1340 */
1341unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1342 int tag, unsigned int nr_pages, struct page **pages)
1343{
0fc9d104
KK
1344 struct radix_tree_iter iter;
1345 void **slot;
1346 unsigned ret = 0;
1347
1348 if (unlikely(!nr_pages))
1349 return 0;
a60637c8
NP
1350
1351 rcu_read_lock();
1352restart:
0fc9d104
KK
1353 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1354 &iter, *index, tag) {
a60637c8
NP
1355 struct page *page;
1356repeat:
0fc9d104 1357 page = radix_tree_deref_slot(slot);
a60637c8
NP
1358 if (unlikely(!page))
1359 continue;
9d8aa4ea 1360
a2c16d6c 1361 if (radix_tree_exception(page)) {
8079b1c8
HD
1362 if (radix_tree_deref_retry(page)) {
1363 /*
1364 * Transient condition which can only trigger
1365 * when entry at index 0 moves out of or back
1366 * to root: none yet gotten, safe to restart.
1367 */
1368 goto restart;
1369 }
a2c16d6c 1370 /*
139b6a6f
JW
1371 * A shadow entry of a recently evicted page.
1372 *
1373 * Those entries should never be tagged, but
1374 * this tree walk is lockless and the tags are
1375 * looked up in bulk, one radix tree node at a
1376 * time, so there is a sizable window for page
1377 * reclaim to evict a page we saw tagged.
1378 *
1379 * Skip over it.
a2c16d6c 1380 */
139b6a6f 1381 continue;
a2c16d6c 1382 }
a60637c8
NP
1383
1384 if (!page_cache_get_speculative(page))
1385 goto repeat;
1386
1387 /* Has the page moved? */
0fc9d104 1388 if (unlikely(page != *slot)) {
a60637c8
NP
1389 page_cache_release(page);
1390 goto repeat;
1391 }
1392
1393 pages[ret] = page;
0fc9d104
KK
1394 if (++ret == nr_pages)
1395 break;
a60637c8 1396 }
5b280c0c 1397
a60637c8 1398 rcu_read_unlock();
1da177e4 1399
1da177e4
LT
1400 if (ret)
1401 *index = pages[ret - 1]->index + 1;
a60637c8 1402
1da177e4
LT
1403 return ret;
1404}
ef71c15c 1405EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1406
485bb99b
RD
1407/**
1408 * grab_cache_page_nowait - returns locked page at given index in given cache
1409 * @mapping: target address_space
1410 * @index: the page index
1411 *
72fd4a35 1412 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1413 * This is intended for speculative data generators, where the data can
1414 * be regenerated if the page couldn't be grabbed. This routine should
1415 * be safe to call while holding the lock for another page.
1416 *
1417 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1418 * and deadlock against the caller's locked page.
1419 */
1420struct page *
57f6b96c 1421grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1422{
1423 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1424
1425 if (page) {
529ae9aa 1426 if (trylock_page(page))
1da177e4
LT
1427 return page;
1428 page_cache_release(page);
1429 return NULL;
1430 }
2ae88149 1431 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1432 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1433 page_cache_release(page);
1434 page = NULL;
1435 }
1436 return page;
1437}
1da177e4
LT
1438EXPORT_SYMBOL(grab_cache_page_nowait);
1439
76d42bd9
WF
1440/*
1441 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1442 * a _large_ part of the i/o request. Imagine the worst scenario:
1443 *
1444 * ---R__________________________________________B__________
1445 * ^ reading here ^ bad block(assume 4k)
1446 *
1447 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1448 * => failing the whole request => read(R) => read(R+1) =>
1449 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1450 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1451 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1452 *
1453 * It is going insane. Fix it by quickly scaling down the readahead size.
1454 */
1455static void shrink_readahead_size_eio(struct file *filp,
1456 struct file_ra_state *ra)
1457{
76d42bd9 1458 ra->ra_pages /= 4;
76d42bd9
WF
1459}
1460
485bb99b 1461/**
36e78914 1462 * do_generic_file_read - generic file read routine
485bb99b
RD
1463 * @filp: the file to read
1464 * @ppos: current file position
6e58e79d
AV
1465 * @iter: data destination
1466 * @written: already copied
485bb99b 1467 *
1da177e4 1468 * This is a generic file read routine, and uses the
485bb99b 1469 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1470 *
1471 * This is really ugly. But the goto's actually try to clarify some
1472 * of the logic when it comes to error handling etc.
1da177e4 1473 */
6e58e79d
AV
1474static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1475 struct iov_iter *iter, ssize_t written)
1da177e4 1476{
36e78914 1477 struct address_space *mapping = filp->f_mapping;
1da177e4 1478 struct inode *inode = mapping->host;
36e78914 1479 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1480 pgoff_t index;
1481 pgoff_t last_index;
1482 pgoff_t prev_index;
1483 unsigned long offset; /* offset into pagecache page */
ec0f1637 1484 unsigned int prev_offset;
6e58e79d 1485 int error = 0;
1da177e4 1486
1da177e4 1487 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1488 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1489 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1490 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1491 offset = *ppos & ~PAGE_CACHE_MASK;
1492
1da177e4
LT
1493 for (;;) {
1494 struct page *page;
57f6b96c 1495 pgoff_t end_index;
a32ea1e1 1496 loff_t isize;
1da177e4
LT
1497 unsigned long nr, ret;
1498
1da177e4 1499 cond_resched();
1da177e4
LT
1500find_page:
1501 page = find_get_page(mapping, index);
3ea89ee8 1502 if (!page) {
cf914a7d 1503 page_cache_sync_readahead(mapping,
7ff81078 1504 ra, filp,
3ea89ee8
FW
1505 index, last_index - index);
1506 page = find_get_page(mapping, index);
1507 if (unlikely(page == NULL))
1508 goto no_cached_page;
1509 }
1510 if (PageReadahead(page)) {
cf914a7d 1511 page_cache_async_readahead(mapping,
7ff81078 1512 ra, filp, page,
3ea89ee8 1513 index, last_index - index);
1da177e4 1514 }
8ab22b9a
HH
1515 if (!PageUptodate(page)) {
1516 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1517 !mapping->a_ops->is_partially_uptodate)
1518 goto page_not_up_to_date;
529ae9aa 1519 if (!trylock_page(page))
8ab22b9a 1520 goto page_not_up_to_date;
8d056cb9
DH
1521 /* Did it get truncated before we got the lock? */
1522 if (!page->mapping)
1523 goto page_not_up_to_date_locked;
8ab22b9a 1524 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1525 offset, iter->count))
8ab22b9a
HH
1526 goto page_not_up_to_date_locked;
1527 unlock_page(page);
1528 }
1da177e4 1529page_ok:
a32ea1e1
N
1530 /*
1531 * i_size must be checked after we know the page is Uptodate.
