mm: fix fault vs invalidate race for linear mappings
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
44110fe3 32#include <linux/cpuset.h>
ceffc078 33#include "filemap.h"
0f8053a5
NP
34#include "internal.h"
35
1da177e4 36/*
1da177e4
LT
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
1da177e4
LT
41#include <asm/mman.h>
42
5ce7852c
AB
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
1da177e4
LT
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
1da177e4
LT
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
1b1dcc1b 81 * ->i_mutex
1da177e4
LT
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 123 BUG_ON(page_mapped(page));
1da177e4
LT
124}
125
126void remove_from_page_cache(struct page *page)
127{
128 struct address_space *mapping = page->mapping;
129
cd7619d6 130 BUG_ON(!PageLocked(page));
1da177e4
LT
131
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
135}
136
137static int sync_page(void *word)
138{
139 struct address_space *mapping;
140 struct page *page;
141
07808b74 142 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
143
144 /*
dd1d5afc
WLII
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 160 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
1da177e4
LT
164 */
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
171}
172
173/**
485bb99b 174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
469eb4d0 177 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 178 * @sync_mode: enable synchronous operation
1da177e4 179 *
485bb99b
RD
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
182 *
1da177e4 183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 184 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
187 */
ebcf28e1
AM
188int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
1da177e4
LT
190{
191 int ret;
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
111ebb6e
OH
195 .range_start = start,
196 .range_end = end,
1da177e4
LT
197 };
198
199 if (!mapping_cap_writeback_dirty(mapping))
200 return 0;
201
202 ret = do_writepages(mapping, &wbc);
203 return ret;
204}
205
206static inline int __filemap_fdatawrite(struct address_space *mapping,
207 int sync_mode)
208{
111ebb6e 209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
210}
211
212int filemap_fdatawrite(struct address_space *mapping)
213{
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215}
216EXPORT_SYMBOL(filemap_fdatawrite);
217
ebcf28e1
AM
218static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end)
1da177e4
LT
220{
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222}
223
485bb99b
RD
224/**
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
227 *
1da177e4
LT
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
230 */
231int filemap_flush(struct address_space *mapping)
232{
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234}
235EXPORT_SYMBOL(filemap_flush);
236
485bb99b
RD
237/**
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
242 *
1da177e4
LT
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
245 */
ebcf28e1 246int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
247 pgoff_t start, pgoff_t end)
248{
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252 pgoff_t index;
253
254 if (end < start)
255 return 0;
256
257 pagevec_init(&pvec, 0);
258 index = start;
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 unsigned i;
264
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
267
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
270 continue;
271
272 wait_on_page_writeback(page);
273 if (PageError(page))
274 ret = -EIO;
275 }
276 pagevec_release(&pvec);
277 cond_resched();
278 }
279
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
285
286 return ret;
287}
288
485bb99b
RD
289/**
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
295 *
1da177e4
LT
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
299 *
1b1dcc1b 300 * We need to re-take i_mutex during the generic_osync_inode list walk because
1da177e4
LT
301 * it is otherwise livelockable.
302 */
303int sync_page_range(struct inode *inode, struct address_space *mapping,
268fc16e 304 loff_t pos, loff_t count)
1da177e4
LT
305{
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 int ret;
309
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 return 0;
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 if (ret == 0) {
1b1dcc1b 314 mutex_lock(&inode->i_mutex);
1da177e4 315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1b1dcc1b 316 mutex_unlock(&inode->i_mutex);
1da177e4
LT
317 }
318 if (ret == 0)
319 ret = wait_on_page_writeback_range(mapping, start, end);
320 return ret;
321}
322EXPORT_SYMBOL(sync_page_range);
323
485bb99b
RD
324/**
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
330 *
72fd4a35 331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
1da177e4
LT
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
334 */
268fc16e
OH
335int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
1da177e4
LT
337{
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 int ret;
341
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 return 0;
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 if (ret == 0)
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 if (ret == 0)
348 ret = wait_on_page_writeback_range(mapping, start, end);
349 return ret;
350}
268fc16e 351EXPORT_SYMBOL(sync_page_range_nolock);
1da177e4
LT
352
353/**
485bb99b 354 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 355 * @mapping: address space structure to wait for
485bb99b
RD
356 *
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
1da177e4
LT
359 */
360int filemap_fdatawait(struct address_space *mapping)
361{
362 loff_t i_size = i_size_read(mapping->host);
363
364 if (i_size == 0)
365 return 0;
366
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
369}
370EXPORT_SYMBOL(filemap_fdatawait);
371
372int filemap_write_and_wait(struct address_space *mapping)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = filemap_fdatawrite(mapping);
378 /*
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
383 */
384 if (err != -EIO) {
385 int err2 = filemap_fdatawait(mapping);
386 if (!err)
387 err = err2;
388 }
1da177e4 389 }
28fd1298 390 return err;
1da177e4 391}
28fd1298 392EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 393
485bb99b
RD
394/**
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
399 *
469eb4d0
AM
400 * Write out and wait upon file offsets lstart->lend, inclusive.
401 *
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
404 */
1da177e4
LT
405int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
407{
28fd1298 408 int err = 0;
1da177e4
LT
409
410 if (mapping->nrpages) {
28fd1298
OH
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 WB_SYNC_ALL);
413 /* See comment of filemap_write_and_wait() */
414 if (err != -EIO) {
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
418 if (!err)
419 err = err2;
420 }
1da177e4 421 }
28fd1298 422 return err;
1da177e4
LT
423}
424
485bb99b
RD
425/**
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page: page to add
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
431 *
432 * This function is used to add newly allocated pagecache pages;
1da177e4
LT
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
435 *
436 * This function does not add the page to the LRU. The caller must do that.
437 */
438int add_to_page_cache(struct page *page, struct address_space *mapping,
6daa0e28 439 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
440{
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443 if (error == 0) {
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 if (!error) {
447 page_cache_get(page);
448 SetPageLocked(page);
449 page->mapping = mapping;
450 page->index = offset;
451 mapping->nrpages++;
347ce434 452 __inc_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
453 }
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 }
457 return error;
458}
1da177e4
LT
459EXPORT_SYMBOL(add_to_page_cache);
460
461int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 462 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
463{
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 if (ret == 0)
466 lru_cache_add(page);
467 return ret;
468}
469
44110fe3 470#ifdef CONFIG_NUMA
2ae88149 471struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
472{
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
2ae88149 475 return alloc_pages_node(n, gfp, 0);
44110fe3 476 }
2ae88149 477 return alloc_pages(gfp, 0);
44110fe3 478}
2ae88149 479EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
480#endif
481
db37648c
NP
482static int __sleep_on_page_lock(void *word)
483{
484 io_schedule();
485 return 0;
486}
487
1da177e4
LT
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500 const struct zone *zone = page_zone(page);
501
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
510void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511{
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
520/**
485bb99b 521 * unlock_page - unlock a locked page
1da177e4
LT
522 * @page: the page
523 *
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 *
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
533 */
534void fastcall unlock_page(struct page *page)
535{
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
538 BUG();
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
541}
542EXPORT_SYMBOL(unlock_page);
543
485bb99b
RD
544/**
545 * end_page_writeback - end writeback against a page
546 * @page: the page
1da177e4
LT
547 */
548void end_page_writeback(struct page *page)
549{
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
552 BUG();
553 }
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
556}
557EXPORT_SYMBOL(end_page_writeback);
558
485bb99b
RD
559/**
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
1da177e4 562 *
485bb99b 563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 */
568void fastcall __lock_page(struct page *page)
569{
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
574}
575EXPORT_SYMBOL(__lock_page);
576
db37648c
NP
577/*
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
580 */
581void fastcall __lock_page_nosync(struct page *page)
582{
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
586}
587
485bb99b
RD
588/**
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
592 *
da6052f7
NP
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4
LT
595 */
596struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597{
598 struct page *page;
599
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
602 if (page)
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
605 return page;
606}
1da177e4
LT
607EXPORT_SYMBOL(find_get_page);
608
1da177e4
LT
609/**
610 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
611 * @mapping: the address_space to search
612 * @offset: the page index
1da177e4
LT
613 *
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
616 *
617 * Returns zero if the page was not present. find_lock_page() may sleep.
