blk: remove bio_set arg from blk_queue_split()
[linux-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4
MH
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
11fb9989 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 244 if (PageSwapBacked(page)) {
11fb9989 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 246 if (PageTransHuge(page))
11fb9989 247 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
3a692790
LT
251
252 /*
b9ea2515
KK
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
3a692790 255 *
b9ea2515
KK
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
3a692790 259 */
b9ea2515 260 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
262}
263
702cfbf9
MK
264/**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272void delete_from_page_cache(struct page *page)
1da177e4 273{
83929372 274 struct address_space *mapping = page_mapping(page);
c4843a75 275 unsigned long flags;
6072d13c 276 void (*freepage)(struct page *);
1da177e4 277
cd7619d6 278 BUG_ON(!PageLocked(page));
1da177e4 279
6072d13c 280 freepage = mapping->a_ops->freepage;
c4843a75 281
c4843a75 282 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 283 __delete_from_page_cache(page, NULL);
c4843a75 284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
285
286 if (freepage)
287 freepage(page);
83929372
KS
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
97cecb5a
MK
295}
296EXPORT_SYMBOL(delete_from_page_cache);
297
d72d9e2a 298int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
299{
300 int ret = 0;
301 /* Check for outstanding write errors */
7fcbbaf1
JA
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 304 ret = -ENOSPC;
7fcbbaf1
JA
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
307 ret = -EIO;
308 return ret;
309}
d72d9e2a 310EXPORT_SYMBOL(filemap_check_errors);
865ffef3 311
1da177e4 312/**
485bb99b 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
314 * @mapping: address space structure to write
315 * @start: offset in bytes where the range starts
469eb4d0 316 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 317 * @sync_mode: enable synchronous operation
1da177e4 318 *
485bb99b
RD
319 * Start writeback against all of a mapping's dirty pages that lie
320 * within the byte offsets <start, end> inclusive.
321 *
1da177e4 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 323 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
324 * these two operations is that if a dirty page/buffer is encountered, it must
325 * be waited upon, and not just skipped over.
326 */
ebcf28e1
AM
327int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328 loff_t end, int sync_mode)
1da177e4
LT
329{
330 int ret;
331 struct writeback_control wbc = {
332 .sync_mode = sync_mode,
05fe478d 333 .nr_to_write = LONG_MAX,
111ebb6e
OH
334 .range_start = start,
335 .range_end = end,
1da177e4
LT
336 };
337
338 if (!mapping_cap_writeback_dirty(mapping))
339 return 0;
340
b16b1deb 341 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 342 ret = do_writepages(mapping, &wbc);
b16b1deb 343 wbc_detach_inode(&wbc);
1da177e4
LT
344 return ret;
345}
346
347static inline int __filemap_fdatawrite(struct address_space *mapping,
348 int sync_mode)
349{
111ebb6e 350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
351}
352
353int filemap_fdatawrite(struct address_space *mapping)
354{
355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356}
357EXPORT_SYMBOL(filemap_fdatawrite);
358
f4c0a0fd 359int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 360 loff_t end)
1da177e4
LT
361{
362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363}
f4c0a0fd 364EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 365
485bb99b
RD
366/**
367 * filemap_flush - mostly a non-blocking flush
368 * @mapping: target address_space
369 *
1da177e4
LT
370 * This is a mostly non-blocking flush. Not suitable for data-integrity
371 * purposes - I/O may not be started against all dirty pages.
372 */
373int filemap_flush(struct address_space *mapping)
374{
375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376}
377EXPORT_SYMBOL(filemap_flush);
378
aa750fd7
JN
379static int __filemap_fdatawait_range(struct address_space *mapping,
380 loff_t start_byte, loff_t end_byte)
1da177e4 381{
09cbfeaf
KS
382 pgoff_t index = start_byte >> PAGE_SHIFT;
383 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
384 struct pagevec pvec;
385 int nr_pages;
aa750fd7 386 int ret = 0;
1da177e4 387
94004ed7 388 if (end_byte < start_byte)
865ffef3 389 goto out;
1da177e4
LT
390
391 pagevec_init(&pvec, 0);
1da177e4
LT
392 while ((index <= end) &&
393 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
394 PAGECACHE_TAG_WRITEBACK,
395 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
396 unsigned i;
397
398 for (i = 0; i < nr_pages; i++) {
399 struct page *page = pvec.pages[i];
400
401 /* until radix tree lookup accepts end_index */
402 if (page->index > end)
403 continue;
404
405 wait_on_page_writeback(page);
212260aa 406 if (TestClearPageError(page))
1da177e4
LT
407 ret = -EIO;
408 }
409 pagevec_release(&pvec);
410 cond_resched();
411 }
865ffef3 412out:
aa750fd7
JN
413 return ret;
414}
415
416/**
417 * filemap_fdatawait_range - wait for writeback to complete
418 * @mapping: address space structure to wait for
419 * @start_byte: offset in bytes where the range starts
420 * @end_byte: offset in bytes where the range ends (inclusive)
421 *
422 * Walk the list of under-writeback pages of the given address space
423 * in the given range and wait for all of them. Check error status of
424 * the address space and return it.
425 *
426 * Since the error status of the address space is cleared by this function,
427 * callers are responsible for checking the return value and handling and/or
428 * reporting the error.
429 */
430int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
431 loff_t end_byte)
432{
433 int ret, ret2;
434
435 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
436 ret2 = filemap_check_errors(mapping);
437 if (!ret)
438 ret = ret2;
1da177e4
LT
439
440 return ret;
441}
d3bccb6f
JK
442EXPORT_SYMBOL(filemap_fdatawait_range);
443
aa750fd7
JN
444/**
445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446 * @mapping: address space structure to wait for
447 *
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Unlike filemap_fdatawait(), this function
450 * does not clear error status of the address space.
451 *
452 * Use this function if callers don't handle errors themselves. Expected
453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454 * fsfreeze(8)
455 */
456void filemap_fdatawait_keep_errors(struct address_space *mapping)
457{
458 loff_t i_size = i_size_read(mapping->host);
459
460 if (i_size == 0)
461 return;
462
463 __filemap_fdatawait_range(mapping, 0, i_size - 1);
464}
465
1da177e4 466/**
485bb99b 467 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 468 * @mapping: address space structure to wait for
485bb99b
RD
469 *
470 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
471 * and wait for all of them. Check error status of the address space
472 * and return it.
473 *
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
1da177e4
LT
477 */
478int filemap_fdatawait(struct address_space *mapping)
479{
480 loff_t i_size = i_size_read(mapping->host);
481
482 if (i_size == 0)
483 return 0;
484
94004ed7 485 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
486}
487EXPORT_SYMBOL(filemap_fdatawait);
488
489int filemap_write_and_wait(struct address_space *mapping)
490{
28fd1298 491 int err = 0;
1da177e4 492
7f6d5b52
RZ
493 if ((!dax_mapping(mapping) && mapping->nrpages) ||
494 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
495 err = filemap_fdatawrite(mapping);
496 /*
497 * Even if the above returned error, the pages may be
498 * written partially (e.g. -ENOSPC), so we wait for it.
499 * But the -EIO is special case, it may indicate the worst
500 * thing (e.g. bug) happened, so we avoid waiting for it.
501 */
502 if (err != -EIO) {
503 int err2 = filemap_fdatawait(mapping);
504 if (!err)
505 err = err2;
506 }
865ffef3
DM
507 } else {
508 err = filemap_check_errors(mapping);
1da177e4 509 }
28fd1298 510 return err;
1da177e4 511}
28fd1298 512EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 513
485bb99b
RD
514/**
515 * filemap_write_and_wait_range - write out & wait on a file range
516 * @mapping: the address_space for the pages
517 * @lstart: offset in bytes where the range starts
518 * @lend: offset in bytes where the range ends (inclusive)
519 *
469eb4d0
AM
520 * Write out and wait upon file offsets lstart->lend, inclusive.
521 *
0e056eb5 522 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
523 * that this function can be used to write to the very end-of-file (end = -1).
524 */
1da177e4
LT
525int filemap_write_and_wait_range(struct address_space *mapping,
526 loff_t lstart, loff_t lend)
527{
28fd1298 528 int err = 0;
1da177e4 529
7f6d5b52
RZ
530 if ((!dax_mapping(mapping) && mapping->nrpages) ||
531 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
532 err = __filemap_fdatawrite_range(mapping, lstart, lend,
533 WB_SYNC_ALL);
534 /* See comment of filemap_write_and_wait() */
535 if (err != -EIO) {
94004ed7
CH
536 int err2 = filemap_fdatawait_range(mapping,
537 lstart, lend);
28fd1298
OH
538 if (!err)
539 err = err2;
540 }
865ffef3
DM
541 } else {
542 err = filemap_check_errors(mapping);
1da177e4 543 }
28fd1298 544 return err;
1da177e4 545}
f6995585 546EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 547
ef6a3c63
MS
548/**
549 * replace_page_cache_page - replace a pagecache page with a new one
550 * @old: page to be replaced
551 * @new: page to replace with
552 * @gfp_mask: allocation mode
553 *
554 * This function replaces a page in the pagecache with a new one. On
555 * success it acquires the pagecache reference for the new page and
556 * drops it for the old page. Both the old and new pages must be
557 * locked. This function does not add the new page to the LRU, the
558 * caller must do that.
