memcg: add memory.numastat api for numa statistics
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
c515e1fd 37#include <linux/cleancache.h>
0f8053a5
NP
38#include "internal.h"
39
1da177e4 40/*
1da177e4
LT
41 * FIXME: remove all knowledge of the buffer layer from the core VM
42 */
148f948b 43#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 44
1da177e4
LT
45#include <asm/mman.h>
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
3d48ae45 62 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
3d48ae45 68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
69 *
70 * ->mmap_sem
3d48ae45 71 * ->i_mmap_mutex
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
1b1dcc1b 81 * ->i_mutex
1da177e4
LT
82 * ->i_alloc_sem (various)
83 *
a66979ab
DC
84 * inode_wb_list_lock
85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
3d48ae45 88 * ->i_mmap_mutex
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
a66979ab 102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
a66979ab 104 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
6a46079c
AK
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
3d48ae45 110 * ->i_mmap_mutex
1da177e4
LT
111 */
112
113/*
e64a782f 114 * Delete a page from the page cache and free it. Caller has to make
1da177e4 115 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 116 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 117 */
e64a782f 118void __delete_from_page_cache(struct page *page)
1da177e4
LT
119{
120 struct address_space *mapping = page->mapping;
121
c515e1fd
DM
122 /*
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
126 */
127 if (PageUptodate(page) && PageMappedToDisk(page))
128 cleancache_put_page(page);
129 else
130 cleancache_flush_page(mapping, page);
131
1da177e4
LT
132 radix_tree_delete(&mapping->page_tree, page->index);
133 page->mapping = NULL;
134 mapping->nrpages--;
347ce434 135 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
136 if (PageSwapBacked(page))
137 __dec_zone_page_state(page, NR_SHMEM);
45426812 138 BUG_ON(page_mapped(page));
3a692790
LT
139
140 /*
141 * Some filesystems seem to re-dirty the page even after
142 * the VM has canceled the dirty bit (eg ext3 journaling).
143 *
144 * Fix it up by doing a final dirty accounting check after
145 * having removed the page entirely.
146 */
147 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148 dec_zone_page_state(page, NR_FILE_DIRTY);
149 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150 }
1da177e4
LT
151}
152
702cfbf9
MK
153/**
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
156 *
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked. It will never put the page into the free list, the caller
159 * has a reference on the page.
160 */
161void delete_from_page_cache(struct page *page)
1da177e4
LT
162{
163 struct address_space *mapping = page->mapping;
6072d13c 164 void (*freepage)(struct page *);
1da177e4 165
cd7619d6 166 BUG_ON(!PageLocked(page));
1da177e4 167
6072d13c 168 freepage = mapping->a_ops->freepage;
19fd6231 169 spin_lock_irq(&mapping->tree_lock);
e64a782f 170 __delete_from_page_cache(page);
19fd6231 171 spin_unlock_irq(&mapping->tree_lock);
e767e056 172 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
173
174 if (freepage)
175 freepage(page);
97cecb5a
MK
176 page_cache_release(page);
177}
178EXPORT_SYMBOL(delete_from_page_cache);
179
7eaceacc 180static int sleep_on_page(void *word)
1da177e4 181{
1da177e4
LT
182 io_schedule();
183 return 0;
184}
185
7eaceacc 186static int sleep_on_page_killable(void *word)
2687a356 187{
7eaceacc 188 sleep_on_page(word);
2687a356
MW
189 return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
1da177e4 192/**
485bb99b 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
469eb4d0 196 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 197 * @sync_mode: enable synchronous operation
1da177e4 198 *
485bb99b
RD
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
1da177e4 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 203 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
ebcf28e1
AM
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
1da177e4
LT
209{
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
05fe478d 213 .nr_to_write = LONG_MAX,
111ebb6e
OH
214 .range_start = start,
215 .range_end = end,
1da177e4
LT
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227{
111ebb6e 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
f4c0a0fd 237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 238 loff_t end)
1da177e4
LT
239{
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
f4c0a0fd 242EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 243
485bb99b
RD
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
1da177e4
LT
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
485bb99b 257/**
94004ed7
CH
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping: address space structure to wait for
260 * @start_byte: offset in bytes where the range starts
261 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 262 *
94004ed7
CH
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
1da177e4 265 */
94004ed7
CH
266int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267 loff_t end_byte)
1da177e4 268{
94004ed7
CH
269 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
271 struct pagevec pvec;
272 int nr_pages;
273 int ret = 0;
1da177e4 274
94004ed7 275 if (end_byte < start_byte)
1da177e4
LT
276 return 0;
277
278 pagevec_init(&pvec, 0);
1da177e4
LT
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
212260aa 293 if (TestClearPageError(page))
1da177e4
LT
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307}
d3bccb6f
JK
308EXPORT_SYMBOL(filemap_fdatawait_range);
309
1da177e4 310/**
485bb99b 311 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 312 * @mapping: address space structure to wait for
485bb99b
RD
313 *
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
1da177e4
LT
316 */
317int filemap_fdatawait(struct address_space *mapping)
318{
319 loff_t i_size = i_size_read(mapping->host);
320
321 if (i_size == 0)
322 return 0;
323
94004ed7 324 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
325}
326EXPORT_SYMBOL(filemap_fdatawait);
327
328int filemap_write_and_wait(struct address_space *mapping)
329{
28fd1298 330 int err = 0;
1da177e4
LT
331
332 if (mapping->nrpages) {
28fd1298
OH
333 err = filemap_fdatawrite(mapping);
334 /*
335 * Even if the above returned error, the pages may be
336 * written partially (e.g. -ENOSPC), so we wait for it.
337 * But the -EIO is special case, it may indicate the worst
338 * thing (e.g. bug) happened, so we avoid waiting for it.
339 */
340 if (err != -EIO) {
341 int err2 = filemap_fdatawait(mapping);
342 if (!err)
343 err = err2;
344 }
1da177e4 345 }
28fd1298 346 return err;
1da177e4 347}
28fd1298 348EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 349
485bb99b
RD
350/**
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping: the address_space for the pages
353 * @lstart: offset in bytes where the range starts
354 * @lend: offset in bytes where the range ends (inclusive)
355 *
469eb4d0
AM
356 * Write out and wait upon file offsets lstart->lend, inclusive.
357 *
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
360 */
1da177e4
LT
361int filemap_write_and_wait_range(struct address_space *mapping,
362 loff_t lstart, loff_t lend)
363{
28fd1298 364 int err = 0;
1da177e4
LT
365
366 if (mapping->nrpages) {
28fd1298
OH
367 err = __filemap_fdatawrite_range(mapping, lstart, lend,
368 WB_SYNC_ALL);
369 /* See comment of filemap_write_and_wait() */
370 if (err != -EIO) {
94004ed7
CH
371 int err2 = filemap_fdatawait_range(mapping,
372 lstart, lend);
28fd1298
OH
373 if (!err)
374 err = err2;
375 }
1da177e4 376 }
28fd1298 377 return err;
1da177e4 378}
f6995585 379EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 380
ef6a3c63
MS
381/**
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old: page to be replaced
384 * @new: page to replace with
385 * @gfp_mask: allocation mode
386 *
387 * This function replaces a page in the pagecache with a new one. On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page. Both the old and new pages must be
390 * locked. This function does not add the new page to the LRU, the
391 * caller must do that.
392 *
393 * The remove + add is atomic. The only way this function can fail is
394 * memory allocation failure.
395 */
396int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397{
398 int error;
399 struct mem_cgroup *memcg = NULL;
400
401 VM_BUG_ON(!PageLocked(old));
402 VM_BUG_ON(!PageLocked(new));
403 VM_BUG_ON(new->mapping);
404
405 /*
406 * This is not page migration, but prepare_migration and
407 * end_migration does enough work for charge replacement.
408 *
409 * In the longer term we probably want a specialized function
410 * for moving the charge from old to new in a more efficient
411 * manner.
412 */
413 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
414 if (error)
415 return error;
416
417 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
418 if (!error) {
419 struct address_space *mapping = old->mapping;
420 void (*freepage)(struct page *);
421
422 pgoff_t offset = old->index;
423 freepage = mapping->a_ops->freepage;
424
425 page_cache_get(new);
426 new->mapping = mapping;
427 new->index = offset;
428
429 spin_lock_irq(&mapping->tree_lock);
e64a782f 430 __delete_from_page_cache(old);
ef6a3c63
MS
431 error = radix_tree_insert(&mapping->page_tree, offset, new);
432 BUG_ON(error);
433 mapping->nrpages++;
434 __inc_zone_page_state(new, NR_FILE_PAGES);
435 if (PageSwapBacked(new))
436 __inc_zone_page_state(new, NR_SHMEM);
437 spin_unlock_irq(&mapping->tree_lock);
438 radix_tree_preload_end();
439 if (freepage)
440 freepage(old);
441 page_cache_release(old);
442 mem_cgroup_end_migration(memcg, old, new, true);
443 } else {
444 mem_cgroup_end_migration(memcg, old, new, false);
445 }
446
447 return error;
448}
449EXPORT_SYMBOL_GPL(replace_page_cache_page);
450
485bb99b 451/**
e286781d 452 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
453 * @page: page to add
454 * @mapping: the page's address_space
455 * @offset: page index
456 * @gfp_mask: page allocation mode
457 *
e286781d 458 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
459 * This function does not add the page to the LRU. The caller must do that.