618 */
619struct page *find_lock_page(struct address_space *mapping,
620 unsigned long offset)
621{
622 struct page *page;
623
624 read_lock_irq(&mapping->tree_lock);
625repeat:
626 page = radix_tree_lookup(&mapping->page_tree, offset);
627 if (page) {
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
bbfbb7ce 631 __lock_page(page);
1da177e4
LT
632 read_lock_irq(&mapping->tree_lock);
633
634 /* Has the page been truncated while we slept? */
bbfbb7ce
ND
635 if (unlikely(page->mapping != mapping ||
636 page->index != offset)) {
1da177e4
LT
637 unlock_page(page);
638 page_cache_release(page);
639 goto repeat;
640 }
641 }
642 }
643 read_unlock_irq(&mapping->tree_lock);
644 return page;
645}
1da177e4
LT
646EXPORT_SYMBOL(find_lock_page);
647
648/**
649 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
650 * @mapping: the page's address_space
651 * @index: the page's index into the mapping
652 * @gfp_mask: page allocation mode
1da177e4
LT
653 *
654 * Locates a page in the pagecache. If the page is not present, a new page
655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656 * LRU list. The returned page is locked and has its reference count
657 * incremented.
658 *
659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660 * allocation!
661 *
662 * find_or_create_page() returns the desired page's address, or zero on
663 * memory exhaustion.
664 */
665struct page *find_or_create_page(struct address_space *mapping,
6daa0e28 666 unsigned long index, gfp_t gfp_mask)
1da177e4
LT
667{
668 struct page *page, *cached_page = NULL;
669 int err;
670repeat:
671 page = find_lock_page(mapping, index);
672 if (!page) {
673 if (!cached_page) {
43c0f3d2
CL
674 cached_page =
675 __page_cache_alloc(gfp_mask);
1da177e4
LT
676 if (!cached_page)
677 return NULL;
678 }
679 err = add_to_page_cache_lru(cached_page, mapping,
680 index, gfp_mask);
681 if (!err) {
682 page = cached_page;
683 cached_page = NULL;
684 } else if (err == -EEXIST)
685 goto repeat;
686 }
687 if (cached_page)
688 page_cache_release(cached_page);
689 return page;
690}
1da177e4
LT
691EXPORT_SYMBOL(find_or_create_page);
692
693/**
694 * find_get_pages - gang pagecache lookup
695 * @mapping: The address_space to search
696 * @start: The starting page index
697 * @nr_pages: The maximum number of pages
698 * @pages: Where the resulting pages are placed
699 *
700 * find_get_pages() will search for and return a group of up to
701 * @nr_pages pages in the mapping. The pages are placed at @pages.
702 * find_get_pages() takes a reference against the returned pages.
703 *
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes. There may be holes in the indices due to not-present pages.
706 *
707 * find_get_pages() returns the number of pages which were found.
708 */
709unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710 unsigned int nr_pages, struct page **pages)
711{
712 unsigned int i;
713 unsigned int ret;
714
715 read_lock_irq(&mapping->tree_lock);
716 ret = radix_tree_gang_lookup(&mapping->page_tree,
717 (void **)pages, start, nr_pages);
718 for (i = 0; i < ret; i++)
719 page_cache_get(pages[i]);
720 read_unlock_irq(&mapping->tree_lock);
721 return ret;
722}
723
ebf43500
JA
724/**
725 * find_get_pages_contig - gang contiguous pagecache lookup
726 * @mapping: The address_space to search
727 * @index: The starting page index
728 * @nr_pages: The maximum number of pages
729 * @pages: Where the resulting pages are placed
730 *
731 * find_get_pages_contig() works exactly like find_get_pages(), except
732 * that the returned number of pages are guaranteed to be contiguous.
733 *
734 * find_get_pages_contig() returns the number of pages which were found.
735 */
736unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737 unsigned int nr_pages, struct page **pages)
738{
739 unsigned int i;
740 unsigned int ret;
741
742 read_lock_irq(&mapping->tree_lock);
743 ret = radix_tree_gang_lookup(&mapping->page_tree,
744 (void **)pages, index, nr_pages);
745 for (i = 0; i < ret; i++) {
746 if (pages[i]->mapping == NULL || pages[i]->index != index)
747 break;
748
749 page_cache_get(pages[i]);
750 index++;
751 }
752 read_unlock_irq(&mapping->tree_lock);
753 return i;
754}
ef71c15c 755EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 756
485bb99b
RD
757/**
758 * find_get_pages_tag - find and return pages that match @tag
759 * @mapping: the address_space to search
760 * @index: the starting page index
761 * @tag: the tag index
762 * @nr_pages: the maximum number of pages
763 * @pages: where the resulting pages are placed
764 *
1da177e4 765 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 766 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
767 */
768unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769 int tag, unsigned int nr_pages, struct page **pages)
770{
771 unsigned int i;
772 unsigned int ret;
773
774 read_lock_irq(&mapping->tree_lock);
775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776 (void **)pages, *index, nr_pages, tag);
777 for (i = 0; i < ret; i++)
778 page_cache_get(pages[i]);
779 if (ret)
780 *index = pages[ret - 1]->index + 1;
781 read_unlock_irq(&mapping->tree_lock);
782 return ret;
783}
ef71c15c 784EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 785
485bb99b
RD
786/**
787 * grab_cache_page_nowait - returns locked page at given index in given cache
788 * @mapping: target address_space
789 * @index: the page index
790 *
72fd4a35 791 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
792 * This is intended for speculative data generators, where the data can
793 * be regenerated if the page couldn't be grabbed. This routine should
794 * be safe to call while holding the lock for another page.
795 *
796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797 * and deadlock against the caller's locked page.
798 */
799struct page *
800grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801{
802 struct page *page = find_get_page(mapping, index);
1da177e4
LT
803
804 if (page) {
805 if (!TestSetPageLocked(page))
806 return page;
807 page_cache_release(page);
808 return NULL;
809 }
2ae88149
NP
810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
1da177e4
LT
812 page_cache_release(page);
813 page = NULL;
814 }
815 return page;
816}
1da177e4
LT
817EXPORT_SYMBOL(grab_cache_page_nowait);
818
76d42bd9
WF
819/*
820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821 * a _large_ part of the i/o request. Imagine the worst scenario:
822 *
823 * ---R__________________________________________B__________
824 * ^ reading here ^ bad block(assume 4k)
825 *
826 * read(R) => miss => readahead(R...B) => media error => frustrating retries
827 * => failing the whole request => read(R) => read(R+1) =>
828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831 *
832 * It is going insane. Fix it by quickly scaling down the readahead size.
833 */
834static void shrink_readahead_size_eio(struct file *filp,
835 struct file_ra_state *ra)
836{
837 if (!ra->ra_pages)
838 return;
839
840 ra->ra_pages /= 4;
76d42bd9
WF
841}
842
485bb99b
RD
843/**
844 * do_generic_mapping_read - generic file read routine
845 * @mapping: address_space to be read
846 * @_ra: file's readahead state
847 * @filp: the file to read
848 * @ppos: current file position
849 * @desc: read_descriptor
850 * @actor: read method
851 *
1da177e4 852 * This is a generic file read routine, and uses the
485bb99b 853 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
854 *
855 * This is really ugly. But the goto's actually try to clarify some
856 * of the logic when it comes to error handling etc.
857 *
485bb99b
RD
858 * Note the struct file* is only passed for the use of readpage.
859 * It may be NULL.
1da177e4
LT
860 */
861void do_generic_mapping_read(struct address_space *mapping,
862 struct file_ra_state *_ra,
863 struct file *filp,
864 loff_t *ppos,
865 read_descriptor_t *desc,
866 read_actor_t actor)
867{
868 struct inode *inode = mapping->host;
869 unsigned long index;
1da177e4
LT
870 unsigned long offset;
871 unsigned long last_index;
872 unsigned long next_index;
873 unsigned long prev_index;
ec0f1637 874 unsigned int prev_offset;
1da177e4
LT
875 struct page *cached_page;
876 int error;
877 struct file_ra_state ra = *_ra;
878
879 cached_page = NULL;
880 index = *ppos >> PAGE_CACHE_SHIFT;
881 next_index = index;
6ce745ed
JK
882 prev_index = ra.prev_index;
883 prev_offset = ra.prev_offset;
1da177e4
LT
884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885 offset = *ppos & ~PAGE_CACHE_MASK;
886
1da177e4
LT
887 for (;;) {
888 struct page *page;
a32ea1e1
N
889 unsigned long end_index;
890 loff_t isize;
1da177e4
LT
891 unsigned long nr, ret;
892
1da177e4
LT
893 cond_resched();
894 if (index == next_index)
895 next_index = page_cache_readahead(mapping, &ra, filp,
896 index, last_index - index);
897
898find_page:
899 page = find_get_page(mapping, index);
900 if (unlikely(page == NULL)) {
901 handle_ra_miss(mapping, &ra, index);
902 goto no_cached_page;
903 }
904 if (!PageUptodate(page))
905 goto page_not_up_to_date;
906page_ok:
a32ea1e1
N
907 /*
908 * i_size must be checked after we know the page is Uptodate.