559 *
560 * The remove + add is atomic. The only way this function can fail is
561 * memory allocation failure.
562 */
563int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
564{
565 int error;
ef6a3c63 566
309381fe
SL
567 VM_BUG_ON_PAGE(!PageLocked(old), old);
568 VM_BUG_ON_PAGE(!PageLocked(new), new);
569 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 570
ef6a3c63
MS
571 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
572 if (!error) {
573 struct address_space *mapping = old->mapping;
574 void (*freepage)(struct page *);
c4843a75 575 unsigned long flags;
ef6a3c63
MS
576
577 pgoff_t offset = old->index;
578 freepage = mapping->a_ops->freepage;
579
09cbfeaf 580 get_page(new);
ef6a3c63
MS
581 new->mapping = mapping;
582 new->index = offset;
583
c4843a75 584 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 585 __delete_from_page_cache(old, NULL);
22f2ac51 586 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 587 BUG_ON(error);
4165b9b4
MH
588
589 /*
590 * hugetlb pages do not participate in page cache accounting.
591 */
592 if (!PageHuge(new))
11fb9989 593 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 594 if (PageSwapBacked(new))
11fb9989 595 __inc_node_page_state(new, NR_SHMEM);
c4843a75 596 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 597 mem_cgroup_migrate(old, new);
ef6a3c63
MS
598 radix_tree_preload_end();
599 if (freepage)
600 freepage(old);
09cbfeaf 601 put_page(old);
ef6a3c63
MS
602 }
603
604 return error;
605}
606EXPORT_SYMBOL_GPL(replace_page_cache_page);
607
a528910e
JW
608static int __add_to_page_cache_locked(struct page *page,
609 struct address_space *mapping,
610 pgoff_t offset, gfp_t gfp_mask,
611 void **shadowp)
1da177e4 612{
00501b53
JW
613 int huge = PageHuge(page);
614 struct mem_cgroup *memcg;
e286781d
NP
615 int error;
616
309381fe
SL
617 VM_BUG_ON_PAGE(!PageLocked(page), page);
618 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 619
00501b53
JW
620 if (!huge) {
621 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 622 gfp_mask, &memcg, false);
00501b53
JW
623 if (error)
624 return error;
625 }
1da177e4 626
5e4c0d97 627 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 628 if (error) {
00501b53 629 if (!huge)
f627c2f5 630 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
631 return error;
632 }
633
09cbfeaf 634 get_page(page);
66a0c8ee
KS
635 page->mapping = mapping;
636 page->index = offset;
637
638 spin_lock_irq(&mapping->tree_lock);
a528910e 639 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
640 radix_tree_preload_end();
641 if (unlikely(error))
642 goto err_insert;
4165b9b4
MH
643
644 /* hugetlb pages do not participate in page cache accounting. */
645 if (!huge)
11fb9989 646 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 647 spin_unlock_irq(&mapping->tree_lock);
00501b53 648 if (!huge)
f627c2f5 649 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
650 trace_mm_filemap_add_to_page_cache(page);
651 return 0;
652err_insert:
653 page->mapping = NULL;
654 /* Leave page->index set: truncation relies upon it */
655 spin_unlock_irq(&mapping->tree_lock);
00501b53 656 if (!huge)
f627c2f5 657 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 658 put_page(page);
1da177e4
LT
659 return error;
660}
a528910e
JW
661
662/**
663 * add_to_page_cache_locked - add a locked page to the pagecache
664 * @page: page to add
665 * @mapping: the page's address_space
666 * @offset: page index
667 * @gfp_mask: page allocation mode
668 *
669 * This function is used to add a page to the pagecache. It must be locked.
670 * This function does not add the page to the LRU. The caller must do that.
671 */
672int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
673 pgoff_t offset, gfp_t gfp_mask)
674{
675 return __add_to_page_cache_locked(page, mapping, offset,
676 gfp_mask, NULL);
677}
e286781d 678EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
679
680int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 681 pgoff_t offset, gfp_t gfp_mask)
1da177e4 682{
a528910e 683 void *shadow = NULL;
4f98a2fe
RR
684 int ret;
685
48c935ad 686 __SetPageLocked(page);
a528910e
JW
687 ret = __add_to_page_cache_locked(page, mapping, offset,
688 gfp_mask, &shadow);
689 if (unlikely(ret))
48c935ad 690 __ClearPageLocked(page);
a528910e
JW
691 else {
692 /*
693 * The page might have been evicted from cache only
694 * recently, in which case it should be activated like
695 * any other repeatedly accessed page.
f0281a00
RR
696 * The exception is pages getting rewritten; evicting other
697 * data from the working set, only to cache data that will
698 * get overwritten with something else, is a waste of memory.
a528910e 699 */
f0281a00
RR
700 if (!(gfp_mask & __GFP_WRITE) &&
701 shadow && workingset_refault(shadow)) {
a528910e
JW
702 SetPageActive(page);
703 workingset_activation(page);
704 } else
705 ClearPageActive(page);
706 lru_cache_add(page);
707 }
1da177e4
LT
708 return ret;
709}
18bc0bbd 710EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 711
44110fe3 712#ifdef CONFIG_NUMA
2ae88149 713struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 714{
c0ff7453
MX
715 int n;
716 struct page *page;
717
44110fe3 718 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
719 unsigned int cpuset_mems_cookie;
720 do {
d26914d1 721 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 722 n = cpuset_mem_spread_node();
96db800f 723 page = __alloc_pages_node(n, gfp, 0);
d26914d1 724 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 725
c0ff7453 726 return page;
44110fe3 727 }
2ae88149 728 return alloc_pages(gfp, 0);
44110fe3 729}
2ae88149 730EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
731#endif
732
1da177e4
LT
733/*
734 * In order to wait for pages to become available there must be
735 * waitqueues associated with pages. By using a hash table of
736 * waitqueues where the bucket discipline is to maintain all
737 * waiters on the same queue and wake all when any of the pages
738 * become available, and for the woken contexts to check to be
739 * sure the appropriate page became available, this saves space
740 * at a cost of "thundering herd" phenomena during rare hash
741 * collisions.
742 */
62906027
NP
743#define PAGE_WAIT_TABLE_BITS 8
744#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
745static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
746
747static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 748{
62906027 749 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 750}
1da177e4 751
62906027 752void __init pagecache_init(void)
1da177e4 753{
62906027 754 int i;
1da177e4 755
62906027
NP
756 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
757 init_waitqueue_head(&page_wait_table[i]);
758
759 page_writeback_init();
1da177e4 760}
1da177e4 761
62906027
NP
762struct wait_page_key {
763 struct page *page;
764 int bit_nr;
765 int page_match;
766};
767
768struct wait_page_queue {
769 struct page *page;
770 int bit_nr;
771 wait_queue_t wait;
772};
773
774static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 775{
62906027
NP
776 struct wait_page_key *key = arg;
777 struct wait_page_queue *wait_page
778 = container_of(wait, struct wait_page_queue, wait);
779
780 if (wait_page->page != key->page)
781 return 0;
782 key->page_match = 1;
f62e00cc 783
62906027
NP
784 if (wait_page->bit_nr != key->bit_nr)
785 return 0;
786 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
787 return 0;
788
62906027 789 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
790}
791
74d81bfa 792static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 793{
62906027
NP
794 wait_queue_head_t *q = page_waitqueue(page);
795 struct wait_page_key key;
796 unsigned long flags;
cbbce822 797
62906027
NP
798 key.page = page;
799 key.bit_nr = bit_nr;
800 key.page_match = 0;
801
802 spin_lock_irqsave(&q->lock, flags);
803 __wake_up_locked_key(q, TASK_NORMAL, &key);
804 /*
805 * It is possible for other pages to have collided on the waitqueue
806 * hash, so in that case check for a page match. That prevents a long-
807 * term waiter
808 *
809 * It is still possible to miss a case here, when we woke page waiters
810 * and removed them from the waitqueue, but there are still other
811 * page waiters.