460 */
e286781d 461int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 462 pgoff_t offset, gfp_t gfp_mask)
1da177e4 463{
e286781d
NP
464 int error;
465
466 VM_BUG_ON(!PageLocked(page));
467
468 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 469 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
470 if (error)
471 goto out;
1da177e4 472
35c754d7 473 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 474 if (error == 0) {
e286781d
NP
475 page_cache_get(page);
476 page->mapping = mapping;
477 page->index = offset;
478
19fd6231 479 spin_lock_irq(&mapping->tree_lock);
1da177e4 480 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 481 if (likely(!error)) {
1da177e4 482 mapping->nrpages++;
347ce434 483 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
484 if (PageSwapBacked(page))
485 __inc_zone_page_state(page, NR_SHMEM);
e767e056 486 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
487 } else {
488 page->mapping = NULL;
e767e056 489 spin_unlock_irq(&mapping->tree_lock);
69029cd5 490 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
491 page_cache_release(page);
492 }
1da177e4 493 radix_tree_preload_end();
35c754d7 494 } else
69029cd5 495 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 496out:
1da177e4
LT
497 return error;
498}
e286781d 499EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
500
501int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 502 pgoff_t offset, gfp_t gfp_mask)
1da177e4 503{
4f98a2fe
RR
504 int ret;
505
506 /*
507 * Splice_read and readahead add shmem/tmpfs pages into the page cache
508 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 509 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
510 * (called in add_to_page_cache) needs to know where they're going too.
511 */
512 if (mapping_cap_swap_backed(mapping))
513 SetPageSwapBacked(page);
514
515 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
516 if (ret == 0) {
517 if (page_is_file_cache(page))
518 lru_cache_add_file(page);
519 else
e9d6c157 520 lru_cache_add_anon(page);
4f98a2fe 521 }
1da177e4
LT
522 return ret;
523}
18bc0bbd 524EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 525
44110fe3 526#ifdef CONFIG_NUMA
2ae88149 527struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 528{
c0ff7453
MX
529 int n;
530 struct page *page;
531
44110fe3 532 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
533 get_mems_allowed();
534 n = cpuset_mem_spread_node();
535 page = alloc_pages_exact_node(n, gfp, 0);
536 put_mems_allowed();
537 return page;
44110fe3 538 }
2ae88149 539 return alloc_pages(gfp, 0);
44110fe3 540}
2ae88149 541EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
542#endif
543
1da177e4
LT
544/*
545 * In order to wait for pages to become available there must be
546 * waitqueues associated with pages. By using a hash table of
547 * waitqueues where the bucket discipline is to maintain all
548 * waiters on the same queue and wake all when any of the pages
549 * become available, and for the woken contexts to check to be
550 * sure the appropriate page became available, this saves space
551 * at a cost of "thundering herd" phenomena during rare hash
552 * collisions.
553 */
554static wait_queue_head_t *page_waitqueue(struct page *page)
555{
556 const struct zone *zone = page_zone(page);
557
558 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
559}
560
561static inline void wake_up_page(struct page *page, int bit)
562{
563 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
564}
565
920c7a5d 566void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
567{
568 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
569
570 if (test_bit(bit_nr, &page->flags))
7eaceacc 571 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
572 TASK_UNINTERRUPTIBLE);
573}
574EXPORT_SYMBOL(wait_on_page_bit);
575
f62e00cc
KM
576int wait_on_page_bit_killable(struct page *page, int bit_nr)
577{
578 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
579
580 if (!test_bit(bit_nr, &page->flags))
581 return 0;
582
583 return __wait_on_bit(page_waitqueue(page), &wait,
584 sleep_on_page_killable, TASK_KILLABLE);
585}
586
385e1ca5
DH
587/**
588 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
589 * @page: Page defining the wait queue of interest
590 * @waiter: Waiter to add to the queue
385e1ca5
DH
591 *
592 * Add an arbitrary @waiter to the wait queue for the nominated @page.
593 */
594void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
595{
596 wait_queue_head_t *q = page_waitqueue(page);
597 unsigned long flags;
598
599 spin_lock_irqsave(&q->lock, flags);
600 __add_wait_queue(q, waiter);
601 spin_unlock_irqrestore(&q->lock, flags);
602}
603EXPORT_SYMBOL_GPL(add_page_wait_queue);
604
1da177e4 605/**
485bb99b 606 * unlock_page - unlock a locked page
1da177e4
LT
607 * @page: the page
608 *
609 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
610 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
611 * mechananism between PageLocked pages and PageWriteback pages is shared.
612 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
613 *
8413ac9d
NP
614 * The mb is necessary to enforce ordering between the clear_bit and the read
615 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 616 */
920c7a5d 617void unlock_page(struct page *page)
1da177e4 618{
8413ac9d
NP
619 VM_BUG_ON(!PageLocked(page));
620 clear_bit_unlock(PG_locked, &page->flags);
621 smp_mb__after_clear_bit();
1da177e4
LT
622 wake_up_page(page, PG_locked);
623}
624EXPORT_SYMBOL(unlock_page);
625
485bb99b
RD
626/**
627 * end_page_writeback - end writeback against a page
628 * @page: the page
1da177e4
LT
629 */
630void end_page_writeback(struct page *page)
631{
ac6aadb2
MS
632 if (TestClearPageReclaim(page))
633 rotate_reclaimable_page(page);
634
635 if (!test_clear_page_writeback(page))
636 BUG();
637
1da177e4
LT
638 smp_mb__after_clear_bit();
639 wake_up_page(page, PG_writeback);
640}
641EXPORT_SYMBOL(end_page_writeback);
642
485bb99b
RD
643/**
644 * __lock_page - get a lock on the page, assuming we need to sleep to get it
645 * @page: the page to lock
1da177e4 646 */
920c7a5d 647void __lock_page(struct page *page)
1da177e4
LT
648{
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
7eaceacc 651 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
652 TASK_UNINTERRUPTIBLE);
653}
654EXPORT_SYMBOL(__lock_page);
655
b5606c2d 656int __lock_page_killable(struct page *page)
2687a356
MW
657{
658 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
659
660 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 661 sleep_on_page_killable, TASK_KILLABLE);
2687a356 662}
18bc0bbd 663EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 664
d065bd81
ML
665int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
666 unsigned int flags)
667{
37b23e05
KM
668 if (flags & FAULT_FLAG_ALLOW_RETRY) {
669 /*
670 * CAUTION! In this case, mmap_sem is not released
671 * even though return 0.
672 */
673 if (flags & FAULT_FLAG_RETRY_NOWAIT)
674 return 0;
675
676 up_read(&mm->mmap_sem);
677 if (flags & FAULT_FLAG_KILLABLE)
678 wait_on_page_locked_killable(page);
679 else
318b275f 680 wait_on_page_locked(page);
d065bd81 681 return 0;
37b23e05
KM
682 } else {
683 if (flags & FAULT_FLAG_KILLABLE) {
684 int ret;
685
686 ret = __lock_page_killable(page);
687 if (ret) {
688 up_read(&mm->mmap_sem);
689 return 0;
690 }
691 } else
692 __lock_page(page);
693 return 1;
d065bd81
ML
694 }
695}
696
485bb99b
RD
697/**
698 * find_get_page - find and get a page reference
699 * @mapping: the address_space to search
700 * @offset: the page index
701 *
da6052f7
NP
702 * Is there a pagecache struct page at the given (mapping, offset) tuple?
703 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 704 */
a60637c8 705struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 706{
a60637c8 707 void **pagep;
1da177e4
LT
708 struct page *page;
709
a60637c8
NP
710 rcu_read_lock();
711repeat:
712 page = NULL;
713 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
714 if (pagep) {
715 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
716 if (unlikely(!page))
717 goto out;
718 if (radix_tree_deref_retry(page))
a60637c8
NP
719 goto repeat;
720
721 if (!page_cache_get_speculative(page))
722 goto repeat;
723
724 /*
725 * Has the page moved?
726 * This is part of the lockless pagecache protocol. See
727 * include/linux/pagemap.h for details.
728 */
729 if (unlikely(page != *pagep)) {
730 page_cache_release(page);
731 goto repeat;
732 }
733 }
27d20fdd 734out:
a60637c8
NP
735 rcu_read_unlock();
736
1da177e4
LT
737 return page;
738}
1da177e4
LT
739EXPORT_SYMBOL(find_get_page);
740
1da177e4
LT
741/**
742 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
743 * @mapping: the address_space to search
744 * @offset: the page index
1da177e4
LT
745 *
746 * Locates the desired pagecache page, locks it, increments its reference
747 * count and returns its address.
748 *
749 * Returns zero if the page was not present. find_lock_page() may sleep.
750 */
a60637c8 751struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
752{
753 struct page *page;
754
1da177e4 755repeat:
a60637c8 756 page = find_get_page(mapping, offset);
1da177e4 757 if (page) {
a60637c8
NP
758 lock_page(page);
759 /* Has the page been truncated? */
760 if (unlikely(page->mapping != mapping)) {
761 unlock_page(page);
762 page_cache_release(page);
763 goto repeat;
1da177e4 764 }
a60637c8 765 VM_BUG_ON(page->index != offset);
1da177e4 766 }
1da177e4
LT
767 return page;
768}
1da177e4
LT
769EXPORT_SYMBOL(find_lock_page);
770
771/**
772 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
773 * @mapping: the page's address_space
774 * @index: the page's index into the mapping
775 * @gfp_mask: page allocation mode
1da177e4
LT
776 *
777 * Locates a page in the pagecache. If the page is not present, a new page
778 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
779 * LRU list. The returned page is locked and has its reference count
780 * incremented.
781 *
782 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
783 * allocation!
784 *
785 * find_or_create_page() returns the desired page's address, or zero on
786 * memory exhaustion.
787 */
788struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 789 pgoff_t index, gfp_t gfp_mask)
1da177e4 790{
eb2be189 791 struct page *page;
1da177e4
LT
792 int err;
793repeat:
794 page = find_lock_page(mapping, index);
795 if (!page) {
eb2be189
NP
796 page = __page_cache_alloc(gfp_mask);
797 if (!page)
798 return NULL;
67d58ac4
NP
799 /*
800 * We want a regular kernel memory (not highmem or DMA etc)
801 * allocation for the radix tree nodes, but we need to honour
802 * the context-specific requirements the caller has asked for.
