mm: debugfs: move rounddown_pow_of_two() out from do_fault path
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
3d48ae45 64 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
3d48ae45 70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
3d48ae45 73 * ->i_mmap_mutex
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
3d48ae45 87 * ->i_mmap_mutex
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
9a3c531d
AK
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
109 */
110
91b0abe3
JW
111static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113{
449dd698
JW
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
91b0abe3 119
449dd698
JW
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
91b0abe3
JW
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
449dd698 133 }
91b0abe3 134 mapping->nrpages--;
449dd698
JW
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
91b0abe3
JW
172}
173
1da177e4 174/*
e64a782f 175 * Delete a page from the page cache and free it. Caller has to make
1da177e4 176 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 177 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 178 */
91b0abe3 179void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
180{
181 struct address_space *mapping = page->mapping;
182
fe0bfaaf 183 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
3167760f 192 cleancache_invalidate_page(mapping, page);
c515e1fd 193
91b0abe3
JW
194 page_cache_tree_delete(mapping, page, shadow);
195
1da177e4 196 page->mapping = NULL;
b85e0eff 197 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 198
347ce434 199 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
45426812 202 BUG_ON(page_mapped(page));
3a692790
LT
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
1da177e4
LT
215}
216
702cfbf9
MK
217/**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225void delete_from_page_cache(struct page *page)
1da177e4
LT
226{
227 struct address_space *mapping = page->mapping;
6072d13c 228 void (*freepage)(struct page *);
1da177e4 229
cd7619d6 230 BUG_ON(!PageLocked(page));
1da177e4 231
6072d13c 232 freepage = mapping->a_ops->freepage;
19fd6231 233 spin_lock_irq(&mapping->tree_lock);
91b0abe3 234 __delete_from_page_cache(page, NULL);
19fd6231 235 spin_unlock_irq(&mapping->tree_lock);
e767e056 236 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
237
238 if (freepage)
239 freepage(page);
97cecb5a
MK
240 page_cache_release(page);
241}
242EXPORT_SYMBOL(delete_from_page_cache);
243
7eaceacc 244static int sleep_on_page(void *word)
1da177e4 245{
1da177e4
LT
246 io_schedule();
247 return 0;
248}
249
7eaceacc 250static int sleep_on_page_killable(void *word)
2687a356 251{
7eaceacc 252 sleep_on_page(word);
2687a356
MW
253 return fatal_signal_pending(current) ? -EINTR : 0;
254}
255
865ffef3
DM
256static int filemap_check_errors(struct address_space *mapping)
257{
258 int ret = 0;
259 /* Check for outstanding write errors */
7fcbbaf1
JA
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 262 ret = -ENOSPC;
7fcbbaf1
JA
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
265 ret = -EIO;
266 return ret;
267}
268
1da177e4 269/**
485bb99b 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
469eb4d0 273 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 274 * @sync_mode: enable synchronous operation
1da177e4 275 *
485bb99b
RD
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
1da177e4 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 280 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
ebcf28e1
AM
284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
1da177e4
LT
286{
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
05fe478d 290 .nr_to_write = LONG_MAX,
111ebb6e
OH
291 .range_start = start,
292 .range_end = end,
1da177e4
LT
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300}
301
302static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304{
111ebb6e 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
306}
307
308int filemap_fdatawrite(struct address_space *mapping)
309{
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311}
312EXPORT_SYMBOL(filemap_fdatawrite);
313
f4c0a0fd 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 315 loff_t end)
1da177e4
LT
316{
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318}
f4c0a0fd 319EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 320
485bb99b
RD
321/**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
1da177e4
LT
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328int filemap_flush(struct address_space *mapping)
329{
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331}
332EXPORT_SYMBOL(filemap_flush);
333
485bb99b 334/**
94004ed7
CH
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 339 *
94004ed7
CH
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
1da177e4 342 */
94004ed7
CH
343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
1da177e4 345{
94004ed7
CH
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
348 struct pagevec pvec;
349 int nr_pages;
865ffef3 350 int ret2, ret = 0;
1da177e4 351
94004ed7 352 if (end_byte < start_byte)
865ffef3 353 goto out;
1da177e4
LT
354
355 pagevec_init(&pvec, 0);
1da177e4
LT
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
212260aa 370 if (TestClearPageError(page))
1da177e4
LT
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
865ffef3
DM
376out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
1da177e4
LT
380
381 return ret;
382}
d3bccb6f
JK
383EXPORT_SYMBOL(filemap_fdatawait_range);
384
1da177e4 385/**
485bb99b 386 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 387 * @mapping: address space structure to wait for
485bb99b
RD
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
1da177e4
LT
391 */
392int filemap_fdatawait(struct address_space *mapping)
393{
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
94004ed7 399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
400}
401EXPORT_SYMBOL(filemap_fdatawait);
402
403int filemap_write_and_wait(struct address_space *mapping)
404{
28fd1298 405 int err = 0;
1da177e4
LT
406
407 if (mapping->nrpages) {
28fd1298
OH
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
865ffef3
DM
420 } else {
421 err = filemap_check_errors(mapping);
1da177e4 422 }
28fd1298 423 return err;
1da177e4 424}
28fd1298 425EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 426
485bb99b
RD
427/**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
469eb4d0
AM
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
1da177e4
LT
438int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440{
28fd1298 441 int err = 0;
1da177e4
LT
442
443 if (mapping->nrpages) {
28fd1298
OH
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
94004ed7
CH
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
28fd1298
OH
450 if (!err)
451 err = err2;
452 }
865ffef3
DM
453 } else {
454 err = filemap_check_errors(mapping);
1da177e4 455 }
28fd1298 456 return err;
1da177e4 457}
f6995585 458EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 459
ef6a3c63
MS
460/**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476{
477 int error;
ef6a3c63 478
309381fe
SL
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 482
ef6a3c63
MS
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
91b0abe3 496 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
ef6a3c63
MS
510 }
511
512 return error;
513}
514EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
0cd6144a 516static int page_cache_tree_insert(struct address_space *mapping,
a528910e 517 struct page *page, void **shadowp)
0cd6144a 518{
449dd698 519 struct radix_tree_node *node;
0cd6144a
JW
520 void **slot;
521 int error;
522
449dd698
JW
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
0cd6144a
JW
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
a528910e
JW
533 if (shadowp)
534 *shadowp = p;
449dd698
JW
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
0cd6144a 538 }
449dd698
JW
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
0cd6144a
JW
556}
557
a528910e
JW
558static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
1da177e4 562{
e286781d
NP
563 int error;
564
309381fe
SL
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 567
d715ae08 568 error = mem_cgroup_charge_file(page, current->mm,
2c26fdd7 569 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 570 if (error)
66a0c8ee 571 return error;
1da177e4 572
5e4c0d97 573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 574 if (error) {
69029cd5 575 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
a528910e 584 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
66a0c8ee
KS
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
1da177e4
LT
598 return error;
599}
a528910e
JW
600
601/**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613{
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616}
e286781d 617EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
618
619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 620 pgoff_t offset, gfp_t gfp_mask)
1da177e4 621{
a528910e 622 void *shadow = NULL;
4f98a2fe
RR
623 int ret;
624
a528910e
JW
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
1da177e4
LT
643 return ret;
644}
18bc0bbd 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 646
44110fe3 647#ifdef CONFIG_NUMA
2ae88149 648struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 649{
c0ff7453
MX
650 int n;
651 struct page *page;
652
44110fe3 653 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
654 unsigned int cpuset_mems_cookie;
655 do {
d26914d1 656 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 660
c0ff7453 661 return page;
44110fe3 662 }
2ae88149 663 return alloc_pages(gfp, 0);
44110fe3 664}
2ae88149 665EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
666#endif
667
1da177e4
LT
668/*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678static wait_queue_head_t *page_waitqueue(struct page *page)
679{
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683}
684
685static inline void wake_up_page(struct page *page, int bit)
686{
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688}
689
920c7a5d 690void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
691{
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
7eaceacc 695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
696 TASK_UNINTERRUPTIBLE);
697}
698EXPORT_SYMBOL(wait_on_page_bit);
699
f62e00cc
KM
700int wait_on_page_bit_killable(struct page *page, int bit_nr)
701{
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709}
710
385e1ca5
DH
711/**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
385e1ca5
DH
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719{
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726}
727EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
1da177e4 729/**
485bb99b 730 * unlock_page - unlock a locked page
1da177e4
LT
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
8413ac9d
NP
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 740 */
920c7a5d 741void unlock_page(struct page *page)
1da177e4 742{
309381fe 743 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 744 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 745 smp_mb__after_atomic();
1da177e4
LT
746 wake_up_page(page, PG_locked);
747}
748EXPORT_SYMBOL(unlock_page);
749
485bb99b
RD
750/**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
1da177e4
LT
753 */
754void end_page_writeback(struct page *page)
755{
888cf2db
MG
756 /*
757 * TestClearPageReclaim could be used here but it is an atomic
758 * operation and overkill in this particular case. Failing to
759 * shuffle a page marked for immediate reclaim is too mild to
760 * justify taking an atomic operation penalty at the end of
761 * ever page writeback.
