hfsplus: remove can_set_xattr
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
fe0bfaaf 119 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
3167760f 128 cleancache_invalidate_page(mapping, page);
c515e1fd 129
1da177e4
LT
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
b85e0eff 132 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 133 mapping->nrpages--;
347ce434 134 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
45426812 137 BUG_ON(page_mapped(page));
3a692790
LT
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
1da177e4
LT
150}
151
702cfbf9
MK
152/**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160void delete_from_page_cache(struct page *page)
1da177e4
LT
161{
162 struct address_space *mapping = page->mapping;
6072d13c 163 void (*freepage)(struct page *);
1da177e4 164
cd7619d6 165 BUG_ON(!PageLocked(page));
1da177e4 166
6072d13c 167 freepage = mapping->a_ops->freepage;
19fd6231 168 spin_lock_irq(&mapping->tree_lock);
e64a782f 169 __delete_from_page_cache(page);
19fd6231 170 spin_unlock_irq(&mapping->tree_lock);
e767e056 171 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
172
173 if (freepage)
174 freepage(page);
97cecb5a
MK
175 page_cache_release(page);
176}
177EXPORT_SYMBOL(delete_from_page_cache);
178
7eaceacc 179static int sleep_on_page(void *word)
1da177e4 180{
1da177e4
LT
181 io_schedule();
182 return 0;
183}
184
7eaceacc 185static int sleep_on_page_killable(void *word)
2687a356 186{
7eaceacc 187 sleep_on_page(word);
2687a356
MW
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
865ffef3
DM
191static int filemap_check_errors(struct address_space *mapping)
192{
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200}
201
1da177e4 202/**
485bb99b 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
469eb4d0 206 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 207 * @sync_mode: enable synchronous operation
1da177e4 208 *
485bb99b
RD
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
1da177e4 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 213 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
ebcf28e1
AM
217int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
1da177e4
LT
219{
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
05fe478d 223 .nr_to_write = LONG_MAX,
111ebb6e
OH
224 .range_start = start,
225 .range_end = end,
1da177e4
LT
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233}
234
235static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237{
111ebb6e 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
239}
240
241int filemap_fdatawrite(struct address_space *mapping)
242{
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244}
245EXPORT_SYMBOL(filemap_fdatawrite);
246
f4c0a0fd 247int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 248 loff_t end)
1da177e4
LT
249{
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251}
f4c0a0fd 252EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 253
485bb99b
RD
254/**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
1da177e4
LT
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261int filemap_flush(struct address_space *mapping)
262{
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264}
265EXPORT_SYMBOL(filemap_flush);
266
485bb99b 267/**
94004ed7
CH
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 272 *
94004ed7
CH
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
1da177e4 275 */
94004ed7
CH
276int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
1da177e4 278{
94004ed7
CH
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
281 struct pagevec pvec;
282 int nr_pages;
865ffef3 283 int ret2, ret = 0;
1da177e4 284
94004ed7 285 if (end_byte < start_byte)
865ffef3 286 goto out;
1da177e4
LT
287
288 pagevec_init(&pvec, 0);
1da177e4
LT
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
212260aa 303 if (TestClearPageError(page))
1da177e4
LT
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
865ffef3
DM
309out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
1da177e4
LT
313
314 return ret;
315}
d3bccb6f
JK
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
1da177e4 318/**
485bb99b 319 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 320 * @mapping: address space structure to wait for
485bb99b
RD
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
1da177e4
LT
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
94004ed7 332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
28fd1298 338 int err = 0;
1da177e4
LT
339
340 if (mapping->nrpages) {
28fd1298
OH
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
865ffef3
DM
353 } else {
354 err = filemap_check_errors(mapping);
1da177e4 355 }
28fd1298 356 return err;
1da177e4 357}
28fd1298 358EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 359
485bb99b
RD
360/**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
469eb4d0
AM
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
1da177e4
LT
371int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
94004ed7
CH
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
28fd1298
OH
383 if (!err)
384 err = err2;
385 }
865ffef3
DM
386 } else {
387 err = filemap_check_errors(mapping);
1da177e4 388 }
28fd1298 389 return err;
1da177e4 390}
f6995585 391EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 392
ef6a3c63
MS
393/**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409{
410 int error;
ef6a3c63
MS
411
412 VM_BUG_ON(!PageLocked(old));
413 VM_BUG_ON(!PageLocked(new));
414 VM_BUG_ON(new->mapping);
415
ef6a3c63
MS
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
e64a782f 429 __delete_from_page_cache(old);
ef6a3c63
MS
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
ef6a3c63
MS
443 }
444
445 return error;
446}
447EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
485bb99b 449/**
e286781d 450 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
e286781d 456 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
457 * This function does not add the page to the LRU. The caller must do that.
458 */
e286781d 459int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 460 pgoff_t offset, gfp_t gfp_mask)
1da177e4 461{
e286781d
NP
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
31475dd6 465 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
466
467 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 468 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 469 if (error)
66a0c8ee 470 return error;
1da177e4 471
5e4c0d97 472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 473 if (error) {
69029cd5 474 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
475 return error;
476 }
477
478 page_cache_get(page);
479 page->mapping = mapping;
480 page->index = offset;
481
482 spin_lock_irq(&mapping->tree_lock);
483 error = radix_tree_insert(&mapping->page_tree, offset, page);
484 radix_tree_preload_end();
485 if (unlikely(error))
486 goto err_insert;
487 mapping->nrpages++;
488 __inc_zone_page_state(page, NR_FILE_PAGES);
489 spin_unlock_irq(&mapping->tree_lock);
490 trace_mm_filemap_add_to_page_cache(page);
491 return 0;
492err_insert:
493 page->mapping = NULL;
494 /* Leave page->index set: truncation relies upon it */
495 spin_unlock_irq(&mapping->tree_lock);
496 mem_cgroup_uncharge_cache_page(page);
497 page_cache_release(page);
1da177e4
LT
498 return error;
499}
e286781d 500EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
501
502int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 503 pgoff_t offset, gfp_t gfp_mask)
1da177e4 504{
4f98a2fe
RR
505 int ret;
506
4f98a2fe 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
508 if (ret == 0)
509 lru_cache_add_file(page);
1da177e4
LT
510 return ret;
511}
18bc0bbd 512EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 513
44110fe3 514#ifdef CONFIG_NUMA
2ae88149 515struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 516{
c0ff7453
MX
517 int n;
518 struct page *page;
519
44110fe3 520 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
521 unsigned int cpuset_mems_cookie;
522 do {
523 cpuset_mems_cookie = get_mems_allowed();
524 n = cpuset_mem_spread_node();
525 page = alloc_pages_exact_node(n, gfp, 0);
526 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
527
c0ff7453 528 return page;
44110fe3 529 }
2ae88149 530 return alloc_pages(gfp, 0);
44110fe3 531}
2ae88149 532EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
533#endif
534
1da177e4
LT
535/*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545static wait_queue_head_t *page_waitqueue(struct page *page)
546{
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550}
551
552static inline void wake_up_page(struct page *page, int bit)
553{
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555}
556
920c7a5d 557void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
558{
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
7eaceacc 562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
563 TASK_UNINTERRUPTIBLE);
564}
565EXPORT_SYMBOL(wait_on_page_bit);
566
f62e00cc
KM
567int wait_on_page_bit_killable(struct page *page, int bit_nr)
568{
569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
570
571 if (!test_bit(bit_nr, &page->flags))
572 return 0;
573
574 return __wait_on_bit(page_waitqueue(page), &wait,
575 sleep_on_page_killable, TASK_KILLABLE);
576}
577
385e1ca5
DH
578/**
579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
580 * @page: Page defining the wait queue of interest
581 * @waiter: Waiter to add to the queue
385e1ca5
DH
582 *
583 * Add an arbitrary @waiter to the wait queue for the nominated @page.
584 */
585void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
586{
587 wait_queue_head_t *q = page_waitqueue(page);
588 unsigned long flags;
589
590 spin_lock_irqsave(&q->lock, flags);
591 __add_wait_queue(q, waiter);
592 spin_unlock_irqrestore(&q->lock, flags);
593}
594EXPORT_SYMBOL_GPL(add_page_wait_queue);
595
1da177e4 596/**
485bb99b 597 * unlock_page - unlock a locked page
1da177e4
LT
598 * @page: the page
599 *
600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
602 * mechananism between PageLocked pages and PageWriteback pages is shared.