803 * GFP_RECLAIM_MASK collects those requirements.
804 */
805 err = add_to_page_cache_lru(page, mapping, index,
806 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
807 if (unlikely(err)) {
808 page_cache_release(page);
809 page = NULL;
810 if (err == -EEXIST)
811 goto repeat;
1da177e4 812 }
1da177e4 813 }
1da177e4
LT
814 return page;
815}
1da177e4
LT
816EXPORT_SYMBOL(find_or_create_page);
817
818/**
819 * find_get_pages - gang pagecache lookup
820 * @mapping: The address_space to search
821 * @start: The starting page index
822 * @nr_pages: The maximum number of pages
823 * @pages: Where the resulting pages are placed
824 *
825 * find_get_pages() will search for and return a group of up to
826 * @nr_pages pages in the mapping. The pages are placed at @pages.
827 * find_get_pages() takes a reference against the returned pages.
828 *
829 * The search returns a group of mapping-contiguous pages with ascending
830 * indexes. There may be holes in the indices due to not-present pages.
831 *
832 * find_get_pages() returns the number of pages which were found.
833 */
834unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
835 unsigned int nr_pages, struct page **pages)
836{
837 unsigned int i;
838 unsigned int ret;
a60637c8
NP
839 unsigned int nr_found;
840
841 rcu_read_lock();
842restart:
843 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
844 (void ***)pages, start, nr_pages);
845 ret = 0;
846 for (i = 0; i < nr_found; i++) {
847 struct page *page;
848repeat:
849 page = radix_tree_deref_slot((void **)pages[i]);
850 if (unlikely(!page))
851 continue;
9d8aa4ea
HD
852
853 /*
854 * This can only trigger when the entry at index 0 moves out
855 * of or back to the root: none yet gotten, safe to restart.
856 */
27d20fdd 857 if (radix_tree_deref_retry(page)) {
9d8aa4ea 858 WARN_ON(start | i);
a60637c8 859 goto restart;
27d20fdd 860 }
a60637c8
NP
861
862 if (!page_cache_get_speculative(page))
863 goto repeat;
864
865 /* Has the page moved? */
866 if (unlikely(page != *((void **)pages[i]))) {
867 page_cache_release(page);
868 goto repeat;
869 }
1da177e4 870
a60637c8
NP
871 pages[ret] = page;
872 ret++;
873 }
5b280c0c
HD
874
875 /*
876 * If all entries were removed before we could secure them,
877 * try again, because callers stop trying once 0 is returned.
878 */
879 if (unlikely(!ret && nr_found))
880 goto restart;
a60637c8 881 rcu_read_unlock();
1da177e4
LT
882 return ret;
883}
884
ebf43500
JA
885/**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899{
900 unsigned int i;
901 unsigned int ret;
a60637c8
NP
902 unsigned int nr_found;
903
904 rcu_read_lock();
905restart:
906 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
907 (void ***)pages, index, nr_pages);
908 ret = 0;
909 for (i = 0; i < nr_found; i++) {
910 struct page *page;
911repeat:
912 page = radix_tree_deref_slot((void **)pages[i]);
913 if (unlikely(!page))
914 continue;
9d8aa4ea
HD
915
916 /*
917 * This can only trigger when the entry at index 0 moves out
918 * of or back to the root: none yet gotten, safe to restart.
919 */
27d20fdd 920 if (radix_tree_deref_retry(page))
a60637c8 921 goto restart;
ebf43500 922
a60637c8
NP
923 if (!page_cache_get_speculative(page))
924 goto repeat;
925
926 /* Has the page moved? */
927 if (unlikely(page != *((void **)pages[i]))) {
928 page_cache_release(page);
929 goto repeat;
930 }
931
9cbb4cb2
NP
932 /*
933 * must check mapping and index after taking the ref.
934 * otherwise we can get both false positives and false
935 * negatives, which is just confusing to the caller.
936 */
937 if (page->mapping == NULL || page->index != index) {
938 page_cache_release(page);
939 break;
940 }
941
a60637c8
NP
942 pages[ret] = page;
943 ret++;
ebf43500
JA
944 index++;
945 }
a60637c8
NP
946 rcu_read_unlock();
947 return ret;
ebf43500 948}
ef71c15c 949EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 950
485bb99b
RD
951/**
952 * find_get_pages_tag - find and return pages that match @tag
953 * @mapping: the address_space to search
954 * @index: the starting page index
955 * @tag: the tag index
956 * @nr_pages: the maximum number of pages
957 * @pages: where the resulting pages are placed
958 *
1da177e4 959 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 960 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
961 */
962unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
963 int tag, unsigned int nr_pages, struct page **pages)
964{
965 unsigned int i;
966 unsigned int ret;
a60637c8
NP
967 unsigned int nr_found;
968
969 rcu_read_lock();
970restart:
971 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
972 (void ***)pages, *index, nr_pages, tag);
973 ret = 0;
974 for (i = 0; i < nr_found; i++) {
975 struct page *page;
976repeat:
977 page = radix_tree_deref_slot((void **)pages[i]);
978 if (unlikely(!page))
979 continue;
9d8aa4ea
HD
980
981 /*
982 * This can only trigger when the entry at index 0 moves out
983 * of or back to the root: none yet gotten, safe to restart.
984 */
27d20fdd 985 if (radix_tree_deref_retry(page))
a60637c8
NP
986 goto restart;
987
988 if (!page_cache_get_speculative(page))
989 goto repeat;
990
991 /* Has the page moved? */
992 if (unlikely(page != *((void **)pages[i]))) {
993 page_cache_release(page);
994 goto repeat;
995 }
996
997 pages[ret] = page;
998 ret++;
999 }
5b280c0c
HD
1000
1001 /*
1002 * If all entries were removed before we could secure them,
1003 * try again, because callers stop trying once 0 is returned.
1004 */
1005 if (unlikely(!ret && nr_found))
1006 goto restart;
a60637c8 1007 rcu_read_unlock();
1da177e4 1008
1da177e4
LT
1009 if (ret)
1010 *index = pages[ret - 1]->index + 1;
a60637c8 1011
1da177e4
LT
1012 return ret;
1013}
ef71c15c 1014EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1015
485bb99b
RD
1016/**
1017 * grab_cache_page_nowait - returns locked page at given index in given cache
1018 * @mapping: target address_space
1019 * @index: the page index
1020 *
72fd4a35 1021 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1022 * This is intended for speculative data generators, where the data can
1023 * be regenerated if the page couldn't be grabbed. This routine should
1024 * be safe to call while holding the lock for another page.
1025 *
1026 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1027 * and deadlock against the caller's locked page.
1028 */
1029struct page *
57f6b96c 1030grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1031{
1032 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1033
1034 if (page) {
529ae9aa 1035 if (trylock_page(page))
1da177e4
LT
1036 return page;
1037 page_cache_release(page);
1038 return NULL;
1039 }
2ae88149 1040 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1041 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1042 page_cache_release(page);
1043 page = NULL;
1044 }
1045 return page;
1046}
1da177e4
LT
1047EXPORT_SYMBOL(grab_cache_page_nowait);
1048
76d42bd9
WF
1049/*
1050 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1051 * a _large_ part of the i/o request. Imagine the worst scenario:
1052 *
1053 * ---R__________________________________________B__________
1054 * ^ reading here ^ bad block(assume 4k)
1055 *
1056 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1057 * => failing the whole request => read(R) => read(R+1) =>
1058 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1059 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1060 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061 *
1062 * It is going insane. Fix it by quickly scaling down the readahead size.
1063 */
1064static void shrink_readahead_size_eio(struct file *filp,
1065 struct file_ra_state *ra)
1066{
76d42bd9 1067 ra->ra_pages /= 4;
76d42bd9
WF
1068}
1069
485bb99b 1070/**
36e78914 1071 * do_generic_file_read - generic file read routine
485bb99b
RD
1072 * @filp: the file to read
1073 * @ppos: current file position
1074 * @desc: read_descriptor
1075 * @actor: read method
1076 *
1da177e4 1077 * This is a generic file read routine, and uses the
485bb99b 1078 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1079 *
1080 * This is really ugly. But the goto's actually try to clarify some
1081 * of the logic when it comes to error handling etc.
1da177e4 1082 */
36e78914
CH
1083static void do_generic_file_read(struct file *filp, loff_t *ppos,
1084 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1085{
36e78914 1086 struct address_space *mapping = filp->f_mapping;
1da177e4 1087 struct inode *inode = mapping->host;
36e78914 1088 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1089 pgoff_t index;
1090 pgoff_t last_index;
1091 pgoff_t prev_index;
1092 unsigned long offset; /* offset into pagecache page */
ec0f1637 1093 unsigned int prev_offset;
1da177e4 1094 int error;
1da177e4 1095
1da177e4 1096 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1097 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1098 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1099 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1100 offset = *ppos & ~PAGE_CACHE_MASK;
1101
1da177e4
LT
1102 for (;;) {
1103 struct page *page;
57f6b96c 1104 pgoff_t end_index;
a32ea1e1 1105 loff_t isize;
1da177e4
LT
1106 unsigned long nr, ret;
1107
1da177e4 1108 cond_resched();
1da177e4
LT
1109find_page:
1110 page = find_get_page(mapping, index);
3ea89ee8 1111 if (!page) {
cf914a7d 1112 page_cache_sync_readahead(mapping,
7ff81078 1113 ra, filp,
3ea89ee8
FW
1114 index, last_index - index);
1115 page = find_get_page(mapping, index);
1116 if (unlikely(page == NULL))
1117 goto no_cached_page;
1118 }
1119 if (PageReadahead(page)) {
cf914a7d 1120 page_cache_async_readahead(mapping,
7ff81078 1121 ra, filp, page,
3ea89ee8 1122 index, last_index - index);
1da177e4 1123 }
8ab22b9a
HH
1124 if (!PageUptodate(page)) {
1125 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1126 !mapping->a_ops->is_partially_uptodate)
1127 goto page_not_up_to_date;
529ae9aa 1128 if (!trylock_page(page))
8ab22b9a 1129 goto page_not_up_to_date;
8d056cb9
DH
1130 /* Did it get truncated before we got the lock? */
1131 if (!page->mapping)
1132 goto page_not_up_to_date_locked;
8ab22b9a
HH
1133 if (!mapping->a_ops->is_partially_uptodate(page,
1134 desc, offset))
1135 goto page_not_up_to_date_locked;
1136 unlock_page(page);
1137 }
1da177e4 1138page_ok:
a32ea1e1
N
1139 /*
1140 * i_size must be checked after we know the page is Uptodate.