812 */
813 if (!waitqueue_active(q) || !key.page_match) {
814 ClearPageWaiters(page);
815 /*
816 * It's possible to miss clearing Waiters here, when we woke
817 * our page waiters, but the hashed waitqueue has waiters for
818 * other pages on it.
819 *
820 * That's okay, it's a rare case. The next waker will clear it.
821 */
822 }
823 spin_unlock_irqrestore(&q->lock, flags);
824}
74d81bfa
NP
825
826static void wake_up_page(struct page *page, int bit)
827{
828 if (!PageWaiters(page))
829 return;
830 wake_up_page_bit(page, bit);
831}
62906027
NP
832
833static inline int wait_on_page_bit_common(wait_queue_head_t *q,
834 struct page *page, int bit_nr, int state, bool lock)
835{
836 struct wait_page_queue wait_page;
837 wait_queue_t *wait = &wait_page.wait;
838 int ret = 0;
839
840 init_wait(wait);
841 wait->func = wake_page_function;
842 wait_page.page = page;
843 wait_page.bit_nr = bit_nr;
844
845 for (;;) {
846 spin_lock_irq(&q->lock);
847
848 if (likely(list_empty(&wait->task_list))) {
849 if (lock)
850 __add_wait_queue_tail_exclusive(q, wait);
851 else
852 __add_wait_queue(q, wait);
853 SetPageWaiters(page);
854 }
855
856 set_current_state(state);
857
858 spin_unlock_irq(&q->lock);
859
860 if (likely(test_bit(bit_nr, &page->flags))) {
861 io_schedule();
862 if (unlikely(signal_pending_state(state, current))) {
863 ret = -EINTR;
864 break;
865 }
866 }
867
868 if (lock) {
869 if (!test_and_set_bit_lock(bit_nr, &page->flags))
870 break;
871 } else {
872 if (!test_bit(bit_nr, &page->flags))
873 break;
874 }
875 }
876
877 finish_wait(q, wait);
878
879 /*
880 * A signal could leave PageWaiters set. Clearing it here if
881 * !waitqueue_active would be possible (by open-coding finish_wait),
882 * but still fail to catch it in the case of wait hash collision. We
883 * already can fail to clear wait hash collision cases, so don't
884 * bother with signals either.
885 */
886
887 return ret;
888}
889
890void wait_on_page_bit(struct page *page, int bit_nr)
891{
892 wait_queue_head_t *q = page_waitqueue(page);
893 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
894}
895EXPORT_SYMBOL(wait_on_page_bit);
896
897int wait_on_page_bit_killable(struct page *page, int bit_nr)
898{
899 wait_queue_head_t *q = page_waitqueue(page);
900 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 901}
cbbce822 902
385e1ca5
DH
903/**
904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
905 * @page: Page defining the wait queue of interest
906 * @waiter: Waiter to add to the queue
385e1ca5
DH
907 *
908 * Add an arbitrary @waiter to the wait queue for the nominated @page.
909 */
910void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
911{
912 wait_queue_head_t *q = page_waitqueue(page);
913 unsigned long flags;
914
915 spin_lock_irqsave(&q->lock, flags);
916 __add_wait_queue(q, waiter);
62906027 917 SetPageWaiters(page);
385e1ca5
DH
918 spin_unlock_irqrestore(&q->lock, flags);
919}
920EXPORT_SYMBOL_GPL(add_page_wait_queue);
921
b91e1302
LT
922#ifndef clear_bit_unlock_is_negative_byte
923
924/*
925 * PG_waiters is the high bit in the same byte as PG_lock.
926 *
927 * On x86 (and on many other architectures), we can clear PG_lock and
928 * test the sign bit at the same time. But if the architecture does
929 * not support that special operation, we just do this all by hand
930 * instead.
931 *
932 * The read of PG_waiters has to be after (or concurrently with) PG_locked
933 * being cleared, but a memory barrier should be unneccssary since it is
934 * in the same byte as PG_locked.
935 */
936static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
937{
938 clear_bit_unlock(nr, mem);
939 /* smp_mb__after_atomic(); */
98473f9f 940 return test_bit(PG_waiters, mem);
b91e1302
LT
941}
942
943#endif
944
1da177e4 945/**
485bb99b 946 * unlock_page - unlock a locked page
1da177e4
LT
947 * @page: the page
948 *
949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 951 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
953 *
b91e1302
LT
954 * Note that this depends on PG_waiters being the sign bit in the byte
955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
956 * clear the PG_locked bit and test PG_waiters at the same time fairly
957 * portably (architectures that do LL/SC can test any bit, while x86 can
958 * test the sign bit).
1da177e4 959 */
920c7a5d 960void unlock_page(struct page *page)
1da177e4 961{
b91e1302 962 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 963 page = compound_head(page);
309381fe 964 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
965 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
966 wake_up_page_bit(page, PG_locked);
1da177e4
LT
967}
968EXPORT_SYMBOL(unlock_page);
969
485bb99b
RD
970/**
971 * end_page_writeback - end writeback against a page
972 * @page: the page
1da177e4
LT
973 */
974void end_page_writeback(struct page *page)
975{
888cf2db
MG
976 /*
977 * TestClearPageReclaim could be used here but it is an atomic
978 * operation and overkill in this particular case. Failing to
979 * shuffle a page marked for immediate reclaim is too mild to
980 * justify taking an atomic operation penalty at the end of
981 * ever page writeback.
982 */
983 if (PageReclaim(page)) {
984 ClearPageReclaim(page);
ac6aadb2 985 rotate_reclaimable_page(page);
888cf2db 986 }
ac6aadb2
MS
987
988 if (!test_clear_page_writeback(page))
989 BUG();
990
4e857c58 991 smp_mb__after_atomic();
1da177e4
LT
992 wake_up_page(page, PG_writeback);
993}
994EXPORT_SYMBOL(end_page_writeback);
995
57d99845
MW
996/*
997 * After completing I/O on a page, call this routine to update the page
998 * flags appropriately
999 */
c11f0c0b 1000void page_endio(struct page *page, bool is_write, int err)
57d99845 1001{
c11f0c0b 1002 if (!is_write) {
57d99845
MW
1003 if (!err) {
1004 SetPageUptodate(page);
1005 } else {
1006 ClearPageUptodate(page);
1007 SetPageError(page);
1008 }
1009 unlock_page(page);
abf54548 1010 } else {
57d99845 1011 if (err) {
dd8416c4
MK
1012 struct address_space *mapping;
1013
57d99845 1014 SetPageError(page);
dd8416c4
MK
1015 mapping = page_mapping(page);
1016 if (mapping)
1017 mapping_set_error(mapping, err);
57d99845
MW
1018 }
1019 end_page_writeback(page);
1020 }
1021}
1022EXPORT_SYMBOL_GPL(page_endio);
1023
485bb99b
RD
1024/**
1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1026 * @__page: the page to lock
1da177e4 1027 */
62906027 1028void __lock_page(struct page *__page)
1da177e4 1029{
62906027
NP
1030 struct page *page = compound_head(__page);
1031 wait_queue_head_t *q = page_waitqueue(page);
1032 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1033}
1034EXPORT_SYMBOL(__lock_page);
1035
62906027 1036int __lock_page_killable(struct page *__page)
2687a356 1037{
62906027
NP
1038 struct page *page = compound_head(__page);
1039 wait_queue_head_t *q = page_waitqueue(page);
1040 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1041}
18bc0bbd 1042EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1043
9a95f3cf
PC
1044/*
1045 * Return values:
1046 * 1 - page is locked; mmap_sem is still held.
1047 * 0 - page is not locked.
1048 * mmap_sem has been released (up_read()), unless flags had both
1049 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050 * which case mmap_sem is still held.
1051 *
1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053 * with the page locked and the mmap_sem unperturbed.
1054 */
d065bd81
ML
1055int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1056 unsigned int flags)
1057{
37b23e05
KM
1058 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1059 /*
1060 * CAUTION! In this case, mmap_sem is not released
1061 * even though return 0.
1062 */
1063 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1064 return 0;
1065
1066 up_read(&mm->mmap_sem);
1067 if (flags & FAULT_FLAG_KILLABLE)
1068 wait_on_page_locked_killable(page);
1069 else
318b275f 1070 wait_on_page_locked(page);
d065bd81 1071 return 0;
37b23e05
KM
1072 } else {
1073 if (flags & FAULT_FLAG_KILLABLE) {
1074 int ret;
1075
1076 ret = __lock_page_killable(page);
1077 if (ret) {
1078 up_read(&mm->mmap_sem);
1079 return 0;
1080 }
1081 } else
1082 __lock_page(page);
1083 return 1;
d065bd81
ML
1084 }
1085}
1086
e7b563bb
JW
1087/**
1088 * page_cache_next_hole - find the next hole (not-present entry)
1089 * @mapping: mapping
1090 * @index: index
1091 * @max_scan: maximum range to search
1092 *
1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094 * lowest indexed hole.