762 */
763 if (PageReclaim(page)) {
764 ClearPageReclaim(page);
ac6aadb2 765 rotate_reclaimable_page(page);
888cf2db 766 }
ac6aadb2
MS
767
768 if (!test_clear_page_writeback(page))
769 BUG();
770
4e857c58 771 smp_mb__after_atomic();
1da177e4
LT
772 wake_up_page(page, PG_writeback);
773}
774EXPORT_SYMBOL(end_page_writeback);
775
57d99845
MW
776/*
777 * After completing I/O on a page, call this routine to update the page
778 * flags appropriately
779 */
780void page_endio(struct page *page, int rw, int err)
781{
782 if (rw == READ) {
783 if (!err) {
784 SetPageUptodate(page);
785 } else {
786 ClearPageUptodate(page);
787 SetPageError(page);
788 }
789 unlock_page(page);
790 } else { /* rw == WRITE */
791 if (err) {
792 SetPageError(page);
793 if (page->mapping)
794 mapping_set_error(page->mapping, err);
795 }
796 end_page_writeback(page);
797 }
798}
799EXPORT_SYMBOL_GPL(page_endio);
800
485bb99b
RD
801/**
802 * __lock_page - get a lock on the page, assuming we need to sleep to get it
803 * @page: the page to lock
1da177e4 804 */
920c7a5d 805void __lock_page(struct page *page)
1da177e4
LT
806{
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
7eaceacc 809 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
810 TASK_UNINTERRUPTIBLE);
811}
812EXPORT_SYMBOL(__lock_page);
813
b5606c2d 814int __lock_page_killable(struct page *page)
2687a356
MW
815{
816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 819 sleep_on_page_killable, TASK_KILLABLE);
2687a356 820}
18bc0bbd 821EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 822
d065bd81
ML
823int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824 unsigned int flags)
825{
37b23e05
KM
826 if (flags & FAULT_FLAG_ALLOW_RETRY) {
827 /*
828 * CAUTION! In this case, mmap_sem is not released
829 * even though return 0.
830 */
831 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832 return 0;
833
834 up_read(&mm->mmap_sem);
835 if (flags & FAULT_FLAG_KILLABLE)
836 wait_on_page_locked_killable(page);
837 else
318b275f 838 wait_on_page_locked(page);
d065bd81 839 return 0;
37b23e05
KM
840 } else {
841 if (flags & FAULT_FLAG_KILLABLE) {
842 int ret;
843
844 ret = __lock_page_killable(page);
845 if (ret) {
846 up_read(&mm->mmap_sem);
847 return 0;
848 }
849 } else
850 __lock_page(page);
851 return 1;
d065bd81
ML
852 }
853}
854
e7b563bb
JW
855/**
856 * page_cache_next_hole - find the next hole (not-present entry)
857 * @mapping: mapping
858 * @index: index
859 * @max_scan: maximum range to search
860 *
861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862 * lowest indexed hole.
863 *
864 * Returns: the index of the hole if found, otherwise returns an index
865 * outside of the set specified (in which case 'return - index >=
866 * max_scan' will be true). In rare cases of index wrap-around, 0 will
867 * be returned.
868 *
869 * page_cache_next_hole may be called under rcu_read_lock. However,
870 * like radix_tree_gang_lookup, this will not atomically search a
871 * snapshot of the tree at a single point in time. For example, if a
872 * hole is created at index 5, then subsequently a hole is created at
873 * index 10, page_cache_next_hole covering both indexes may return 10
874 * if called under rcu_read_lock.
875 */
876pgoff_t page_cache_next_hole(struct address_space *mapping,
877 pgoff_t index, unsigned long max_scan)
878{
879 unsigned long i;
880
881 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
882 struct page *page;
883
884 page = radix_tree_lookup(&mapping->page_tree, index);
885 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
886 break;
887 index++;
888 if (index == 0)
889 break;
890 }
891
892 return index;
893}
894EXPORT_SYMBOL(page_cache_next_hole);
895
896/**
897 * page_cache_prev_hole - find the prev hole (not-present entry)
898 * @mapping: mapping
899 * @index: index
900 * @max_scan: maximum range to search
901 *
902 * Search backwards in the range [max(index-max_scan+1, 0), index] for
903 * the first hole.
904 *
905 * Returns: the index of the hole if found, otherwise returns an index
906 * outside of the set specified (in which case 'index - return >=
907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908 * will be returned.
909 *
910 * page_cache_prev_hole may be called under rcu_read_lock. However,
911 * like radix_tree_gang_lookup, this will not atomically search a
912 * snapshot of the tree at a single point in time. For example, if a
913 * hole is created at index 10, then subsequently a hole is created at
914 * index 5, page_cache_prev_hole covering both indexes may return 5 if
915 * called under rcu_read_lock.
916 */
917pgoff_t page_cache_prev_hole(struct address_space *mapping,
918 pgoff_t index, unsigned long max_scan)
919{
920 unsigned long i;
921
922 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
923 struct page *page;
924
925 page = radix_tree_lookup(&mapping->page_tree, index);
926 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
927 break;
928 index--;
929 if (index == ULONG_MAX)
930 break;
931 }
932
933 return index;
934}
935EXPORT_SYMBOL(page_cache_prev_hole);
936
485bb99b 937/**
0cd6144a 938 * find_get_entry - find and get a page cache entry
485bb99b 939 * @mapping: the address_space to search
0cd6144a
JW
940 * @offset: the page cache index
941 *
942 * Looks up the page cache slot at @mapping & @offset. If there is a
943 * page cache page, it is returned with an increased refcount.
485bb99b 944 *
139b6a6f
JW
945 * If the slot holds a shadow entry of a previously evicted page, or a
946 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
947 *
948 * Otherwise, %NULL is returned.
1da177e4 949 */
0cd6144a 950struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 951{
a60637c8 952 void **pagep;
1da177e4
LT
953 struct page *page;
954
a60637c8
NP
955 rcu_read_lock();
956repeat:
957 page = NULL;
958 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959 if (pagep) {
960 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
961 if (unlikely(!page))
962 goto out;
a2c16d6c 963 if (radix_tree_exception(page)) {
8079b1c8
HD
964 if (radix_tree_deref_retry(page))
965 goto repeat;
966 /*
139b6a6f
JW
967 * A shadow entry of a recently evicted page,
968 * or a swap entry from shmem/tmpfs. Return
969 * it without attempting to raise page count.
8079b1c8
HD
970 */
971 goto out;
a2c16d6c 972 }
a60637c8
NP
973 if (!page_cache_get_speculative(page))
974 goto repeat;
975
976 /*
977 * Has the page moved?
978 * This is part of the lockless pagecache protocol. See
979 * include/linux/pagemap.h for details.
980 */
981 if (unlikely(page != *pagep)) {
982 page_cache_release(page);
983 goto repeat;
984 }
985 }
27d20fdd 986out:
a60637c8
NP
987 rcu_read_unlock();
988
1da177e4
LT
989 return page;
990}
0cd6144a 991EXPORT_SYMBOL(find_get_entry);
1da177e4 992
0cd6144a
JW
993/**
994 * find_lock_entry - locate, pin and lock a page cache entry
995 * @mapping: the address_space to search
996 * @offset: the page cache index
997 *
998 * Looks up the page cache slot at @mapping & @offset. If there is a
999 * page cache page, it is returned locked and with an increased
1000 * refcount.
1001 *
139b6a6f
JW
1002 * If the slot holds a shadow entry of a previously evicted page, or a
1003 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1004 *
1005 * Otherwise, %NULL is returned.
1006 *
1007 * find_lock_entry() may sleep.
1008 */
1009struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1010{
1011 struct page *page;
1012
1da177e4 1013repeat:
0cd6144a 1014 page = find_get_entry(mapping, offset);
a2c16d6c 1015 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1016 lock_page(page);
1017 /* Has the page been truncated? */
1018 if (unlikely(page->mapping != mapping)) {
1019 unlock_page(page);
1020 page_cache_release(page);
1021 goto repeat;
1da177e4 1022 }
309381fe 1023 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1024 }
1da177e4
LT
1025 return page;
1026}
0cd6144a
JW
1027EXPORT_SYMBOL(find_lock_entry);
1028
1029/**
2457aec6 1030 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1031 * @mapping: the address_space to search
1032 * @offset: the page index
2457aec6
MG
1033 * @fgp_flags: PCG flags
1034 * @gfp_mask: gfp mask to use if a page is to be allocated
0cd6144a 1035 *
2457aec6 1036 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1037 *
2457aec6 1038 * PCG flags modify how the page is returned
0cd6144a 1039 *
2457aec6
MG
1040 * FGP_ACCESSED: the page will be marked accessed
1041 * FGP_LOCK: Page is return locked
1042 * FGP_CREAT: If page is not present then a new page is allocated using
1043 * @gfp_mask and added to the page cache and the VM's LRU
1044 * list. The page is returned locked and with an increased
1045 * refcount. Otherwise, %NULL is returned.