1141 *
1142 * Checking i_size after the check allows us to calculate
1143 * the correct value for "nr", which means the zero-filled
1144 * part of the page is not copied back to userspace (unless
1145 * another truncate extends the file - this is desired though).
1146 */
1147
1148 isize = i_size_read(inode);
1149 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1150 if (unlikely(!isize || index > end_index)) {
1151 page_cache_release(page);
1152 goto out;
1153 }
1154
1155 /* nr is the maximum number of bytes to copy from this page */
1156 nr = PAGE_CACHE_SIZE;
1157 if (index == end_index) {
1158 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1159 if (nr <= offset) {
1160 page_cache_release(page);
1161 goto out;
1162 }
1163 }
1164 nr = nr - offset;
1da177e4
LT
1165
1166 /* If users can be writing to this page using arbitrary
1167 * virtual addresses, take care about potential aliasing
1168 * before reading the page on the kernel side.
1169 */
1170 if (mapping_writably_mapped(mapping))
1171 flush_dcache_page(page);
1172
1173 /*
ec0f1637
JK
1174 * When a sequential read accesses a page several times,
1175 * only mark it as accessed the first time.
1da177e4 1176 */
ec0f1637 1177 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1178 mark_page_accessed(page);
1179 prev_index = index;
1180
1181 /*
1182 * Ok, we have the page, and it's up-to-date, so
1183 * now we can copy it to user space...
1184 *
1185 * The actor routine returns how many bytes were actually used..
1186 * NOTE! This may not be the same as how much of a user buffer
1187 * we filled up (we may be padding etc), so we can only update
1188 * "pos" here (the actor routine has to update the user buffer
1189 * pointers and the remaining count).
1190 */
1191 ret = actor(desc, page, offset, nr);
1192 offset += ret;
1193 index += offset >> PAGE_CACHE_SHIFT;
1194 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1195 prev_offset = offset;
1da177e4
LT
1196
1197 page_cache_release(page);
1198 if (ret == nr && desc->count)
1199 continue;
1200 goto out;
1201
1202page_not_up_to_date:
1203 /* Get exclusive access to the page ... */
85462323
ON
1204 error = lock_page_killable(page);
1205 if (unlikely(error))
1206 goto readpage_error;
1da177e4 1207
8ab22b9a 1208page_not_up_to_date_locked:
da6052f7 1209 /* Did it get truncated before we got the lock? */
1da177e4
LT
1210 if (!page->mapping) {
1211 unlock_page(page);
1212 page_cache_release(page);
1213 continue;
1214 }
1215
1216 /* Did somebody else fill it already? */
1217 if (PageUptodate(page)) {
1218 unlock_page(page);
1219 goto page_ok;
1220 }
1221
1222readpage:
91803b49
JM
1223 /*
1224 * A previous I/O error may have been due to temporary
1225 * failures, eg. multipath errors.
1226 * PG_error will be set again if readpage fails.
1227 */
1228 ClearPageError(page);
1da177e4
LT
1229 /* Start the actual read. The read will unlock the page. */
1230 error = mapping->a_ops->readpage(filp, page);
1231
994fc28c
ZB
1232 if (unlikely(error)) {
1233 if (error == AOP_TRUNCATED_PAGE) {
1234 page_cache_release(page);
1235 goto find_page;
1236 }
1da177e4 1237 goto readpage_error;
994fc28c 1238 }
1da177e4
LT
1239
1240 if (!PageUptodate(page)) {
85462323
ON
1241 error = lock_page_killable(page);
1242 if (unlikely(error))
1243 goto readpage_error;
1da177e4
LT
1244 if (!PageUptodate(page)) {
1245 if (page->mapping == NULL) {
1246 /*
2ecdc82e 1247 * invalidate_mapping_pages got it
1da177e4
LT
1248 */
1249 unlock_page(page);
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1253 unlock_page(page);
7ff81078 1254 shrink_readahead_size_eio(filp, ra);
85462323
ON
1255 error = -EIO;
1256 goto readpage_error;
1da177e4
LT
1257 }
1258 unlock_page(page);
1259 }
1260
1da177e4
LT
1261 goto page_ok;
1262
1263readpage_error:
1264 /* UHHUH! A synchronous read error occurred. Report it */
1265 desc->error = error;
1266 page_cache_release(page);
1267 goto out;
1268
1269no_cached_page:
1270 /*
1271 * Ok, it wasn't cached, so we need to create a new
1272 * page..
1273 */
eb2be189
NP
1274 page = page_cache_alloc_cold(mapping);
1275 if (!page) {
1276 desc->error = -ENOMEM;
1277 goto out;
1da177e4 1278 }
eb2be189 1279 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1280 index, GFP_KERNEL);
1281 if (error) {
eb2be189 1282 page_cache_release(page);
1da177e4
LT
1283 if (error == -EEXIST)
1284 goto find_page;
1285 desc->error = error;
1286 goto out;
1287 }
1da177e4
LT
1288 goto readpage;
1289 }
1290
1291out:
7ff81078
FW
1292 ra->prev_pos = prev_index;
1293 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1294 ra->prev_pos |= prev_offset;
1da177e4 1295
f4e6b498 1296 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1297 file_accessed(filp);
1da177e4 1298}
1da177e4
LT
1299
1300int file_read_actor(read_descriptor_t *desc, struct page *page,
1301 unsigned long offset, unsigned long size)
1302{
1303 char *kaddr;
1304 unsigned long left, count = desc->count;
1305
1306 if (size > count)
1307 size = count;
1308
1309 /*
1310 * Faults on the destination of a read are common, so do it before
1311 * taking the kmap.
1312 */
1313 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1314 kaddr = kmap_atomic(page, KM_USER0);
1315 left = __copy_to_user_inatomic(desc->arg.buf,
1316 kaddr + offset, size);
1317 kunmap_atomic(kaddr, KM_USER0);
1318 if (left == 0)
1319 goto success;
1320 }
1321
1322 /* Do it the slow way */
1323 kaddr = kmap(page);
1324 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1325 kunmap(page);
1326
1327 if (left) {
1328 size -= left;
1329 desc->error = -EFAULT;
1330 }
1331success:
1332 desc->count = count - size;
1333 desc->written += size;
1334 desc->arg.buf += size;
1335 return size;
1336}
1337
0ceb3314
DM
1338/*
1339 * Performs necessary checks before doing a write
1340 * @iov: io vector request
1341 * @nr_segs: number of segments in the iovec
1342 * @count: number of bytes to write
1343 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344 *
1345 * Adjust number of segments and amount of bytes to write (nr_segs should be
1346 * properly initialized first). Returns appropriate error code that caller
1347 * should return or zero in case that write should be allowed.
1348 */
1349int generic_segment_checks(const struct iovec *iov,
1350 unsigned long *nr_segs, size_t *count, int access_flags)
1351{
1352 unsigned long seg;
1353 size_t cnt = 0;
1354 for (seg = 0; seg < *nr_segs; seg++) {
1355 const struct iovec *iv = &iov[seg];
1356
1357 /*
1358 * If any segment has a negative length, or the cumulative
1359 * length ever wraps negative then return -EINVAL.
1360 */
1361 cnt += iv->iov_len;
1362 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1363 return -EINVAL;
1364 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1365 continue;
1366 if (seg == 0)
1367 return -EFAULT;
1368 *nr_segs = seg;
1369 cnt -= iv->iov_len; /* This segment is no good */
1370 break;
1371 }
1372 *count = cnt;
1373 return 0;
1374}
1375EXPORT_SYMBOL(generic_segment_checks);
1376
485bb99b 1377/**
b2abacf3 1378 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1379 * @iocb: kernel I/O control block
1380 * @iov: io vector request
1381 * @nr_segs: number of segments in the iovec
b2abacf3 1382 * @pos: current file position
485bb99b 1383 *
1da177e4
LT
1384 * This is the "read()" routine for all filesystems
1385 * that can use the page cache directly.
1386 */
1387ssize_t
543ade1f
BP
1388generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1389 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1390{
1391 struct file *filp = iocb->ki_filp;
1392 ssize_t retval;
66f998f6 1393 unsigned long seg = 0;
1da177e4 1394 size_t count;
543ade1f 1395 loff_t *ppos = &iocb->ki_pos;
55602dd6 1396 struct blk_plug plug;
1da177e4
LT
1397
1398 count = 0;
0ceb3314
DM
1399 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1400 if (retval)
1401 return retval;
1da177e4 1402
55602dd6
JA
1403 blk_start_plug(&plug);
1404
1da177e4
LT
1405 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406 if (filp->f_flags & O_DIRECT) {
543ade1f 1407 loff_t size;
1da177e4
LT
1408 struct address_space *mapping;
1409 struct inode *inode;
1410
1411 mapping = filp->f_mapping;
1412 inode = mapping->host;
1da177e4
LT
1413 if (!count)
1414 goto out; /* skip atime */
1415 size = i_size_read(inode);
1416 if (pos < size) {
48b47c56
NP
1417 retval = filemap_write_and_wait_range(mapping, pos,
1418 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1419 if (!retval) {
1420 retval = mapping->a_ops->direct_IO(READ, iocb,
1421 iov, pos, nr_segs);
1422 }
66f998f6 1423 if (retval > 0) {
1da177e4 1424 *ppos = pos + retval;
66f998f6
JB
1425 count -= retval;
1426 }
1427
1428 /*
1429 * Btrfs can have a short DIO read if we encounter
1430 * compressed extents, so if there was an error, or if
1431 * we've already read everything we wanted to, or if
1432 * there was a short read because we hit EOF, go ahead
1433 * and return. Otherwise fallthrough to buffered io for
1434 * the rest of the read.