603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
604 *
8413ac9d
NP
605 * The mb is necessary to enforce ordering between the clear_bit and the read
606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 607 */
920c7a5d 608void unlock_page(struct page *page)
1da177e4 609{
8413ac9d
NP
610 VM_BUG_ON(!PageLocked(page));
611 clear_bit_unlock(PG_locked, &page->flags);
612 smp_mb__after_clear_bit();
1da177e4
LT
613 wake_up_page(page, PG_locked);
614}
615EXPORT_SYMBOL(unlock_page);
616
485bb99b
RD
617/**
618 * end_page_writeback - end writeback against a page
619 * @page: the page
1da177e4
LT
620 */
621void end_page_writeback(struct page *page)
622{
ac6aadb2
MS
623 if (TestClearPageReclaim(page))
624 rotate_reclaimable_page(page);
625
626 if (!test_clear_page_writeback(page))
627 BUG();
628
1da177e4
LT
629 smp_mb__after_clear_bit();
630 wake_up_page(page, PG_writeback);
631}
632EXPORT_SYMBOL(end_page_writeback);
633
485bb99b
RD
634/**
635 * __lock_page - get a lock on the page, assuming we need to sleep to get it
636 * @page: the page to lock
1da177e4 637 */
920c7a5d 638void __lock_page(struct page *page)
1da177e4
LT
639{
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641
7eaceacc 642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
643 TASK_UNINTERRUPTIBLE);
644}
645EXPORT_SYMBOL(__lock_page);
646
b5606c2d 647int __lock_page_killable(struct page *page)
2687a356
MW
648{
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
651 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 652 sleep_on_page_killable, TASK_KILLABLE);
2687a356 653}
18bc0bbd 654EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 655
d065bd81
ML
656int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
657 unsigned int flags)
658{
37b23e05
KM
659 if (flags & FAULT_FLAG_ALLOW_RETRY) {
660 /*
661 * CAUTION! In this case, mmap_sem is not released
662 * even though return 0.
663 */
664 if (flags & FAULT_FLAG_RETRY_NOWAIT)
665 return 0;
666
667 up_read(&mm->mmap_sem);
668 if (flags & FAULT_FLAG_KILLABLE)
669 wait_on_page_locked_killable(page);
670 else
318b275f 671 wait_on_page_locked(page);
d065bd81 672 return 0;
37b23e05
KM
673 } else {
674 if (flags & FAULT_FLAG_KILLABLE) {
675 int ret;
676
677 ret = __lock_page_killable(page);
678 if (ret) {
679 up_read(&mm->mmap_sem);
680 return 0;
681 }
682 } else
683 __lock_page(page);
684 return 1;
d065bd81
ML
685 }
686}
687
485bb99b
RD
688/**
689 * find_get_page - find and get a page reference
690 * @mapping: the address_space to search
691 * @offset: the page index
692 *
da6052f7
NP
693 * Is there a pagecache struct page at the given (mapping, offset) tuple?
694 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 695 */
a60637c8 696struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 697{
a60637c8 698 void **pagep;
1da177e4
LT
699 struct page *page;
700
a60637c8
NP
701 rcu_read_lock();
702repeat:
703 page = NULL;
704 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
705 if (pagep) {
706 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
707 if (unlikely(!page))
708 goto out;
a2c16d6c 709 if (radix_tree_exception(page)) {
8079b1c8
HD
710 if (radix_tree_deref_retry(page))
711 goto repeat;
712 /*
713 * Otherwise, shmem/tmpfs must be storing a swap entry
714 * here as an exceptional entry: so return it without
715 * attempting to raise page count.
716 */
717 goto out;
a2c16d6c 718 }
a60637c8
NP
719 if (!page_cache_get_speculative(page))
720 goto repeat;
721
722 /*
723 * Has the page moved?
724 * This is part of the lockless pagecache protocol. See
725 * include/linux/pagemap.h for details.
726 */
727 if (unlikely(page != *pagep)) {
728 page_cache_release(page);
729 goto repeat;
730 }
731 }
27d20fdd 732out:
a60637c8
NP
733 rcu_read_unlock();
734
1da177e4
LT
735 return page;
736}
1da177e4
LT
737EXPORT_SYMBOL(find_get_page);
738
1da177e4
LT
739/**
740 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
741 * @mapping: the address_space to search
742 * @offset: the page index
1da177e4
LT
743 *
744 * Locates the desired pagecache page, locks it, increments its reference
745 * count and returns its address.
746 *
747 * Returns zero if the page was not present. find_lock_page() may sleep.
748 */
a60637c8 749struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
750{
751 struct page *page;
752
1da177e4 753repeat:
a60637c8 754 page = find_get_page(mapping, offset);
a2c16d6c 755 if (page && !radix_tree_exception(page)) {
a60637c8
NP
756 lock_page(page);
757 /* Has the page been truncated? */
758 if (unlikely(page->mapping != mapping)) {
759 unlock_page(page);
760 page_cache_release(page);
761 goto repeat;
1da177e4 762 }
a60637c8 763 VM_BUG_ON(page->index != offset);
1da177e4 764 }
1da177e4
LT
765 return page;
766}
1da177e4
LT
767EXPORT_SYMBOL(find_lock_page);
768
769/**
770 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
771 * @mapping: the page's address_space
772 * @index: the page's index into the mapping
773 * @gfp_mask: page allocation mode
1da177e4
LT
774 *
775 * Locates a page in the pagecache. If the page is not present, a new page
776 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
777 * LRU list. The returned page is locked and has its reference count
778 * incremented.
779 *
780 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
781 * allocation!
782 *
783 * find_or_create_page() returns the desired page's address, or zero on
784 * memory exhaustion.
785 */
786struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 787 pgoff_t index, gfp_t gfp_mask)
1da177e4 788{
eb2be189 789 struct page *page;
1da177e4
LT
790 int err;
791repeat:
792 page = find_lock_page(mapping, index);
793 if (!page) {
eb2be189
NP
794 page = __page_cache_alloc(gfp_mask);
795 if (!page)
796 return NULL;
67d58ac4
NP
797 /*
798 * We want a regular kernel memory (not highmem or DMA etc)
799 * allocation for the radix tree nodes, but we need to honour
800 * the context-specific requirements the caller has asked for.
801 * GFP_RECLAIM_MASK collects those requirements.
802 */
803 err = add_to_page_cache_lru(page, mapping, index,
804 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
805 if (unlikely(err)) {
806 page_cache_release(page);
807 page = NULL;
808 if (err == -EEXIST)
809 goto repeat;
1da177e4 810 }
1da177e4 811 }
1da177e4
LT
812 return page;
813}
1da177e4
LT
814EXPORT_SYMBOL(find_or_create_page);
815
816/**
817 * find_get_pages - gang pagecache lookup
818 * @mapping: The address_space to search
819 * @start: The starting page index
820 * @nr_pages: The maximum number of pages
821 * @pages: Where the resulting pages are placed
822 *
823 * find_get_pages() will search for and return a group of up to
824 * @nr_pages pages in the mapping. The pages are placed at @pages.
825 * find_get_pages() takes a reference against the returned pages.
826 *
827 * The search returns a group of mapping-contiguous pages with ascending
828 * indexes. There may be holes in the indices due to not-present pages.
829 *
830 * find_get_pages() returns the number of pages which were found.
831 */
832unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
833 unsigned int nr_pages, struct page **pages)
834{
0fc9d104
KK
835 struct radix_tree_iter iter;
836 void **slot;
837 unsigned ret = 0;
838
839 if (unlikely(!nr_pages))
840 return 0;
a60637c8
NP
841
842 rcu_read_lock();
843restart:
0fc9d104 844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
845 struct page *page;
846repeat:
0fc9d104 847 page = radix_tree_deref_slot(slot);
a60637c8
NP
848 if (unlikely(!page))
849 continue;
9d8aa4ea 850
a2c16d6c 851 if (radix_tree_exception(page)) {
8079b1c8
HD
852 if (radix_tree_deref_retry(page)) {
853 /*
854 * Transient condition which can only trigger
855 * when entry at index 0 moves out of or back
856 * to root: none yet gotten, safe to restart.
857 */
0fc9d104 858 WARN_ON(iter.index);
8079b1c8
HD
859 goto restart;
860 }
a2c16d6c 861 /*
8079b1c8
HD
862 * Otherwise, shmem/tmpfs must be storing a swap entry
863 * here as an exceptional entry: so skip over it -
864 * we only reach this from invalidate_mapping_pages().
a2c16d6c 865 */
8079b1c8 866 continue;
27d20fdd 867 }
a60637c8
NP
868
869 if (!page_cache_get_speculative(page))
870 goto repeat;
871
872 /* Has the page moved? */
0fc9d104 873 if (unlikely(page != *slot)) {
a60637c8
NP
874 page_cache_release(page);
875 goto repeat;
876 }
1da177e4 877
a60637c8 878 pages[ret] = page;
0fc9d104
KK
879 if (++ret == nr_pages)
880 break;
a60637c8 881 }
5b280c0c 882
a60637c8 883 rcu_read_unlock();
1da177e4
LT
884 return ret;
885}
886
ebf43500
JA
887/**
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
893 *
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
896 *
897 * find_get_pages_contig() returns the number of pages which were found.
898 */
899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
901{
0fc9d104
KK
902 struct radix_tree_iter iter;
903 void **slot;
904 unsigned int ret = 0;
905
906 if (unlikely(!nr_pages))
907 return 0;
a60637c8
NP
908
909 rcu_read_lock();
910restart:
0fc9d104 911 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
912 struct page *page;
913repeat:
0fc9d104
KK
914 page = radix_tree_deref_slot(slot);
915 /* The hole, there no reason to continue */
a60637c8 916 if (unlikely(!page))
0fc9d104 917 break;
9d8aa4ea 918
a2c16d6c 919 if (radix_tree_exception(page)) {
8079b1c8
HD
920 if (radix_tree_deref_retry(page)) {
921 /*
922 * Transient condition which can only trigger
923 * when entry at index 0 moves out of or back
924 * to root: none yet gotten, safe to restart.