1da177e4 1046 *
2457aec6
MG
1047 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1049 *
2457aec6 1050 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1051 */
2457aec6
MG
1052struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1053 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1da177e4 1054{
eb2be189 1055 struct page *page;
2457aec6 1056
1da177e4 1057repeat:
2457aec6
MG
1058 page = find_get_entry(mapping, offset);
1059 if (radix_tree_exceptional_entry(page))
1060 page = NULL;
1061 if (!page)
1062 goto no_page;
1063
1064 if (fgp_flags & FGP_LOCK) {
1065 if (fgp_flags & FGP_NOWAIT) {
1066 if (!trylock_page(page)) {
1067 page_cache_release(page);
1068 return NULL;
1069 }
1070 } else {
1071 lock_page(page);
1072 }
1073
1074 /* Has the page been truncated? */
1075 if (unlikely(page->mapping != mapping)) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto repeat;
1079 }
1080 VM_BUG_ON_PAGE(page->index != offset, page);
1081 }
1082
1083 if (page && (fgp_flags & FGP_ACCESSED))
1084 mark_page_accessed(page);
1085
1086no_page:
1087 if (!page && (fgp_flags & FGP_CREAT)) {
1088 int err;
1089 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1090 cache_gfp_mask |= __GFP_WRITE;
1091 if (fgp_flags & FGP_NOFS) {
1092 cache_gfp_mask &= ~__GFP_FS;
1093 radix_gfp_mask &= ~__GFP_FS;
1094 }
1095
1096 page = __page_cache_alloc(cache_gfp_mask);
eb2be189
NP
1097 if (!page)
1098 return NULL;
2457aec6
MG
1099
1100 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1101 fgp_flags |= FGP_LOCK;
1102
1103 /* Init accessed so avoit atomic mark_page_accessed later */
1104 if (fgp_flags & FGP_ACCESSED)
1105 init_page_accessed(page);
1106
1107 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
eb2be189
NP
1108 if (unlikely(err)) {
1109 page_cache_release(page);
1110 page = NULL;
1111 if (err == -EEXIST)
1112 goto repeat;
1da177e4 1113 }
1da177e4 1114 }
2457aec6 1115
1da177e4
LT
1116 return page;
1117}
2457aec6 1118EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1119
0cd6144a
JW
1120/**
1121 * find_get_entries - gang pagecache lookup
1122 * @mapping: The address_space to search
1123 * @start: The starting page cache index
1124 * @nr_entries: The maximum number of entries
1125 * @entries: Where the resulting entries are placed
1126 * @indices: The cache indices corresponding to the entries in @entries
1127 *
1128 * find_get_entries() will search for and return a group of up to
1129 * @nr_entries entries in the mapping. The entries are placed at
1130 * @entries. find_get_entries() takes a reference against any actual
1131 * pages it returns.
1132 *
1133 * The search returns a group of mapping-contiguous page cache entries
1134 * with ascending indexes. There may be holes in the indices due to
1135 * not-present pages.
1136 *
139b6a6f
JW
1137 * Any shadow entries of evicted pages, or swap entries from
1138 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1139 *
1140 * find_get_entries() returns the number of pages and shadow entries
1141 * which were found.
1142 */
1143unsigned find_get_entries(struct address_space *mapping,
1144 pgoff_t start, unsigned int nr_entries,
1145 struct page **entries, pgoff_t *indices)
1146{
1147 void **slot;
1148 unsigned int ret = 0;
1149 struct radix_tree_iter iter;
1150
1151 if (!nr_entries)
1152 return 0;
1153
1154 rcu_read_lock();
1155restart:
1156 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1157 struct page *page;
1158repeat:
1159 page = radix_tree_deref_slot(slot);
1160 if (unlikely(!page))
1161 continue;
1162 if (radix_tree_exception(page)) {
1163 if (radix_tree_deref_retry(page))
1164 goto restart;
1165 /*
139b6a6f
JW
1166 * A shadow entry of a recently evicted page,
1167 * or a swap entry from shmem/tmpfs. Return
1168 * it without attempting to raise page count.
0cd6144a
JW
1169 */
1170 goto export;
1171 }
1172 if (!page_cache_get_speculative(page))
1173 goto repeat;
1174
1175 /* Has the page moved? */
1176 if (unlikely(page != *slot)) {
1177 page_cache_release(page);
1178 goto repeat;
1179 }
1180export:
1181 indices[ret] = iter.index;
1182 entries[ret] = page;
1183 if (++ret == nr_entries)
1184 break;
1185 }
1186 rcu_read_unlock();
1187 return ret;
1188}
1189
1da177e4
LT
1190/**
1191 * find_get_pages - gang pagecache lookup
1192 * @mapping: The address_space to search
1193 * @start: The starting page index
1194 * @nr_pages: The maximum number of pages
1195 * @pages: Where the resulting pages are placed
1196 *
1197 * find_get_pages() will search for and return a group of up to
1198 * @nr_pages pages in the mapping. The pages are placed at @pages.
1199 * find_get_pages() takes a reference against the returned pages.
1200 *
1201 * The search returns a group of mapping-contiguous pages with ascending
1202 * indexes. There may be holes in the indices due to not-present pages.
1203 *
1204 * find_get_pages() returns the number of pages which were found.
1205 */
1206unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1207 unsigned int nr_pages, struct page **pages)
1208{
0fc9d104
KK
1209 struct radix_tree_iter iter;
1210 void **slot;
1211 unsigned ret = 0;
1212
1213 if (unlikely(!nr_pages))
1214 return 0;
a60637c8
NP
1215
1216 rcu_read_lock();
1217restart:
0fc9d104 1218 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1219 struct page *page;
1220repeat:
0fc9d104 1221 page = radix_tree_deref_slot(slot);
a60637c8
NP
1222 if (unlikely(!page))
1223 continue;
9d8aa4ea 1224
a2c16d6c 1225 if (radix_tree_exception(page)) {
8079b1c8
HD
1226 if (radix_tree_deref_retry(page)) {
1227 /*
1228 * Transient condition which can only trigger
1229 * when entry at index 0 moves out of or back
1230 * to root: none yet gotten, safe to restart.
1231 */
0fc9d104 1232 WARN_ON(iter.index);
8079b1c8
HD
1233 goto restart;
1234 }
a2c16d6c 1235 /*
139b6a6f
JW
1236 * A shadow entry of a recently evicted page,
1237 * or a swap entry from shmem/tmpfs. Skip
1238 * over it.
a2c16d6c 1239 */
8079b1c8 1240 continue;
27d20fdd 1241 }
a60637c8
NP
1242
1243 if (!page_cache_get_speculative(page))
1244 goto repeat;
1245
1246 /* Has the page moved? */
0fc9d104 1247 if (unlikely(page != *slot)) {
a60637c8
NP
1248 page_cache_release(page);
1249 goto repeat;
1250 }
1da177e4 1251
a60637c8 1252 pages[ret] = page;
0fc9d104
KK
1253 if (++ret == nr_pages)
1254 break;
a60637c8 1255 }
5b280c0c 1256
a60637c8 1257 rcu_read_unlock();
1da177e4
LT
1258 return ret;
1259}
1260
ebf43500
JA
1261/**
1262 * find_get_pages_contig - gang contiguous pagecache lookup
1263 * @mapping: The address_space to search
1264 * @index: The starting page index
1265 * @nr_pages: The maximum number of pages
1266 * @pages: Where the resulting pages are placed
1267 *
1268 * find_get_pages_contig() works exactly like find_get_pages(), except
1269 * that the returned number of pages are guaranteed to be contiguous.
1270 *
1271 * find_get_pages_contig() returns the number of pages which were found.
1272 */
1273unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1274 unsigned int nr_pages, struct page **pages)
1275{
0fc9d104
KK
1276 struct radix_tree_iter iter;
1277 void **slot;
1278 unsigned int ret = 0;
1279
1280 if (unlikely(!nr_pages))
1281 return 0;
a60637c8
NP
1282
1283 rcu_read_lock();
1284restart:
0fc9d104 1285 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1286 struct page *page;
1287repeat:
0fc9d104
KK
1288 page = radix_tree_deref_slot(slot);
1289 /* The hole, there no reason to continue */
a60637c8 1290 if (unlikely(!page))
0fc9d104 1291 break;
9d8aa4ea 1292
a2c16d6c 1293 if (radix_tree_exception(page)) {
8079b1c8
HD
1294 if (radix_tree_deref_retry(page)) {
1295 /*
1296 * Transient condition which can only trigger
1297 * when entry at index 0 moves out of or back
1298 * to root: none yet gotten, safe to restart.
1299 */
1300 goto restart;
1301 }
a2c16d6c 1302 /*
139b6a6f
JW
1303 * A shadow entry of a recently evicted page,
1304 * or a swap entry from shmem/tmpfs. Stop
1305 * looking for contiguous pages.
a2c16d6c 1306 */
8079b1c8 1307 break;
a2c16d6c 1308 }
ebf43500 1309
a60637c8
NP
1310 if (!page_cache_get_speculative(page))
1311 goto repeat;
1312
1313 /* Has the page moved? */
0fc9d104 1314 if (unlikely(page != *slot)) {
a60637c8
NP
1315 page_cache_release(page);
1316 goto repeat;
1317 }
1318
9cbb4cb2
NP
1319 /*
1320 * must check mapping and index after taking the ref.