1532 *
1533 * Checking i_size after the check allows us to calculate
1534 * the correct value for "nr", which means the zero-filled
1535 * part of the page is not copied back to userspace (unless
1536 * another truncate extends the file - this is desired though).
1537 */
1538
1539 isize = i_size_read(inode);
1540 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1541 if (unlikely(!isize || index > end_index)) {
1542 page_cache_release(page);
1543 goto out;
1544 }
1545
1546 /* nr is the maximum number of bytes to copy from this page */
1547 nr = PAGE_CACHE_SIZE;
1548 if (index == end_index) {
1549 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1550 if (nr <= offset) {
1551 page_cache_release(page);
1552 goto out;
1553 }
1554 }
1555 nr = nr - offset;
1da177e4
LT
1556
1557 /* If users can be writing to this page using arbitrary
1558 * virtual addresses, take care about potential aliasing
1559 * before reading the page on the kernel side.
1560 */
1561 if (mapping_writably_mapped(mapping))
1562 flush_dcache_page(page);
1563
1564 /*
ec0f1637
JK
1565 * When a sequential read accesses a page several times,
1566 * only mark it as accessed the first time.
1da177e4 1567 */
ec0f1637 1568 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1569 mark_page_accessed(page);
1570 prev_index = index;
1571
1572 /*
1573 * Ok, we have the page, and it's up-to-date, so
1574 * now we can copy it to user space...
1da177e4 1575 */
6e58e79d
AV
1576
1577 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1578 offset += ret;
1579 index += offset >> PAGE_CACHE_SHIFT;
1580 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1581 prev_offset = offset;
1da177e4
LT
1582
1583 page_cache_release(page);
6e58e79d
AV
1584 written += ret;
1585 if (!iov_iter_count(iter))
1586 goto out;
1587 if (ret < nr) {
1588 error = -EFAULT;
1589 goto out;
1590 }
1591 continue;
1da177e4
LT
1592
1593page_not_up_to_date:
1594 /* Get exclusive access to the page ... */
85462323
ON
1595 error = lock_page_killable(page);
1596 if (unlikely(error))
1597 goto readpage_error;
1da177e4 1598
8ab22b9a 1599page_not_up_to_date_locked:
da6052f7 1600 /* Did it get truncated before we got the lock? */
1da177e4
LT
1601 if (!page->mapping) {
1602 unlock_page(page);
1603 page_cache_release(page);
1604 continue;
1605 }
1606
1607 /* Did somebody else fill it already? */
1608 if (PageUptodate(page)) {
1609 unlock_page(page);
1610 goto page_ok;
1611 }
1612
1613readpage:
91803b49
JM
1614 /*
1615 * A previous I/O error may have been due to temporary
1616 * failures, eg. multipath errors.
1617 * PG_error will be set again if readpage fails.
1618 */
1619 ClearPageError(page);
1da177e4
LT
1620 /* Start the actual read. The read will unlock the page. */
1621 error = mapping->a_ops->readpage(filp, page);
1622
994fc28c
ZB
1623 if (unlikely(error)) {
1624 if (error == AOP_TRUNCATED_PAGE) {
1625 page_cache_release(page);
6e58e79d 1626 error = 0;
994fc28c
ZB
1627 goto find_page;
1628 }
1da177e4 1629 goto readpage_error;
994fc28c 1630 }
1da177e4
LT
1631
1632 if (!PageUptodate(page)) {
85462323
ON
1633 error = lock_page_killable(page);
1634 if (unlikely(error))
1635 goto readpage_error;
1da177e4
LT
1636 if (!PageUptodate(page)) {
1637 if (page->mapping == NULL) {
1638 /*
2ecdc82e 1639 * invalidate_mapping_pages got it
1da177e4
LT
1640 */
1641 unlock_page(page);
1642 page_cache_release(page);
1643 goto find_page;
1644 }
1645 unlock_page(page);
7ff81078 1646 shrink_readahead_size_eio(filp, ra);
85462323
ON
1647 error = -EIO;
1648 goto readpage_error;
1da177e4
LT
1649 }
1650 unlock_page(page);
1651 }
1652
1da177e4
LT
1653 goto page_ok;
1654
1655readpage_error:
1656 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1657 page_cache_release(page);
1658 goto out;
1659
1660no_cached_page:
1661 /*
1662 * Ok, it wasn't cached, so we need to create a new
1663 * page..
1664 */
eb2be189
NP
1665 page = page_cache_alloc_cold(mapping);
1666 if (!page) {
6e58e79d 1667 error = -ENOMEM;
eb2be189 1668 goto out;
1da177e4 1669 }
eb2be189 1670 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1671 index, GFP_KERNEL);
1672 if (error) {
eb2be189 1673 page_cache_release(page);
6e58e79d
AV
1674 if (error == -EEXIST) {
1675 error = 0;
1da177e4 1676 goto find_page;
6e58e79d 1677 }
1da177e4
LT
1678 goto out;
1679 }
1da177e4
LT
1680 goto readpage;
1681 }
1682
1683out:
7ff81078
FW
1684 ra->prev_pos = prev_index;
1685 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1686 ra->prev_pos |= prev_offset;
1da177e4 1687
f4e6b498 1688 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1689 file_accessed(filp);
6e58e79d 1690 return written ? written : error;
1da177e4
LT
1691}
1692
0ceb3314
DM
1693/*
1694 * Performs necessary checks before doing a write
1695 * @iov: io vector request
1696 * @nr_segs: number of segments in the iovec
1697 * @count: number of bytes to write
1698 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1699 *
1700 * Adjust number of segments and amount of bytes to write (nr_segs should be
1701 * properly initialized first). Returns appropriate error code that caller
1702 * should return or zero in case that write should be allowed.