1095 *
1096 * Returns: the index of the hole if found, otherwise returns an index
1097 * outside of the set specified (in which case 'return - index >=
1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1099 * be returned.
1100 *
1101 * page_cache_next_hole may be called under rcu_read_lock. However,
1102 * like radix_tree_gang_lookup, this will not atomically search a
1103 * snapshot of the tree at a single point in time. For example, if a
1104 * hole is created at index 5, then subsequently a hole is created at
1105 * index 10, page_cache_next_hole covering both indexes may return 10
1106 * if called under rcu_read_lock.
1107 */
1108pgoff_t page_cache_next_hole(struct address_space *mapping,
1109 pgoff_t index, unsigned long max_scan)
1110{
1111 unsigned long i;
1112
1113 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1114 struct page *page;
1115
1116 page = radix_tree_lookup(&mapping->page_tree, index);
1117 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1118 break;
1119 index++;
1120 if (index == 0)
1121 break;
1122 }
1123
1124 return index;
1125}
1126EXPORT_SYMBOL(page_cache_next_hole);
1127
1128/**
1129 * page_cache_prev_hole - find the prev hole (not-present entry)
1130 * @mapping: mapping
1131 * @index: index
1132 * @max_scan: maximum range to search
1133 *
1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1135 * the first hole.
1136 *
1137 * Returns: the index of the hole if found, otherwise returns an index
1138 * outside of the set specified (in which case 'index - return >=
1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1140 * will be returned.
1141 *
1142 * page_cache_prev_hole may be called under rcu_read_lock. However,
1143 * like radix_tree_gang_lookup, this will not atomically search a
1144 * snapshot of the tree at a single point in time. For example, if a
1145 * hole is created at index 10, then subsequently a hole is created at
1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147 * called under rcu_read_lock.
1148 */
1149pgoff_t page_cache_prev_hole(struct address_space *mapping,
1150 pgoff_t index, unsigned long max_scan)
1151{
1152 unsigned long i;
1153
1154 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1155 struct page *page;
1156
1157 page = radix_tree_lookup(&mapping->page_tree, index);
1158 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1159 break;
1160 index--;
1161 if (index == ULONG_MAX)
1162 break;
1163 }
1164
1165 return index;
1166}
1167EXPORT_SYMBOL(page_cache_prev_hole);
1168
485bb99b 1169/**
0cd6144a 1170 * find_get_entry - find and get a page cache entry
485bb99b 1171 * @mapping: the address_space to search
0cd6144a
JW
1172 * @offset: the page cache index
1173 *
1174 * Looks up the page cache slot at @mapping & @offset. If there is a
1175 * page cache page, it is returned with an increased refcount.
485bb99b 1176 *
139b6a6f
JW
1177 * If the slot holds a shadow entry of a previously evicted page, or a
1178 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1179 *
1180 * Otherwise, %NULL is returned.
1da177e4 1181 */
0cd6144a 1182struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1183{
a60637c8 1184 void **pagep;
83929372 1185 struct page *head, *page;
1da177e4 1186
a60637c8
NP
1187 rcu_read_lock();
1188repeat:
1189 page = NULL;
1190 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1191 if (pagep) {
1192 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1193 if (unlikely(!page))
1194 goto out;
a2c16d6c 1195 if (radix_tree_exception(page)) {
8079b1c8
HD
1196 if (radix_tree_deref_retry(page))
1197 goto repeat;
1198 /*
139b6a6f
JW
1199 * A shadow entry of a recently evicted page,
1200 * or a swap entry from shmem/tmpfs. Return
1201 * it without attempting to raise page count.
8079b1c8
HD
1202 */
1203 goto out;
a2c16d6c 1204 }
83929372
KS
1205
1206 head = compound_head(page);
1207 if (!page_cache_get_speculative(head))
1208 goto repeat;
1209
1210 /* The page was split under us? */
1211 if (compound_head(page) != head) {
1212 put_page(head);
a60637c8 1213 goto repeat;
83929372 1214 }
a60637c8
NP
1215
1216 /*
1217 * Has the page moved?
1218 * This is part of the lockless pagecache protocol. See
1219 * include/linux/pagemap.h for details.
1220 */
1221 if (unlikely(page != *pagep)) {
83929372 1222 put_page(head);
a60637c8
NP
1223 goto repeat;
1224 }
1225 }
27d20fdd 1226out:
a60637c8
NP
1227 rcu_read_unlock();
1228
1da177e4
LT
1229 return page;
1230}
0cd6144a 1231EXPORT_SYMBOL(find_get_entry);
1da177e4 1232
0cd6144a
JW
1233/**
1234 * find_lock_entry - locate, pin and lock a page cache entry
1235 * @mapping: the address_space to search
1236 * @offset: the page cache index
1237 *
1238 * Looks up the page cache slot at @mapping & @offset. If there is a
1239 * page cache page, it is returned locked and with an increased
1240 * refcount.
1241 *
139b6a6f
JW
1242 * If the slot holds a shadow entry of a previously evicted page, or a
1243 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1244 *
1245 * Otherwise, %NULL is returned.
1246 *
1247 * find_lock_entry() may sleep.
1248 */
1249struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1250{
1251 struct page *page;
1252
1da177e4 1253repeat:
0cd6144a 1254 page = find_get_entry(mapping, offset);
a2c16d6c 1255 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1256 lock_page(page);
1257 /* Has the page been truncated? */
83929372 1258 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1259 unlock_page(page);
09cbfeaf 1260 put_page(page);
a60637c8 1261 goto repeat;
1da177e4 1262 }
83929372 1263 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1264 }
1da177e4
LT
1265 return page;
1266}
0cd6144a
JW
1267EXPORT_SYMBOL(find_lock_entry);
1268
1269/**
2457aec6 1270 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1271 * @mapping: the address_space to search
1272 * @offset: the page index
2457aec6 1273 * @fgp_flags: PCG flags
45f87de5 1274 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1275 *
2457aec6 1276 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1277 *
75325189 1278 * PCG flags modify how the page is returned.
0cd6144a 1279 *
0e056eb5 1280 * @fgp_flags can be:
1281 *
1282 * - FGP_ACCESSED: the page will be marked accessed
1283 * - FGP_LOCK: Page is return locked
1284 * - FGP_CREAT: If page is not present then a new page is allocated using
1285 * @gfp_mask and added to the page cache and the VM's LRU
1286 * list. The page is returned locked and with an increased
1287 * refcount. Otherwise, NULL is returned.
1da177e4 1288 *
2457aec6
MG
1289 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1290 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1291 *
2457aec6 1292 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1293 */
2457aec6 1294struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1295 int fgp_flags, gfp_t gfp_mask)
1da177e4 1296{
eb2be189 1297 struct page *page;
2457aec6 1298
1da177e4 1299repeat:
2457aec6
MG
1300 page = find_get_entry(mapping, offset);
1301 if (radix_tree_exceptional_entry(page))
1302 page = NULL;
1303 if (!page)
1304 goto no_page;
1305
1306 if (fgp_flags & FGP_LOCK) {
1307 if (fgp_flags & FGP_NOWAIT) {
1308 if (!trylock_page(page)) {
09cbfeaf 1309 put_page(page);
2457aec6
MG
1310 return NULL;
1311 }
1312 } else {
1313 lock_page(page);
1314 }
1315
1316 /* Has the page been truncated? */
1317 if (unlikely(page->mapping != mapping)) {
1318 unlock_page(page);
09cbfeaf 1319 put_page(page);
2457aec6
MG
1320 goto repeat;
1321 }
1322 VM_BUG_ON_PAGE(page->index != offset, page);
1323 }
1324
1325 if (page && (fgp_flags & FGP_ACCESSED))
1326 mark_page_accessed(page);
1327
1328no_page:
1329 if (!page && (fgp_flags & FGP_CREAT)) {
1330 int err;
1331 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1332 gfp_mask |= __GFP_WRITE;
1333 if (fgp_flags & FGP_NOFS)
1334 gfp_mask &= ~__GFP_FS;
2457aec6 1335
45f87de5 1336 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1337 if (!page)
1338 return NULL;
2457aec6
MG
1339
1340 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1341 fgp_flags |= FGP_LOCK;
1342
eb39d618 1343 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1344 if (fgp_flags & FGP_ACCESSED)
eb39d618 1345 __SetPageReferenced(page);
2457aec6 1346
45f87de5
MH
1347 err = add_to_page_cache_lru(page, mapping, offset,
1348 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1349 if (unlikely(err)) {
09cbfeaf 1350 put_page(page);
eb2be189
NP
1351 page = NULL;
1352 if (err == -EEXIST)
1353 goto repeat;
1da177e4 1354 }
1da177e4 1355 }
2457aec6 1356
1da177e4
LT
1357 return page;
1358}
2457aec6 1359EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1360
0cd6144a
JW
1361/**
1362 * find_get_entries - gang pagecache lookup
1363 * @mapping: The address_space to search
1364 * @start: The starting page cache index
1365 * @nr_entries: The maximum number of entries
1366 * @entries: Where the resulting entries are placed
1367 * @indices: The cache indices corresponding to the entries in @entries
1368 *
1369 * find_get_entries() will search for and return a group of up to
1370 * @nr_entries entries in the mapping. The entries are placed at
1371 * @entries. find_get_entries() takes a reference against any actual
1372 * pages it returns.