1321 * otherwise we can get both false positives and false
1322 * negatives, which is just confusing to the caller.
1323 */
0fc9d104 1324 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1325 page_cache_release(page);
1326 break;
1327 }
1328
a60637c8 1329 pages[ret] = page;
0fc9d104
KK
1330 if (++ret == nr_pages)
1331 break;
ebf43500 1332 }
a60637c8
NP
1333 rcu_read_unlock();
1334 return ret;
ebf43500 1335}
ef71c15c 1336EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1337
485bb99b
RD
1338/**
1339 * find_get_pages_tag - find and return pages that match @tag
1340 * @mapping: the address_space to search
1341 * @index: the starting page index
1342 * @tag: the tag index
1343 * @nr_pages: the maximum number of pages
1344 * @pages: where the resulting pages are placed
1345 *
1da177e4 1346 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1347 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1348 */
1349unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1350 int tag, unsigned int nr_pages, struct page **pages)
1351{
0fc9d104
KK
1352 struct radix_tree_iter iter;
1353 void **slot;
1354 unsigned ret = 0;
1355
1356 if (unlikely(!nr_pages))
1357 return 0;
a60637c8
NP
1358
1359 rcu_read_lock();
1360restart:
0fc9d104
KK
1361 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1362 &iter, *index, tag) {
a60637c8
NP
1363 struct page *page;
1364repeat:
0fc9d104 1365 page = radix_tree_deref_slot(slot);
a60637c8
NP
1366 if (unlikely(!page))
1367 continue;
9d8aa4ea 1368
a2c16d6c 1369 if (radix_tree_exception(page)) {
8079b1c8
HD
1370 if (radix_tree_deref_retry(page)) {
1371 /*
1372 * Transient condition which can only trigger
1373 * when entry at index 0 moves out of or back
1374 * to root: none yet gotten, safe to restart.
1375 */
1376 goto restart;
1377 }
a2c16d6c 1378 /*
139b6a6f
JW
1379 * A shadow entry of a recently evicted page.
1380 *
1381 * Those entries should never be tagged, but
1382 * this tree walk is lockless and the tags are
1383 * looked up in bulk, one radix tree node at a
1384 * time, so there is a sizable window for page
1385 * reclaim to evict a page we saw tagged.
1386 *
1387 * Skip over it.
a2c16d6c 1388 */
139b6a6f 1389 continue;
a2c16d6c 1390 }
a60637c8
NP
1391
1392 if (!page_cache_get_speculative(page))
1393 goto repeat;
1394
1395 /* Has the page moved? */
0fc9d104 1396 if (unlikely(page != *slot)) {
a60637c8
NP
1397 page_cache_release(page);
1398 goto repeat;
1399 }
1400
1401 pages[ret] = page;
0fc9d104
KK
1402 if (++ret == nr_pages)
1403 break;
a60637c8 1404 }
5b280c0c 1405
a60637c8 1406 rcu_read_unlock();
1da177e4 1407
1da177e4
LT
1408 if (ret)
1409 *index = pages[ret - 1]->index + 1;
a60637c8 1410
1da177e4
LT
1411 return ret;
1412}
ef71c15c 1413EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1414
76d42bd9
WF
1415/*
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 *
1419 * ---R__________________________________________B__________
1420 * ^ reading here ^ bad block(assume 4k)
1421 *
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 *
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 */
1430static void shrink_readahead_size_eio(struct file *filp,
1431 struct file_ra_state *ra)
1432{
76d42bd9 1433 ra->ra_pages /= 4;
76d42bd9
WF
1434}
1435
485bb99b 1436/**
36e78914 1437 * do_generic_file_read - generic file read routine
485bb99b
RD
1438 * @filp: the file to read
1439 * @ppos: current file position
6e58e79d
AV
1440 * @iter: data destination
1441 * @written: already copied
485bb99b 1442 *
1da177e4 1443 * This is a generic file read routine, and uses the
485bb99b 1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1445 *
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1da177e4 1448 */
6e58e79d
AV
1449static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450 struct iov_iter *iter, ssize_t written)
1da177e4 1451{
36e78914 1452 struct address_space *mapping = filp->f_mapping;
1da177e4 1453 struct inode *inode = mapping->host;
36e78914 1454 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1455 pgoff_t index;
1456 pgoff_t last_index;
1457 pgoff_t prev_index;
1458 unsigned long offset; /* offset into pagecache page */
ec0f1637 1459 unsigned int prev_offset;
6e58e79d 1460 int error = 0;
1da177e4 1461
1da177e4 1462 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1463 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1465 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1466 offset = *ppos & ~PAGE_CACHE_MASK;
1467
1da177e4
LT
1468 for (;;) {
1469 struct page *page;
57f6b96c 1470 pgoff_t end_index;
a32ea1e1 1471 loff_t isize;
1da177e4
LT
1472 unsigned long nr, ret;
1473
1da177e4 1474 cond_resched();
1da177e4
LT
1475find_page:
1476 page = find_get_page(mapping, index);
3ea89ee8 1477 if (!page) {
cf914a7d 1478 page_cache_sync_readahead(mapping,
7ff81078 1479 ra, filp,
3ea89ee8
FW
1480 index, last_index - index);
1481 page = find_get_page(mapping, index);
1482 if (unlikely(page == NULL))
1483 goto no_cached_page;
1484 }
1485 if (PageReadahead(page)) {
cf914a7d 1486 page_cache_async_readahead(mapping,
7ff81078 1487 ra, filp, page,
3ea89ee8 1488 index, last_index - index);
1da177e4 1489 }
8ab22b9a
HH
1490 if (!PageUptodate(page)) {
1491 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492 !mapping->a_ops->is_partially_uptodate)
1493 goto page_not_up_to_date;
529ae9aa 1494 if (!trylock_page(page))
8ab22b9a 1495 goto page_not_up_to_date;
8d056cb9
DH
1496 /* Did it get truncated before we got the lock? */
1497 if (!page->mapping)
1498 goto page_not_up_to_date_locked;
8ab22b9a 1499 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1500 offset, iter->count))
8ab22b9a
HH
1501 goto page_not_up_to_date_locked;
1502 unlock_page(page);
1503 }
1da177e4 1504page_ok:
a32ea1e1
N
1505 /*
1506 * i_size must be checked after we know the page is Uptodate.
1507 *
1508 * Checking i_size after the check allows us to calculate
1509 * the correct value for "nr", which means the zero-filled
1510 * part of the page is not copied back to userspace (unless
1511 * another truncate extends the file - this is desired though).
1512 */
1513
1514 isize = i_size_read(inode);
1515 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516 if (unlikely(!isize || index > end_index)) {
1517 page_cache_release(page);
1518 goto out;
1519 }
1520
1521 /* nr is the maximum number of bytes to copy from this page */
1522 nr = PAGE_CACHE_SIZE;
1523 if (index == end_index) {
1524 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525 if (nr <= offset) {
1526 page_cache_release(page);
1527 goto out;
1528 }
1529 }
1530 nr = nr - offset;
1da177e4
LT
1531
1532 /* If users can be writing to this page using arbitrary
1533 * virtual addresses, take care about potential aliasing
1534 * before reading the page on the kernel side.
1535 */
1536 if (mapping_writably_mapped(mapping))
1537 flush_dcache_page(page);
1538
1539 /*
ec0f1637
JK
1540 * When a sequential read accesses a page several times,
1541 * only mark it as accessed the first time.
1da177e4 1542 */
ec0f1637 1543 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1544 mark_page_accessed(page);
1545 prev_index = index;
1546
1547 /*
1548 * Ok, we have the page, and it's up-to-date, so
1549 * now we can copy it to user space...
1da177e4 1550 */
6e58e79d
AV
1551
1552 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1553 offset += ret;
1554 index += offset >> PAGE_CACHE_SHIFT;
1555 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1556 prev_offset = offset;
1da177e4
LT
1557
1558 page_cache_release(page);
6e58e79d
AV
1559 written += ret;
1560 if (!iov_iter_count(iter))
1561 goto out;
1562 if (ret < nr) {
1563 error = -EFAULT;
1564 goto out;
1565 }
1566 continue;
1da177e4
LT
1567
1568page_not_up_to_date:
1569 /* Get exclusive access to the page ... */
85462323
ON
1570 error = lock_page_killable(page);
1571 if (unlikely(error))
1572 goto readpage_error;
1da177e4 1573
8ab22b9a 1574page_not_up_to_date_locked:
da6052f7 1575 /* Did it get truncated before we got the lock? */
1da177e4
LT
1576 if (!page->mapping) {
1577 unlock_page(page);
1578 page_cache_release(page);
1579 continue;
1580 }
1581
1582 /* Did somebody else fill it already? */
1583 if (PageUptodate(page)) {
1584 unlock_page(page);
1585 goto page_ok;
1586 }
1587
1588readpage:
91803b49
JM
1589 /*
1590 * A previous I/O error may have been due to temporary
1591 * failures, eg. multipath errors.