1703 */
1704int generic_segment_checks(const struct iovec *iov,
1705 unsigned long *nr_segs, size_t *count, int access_flags)
1706{
1707 unsigned long seg;
1708 size_t cnt = 0;
1709 for (seg = 0; seg < *nr_segs; seg++) {
1710 const struct iovec *iv = &iov[seg];
1711
1712 /*
1713 * If any segment has a negative length, or the cumulative
1714 * length ever wraps negative then return -EINVAL.
1715 */
1716 cnt += iv->iov_len;
1717 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1718 return -EINVAL;
1719 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1720 continue;
1721 if (seg == 0)
1722 return -EFAULT;
1723 *nr_segs = seg;
1724 cnt -= iv->iov_len; /* This segment is no good */
1725 break;
1726 }
1727 *count = cnt;
1728 return 0;
1729}
1730EXPORT_SYMBOL(generic_segment_checks);
1731
485bb99b 1732/**
b2abacf3 1733 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1734 * @iocb: kernel I/O control block
1735 * @iov: io vector request
1736 * @nr_segs: number of segments in the iovec
b2abacf3 1737 * @pos: current file position
485bb99b 1738 *
1da177e4
LT
1739 * This is the "read()" routine for all filesystems
1740 * that can use the page cache directly.
1741 */
1742ssize_t
543ade1f
BP
1743generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1744 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1745{
1746 struct file *filp = iocb->ki_filp;
1747 ssize_t retval;
1da177e4 1748 size_t count;
543ade1f 1749 loff_t *ppos = &iocb->ki_pos;
6e58e79d 1750 struct iov_iter i;
1da177e4
LT
1751
1752 count = 0;
0ceb3314
DM
1753 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1754 if (retval)
1755 return retval;
6e58e79d 1756 iov_iter_init(&i, iov, nr_segs, count, 0);
1da177e4
LT
1757
1758 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1759 if (filp->f_flags & O_DIRECT) {
543ade1f 1760 loff_t size;
1da177e4
LT
1761 struct address_space *mapping;
1762 struct inode *inode;
1763
1764 mapping = filp->f_mapping;
1765 inode = mapping->host;
1da177e4
LT
1766 if (!count)
1767 goto out; /* skip atime */
1768 size = i_size_read(inode);
9fe55eea 1769 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1770 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1771 if (!retval) {
1772 retval = mapping->a_ops->direct_IO(READ, iocb,
1773 iov, pos, nr_segs);
1774 }
1775 if (retval > 0) {
1776 *ppos = pos + retval;
1777 count -= retval;
6e58e79d
AV
1778 /*
1779 * If we did a short DIO read we need to skip the
1780 * section of the iov that we've already read data into.
1781 */
1782 iov_iter_advance(&i, retval);
9fe55eea 1783 }
66f998f6 1784
9fe55eea
SW
1785 /*
1786 * Btrfs can have a short DIO read if we encounter
1787 * compressed extents, so if there was an error, or if
1788 * we've already read everything we wanted to, or if
1789 * there was a short read because we hit EOF, go ahead
1790 * and return. Otherwise fallthrough to buffered io for
1791 * the rest of the read.
1792 */
1793 if (retval < 0 || !count || *ppos >= size) {
1794 file_accessed(filp);
1795 goto out;
0e0bcae3 1796 }
1da177e4
LT
1797 }
1798
6e58e79d 1799 retval = do_generic_file_read(filp, ppos, &i, retval);
1da177e4
LT
1800out:
1801 return retval;
1802}
1da177e4
LT
1803EXPORT_SYMBOL(generic_file_aio_read);
1804
1da177e4 1805#ifdef CONFIG_MMU
485bb99b
RD
1806/**
1807 * page_cache_read - adds requested page to the page cache if not already there
1808 * @file: file to read
1809 * @offset: page index
1810 *
1da177e4
LT
1811 * This adds the requested page to the page cache if it isn't already there,
1812 * and schedules an I/O to read in its contents from disk.
1813 */
920c7a5d 1814static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1815{
1816 struct address_space *mapping = file->f_mapping;
1817 struct page *page;
994fc28c 1818 int ret;
1da177e4 1819
994fc28c
ZB
1820 do {
1821 page = page_cache_alloc_cold(mapping);
1822 if (!page)
1823 return -ENOMEM;
1824
1825 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1826 if (ret == 0)
1827 ret = mapping->a_ops->readpage(file, page);
1828 else if (ret == -EEXIST)
1829 ret = 0; /* losing race to add is OK */
1da177e4 1830
1da177e4 1831 page_cache_release(page);
1da177e4 1832
994fc28c
ZB
1833 } while (ret == AOP_TRUNCATED_PAGE);
1834
1835 return ret;
1da177e4
LT
1836}
1837
1838#define MMAP_LOTSAMISS (100)
1839
ef00e08e
LT
1840/*
1841 * Synchronous readahead happens when we don't even find
1842 * a page in the page cache at all.
1843 */
1844static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1845 struct file_ra_state *ra,
1846 struct file *file,
1847 pgoff_t offset)
1848{
1849 unsigned long ra_pages;
1850 struct address_space *mapping = file->f_mapping;
1851
1852 /* If we don't want any read-ahead, don't bother */
64363aad 1853 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1854 return;
275b12bf
WF
1855 if (!ra->ra_pages)
1856 return;
ef00e08e 1857
64363aad 1858 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1859 page_cache_sync_readahead(mapping, ra, file, offset,
1860 ra->ra_pages);
ef00e08e
LT
1861 return;
1862 }
1863
207d04ba
AK
1864 /* Avoid banging the cache line if not needed */
1865 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1866 ra->mmap_miss++;
1867
1868 /*
1869 * Do we miss much more than hit in this file? If so,
1870 * stop bothering with read-ahead. It will only hurt.