909 *
910 * Checking i_size after the check allows us to calculate
911 * the correct value for "nr", which means the zero-filled
912 * part of the page is not copied back to userspace (unless
913 * another truncate extends the file - this is desired though).
914 */
915
916 isize = i_size_read(inode);
917 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
918 if (unlikely(!isize || index > end_index)) {
919 page_cache_release(page);
920 goto out;
921 }
922
923 /* nr is the maximum number of bytes to copy from this page */
924 nr = PAGE_CACHE_SIZE;
925 if (index == end_index) {
926 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
927 if (nr <= offset) {
928 page_cache_release(page);
929 goto out;
930 }
931 }
932 nr = nr - offset;
1da177e4
LT
933
934 /* If users can be writing to this page using arbitrary
935 * virtual addresses, take care about potential aliasing
936 * before reading the page on the kernel side.
937 */
938 if (mapping_writably_mapped(mapping))
939 flush_dcache_page(page);
940
941 /*
ec0f1637
JK
942 * When a sequential read accesses a page several times,
943 * only mark it as accessed the first time.
1da177e4 944 */
ec0f1637 945 if (prev_index != index || offset != prev_offset)
1da177e4
LT
946 mark_page_accessed(page);
947 prev_index = index;
948
949 /*
950 * Ok, we have the page, and it's up-to-date, so
951 * now we can copy it to user space...
952 *
953 * The actor routine returns how many bytes were actually used..
954 * NOTE! This may not be the same as how much of a user buffer
955 * we filled up (we may be padding etc), so we can only update
956 * "pos" here (the actor routine has to update the user buffer
957 * pointers and the remaining count).
958 */
959 ret = actor(desc, page, offset, nr);
960 offset += ret;
961 index += offset >> PAGE_CACHE_SHIFT;
962 offset &= ~PAGE_CACHE_MASK;
6ce745ed
JK
963 prev_offset = offset;
964 ra.prev_offset = offset;
1da177e4
LT
965
966 page_cache_release(page);
967 if (ret == nr && desc->count)
968 continue;
969 goto out;
970
971page_not_up_to_date:
972 /* Get exclusive access to the page ... */
973 lock_page(page);
974
da6052f7 975 /* Did it get truncated before we got the lock? */
1da177e4
LT
976 if (!page->mapping) {
977 unlock_page(page);
978 page_cache_release(page);
979 continue;
980 }
981
982 /* Did somebody else fill it already? */
983 if (PageUptodate(page)) {
984 unlock_page(page);
985 goto page_ok;
986 }
987
988readpage:
989 /* Start the actual read. The read will unlock the page. */
990 error = mapping->a_ops->readpage(filp, page);
991
994fc28c
ZB
992 if (unlikely(error)) {
993 if (error == AOP_TRUNCATED_PAGE) {
994 page_cache_release(page);
995 goto find_page;
996 }
1da177e4 997 goto readpage_error;
994fc28c 998 }
1da177e4
LT
999
1000 if (!PageUptodate(page)) {
1001 lock_page(page);
1002 if (!PageUptodate(page)) {
1003 if (page->mapping == NULL) {
1004 /*
1005 * invalidate_inode_pages got it
1006 */
1007 unlock_page(page);
1008 page_cache_release(page);
1009 goto find_page;
1010 }
1011 unlock_page(page);
1012 error = -EIO;
76d42bd9 1013 shrink_readahead_size_eio(filp, &ra);
1da177e4
LT
1014 goto readpage_error;
1015 }
1016 unlock_page(page);
1017 }
1018
1da177e4
LT
1019 goto page_ok;
1020
1021readpage_error:
1022 /* UHHUH! A synchronous read error occurred. Report it */
1023 desc->error = error;
1024 page_cache_release(page);
1025 goto out;
1026
1027no_cached_page:
1028 /*
1029 * Ok, it wasn't cached, so we need to create a new
1030 * page..
1031 */
1032 if (!cached_page) {
1033 cached_page = page_cache_alloc_cold(mapping);
1034 if (!cached_page) {
1035 desc->error = -ENOMEM;
1036 goto out;
1037 }
1038 }
1039 error = add_to_page_cache_lru(cached_page, mapping,
1040 index, GFP_KERNEL);
1041 if (error) {
1042 if (error == -EEXIST)
1043 goto find_page;
1044 desc->error = error;
1045 goto out;
1046 }
1047 page = cached_page;
1048 cached_page = NULL;
1049 goto readpage;
1050 }
1051
1052out:
1053 *_ra = ra;
1054
1055 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1056 if (cached_page)
1057 page_cache_release(cached_page);
1058 if (filp)
1059 file_accessed(filp);
1060}
1da177e4
LT
1061EXPORT_SYMBOL(do_generic_mapping_read);
1062
1063int file_read_actor(read_descriptor_t *desc, struct page *page,
1064 unsigned long offset, unsigned long size)
1065{
1066 char *kaddr;
1067 unsigned long left, count = desc->count;
1068
1069 if (size > count)
1070 size = count;
1071
1072 /*
1073 * Faults on the destination of a read are common, so do it before
1074 * taking the kmap.
1075 */
1076 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1077 kaddr = kmap_atomic(page, KM_USER0);
1078 left = __copy_to_user_inatomic(desc->arg.buf,
1079 kaddr + offset, size);
1080 kunmap_atomic(kaddr, KM_USER0);
1081 if (left == 0)
1082 goto success;
1083 }
1084
1085 /* Do it the slow way */
1086 kaddr = kmap(page);
1087 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1088 kunmap(page);
1089
1090 if (left) {
1091 size -= left;
1092 desc->error = -EFAULT;
1093 }
1094success:
1095 desc->count = count - size;
1096 desc->written += size;
1097 desc->arg.buf += size;
1098 return size;
1099}
1100
0ceb3314
DM
1101/*
1102 * Performs necessary checks before doing a write
1103 * @iov: io vector request
1104 * @nr_segs: number of segments in the iovec
1105 * @count: number of bytes to write
1106 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1107 *
1108 * Adjust number of segments and amount of bytes to write (nr_segs should be
1109 * properly initialized first). Returns appropriate error code that caller
1110 * should return or zero in case that write should be allowed.
1111 */
1112int generic_segment_checks(const struct iovec *iov,
1113 unsigned long *nr_segs, size_t *count, int access_flags)
1114{
1115 unsigned long seg;
1116 size_t cnt = 0;
1117 for (seg = 0; seg < *nr_segs; seg++) {
1118 const struct iovec *iv = &iov[seg];
1119
1120 /*
1121 * If any segment has a negative length, or the cumulative
1122 * length ever wraps negative then return -EINVAL.
1123 */
1124 cnt += iv->iov_len;
1125 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1126 return -EINVAL;
1127 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1128 continue;
1129 if (seg == 0)
1130 return -EFAULT;
1131 *nr_segs = seg;
1132 cnt -= iv->iov_len; /* This segment is no good */
1133 break;
1134 }
1135 *count = cnt;
1136 return 0;
1137}
1138EXPORT_SYMBOL(generic_segment_checks);
1139
485bb99b 1140/**
b2abacf3 1141 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1142 * @iocb: kernel I/O control block
1143 * @iov: io vector request
1144 * @nr_segs: number of segments in the iovec
b2abacf3 1145 * @pos: current file position
485bb99b 1146 *
1da177e4
LT
1147 * This is the "read()" routine for all filesystems
1148 * that can use the page cache directly.