1435 */
1436 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1437 file_accessed(filp);
1438 goto out;
1439 }
0e0bcae3 1440 }
1da177e4
LT
1441 }
1442
66f998f6 1443 count = retval;
11fa977e
HD
1444 for (seg = 0; seg < nr_segs; seg++) {
1445 read_descriptor_t desc;
66f998f6
JB
1446 loff_t offset = 0;
1447
1448 /*
1449 * If we did a short DIO read we need to skip the section of the
1450 * iov that we've already read data into.
1451 */
1452 if (count) {
1453 if (count > iov[seg].iov_len) {
1454 count -= iov[seg].iov_len;
1455 continue;
1456 }
1457 offset = count;
1458 count = 0;
1459 }
1da177e4 1460
11fa977e 1461 desc.written = 0;
66f998f6
JB
1462 desc.arg.buf = iov[seg].iov_base + offset;
1463 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1464 if (desc.count == 0)
1465 continue;
1466 desc.error = 0;
1467 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 retval += desc.written;
1469 if (desc.error) {
1470 retval = retval ?: desc.error;
1471 break;
1da177e4 1472 }
11fa977e
HD
1473 if (desc.count > 0)
1474 break;
1da177e4
LT
1475 }
1476out:
55602dd6 1477 blk_finish_plug(&plug);
1da177e4
LT
1478 return retval;
1479}
1da177e4
LT
1480EXPORT_SYMBOL(generic_file_aio_read);
1481
1da177e4
LT
1482static ssize_t
1483do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1484 pgoff_t index, unsigned long nr)
1da177e4
LT
1485{
1486 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1487 return -EINVAL;
1488
f7e839dd 1489 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1490 return 0;
1491}
1492
6673e0c3 1493SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1494{
1495 ssize_t ret;
1496 struct file *file;
1497
1498 ret = -EBADF;
1499 file = fget(fd);
1500 if (file) {
1501 if (file->f_mode & FMODE_READ) {
1502 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1503 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1504 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1505 unsigned long len = end - start + 1;
1506 ret = do_readahead(mapping, file, start, len);
1507 }
1508 fput(file);
1509 }
1510 return ret;
1511}
6673e0c3
HC
1512#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1513asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1514{
1515 return SYSC_readahead((int) fd, offset, (size_t) count);
1516}
1517SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1518#endif
1da177e4
LT
1519
1520#ifdef CONFIG_MMU
485bb99b
RD
1521/**
1522 * page_cache_read - adds requested page to the page cache if not already there
1523 * @file: file to read
1524 * @offset: page index
1525 *
1da177e4
LT
1526 * This adds the requested page to the page cache if it isn't already there,
1527 * and schedules an I/O to read in its contents from disk.
1528 */
920c7a5d 1529static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1530{
1531 struct address_space *mapping = file->f_mapping;
1532 struct page *page;
994fc28c 1533 int ret;
1da177e4 1534
994fc28c
ZB
1535 do {
1536 page = page_cache_alloc_cold(mapping);
1537 if (!page)
1538 return -ENOMEM;
1539
1540 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1541 if (ret == 0)
1542 ret = mapping->a_ops->readpage(file, page);
1543 else if (ret == -EEXIST)
1544 ret = 0; /* losing race to add is OK */
1da177e4 1545
1da177e4 1546 page_cache_release(page);
1da177e4 1547
994fc28c
ZB
1548 } while (ret == AOP_TRUNCATED_PAGE);
1549
1550 return ret;
1da177e4
LT
1551}
1552
1553#define MMAP_LOTSAMISS (100)
1554
ef00e08e
LT
1555/*
1556 * Synchronous readahead happens when we don't even find
1557 * a page in the page cache at all.
1558 */
1559static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1560 struct file_ra_state *ra,
1561 struct file *file,
1562 pgoff_t offset)
1563{
1564 unsigned long ra_pages;
1565 struct address_space *mapping = file->f_mapping;
1566
1567 /* If we don't want any read-ahead, don't bother */
1568 if (VM_RandomReadHint(vma))
1569 return;
275b12bf
WF
1570 if (!ra->ra_pages)
1571 return;
ef00e08e 1572
2cbea1d3 1573 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1574 page_cache_sync_readahead(mapping, ra, file, offset,
1575 ra->ra_pages);
ef00e08e
LT
1576 return;
1577 }
1578
207d04ba
AK
1579 /* Avoid banging the cache line if not needed */
1580 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1581 ra->mmap_miss++;
1582
1583 /*
1584 * Do we miss much more than hit in this file? If so,
1585 * stop bothering with read-ahead. It will only hurt.
1586 */
1587 if (ra->mmap_miss > MMAP_LOTSAMISS)
1588 return;
1589
d30a1100
WF
1590 /*
1591 * mmap read-around
1592 */
ef00e08e 1593 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1594 ra->start = max_t(long, 0, offset - ra_pages / 2);
1595 ra->size = ra_pages;
2cbea1d3 1596 ra->async_size = ra_pages / 4;
275b12bf 1597 ra_submit(ra, mapping, file);
ef00e08e
LT
1598}
1599
1600/*
1601 * Asynchronous readahead happens when we find the page and PG_readahead,
1602 * so we want to possibly extend the readahead further..
1603 */
1604static void do_async_mmap_readahead(struct vm_area_struct *vma,
1605 struct file_ra_state *ra,
1606 struct file *file,
1607 struct page *page,
1608 pgoff_t offset)
1609{
1610 struct address_space *mapping = file->f_mapping;
1611
1612 /* If we don't want any read-ahead, don't bother */
1613 if (VM_RandomReadHint(vma))
1614 return;
1615 if (ra->mmap_miss > 0)
1616 ra->mmap_miss--;
1617 if (PageReadahead(page))
2fad6f5d
WF
1618 page_cache_async_readahead(mapping, ra, file,
1619 page, offset, ra->ra_pages);
ef00e08e
LT
1620}
1621
485bb99b 1622/**
54cb8821 1623 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1624 * @vma: vma in which the fault was taken
1625 * @vmf: struct vm_fault containing details of the fault
485bb99b 1626 *
54cb8821 1627 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1628 * mapped memory region to read in file data during a page fault.
1629 *
1630 * The goto's are kind of ugly, but this streamlines the normal case of having
1631 * it in the page cache, and handles the special cases reasonably without
1632 * having a lot of duplicated code.
1633 */
d0217ac0 1634int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1635{
1636 int error;
54cb8821 1637 struct file *file = vma->vm_file;
1da177e4
LT
1638 struct address_space *mapping = file->f_mapping;
1639 struct file_ra_state *ra = &file->f_ra;
1640 struct inode *inode = mapping->host;
ef00e08e 1641 pgoff_t offset = vmf->pgoff;
1da177e4 1642 struct page *page;
2004dc8e 1643 pgoff_t size;
83c54070 1644 int ret = 0;
1da177e4 1645
1da177e4 1646 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1647 if (offset >= size)
5307cc1a 1648 return VM_FAULT_SIGBUS;
1da177e4 1649
1da177e4
LT
1650 /*
1651 * Do we have something in the page cache already?
1652 */
ef00e08e
LT
1653 page = find_get_page(mapping, offset);
1654 if (likely(page)) {
1da177e4 1655 /*
ef00e08e
LT
1656 * We found the page, so try async readahead before
1657 * waiting for the lock.
1da177e4 1658 */
ef00e08e 1659 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1660 } else {
1661 /* No page in the page cache at all */
1662 do_sync_mmap_readahead(vma, ra, file, offset);
1663 count_vm_event(PGMAJFAULT);
1664 ret = VM_FAULT_MAJOR;
1665retry_find:
b522c94d 1666 page = find_get_page(mapping, offset);
1da177e4
LT
1667 if (!page)
1668 goto no_cached_page;
1669 }
1670
d88c0922
ML
1671 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1672 page_cache_release(page);
d065bd81 1673 return ret | VM_FAULT_RETRY;
d88c0922 1674 }
b522c94d
ML
1675
1676 /* Did it get truncated? */
1677 if (unlikely(page->mapping != mapping)) {
1678 unlock_page(page);
1679 put_page(page);
1680 goto retry_find;
1681 }
1682 VM_BUG_ON(page->index != offset);
1683
1da177e4 1684 /*
d00806b1
NP
1685 * We have a locked page in the page cache, now we need to check
1686 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1687 */
d00806b1 1688 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1689 goto page_not_uptodate;
1690
ef00e08e
LT
1691 /*
1692 * Found the page and have a reference on it.
1693 * We must recheck i_size under page lock.
1694 */
d00806b1 1695 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1696 if (unlikely(offset >= size)) {
d00806b1 1697 unlock_page(page);
745ad48e 1698 page_cache_release(page);
5307cc1a 1699 return VM_FAULT_SIGBUS;
d00806b1
NP
1700 }
1701
d0217ac0 1702 vmf->page = page;
83c54070 1703 return ret | VM_FAULT_LOCKED;
1da177e4 1704
1da177e4
LT
1705no_cached_page:
1706 /*
1707 * We're only likely to ever get here if MADV_RANDOM is in
1708 * effect.