1871 */
1872 if (ra->mmap_miss > MMAP_LOTSAMISS)
1873 return;
1874
d30a1100
WF
1875 /*
1876 * mmap read-around
1877 */
ef00e08e 1878 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1879 ra->start = max_t(long, 0, offset - ra_pages / 2);
1880 ra->size = ra_pages;
2cbea1d3 1881 ra->async_size = ra_pages / 4;
275b12bf 1882 ra_submit(ra, mapping, file);
ef00e08e
LT
1883}
1884
1885/*
1886 * Asynchronous readahead happens when we find the page and PG_readahead,
1887 * so we want to possibly extend the readahead further..
1888 */
1889static void do_async_mmap_readahead(struct vm_area_struct *vma,
1890 struct file_ra_state *ra,
1891 struct file *file,
1892 struct page *page,
1893 pgoff_t offset)
1894{
1895 struct address_space *mapping = file->f_mapping;
1896
1897 /* If we don't want any read-ahead, don't bother */
64363aad 1898 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1899 return;
1900 if (ra->mmap_miss > 0)
1901 ra->mmap_miss--;
1902 if (PageReadahead(page))
2fad6f5d
WF
1903 page_cache_async_readahead(mapping, ra, file,
1904 page, offset, ra->ra_pages);
ef00e08e
LT
1905}
1906
485bb99b 1907/**
54cb8821 1908 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1909 * @vma: vma in which the fault was taken
1910 * @vmf: struct vm_fault containing details of the fault
485bb99b 1911 *
54cb8821 1912 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1913 * mapped memory region to read in file data during a page fault.
1914 *
1915 * The goto's are kind of ugly, but this streamlines the normal case of having
1916 * it in the page cache, and handles the special cases reasonably without
1917 * having a lot of duplicated code.
1918 */
d0217ac0 1919int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1920{
1921 int error;
54cb8821 1922 struct file *file = vma->vm_file;
1da177e4
LT
1923 struct address_space *mapping = file->f_mapping;
1924 struct file_ra_state *ra = &file->f_ra;
1925 struct inode *inode = mapping->host;
ef00e08e 1926 pgoff_t offset = vmf->pgoff;
1da177e4 1927 struct page *page;
99e3e53f 1928 loff_t size;
83c54070 1929 int ret = 0;
1da177e4 1930
99e3e53f
KS
1931 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1932 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1933 return VM_FAULT_SIGBUS;
1da177e4 1934
1da177e4 1935 /*
49426420 1936 * Do we have something in the page cache already?
1da177e4 1937 */
ef00e08e 1938 page = find_get_page(mapping, offset);
45cac65b 1939 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1940 /*
ef00e08e
LT
1941 * We found the page, so try async readahead before
1942 * waiting for the lock.
1da177e4 1943 */
ef00e08e 1944 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1945 } else if (!page) {
ef00e08e
LT
1946 /* No page in the page cache at all */
1947 do_sync_mmap_readahead(vma, ra, file, offset);
1948 count_vm_event(PGMAJFAULT);
456f998e 1949 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1950 ret = VM_FAULT_MAJOR;
1951retry_find:
b522c94d 1952 page = find_get_page(mapping, offset);
1da177e4
LT
1953 if (!page)
1954 goto no_cached_page;
1955 }
1956
d88c0922
ML
1957 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1958 page_cache_release(page);
d065bd81 1959 return ret | VM_FAULT_RETRY;
d88c0922 1960 }
b522c94d
ML
1961
1962 /* Did it get truncated? */
1963 if (unlikely(page->mapping != mapping)) {
1964 unlock_page(page);
1965 put_page(page);
1966 goto retry_find;
1967 }
309381fe 1968 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1969
1da177e4 1970 /*
d00806b1
NP
1971 * We have a locked page in the page cache, now we need to check
1972 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1973 */
d00806b1 1974 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1975 goto page_not_uptodate;
1976
ef00e08e
LT
1977 /*
1978 * Found the page and have a reference on it.
1979 * We must recheck i_size under page lock.
1980 */
99e3e53f
KS
1981 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1982 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1983 unlock_page(page);
745ad48e 1984 page_cache_release(page);
5307cc1a 1985 return VM_FAULT_SIGBUS;
d00806b1
NP
1986 }
1987
d0217ac0 1988 vmf->page = page;
83c54070 1989 return ret | VM_FAULT_LOCKED;
1da177e4 1990
1da177e4
LT
1991no_cached_page:
1992 /*
1993 * We're only likely to ever get here if MADV_RANDOM is in
1994 * effect.
1995 */
ef00e08e 1996 error = page_cache_read(file, offset);
1da177e4
LT
1997
1998 /*
1999 * The page we want has now been added to the page cache.
2000 * In the unlikely event that someone removed it in the
2001 * meantime, we'll just come back here and read it again.
2002 */
2003 if (error >= 0)
2004 goto retry_find;
2005
2006 /*
2007 * An error return from page_cache_read can result if the
2008 * system is low on memory, or a problem occurs while trying
2009 * to schedule I/O.
2010 */
2011 if (error == -ENOMEM)
d0217ac0
NP
2012 return VM_FAULT_OOM;
2013 return VM_FAULT_SIGBUS;
1da177e4
LT
2014
2015page_not_uptodate:
1da177e4
LT
2016 /*
2017 * Umm, take care of errors if the page isn't up-to-date.
2018 * Try to re-read it _once_. We do this synchronously,
2019 * because there really aren't any performance issues here
2020 * and we need to check for errors.