925 */
926 goto restart;
927 }
a2c16d6c 928 /*
8079b1c8
HD
929 * Otherwise, shmem/tmpfs must be storing a swap entry
930 * here as an exceptional entry: so stop looking for
931 * contiguous pages.
a2c16d6c 932 */
8079b1c8 933 break;
a2c16d6c 934 }
ebf43500 935
a60637c8
NP
936 if (!page_cache_get_speculative(page))
937 goto repeat;
938
939 /* Has the page moved? */
0fc9d104 940 if (unlikely(page != *slot)) {
a60637c8
NP
941 page_cache_release(page);
942 goto repeat;
943 }
944
9cbb4cb2
NP
945 /*
946 * must check mapping and index after taking the ref.
947 * otherwise we can get both false positives and false
948 * negatives, which is just confusing to the caller.
949 */
0fc9d104 950 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
951 page_cache_release(page);
952 break;
953 }
954
a60637c8 955 pages[ret] = page;
0fc9d104
KK
956 if (++ret == nr_pages)
957 break;
ebf43500 958 }
a60637c8
NP
959 rcu_read_unlock();
960 return ret;
ebf43500 961}
ef71c15c 962EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 963
485bb99b
RD
964/**
965 * find_get_pages_tag - find and return pages that match @tag
966 * @mapping: the address_space to search
967 * @index: the starting page index
968 * @tag: the tag index
969 * @nr_pages: the maximum number of pages
970 * @pages: where the resulting pages are placed
971 *
1da177e4 972 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 973 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
974 */
975unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
976 int tag, unsigned int nr_pages, struct page **pages)
977{
0fc9d104
KK
978 struct radix_tree_iter iter;
979 void **slot;
980 unsigned ret = 0;
981
982 if (unlikely(!nr_pages))
983 return 0;
a60637c8
NP
984
985 rcu_read_lock();
986restart:
0fc9d104
KK
987 radix_tree_for_each_tagged(slot, &mapping->page_tree,
988 &iter, *index, tag) {
a60637c8
NP
989 struct page *page;
990repeat:
0fc9d104 991 page = radix_tree_deref_slot(slot);
a60637c8
NP
992 if (unlikely(!page))
993 continue;
9d8aa4ea 994
a2c16d6c 995 if (radix_tree_exception(page)) {
8079b1c8
HD
996 if (radix_tree_deref_retry(page)) {
997 /*
998 * Transient condition which can only trigger
999 * when entry at index 0 moves out of or back
1000 * to root: none yet gotten, safe to restart.
1001 */
1002 goto restart;
1003 }
a2c16d6c 1004 /*
8079b1c8
HD
1005 * This function is never used on a shmem/tmpfs
1006 * mapping, so a swap entry won't be found here.
a2c16d6c 1007 */
8079b1c8 1008 BUG();
a2c16d6c 1009 }
a60637c8
NP
1010
1011 if (!page_cache_get_speculative(page))
1012 goto repeat;
1013
1014 /* Has the page moved? */
0fc9d104 1015 if (unlikely(page != *slot)) {
a60637c8
NP
1016 page_cache_release(page);
1017 goto repeat;
1018 }
1019
1020 pages[ret] = page;
0fc9d104
KK
1021 if (++ret == nr_pages)
1022 break;
a60637c8 1023 }
5b280c0c 1024
a60637c8 1025 rcu_read_unlock();
1da177e4 1026
1da177e4
LT
1027 if (ret)
1028 *index = pages[ret - 1]->index + 1;
a60637c8 1029
1da177e4
LT
1030 return ret;
1031}
ef71c15c 1032EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1033
485bb99b
RD
1034/**
1035 * grab_cache_page_nowait - returns locked page at given index in given cache
1036 * @mapping: target address_space
1037 * @index: the page index
1038 *
72fd4a35 1039 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1040 * This is intended for speculative data generators, where the data can
1041 * be regenerated if the page couldn't be grabbed. This routine should
1042 * be safe to call while holding the lock for another page.
1043 *
1044 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1045 * and deadlock against the caller's locked page.
1046 */
1047struct page *
57f6b96c 1048grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1049{
1050 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1051
1052 if (page) {
529ae9aa 1053 if (trylock_page(page))
1da177e4
LT
1054 return page;
1055 page_cache_release(page);
1056 return NULL;
1057 }
2ae88149 1058 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1059 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1060 page_cache_release(page);
1061 page = NULL;
1062 }
1063 return page;
1064}
1da177e4
LT
1065EXPORT_SYMBOL(grab_cache_page_nowait);
1066
76d42bd9
WF
1067/*
1068 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1069 * a _large_ part of the i/o request. Imagine the worst scenario:
1070 *
1071 * ---R__________________________________________B__________
1072 * ^ reading here ^ bad block(assume 4k)
1073 *
1074 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1075 * => failing the whole request => read(R) => read(R+1) =>
1076 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1077 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1078 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1079 *
1080 * It is going insane. Fix it by quickly scaling down the readahead size.
1081 */
1082static void shrink_readahead_size_eio(struct file *filp,
1083 struct file_ra_state *ra)
1084{
76d42bd9 1085 ra->ra_pages /= 4;
76d42bd9
WF
1086}
1087
485bb99b 1088/**
36e78914 1089 * do_generic_file_read - generic file read routine
485bb99b
RD
1090 * @filp: the file to read
1091 * @ppos: current file position
1092 * @desc: read_descriptor
485bb99b 1093 *
1da177e4 1094 * This is a generic file read routine, and uses the
485bb99b 1095 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1096 *
1097 * This is really ugly. But the goto's actually try to clarify some
1098 * of the logic when it comes to error handling etc.
1da177e4 1099 */
36e78914 1100static void do_generic_file_read(struct file *filp, loff_t *ppos,
b77d88d4 1101 read_descriptor_t *desc)
1da177e4 1102{
36e78914 1103 struct address_space *mapping = filp->f_mapping;
1da177e4 1104 struct inode *inode = mapping->host;
36e78914 1105 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1106 pgoff_t index;
1107 pgoff_t last_index;
1108 pgoff_t prev_index;
1109 unsigned long offset; /* offset into pagecache page */
ec0f1637 1110 unsigned int prev_offset;
1da177e4 1111 int error;
1da177e4 1112
1da177e4 1113 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1114 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1115 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1116 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1117 offset = *ppos & ~PAGE_CACHE_MASK;
1118
1da177e4
LT
1119 for (;;) {
1120 struct page *page;
57f6b96c 1121 pgoff_t end_index;
a32ea1e1 1122 loff_t isize;
1da177e4
LT
1123 unsigned long nr, ret;
1124
1da177e4 1125 cond_resched();
1da177e4
LT
1126find_page:
1127 page = find_get_page(mapping, index);
3ea89ee8 1128 if (!page) {
cf914a7d 1129 page_cache_sync_readahead(mapping,
7ff81078 1130 ra, filp,
3ea89ee8
FW
1131 index, last_index - index);
1132 page = find_get_page(mapping, index);
1133 if (unlikely(page == NULL))
1134 goto no_cached_page;
1135 }
1136 if (PageReadahead(page)) {
cf914a7d 1137 page_cache_async_readahead(mapping,
7ff81078 1138 ra, filp, page,
3ea89ee8 1139 index, last_index - index);
1da177e4 1140 }
8ab22b9a
HH
1141 if (!PageUptodate(page)) {
1142 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1143 !mapping->a_ops->is_partially_uptodate)
1144 goto page_not_up_to_date;
529ae9aa 1145 if (!trylock_page(page))
8ab22b9a 1146 goto page_not_up_to_date;
8d056cb9
DH
1147 /* Did it get truncated before we got the lock? */
1148 if (!page->mapping)
1149 goto page_not_up_to_date_locked;
8ab22b9a
HH
1150 if (!mapping->a_ops->is_partially_uptodate(page,
1151 desc, offset))
1152 goto page_not_up_to_date_locked;
1153 unlock_page(page);
1154 }
1da177e4 1155page_ok:
a32ea1e1
N
1156 /*
1157 * i_size must be checked after we know the page is Uptodate.
1158 *
1159 * Checking i_size after the check allows us to calculate
1160 * the correct value for "nr", which means the zero-filled
1161 * part of the page is not copied back to userspace (unless
1162 * another truncate extends the file - this is desired though).
1163 */
1164
1165 isize = i_size_read(inode);
1166 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1167 if (unlikely(!isize || index > end_index)) {
1168 page_cache_release(page);
1169 goto out;
1170 }
1171
1172 /* nr is the maximum number of bytes to copy from this page */
1173 nr = PAGE_CACHE_SIZE;
1174 if (index == end_index) {
1175 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1176 if (nr <= offset) {
1177 page_cache_release(page);
1178 goto out;
1179 }
1180 }
1181 nr = nr - offset;
1da177e4
LT
1182
1183 /* If users can be writing to this page using arbitrary
1184 * virtual addresses, take care about potential aliasing
1185 * before reading the page on the kernel side.
1186 */
1187 if (mapping_writably_mapped(mapping))
1188 flush_dcache_page(page);
1189
1190 /*
ec0f1637
JK
1191 * When a sequential read accesses a page several times,
1192 * only mark it as accessed the first time.