1149 */
1150ssize_t
543ade1f
BP
1151generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1152 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1153{
1154 struct file *filp = iocb->ki_filp;
1155 ssize_t retval;
1156 unsigned long seg;
1157 size_t count;
543ade1f 1158 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1159
1160 count = 0;
0ceb3314
DM
1161 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1162 if (retval)
1163 return retval;
1da177e4
LT
1164
1165 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1166 if (filp->f_flags & O_DIRECT) {
543ade1f 1167 loff_t size;
1da177e4
LT
1168 struct address_space *mapping;
1169 struct inode *inode;
1170
1171 mapping = filp->f_mapping;
1172 inode = mapping->host;
1173 retval = 0;
1174 if (!count)
1175 goto out; /* skip atime */
1176 size = i_size_read(inode);
1177 if (pos < size) {
1178 retval = generic_file_direct_IO(READ, iocb,
1179 iov, pos, nr_segs);
1da177e4
LT
1180 if (retval > 0)
1181 *ppos = pos + retval;
1182 }
0e0bcae3 1183 if (likely(retval != 0)) {
3f1a9aae 1184 file_accessed(filp);
a9e5f4d0 1185 goto out;
0e0bcae3 1186 }
1da177e4
LT
1187 }
1188
1189 retval = 0;
1190 if (count) {
1191 for (seg = 0; seg < nr_segs; seg++) {
1192 read_descriptor_t desc;
1193
1194 desc.written = 0;
1195 desc.arg.buf = iov[seg].iov_base;
1196 desc.count = iov[seg].iov_len;
1197 if (desc.count == 0)
1198 continue;
1199 desc.error = 0;
1200 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1201 retval += desc.written;
39e88ca2
TH
1202 if (desc.error) {
1203 retval = retval ?: desc.error;
1da177e4
LT
1204 break;
1205 }
c44939ec 1206 if (desc.count > 0)
1207 break;
1da177e4
LT
1208 }
1209 }
1210out:
1211 return retval;
1212}
1da177e4
LT
1213EXPORT_SYMBOL(generic_file_aio_read);
1214
1da177e4
LT
1215int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1216{
1217 ssize_t written;
1218 unsigned long count = desc->count;
1219 struct file *file = desc->arg.data;
1220
1221 if (size > count)
1222 size = count;
1223
1224 written = file->f_op->sendpage(file, page, offset,
1225 size, &file->f_pos, size<count);
1226 if (written < 0) {
1227 desc->error = written;
1228 written = 0;
1229 }
1230 desc->count = count - written;
1231 desc->written += written;
1232 return written;
1233}
1234
1da177e4
LT
1235static ssize_t
1236do_readahead(struct address_space *mapping, struct file *filp,
1237 unsigned long index, unsigned long nr)
1238{
1239 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1240 return -EINVAL;
1241
1242 force_page_cache_readahead(mapping, filp, index,
1243 max_sane_readahead(nr));
1244 return 0;
1245}
1246
1247asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1248{
1249 ssize_t ret;
1250 struct file *file;
1251
1252 ret = -EBADF;
1253 file = fget(fd);
1254 if (file) {
1255 if (file->f_mode & FMODE_READ) {
1256 struct address_space *mapping = file->f_mapping;
1257 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1258 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1259 unsigned long len = end - start + 1;
1260 ret = do_readahead(mapping, file, start, len);
1261 }
1262 fput(file);
1263 }
1264 return ret;
1265}
1266
1267#ifdef CONFIG_MMU
485bb99b
RD
1268static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1269/**
1270 * page_cache_read - adds requested page to the page cache if not already there
1271 * @file: file to read
1272 * @offset: page index
1273 *
1da177e4
LT
1274 * This adds the requested page to the page cache if it isn't already there,
1275 * and schedules an I/O to read in its contents from disk.
1276 */
1da177e4
LT
1277static int fastcall page_cache_read(struct file * file, unsigned long offset)
1278{
1279 struct address_space *mapping = file->f_mapping;
1280 struct page *page;
994fc28c 1281 int ret;
1da177e4 1282
994fc28c
ZB
1283 do {
1284 page = page_cache_alloc_cold(mapping);
1285 if (!page)
1286 return -ENOMEM;
1287
1288 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1289 if (ret == 0)
1290 ret = mapping->a_ops->readpage(file, page);
1291 else if (ret == -EEXIST)
1292 ret = 0; /* losing race to add is OK */
1da177e4 1293
1da177e4 1294 page_cache_release(page);
1da177e4 1295
994fc28c
ZB
1296 } while (ret == AOP_TRUNCATED_PAGE);
1297
1298 return ret;
1da177e4
LT
1299}
1300
1301#define MMAP_LOTSAMISS (100)
1302
485bb99b
RD
1303/**
1304 * filemap_nopage - read in file data for page fault handling
1305 * @area: the applicable vm_area
1306 * @address: target address to read in
1307 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1308 *
1da177e4
LT
1309 * filemap_nopage() is invoked via the vma operations vector for a
1310 * mapped memory region to read in file data during a page fault.
1311 *
1312 * The goto's are kind of ugly, but this streamlines the normal case of having
1313 * it in the page cache, and handles the special cases reasonably without
1314 * having a lot of duplicated code.
1315 */
1316struct page *filemap_nopage(struct vm_area_struct *area,
1317 unsigned long address, int *type)
1318{
1319 int error;
1320 struct file *file = area->vm_file;
1321 struct address_space *mapping = file->f_mapping;
1322 struct file_ra_state *ra = &file->f_ra;
1323 struct inode *inode = mapping->host;
1324 struct page *page;
1325 unsigned long size, pgoff;
1326 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1327
d00806b1
NP
1328 BUG_ON(!(area->vm_flags & VM_CAN_INVALIDATE));
1329
1da177e4
LT
1330 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1331
1da177e4
LT
1332 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1333 if (pgoff >= size)
1334 goto outside_data_content;
1335
1336 /* If we don't want any read-ahead, don't bother */
1337 if (VM_RandomReadHint(area))
1338 goto no_cached_page;
1339
1340 /*
1341 * The readahead code wants to be told about each and every page
1342 * so it can build and shrink its windows appropriately
1343 *
1344 * For sequential accesses, we use the generic readahead logic.
1345 */
1346 if (VM_SequentialReadHint(area))
1347 page_cache_readahead(mapping, ra, file, pgoff, 1);
1348
1349 /*
1350 * Do we have something in the page cache already?
1351 */
1352retry_find:
d00806b1 1353 page = find_lock_page(mapping, pgoff);
1da177e4
LT
1354 if (!page) {
1355 unsigned long ra_pages;
1356
1357 if (VM_SequentialReadHint(area)) {
1358 handle_ra_miss(mapping, ra, pgoff);
1359 goto no_cached_page;
1360 }
1361 ra->mmap_miss++;
1362
1363 /*
1364 * Do we miss much more than hit in this file? If so,
1365 * stop bothering with read-ahead. It will only hurt.
1366 */
1367 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1368 goto no_cached_page;
1369
1370 /*
1371 * To keep the pgmajfault counter straight, we need to
1372 * check did_readaround, as this is an inner loop.
1373 */
1374 if (!did_readaround) {
1375 majmin = VM_FAULT_MAJOR;
f8891e5e 1376 count_vm_event(PGMAJFAULT);
1da177e4
LT
1377 }
1378 did_readaround = 1;
1379 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1380 if (ra_pages) {
1381 pgoff_t start = 0;
1382
1383 if (pgoff > ra_pages / 2)
1384 start = pgoff - ra_pages / 2;
1385 do_page_cache_readahead(mapping, file, start, ra_pages);
1386 }
d00806b1 1387 page = find_lock_page(mapping, pgoff);
1da177e4
LT
1388 if (!page)
1389 goto no_cached_page;
1390 }
1391
1392 if (!did_readaround)
1393 ra->mmap_hit++;
1394
1395 /*
d00806b1
NP
1396 * We have a locked page in the page cache, now we need to check
1397 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1398 */
d00806b1 1399 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1400 goto page_not_uptodate;
1401
d00806b1
NP
1402 /* Must recheck i_size under page lock */
1403 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1404 if (unlikely(pgoff >= size)) {
1405 unlock_page(page);
1406 goto outside_data_content;
1407 }
1408
1da177e4
LT
1409 /*
1410 * Found the page and have a reference on it.
1411 */
1412 mark_page_accessed(page);
1413 if (type)
1414 *type = majmin;
1415 return page;
1416
1417outside_data_content:
1418 /*
1419 * An external ptracer can access pages that normally aren't
1420 * accessible..