2021 */
1da177e4 2022 ClearPageError(page);
994fc28c 2023 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2024 if (!error) {
2025 wait_on_page_locked(page);
2026 if (!PageUptodate(page))
2027 error = -EIO;
2028 }
d00806b1
NP
2029 page_cache_release(page);
2030
2031 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2032 goto retry_find;
1da177e4 2033
d00806b1 2034 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2035 shrink_readahead_size_eio(file, ra);
d0217ac0 2036 return VM_FAULT_SIGBUS;
54cb8821
NP
2037}
2038EXPORT_SYMBOL(filemap_fault);
2039
f1820361
KS
2040void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2041{
2042 struct radix_tree_iter iter;
2043 void **slot;
2044 struct file *file = vma->vm_file;
2045 struct address_space *mapping = file->f_mapping;
2046 loff_t size;
2047 struct page *page;
2048 unsigned long address = (unsigned long) vmf->virtual_address;
2049 unsigned long addr;
2050 pte_t *pte;
2051
2052 rcu_read_lock();
2053 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2054 if (iter.index > vmf->max_pgoff)
2055 break;
2056repeat:
2057 page = radix_tree_deref_slot(slot);
2058 if (unlikely(!page))
2059 goto next;
2060 if (radix_tree_exception(page)) {
2061 if (radix_tree_deref_retry(page))
2062 break;
2063 else
2064 goto next;
2065 }
2066
2067 if (!page_cache_get_speculative(page))
2068 goto repeat;
2069
2070 /* Has the page moved? */
2071 if (unlikely(page != *slot)) {
2072 page_cache_release(page);
2073 goto repeat;
2074 }
2075
2076 if (!PageUptodate(page) ||
2077 PageReadahead(page) ||
2078 PageHWPoison(page))
2079 goto skip;
2080 if (!trylock_page(page))
2081 goto skip;
2082
2083 if (page->mapping != mapping || !PageUptodate(page))
2084 goto unlock;
2085
99e3e53f
KS
2086 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2087 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2088 goto unlock;
2089
2090 pte = vmf->pte + page->index - vmf->pgoff;
2091 if (!pte_none(*pte))
2092 goto unlock;
2093
2094 if (file->f_ra.mmap_miss > 0)
2095 file->f_ra.mmap_miss--;
2096 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2097 do_set_pte(vma, addr, page, pte, false, false);
2098 unlock_page(page);
2099 goto next;
2100unlock:
2101 unlock_page(page);
2102skip:
2103 page_cache_release(page);
2104next:
2105 if (iter.index == vmf->max_pgoff)
2106 break;
2107 }
2108 rcu_read_unlock();
2109}
2110EXPORT_SYMBOL(filemap_map_pages);
2111
4fcf1c62
JK
2112int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2113{
2114 struct page *page = vmf->page;
496ad9aa 2115 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2116 int ret = VM_FAULT_LOCKED;
2117
14da9200 2118 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2119 file_update_time(vma->vm_file);
2120 lock_page(page);
2121 if (page->mapping != inode->i_mapping) {
2122 unlock_page(page);
2123 ret = VM_FAULT_NOPAGE;
2124 goto out;
2125 }
14da9200
JK
2126 /*
2127 * We mark the page dirty already here so that when freeze is in
2128 * progress, we are guaranteed that writeback during freezing will
2129 * see the dirty page and writeprotect it again.
2130 */
2131 set_page_dirty(page);
1d1d1a76 2132 wait_for_stable_page(page);
4fcf1c62 2133out:
14da9200 2134 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2135 return ret;
2136}
2137EXPORT_SYMBOL(filemap_page_mkwrite);
2138
f0f37e2f 2139const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2140 .fault = filemap_fault,
f1820361 2141 .map_pages = filemap_map_pages,
4fcf1c62 2142 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2143 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2144};
2145
2146/* This is used for a general mmap of a disk file */
2147
2148int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2149{
2150 struct address_space *mapping = file->f_mapping;
2151
2152 if (!mapping->a_ops->readpage)
2153 return -ENOEXEC;
2154 file_accessed(file);
2155 vma->vm_ops = &generic_file_vm_ops;
2156 return 0;
2157}
1da177e4
LT
2158
2159/*
2160 * This is for filesystems which do not implement ->writepage.
2161 */
2162int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2163{
2164 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2165 return -EINVAL;
2166 return generic_file_mmap(file, vma);
2167}
2168#else
2169int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2170{
2171 return -ENOSYS;
2172}
2173int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2174{
2175 return -ENOSYS;
2176}
2177#endif /* CONFIG_MMU */
2178
2179EXPORT_SYMBOL(generic_file_mmap);
2180EXPORT_SYMBOL(generic_file_readonly_mmap);
2181
67f9fd91
SL
2182static struct page *wait_on_page_read(struct page *page)
2183{
2184 if (!IS_ERR(page)) {
2185 wait_on_page_locked(page);
2186 if (!PageUptodate(page)) {
2187 page_cache_release(page);
2188 page = ERR_PTR(-EIO);
2189 }
2190 }
2191 return page;
2192}
2193
6fe6900e 2194static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2195 pgoff_t index,
5e5358e7 2196 int (*filler)(void *, struct page *),
0531b2aa
LT
2197 void *data,
2198 gfp_t gfp)
1da177e4 2199{
eb2be189 2200 struct page *page;
1da177e4
LT
2201 int err;
2202repeat:
2203 page = find_get_page(mapping, index);
2204 if (!page) {
0531b2aa 2205 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2206 if (!page)
2207 return ERR_PTR(-ENOMEM);
e6f67b8c 2208 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2209 if (unlikely(err)) {
2210 page_cache_release(page);
2211 if (err == -EEXIST)
2212 goto repeat;
1da177e4 2213 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2214 return ERR_PTR(err);
2215 }
1da177e4
LT
2216 err = filler(data, page);
2217 if (err < 0) {
2218 page_cache_release(page);
2219 page = ERR_PTR(err);
67f9fd91
SL
2220 } else {
2221 page = wait_on_page_read(page);
1da177e4
LT
2222 }
2223 }
1da177e4
LT
2224 return page;
2225}
2226
0531b2aa 2227static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2228 pgoff_t index,
5e5358e7 2229 int (*filler)(void *, struct page *),
0531b2aa
LT
2230 void *data,
2231 gfp_t gfp)
2232
1da177e4
LT
2233{
2234 struct page *page;
2235 int err;
2236
2237retry:
0531b2aa 2238 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2239 if (IS_ERR(page))
c855ff37 2240 return page;
1da177e4
LT
2241 if (PageUptodate(page))
2242 goto out;
2243
2244 lock_page(page);
2245 if (!page->mapping) {
2246 unlock_page(page);
2247 page_cache_release(page);
2248 goto retry;
2249 }
2250 if (PageUptodate(page)) {
2251 unlock_page(page);
2252 goto out;
2253 }
2254 err = filler(data, page);
2255 if (err < 0) {
2256 page_cache_release(page);
c855ff37 2257 return ERR_PTR(err);
67f9fd91
SL
2258 } else {
2259 page = wait_on_page_read(page);
2260 if (IS_ERR(page))
2261 return page;
1da177e4 2262 }
c855ff37 2263out:
6fe6900e
NP
2264 mark_page_accessed(page);
2265 return page;
2266}
0531b2aa
LT
2267
2268/**
67f9fd91 2269 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2270 * @mapping: the page's address_space
2271 * @index: the page index
2272 * @filler: function to perform the read
5e5358e7 2273 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2274 *
0531b2aa 2275 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2276 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2277 *
2278 * If the page does not get brought uptodate, return -EIO.