1373 *
1374 * The search returns a group of mapping-contiguous page cache entries
1375 * with ascending indexes. There may be holes in the indices due to
1376 * not-present pages.
1377 *
139b6a6f
JW
1378 * Any shadow entries of evicted pages, or swap entries from
1379 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1380 *
1381 * find_get_entries() returns the number of pages and shadow entries
1382 * which were found.
1383 */
1384unsigned find_get_entries(struct address_space *mapping,
1385 pgoff_t start, unsigned int nr_entries,
1386 struct page **entries, pgoff_t *indices)
1387{
1388 void **slot;
1389 unsigned int ret = 0;
1390 struct radix_tree_iter iter;
1391
1392 if (!nr_entries)
1393 return 0;
1394
1395 rcu_read_lock();
0cd6144a 1396 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1397 struct page *head, *page;
0cd6144a
JW
1398repeat:
1399 page = radix_tree_deref_slot(slot);
1400 if (unlikely(!page))
1401 continue;
1402 if (radix_tree_exception(page)) {
2cf938aa
MW
1403 if (radix_tree_deref_retry(page)) {
1404 slot = radix_tree_iter_retry(&iter);
1405 continue;
1406 }
0cd6144a 1407 /*
f9fe48be
RZ
1408 * A shadow entry of a recently evicted page, a swap
1409 * entry from shmem/tmpfs or a DAX entry. Return it
1410 * without attempting to raise page count.
0cd6144a
JW
1411 */
1412 goto export;
1413 }
83929372
KS
1414
1415 head = compound_head(page);
1416 if (!page_cache_get_speculative(head))
1417 goto repeat;
1418
1419 /* The page was split under us? */
1420 if (compound_head(page) != head) {
1421 put_page(head);
0cd6144a 1422 goto repeat;
83929372 1423 }
0cd6144a
JW
1424
1425 /* Has the page moved? */
1426 if (unlikely(page != *slot)) {
83929372 1427 put_page(head);
0cd6144a
JW
1428 goto repeat;
1429 }
1430export:
1431 indices[ret] = iter.index;
1432 entries[ret] = page;
1433 if (++ret == nr_entries)
1434 break;
1435 }
1436 rcu_read_unlock();
1437 return ret;
1438}
1439
1da177e4
LT
1440/**
1441 * find_get_pages - gang pagecache lookup
1442 * @mapping: The address_space to search
1443 * @start: The starting page index
1444 * @nr_pages: The maximum number of pages
1445 * @pages: Where the resulting pages are placed
1446 *
1447 * find_get_pages() will search for and return a group of up to
1448 * @nr_pages pages in the mapping. The pages are placed at @pages.
1449 * find_get_pages() takes a reference against the returned pages.
1450 *
1451 * The search returns a group of mapping-contiguous pages with ascending
1452 * indexes. There may be holes in the indices due to not-present pages.
1453 *
1454 * find_get_pages() returns the number of pages which were found.
1455 */
1456unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1457 unsigned int nr_pages, struct page **pages)
1458{
0fc9d104
KK
1459 struct radix_tree_iter iter;
1460 void **slot;
1461 unsigned ret = 0;
1462
1463 if (unlikely(!nr_pages))
1464 return 0;
a60637c8
NP
1465
1466 rcu_read_lock();
0fc9d104 1467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1468 struct page *head, *page;
a60637c8 1469repeat:
0fc9d104 1470 page = radix_tree_deref_slot(slot);
a60637c8
NP
1471 if (unlikely(!page))
1472 continue;
9d8aa4ea 1473
a2c16d6c 1474 if (radix_tree_exception(page)) {
8079b1c8 1475 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1476 slot = radix_tree_iter_retry(&iter);
1477 continue;
8079b1c8 1478 }
a2c16d6c 1479 /*
139b6a6f
JW
1480 * A shadow entry of a recently evicted page,
1481 * or a swap entry from shmem/tmpfs. Skip
1482 * over it.
a2c16d6c 1483 */
8079b1c8 1484 continue;
27d20fdd 1485 }
a60637c8 1486
83929372
KS
1487 head = compound_head(page);
1488 if (!page_cache_get_speculative(head))
1489 goto repeat;
1490
1491 /* The page was split under us? */
1492 if (compound_head(page) != head) {
1493 put_page(head);
a60637c8 1494 goto repeat;
83929372 1495 }
a60637c8
NP
1496
1497 /* Has the page moved? */
0fc9d104 1498 if (unlikely(page != *slot)) {
83929372 1499 put_page(head);
a60637c8
NP
1500 goto repeat;
1501 }
1da177e4 1502
a60637c8 1503 pages[ret] = page;
0fc9d104
KK
1504 if (++ret == nr_pages)
1505 break;
a60637c8 1506 }
5b280c0c 1507
a60637c8 1508 rcu_read_unlock();
1da177e4
LT
1509 return ret;
1510}
1511
ebf43500
JA
1512/**
1513 * find_get_pages_contig - gang contiguous pagecache lookup
1514 * @mapping: The address_space to search
1515 * @index: The starting page index
1516 * @nr_pages: The maximum number of pages
1517 * @pages: Where the resulting pages are placed
1518 *
1519 * find_get_pages_contig() works exactly like find_get_pages(), except
1520 * that the returned number of pages are guaranteed to be contiguous.
1521 *
1522 * find_get_pages_contig() returns the number of pages which were found.
1523 */
1524unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1525 unsigned int nr_pages, struct page **pages)
1526{
0fc9d104
KK
1527 struct radix_tree_iter iter;
1528 void **slot;
1529 unsigned int ret = 0;
1530
1531 if (unlikely(!nr_pages))
1532 return 0;
a60637c8
NP
1533
1534 rcu_read_lock();
0fc9d104 1535 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1536 struct page *head, *page;
a60637c8 1537repeat:
0fc9d104
KK
1538 page = radix_tree_deref_slot(slot);
1539 /* The hole, there no reason to continue */
a60637c8 1540 if (unlikely(!page))
0fc9d104 1541 break;
9d8aa4ea 1542
a2c16d6c 1543 if (radix_tree_exception(page)) {
8079b1c8 1544 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1545 slot = radix_tree_iter_retry(&iter);
1546 continue;
8079b1c8 1547 }
a2c16d6c 1548 /*
139b6a6f
JW
1549 * A shadow entry of a recently evicted page,
1550 * or a swap entry from shmem/tmpfs. Stop
1551 * looking for contiguous pages.
a2c16d6c 1552 */
8079b1c8 1553 break;
a2c16d6c 1554 }
ebf43500 1555
83929372
KS
1556 head = compound_head(page);
1557 if (!page_cache_get_speculative(head))
1558 goto repeat;
1559
1560 /* The page was split under us? */
1561 if (compound_head(page) != head) {
1562 put_page(head);
a60637c8 1563 goto repeat;
83929372 1564 }
a60637c8
NP
1565
1566 /* Has the page moved? */
0fc9d104 1567 if (unlikely(page != *slot)) {
83929372 1568 put_page(head);
a60637c8
NP
1569 goto repeat;
1570 }
1571
9cbb4cb2
NP
1572 /*
1573 * must check mapping and index after taking the ref.
1574 * otherwise we can get both false positives and false
1575 * negatives, which is just confusing to the caller.