1421 */
1422 if (area->vm_mm == current->mm)
79f5acf5 1423 return NOPAGE_SIGBUS;
1da177e4
LT
1424 /* Fall through to the non-read-ahead case */
1425no_cached_page:
1426 /*
1427 * We're only likely to ever get here if MADV_RANDOM is in
1428 * effect.
1429 */
1430 error = page_cache_read(file, pgoff);
1da177e4
LT
1431
1432 /*
1433 * The page we want has now been added to the page cache.
1434 * In the unlikely event that someone removed it in the
1435 * meantime, we'll just come back here and read it again.
1436 */
1437 if (error >= 0)
1438 goto retry_find;
1439
1440 /*
1441 * An error return from page_cache_read can result if the
1442 * system is low on memory, or a problem occurs while trying
1443 * to schedule I/O.
1444 */
1445 if (error == -ENOMEM)
1446 return NOPAGE_OOM;
79f5acf5 1447 return NOPAGE_SIGBUS;
1da177e4
LT
1448
1449page_not_uptodate:
d00806b1 1450 /* IO error path */
1da177e4
LT
1451 if (!did_readaround) {
1452 majmin = VM_FAULT_MAJOR;
f8891e5e 1453 count_vm_event(PGMAJFAULT);
1da177e4 1454 }
1da177e4
LT
1455
1456 /*
1457 * Umm, take care of errors if the page isn't up-to-date.
1458 * Try to re-read it _once_. We do this synchronously,
1459 * because there really aren't any performance issues here
1460 * and we need to check for errors.
1461 */
1da177e4 1462 ClearPageError(page);
994fc28c 1463 error = mapping->a_ops->readpage(file, page);
d00806b1
NP
1464 page_cache_release(page);
1465
1466 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1467 goto retry_find;
1da177e4 1468
d00806b1 1469 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1470 shrink_readahead_size_eio(file, ra);
79f5acf5 1471 return NOPAGE_SIGBUS;
1da177e4 1472}
1da177e4
LT
1473EXPORT_SYMBOL(filemap_nopage);
1474
1475static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1476 int nonblock)
1477{
1478 struct address_space *mapping = file->f_mapping;
1479 struct page *page;
1480 int error;
1481
1482 /*
1483 * Do we have something in the page cache already?
1484 */
1485retry_find:
1486 page = find_get_page(mapping, pgoff);
1487 if (!page) {
1488 if (nonblock)
1489 return NULL;
1490 goto no_cached_page;
1491 }
1492
1493 /*
1494 * Ok, found a page in the page cache, now we need to check
1495 * that it's up-to-date.
1496 */
d3457342
JM
1497 if (!PageUptodate(page)) {
1498 if (nonblock) {
1499 page_cache_release(page);
1500 return NULL;
1501 }
1da177e4 1502 goto page_not_uptodate;
d3457342 1503 }
1da177e4
LT
1504
1505success:
1506 /*
1507 * Found the page and have a reference on it.
1508 */
1509 mark_page_accessed(page);
1510 return page;
1511
1512no_cached_page:
1513 error = page_cache_read(file, pgoff);
1514
1515 /*
1516 * The page we want has now been added to the page cache.
1517 * In the unlikely event that someone removed it in the
1518 * meantime, we'll just come back here and read it again.
1519 */
1520 if (error >= 0)
1521 goto retry_find;
1522
1523 /*
1524 * An error return from page_cache_read can result if the
1525 * system is low on memory, or a problem occurs while trying
1526 * to schedule I/O.
1527 */
1528 return NULL;
1529
1530page_not_uptodate:
1531 lock_page(page);
1532
da6052f7 1533 /* Did it get truncated while we waited for it? */
1da177e4
LT
1534 if (!page->mapping) {
1535 unlock_page(page);
1536 goto err;
1537 }
1538
1539 /* Did somebody else get it up-to-date? */
1540 if (PageUptodate(page)) {
1541 unlock_page(page);
1542 goto success;
1543 }
1544
994fc28c
ZB
1545 error = mapping->a_ops->readpage(file, page);
1546 if (!error) {
1da177e4
LT
1547 wait_on_page_locked(page);
1548 if (PageUptodate(page))
1549 goto success;
994fc28c
ZB
1550 } else if (error == AOP_TRUNCATED_PAGE) {
1551 page_cache_release(page);
1552 goto retry_find;
1da177e4
LT
1553 }
1554
1555 /*
1556 * Umm, take care of errors if the page isn't up-to-date.
1557 * Try to re-read it _once_. We do this synchronously,
1558 * because there really aren't any performance issues here
1559 * and we need to check for errors.
1560 */
1561 lock_page(page);
1562
1563 /* Somebody truncated the page on us? */
1564 if (!page->mapping) {
1565 unlock_page(page);
1566 goto err;
1567 }
1568 /* Somebody else successfully read it in? */
1569 if (PageUptodate(page)) {
1570 unlock_page(page);
1571 goto success;
1572 }
1573
1574 ClearPageError(page);
994fc28c
ZB
1575 error = mapping->a_ops->readpage(file, page);
1576 if (!error) {
1da177e4
LT
1577 wait_on_page_locked(page);
1578 if (PageUptodate(page))
1579 goto success;
994fc28c
ZB
1580 } else if (error == AOP_TRUNCATED_PAGE) {
1581 page_cache_release(page);
1582 goto retry_find;
1da177e4
LT
1583 }
1584
1585 /*
1586 * Things didn't work out. Return zero to tell the
1587 * mm layer so, possibly freeing the page cache page first.
1588 */
1589err:
1590 page_cache_release(page);
1591
1592 return NULL;
1593}
1594
1595int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1596 unsigned long len, pgprot_t prot, unsigned long pgoff,
1597 int nonblock)
1598{
1599 struct file *file = vma->vm_file;
1600 struct address_space *mapping = file->f_mapping;
1601 struct inode *inode = mapping->host;
1602 unsigned long size;
1603 struct mm_struct *mm = vma->vm_mm;
1604 struct page *page;
1605 int err;
1606
1607 if (!nonblock)
1608 force_page_cache_readahead(mapping, vma->vm_file,
1609 pgoff, len >> PAGE_CACHE_SHIFT);
1610
1611repeat:
1612 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1613 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1614 return -EINVAL;
1615
1616 page = filemap_getpage(file, pgoff, nonblock);
d44ed4f8
PBG
1617
1618 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1619 * done in shmem_populate calling shmem_getpage */
1da177e4
LT
1620 if (!page && !nonblock)
1621 return -ENOMEM;
d44ed4f8 1622
1da177e4
LT
1623 if (page) {
1624 err = install_page(mm, vma, addr, page, prot);
1625 if (err) {
1626 page_cache_release(page);
1627 return err;
1628 }
65500d23 1629 } else if (vma->vm_flags & VM_NONLINEAR) {
d44ed4f8
PBG
1630 /* No page was found just because we can't read it in now (being
1631 * here implies nonblock != 0), but the page may exist, so set
1632 * the PTE to fault it in later. */
1da177e4
LT
1633 err = install_file_pte(mm, vma, addr, pgoff, prot);
1634 if (err)
1635 return err;
1636 }
1637
1638 len -= PAGE_SIZE;
1639 addr += PAGE_SIZE;
1640 pgoff++;
1641 if (len)
1642 goto repeat;
1643
1644 return 0;
1645}
b1459461 1646EXPORT_SYMBOL(filemap_populate);
1da177e4
LT
1647
1648struct vm_operations_struct generic_file_vm_ops = {
1649 .nopage = filemap_nopage,
1650 .populate = filemap_populate,
1651};
1652
1653/* This is used for a general mmap of a disk file */
1654
1655int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656{
1657 struct address_space *mapping = file->f_mapping;
1658
1659 if (!mapping->a_ops->readpage)
1660 return -ENOEXEC;
1661 file_accessed(file);
1662 vma->vm_ops = &generic_file_vm_ops;
d00806b1 1663 vma->vm_flags |= VM_CAN_INVALIDATE;
1da177e4
LT
1664 return 0;
1665}
1da177e4
LT
1666
1667/*
1668 * This is for filesystems which do not implement ->writepage.