1da177e4 1193 */
ec0f1637 1194 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1195 mark_page_accessed(page);
1196 prev_index = index;
1197
1198 /*
1199 * Ok, we have the page, and it's up-to-date, so
1200 * now we can copy it to user space...
1201 *
b77d88d4
KS
1202 * The file_read_actor routine returns how many bytes were
1203 * actually used..
1da177e4
LT
1204 * NOTE! This may not be the same as how much of a user buffer
1205 * we filled up (we may be padding etc), so we can only update
1206 * "pos" here (the actor routine has to update the user buffer
1207 * pointers and the remaining count).
1208 */
b77d88d4 1209 ret = file_read_actor(desc, page, offset, nr);
1da177e4
LT
1210 offset += ret;
1211 index += offset >> PAGE_CACHE_SHIFT;
1212 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1213 prev_offset = offset;
1da177e4
LT
1214
1215 page_cache_release(page);
1216 if (ret == nr && desc->count)
1217 continue;
1218 goto out;
1219
1220page_not_up_to_date:
1221 /* Get exclusive access to the page ... */
85462323
ON
1222 error = lock_page_killable(page);
1223 if (unlikely(error))
1224 goto readpage_error;
1da177e4 1225
8ab22b9a 1226page_not_up_to_date_locked:
da6052f7 1227 /* Did it get truncated before we got the lock? */
1da177e4
LT
1228 if (!page->mapping) {
1229 unlock_page(page);
1230 page_cache_release(page);
1231 continue;
1232 }
1233
1234 /* Did somebody else fill it already? */
1235 if (PageUptodate(page)) {
1236 unlock_page(page);
1237 goto page_ok;
1238 }
1239
1240readpage:
91803b49
JM
1241 /*
1242 * A previous I/O error may have been due to temporary
1243 * failures, eg. multipath errors.
1244 * PG_error will be set again if readpage fails.
1245 */
1246 ClearPageError(page);
1da177e4
LT
1247 /* Start the actual read. The read will unlock the page. */
1248 error = mapping->a_ops->readpage(filp, page);
1249
994fc28c
ZB
1250 if (unlikely(error)) {
1251 if (error == AOP_TRUNCATED_PAGE) {
1252 page_cache_release(page);
1253 goto find_page;
1254 }
1da177e4 1255 goto readpage_error;
994fc28c 1256 }
1da177e4
LT
1257
1258 if (!PageUptodate(page)) {
85462323
ON
1259 error = lock_page_killable(page);
1260 if (unlikely(error))
1261 goto readpage_error;
1da177e4
LT
1262 if (!PageUptodate(page)) {
1263 if (page->mapping == NULL) {
1264 /*
2ecdc82e 1265 * invalidate_mapping_pages got it
1da177e4
LT
1266 */
1267 unlock_page(page);
1268 page_cache_release(page);
1269 goto find_page;
1270 }
1271 unlock_page(page);
7ff81078 1272 shrink_readahead_size_eio(filp, ra);
85462323
ON
1273 error = -EIO;
1274 goto readpage_error;
1da177e4
LT
1275 }
1276 unlock_page(page);
1277 }
1278
1da177e4
LT
1279 goto page_ok;
1280
1281readpage_error:
1282 /* UHHUH! A synchronous read error occurred. Report it */
1283 desc->error = error;
1284 page_cache_release(page);
1285 goto out;
1286
1287no_cached_page:
1288 /*
1289 * Ok, it wasn't cached, so we need to create a new
1290 * page..
1291 */
eb2be189
NP
1292 page = page_cache_alloc_cold(mapping);
1293 if (!page) {
1294 desc->error = -ENOMEM;
1295 goto out;
1da177e4 1296 }
eb2be189 1297 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1298 index, GFP_KERNEL);
1299 if (error) {
eb2be189 1300 page_cache_release(page);
1da177e4
LT
1301 if (error == -EEXIST)
1302 goto find_page;
1303 desc->error = error;
1304 goto out;
1305 }
1da177e4
LT
1306 goto readpage;
1307 }
1308
1309out:
7ff81078
FW
1310 ra->prev_pos = prev_index;
1311 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1312 ra->prev_pos |= prev_offset;
1da177e4 1313
f4e6b498 1314 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1315 file_accessed(filp);
1da177e4 1316}
1da177e4
LT
1317
1318int file_read_actor(read_descriptor_t *desc, struct page *page,
1319 unsigned long offset, unsigned long size)
1320{
1321 char *kaddr;
1322 unsigned long left, count = desc->count;
1323
1324 if (size > count)
1325 size = count;
1326
1327 /*
1328 * Faults on the destination of a read are common, so do it before
1329 * taking the kmap.
1330 */
1331 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1332 kaddr = kmap_atomic(page);
1da177e4
LT
1333 left = __copy_to_user_inatomic(desc->arg.buf,
1334 kaddr + offset, size);
9b04c5fe 1335 kunmap_atomic(kaddr);
1da177e4
LT
1336 if (left == 0)
1337 goto success;
1338 }
1339
1340 /* Do it the slow way */
1341 kaddr = kmap(page);
1342 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1343 kunmap(page);
1344
1345 if (left) {
1346 size -= left;
1347 desc->error = -EFAULT;
1348 }
1349success:
1350 desc->count = count - size;
1351 desc->written += size;
1352 desc->arg.buf += size;
1353 return size;
1354}
1355
0ceb3314
DM
1356/*
1357 * Performs necessary checks before doing a write
1358 * @iov: io vector request
1359 * @nr_segs: number of segments in the iovec
1360 * @count: number of bytes to write
1361 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1362 *
1363 * Adjust number of segments and amount of bytes to write (nr_segs should be
1364 * properly initialized first). Returns appropriate error code that caller
1365 * should return or zero in case that write should be allowed.
1366 */
1367int generic_segment_checks(const struct iovec *iov,
1368 unsigned long *nr_segs, size_t *count, int access_flags)
1369{
1370 unsigned long seg;
1371 size_t cnt = 0;
1372 for (seg = 0; seg < *nr_segs; seg++) {
1373 const struct iovec *iv = &iov[seg];
1374
1375 /*
1376 * If any segment has a negative length, or the cumulative
1377 * length ever wraps negative then return -EINVAL.
1378 */
1379 cnt += iv->iov_len;
1380 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1381 return -EINVAL;
1382 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1383 continue;
1384 if (seg == 0)
1385 return -EFAULT;
1386 *nr_segs = seg;
1387 cnt -= iv->iov_len; /* This segment is no good */
1388 break;
1389 }
1390 *count = cnt;
1391 return 0;
1392}
1393EXPORT_SYMBOL(generic_segment_checks);
1394
485bb99b 1395/**
b2abacf3 1396 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1397 * @iocb: kernel I/O control block
1398 * @iov: io vector request
1399 * @nr_segs: number of segments in the iovec
b2abacf3 1400 * @pos: current file position
485bb99b 1401 *
1da177e4
LT
1402 * This is the "read()" routine for all filesystems
1403 * that can use the page cache directly.
1404 */
1405ssize_t
543ade1f
BP
1406generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1407 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1408{
1409 struct file *filp = iocb->ki_filp;
1410 ssize_t retval;
66f998f6 1411 unsigned long seg = 0;
1da177e4 1412 size_t count;
543ade1f 1413 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1414
1415 count = 0;
0ceb3314
DM
1416 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1417 if (retval)
1418 return retval;
1da177e4
LT
1419
1420 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1421 if (filp->f_flags & O_DIRECT) {
543ade1f 1422 loff_t size;
1da177e4
LT
1423 struct address_space *mapping;
1424 struct inode *inode;
1425
1426 mapping = filp->f_mapping;
1427 inode = mapping->host;
1da177e4
LT
1428 if (!count)
1429 goto out; /* skip atime */
1430 size = i_size_read(inode);
1431 if (pos < size) {
48b47c56
NP
1432 retval = filemap_write_and_wait_range(mapping, pos,
1433 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1434 if (!retval) {
1435 retval = mapping->a_ops->direct_IO(READ, iocb,
1436 iov, pos, nr_segs);
1437 }
66f998f6 1438 if (retval > 0) {
1da177e4 1439 *ppos = pos + retval;
66f998f6
JB
1440 count -= retval;
1441 }
1442
1443 /*
1444 * Btrfs can have a short DIO read if we encounter
1445 * compressed extents, so if there was an error, or if
1446 * we've already read everything we wanted to, or if
1447 * there was a short read because we hit EOF, go ahead
1448 * and return. Otherwise fallthrough to buffered io for
1449 * the rest of the read.
1450 */
1451 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1452 file_accessed(filp);
1453 goto out;
1454 }
0e0bcae3 1455 }
1da177e4
LT
1456 }
1457
66f998f6 1458 count = retval;
11fa977e
HD
1459 for (seg = 0; seg < nr_segs; seg++) {
1460 read_descriptor_t desc;
66f998f6
JB
1461 loff_t offset = 0;
1462
1463 /*
1464 * If we did a short DIO read we need to skip the section of the
1465 * iov that we've already read data into.