1576 */
83929372 1577 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1578 put_page(page);
9cbb4cb2
NP
1579 break;
1580 }
1581
a60637c8 1582 pages[ret] = page;
0fc9d104
KK
1583 if (++ret == nr_pages)
1584 break;
ebf43500 1585 }
a60637c8
NP
1586 rcu_read_unlock();
1587 return ret;
ebf43500 1588}
ef71c15c 1589EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1590
485bb99b
RD
1591/**
1592 * find_get_pages_tag - find and return pages that match @tag
1593 * @mapping: the address_space to search
1594 * @index: the starting page index
1595 * @tag: the tag index
1596 * @nr_pages: the maximum number of pages
1597 * @pages: where the resulting pages are placed
1598 *
1da177e4 1599 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1600 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1601 */
1602unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1603 int tag, unsigned int nr_pages, struct page **pages)
1604{
0fc9d104
KK
1605 struct radix_tree_iter iter;
1606 void **slot;
1607 unsigned ret = 0;
1608
1609 if (unlikely(!nr_pages))
1610 return 0;
a60637c8
NP
1611
1612 rcu_read_lock();
0fc9d104
KK
1613 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1614 &iter, *index, tag) {
83929372 1615 struct page *head, *page;
a60637c8 1616repeat:
0fc9d104 1617 page = radix_tree_deref_slot(slot);
a60637c8
NP
1618 if (unlikely(!page))
1619 continue;
9d8aa4ea 1620
a2c16d6c 1621 if (radix_tree_exception(page)) {
8079b1c8 1622 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1623 slot = radix_tree_iter_retry(&iter);
1624 continue;
8079b1c8 1625 }
a2c16d6c 1626 /*
139b6a6f
JW
1627 * A shadow entry of a recently evicted page.
1628 *
1629 * Those entries should never be tagged, but
1630 * this tree walk is lockless and the tags are
1631 * looked up in bulk, one radix tree node at a
1632 * time, so there is a sizable window for page
1633 * reclaim to evict a page we saw tagged.
1634 *
1635 * Skip over it.
a2c16d6c 1636 */
139b6a6f 1637 continue;
a2c16d6c 1638 }
a60637c8 1639
83929372
KS
1640 head = compound_head(page);
1641 if (!page_cache_get_speculative(head))
a60637c8
NP
1642 goto repeat;
1643
83929372
KS
1644 /* The page was split under us? */
1645 if (compound_head(page) != head) {
1646 put_page(head);
1647 goto repeat;
1648 }
1649
a60637c8 1650 /* Has the page moved? */
0fc9d104 1651 if (unlikely(page != *slot)) {
83929372 1652 put_page(head);
a60637c8
NP
1653 goto repeat;
1654 }
1655
1656 pages[ret] = page;
0fc9d104
KK
1657 if (++ret == nr_pages)
1658 break;
a60637c8 1659 }
5b280c0c 1660
a60637c8 1661 rcu_read_unlock();
1da177e4 1662
1da177e4
LT
1663 if (ret)
1664 *index = pages[ret - 1]->index + 1;
a60637c8 1665
1da177e4
LT
1666 return ret;
1667}
ef71c15c 1668EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1669
7e7f7749
RZ
1670/**
1671 * find_get_entries_tag - find and return entries that match @tag
1672 * @mapping: the address_space to search
1673 * @start: the starting page cache index
1674 * @tag: the tag index
1675 * @nr_entries: the maximum number of entries
1676 * @entries: where the resulting entries are placed
1677 * @indices: the cache indices corresponding to the entries in @entries
1678 *
1679 * Like find_get_entries, except we only return entries which are tagged with
1680 * @tag.
1681 */
1682unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1683 int tag, unsigned int nr_entries,
1684 struct page **entries, pgoff_t *indices)
1685{
1686 void **slot;
1687 unsigned int ret = 0;
1688 struct radix_tree_iter iter;
1689
1690 if (!nr_entries)
1691 return 0;
1692
1693 rcu_read_lock();
7e7f7749
RZ
1694 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1695 &iter, start, tag) {
83929372 1696 struct page *head, *page;
7e7f7749
RZ
1697repeat:
1698 page = radix_tree_deref_slot(slot);
1699 if (unlikely(!page))
1700 continue;
1701 if (radix_tree_exception(page)) {
1702 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1703 slot = radix_tree_iter_retry(&iter);
1704 continue;
7e7f7749
RZ
1705 }
1706
1707 /*
1708 * A shadow entry of a recently evicted page, a swap
1709 * entry from shmem/tmpfs or a DAX entry. Return it
1710 * without attempting to raise page count.
1711 */
1712 goto export;
1713 }
83929372
KS
1714
1715 head = compound_head(page);
1716 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1717 goto repeat;
1718
83929372
KS
1719 /* The page was split under us? */
1720 if (compound_head(page) != head) {
1721 put_page(head);
1722 goto repeat;
1723 }
1724
7e7f7749
RZ
1725 /* Has the page moved? */
1726 if (unlikely(page != *slot)) {
83929372 1727 put_page(head);
7e7f7749
RZ
1728 goto repeat;
1729 }
1730export:
1731 indices[ret] = iter.index;
1732 entries[ret] = page;
1733 if (++ret == nr_entries)
1734 break;
1735 }
1736 rcu_read_unlock();
1737 return ret;
1738}
1739EXPORT_SYMBOL(find_get_entries_tag);
1740
76d42bd9
WF
1741/*
1742 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1743 * a _large_ part of the i/o request. Imagine the worst scenario:
1744 *
1745 * ---R__________________________________________B__________
1746 * ^ reading here ^ bad block(assume 4k)
1747 *
1748 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1749 * => failing the whole request => read(R) => read(R+1) =>
1750 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1751 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1752 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1753 *
1754 * It is going insane. Fix it by quickly scaling down the readahead size.
1755 */
1756static void shrink_readahead_size_eio(struct file *filp,
1757 struct file_ra_state *ra)
1758{
76d42bd9 1759 ra->ra_pages /= 4;
76d42bd9
WF
1760}
1761
485bb99b 1762/**
36e78914 1763 * do_generic_file_read - generic file read routine
485bb99b
RD
1764 * @filp: the file to read
1765 * @ppos: current file position
6e58e79d
AV
1766 * @iter: data destination
1767 * @written: already copied
485bb99b 1768 *
1da177e4 1769 * This is a generic file read routine, and uses the
485bb99b 1770 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1771 *
1772 * This is really ugly. But the goto's actually try to clarify some
1773 * of the logic when it comes to error handling etc.
1da177e4 1774 */
6e58e79d
AV
1775static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1776 struct iov_iter *iter, ssize_t written)
1da177e4 1777{
36e78914 1778 struct address_space *mapping = filp->f_mapping;
1da177e4 1779 struct inode *inode = mapping->host;
36e78914 1780 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1781 pgoff_t index;
1782 pgoff_t last_index;
1783 pgoff_t prev_index;
1784 unsigned long offset; /* offset into pagecache page */
ec0f1637 1785 unsigned int prev_offset;
6e58e79d 1786 int error = 0;
1da177e4 1787
c2a9737f 1788 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1789 return 0;
c2a9737f
WF
1790 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1791
09cbfeaf
KS
1792 index = *ppos >> PAGE_SHIFT;
1793 prev_index = ra->prev_pos >> PAGE_SHIFT;
1794 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1795 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1796 offset = *ppos & ~PAGE_MASK;
1da177e4 1797
1da177e4
LT
1798 for (;;) {
1799 struct page *page;
57f6b96c 1800 pgoff_t end_index;
a32ea1e1 1801 loff_t isize;
1da177e4
LT
1802 unsigned long nr, ret;
1803
1da177e4 1804 cond_resched();
1da177e4 1805find_page:
5abf186a
MH
1806 if (fatal_signal_pending(current)) {
1807 error = -EINTR;
1808 goto out;
1809 }
1810
1da177e4 1811 page = find_get_page(mapping, index);
3ea89ee8 1812 if (!page) {
cf914a7d 1813 page_cache_sync_readahead(mapping,
7ff81078 1814 ra, filp,
3ea89ee8
FW
1815 index, last_index - index);
1816 page = find_get_page(mapping, index);
1817 if (unlikely(page == NULL))
1818 goto no_cached_page;
1819 }
1820 if (PageReadahead(page)) {
cf914a7d 1821 page_cache_async_readahead(mapping,
7ff81078 1822 ra, filp, page,
3ea89ee8 1823 index, last_index - index);
1da177e4 1824 }
8ab22b9a 1825 if (!PageUptodate(page)) {
ebded027
MG
1826 /*
1827 * See comment in do_read_cache_page on why
1828 * wait_on_page_locked is used to avoid unnecessarily
1829 * serialisations and why it's safe.
1830 */
c4b209a4
BVA
1831 error = wait_on_page_locked_killable(page);
1832 if (unlikely(error))
1833 goto readpage_error;
ebded027
MG
1834 if (PageUptodate(page))
1835 goto page_ok;
1836
09cbfeaf 1837 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1838 !mapping->a_ops->is_partially_uptodate)
1839 goto page_not_up_to_date;
6d6d36bc
EG
1840 /* pipes can't handle partially uptodate pages */
1841 if (unlikely(iter->type & ITER_PIPE))
1842 goto page_not_up_to_date;
529ae9aa 1843 if (!trylock_page(page))
8ab22b9a 1844 goto page_not_up_to_date;
8d056cb9
DH
1845 /* Did it get truncated before we got the lock? */
1846 if (!page->mapping)
1847 goto page_not_up_to_date_locked;
8ab22b9a 1848 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1849 offset, iter->count))
8ab22b9a
HH
1850 goto page_not_up_to_date_locked;
1851 unlock_page(page);
1852 }
1da177e4 1853page_ok:
a32ea1e1
N
1854 /*
1855 * i_size must be checked after we know the page is Uptodate.