1709 */
ef00e08e 1710 error = page_cache_read(file, offset);
1da177e4
LT
1711
1712 /*
1713 * The page we want has now been added to the page cache.
1714 * In the unlikely event that someone removed it in the
1715 * meantime, we'll just come back here and read it again.
1716 */
1717 if (error >= 0)
1718 goto retry_find;
1719
1720 /*
1721 * An error return from page_cache_read can result if the
1722 * system is low on memory, or a problem occurs while trying
1723 * to schedule I/O.
1724 */
1725 if (error == -ENOMEM)
d0217ac0
NP
1726 return VM_FAULT_OOM;
1727 return VM_FAULT_SIGBUS;
1da177e4
LT
1728
1729page_not_uptodate:
1da177e4
LT
1730 /*
1731 * Umm, take care of errors if the page isn't up-to-date.
1732 * Try to re-read it _once_. We do this synchronously,
1733 * because there really aren't any performance issues here
1734 * and we need to check for errors.
1735 */
1da177e4 1736 ClearPageError(page);
994fc28c 1737 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1738 if (!error) {
1739 wait_on_page_locked(page);
1740 if (!PageUptodate(page))
1741 error = -EIO;
1742 }
d00806b1
NP
1743 page_cache_release(page);
1744
1745 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1746 goto retry_find;
1da177e4 1747
d00806b1 1748 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1749 shrink_readahead_size_eio(file, ra);
d0217ac0 1750 return VM_FAULT_SIGBUS;
54cb8821
NP
1751}
1752EXPORT_SYMBOL(filemap_fault);
1753
f0f37e2f 1754const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1755 .fault = filemap_fault,
1da177e4
LT
1756};
1757
1758/* This is used for a general mmap of a disk file */
1759
1760int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1761{
1762 struct address_space *mapping = file->f_mapping;
1763
1764 if (!mapping->a_ops->readpage)
1765 return -ENOEXEC;
1766 file_accessed(file);
1767 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1768 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1769 return 0;
1770}
1da177e4
LT
1771
1772/*
1773 * This is for filesystems which do not implement ->writepage.
1774 */
1775int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1776{
1777 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1778 return -EINVAL;
1779 return generic_file_mmap(file, vma);
1780}
1781#else
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784 return -ENOSYS;
1785}
1786int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1787{
1788 return -ENOSYS;
1789}
1790#endif /* CONFIG_MMU */
1791
1792EXPORT_SYMBOL(generic_file_mmap);
1793EXPORT_SYMBOL(generic_file_readonly_mmap);
1794
6fe6900e 1795static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1796 pgoff_t index,
1da177e4 1797 int (*filler)(void *,struct page*),
0531b2aa
LT
1798 void *data,
1799 gfp_t gfp)
1da177e4 1800{
eb2be189 1801 struct page *page;
1da177e4
LT
1802 int err;
1803repeat:
1804 page = find_get_page(mapping, index);
1805 if (!page) {
0531b2aa 1806 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1807 if (!page)
1808 return ERR_PTR(-ENOMEM);
1809 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1810 if (unlikely(err)) {
1811 page_cache_release(page);
1812 if (err == -EEXIST)
1813 goto repeat;
1da177e4 1814 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1815 return ERR_PTR(err);
1816 }
1da177e4
LT
1817 err = filler(data, page);
1818 if (err < 0) {
1819 page_cache_release(page);
1820 page = ERR_PTR(err);
1821 }
1822 }
1da177e4
LT
1823 return page;
1824}
1825
0531b2aa 1826static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1827 pgoff_t index,
1da177e4 1828 int (*filler)(void *,struct page*),
0531b2aa
LT
1829 void *data,
1830 gfp_t gfp)
1831
1da177e4
LT
1832{
1833 struct page *page;
1834 int err;
1835
1836retry:
0531b2aa 1837 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1838 if (IS_ERR(page))
c855ff37 1839 return page;
1da177e4
LT
1840 if (PageUptodate(page))
1841 goto out;
1842
1843 lock_page(page);
1844 if (!page->mapping) {
1845 unlock_page(page);
1846 page_cache_release(page);
1847 goto retry;
1848 }
1849 if (PageUptodate(page)) {
1850 unlock_page(page);
1851 goto out;
1852 }
1853 err = filler(data, page);
1854 if (err < 0) {
1855 page_cache_release(page);
c855ff37 1856 return ERR_PTR(err);
1da177e4 1857 }
c855ff37 1858out:
6fe6900e
NP
1859 mark_page_accessed(page);
1860 return page;
1861}
0531b2aa
LT
1862
1863/**
1864 * read_cache_page_async - read into page cache, fill it if needed
1865 * @mapping: the page's address_space
1866 * @index: the page index
1867 * @filler: function to perform the read
1868 * @data: destination for read data
1869 *
1870 * Same as read_cache_page, but don't wait for page to become unlocked
1871 * after submitting it to the filler.
1872 *
1873 * Read into the page cache. If a page already exists, and PageUptodate() is
1874 * not set, try to fill the page but don't wait for it to become unlocked.
1875 *
1876 * If the page does not get brought uptodate, return -EIO.
1877 */
1878struct page *read_cache_page_async(struct address_space *mapping,
1879 pgoff_t index,
1880 int (*filler)(void *,struct page*),
1881 void *data)
1882{
1883 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1884}
6fe6900e
NP
1885EXPORT_SYMBOL(read_cache_page_async);
1886
0531b2aa
LT
1887static struct page *wait_on_page_read(struct page *page)
1888{
1889 if (!IS_ERR(page)) {
1890 wait_on_page_locked(page);
1891 if (!PageUptodate(page)) {
1892 page_cache_release(page);
1893 page = ERR_PTR(-EIO);
1894 }
1895 }
1896 return page;
1897}
1898
1899/**
1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901 * @mapping: the page's address_space
1902 * @index: the page index
1903 * @gfp: the page allocator flags to use if allocating
1904 *
1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1906 * any new page allocations done using the specified allocation flags. Note
1907 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1908 * expect to do this atomically or anything like that - but you can pass in
1909 * other page requirements.
1910 *
1911 * If the page does not get brought uptodate, return -EIO.
1912 */
1913struct page *read_cache_page_gfp(struct address_space *mapping,
1914 pgoff_t index,
1915 gfp_t gfp)
1916{
1917 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1918
1919 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1920}
1921EXPORT_SYMBOL(read_cache_page_gfp);
1922
6fe6900e
NP
1923/**
1924 * read_cache_page - read into page cache, fill it if needed
1925 * @mapping: the page's address_space
1926 * @index: the page index
1927 * @filler: function to perform the read
1928 * @data: destination for read data
1929 *
1930 * Read into the page cache. If a page already exists, and PageUptodate() is
1931 * not set, try to fill the page then wait for it to become unlocked.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1936 pgoff_t index,
6fe6900e
NP
1937 int (*filler)(void *,struct page*),
1938 void *data)
1939{
0531b2aa 1940 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1941}
1da177e4
LT
1942EXPORT_SYMBOL(read_cache_page);
1943
1da177e4
LT
1944/*
1945 * The logic we want is
1946 *
1947 * if suid or (sgid and xgrp)
1948 * remove privs
1949 */
01de85e0 1950int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1951{
1952 mode_t mode = dentry->d_inode->i_mode;
1953 int kill = 0;
1da177e4
LT
1954
1955 /* suid always must be killed */
1956 if (unlikely(mode & S_ISUID))
1957 kill = ATTR_KILL_SUID;
1958
1959 /*
1960 * sgid without any exec bits is just a mandatory locking mark; leave
1961 * it alone. If some exec bits are set, it's a real sgid; kill it.
1962 */
1963 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1964 kill |= ATTR_KILL_SGID;
1965
7f5ff766 1966 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1967 return kill;
1da177e4 1968
01de85e0
JA
1969 return 0;
1970}
d23a147b 1971EXPORT_SYMBOL(should_remove_suid);
01de85e0 1972
7f3d4ee1 1973static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1974{
1975 struct iattr newattrs;
1976
1977 newattrs.ia_valid = ATTR_FORCE | kill;
1978 return notify_change(dentry, &newattrs);
1979}
1980
2f1936b8 1981int file_remove_suid(struct file *file)
01de85e0 1982{
2f1936b8 1983 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1984 int killsuid = should_remove_suid(dentry);
1985 int killpriv = security_inode_need_killpriv(dentry);
1986 int error = 0;
01de85e0 1987
b5376771
SH
1988 if (killpriv < 0)
1989 return killpriv;
1990 if (killpriv)
1991 error = security_inode_killpriv(dentry);
1992 if (!error && killsuid)
1993 error = __remove_suid(dentry, killsuid);
01de85e0 1994
b5376771 1995 return error;
1da177e4 1996}
2f1936b8 1997EXPORT_SYMBOL(file_remove_suid);
1da177e4 1998
2f718ffc 1999static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2000 const struct iovec *iov, size_t base, size_t bytes)
2001{
f1800536 2002 size_t copied = 0, left = 0;
1da177e4
LT
2003
2004 while (bytes) {
2005 char __user *buf = iov->iov_base + base;
2006 int copy = min(bytes, iov->iov_len - base);
2007
2008 base = 0;
f1800536 2009 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2010 copied += copy;
2011 bytes -= copy;
2012 vaddr += copy;
2013 iov++;
2014
01408c49 2015 if (unlikely(left))
1da177e4 2016 break;
1da177e4
LT
2017 }
2018 return copied - left;
2019}
2020
2f718ffc
NP
2021/*
2022 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2023 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2024 * bytes which were copied.