1669 */
1670int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1671{
1672 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1673 return -EINVAL;
1674 return generic_file_mmap(file, vma);
1675}
1676#else
1677int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1678{
1679 return -ENOSYS;
1680}
1681int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1682{
1683 return -ENOSYS;
1684}
1685#endif /* CONFIG_MMU */
1686
1687EXPORT_SYMBOL(generic_file_mmap);
1688EXPORT_SYMBOL(generic_file_readonly_mmap);
1689
6fe6900e 1690static struct page *__read_cache_page(struct address_space *mapping,
1da177e4
LT
1691 unsigned long index,
1692 int (*filler)(void *,struct page*),
1693 void *data)
1694{
1695 struct page *page, *cached_page = NULL;
1696 int err;
1697repeat:
1698 page = find_get_page(mapping, index);
1699 if (!page) {
1700 if (!cached_page) {
1701 cached_page = page_cache_alloc_cold(mapping);
1702 if (!cached_page)
1703 return ERR_PTR(-ENOMEM);
1704 }
1705 err = add_to_page_cache_lru(cached_page, mapping,
1706 index, GFP_KERNEL);
1707 if (err == -EEXIST)
1708 goto repeat;
1709 if (err < 0) {
1710 /* Presumably ENOMEM for radix tree node */
1711 page_cache_release(cached_page);
1712 return ERR_PTR(err);
1713 }
1714 page = cached_page;
1715 cached_page = NULL;
1716 err = filler(data, page);
1717 if (err < 0) {
1718 page_cache_release(page);
1719 page = ERR_PTR(err);
1720 }
1721 }
1722 if (cached_page)
1723 page_cache_release(cached_page);
1724 return page;
1725}
1726
6fe6900e
NP
1727/*
1728 * Same as read_cache_page, but don't wait for page to become unlocked
1729 * after submitting it to the filler.
1da177e4 1730 */
6fe6900e 1731struct page *read_cache_page_async(struct address_space *mapping,
1da177e4
LT
1732 unsigned long index,
1733 int (*filler)(void *,struct page*),
1734 void *data)
1735{
1736 struct page *page;
1737 int err;
1738
1739retry:
1740 page = __read_cache_page(mapping, index, filler, data);
1741 if (IS_ERR(page))
c855ff37 1742 return page;
1da177e4
LT
1743 if (PageUptodate(page))
1744 goto out;
1745
1746 lock_page(page);
1747 if (!page->mapping) {
1748 unlock_page(page);
1749 page_cache_release(page);
1750 goto retry;
1751 }
1752 if (PageUptodate(page)) {
1753 unlock_page(page);
1754 goto out;
1755 }
1756 err = filler(data, page);
1757 if (err < 0) {
1758 page_cache_release(page);
c855ff37 1759 return ERR_PTR(err);
1da177e4 1760 }
c855ff37 1761out:
6fe6900e
NP
1762 mark_page_accessed(page);
1763 return page;
1764}
1765EXPORT_SYMBOL(read_cache_page_async);
1766
1767/**
1768 * read_cache_page - read into page cache, fill it if needed
1769 * @mapping: the page's address_space
1770 * @index: the page index
1771 * @filler: function to perform the read
1772 * @data: destination for read data
1773 *
1774 * Read into the page cache. If a page already exists, and PageUptodate() is
1775 * not set, try to fill the page then wait for it to become unlocked.
1776 *
1777 * If the page does not get brought uptodate, return -EIO.
1778 */
1779struct page *read_cache_page(struct address_space *mapping,
1780 unsigned long index,
1781 int (*filler)(void *,struct page*),
1782 void *data)
1783{
1784 struct page *page;
1785
1786 page = read_cache_page_async(mapping, index, filler, data);
1787 if (IS_ERR(page))
1788 goto out;
1789 wait_on_page_locked(page);
1790 if (!PageUptodate(page)) {
1791 page_cache_release(page);
1792 page = ERR_PTR(-EIO);
1793 }
1da177e4
LT
1794 out:
1795 return page;
1796}
1da177e4
LT
1797EXPORT_SYMBOL(read_cache_page);
1798
1799/*
1800 * If the page was newly created, increment its refcount and add it to the
1801 * caller's lru-buffering pagevec. This function is specifically for
1802 * generic_file_write().
1803 */
1804static inline struct page *
1805__grab_cache_page(struct address_space *mapping, unsigned long index,
1806 struct page **cached_page, struct pagevec *lru_pvec)
1807{
1808 int err;
1809 struct page *page;
1810repeat:
1811 page = find_lock_page(mapping, index);
1812 if (!page) {
1813 if (!*cached_page) {
1814 *cached_page = page_cache_alloc(mapping);
1815 if (!*cached_page)
1816 return NULL;
1817 }
1818 err = add_to_page_cache(*cached_page, mapping,
1819 index, GFP_KERNEL);
1820 if (err == -EEXIST)
1821 goto repeat;
1822 if (err == 0) {
1823 page = *cached_page;
1824 page_cache_get(page);
1825 if (!pagevec_add(lru_pvec, page))
1826 __pagevec_lru_add(lru_pvec);
1827 *cached_page = NULL;
1828 }
1829 }
1830 return page;
1831}
1832
1833/*
1834 * The logic we want is
1835 *
1836 * if suid or (sgid and xgrp)
1837 * remove privs
1838 */
01de85e0 1839int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1840{
1841 mode_t mode = dentry->d_inode->i_mode;
1842 int kill = 0;
1da177e4
LT
1843
1844 /* suid always must be killed */
1845 if (unlikely(mode & S_ISUID))
1846 kill = ATTR_KILL_SUID;
1847
1848 /*
1849 * sgid without any exec bits is just a mandatory locking mark; leave
1850 * it alone. If some exec bits are set, it's a real sgid; kill it.
1851 */
1852 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1853 kill |= ATTR_KILL_SGID;
1854
01de85e0
JA
1855 if (unlikely(kill && !capable(CAP_FSETID)))
1856 return kill;
1da177e4 1857
01de85e0
JA
1858 return 0;
1859}
d23a147b 1860EXPORT_SYMBOL(should_remove_suid);
01de85e0
JA
1861
1862int __remove_suid(struct dentry *dentry, int kill)
1863{
1864 struct iattr newattrs;
1865
1866 newattrs.ia_valid = ATTR_FORCE | kill;
1867 return notify_change(dentry, &newattrs);
1868}
1869
1870int remove_suid(struct dentry *dentry)
1871{
1872 int kill = should_remove_suid(dentry);
1873
1874 if (unlikely(kill))
1875 return __remove_suid(dentry, kill);
1876
1877 return 0;
1da177e4
LT
1878}
1879EXPORT_SYMBOL(remove_suid);
1880
ceffc078 1881size_t
01408c49 1882__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1da177e4
LT
1883 const struct iovec *iov, size_t base, size_t bytes)
1884{
1885 size_t copied = 0, left = 0;
1886
1887 while (bytes) {
1888 char __user *buf = iov->iov_base + base;
1889 int copy = min(bytes, iov->iov_len - base);
1890
1891 base = 0;
c22ce143 1892 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1da177e4
LT
1893 copied += copy;
1894 bytes -= copy;
1895 vaddr += copy;
1896 iov++;
1897
01408c49 1898 if (unlikely(left))
1da177e4 1899 break;
1da177e4
LT
1900 }
1901 return copied - left;
1902}
1903
1da177e4
LT
1904/*
1905 * Performs necessary checks before doing a write
1906 *
485bb99b 1907 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1908 * Returns appropriate error code that caller should return or
1909 * zero in case that write should be allowed.
1910 */
1911inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1912{
1913 struct inode *inode = file->f_mapping->host;
1914 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1915
1916 if (unlikely(*pos < 0))
1917 return -EINVAL;
1918
1da177e4
LT
1919 if (!isblk) {
1920 /* FIXME: this is for backwards compatibility with 2.4 */
1921 if (file->f_flags & O_APPEND)
1922 *pos = i_size_read(inode);
1923
1924 if (limit != RLIM_INFINITY) {
1925 if (*pos >= limit) {
1926 send_sig(SIGXFSZ, current, 0);
1927 return -EFBIG;
1928 }
1929 if (*count > limit - (typeof(limit))*pos) {
1930 *count = limit - (typeof(limit))*pos;
1931 }
1932 }
1933 }
1934
1935 /*
1936 * LFS rule
1937 */
1938 if (unlikely(*pos + *count > MAX_NON_LFS &&
1939 !(file->f_flags & O_LARGEFILE))) {
1940 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
1941 return -EFBIG;
1942 }
1943 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1944 *count = MAX_NON_LFS - (unsigned long)*pos;
1945 }
1946 }
1947
1948 /*
1949 * Are we about to exceed the fs block limit ?