2279 */
67f9fd91 2280struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2281 pgoff_t index,
5e5358e7 2282 int (*filler)(void *, struct page *),
0531b2aa
LT
2283 void *data)
2284{
2285 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2286}
67f9fd91 2287EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2288
2289/**
2290 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2291 * @mapping: the page's address_space
2292 * @index: the page index
2293 * @gfp: the page allocator flags to use if allocating
2294 *
2295 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2296 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2297 *
2298 * If the page does not get brought uptodate, return -EIO.
2299 */
2300struct page *read_cache_page_gfp(struct address_space *mapping,
2301 pgoff_t index,
2302 gfp_t gfp)
2303{
2304 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2305
67f9fd91 2306 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2307}
2308EXPORT_SYMBOL(read_cache_page_gfp);
2309
1da177e4
LT
2310/*
2311 * Performs necessary checks before doing a write
2312 *
485bb99b 2313 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2314 * Returns appropriate error code that caller should return or
2315 * zero in case that write should be allowed.
2316 */
2317inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2318{
2319 struct inode *inode = file->f_mapping->host;
59e99e5b 2320 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2321
2322 if (unlikely(*pos < 0))
2323 return -EINVAL;
2324
1da177e4
LT
2325 if (!isblk) {
2326 /* FIXME: this is for backwards compatibility with 2.4 */
2327 if (file->f_flags & O_APPEND)
2328 *pos = i_size_read(inode);
2329
2330 if (limit != RLIM_INFINITY) {
2331 if (*pos >= limit) {
2332 send_sig(SIGXFSZ, current, 0);
2333 return -EFBIG;
2334 }
2335 if (*count > limit - (typeof(limit))*pos) {
2336 *count = limit - (typeof(limit))*pos;
2337 }
2338 }
2339 }
2340
2341 /*
2342 * LFS rule
2343 */
2344 if (unlikely(*pos + *count > MAX_NON_LFS &&
2345 !(file->f_flags & O_LARGEFILE))) {
2346 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2347 return -EFBIG;
2348 }
2349 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2350 *count = MAX_NON_LFS - (unsigned long)*pos;
2351 }
2352 }
2353
2354 /*
2355 * Are we about to exceed the fs block limit ?
2356 *
2357 * If we have written data it becomes a short write. If we have
2358 * exceeded without writing data we send a signal and return EFBIG.
2359 * Linus frestrict idea will clean these up nicely..
2360 */
2361 if (likely(!isblk)) {
2362 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2363 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2364 return -EFBIG;
2365 }
2366 /* zero-length writes at ->s_maxbytes are OK */
2367 }
2368
2369 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2370 *count = inode->i_sb->s_maxbytes - *pos;
2371 } else {
9361401e 2372#ifdef CONFIG_BLOCK
1da177e4
LT
2373 loff_t isize;
2374 if (bdev_read_only(I_BDEV(inode)))
2375 return -EPERM;
2376 isize = i_size_read(inode);
2377 if (*pos >= isize) {
2378 if (*count || *pos > isize)
2379 return -ENOSPC;
2380 }
2381
2382 if (*pos + *count > isize)
2383 *count = isize - *pos;
9361401e
DH
2384#else
2385 return -EPERM;
2386#endif
1da177e4
LT
2387 }
2388 return 0;
2389}
2390EXPORT_SYMBOL(generic_write_checks);
2391
afddba49
NP
2392int pagecache_write_begin(struct file *file, struct address_space *mapping,
2393 loff_t pos, unsigned len, unsigned flags,
2394 struct page **pagep, void **fsdata)
2395{
2396 const struct address_space_operations *aops = mapping->a_ops;
2397
4e02ed4b 2398 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2399 pagep, fsdata);
afddba49
NP
2400}
2401EXPORT_SYMBOL(pagecache_write_begin);
2402
2403int pagecache_write_end(struct file *file, struct address_space *mapping,
2404 loff_t pos, unsigned len, unsigned copied,
2405 struct page *page, void *fsdata)
2406{
2407 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2408
4e02ed4b
NP
2409 mark_page_accessed(page);
2410 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2411}
2412EXPORT_SYMBOL(pagecache_write_end);
2413
1da177e4
LT
2414ssize_t
2415generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
5cb6c6c7 2416 unsigned long *nr_segs, loff_t pos,
1da177e4
LT
2417 size_t count, size_t ocount)
2418{
2419 struct file *file = iocb->ki_filp;
2420 struct address_space *mapping = file->f_mapping;
2421 struct inode *inode = mapping->host;
2422 ssize_t written;
a969e903
CH
2423 size_t write_len;
2424 pgoff_t end;
1da177e4
LT
2425
2426 if (count != ocount)
2427 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2428
a969e903
CH
2429 write_len = iov_length(iov, *nr_segs);
2430 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2431
48b47c56 2432 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2433 if (written)
2434 goto out;
2435
2436 /*
2437 * After a write we want buffered reads to be sure to go to disk to get
2438 * the new data. We invalidate clean cached page from the region we're
2439 * about to write. We do this *before* the write so that we can return
6ccfa806 2440 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2441 */
2442 if (mapping->nrpages) {
2443 written = invalidate_inode_pages2_range(mapping,
2444 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2445 /*
2446 * If a page can not be invalidated, return 0 to fall back
2447 * to buffered write.