1856 *
1857 * Checking i_size after the check allows us to calculate
1858 * the correct value for "nr", which means the zero-filled
1859 * part of the page is not copied back to userspace (unless
1860 * another truncate extends the file - this is desired though).
1861 */
1862
1863 isize = i_size_read(inode);
09cbfeaf 1864 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1865 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1866 put_page(page);
a32ea1e1
N
1867 goto out;
1868 }
1869
1870 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1871 nr = PAGE_SIZE;
a32ea1e1 1872 if (index == end_index) {
09cbfeaf 1873 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1874 if (nr <= offset) {
09cbfeaf 1875 put_page(page);
a32ea1e1
N
1876 goto out;
1877 }
1878 }
1879 nr = nr - offset;
1da177e4
LT
1880
1881 /* If users can be writing to this page using arbitrary
1882 * virtual addresses, take care about potential aliasing
1883 * before reading the page on the kernel side.
1884 */
1885 if (mapping_writably_mapped(mapping))
1886 flush_dcache_page(page);
1887
1888 /*
ec0f1637
JK
1889 * When a sequential read accesses a page several times,
1890 * only mark it as accessed the first time.
1da177e4 1891 */
ec0f1637 1892 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1893 mark_page_accessed(page);
1894 prev_index = index;
1895
1896 /*
1897 * Ok, we have the page, and it's up-to-date, so
1898 * now we can copy it to user space...
1da177e4 1899 */
6e58e79d
AV
1900
1901 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1902 offset += ret;
09cbfeaf
KS
1903 index += offset >> PAGE_SHIFT;
1904 offset &= ~PAGE_MASK;
6ce745ed 1905 prev_offset = offset;
1da177e4 1906
09cbfeaf 1907 put_page(page);
6e58e79d
AV
1908 written += ret;
1909 if (!iov_iter_count(iter))
1910 goto out;
1911 if (ret < nr) {
1912 error = -EFAULT;
1913 goto out;
1914 }
1915 continue;
1da177e4
LT
1916
1917page_not_up_to_date:
1918 /* Get exclusive access to the page ... */
85462323
ON
1919 error = lock_page_killable(page);
1920 if (unlikely(error))
1921 goto readpage_error;
1da177e4 1922
8ab22b9a 1923page_not_up_to_date_locked:
da6052f7 1924 /* Did it get truncated before we got the lock? */
1da177e4
LT
1925 if (!page->mapping) {
1926 unlock_page(page);
09cbfeaf 1927 put_page(page);
1da177e4
LT
1928 continue;
1929 }
1930
1931 /* Did somebody else fill it already? */
1932 if (PageUptodate(page)) {
1933 unlock_page(page);
1934 goto page_ok;
1935 }
1936
1937readpage:
91803b49
JM
1938 /*
1939 * A previous I/O error may have been due to temporary
1940 * failures, eg. multipath errors.
1941 * PG_error will be set again if readpage fails.
1942 */
1943 ClearPageError(page);
1da177e4
LT
1944 /* Start the actual read. The read will unlock the page. */
1945 error = mapping->a_ops->readpage(filp, page);
1946
994fc28c
ZB
1947 if (unlikely(error)) {
1948 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1949 put_page(page);
6e58e79d 1950 error = 0;
994fc28c
ZB
1951 goto find_page;
1952 }
1da177e4 1953 goto readpage_error;
994fc28c 1954 }
1da177e4
LT
1955
1956 if (!PageUptodate(page)) {
85462323
ON
1957 error = lock_page_killable(page);
1958 if (unlikely(error))
1959 goto readpage_error;
1da177e4
LT
1960 if (!PageUptodate(page)) {
1961 if (page->mapping == NULL) {
1962 /*
2ecdc82e 1963 * invalidate_mapping_pages got it
1da177e4
LT
1964 */
1965 unlock_page(page);
09cbfeaf 1966 put_page(page);
1da177e4
LT
1967 goto find_page;
1968 }
1969 unlock_page(page);
7ff81078 1970 shrink_readahead_size_eio(filp, ra);
85462323
ON
1971 error = -EIO;
1972 goto readpage_error;
1da177e4
LT
1973 }
1974 unlock_page(page);
1975 }
1976
1da177e4
LT
1977 goto page_ok;
1978
1979readpage_error:
1980 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1981 put_page(page);
1da177e4
LT
1982 goto out;
1983
1984no_cached_page:
1985 /*
1986 * Ok, it wasn't cached, so we need to create a new
1987 * page..
1988 */
eb2be189
NP
1989 page = page_cache_alloc_cold(mapping);
1990 if (!page) {
6e58e79d 1991 error = -ENOMEM;
eb2be189 1992 goto out;
1da177e4 1993 }
6afdb859 1994 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1995 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1996 if (error) {
09cbfeaf 1997 put_page(page);
6e58e79d
AV
1998 if (error == -EEXIST) {
1999 error = 0;
1da177e4 2000 goto find_page;
6e58e79d 2001 }
1da177e4
LT
2002 goto out;
2003 }
1da177e4
LT
2004 goto readpage;
2005 }
2006
2007out:
7ff81078 2008 ra->prev_pos = prev_index;
09cbfeaf 2009 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2010 ra->prev_pos |= prev_offset;
1da177e4 2011
09cbfeaf 2012 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2013 file_accessed(filp);
6e58e79d 2014 return written ? written : error;
1da177e4
LT
2015}
2016
485bb99b 2017/**
6abd2322 2018 * generic_file_read_iter - generic filesystem read routine
485bb99b 2019 * @iocb: kernel I/O control block
6abd2322 2020 * @iter: destination for the data read
485bb99b 2021 *
6abd2322 2022 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2023 * that can use the page cache directly.
2024 */
2025ssize_t
ed978a81 2026generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2027{
ed978a81 2028 struct file *file = iocb->ki_filp;
cb66a7a1 2029 ssize_t retval = 0;
e7080a43
NS
2030 size_t count = iov_iter_count(iter);
2031
2032 if (!count)
2033 goto out; /* skip atime */
1da177e4 2034
2ba48ce5 2035 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2036 struct address_space *mapping = file->f_mapping;
2037 struct inode *inode = mapping->host;
543ade1f 2038 loff_t size;
1da177e4 2039
1da177e4 2040 size = i_size_read(inode);
c64fb5c7
CH
2041 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2042 iocb->ki_pos + count - 1);
0d5b0cf2
CH
2043 if (retval < 0)
2044 goto out;
d8d3d94b 2045
0d5b0cf2
CH
2046 file_accessed(file);
2047
5ecda137 2048 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2049 if (retval >= 0) {
c64fb5c7 2050 iocb->ki_pos += retval;
5ecda137 2051 count -= retval;
9fe55eea 2052 }
5b47d59a 2053 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2054
9fe55eea
SW
2055 /*
2056 * Btrfs can have a short DIO read if we encounter
2057 * compressed extents, so if there was an error, or if
2058 * we've already read everything we wanted to, or if
2059 * there was a short read because we hit EOF, go ahead
2060 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2061 * the rest of the read. Buffered reads will not work for
2062 * DAX files, so don't bother trying.
9fe55eea 2063 */
5ecda137 2064 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2065 IS_DAX(inode))
9fe55eea 2066 goto out;
1da177e4
LT
2067 }
2068
c64fb5c7 2069 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2070out:
2071 return retval;
2072}
ed978a81 2073EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2074
1da177e4 2075#ifdef CONFIG_MMU
485bb99b
RD
2076/**
2077 * page_cache_read - adds requested page to the page cache if not already there
2078 * @file: file to read
2079 * @offset: page index
62eb320a 2080 * @gfp_mask: memory allocation flags
485bb99b 2081 *
1da177e4
LT
2082 * This adds the requested page to the page cache if it isn't already there,
2083 * and schedules an I/O to read in its contents from disk.