1950 *
1951 * If we have written data it becomes a short write. If we have
1952 * exceeded without writing data we send a signal and return EFBIG.
1953 * Linus frestrict idea will clean these up nicely..
1954 */
1955 if (likely(!isblk)) {
1956 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1957 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
1958 return -EFBIG;
1959 }
1960 /* zero-length writes at ->s_maxbytes are OK */
1961 }
1962
1963 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1964 *count = inode->i_sb->s_maxbytes - *pos;
1965 } else {
9361401e 1966#ifdef CONFIG_BLOCK
1da177e4
LT
1967 loff_t isize;
1968 if (bdev_read_only(I_BDEV(inode)))
1969 return -EPERM;
1970 isize = i_size_read(inode);
1971 if (*pos >= isize) {
1972 if (*count || *pos > isize)
1973 return -ENOSPC;
1974 }
1975
1976 if (*pos + *count > isize)
1977 *count = isize - *pos;
9361401e
DH
1978#else
1979 return -EPERM;
1980#endif
1da177e4
LT
1981 }
1982 return 0;
1983}
1984EXPORT_SYMBOL(generic_write_checks);
1985
1986ssize_t
1987generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1988 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1989 size_t count, size_t ocount)
1990{
1991 struct file *file = iocb->ki_filp;
1992 struct address_space *mapping = file->f_mapping;
1993 struct inode *inode = mapping->host;
1994 ssize_t written;
1995
1996 if (count != ocount)
1997 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1998
1999 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2000 if (written > 0) {
2001 loff_t end = pos + written;
2002 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2003 i_size_write(inode, end);
2004 mark_inode_dirty(inode);
2005 }
2006 *ppos = end;
2007 }
2008
2009 /*
2010 * Sync the fs metadata but not the minor inode changes and
2011 * of course not the data as we did direct DMA for the IO.
1b1dcc1b 2012 * i_mutex is held, which protects generic_osync_inode() from
8459d86a 2013 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1da177e4 2014 */
8459d86a
ZB
2015 if ((written >= 0 || written == -EIOCBQUEUED) &&
2016 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1e8a81c5
HH
2017 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2018 if (err < 0)
2019 written = err;
2020 }
1da177e4
LT
2021 return written;
2022}
2023EXPORT_SYMBOL(generic_file_direct_write);
2024
2025ssize_t
2026generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2027 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2028 size_t count, ssize_t written)
2029{
2030 struct file *file = iocb->ki_filp;
2031 struct address_space * mapping = file->f_mapping;
f5e54d6e 2032 const struct address_space_operations *a_ops = mapping->a_ops;
1da177e4
LT
2033 struct inode *inode = mapping->host;
2034 long status = 0;
2035 struct page *page;
2036 struct page *cached_page = NULL;
2037 size_t bytes;
2038 struct pagevec lru_pvec;
2039 const struct iovec *cur_iov = iov; /* current iovec */
2040 size_t iov_base = 0; /* offset in the current iovec */
2041 char __user *buf;
2042
2043 pagevec_init(&lru_pvec, 0);
2044
2045 /*
2046 * handle partial DIO write. Adjust cur_iov if needed.
2047 */
2048 if (likely(nr_segs == 1))
2049 buf = iov->iov_base + written;
2050 else {
2051 filemap_set_next_iovec(&cur_iov, &iov_base, written);
f021e921 2052 buf = cur_iov->iov_base + iov_base;
1da177e4
LT
2053 }
2054
2055 do {
2056 unsigned long index;
2057 unsigned long offset;
2058 size_t copied;
2059
2060 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2061 index = pos >> PAGE_CACHE_SHIFT;
2062 bytes = PAGE_CACHE_SIZE - offset;
6527c2bd
VS
2063
2064 /* Limit the size of the copy to the caller's write size */
2065 bytes = min(bytes, count);
2066
29dbb3fc
N
2067 /* We only need to worry about prefaulting when writes are from
2068 * user-space. NFSd uses vfs_writev with several non-aligned
2069 * segments in the vector, and limiting to one segment a time is
2070 * a noticeable performance for re-write
6527c2bd 2071 */
29dbb3fc
N
2072 if (!segment_eq(get_fs(), KERNEL_DS)) {
2073 /*
2074 * Limit the size of the copy to that of the current
2075 * segment, because fault_in_pages_readable() doesn't
2076 * know how to walk segments.
2077 */
2078 bytes = min(bytes, cur_iov->iov_len - iov_base);
1da177e4 2079
29dbb3fc
N
2080 /*
2081 * Bring in the user page that we will copy from
2082 * _first_. Otherwise there's a nasty deadlock on
2083 * copying from the same page as we're writing to,
2084 * without it being marked up-to-date.
2085 */
2086 fault_in_pages_readable(buf, bytes);
2087 }
1da177e4
LT
2088 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2089 if (!page) {
2090 status = -ENOMEM;
2091 break;
2092 }
2093
81b0c871
AM
2094 if (unlikely(bytes == 0)) {
2095 status = 0;
2096 copied = 0;
2097 goto zero_length_segment;
2098 }
2099
1da177e4
LT
2100 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2101 if (unlikely(status)) {
2102 loff_t isize = i_size_read(inode);
994fc28c
ZB
2103
2104 if (status != AOP_TRUNCATED_PAGE)
2105 unlock_page(page);
2106 page_cache_release(page);
2107 if (status == AOP_TRUNCATED_PAGE)
2108 continue;
1da177e4
LT
2109 /*
2110 * prepare_write() may have instantiated a few blocks
2111 * outside i_size. Trim these off again.
2112 */
1da177e4
LT
2113 if (pos + bytes > isize)
2114 vmtruncate(inode, isize);
2115 break;
2116 }
2117 if (likely(nr_segs == 1))
2118 copied = filemap_copy_from_user(page, offset,
2119 buf, bytes);
2120 else
2121 copied = filemap_copy_from_user_iovec(page, offset,
2122 cur_iov, iov_base, bytes);
2123 flush_dcache_page(page);
2124 status = a_ops->commit_write(file, page, offset, offset+bytes);
994fc28c
ZB
2125 if (status == AOP_TRUNCATED_PAGE) {
2126 page_cache_release(page);
2127 continue;
2128 }
81b0c871
AM
2129zero_length_segment:
2130 if (likely(copied >= 0)) {
1da177e4
LT
2131 if (!status)
2132 status = copied;
2133
2134 if (status >= 0) {
2135 written += status;
2136 count -= status;
2137 pos += status;
2138 buf += status;
f021e921 2139 if (unlikely(nr_segs > 1)) {
1da177e4
LT
2140 filemap_set_next_iovec(&cur_iov,
2141 &iov_base, status);
b0cfbd99
BP
2142 if (count)
2143 buf = cur_iov->iov_base +
2144 iov_base;
a5117181
MS
2145 } else {
2146 iov_base += status;
f021e921 2147 }
1da177e4
LT
2148 }
2149 }
2150 if (unlikely(copied != bytes))
2151 if (status >= 0)
2152 status = -EFAULT;
2153 unlock_page(page);
2154 mark_page_accessed(page);
2155 page_cache_release(page);
2156 if (status < 0)
2157 break;
2158 balance_dirty_pages_ratelimited(mapping);
2159 cond_resched();
2160 } while (count);
2161 *ppos = pos;
2162
2163 if (cached_page)
2164 page_cache_release(cached_page);
2165
2166 /*
2167 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2168 */
2169 if (likely(status >= 0)) {
2170 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2171 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2172 status = generic_osync_inode(inode, mapping,
2173 OSYNC_METADATA|OSYNC_DATA);
2174 }
2175 }
2176
2177 /*
2178 * If we get here for O_DIRECT writes then we must have fallen through
2179 * to buffered writes (block instantiation inside i_size). So we sync
2180 * the file data here, to try to honour O_DIRECT expectations.