1466 */
1467 if (count) {
1468 if (count > iov[seg].iov_len) {
1469 count -= iov[seg].iov_len;
1470 continue;
1471 }
1472 offset = count;
1473 count = 0;
1474 }
1da177e4 1475
11fa977e 1476 desc.written = 0;
66f998f6
JB
1477 desc.arg.buf = iov[seg].iov_base + offset;
1478 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1479 if (desc.count == 0)
1480 continue;
1481 desc.error = 0;
b77d88d4 1482 do_generic_file_read(filp, ppos, &desc);
11fa977e
HD
1483 retval += desc.written;
1484 if (desc.error) {
1485 retval = retval ?: desc.error;
1486 break;
1da177e4 1487 }
11fa977e
HD
1488 if (desc.count > 0)
1489 break;
1da177e4
LT
1490 }
1491out:
1492 return retval;
1493}
1da177e4
LT
1494EXPORT_SYMBOL(generic_file_aio_read);
1495
1da177e4 1496#ifdef CONFIG_MMU
485bb99b
RD
1497/**
1498 * page_cache_read - adds requested page to the page cache if not already there
1499 * @file: file to read
1500 * @offset: page index
1501 *
1da177e4
LT
1502 * This adds the requested page to the page cache if it isn't already there,
1503 * and schedules an I/O to read in its contents from disk.
1504 */
920c7a5d 1505static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1506{
1507 struct address_space *mapping = file->f_mapping;
1508 struct page *page;
994fc28c 1509 int ret;
1da177e4 1510
994fc28c
ZB
1511 do {
1512 page = page_cache_alloc_cold(mapping);
1513 if (!page)
1514 return -ENOMEM;
1515
1516 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1517 if (ret == 0)
1518 ret = mapping->a_ops->readpage(file, page);
1519 else if (ret == -EEXIST)
1520 ret = 0; /* losing race to add is OK */
1da177e4 1521
1da177e4 1522 page_cache_release(page);
1da177e4 1523
994fc28c
ZB
1524 } while (ret == AOP_TRUNCATED_PAGE);
1525
1526 return ret;
1da177e4
LT
1527}
1528
1529#define MMAP_LOTSAMISS (100)
1530
ef00e08e
LT
1531/*
1532 * Synchronous readahead happens when we don't even find
1533 * a page in the page cache at all.
1534 */
1535static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1536 struct file_ra_state *ra,
1537 struct file *file,
1538 pgoff_t offset)
1539{
1540 unsigned long ra_pages;
1541 struct address_space *mapping = file->f_mapping;
1542
1543 /* If we don't want any read-ahead, don't bother */
64363aad 1544 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1545 return;
275b12bf
WF
1546 if (!ra->ra_pages)
1547 return;
ef00e08e 1548
64363aad 1549 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1550 page_cache_sync_readahead(mapping, ra, file, offset,
1551 ra->ra_pages);
ef00e08e
LT
1552 return;
1553 }
1554
207d04ba
AK
1555 /* Avoid banging the cache line if not needed */
1556 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1557 ra->mmap_miss++;
1558
1559 /*
1560 * Do we miss much more than hit in this file? If so,
1561 * stop bothering with read-ahead. It will only hurt.
1562 */
1563 if (ra->mmap_miss > MMAP_LOTSAMISS)
1564 return;
1565
d30a1100
WF
1566 /*
1567 * mmap read-around
1568 */
ef00e08e 1569 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1570 ra->start = max_t(long, 0, offset - ra_pages / 2);
1571 ra->size = ra_pages;
2cbea1d3 1572 ra->async_size = ra_pages / 4;
275b12bf 1573 ra_submit(ra, mapping, file);
ef00e08e
LT
1574}
1575
1576/*
1577 * Asynchronous readahead happens when we find the page and PG_readahead,
1578 * so we want to possibly extend the readahead further..
1579 */
1580static void do_async_mmap_readahead(struct vm_area_struct *vma,
1581 struct file_ra_state *ra,
1582 struct file *file,
1583 struct page *page,
1584 pgoff_t offset)
1585{
1586 struct address_space *mapping = file->f_mapping;
1587
1588 /* If we don't want any read-ahead, don't bother */
64363aad 1589 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1590 return;
1591 if (ra->mmap_miss > 0)
1592 ra->mmap_miss--;
1593 if (PageReadahead(page))
2fad6f5d
WF
1594 page_cache_async_readahead(mapping, ra, file,
1595 page, offset, ra->ra_pages);
ef00e08e
LT
1596}
1597
485bb99b 1598/**
54cb8821 1599 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1600 * @vma: vma in which the fault was taken
1601 * @vmf: struct vm_fault containing details of the fault
485bb99b 1602 *
54cb8821 1603 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1604 * mapped memory region to read in file data during a page fault.
1605 *
1606 * The goto's are kind of ugly, but this streamlines the normal case of having
1607 * it in the page cache, and handles the special cases reasonably without
1608 * having a lot of duplicated code.
1609 */
d0217ac0 1610int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1611{
1612 int error;
54cb8821 1613 struct file *file = vma->vm_file;
1da177e4
LT
1614 struct address_space *mapping = file->f_mapping;
1615 struct file_ra_state *ra = &file->f_ra;
1616 struct inode *inode = mapping->host;
ef00e08e 1617 pgoff_t offset = vmf->pgoff;
1da177e4 1618 struct page *page;
2004dc8e 1619 pgoff_t size;
83c54070 1620 int ret = 0;
1da177e4 1621
1da177e4 1622 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1623 if (offset >= size)
5307cc1a 1624 return VM_FAULT_SIGBUS;
1da177e4 1625
1da177e4 1626 /*
49426420 1627 * Do we have something in the page cache already?
1da177e4 1628 */
ef00e08e 1629 page = find_get_page(mapping, offset);
45cac65b 1630 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1631 /*
ef00e08e
LT
1632 * We found the page, so try async readahead before
1633 * waiting for the lock.
1da177e4 1634 */
ef00e08e 1635 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1636 } else if (!page) {
ef00e08e
LT
1637 /* No page in the page cache at all */
1638 do_sync_mmap_readahead(vma, ra, file, offset);
1639 count_vm_event(PGMAJFAULT);
456f998e 1640 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1641 ret = VM_FAULT_MAJOR;
1642retry_find:
b522c94d 1643 page = find_get_page(mapping, offset);
1da177e4
LT
1644 if (!page)
1645 goto no_cached_page;
1646 }
1647
d88c0922
ML
1648 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1649 page_cache_release(page);
d065bd81 1650 return ret | VM_FAULT_RETRY;
d88c0922 1651 }
b522c94d
ML
1652
1653 /* Did it get truncated? */
1654 if (unlikely(page->mapping != mapping)) {
1655 unlock_page(page);
1656 put_page(page);
1657 goto retry_find;
1658 }
1659 VM_BUG_ON(page->index != offset);
1660
1da177e4 1661 /*
d00806b1
NP
1662 * We have a locked page in the page cache, now we need to check
1663 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1664 */
d00806b1 1665 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1666 goto page_not_uptodate;
1667
ef00e08e
LT
1668 /*
1669 * Found the page and have a reference on it.
1670 * We must recheck i_size under page lock.
1671 */
d00806b1 1672 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1673 if (unlikely(offset >= size)) {
d00806b1 1674 unlock_page(page);
745ad48e 1675 page_cache_release(page);
5307cc1a 1676 return VM_FAULT_SIGBUS;
d00806b1
NP
1677 }
1678
d0217ac0 1679 vmf->page = page;
83c54070 1680 return ret | VM_FAULT_LOCKED;
1da177e4 1681
1da177e4
LT
1682no_cached_page:
1683 /*
1684 * We're only likely to ever get here if MADV_RANDOM is in
1685 * effect.
1686 */
ef00e08e 1687 error = page_cache_read(file, offset);
1da177e4
LT
1688
1689 /*
1690 * The page we want has now been added to the page cache.
1691 * In the unlikely event that someone removed it in the
1692 * meantime, we'll just come back here and read it again.
1693 */
1694 if (error >= 0)
1695 goto retry_find;
1696
1697 /*
1698 * An error return from page_cache_read can result if the
1699 * system is low on memory, or a problem occurs while trying
1700 * to schedule I/O.
1701 */
1702 if (error == -ENOMEM)
d0217ac0
NP
1703 return VM_FAULT_OOM;
1704 return VM_FAULT_SIGBUS;
1da177e4
LT
1705
1706page_not_uptodate:
1da177e4
LT
1707 /*
1708 * Umm, take care of errors if the page isn't up-to-date.
1709 * Try to re-read it _once_. We do this synchronously,
1710 * because there really aren't any performance issues here
1711 * and we need to check for errors.
1712 */
1da177e4 1713 ClearPageError(page);
994fc28c 1714 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1715 if (!error) {
1716 wait_on_page_locked(page);
1717 if (!PageUptodate(page))
1718 error = -EIO;
1719 }
d00806b1
NP
1720 page_cache_release(page);
1721
1722 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1723 goto retry_find;
1da177e4 1724
d00806b1 1725 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1726 shrink_readahead_size_eio(file, ra);
d0217ac0 1727 return VM_FAULT_SIGBUS;
54cb8821
NP
1728}
1729EXPORT_SYMBOL(filemap_fault);
1730
4fcf1c62
JK
1731int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1732{
1733 struct page *page = vmf->page;
496ad9aa 1734 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1735 int ret = VM_FAULT_LOCKED;
1736
14da9200 1737 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1738 file_update_time(vma->vm_file);
1739 lock_page(page);
1740 if (page->mapping != inode->i_mapping) {
1741 unlock_page(page);
1742 ret = VM_FAULT_NOPAGE;
1743 goto out;
1744 }
14da9200
JK
1745 /*
1746 * We mark the page dirty already here so that when freeze is in
1747 * progress, we are guaranteed that writeback during freezing will
1748 * see the dirty page and writeprotect it again.