2025 */
2026size_t iov_iter_copy_from_user_atomic(struct page *page,
2027 struct iov_iter *i, unsigned long offset, size_t bytes)
2028{
2029 char *kaddr;
2030 size_t copied;
2031
2032 BUG_ON(!in_atomic());
2033 kaddr = kmap_atomic(page, KM_USER0);
2034 if (likely(i->nr_segs == 1)) {
2035 int left;
2036 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2037 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2038 copied = bytes - left;
2039 } else {
2040 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2041 i->iov, i->iov_offset, bytes);
2042 }
2043 kunmap_atomic(kaddr, KM_USER0);
2044
2045 return copied;
2046}
89e10787 2047EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2048
2049/*
2050 * This has the same sideeffects and return value as
2051 * iov_iter_copy_from_user_atomic().
2052 * The difference is that it attempts to resolve faults.
2053 * Page must not be locked.
2054 */
2055size_t iov_iter_copy_from_user(struct page *page,
2056 struct iov_iter *i, unsigned long offset, size_t bytes)
2057{
2058 char *kaddr;
2059 size_t copied;
2060
2061 kaddr = kmap(page);
2062 if (likely(i->nr_segs == 1)) {
2063 int left;
2064 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2065 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2066 copied = bytes - left;
2067 } else {
2068 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2069 i->iov, i->iov_offset, bytes);
2070 }
2071 kunmap(page);
2072 return copied;
2073}
89e10787 2074EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2075
f7009264 2076void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2077{
f7009264
NP
2078 BUG_ON(i->count < bytes);
2079
2f718ffc
NP
2080 if (likely(i->nr_segs == 1)) {
2081 i->iov_offset += bytes;
f7009264 2082 i->count -= bytes;
2f718ffc
NP
2083 } else {
2084 const struct iovec *iov = i->iov;
2085 size_t base = i->iov_offset;
2086
124d3b70
NP
2087 /*
2088 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2089 * zero-length segments (without overruning the iovec).
124d3b70 2090 */
94ad374a 2091 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2092 int copy;
2f718ffc 2093
f7009264
NP
2094 copy = min(bytes, iov->iov_len - base);
2095 BUG_ON(!i->count || i->count < copy);
2096 i->count -= copy;
2f718ffc
NP
2097 bytes -= copy;
2098 base += copy;
2099 if (iov->iov_len == base) {
2100 iov++;
2101 base = 0;
2102 }
2103 }
2104 i->iov = iov;
2105 i->iov_offset = base;
2106 }
2107}
89e10787 2108EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2109
afddba49
NP
2110/*
2111 * Fault in the first iovec of the given iov_iter, to a maximum length
2112 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2113 * accessed (ie. because it is an invalid address).
2114 *
2115 * writev-intensive code may want this to prefault several iovecs -- that
2116 * would be possible (callers must not rely on the fact that _only_ the
2117 * first iovec will be faulted with the current implementation).
2118 */
2119int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2120{
2f718ffc 2121 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2122 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2123 return fault_in_pages_readable(buf, bytes);
2f718ffc 2124}
89e10787 2125EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2126
2127/*
2128 * Return the count of just the current iov_iter segment.
2129 */
2130size_t iov_iter_single_seg_count(struct iov_iter *i)
2131{
2132 const struct iovec *iov = i->iov;
2133 if (i->nr_segs == 1)
2134 return i->count;
2135 else
2136 return min(i->count, iov->iov_len - i->iov_offset);
2137}
89e10787 2138EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2139
1da177e4
LT
2140/*
2141 * Performs necessary checks before doing a write
2142 *
485bb99b 2143 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2144 * Returns appropriate error code that caller should return or
2145 * zero in case that write should be allowed.
2146 */
2147inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2148{
2149 struct inode *inode = file->f_mapping->host;
59e99e5b 2150 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2151
2152 if (unlikely(*pos < 0))
2153 return -EINVAL;
2154
1da177e4
LT
2155 if (!isblk) {
2156 /* FIXME: this is for backwards compatibility with 2.4 */
2157 if (file->f_flags & O_APPEND)
2158 *pos = i_size_read(inode);
2159
2160 if (limit != RLIM_INFINITY) {
2161 if (*pos >= limit) {
2162 send_sig(SIGXFSZ, current, 0);
2163 return -EFBIG;
2164 }
2165 if (*count > limit - (typeof(limit))*pos) {
2166 *count = limit - (typeof(limit))*pos;
2167 }
2168 }
2169 }
2170
2171 /*
2172 * LFS rule
2173 */
2174 if (unlikely(*pos + *count > MAX_NON_LFS &&
2175 !(file->f_flags & O_LARGEFILE))) {
2176 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2177 return -EFBIG;
2178 }
2179 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2180 *count = MAX_NON_LFS - (unsigned long)*pos;
2181 }
2182 }
2183
2184 /*
2185 * Are we about to exceed the fs block limit ?
2186 *
2187 * If we have written data it becomes a short write. If we have
2188 * exceeded without writing data we send a signal and return EFBIG.
2189 * Linus frestrict idea will clean these up nicely..
2190 */
2191 if (likely(!isblk)) {
2192 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2193 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2194 return -EFBIG;
2195 }
2196 /* zero-length writes at ->s_maxbytes are OK */
2197 }
2198
2199 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2200 *count = inode->i_sb->s_maxbytes - *pos;
2201 } else {
9361401e 2202#ifdef CONFIG_BLOCK
1da177e4
LT
2203 loff_t isize;
2204 if (bdev_read_only(I_BDEV(inode)))
2205 return -EPERM;
2206 isize = i_size_read(inode);
2207 if (*pos >= isize) {
2208 if (*count || *pos > isize)
2209 return -ENOSPC;
2210 }
2211
2212 if (*pos + *count > isize)
2213 *count = isize - *pos;
9361401e
DH
2214#else
2215 return -EPERM;
2216#endif
1da177e4
LT
2217 }
2218 return 0;
2219}
2220EXPORT_SYMBOL(generic_write_checks);
2221
afddba49
NP
2222int pagecache_write_begin(struct file *file, struct address_space *mapping,
2223 loff_t pos, unsigned len, unsigned flags,
2224 struct page **pagep, void **fsdata)
2225{
2226 const struct address_space_operations *aops = mapping->a_ops;
2227
4e02ed4b 2228 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2229 pagep, fsdata);
afddba49
NP
2230}
2231EXPORT_SYMBOL(pagecache_write_begin);
2232
2233int pagecache_write_end(struct file *file, struct address_space *mapping,
2234 loff_t pos, unsigned len, unsigned copied,
2235 struct page *page, void *fsdata)
2236{
2237 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2238
4e02ed4b
NP
2239 mark_page_accessed(page);
2240 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2241}
2242EXPORT_SYMBOL(pagecache_write_end);
2243
1da177e4
LT
2244ssize_t
2245generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2246 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2247 size_t count, size_t ocount)
2248{
2249 struct file *file = iocb->ki_filp;
2250 struct address_space *mapping = file->f_mapping;
2251 struct inode *inode = mapping->host;
2252 ssize_t written;
a969e903
CH
2253 size_t write_len;
2254 pgoff_t end;
1da177e4
LT
2255
2256 if (count != ocount)
2257 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2258
a969e903
CH
2259 write_len = iov_length(iov, *nr_segs);
2260 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2261
48b47c56 2262 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2263 if (written)
2264 goto out;
2265
2266 /*
2267 * After a write we want buffered reads to be sure to go to disk to get
2268 * the new data. We invalidate clean cached page from the region we're
2269 * about to write. We do this *before* the write so that we can return
6ccfa806 2270 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2271 */
2272 if (mapping->nrpages) {
2273 written = invalidate_inode_pages2_range(mapping,
2274 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2275 /*
2276 * If a page can not be invalidated, return 0 to fall back
2277 * to buffered write.
2278 */
2279 if (written) {
2280 if (written == -EBUSY)
2281 return 0;
a969e903 2282 goto out;
6ccfa806 2283 }
a969e903
CH
2284 }
2285
2286 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2287
2288 /*
2289 * Finally, try again to invalidate clean pages which might have been
2290 * cached by non-direct readahead, or faulted in by get_user_pages()
2291 * if the source of the write was an mmap'ed region of the file
2292 * we're writing. Either one is a pretty crazy thing to do,
2293 * so we don't support it 100%. If this invalidation
2294 * fails, tough, the write still worked...
2295 */
2296 if (mapping->nrpages) {
2297 invalidate_inode_pages2_range(mapping,
2298 pos >> PAGE_CACHE_SHIFT, end);
2299 }
2300
1da177e4 2301 if (written > 0) {
0116651c
NK
2302 pos += written;
2303 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2304 i_size_write(inode, pos);
1da177e4
LT
2305 mark_inode_dirty(inode);
2306 }
0116651c 2307 *ppos = pos;
1da177e4 2308 }
a969e903 2309out:
1da177e4
LT
2310 return written;
2311}
2312EXPORT_SYMBOL(generic_file_direct_write);
2313
eb2be189
NP
2314/*
2315 * Find or create a page at the given pagecache position. Return the locked
2316 * page. This function is specifically for buffered writes.
2317 */
54566b2c
NP
2318struct page *grab_cache_page_write_begin(struct address_space *mapping,
2319 pgoff_t index, unsigned flags)
eb2be189
NP
2320{
2321 int status;
2322 struct page *page;
54566b2c
NP
2323 gfp_t gfp_notmask = 0;
2324 if (flags & AOP_FLAG_NOFS)
2325 gfp_notmask = __GFP_FS;
eb2be189
NP
2326repeat:
2327 page = find_lock_page(mapping, index);
c585a267 2328 if (page)
eb2be189
NP
2329 return page;
2330
54566b2c 2331 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2332 if (!page)
2333 return NULL;
54566b2c
NP
2334 status = add_to_page_cache_lru(page, mapping, index,
2335 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2336 if (unlikely(status)) {
2337 page_cache_release(page);
2338 if (status == -EEXIST)
2339 goto repeat;
2340 return NULL;
2341 }
2342 return page;
2343}
54566b2c 2344EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2345
afddba49
NP
2346static ssize_t generic_perform_write(struct file *file,
2347 struct iov_iter *i, loff_t pos)
2348{
2349 struct address_space *mapping = file->f_mapping;
2350 const struct address_space_operations *a_ops = mapping->a_ops;
2351 long status = 0;
2352 ssize_t written = 0;
674b892e
NP
2353 unsigned int flags = 0;
2354
2355 /*
2356 * Copies from kernel address space cannot fail (NFSD is a big user).