2448 */
2449 if (written) {
2450 if (written == -EBUSY)
2451 return 0;
a969e903 2452 goto out;
6ccfa806 2453 }
a969e903
CH
2454 }
2455
2456 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2457
2458 /*
2459 * Finally, try again to invalidate clean pages which might have been
2460 * cached by non-direct readahead, or faulted in by get_user_pages()
2461 * if the source of the write was an mmap'ed region of the file
2462 * we're writing. Either one is a pretty crazy thing to do,
2463 * so we don't support it 100%. If this invalidation
2464 * fails, tough, the write still worked...
2465 */
2466 if (mapping->nrpages) {
2467 invalidate_inode_pages2_range(mapping,
2468 pos >> PAGE_CACHE_SHIFT, end);
2469 }
2470
1da177e4 2471 if (written > 0) {
0116651c
NK
2472 pos += written;
2473 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2474 i_size_write(inode, pos);
1da177e4
LT
2475 mark_inode_dirty(inode);
2476 }
5cb6c6c7 2477 iocb->ki_pos = pos;
1da177e4 2478 }
a969e903 2479out:
1da177e4
LT
2480 return written;
2481}
2482EXPORT_SYMBOL(generic_file_direct_write);
2483
eb2be189
NP
2484/*
2485 * Find or create a page at the given pagecache position. Return the locked
2486 * page. This function is specifically for buffered writes.
2487 */
54566b2c
NP
2488struct page *grab_cache_page_write_begin(struct address_space *mapping,
2489 pgoff_t index, unsigned flags)
eb2be189
NP
2490{
2491 int status;
0faa70cb 2492 gfp_t gfp_mask;
eb2be189 2493 struct page *page;
54566b2c 2494 gfp_t gfp_notmask = 0;
0faa70cb 2495
1010bb1b
FW
2496 gfp_mask = mapping_gfp_mask(mapping);
2497 if (mapping_cap_account_dirty(mapping))
2498 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2499 if (flags & AOP_FLAG_NOFS)
2500 gfp_notmask = __GFP_FS;
eb2be189
NP
2501repeat:
2502 page = find_lock_page(mapping, index);
c585a267 2503 if (page)
3d08bcc8 2504 goto found;
eb2be189 2505
0faa70cb 2506 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2507 if (!page)
2508 return NULL;
54566b2c
NP
2509 status = add_to_page_cache_lru(page, mapping, index,
2510 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2511 if (unlikely(status)) {
2512 page_cache_release(page);
2513 if (status == -EEXIST)
2514 goto repeat;
2515 return NULL;
2516 }
3d08bcc8 2517found:
1d1d1a76 2518 wait_for_stable_page(page);
eb2be189
NP
2519 return page;
2520}
54566b2c 2521EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2522
3b93f911 2523ssize_t generic_perform_write(struct file *file,
afddba49
NP
2524 struct iov_iter *i, loff_t pos)
2525{
2526 struct address_space *mapping = file->f_mapping;
2527 const struct address_space_operations *a_ops = mapping->a_ops;
2528 long status = 0;
2529 ssize_t written = 0;
674b892e
NP
2530 unsigned int flags = 0;
2531
2532 /*
2533 * Copies from kernel address space cannot fail (NFSD is a big user).
2534 */
2535 if (segment_eq(get_fs(), KERNEL_DS))
2536 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2537
2538 do {
2539 struct page *page;
afddba49
NP
2540 unsigned long offset; /* Offset into pagecache page */
2541 unsigned long bytes; /* Bytes to write to page */
2542 size_t copied; /* Bytes copied from user */
2543 void *fsdata;
2544
2545 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2546 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2547 iov_iter_count(i));
2548
2549again:
afddba49
NP
2550 /*
2551 * Bring in the user page that we will copy from _first_.
2552 * Otherwise there's a nasty deadlock on copying from the
2553 * same page as we're writing to, without it being marked
2554 * up-to-date.
2555 *
2556 * Not only is this an optimisation, but it is also required
2557 * to check that the address is actually valid, when atomic
2558 * usercopies are used, below.
2559 */
2560 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2561 status = -EFAULT;
2562 break;
2563 }
2564
674b892e 2565 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2566 &page, &fsdata);
2567 if (unlikely(status))
2568 break;
2569
931e80e4 2570 if (mapping_writably_mapped(mapping))
2571 flush_dcache_page(page);
2572
afddba49 2573 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2574 flush_dcache_page(page);
2575
c8236db9 2576 mark_page_accessed(page);
afddba49
NP
2577 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2578 page, fsdata);
2579 if (unlikely(status < 0))
2580 break;
2581 copied = status;
2582
2583 cond_resched();
2584
124d3b70 2585 iov_iter_advance(i, copied);
afddba49
NP
2586 if (unlikely(copied == 0)) {
2587 /*
2588 * If we were unable to copy any data at all, we must
2589 * fall back to a single segment length write.
2590 *
2591 * If we didn't fallback here, we could livelock
2592 * because not all segments in the iov can be copied at
2593 * once without a pagefault.
2594 */
2595 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2596 iov_iter_single_seg_count(i));
2597 goto again;
2598 }
afddba49
NP
2599 pos += copied;
2600 written += copied;
2601
2602 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2603 if (fatal_signal_pending(current)) {
2604 status = -EINTR;
2605 break;
2606 }
afddba49
NP
2607 } while (iov_iter_count(i));
2608
2609 return written ? written : status;
2610}
3b93f911 2611EXPORT_SYMBOL(generic_perform_write);
1da177e4 2612
e4dd9de3
JK
2613/**
2614 * __generic_file_aio_write - write data to a file
2615 * @iocb: IO state structure (file, offset, etc.)
2616 * @iov: vector with data to write
2617 * @nr_segs: number of segments in the vector
e4dd9de3
JK
2618 *
2619 * This function does all the work needed for actually writing data to a
2620 * file. It does all basic checks, removes SUID from the file, updates
2621 * modification times and calls proper subroutines depending on whether we
2622 * do direct IO or a standard buffered write.
2623 *
2624 * It expects i_mutex to be grabbed unless we work on a block device or similar
2625 * object which does not need locking at all.
2626 *
2627 * This function does *not* take care of syncing data in case of O_SYNC write.