1592 * PG_error will be set again if readpage fails.
1593 */
1594 ClearPageError(page);
1da177e4
LT
1595 /* Start the actual read. The read will unlock the page. */
1596 error = mapping->a_ops->readpage(filp, page);
1597
994fc28c
ZB
1598 if (unlikely(error)) {
1599 if (error == AOP_TRUNCATED_PAGE) {
1600 page_cache_release(page);
6e58e79d 1601 error = 0;
994fc28c
ZB
1602 goto find_page;
1603 }
1da177e4 1604 goto readpage_error;
994fc28c 1605 }
1da177e4
LT
1606
1607 if (!PageUptodate(page)) {
85462323
ON
1608 error = lock_page_killable(page);
1609 if (unlikely(error))
1610 goto readpage_error;
1da177e4
LT
1611 if (!PageUptodate(page)) {
1612 if (page->mapping == NULL) {
1613 /*
2ecdc82e 1614 * invalidate_mapping_pages got it
1da177e4
LT
1615 */
1616 unlock_page(page);
1617 page_cache_release(page);
1618 goto find_page;
1619 }
1620 unlock_page(page);
7ff81078 1621 shrink_readahead_size_eio(filp, ra);
85462323
ON
1622 error = -EIO;
1623 goto readpage_error;
1da177e4
LT
1624 }
1625 unlock_page(page);
1626 }
1627
1da177e4
LT
1628 goto page_ok;
1629
1630readpage_error:
1631 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1632 page_cache_release(page);
1633 goto out;
1634
1635no_cached_page:
1636 /*
1637 * Ok, it wasn't cached, so we need to create a new
1638 * page..
1639 */
eb2be189
NP
1640 page = page_cache_alloc_cold(mapping);
1641 if (!page) {
6e58e79d 1642 error = -ENOMEM;
eb2be189 1643 goto out;
1da177e4 1644 }
eb2be189 1645 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1646 index, GFP_KERNEL);
1647 if (error) {
eb2be189 1648 page_cache_release(page);
6e58e79d
AV
1649 if (error == -EEXIST) {
1650 error = 0;
1da177e4 1651 goto find_page;
6e58e79d 1652 }
1da177e4
LT
1653 goto out;
1654 }
1da177e4
LT
1655 goto readpage;
1656 }
1657
1658out:
7ff81078
FW
1659 ra->prev_pos = prev_index;
1660 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661 ra->prev_pos |= prev_offset;
1da177e4 1662
f4e6b498 1663 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1664 file_accessed(filp);
6e58e79d 1665 return written ? written : error;
1da177e4
LT
1666}
1667
485bb99b 1668/**
6abd2322 1669 * generic_file_read_iter - generic filesystem read routine
485bb99b 1670 * @iocb: kernel I/O control block
6abd2322 1671 * @iter: destination for the data read
485bb99b 1672 *
6abd2322 1673 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1674 * that can use the page cache directly.
1675 */
1676ssize_t
ed978a81 1677generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1678{
ed978a81 1679 struct file *file = iocb->ki_filp;
cb66a7a1 1680 ssize_t retval = 0;
543ade1f 1681 loff_t *ppos = &iocb->ki_pos;
ed978a81 1682 loff_t pos = *ppos;
1da177e4
LT
1683
1684 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
ed978a81
AV
1685 if (file->f_flags & O_DIRECT) {
1686 struct address_space *mapping = file->f_mapping;
1687 struct inode *inode = mapping->host;
1688 size_t count = iov_iter_count(iter);
543ade1f 1689 loff_t size;
1da177e4 1690
1da177e4
LT
1691 if (!count)
1692 goto out; /* skip atime */
1693 size = i_size_read(inode);
9fe55eea 1694 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1695 pos + count - 1);
9fe55eea 1696 if (!retval) {
ed978a81 1697 struct iov_iter data = *iter;
26978b8b 1698 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
9fe55eea 1699 }
d8d3d94b 1700
9fe55eea
SW
1701 if (retval > 0) {
1702 *ppos = pos + retval;
ed978a81 1703 iov_iter_advance(iter, retval);
9fe55eea 1704 }
66f998f6 1705
9fe55eea
SW
1706 /*
1707 * Btrfs can have a short DIO read if we encounter
1708 * compressed extents, so if there was an error, or if
1709 * we've already read everything we wanted to, or if
1710 * there was a short read because we hit EOF, go ahead
1711 * and return. Otherwise fallthrough to buffered io for
1712 * the rest of the read.
1713 */
ed978a81
AV
1714 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1715 file_accessed(file);
9fe55eea 1716 goto out;
0e0bcae3 1717 }
1da177e4
LT
1718 }
1719
ed978a81 1720 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1721out:
1722 return retval;
1723}
ed978a81 1724EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1725
1da177e4 1726#ifdef CONFIG_MMU
485bb99b
RD
1727/**
1728 * page_cache_read - adds requested page to the page cache if not already there
1729 * @file: file to read
1730 * @offset: page index
1731 *
1da177e4
LT
1732 * This adds the requested page to the page cache if it isn't already there,
1733 * and schedules an I/O to read in its contents from disk.
1734 */
920c7a5d 1735static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1736{
1737 struct address_space *mapping = file->f_mapping;
1738 struct page *page;
994fc28c 1739 int ret;
1da177e4 1740
994fc28c
ZB
1741 do {
1742 page = page_cache_alloc_cold(mapping);
1743 if (!page)
1744 return -ENOMEM;
1745
1746 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1747 if (ret == 0)
1748 ret = mapping->a_ops->readpage(file, page);
1749 else if (ret == -EEXIST)
1750 ret = 0; /* losing race to add is OK */
1da177e4 1751
1da177e4 1752 page_cache_release(page);
1da177e4 1753
994fc28c
ZB
1754 } while (ret == AOP_TRUNCATED_PAGE);
1755
1756 return ret;
1da177e4
LT
1757}
1758
1759#define MMAP_LOTSAMISS (100)
1760
ef00e08e
LT
1761/*
1762 * Synchronous readahead happens when we don't even find
1763 * a page in the page cache at all.
1764 */
1765static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1766 struct file_ra_state *ra,
1767 struct file *file,
1768 pgoff_t offset)
1769{
1770 unsigned long ra_pages;
1771 struct address_space *mapping = file->f_mapping;
1772
1773 /* If we don't want any read-ahead, don't bother */
64363aad 1774 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1775 return;
275b12bf
WF
1776 if (!ra->ra_pages)
1777 return;
ef00e08e 1778
64363aad 1779 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1780 page_cache_sync_readahead(mapping, ra, file, offset,
1781 ra->ra_pages);
ef00e08e
LT
1782 return;
1783 }
1784
207d04ba
AK
1785 /* Avoid banging the cache line if not needed */
1786 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1787 ra->mmap_miss++;
1788
1789 /*
1790 * Do we miss much more than hit in this file? If so,
1791 * stop bothering with read-ahead. It will only hurt.
1792 */
1793 if (ra->mmap_miss > MMAP_LOTSAMISS)
1794 return;
1795
d30a1100
WF
1796 /*
1797 * mmap read-around
1798 */
ef00e08e 1799 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1800 ra->start = max_t(long, 0, offset - ra_pages / 2);
1801 ra->size = ra_pages;
2cbea1d3 1802 ra->async_size = ra_pages / 4;
275b12bf 1803 ra_submit(ra, mapping, file);
ef00e08e
LT
1804}
1805
1806/*
1807 * Asynchronous readahead happens when we find the page and PG_readahead,
1808 * so we want to possibly extend the readahead further..
1809 */
1810static void do_async_mmap_readahead(struct vm_area_struct *vma,
1811 struct file_ra_state *ra,
1812 struct file *file,
1813 struct page *page,
1814 pgoff_t offset)
1815{
1816 struct address_space *mapping = file->f_mapping;
1817
1818 /* If we don't want any read-ahead, don't bother */
64363aad 1819 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1820 return;
1821 if (ra->mmap_miss > 0)
1822 ra->mmap_miss--;
1823 if (PageReadahead(page))
2fad6f5d
WF
1824 page_cache_async_readahead(mapping, ra, file,
1825 page, offset, ra->ra_pages);
ef00e08e
LT
1826}
1827
485bb99b 1828/**
54cb8821 1829 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1830 * @vma: vma in which the fault was taken
1831 * @vmf: struct vm_fault containing details of the fault
485bb99b 1832 *
54cb8821 1833 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1834 * mapped memory region to read in file data during a page fault.
1835 *
1836 * The goto's are kind of ugly, but this streamlines the normal case of having
1837 * it in the page cache, and handles the special cases reasonably without
1838 * having a lot of duplicated code.