2357 */
2358 if (segment_eq(get_fs(), KERNEL_DS))
2359 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2360
2361 do {
2362 struct page *page;
afddba49
NP
2363 unsigned long offset; /* Offset into pagecache page */
2364 unsigned long bytes; /* Bytes to write to page */
2365 size_t copied; /* Bytes copied from user */
2366 void *fsdata;
2367
2368 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2369 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2370 iov_iter_count(i));
2371
2372again:
2373
2374 /*
2375 * Bring in the user page that we will copy from _first_.
2376 * Otherwise there's a nasty deadlock on copying from the
2377 * same page as we're writing to, without it being marked
2378 * up-to-date.
2379 *
2380 * Not only is this an optimisation, but it is also required
2381 * to check that the address is actually valid, when atomic
2382 * usercopies are used, below.
2383 */
2384 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2385 status = -EFAULT;
2386 break;
2387 }
2388
674b892e 2389 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2390 &page, &fsdata);
2391 if (unlikely(status))
2392 break;
2393
931e80e4 2394 if (mapping_writably_mapped(mapping))
2395 flush_dcache_page(page);
2396
afddba49
NP
2397 pagefault_disable();
2398 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2399 pagefault_enable();
2400 flush_dcache_page(page);
2401
c8236db9 2402 mark_page_accessed(page);
afddba49
NP
2403 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2404 page, fsdata);
2405 if (unlikely(status < 0))
2406 break;
2407 copied = status;
2408
2409 cond_resched();
2410
124d3b70 2411 iov_iter_advance(i, copied);
afddba49
NP
2412 if (unlikely(copied == 0)) {
2413 /*
2414 * If we were unable to copy any data at all, we must
2415 * fall back to a single segment length write.
2416 *
2417 * If we didn't fallback here, we could livelock
2418 * because not all segments in the iov can be copied at
2419 * once without a pagefault.
2420 */
2421 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2422 iov_iter_single_seg_count(i));
2423 goto again;
2424 }
afddba49
NP
2425 pos += copied;
2426 written += copied;
2427
2428 balance_dirty_pages_ratelimited(mapping);
2429
2430 } while (iov_iter_count(i));
2431
2432 return written ? written : status;
2433}
2434
2435ssize_t
2436generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2437 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2438 size_t count, ssize_t written)
2439{
2440 struct file *file = iocb->ki_filp;
afddba49
NP
2441 ssize_t status;
2442 struct iov_iter i;
2443
2444 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2445 status = generic_perform_write(file, &i, pos);
1da177e4 2446
1da177e4 2447 if (likely(status >= 0)) {
afddba49
NP
2448 written += status;
2449 *ppos = pos + status;
1da177e4
LT
2450 }
2451
1da177e4
LT
2452 return written ? written : status;
2453}
2454EXPORT_SYMBOL(generic_file_buffered_write);
2455
e4dd9de3
JK
2456/**
2457 * __generic_file_aio_write - write data to a file
2458 * @iocb: IO state structure (file, offset, etc.)
2459 * @iov: vector with data to write
2460 * @nr_segs: number of segments in the vector
2461 * @ppos: position where to write
2462 *
2463 * This function does all the work needed for actually writing data to a
2464 * file. It does all basic checks, removes SUID from the file, updates
2465 * modification times and calls proper subroutines depending on whether we
2466 * do direct IO or a standard buffered write.
2467 *
2468 * It expects i_mutex to be grabbed unless we work on a block device or similar
2469 * object which does not need locking at all.
2470 *
2471 * This function does *not* take care of syncing data in case of O_SYNC write.
2472 * A caller has to handle it. This is mainly due to the fact that we want to
2473 * avoid syncing under i_mutex.
2474 */
2475ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2476 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2477{
2478 struct file *file = iocb->ki_filp;
fb5527e6 2479 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2480 size_t ocount; /* original count */
2481 size_t count; /* after file limit checks */
2482 struct inode *inode = mapping->host;
1da177e4
LT
2483 loff_t pos;
2484 ssize_t written;
2485 ssize_t err;
2486
2487 ocount = 0;
0ceb3314
DM
2488 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2489 if (err)
2490 return err;
1da177e4
LT
2491
2492 count = ocount;
2493 pos = *ppos;
2494
2495 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2496
2497 /* We can write back this queue in page reclaim */
2498 current->backing_dev_info = mapping->backing_dev_info;
2499 written = 0;
2500
2501 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2502 if (err)
2503 goto out;
2504
2505 if (count == 0)
2506 goto out;
2507
2f1936b8 2508 err = file_remove_suid(file);
1da177e4
LT
2509 if (err)
2510 goto out;
2511
870f4817 2512 file_update_time(file);
1da177e4
LT
2513
2514 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2515 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2516 loff_t endbyte;
2517 ssize_t written_buffered;
2518
2519 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2520 ppos, count, ocount);
1da177e4
LT
2521 if (written < 0 || written == count)
2522 goto out;
2523 /*
2524 * direct-io write to a hole: fall through to buffered I/O
2525 * for completing the rest of the request.
2526 */
2527 pos += written;
2528 count -= written;
fb5527e6
JM
2529 written_buffered = generic_file_buffered_write(iocb, iov,
2530 nr_segs, pos, ppos, count,
2531 written);
2532 /*
2533 * If generic_file_buffered_write() retuned a synchronous error
2534 * then we want to return the number of bytes which were
2535 * direct-written, or the error code if that was zero. Note
2536 * that this differs from normal direct-io semantics, which
2537 * will return -EFOO even if some bytes were written.
2538 */
2539 if (written_buffered < 0) {
2540 err = written_buffered;
2541 goto out;
2542 }
1da177e4 2543
fb5527e6
JM
2544 /*
2545 * We need to ensure that the page cache pages are written to
2546 * disk and invalidated to preserve the expected O_DIRECT
2547 * semantics.
2548 */
2549 endbyte = pos + written_buffered - written - 1;
c05c4edd 2550 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2551 if (err == 0) {
2552 written = written_buffered;
2553 invalidate_mapping_pages(mapping,
2554 pos >> PAGE_CACHE_SHIFT,
2555 endbyte >> PAGE_CACHE_SHIFT);
2556 } else {
2557 /*
2558 * We don't know how much we wrote, so just return
2559 * the number of bytes which were direct-written
2560 */
2561 }
2562 } else {
2563 written = generic_file_buffered_write(iocb, iov, nr_segs,
2564 pos, ppos, count, written);
2565 }
1da177e4
LT
2566out:
2567 current->backing_dev_info = NULL;
2568 return written ? written : err;
2569}
e4dd9de3
JK
2570EXPORT_SYMBOL(__generic_file_aio_write);
2571
e4dd9de3
JK
2572/**
2573 * generic_file_aio_write - write data to a file
2574 * @iocb: IO state structure
2575 * @iov: vector with data to write
2576 * @nr_segs: number of segments in the vector
2577 * @pos: position in file where to write
2578 *
2579 * This is a wrapper around __generic_file_aio_write() to be used by most
2580 * filesystems. It takes care of syncing the file in case of O_SYNC file
2581 * and acquires i_mutex as needed.
2582 */
027445c3
BP
2583ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2584 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2585{
2586 struct file *file = iocb->ki_filp;
148f948b 2587 struct inode *inode = file->f_mapping->host;
55602dd6 2588 struct blk_plug plug;
1da177e4 2589 ssize_t ret;
1da177e4
LT
2590
2591 BUG_ON(iocb->ki_pos != pos);
2592
1b1dcc1b 2593 mutex_lock(&inode->i_mutex);
55602dd6 2594 blk_start_plug(&plug);
e4dd9de3 2595 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2596 mutex_unlock(&inode->i_mutex);
1da177e4 2597
148f948b 2598 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2599 ssize_t err;
2600
148f948b 2601 err = generic_write_sync(file, pos, ret);
c7b50db2 2602 if (err < 0 && ret > 0)
1da177e4
LT
2603 ret = err;
2604 }
55602dd6 2605 blk_finish_plug(&plug);
1da177e4
LT
2606 return ret;
2607}
2608EXPORT_SYMBOL(generic_file_aio_write);
2609
cf9a2ae8
DH
2610/**
2611 * try_to_release_page() - release old fs-specific metadata on a page
2612 *
2613 * @page: the page which the kernel is trying to free
2614 * @gfp_mask: memory allocation flags (and I/O mode)
2615 *
2616 * The address_space is to try to release any data against the page
2617 * (presumably at page->private). If the release was successful, return `1'.
2618 * Otherwise return zero.
2619 *
266cf658
DH
2620 * This may also be called if PG_fscache is set on a page, indicating that the
2621 * page is known to the local caching routines.
2622 *
cf9a2ae8 2623 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2624 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2625 *
cf9a2ae8
DH
2626 */
2627int try_to_release_page(struct page *page, gfp_t gfp_mask)
2628{
2629 struct address_space * const mapping = page->mapping;
2630
2631 BUG_ON(!PageLocked(page));
2632 if (PageWriteback(page))
2633 return 0;
2634
2635 if (mapping && mapping->a_ops->releasepage)
2636 return mapping->a_ops->releasepage(page, gfp_mask);
2637 return try_to_free_buffers(page);
2638}
2639
2640EXPORT_SYMBOL(try_to_release_page);