1749 */
1750 set_page_dirty(page);
1d1d1a76 1751 wait_for_stable_page(page);
4fcf1c62 1752out:
14da9200 1753 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
1754 return ret;
1755}
1756EXPORT_SYMBOL(filemap_page_mkwrite);
1757
f0f37e2f 1758const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1759 .fault = filemap_fault,
4fcf1c62 1760 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 1761 .remap_pages = generic_file_remap_pages,
1da177e4
LT
1762};
1763
1764/* This is used for a general mmap of a disk file */
1765
1766int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1767{
1768 struct address_space *mapping = file->f_mapping;
1769
1770 if (!mapping->a_ops->readpage)
1771 return -ENOEXEC;
1772 file_accessed(file);
1773 vma->vm_ops = &generic_file_vm_ops;
1774 return 0;
1775}
1da177e4
LT
1776
1777/*
1778 * This is for filesystems which do not implement ->writepage.
1779 */
1780int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1781{
1782 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1783 return -EINVAL;
1784 return generic_file_mmap(file, vma);
1785}
1786#else
1787int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1788{
1789 return -ENOSYS;
1790}
1791int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1792{
1793 return -ENOSYS;
1794}
1795#endif /* CONFIG_MMU */
1796
1797EXPORT_SYMBOL(generic_file_mmap);
1798EXPORT_SYMBOL(generic_file_readonly_mmap);
1799
6fe6900e 1800static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1801 pgoff_t index,
5e5358e7 1802 int (*filler)(void *, struct page *),
0531b2aa
LT
1803 void *data,
1804 gfp_t gfp)
1da177e4 1805{
eb2be189 1806 struct page *page;
1da177e4
LT
1807 int err;
1808repeat:
1809 page = find_get_page(mapping, index);
1810 if (!page) {
0531b2aa 1811 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1812 if (!page)
1813 return ERR_PTR(-ENOMEM);
e6f67b8c 1814 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1815 if (unlikely(err)) {
1816 page_cache_release(page);
1817 if (err == -EEXIST)
1818 goto repeat;
1da177e4 1819 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1820 return ERR_PTR(err);
1821 }
1da177e4
LT
1822 err = filler(data, page);
1823 if (err < 0) {
1824 page_cache_release(page);
1825 page = ERR_PTR(err);
1826 }
1827 }
1da177e4
LT
1828 return page;
1829}
1830
0531b2aa 1831static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1832 pgoff_t index,
5e5358e7 1833 int (*filler)(void *, struct page *),
0531b2aa
LT
1834 void *data,
1835 gfp_t gfp)
1836
1da177e4
LT
1837{
1838 struct page *page;
1839 int err;
1840
1841retry:
0531b2aa 1842 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1843 if (IS_ERR(page))
c855ff37 1844 return page;
1da177e4
LT
1845 if (PageUptodate(page))
1846 goto out;
1847
1848 lock_page(page);
1849 if (!page->mapping) {
1850 unlock_page(page);
1851 page_cache_release(page);
1852 goto retry;
1853 }
1854 if (PageUptodate(page)) {
1855 unlock_page(page);
1856 goto out;
1857 }
1858 err = filler(data, page);
1859 if (err < 0) {
1860 page_cache_release(page);
c855ff37 1861 return ERR_PTR(err);
1da177e4 1862 }
c855ff37 1863out:
6fe6900e
NP
1864 mark_page_accessed(page);
1865 return page;
1866}
0531b2aa
LT
1867
1868/**
1869 * read_cache_page_async - read into page cache, fill it if needed
1870 * @mapping: the page's address_space
1871 * @index: the page index
1872 * @filler: function to perform the read
5e5358e7 1873 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1874 *
1875 * Same as read_cache_page, but don't wait for page to become unlocked
1876 * after submitting it to the filler.
1877 *
1878 * Read into the page cache. If a page already exists, and PageUptodate() is
1879 * not set, try to fill the page but don't wait for it to become unlocked.
1880 *
1881 * If the page does not get brought uptodate, return -EIO.
1882 */
1883struct page *read_cache_page_async(struct address_space *mapping,
1884 pgoff_t index,
5e5358e7 1885 int (*filler)(void *, struct page *),
0531b2aa
LT
1886 void *data)
1887{
1888 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1889}
6fe6900e
NP
1890EXPORT_SYMBOL(read_cache_page_async);
1891
0531b2aa
LT
1892static struct page *wait_on_page_read(struct page *page)
1893{
1894 if (!IS_ERR(page)) {
1895 wait_on_page_locked(page);
1896 if (!PageUptodate(page)) {
1897 page_cache_release(page);
1898 page = ERR_PTR(-EIO);
1899 }
1900 }
1901 return page;
1902}
1903
1904/**
1905 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1906 * @mapping: the page's address_space
1907 * @index: the page index
1908 * @gfp: the page allocator flags to use if allocating
1909 *
1910 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1911 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1912 *
1913 * If the page does not get brought uptodate, return -EIO.
1914 */
1915struct page *read_cache_page_gfp(struct address_space *mapping,
1916 pgoff_t index,
1917 gfp_t gfp)
1918{
1919 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1920
1921 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1922}
1923EXPORT_SYMBOL(read_cache_page_gfp);
1924
6fe6900e
NP
1925/**
1926 * read_cache_page - read into page cache, fill it if needed
1927 * @mapping: the page's address_space
1928 * @index: the page index
1929 * @filler: function to perform the read
5e5358e7 1930 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1931 *
1932 * Read into the page cache. If a page already exists, and PageUptodate() is
1933 * not set, try to fill the page then wait for it to become unlocked.
1934 *
1935 * If the page does not get brought uptodate, return -EIO.
1936 */
1937struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1938 pgoff_t index,
5e5358e7 1939 int (*filler)(void *, struct page *),
6fe6900e
NP
1940 void *data)
1941{
0531b2aa 1942 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1943}
1da177e4
LT
1944EXPORT_SYMBOL(read_cache_page);
1945
2f718ffc 1946static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1947 const struct iovec *iov, size_t base, size_t bytes)
1948{
f1800536 1949 size_t copied = 0, left = 0;
1da177e4
LT
1950
1951 while (bytes) {
1952 char __user *buf = iov->iov_base + base;
1953 int copy = min(bytes, iov->iov_len - base);
1954
1955 base = 0;
f1800536 1956 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1957 copied += copy;
1958 bytes -= copy;
1959 vaddr += copy;
1960 iov++;
1961
01408c49 1962 if (unlikely(left))
1da177e4 1963 break;
1da177e4
LT
1964 }
1965 return copied - left;
1966}
1967
2f718ffc
NP
1968/*
1969 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1970 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1971 * bytes which were copied.
1972 */
1973size_t iov_iter_copy_from_user_atomic(struct page *page,
1974 struct iov_iter *i, unsigned long offset, size_t bytes)
1975{
1976 char *kaddr;
1977 size_t copied;
1978
1979 BUG_ON(!in_atomic());
9b04c5fe 1980 kaddr = kmap_atomic(page);
2f718ffc
NP
1981 if (likely(i->nr_segs == 1)) {
1982 int left;
1983 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1984 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1985 copied = bytes - left;
1986 } else {
1987 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1988 i->iov, i->iov_offset, bytes);
1989 }
9b04c5fe 1990 kunmap_atomic(kaddr);
2f718ffc
NP
1991
1992 return copied;
1993}
89e10787 1994EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1995
1996/*
1997 * This has the same sideeffects and return value as
1998 * iov_iter_copy_from_user_atomic().
1999 * The difference is that it attempts to resolve faults.
2000 * Page must not be locked.
2001 */
2002size_t iov_iter_copy_from_user(struct page *page,
2003 struct iov_iter *i, unsigned long offset, size_t bytes)
2004{
2005 char *kaddr;
2006 size_t copied;
2007
2008 kaddr = kmap(page);
2009 if (likely(i->nr_segs == 1)) {
2010 int left;
2011 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2012 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2013 copied = bytes - left;
2014 } else {
2015 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2016 i->iov, i->iov_offset, bytes);
2017 }
2018 kunmap(page);
2019 return copied;
2020}
89e10787 2021EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2022
f7009264 2023void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2024{
f7009264
NP
2025 BUG_ON(i->count < bytes);
2026
2f718ffc
NP
2027 if (likely(i->nr_segs == 1)) {
2028 i->iov_offset += bytes;
f7009264 2029 i->count -= bytes;
2f718ffc
NP
2030 } else {
2031 const struct iovec *iov = i->iov;
2032 size_t base = i->iov_offset;
39be79c1 2033 unsigned long nr_segs = i->nr_segs;
2f718ffc 2034
124d3b70
NP
2035 /*
2036 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2037 * zero-length segments (without overruning the iovec).