1839 */
d0217ac0 1840int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1841{
1842 int error;
54cb8821 1843 struct file *file = vma->vm_file;
1da177e4
LT
1844 struct address_space *mapping = file->f_mapping;
1845 struct file_ra_state *ra = &file->f_ra;
1846 struct inode *inode = mapping->host;
ef00e08e 1847 pgoff_t offset = vmf->pgoff;
1da177e4 1848 struct page *page;
99e3e53f 1849 loff_t size;
83c54070 1850 int ret = 0;
1da177e4 1851
99e3e53f
KS
1852 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1853 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1854 return VM_FAULT_SIGBUS;
1da177e4 1855
1da177e4 1856 /*
49426420 1857 * Do we have something in the page cache already?
1da177e4 1858 */
ef00e08e 1859 page = find_get_page(mapping, offset);
45cac65b 1860 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1861 /*
ef00e08e
LT
1862 * We found the page, so try async readahead before
1863 * waiting for the lock.
1da177e4 1864 */
ef00e08e 1865 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1866 } else if (!page) {
ef00e08e
LT
1867 /* No page in the page cache at all */
1868 do_sync_mmap_readahead(vma, ra, file, offset);
1869 count_vm_event(PGMAJFAULT);
456f998e 1870 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1871 ret = VM_FAULT_MAJOR;
1872retry_find:
b522c94d 1873 page = find_get_page(mapping, offset);
1da177e4
LT
1874 if (!page)
1875 goto no_cached_page;
1876 }
1877
d88c0922
ML
1878 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1879 page_cache_release(page);
d065bd81 1880 return ret | VM_FAULT_RETRY;
d88c0922 1881 }
b522c94d
ML
1882
1883 /* Did it get truncated? */
1884 if (unlikely(page->mapping != mapping)) {
1885 unlock_page(page);
1886 put_page(page);
1887 goto retry_find;
1888 }
309381fe 1889 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1890
1da177e4 1891 /*
d00806b1
NP
1892 * We have a locked page in the page cache, now we need to check
1893 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1894 */
d00806b1 1895 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1896 goto page_not_uptodate;
1897
ef00e08e
LT
1898 /*
1899 * Found the page and have a reference on it.
1900 * We must recheck i_size under page lock.
1901 */
99e3e53f
KS
1902 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1903 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1904 unlock_page(page);
745ad48e 1905 page_cache_release(page);
5307cc1a 1906 return VM_FAULT_SIGBUS;
d00806b1
NP
1907 }
1908
d0217ac0 1909 vmf->page = page;
83c54070 1910 return ret | VM_FAULT_LOCKED;
1da177e4 1911
1da177e4
LT
1912no_cached_page:
1913 /*
1914 * We're only likely to ever get here if MADV_RANDOM is in
1915 * effect.
1916 */
ef00e08e 1917 error = page_cache_read(file, offset);
1da177e4
LT
1918
1919 /*
1920 * The page we want has now been added to the page cache.
1921 * In the unlikely event that someone removed it in the
1922 * meantime, we'll just come back here and read it again.
1923 */
1924 if (error >= 0)
1925 goto retry_find;
1926
1927 /*
1928 * An error return from page_cache_read can result if the
1929 * system is low on memory, or a problem occurs while trying
1930 * to schedule I/O.
1931 */
1932 if (error == -ENOMEM)
d0217ac0
NP
1933 return VM_FAULT_OOM;
1934 return VM_FAULT_SIGBUS;
1da177e4
LT
1935
1936page_not_uptodate:
1da177e4
LT
1937 /*
1938 * Umm, take care of errors if the page isn't up-to-date.
1939 * Try to re-read it _once_. We do this synchronously,
1940 * because there really aren't any performance issues here
1941 * and we need to check for errors.
1942 */
1da177e4 1943 ClearPageError(page);
994fc28c 1944 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1945 if (!error) {
1946 wait_on_page_locked(page);
1947 if (!PageUptodate(page))
1948 error = -EIO;
1949 }
d00806b1
NP
1950 page_cache_release(page);
1951
1952 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1953 goto retry_find;
1da177e4 1954
d00806b1 1955 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1956 shrink_readahead_size_eio(file, ra);
d0217ac0 1957 return VM_FAULT_SIGBUS;
54cb8821
NP
1958}
1959EXPORT_SYMBOL(filemap_fault);
1960
f1820361
KS
1961void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1962{
1963 struct radix_tree_iter iter;
1964 void **slot;
1965 struct file *file = vma->vm_file;
1966 struct address_space *mapping = file->f_mapping;
1967 loff_t size;
1968 struct page *page;
1969 unsigned long address = (unsigned long) vmf->virtual_address;
1970 unsigned long addr;
1971 pte_t *pte;
1972
1973 rcu_read_lock();
1974 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1975 if (iter.index > vmf->max_pgoff)
1976 break;
1977repeat:
1978 page = radix_tree_deref_slot(slot);
1979 if (unlikely(!page))
1980 goto next;
1981 if (radix_tree_exception(page)) {
1982 if (radix_tree_deref_retry(page))
1983 break;
1984 else
1985 goto next;
1986 }
1987
1988 if (!page_cache_get_speculative(page))
1989 goto repeat;
1990
1991 /* Has the page moved? */
1992 if (unlikely(page != *slot)) {
1993 page_cache_release(page);
1994 goto repeat;
1995 }
1996
1997 if (!PageUptodate(page) ||
1998 PageReadahead(page) ||
1999 PageHWPoison(page))
2000 goto skip;
2001 if (!trylock_page(page))
2002 goto skip;
2003
2004 if (page->mapping != mapping || !PageUptodate(page))
2005 goto unlock;
2006
99e3e53f
KS
2007 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2008 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2009 goto unlock;
2010
2011 pte = vmf->pte + page->index - vmf->pgoff;
2012 if (!pte_none(*pte))
2013 goto unlock;
2014
2015 if (file->f_ra.mmap_miss > 0)
2016 file->f_ra.mmap_miss--;
2017 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2018 do_set_pte(vma, addr, page, pte, false, false);
2019 unlock_page(page);
2020 goto next;
2021unlock:
2022 unlock_page(page);
2023skip:
2024 page_cache_release(page);
2025next:
2026 if (iter.index == vmf->max_pgoff)
2027 break;
2028 }
2029 rcu_read_unlock();
2030}
2031EXPORT_SYMBOL(filemap_map_pages);
2032
4fcf1c62
JK
2033int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2034{
2035 struct page *page = vmf->page;
496ad9aa 2036 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2037 int ret = VM_FAULT_LOCKED;
2038
14da9200 2039 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2040 file_update_time(vma->vm_file);
2041 lock_page(page);
2042 if (page->mapping != inode->i_mapping) {
2043 unlock_page(page);
2044 ret = VM_FAULT_NOPAGE;
2045 goto out;
2046 }
14da9200
JK
2047 /*
2048 * We mark the page dirty already here so that when freeze is in
2049 * progress, we are guaranteed that writeback during freezing will
2050 * see the dirty page and writeprotect it again.
2051 */
2052 set_page_dirty(page);
1d1d1a76 2053 wait_for_stable_page(page);
4fcf1c62 2054out:
14da9200 2055 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2056 return ret;
2057}
2058EXPORT_SYMBOL(filemap_page_mkwrite);
2059
f0f37e2f 2060const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2061 .fault = filemap_fault,
f1820361 2062 .map_pages = filemap_map_pages,
4fcf1c62 2063 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2064 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2065};
2066
2067/* This is used for a general mmap of a disk file */
2068
2069int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2070{
2071 struct address_space *mapping = file->f_mapping;
2072
2073 if (!mapping->a_ops->readpage)
2074 return -ENOEXEC;
2075 file_accessed(file);
2076 vma->vm_ops = &generic_file_vm_ops;
2077 return 0;
2078}
1da177e4
LT
2079
2080/*
2081 * This is for filesystems which do not implement ->writepage.