2181 */
2182 if (unlikely(file->f_flags & O_DIRECT) && written)
2183 status = filemap_write_and_wait(mapping);
2184
2185 pagevec_lru_add(&lru_pvec);
2186 return written ? written : status;
2187}
2188EXPORT_SYMBOL(generic_file_buffered_write);
2189
5ce7852c 2190static ssize_t
1da177e4
LT
2191__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2192 unsigned long nr_segs, loff_t *ppos)
2193{
2194 struct file *file = iocb->ki_filp;
fb5527e6 2195 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2196 size_t ocount; /* original count */
2197 size_t count; /* after file limit checks */
2198 struct inode *inode = mapping->host;
1da177e4
LT
2199 loff_t pos;
2200 ssize_t written;
2201 ssize_t err;
2202
2203 ocount = 0;
0ceb3314
DM
2204 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2205 if (err)
2206 return err;
1da177e4
LT
2207
2208 count = ocount;
2209 pos = *ppos;
2210
2211 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2212
2213 /* We can write back this queue in page reclaim */
2214 current->backing_dev_info = mapping->backing_dev_info;
2215 written = 0;
2216
2217 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2218 if (err)
2219 goto out;
2220
2221 if (count == 0)
2222 goto out;
2223
d3ac7f89 2224 err = remove_suid(file->f_path.dentry);
1da177e4
LT
2225 if (err)
2226 goto out;
2227
870f4817 2228 file_update_time(file);
1da177e4
LT
2229
2230 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2231 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2232 loff_t endbyte;
2233 ssize_t written_buffered;
2234
2235 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2236 ppos, count, ocount);
1da177e4
LT
2237 if (written < 0 || written == count)
2238 goto out;
2239 /*
2240 * direct-io write to a hole: fall through to buffered I/O
2241 * for completing the rest of the request.
2242 */
2243 pos += written;
2244 count -= written;
fb5527e6
JM
2245 written_buffered = generic_file_buffered_write(iocb, iov,
2246 nr_segs, pos, ppos, count,
2247 written);
2248 /*
2249 * If generic_file_buffered_write() retuned a synchronous error
2250 * then we want to return the number of bytes which were
2251 * direct-written, or the error code if that was zero. Note
2252 * that this differs from normal direct-io semantics, which
2253 * will return -EFOO even if some bytes were written.
2254 */
2255 if (written_buffered < 0) {
2256 err = written_buffered;
2257 goto out;
2258 }
1da177e4 2259
fb5527e6
JM
2260 /*
2261 * We need to ensure that the page cache pages are written to
2262 * disk and invalidated to preserve the expected O_DIRECT
2263 * semantics.
2264 */
2265 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2266 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2267 SYNC_FILE_RANGE_WAIT_BEFORE|
2268 SYNC_FILE_RANGE_WRITE|
2269 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2270 if (err == 0) {
2271 written = written_buffered;
2272 invalidate_mapping_pages(mapping,
2273 pos >> PAGE_CACHE_SHIFT,
2274 endbyte >> PAGE_CACHE_SHIFT);
2275 } else {
2276 /*
2277 * We don't know how much we wrote, so just return
2278 * the number of bytes which were direct-written
2279 */
2280 }
2281 } else {
2282 written = generic_file_buffered_write(iocb, iov, nr_segs,
2283 pos, ppos, count, written);
2284 }
1da177e4
LT
2285out:
2286 current->backing_dev_info = NULL;
2287 return written ? written : err;
2288}
1da177e4 2289
027445c3
BP
2290ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2291 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4
LT
2292{
2293 struct file *file = iocb->ki_filp;
2294 struct address_space *mapping = file->f_mapping;
2295 struct inode *inode = mapping->host;
2296 ssize_t ret;
1da177e4 2297
027445c3
BP
2298 BUG_ON(iocb->ki_pos != pos);
2299
2300 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2301 &iocb->ki_pos);
1da177e4
LT
2302
2303 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
027445c3 2304 ssize_t err;
1da177e4
LT
2305
2306 err = sync_page_range_nolock(inode, mapping, pos, ret);
2307 if (err < 0)
2308 ret = err;
2309 }
2310 return ret;
2311}
027445c3 2312EXPORT_SYMBOL(generic_file_aio_write_nolock);
1da177e4 2313
027445c3
BP
2314ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2315 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2316{
2317 struct file *file = iocb->ki_filp;
2318 struct address_space *mapping = file->f_mapping;
2319 struct inode *inode = mapping->host;
2320 ssize_t ret;
1da177e4
LT
2321
2322 BUG_ON(iocb->ki_pos != pos);
2323
1b1dcc1b 2324 mutex_lock(&inode->i_mutex);
027445c3
BP
2325 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2326 &iocb->ki_pos);
1b1dcc1b 2327 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2328
2329 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2330 ssize_t err;
2331
2332 err = sync_page_range(inode, mapping, pos, ret);
2333 if (err < 0)
2334 ret = err;
2335 }
2336 return ret;
2337}
2338EXPORT_SYMBOL(generic_file_aio_write);
2339
1da177e4 2340/*
1b1dcc1b 2341 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
1da177e4
LT
2342 * went wrong during pagecache shootdown.
2343 */
5ce7852c 2344static ssize_t
1da177e4
LT
2345generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2346 loff_t offset, unsigned long nr_segs)
2347{
2348 struct file *file = iocb->ki_filp;
2349 struct address_space *mapping = file->f_mapping;
2350 ssize_t retval;
65b8291c
ZB
2351 size_t write_len;
2352 pgoff_t end = 0; /* silence gcc */
1da177e4
LT
2353
2354 /*
2355 * If it's a write, unmap all mmappings of the file up-front. This
2356 * will cause any pte dirty bits to be propagated into the pageframes
2357 * for the subsequent filemap_write_and_wait().
2358 */
2359 if (rw == WRITE) {
2360 write_len = iov_length(iov, nr_segs);
65b8291c 2361 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
2362 if (mapping_mapped(mapping))
2363 unmap_mapping_range(mapping, offset, write_len, 0);
2364 }
2365
2366 retval = filemap_write_and_wait(mapping);
65b8291c
ZB
2367 if (retval)
2368 goto out;
2369
2370 /*
2371 * After a write we want buffered reads to be sure to go to disk to get
2372 * the new data. We invalidate clean cached page from the region we're
2373 * about to write. We do this *before* the write so that we can return
2374 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2375 */
2376 if (rw == WRITE && mapping->nrpages) {
2377 retval = invalidate_inode_pages2_range(mapping,
1da177e4 2378 offset >> PAGE_CACHE_SHIFT, end);
65b8291c
ZB
2379 if (retval)
2380 goto out;
1da177e4 2381 }
65b8291c
ZB
2382
2383 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2384 if (retval)
2385 goto out;
2386
2387 /*
2388 * Finally, try again to invalidate clean pages which might have been
2389 * faulted in by get_user_pages() if the source of the write was an
2390 * mmap()ed region of the file we're writing. That's a pretty crazy
2391 * thing to do, so we don't support it 100%. If this invalidation
2392 * fails and we have -EIOCBQUEUED we ignore the failure.
2393 */
2394 if (rw == WRITE && mapping->nrpages) {
2395 int err = invalidate_inode_pages2_range(mapping,
2396 offset >> PAGE_CACHE_SHIFT, end);
2397 if (err && retval >= 0)
2398 retval = err;
2399 }
2400out:
1da177e4
LT
2401 return retval;
2402}
cf9a2ae8
DH
2403
2404/**
2405 * try_to_release_page() - release old fs-specific metadata on a page
2406 *
2407 * @page: the page which the kernel is trying to free
2408 * @gfp_mask: memory allocation flags (and I/O mode)
2409 *
2410 * The address_space is to try to release any data against the page
2411 * (presumably at page->private). If the release was successful, return `1'.
2412 * Otherwise return zero.
2413 *
2414 * The @gfp_mask argument specifies whether I/O may be performed to release
2415 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2416 *
2417 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2418 */
2419int try_to_release_page(struct page *page, gfp_t gfp_mask)
2420{
2421 struct address_space * const mapping = page->mapping;
2422
2423 BUG_ON(!PageLocked(page));
2424 if (PageWriteback(page))
2425 return 0;
2426
2427 if (mapping && mapping->a_ops->releasepage)
2428 return mapping->a_ops->releasepage(page, gfp_mask);
2429 return try_to_free_buffers(page);
2430}
2431
2432EXPORT_SYMBOL(try_to_release_page);