124d3b70 2038 */
94ad374a 2039 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2040 int copy;
2f718ffc 2041
f7009264
NP
2042 copy = min(bytes, iov->iov_len - base);
2043 BUG_ON(!i->count || i->count < copy);
2044 i->count -= copy;
2f718ffc
NP
2045 bytes -= copy;
2046 base += copy;
2047 if (iov->iov_len == base) {
2048 iov++;
39be79c1 2049 nr_segs--;
2f718ffc
NP
2050 base = 0;
2051 }
2052 }
2053 i->iov = iov;
2054 i->iov_offset = base;
39be79c1 2055 i->nr_segs = nr_segs;
2f718ffc
NP
2056 }
2057}
89e10787 2058EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2059
afddba49
NP
2060/*
2061 * Fault in the first iovec of the given iov_iter, to a maximum length
2062 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2063 * accessed (ie. because it is an invalid address).
2064 *
2065 * writev-intensive code may want this to prefault several iovecs -- that
2066 * would be possible (callers must not rely on the fact that _only_ the
2067 * first iovec will be faulted with the current implementation).
2068 */
2069int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2070{
2f718ffc 2071 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2072 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2073 return fault_in_pages_readable(buf, bytes);
2f718ffc 2074}
89e10787 2075EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2076
2077/*
2078 * Return the count of just the current iov_iter segment.
2079 */
d28574e0 2080size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2081{
2082 const struct iovec *iov = i->iov;
2083 if (i->nr_segs == 1)
2084 return i->count;
2085 else
2086 return min(i->count, iov->iov_len - i->iov_offset);
2087}
89e10787 2088EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2089
1da177e4
LT
2090/*
2091 * Performs necessary checks before doing a write
2092 *
485bb99b 2093 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2094 * Returns appropriate error code that caller should return or
2095 * zero in case that write should be allowed.
2096 */
2097inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2098{
2099 struct inode *inode = file->f_mapping->host;
59e99e5b 2100 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2101
2102 if (unlikely(*pos < 0))
2103 return -EINVAL;
2104
1da177e4
LT
2105 if (!isblk) {
2106 /* FIXME: this is for backwards compatibility with 2.4 */
2107 if (file->f_flags & O_APPEND)
2108 *pos = i_size_read(inode);
2109
2110 if (limit != RLIM_INFINITY) {
2111 if (*pos >= limit) {
2112 send_sig(SIGXFSZ, current, 0);
2113 return -EFBIG;
2114 }
2115 if (*count > limit - (typeof(limit))*pos) {
2116 *count = limit - (typeof(limit))*pos;
2117 }
2118 }
2119 }
2120
2121 /*
2122 * LFS rule
2123 */
2124 if (unlikely(*pos + *count > MAX_NON_LFS &&
2125 !(file->f_flags & O_LARGEFILE))) {
2126 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2127 return -EFBIG;
2128 }
2129 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2130 *count = MAX_NON_LFS - (unsigned long)*pos;
2131 }
2132 }
2133
2134 /*
2135 * Are we about to exceed the fs block limit ?
2136 *
2137 * If we have written data it becomes a short write. If we have
2138 * exceeded without writing data we send a signal and return EFBIG.
2139 * Linus frestrict idea will clean these up nicely..
2140 */
2141 if (likely(!isblk)) {
2142 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2143 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2144 return -EFBIG;
2145 }
2146 /* zero-length writes at ->s_maxbytes are OK */
2147 }
2148
2149 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2150 *count = inode->i_sb->s_maxbytes - *pos;
2151 } else {
9361401e 2152#ifdef CONFIG_BLOCK
1da177e4
LT
2153 loff_t isize;
2154 if (bdev_read_only(I_BDEV(inode)))
2155 return -EPERM;
2156 isize = i_size_read(inode);
2157 if (*pos >= isize) {
2158 if (*count || *pos > isize)
2159 return -ENOSPC;
2160 }
2161
2162 if (*pos + *count > isize)
2163 *count = isize - *pos;
9361401e
DH
2164#else
2165 return -EPERM;
2166#endif
1da177e4
LT
2167 }
2168 return 0;
2169}
2170EXPORT_SYMBOL(generic_write_checks);
2171
afddba49
NP
2172int pagecache_write_begin(struct file *file, struct address_space *mapping,
2173 loff_t pos, unsigned len, unsigned flags,
2174 struct page **pagep, void **fsdata)
2175{
2176 const struct address_space_operations *aops = mapping->a_ops;
2177
4e02ed4b 2178 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2179 pagep, fsdata);
afddba49
NP
2180}
2181EXPORT_SYMBOL(pagecache_write_begin);
2182
2183int pagecache_write_end(struct file *file, struct address_space *mapping,
2184 loff_t pos, unsigned len, unsigned copied,
2185 struct page *page, void *fsdata)
2186{
2187 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2188
4e02ed4b
NP
2189 mark_page_accessed(page);
2190 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2191}
2192EXPORT_SYMBOL(pagecache_write_end);
2193
1da177e4
LT
2194ssize_t
2195generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2196 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2197 size_t count, size_t ocount)
2198{
2199 struct file *file = iocb->ki_filp;
2200 struct address_space *mapping = file->f_mapping;
2201 struct inode *inode = mapping->host;
2202 ssize_t written;
a969e903
CH
2203 size_t write_len;
2204 pgoff_t end;
1da177e4
LT
2205
2206 if (count != ocount)
2207 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2208
a969e903
CH
2209 write_len = iov_length(iov, *nr_segs);
2210 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2211
48b47c56 2212 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2213 if (written)
2214 goto out;
2215
2216 /*
2217 * After a write we want buffered reads to be sure to go to disk to get
2218 * the new data. We invalidate clean cached page from the region we're
2219 * about to write. We do this *before* the write so that we can return
6ccfa806 2220 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2221 */
2222 if (mapping->nrpages) {
2223 written = invalidate_inode_pages2_range(mapping,
2224 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2225 /*
2226 * If a page can not be invalidated, return 0 to fall back
2227 * to buffered write.
2228 */
2229 if (written) {
2230 if (written == -EBUSY)
2231 return 0;
a969e903 2232 goto out;
6ccfa806 2233 }
a969e903
CH
2234 }
2235
2236 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2237
2238 /*
2239 * Finally, try again to invalidate clean pages which might have been
2240 * cached by non-direct readahead, or faulted in by get_user_pages()
2241 * if the source of the write was an mmap'ed region of the file
2242 * we're writing. Either one is a pretty crazy thing to do,
2243 * so we don't support it 100%. If this invalidation
2244 * fails, tough, the write still worked...
2245 */
2246 if (mapping->nrpages) {
2247 invalidate_inode_pages2_range(mapping,
2248 pos >> PAGE_CACHE_SHIFT, end);
2249 }
2250
1da177e4 2251 if (written > 0) {
0116651c
NK
2252 pos += written;
2253 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2254 i_size_write(inode, pos);
1da177e4
LT
2255 mark_inode_dirty(inode);
2256 }
0116651c 2257 *ppos = pos;
1da177e4 2258 }
a969e903 2259out:
1da177e4
LT
2260 return written;
2261}
2262EXPORT_SYMBOL(generic_file_direct_write);
2263
eb2be189
NP
2264/*
2265 * Find or create a page at the given pagecache position. Return the locked
2266 * page. This function is specifically for buffered writes.
2267 */
54566b2c
NP
2268struct page *grab_cache_page_write_begin(struct address_space *mapping,
2269 pgoff_t index, unsigned flags)
eb2be189
NP
2270{
2271 int status;
0faa70cb 2272 gfp_t gfp_mask;
eb2be189 2273 struct page *page;
54566b2c 2274 gfp_t gfp_notmask = 0;
0faa70cb 2275
1010bb1b
FW
2276 gfp_mask = mapping_gfp_mask(mapping);
2277 if (mapping_cap_account_dirty(mapping))
2278 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2279 if (flags & AOP_FLAG_NOFS)
2280 gfp_notmask = __GFP_FS;
eb2be189
NP
2281repeat:
2282 page = find_lock_page(mapping, index);
c585a267 2283 if (page)
3d08bcc8 2284 goto found;
eb2be189 2285
0faa70cb 2286 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2287 if (!page)
2288 return NULL;
54566b2c
NP
2289 status = add_to_page_cache_lru(page, mapping, index,
2290 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2291 if (unlikely(status)) {
2292 page_cache_release(page);
2293 if (status == -EEXIST)
2294 goto repeat;
2295 return NULL;
2296 }
3d08bcc8 2297found:
1d1d1a76 2298 wait_for_stable_page(page);
eb2be189
NP
2299 return page;
2300}
54566b2c 2301EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2302
afddba49
NP
2303static ssize_t generic_perform_write(struct file *file,
2304 struct iov_iter *i, loff_t pos)
2305{
2306 struct address_space *mapping = file->f_mapping;
2307 const struct address_space_operations *a_ops = mapping->a_ops;
2308 long status = 0;
2309 ssize_t written = 0;
674b892e
NP
2310 unsigned int flags = 0;
2311
2312 /*
2313 * Copies from kernel address space cannot fail (NFSD is a big user).