2082 */
2083int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2084{
2085 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2086 return -EINVAL;
2087 return generic_file_mmap(file, vma);
2088}
2089#else
2090int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091{
2092 return -ENOSYS;
2093}
2094int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2095{
2096 return -ENOSYS;
2097}
2098#endif /* CONFIG_MMU */
2099
2100EXPORT_SYMBOL(generic_file_mmap);
2101EXPORT_SYMBOL(generic_file_readonly_mmap);
2102
67f9fd91
SL
2103static struct page *wait_on_page_read(struct page *page)
2104{
2105 if (!IS_ERR(page)) {
2106 wait_on_page_locked(page);
2107 if (!PageUptodate(page)) {
2108 page_cache_release(page);
2109 page = ERR_PTR(-EIO);
2110 }
2111 }
2112 return page;
2113}
2114
6fe6900e 2115static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2116 pgoff_t index,
5e5358e7 2117 int (*filler)(void *, struct page *),
0531b2aa
LT
2118 void *data,
2119 gfp_t gfp)
1da177e4 2120{
eb2be189 2121 struct page *page;
1da177e4
LT
2122 int err;
2123repeat:
2124 page = find_get_page(mapping, index);
2125 if (!page) {
0531b2aa 2126 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2127 if (!page)
2128 return ERR_PTR(-ENOMEM);
e6f67b8c 2129 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2130 if (unlikely(err)) {
2131 page_cache_release(page);
2132 if (err == -EEXIST)
2133 goto repeat;
1da177e4 2134 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2135 return ERR_PTR(err);
2136 }
1da177e4
LT
2137 err = filler(data, page);
2138 if (err < 0) {
2139 page_cache_release(page);
2140 page = ERR_PTR(err);
67f9fd91
SL
2141 } else {
2142 page = wait_on_page_read(page);
1da177e4
LT
2143 }
2144 }
1da177e4
LT
2145 return page;
2146}
2147
0531b2aa 2148static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2149 pgoff_t index,
5e5358e7 2150 int (*filler)(void *, struct page *),
0531b2aa
LT
2151 void *data,
2152 gfp_t gfp)
2153
1da177e4
LT
2154{
2155 struct page *page;
2156 int err;
2157
2158retry:
0531b2aa 2159 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2160 if (IS_ERR(page))
c855ff37 2161 return page;
1da177e4
LT
2162 if (PageUptodate(page))
2163 goto out;
2164
2165 lock_page(page);
2166 if (!page->mapping) {
2167 unlock_page(page);
2168 page_cache_release(page);
2169 goto retry;
2170 }
2171 if (PageUptodate(page)) {
2172 unlock_page(page);
2173 goto out;
2174 }
2175 err = filler(data, page);
2176 if (err < 0) {
2177 page_cache_release(page);
c855ff37 2178 return ERR_PTR(err);
67f9fd91
SL
2179 } else {
2180 page = wait_on_page_read(page);
2181 if (IS_ERR(page))
2182 return page;
1da177e4 2183 }
c855ff37 2184out:
6fe6900e
NP
2185 mark_page_accessed(page);
2186 return page;
2187}
0531b2aa
LT
2188
2189/**
67f9fd91 2190 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2191 * @mapping: the page's address_space
2192 * @index: the page index
2193 * @filler: function to perform the read
5e5358e7 2194 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2195 *
0531b2aa 2196 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2197 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2198 *
2199 * If the page does not get brought uptodate, return -EIO.
2200 */
67f9fd91 2201struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2202 pgoff_t index,
5e5358e7 2203 int (*filler)(void *, struct page *),
0531b2aa
LT
2204 void *data)
2205{
2206 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2207}
67f9fd91 2208EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2209
2210/**
2211 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2212 * @mapping: the page's address_space
2213 * @index: the page index
2214 * @gfp: the page allocator flags to use if allocating
2215 *
2216 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2217 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2218 *
2219 * If the page does not get brought uptodate, return -EIO.
2220 */
2221struct page *read_cache_page_gfp(struct address_space *mapping,
2222 pgoff_t index,
2223 gfp_t gfp)
2224{
2225 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2226
67f9fd91 2227 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2228}
2229EXPORT_SYMBOL(read_cache_page_gfp);
2230
1da177e4
LT
2231/*
2232 * Performs necessary checks before doing a write
2233 *
485bb99b 2234 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2235 * Returns appropriate error code that caller should return or
2236 * zero in case that write should be allowed.
2237 */
2238inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2239{
2240 struct inode *inode = file->f_mapping->host;
59e99e5b 2241 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2242
2243 if (unlikely(*pos < 0))
2244 return -EINVAL;
2245
1da177e4
LT
2246 if (!isblk) {
2247 /* FIXME: this is for backwards compatibility with 2.4 */
2248 if (file->f_flags & O_APPEND)
2249 *pos = i_size_read(inode);
2250
2251 if (limit != RLIM_INFINITY) {
2252 if (*pos >= limit) {
2253 send_sig(SIGXFSZ, current, 0);
2254 return -EFBIG;
2255 }
2256 if (*count > limit - (typeof(limit))*pos) {
2257 *count = limit - (typeof(limit))*pos;
2258 }
2259 }
2260 }
2261
2262 /*
2263 * LFS rule
2264 */
2265 if (unlikely(*pos + *count > MAX_NON_LFS &&
2266 !(file->f_flags & O_LARGEFILE))) {
2267 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2268 return -EFBIG;
2269 }
2270 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2271 *count = MAX_NON_LFS - (unsigned long)*pos;
2272 }
2273 }
2274
2275 /*
2276 * Are we about to exceed the fs block limit ?
2277 *
2278 * If we have written data it becomes a short write. If we have
2279 * exceeded without writing data we send a signal and return EFBIG.
2280 * Linus frestrict idea will clean these up nicely..
2281 */
2282 if (likely(!isblk)) {
2283 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2284 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2285 return -EFBIG;
2286 }
2287 /* zero-length writes at ->s_maxbytes are OK */
2288 }
2289
2290 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2291 *count = inode->i_sb->s_maxbytes - *pos;
2292 } else {
9361401e 2293#ifdef CONFIG_BLOCK
1da177e4
LT
2294 loff_t isize;
2295 if (bdev_read_only(I_BDEV(inode)))
2296 return -EPERM;
2297 isize = i_size_read(inode);
2298 if (*pos >= isize) {
2299 if (*count || *pos > isize)
2300 return -ENOSPC;
2301 }
2302
2303 if (*pos + *count > isize)
2304 *count = isize - *pos;
9361401e
DH
2305#else
2306 return -EPERM;
2307#endif
1da177e4
LT
2308 }
2309 return 0;
2310}
2311EXPORT_SYMBOL(generic_write_checks);
2312
afddba49
NP
2313int pagecache_write_begin(struct file *file, struct address_space *mapping,
2314 loff_t pos, unsigned len, unsigned flags,
2315 struct page **pagep, void **fsdata)
2316{
2317 const struct address_space_operations *aops = mapping->a_ops;
2318
4e02ed4b 2319 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2320 pagep, fsdata);
afddba49
NP
2321}
2322EXPORT_SYMBOL(pagecache_write_begin);
2323
2324int pagecache_write_end(struct file *file, struct address_space *mapping,
2325 loff_t pos, unsigned len, unsigned copied,
2326 struct page *page, void *fsdata)
2327{
2328 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2329
4e02ed4b 2330 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2331}
2332EXPORT_SYMBOL(pagecache_write_end);
2333
1da177e4 2334ssize_t
0c949334 2335generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2336{
2337 struct file *file = iocb->ki_filp;
2338 struct address_space *mapping = file->f_mapping;
2339 struct inode *inode = mapping->host;
2340 ssize_t written;
a969e903
CH
2341 size_t write_len;
2342 pgoff_t end;
26978b8b 2343 struct iov_iter data;
1da177e4 2344
0c949334 2345 write_len = iov_iter_count(from);
a969e903 2346 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2347
48b47c56 2348 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2349 if (written)
2350 goto out;
2351
2352 /*
2353 * After a write we want buffered reads to be sure to go to disk to get
2354 * the new data. We invalidate clean cached page from the region we're
2355 * about to write. We do this *before* the write so that we can return
6ccfa806 2356 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2357 */
2358 if (mapping->nrpages) {
2359 written = invalidate_inode_pages2_range(mapping,
2360 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2361 /*
2362 * If a page can not be invalidated, return 0 to fall back
2363 * to buffered write.
2364 */
2365 if (written) {
2366 if (written == -EBUSY)
2367 return 0;
a969e903 2368 goto out;
6ccfa806 2369 }
a969e903
CH
2370 }
2371
26978b8b
AV
2372 data = *from;
2373 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
a969e903
CH
2374
2375 /*
2376 * Finally, try again to invalidate clean pages which might have been
2377 * cached by non-direct readahead, or faulted in by get_user_pages()
2378 * if the source of the write was an mmap'ed region of the file
2379 * we're writing. Either one is a pretty crazy thing to do,
2380 * so we don't support it 100%. If this invalidation
2381 * fails, tough, the write still worked...
2382 */
2383 if (mapping->nrpages) {
2384 invalidate_inode_pages2_range(mapping,
2385 pos >> PAGE_CACHE_SHIFT, end);
2386 }
2387
1da177e4 2388 if (written > 0) {
0116651c 2389 pos += written;
f8579f86 2390 iov_iter_advance(from, written);
0116651c
NK
2391 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2392 i_size_write(inode, pos);
1da177e4
LT
2393 mark_inode_dirty(inode);
2394 }
5cb6c6c7 2395 iocb->ki_pos = pos;
1da177e4 2396 }
a969e903 2397out:
1da177e4
LT
2398 return written;
2399}
2400EXPORT_SYMBOL(generic_file_direct_write);
2401
eb2be189
NP
2402/*
2403 * Find or create a page at the given pagecache position. Return the locked
2404 * page. This function is specifically for buffered writes.