2628 * A caller has to handle it. This is mainly due to the fact that we want to
2629 * avoid syncing under i_mutex.
2630 */
2631ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
41fc56d5 2632 unsigned long nr_segs)
1da177e4
LT
2633{
2634 struct file *file = iocb->ki_filp;
fb5527e6 2635 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2636 size_t ocount; /* original count */
2637 size_t count; /* after file limit checks */
2638 struct inode *inode = mapping->host;
41fc56d5 2639 loff_t pos = iocb->ki_pos;
3b93f911 2640 ssize_t written = 0;
1da177e4 2641 ssize_t err;
3b93f911
AV
2642 ssize_t status;
2643 struct iov_iter from;
1da177e4
LT
2644
2645 ocount = 0;
0ceb3314
DM
2646 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2647 if (err)
2648 return err;
1da177e4
LT
2649
2650 count = ocount;
1da177e4 2651
1da177e4
LT
2652 /* We can write back this queue in page reclaim */
2653 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2654 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2655 if (err)
2656 goto out;
2657
2658 if (count == 0)
2659 goto out;
2660
2f1936b8 2661 err = file_remove_suid(file);
1da177e4
LT
2662 if (err)
2663 goto out;
2664
c3b2da31
JB
2665 err = file_update_time(file);
2666 if (err)
2667 goto out;
1da177e4 2668
3b93f911
AV
2669 iov_iter_init(&from, iov, nr_segs, count, 0);
2670
1da177e4
LT
2671 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2672 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2673 loff_t endbyte;
fb5527e6 2674
3b93f911 2675 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
5cb6c6c7 2676 count, ocount);
1da177e4
LT
2677 if (written < 0 || written == count)
2678 goto out;
3b93f911
AV
2679 iov_iter_advance(&from, written);
2680
1da177e4
LT
2681 /*
2682 * direct-io write to a hole: fall through to buffered I/O
2683 * for completing the rest of the request.
2684 */
2685 pos += written;
2686 count -= written;
3b93f911
AV
2687
2688 status = generic_perform_write(file, &from, pos);
fb5527e6 2689 /*
3b93f911 2690 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2691 * then we want to return the number of bytes which were
2692 * direct-written, or the error code if that was zero. Note
2693 * that this differs from normal direct-io semantics, which
2694 * will return -EFOO even if some bytes were written.
2695 */
3b93f911
AV
2696 if (unlikely(status < 0) && !written) {
2697 err = status;
fb5527e6
JM
2698 goto out;
2699 }
3b93f911 2700 iocb->ki_pos = pos + status;
fb5527e6
JM
2701 /*
2702 * We need to ensure that the page cache pages are written to
2703 * disk and invalidated to preserve the expected O_DIRECT
2704 * semantics.
2705 */
3b93f911 2706 endbyte = pos + status - 1;
c05c4edd 2707 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2708 if (err == 0) {
3b93f911 2709 written += status;
fb5527e6
JM
2710 invalidate_mapping_pages(mapping,
2711 pos >> PAGE_CACHE_SHIFT,
2712 endbyte >> PAGE_CACHE_SHIFT);
2713 } else {
2714 /*
2715 * We don't know how much we wrote, so just return
2716 * the number of bytes which were direct-written
2717 */
2718 }
2719 } else {
3b93f911
AV
2720 written = generic_perform_write(file, &from, pos);
2721 if (likely(written >= 0))
2722 iocb->ki_pos = pos + written;
fb5527e6 2723 }
1da177e4
LT
2724out:
2725 current->backing_dev_info = NULL;
2726 return written ? written : err;
2727}
e4dd9de3
JK
2728EXPORT_SYMBOL(__generic_file_aio_write);
2729
e4dd9de3
JK
2730/**
2731 * generic_file_aio_write - write data to a file
2732 * @iocb: IO state structure
2733 * @iov: vector with data to write
2734 * @nr_segs: number of segments in the vector
2735 * @pos: position in file where to write
2736 *
2737 * This is a wrapper around __generic_file_aio_write() to be used by most
2738 * filesystems. It takes care of syncing the file in case of O_SYNC file
2739 * and acquires i_mutex as needed.
2740 */
027445c3
BP
2741ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2742 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2743{
2744 struct file *file = iocb->ki_filp;
148f948b 2745 struct inode *inode = file->f_mapping->host;
1da177e4 2746 ssize_t ret;
1da177e4
LT
2747
2748 BUG_ON(iocb->ki_pos != pos);
2749
1b1dcc1b 2750 mutex_lock(&inode->i_mutex);
41fc56d5 2751 ret = __generic_file_aio_write(iocb, iov, nr_segs);
1b1dcc1b 2752 mutex_unlock(&inode->i_mutex);
1da177e4 2753
02afc27f 2754 if (ret > 0) {
1da177e4
LT
2755 ssize_t err;
2756
d311d79d
AV
2757 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2758 if (err < 0)
1da177e4
LT
2759 ret = err;
2760 }
2761 return ret;
2762}
2763EXPORT_SYMBOL(generic_file_aio_write);
2764
cf9a2ae8
DH
2765/**
2766 * try_to_release_page() - release old fs-specific metadata on a page
2767 *
2768 * @page: the page which the kernel is trying to free
2769 * @gfp_mask: memory allocation flags (and I/O mode)
2770 *
2771 * The address_space is to try to release any data against the page
2772 * (presumably at page->private). If the release was successful, return `1'.
2773 * Otherwise return zero.
2774 *
266cf658
DH
2775 * This may also be called if PG_fscache is set on a page, indicating that the
2776 * page is known to the local caching routines.
2777 *
cf9a2ae8 2778 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2779 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2780 *
cf9a2ae8
DH
2781 */
2782int try_to_release_page(struct page *page, gfp_t gfp_mask)
2783{
2784 struct address_space * const mapping = page->mapping;
2785
2786 BUG_ON(!PageLocked(page));
2787 if (PageWriteback(page))
2788 return 0;
2789
2790 if (mapping && mapping->a_ops->releasepage)
2791 return mapping->a_ops->releasepage(page, gfp_mask);
2792 return try_to_free_buffers(page);
2793}
2794
2795EXPORT_SYMBOL(try_to_release_page);