2314 */
2315 if (segment_eq(get_fs(), KERNEL_DS))
2316 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2317
2318 do {
2319 struct page *page;
afddba49
NP
2320 unsigned long offset; /* Offset into pagecache page */
2321 unsigned long bytes; /* Bytes to write to page */
2322 size_t copied; /* Bytes copied from user */
2323 void *fsdata;
2324
2325 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2326 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2327 iov_iter_count(i));
2328
2329again:
afddba49
NP
2330 /*
2331 * Bring in the user page that we will copy from _first_.
2332 * Otherwise there's a nasty deadlock on copying from the
2333 * same page as we're writing to, without it being marked
2334 * up-to-date.
2335 *
2336 * Not only is this an optimisation, but it is also required
2337 * to check that the address is actually valid, when atomic
2338 * usercopies are used, below.
2339 */
2340 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2341 status = -EFAULT;
2342 break;
2343 }
2344
674b892e 2345 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2346 &page, &fsdata);
2347 if (unlikely(status))
2348 break;
2349
931e80e4 2350 if (mapping_writably_mapped(mapping))
2351 flush_dcache_page(page);
2352
afddba49
NP
2353 pagefault_disable();
2354 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2355 pagefault_enable();
2356 flush_dcache_page(page);
2357
c8236db9 2358 mark_page_accessed(page);
afddba49
NP
2359 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2360 page, fsdata);
2361 if (unlikely(status < 0))
2362 break;
2363 copied = status;
2364
2365 cond_resched();
2366
124d3b70 2367 iov_iter_advance(i, copied);
afddba49
NP
2368 if (unlikely(copied == 0)) {
2369 /*
2370 * If we were unable to copy any data at all, we must
2371 * fall back to a single segment length write.
2372 *
2373 * If we didn't fallback here, we could livelock
2374 * because not all segments in the iov can be copied at
2375 * once without a pagefault.
2376 */
2377 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2378 iov_iter_single_seg_count(i));
2379 goto again;
2380 }
afddba49
NP
2381 pos += copied;
2382 written += copied;
2383
2384 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2385 if (fatal_signal_pending(current)) {
2386 status = -EINTR;
2387 break;
2388 }
afddba49
NP
2389 } while (iov_iter_count(i));
2390
2391 return written ? written : status;
2392}
2393
2394ssize_t
2395generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2396 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2397 size_t count, ssize_t written)
2398{
2399 struct file *file = iocb->ki_filp;
afddba49
NP
2400 ssize_t status;
2401 struct iov_iter i;
2402
2403 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2404 status = generic_perform_write(file, &i, pos);
1da177e4 2405
1da177e4 2406 if (likely(status >= 0)) {
afddba49
NP
2407 written += status;
2408 *ppos = pos + status;
1da177e4
LT
2409 }
2410
1da177e4
LT
2411 return written ? written : status;
2412}
2413EXPORT_SYMBOL(generic_file_buffered_write);
2414
e4dd9de3
JK
2415/**
2416 * __generic_file_aio_write - write data to a file
2417 * @iocb: IO state structure (file, offset, etc.)
2418 * @iov: vector with data to write
2419 * @nr_segs: number of segments in the vector
2420 * @ppos: position where to write
2421 *
2422 * This function does all the work needed for actually writing data to a
2423 * file. It does all basic checks, removes SUID from the file, updates
2424 * modification times and calls proper subroutines depending on whether we
2425 * do direct IO or a standard buffered write.
2426 *
2427 * It expects i_mutex to be grabbed unless we work on a block device or similar
2428 * object which does not need locking at all.
2429 *
2430 * This function does *not* take care of syncing data in case of O_SYNC write.
2431 * A caller has to handle it. This is mainly due to the fact that we want to
2432 * avoid syncing under i_mutex.
2433 */
2434ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2435 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2436{
2437 struct file *file = iocb->ki_filp;
fb5527e6 2438 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2439 size_t ocount; /* original count */
2440 size_t count; /* after file limit checks */
2441 struct inode *inode = mapping->host;
1da177e4
LT
2442 loff_t pos;
2443 ssize_t written;
2444 ssize_t err;
2445
2446 ocount = 0;
0ceb3314
DM
2447 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2448 if (err)
2449 return err;
1da177e4
LT
2450
2451 count = ocount;
2452 pos = *ppos;
2453
1da177e4
LT
2454 /* We can write back this queue in page reclaim */
2455 current->backing_dev_info = mapping->backing_dev_info;
2456 written = 0;
2457
2458 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2459 if (err)
2460 goto out;
2461
2462 if (count == 0)
2463 goto out;
2464
2f1936b8 2465 err = file_remove_suid(file);
1da177e4
LT
2466 if (err)
2467 goto out;
2468
c3b2da31
JB
2469 err = file_update_time(file);
2470 if (err)
2471 goto out;
1da177e4
LT
2472
2473 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2474 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2475 loff_t endbyte;
2476 ssize_t written_buffered;
2477
2478 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2479 ppos, count, ocount);
1da177e4
LT
2480 if (written < 0 || written == count)
2481 goto out;
2482 /*
2483 * direct-io write to a hole: fall through to buffered I/O
2484 * for completing the rest of the request.
2485 */
2486 pos += written;
2487 count -= written;
fb5527e6
JM
2488 written_buffered = generic_file_buffered_write(iocb, iov,
2489 nr_segs, pos, ppos, count,
2490 written);
2491 /*
2492 * If generic_file_buffered_write() retuned a synchronous error
2493 * then we want to return the number of bytes which were
2494 * direct-written, or the error code if that was zero. Note
2495 * that this differs from normal direct-io semantics, which
2496 * will return -EFOO even if some bytes were written.
2497 */
2498 if (written_buffered < 0) {
2499 err = written_buffered;
2500 goto out;
2501 }
1da177e4 2502
fb5527e6
JM
2503 /*
2504 * We need to ensure that the page cache pages are written to
2505 * disk and invalidated to preserve the expected O_DIRECT
2506 * semantics.
2507 */
2508 endbyte = pos + written_buffered - written - 1;
c05c4edd 2509 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2510 if (err == 0) {
2511 written = written_buffered;
2512 invalidate_mapping_pages(mapping,
2513 pos >> PAGE_CACHE_SHIFT,
2514 endbyte >> PAGE_CACHE_SHIFT);
2515 } else {
2516 /*
2517 * We don't know how much we wrote, so just return
2518 * the number of bytes which were direct-written
2519 */
2520 }
2521 } else {
2522 written = generic_file_buffered_write(iocb, iov, nr_segs,
2523 pos, ppos, count, written);
2524 }
1da177e4
LT
2525out:
2526 current->backing_dev_info = NULL;
2527 return written ? written : err;
2528}
e4dd9de3
JK
2529EXPORT_SYMBOL(__generic_file_aio_write);
2530
e4dd9de3
JK
2531/**
2532 * generic_file_aio_write - write data to a file
2533 * @iocb: IO state structure
2534 * @iov: vector with data to write
2535 * @nr_segs: number of segments in the vector
2536 * @pos: position in file where to write
2537 *
2538 * This is a wrapper around __generic_file_aio_write() to be used by most
2539 * filesystems. It takes care of syncing the file in case of O_SYNC file
2540 * and acquires i_mutex as needed.
2541 */
027445c3
BP
2542ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2543 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2544{
2545 struct file *file = iocb->ki_filp;
148f948b 2546 struct inode *inode = file->f_mapping->host;
1da177e4 2547 ssize_t ret;
1da177e4
LT
2548
2549 BUG_ON(iocb->ki_pos != pos);
2550
1b1dcc1b 2551 mutex_lock(&inode->i_mutex);
e4dd9de3 2552 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2553 mutex_unlock(&inode->i_mutex);
1da177e4 2554
02afc27f 2555 if (ret > 0) {
1da177e4
LT
2556 ssize_t err;
2557
148f948b 2558 err = generic_write_sync(file, pos, ret);
c7b50db2 2559 if (err < 0 && ret > 0)
1da177e4
LT
2560 ret = err;
2561 }
2562 return ret;
2563}
2564EXPORT_SYMBOL(generic_file_aio_write);
2565
cf9a2ae8
DH
2566/**
2567 * try_to_release_page() - release old fs-specific metadata on a page
2568 *
2569 * @page: the page which the kernel is trying to free
2570 * @gfp_mask: memory allocation flags (and I/O mode)
2571 *
2572 * The address_space is to try to release any data against the page
2573 * (presumably at page->private). If the release was successful, return `1'.
2574 * Otherwise return zero.
2575 *
266cf658
DH
2576 * This may also be called if PG_fscache is set on a page, indicating that the
2577 * page is known to the local caching routines.
2578 *
cf9a2ae8 2579 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2580 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2581 *
cf9a2ae8
DH
2582 */
2583int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584{
2585 struct address_space * const mapping = page->mapping;
2586
2587 BUG_ON(!PageLocked(page));
2588 if (PageWriteback(page))
2589 return 0;
2590
2591 if (mapping && mapping->a_ops->releasepage)
2592 return mapping->a_ops->releasepage(page, gfp_mask);
2593 return try_to_free_buffers(page);
2594}
2595
2596EXPORT_SYMBOL(try_to_release_page);