2405 */
54566b2c
NP
2406struct page *grab_cache_page_write_begin(struct address_space *mapping,
2407 pgoff_t index, unsigned flags)
eb2be189 2408{
eb2be189 2409 struct page *page;
2457aec6 2410 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2411
54566b2c 2412 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2413 fgp_flags |= FGP_NOFS;
2414
2415 page = pagecache_get_page(mapping, index, fgp_flags,
2416 mapping_gfp_mask(mapping),
2417 GFP_KERNEL);
c585a267 2418 if (page)
2457aec6 2419 wait_for_stable_page(page);
eb2be189 2420
eb2be189
NP
2421 return page;
2422}
54566b2c 2423EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2424
3b93f911 2425ssize_t generic_perform_write(struct file *file,
afddba49
NP
2426 struct iov_iter *i, loff_t pos)
2427{
2428 struct address_space *mapping = file->f_mapping;
2429 const struct address_space_operations *a_ops = mapping->a_ops;
2430 long status = 0;
2431 ssize_t written = 0;
674b892e
NP
2432 unsigned int flags = 0;
2433
2434 /*
2435 * Copies from kernel address space cannot fail (NFSD is a big user).
2436 */
2437 if (segment_eq(get_fs(), KERNEL_DS))
2438 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2439
2440 do {
2441 struct page *page;
afddba49
NP
2442 unsigned long offset; /* Offset into pagecache page */
2443 unsigned long bytes; /* Bytes to write to page */
2444 size_t copied; /* Bytes copied from user */
2445 void *fsdata;
2446
2447 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2448 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2449 iov_iter_count(i));
2450
2451again:
afddba49
NP
2452 /*
2453 * Bring in the user page that we will copy from _first_.
2454 * Otherwise there's a nasty deadlock on copying from the
2455 * same page as we're writing to, without it being marked
2456 * up-to-date.
2457 *
2458 * Not only is this an optimisation, but it is also required
2459 * to check that the address is actually valid, when atomic
2460 * usercopies are used, below.
2461 */
2462 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2463 status = -EFAULT;
2464 break;
2465 }
2466
674b892e 2467 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2468 &page, &fsdata);
2457aec6 2469 if (unlikely(status < 0))
afddba49
NP
2470 break;
2471
931e80e4 2472 if (mapping_writably_mapped(mapping))
2473 flush_dcache_page(page);
2474
afddba49 2475 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2476 flush_dcache_page(page);
2477
2478 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2479 page, fsdata);
2480 if (unlikely(status < 0))
2481 break;
2482 copied = status;
2483
2484 cond_resched();
2485
124d3b70 2486 iov_iter_advance(i, copied);
afddba49
NP
2487 if (unlikely(copied == 0)) {
2488 /*
2489 * If we were unable to copy any data at all, we must
2490 * fall back to a single segment length write.
2491 *
2492 * If we didn't fallback here, we could livelock
2493 * because not all segments in the iov can be copied at
2494 * once without a pagefault.
2495 */
2496 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2497 iov_iter_single_seg_count(i));
2498 goto again;
2499 }
afddba49
NP
2500 pos += copied;
2501 written += copied;
2502
2503 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2504 if (fatal_signal_pending(current)) {
2505 status = -EINTR;
2506 break;
2507 }
afddba49
NP
2508 } while (iov_iter_count(i));
2509
2510 return written ? written : status;
2511}
3b93f911 2512EXPORT_SYMBOL(generic_perform_write);
1da177e4 2513
e4dd9de3 2514/**
8174202b 2515 * __generic_file_write_iter - write data to a file
e4dd9de3 2516 * @iocb: IO state structure (file, offset, etc.)
8174202b 2517 * @from: iov_iter with data to write
e4dd9de3
JK
2518 *
2519 * This function does all the work needed for actually writing data to a
2520 * file. It does all basic checks, removes SUID from the file, updates
2521 * modification times and calls proper subroutines depending on whether we
2522 * do direct IO or a standard buffered write.
2523 *
2524 * It expects i_mutex to be grabbed unless we work on a block device or similar
2525 * object which does not need locking at all.
2526 *
2527 * This function does *not* take care of syncing data in case of O_SYNC write.
2528 * A caller has to handle it. This is mainly due to the fact that we want to
2529 * avoid syncing under i_mutex.
2530 */
8174202b 2531ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2532{
2533 struct file *file = iocb->ki_filp;
fb5527e6 2534 struct address_space * mapping = file->f_mapping;
1da177e4 2535 struct inode *inode = mapping->host;
41fc56d5 2536 loff_t pos = iocb->ki_pos;
3b93f911 2537 ssize_t written = 0;
1da177e4 2538 ssize_t err;
3b93f911 2539 ssize_t status;
8174202b 2540 size_t count = iov_iter_count(from);
1da177e4 2541
1da177e4
LT
2542 /* We can write back this queue in page reclaim */
2543 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2544 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2545 if (err)
2546 goto out;
2547
2548 if (count == 0)
2549 goto out;
2550
8174202b 2551 iov_iter_truncate(from, count);
0c949334 2552
2f1936b8 2553 err = file_remove_suid(file);
1da177e4
LT
2554 if (err)
2555 goto out;
2556
c3b2da31
JB
2557 err = file_update_time(file);
2558 if (err)
2559 goto out;
1da177e4
LT
2560
2561 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2562 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2563 loff_t endbyte;
fb5527e6 2564
8174202b 2565 written = generic_file_direct_write(iocb, from, pos);
1da177e4
LT
2566 if (written < 0 || written == count)
2567 goto out;
3b93f911 2568
1da177e4
LT
2569 /*
2570 * direct-io write to a hole: fall through to buffered I/O
2571 * for completing the rest of the request.
2572 */
2573 pos += written;
2574 count -= written;
3b93f911 2575
8174202b 2576 status = generic_perform_write(file, from, pos);
fb5527e6 2577 /*
3b93f911 2578 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2579 * then we want to return the number of bytes which were
2580 * direct-written, or the error code if that was zero. Note
2581 * that this differs from normal direct-io semantics, which
2582 * will return -EFOO even if some bytes were written.
2583 */
3b93f911
AV
2584 if (unlikely(status < 0) && !written) {
2585 err = status;
fb5527e6
JM
2586 goto out;
2587 }
3b93f911 2588 iocb->ki_pos = pos + status;
fb5527e6
JM
2589 /*
2590 * We need to ensure that the page cache pages are written to
2591 * disk and invalidated to preserve the expected O_DIRECT
2592 * semantics.
2593 */
3b93f911 2594 endbyte = pos + status - 1;
c05c4edd 2595 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2596 if (err == 0) {
3b93f911 2597 written += status;
fb5527e6
JM
2598 invalidate_mapping_pages(mapping,
2599 pos >> PAGE_CACHE_SHIFT,
2600 endbyte >> PAGE_CACHE_SHIFT);
2601 } else {
2602 /*
2603 * We don't know how much we wrote, so just return
2604 * the number of bytes which were direct-written
2605 */
2606 }
2607 } else {
8174202b 2608 written = generic_perform_write(file, from, pos);
3b93f911
AV
2609 if (likely(written >= 0))
2610 iocb->ki_pos = pos + written;
fb5527e6 2611 }
1da177e4
LT
2612out:
2613 current->backing_dev_info = NULL;
2614 return written ? written : err;
2615}
8174202b 2616EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2617
e4dd9de3 2618/**
8174202b 2619 * generic_file_write_iter - write data to a file
e4dd9de3 2620 * @iocb: IO state structure
8174202b 2621 * @from: iov_iter with data to write
e4dd9de3 2622 *
8174202b 2623 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2624 * filesystems. It takes care of syncing the file in case of O_SYNC file
2625 * and acquires i_mutex as needed.
2626 */
8174202b 2627ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2628{
2629 struct file *file = iocb->ki_filp;
148f948b 2630 struct inode *inode = file->f_mapping->host;
1da177e4 2631 ssize_t ret;
1da177e4 2632
1b1dcc1b 2633 mutex_lock(&inode->i_mutex);
8174202b 2634 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2635 mutex_unlock(&inode->i_mutex);
1da177e4 2636
02afc27f 2637 if (ret > 0) {
1da177e4
LT
2638 ssize_t err;
2639
d311d79d
AV
2640 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2641 if (err < 0)
1da177e4
LT
2642 ret = err;
2643 }
2644 return ret;
2645}
8174202b 2646EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2647
cf9a2ae8
DH
2648/**
2649 * try_to_release_page() - release old fs-specific metadata on a page
2650 *
2651 * @page: the page which the kernel is trying to free
2652 * @gfp_mask: memory allocation flags (and I/O mode)
2653 *
2654 * The address_space is to try to release any data against the page
2655 * (presumably at page->private). If the release was successful, return `1'.
2656 * Otherwise return zero.
2657 *
266cf658
DH
2658 * This may also be called if PG_fscache is set on a page, indicating that the
2659 * page is known to the local caching routines.
2660 *
cf9a2ae8 2661 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2662 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2663 *
cf9a2ae8
DH
2664 */
2665int try_to_release_page(struct page *page, gfp_t gfp_mask)
2666{
2667 struct address_space * const mapping = page->mapping;
2668
2669 BUG_ON(!PageLocked(page));
2670 if (PageWriteback(page))
2671 return 0;
2672
2673 if (mapping && mapping->a_ops->releasepage)
2674 return mapping->a_ops->releasepage(page, gfp_mask);
2675 return try_to_free_buffers(page);
2676}
2677
2678EXPORT_SYMBOL(try_to_release_page);