2084 */
c20cd45e 2085static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2086{
2087 struct address_space *mapping = file->f_mapping;
99dadfdd 2088 struct page *page;
994fc28c 2089 int ret;
1da177e4 2090
994fc28c 2091 do {
c20cd45e 2092 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2093 if (!page)
2094 return -ENOMEM;
2095
c20cd45e 2096 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2097 if (ret == 0)
2098 ret = mapping->a_ops->readpage(file, page);
2099 else if (ret == -EEXIST)
2100 ret = 0; /* losing race to add is OK */
1da177e4 2101
09cbfeaf 2102 put_page(page);
1da177e4 2103
994fc28c 2104 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2105
994fc28c 2106 return ret;
1da177e4
LT
2107}
2108
2109#define MMAP_LOTSAMISS (100)
2110
ef00e08e
LT
2111/*
2112 * Synchronous readahead happens when we don't even find
2113 * a page in the page cache at all.
2114 */
2115static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2116 struct file_ra_state *ra,
2117 struct file *file,
2118 pgoff_t offset)
2119{
ef00e08e
LT
2120 struct address_space *mapping = file->f_mapping;
2121
2122 /* If we don't want any read-ahead, don't bother */
64363aad 2123 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2124 return;
275b12bf
WF
2125 if (!ra->ra_pages)
2126 return;
ef00e08e 2127
64363aad 2128 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2129 page_cache_sync_readahead(mapping, ra, file, offset,
2130 ra->ra_pages);
ef00e08e
LT
2131 return;
2132 }
2133
207d04ba
AK
2134 /* Avoid banging the cache line if not needed */
2135 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2136 ra->mmap_miss++;
2137
2138 /*
2139 * Do we miss much more than hit in this file? If so,
2140 * stop bothering with read-ahead. It will only hurt.
2141 */
2142 if (ra->mmap_miss > MMAP_LOTSAMISS)
2143 return;
2144
d30a1100
WF
2145 /*
2146 * mmap read-around
2147 */
600e19af
RG
2148 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2149 ra->size = ra->ra_pages;
2150 ra->async_size = ra->ra_pages / 4;
275b12bf 2151 ra_submit(ra, mapping, file);
ef00e08e
LT
2152}
2153
2154/*
2155 * Asynchronous readahead happens when we find the page and PG_readahead,
2156 * so we want to possibly extend the readahead further..
2157 */
2158static void do_async_mmap_readahead(struct vm_area_struct *vma,
2159 struct file_ra_state *ra,
2160 struct file *file,
2161 struct page *page,
2162 pgoff_t offset)
2163{
2164 struct address_space *mapping = file->f_mapping;
2165
2166 /* If we don't want any read-ahead, don't bother */
64363aad 2167 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2168 return;
2169 if (ra->mmap_miss > 0)
2170 ra->mmap_miss--;
2171 if (PageReadahead(page))
2fad6f5d
WF
2172 page_cache_async_readahead(mapping, ra, file,
2173 page, offset, ra->ra_pages);
ef00e08e
LT
2174}
2175
485bb99b 2176/**
54cb8821 2177 * filemap_fault - read in file data for page fault handling
d0217ac0 2178 * @vmf: struct vm_fault containing details of the fault
485bb99b 2179 *
54cb8821 2180 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2181 * mapped memory region to read in file data during a page fault.
2182 *
2183 * The goto's are kind of ugly, but this streamlines the normal case of having
2184 * it in the page cache, and handles the special cases reasonably without
2185 * having a lot of duplicated code.
9a95f3cf
PC
2186 *
2187 * vma->vm_mm->mmap_sem must be held on entry.
2188 *
2189 * If our return value has VM_FAULT_RETRY set, it's because
2190 * lock_page_or_retry() returned 0.
2191 * The mmap_sem has usually been released in this case.
2192 * See __lock_page_or_retry() for the exception.
2193 *
2194 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2195 * has not been released.
2196 *
2197 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2198 */
11bac800 2199int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2200{
2201 int error;
11bac800 2202 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2203 struct address_space *mapping = file->f_mapping;
2204 struct file_ra_state *ra = &file->f_ra;
2205 struct inode *inode = mapping->host;
ef00e08e 2206 pgoff_t offset = vmf->pgoff;
9ab2594f 2207 pgoff_t max_off;
1da177e4 2208 struct page *page;
83c54070 2209 int ret = 0;
1da177e4 2210
9ab2594f
MW
2211 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2212 if (unlikely(offset >= max_off))
5307cc1a 2213 return VM_FAULT_SIGBUS;
1da177e4 2214
1da177e4 2215 /*
49426420 2216 * Do we have something in the page cache already?
1da177e4 2217 */
ef00e08e 2218 page = find_get_page(mapping, offset);
45cac65b 2219 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2220 /*
ef00e08e
LT
2221 * We found the page, so try async readahead before
2222 * waiting for the lock.
1da177e4 2223 */
11bac800 2224 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2225 } else if (!page) {
ef00e08e 2226 /* No page in the page cache at all */
11bac800 2227 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2228 count_vm_event(PGMAJFAULT);
11bac800 2229 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2230 ret = VM_FAULT_MAJOR;
2231retry_find:
b522c94d 2232 page = find_get_page(mapping, offset);
1da177e4
LT
2233 if (!page)
2234 goto no_cached_page;
2235 }
2236
11bac800 2237 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2238 put_page(page);
d065bd81 2239 return ret | VM_FAULT_RETRY;
d88c0922 2240 }
b522c94d
ML
2241
2242 /* Did it get truncated? */
2243 if (unlikely(page->mapping != mapping)) {
2244 unlock_page(page);
2245 put_page(page);
2246 goto retry_find;
2247 }
309381fe 2248 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2249
1da177e4 2250 /*
d00806b1
NP
2251 * We have a locked page in the page cache, now we need to check
2252 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2253 */
d00806b1 2254 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2255 goto page_not_uptodate;
2256
ef00e08e
LT
2257 /*
2258 * Found the page and have a reference on it.
2259 * We must recheck i_size under page lock.
2260 */
9ab2594f
MW
2261 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2262 if (unlikely(offset >= max_off)) {
d00806b1 2263 unlock_page(page);
09cbfeaf 2264 put_page(page);
5307cc1a 2265 return VM_FAULT_SIGBUS;
d00806b1
NP
2266 }
2267
d0217ac0 2268 vmf->page = page;
83c54070 2269 return ret | VM_FAULT_LOCKED;
1da177e4 2270
1da177e4
LT
2271no_cached_page:
2272 /*
2273 * We're only likely to ever get here if MADV_RANDOM is in
2274 * effect.
2275 */
c20cd45e 2276 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2277
2278 /*
2279 * The page we want has now been added to the page cache.
2280 * In the unlikely event that someone removed it in the
2281 * meantime, we'll just come back here and read it again.
2282 */
2283 if (error >= 0)
2284 goto retry_find;
2285
2286 /*
2287 * An error return from page_cache_read can result if the
2288 * system is low on memory, or a problem occurs while trying
2289 * to schedule I/O.
2290 */
2291 if (error == -ENOMEM)
d0217ac0
NP
2292 return VM_FAULT_OOM;
2293 return VM_FAULT_SIGBUS;
1da177e4
LT
2294
2295page_not_uptodate:
1da177e4
LT
2296 /*
2297 * Umm, take care of errors if the page isn't up-to-date.
2298 * Try to re-read it _once_. We do this synchronously,
2299 * because there really aren't any performance issues here
2300 * and we need to check for errors.
2301 */
1da177e4 2302 ClearPageError(page);
994fc28c 2303 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2304 if (!error) {
2305 wait_on_page_locked(page);
2306 if (!PageUptodate(page))
2307 error = -EIO;
2308 }
09cbfeaf 2309 put_page(page);
d00806b1
NP
2310
2311 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2312 goto retry_find;
1da177e4 2313
d00806b1 2314 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2315 shrink_readahead_size_eio(file, ra);
d0217ac0 2316 return VM_FAULT_SIGBUS;
54cb8821
NP
2317}
2318EXPORT_SYMBOL(filemap_fault);
2319
82b0f8c3 2320void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2321 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2322{
2323 struct radix_tree_iter iter;
2324 void **slot;
82b0f8c3 2325 struct file *file = vmf->vma->vm_file;
f1820361 2326 struct address_space *mapping = file->f_mapping;
bae473a4 2327 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2328 unsigned long max_idx;
83929372 2329 struct page *head, *page;
f1820361
KS
2330
2331 rcu_read_lock();
bae473a4
KS
2332 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2333 start_pgoff) {
2334 if (iter.index > end_pgoff)
f1820361
KS
2335 break;
2336repeat:
2337 page = radix_tree_deref_slot(slot);
2338 if (unlikely(!page))
2339 goto next;
2340 if (radix_tree_exception(page)) {
2cf938aa
MW
2341 if (radix_tree_deref_retry(page)) {
2342 slot = radix_tree_iter_retry(&iter);
2343 continue;
2344 }
2345 goto next;
f1820361
KS
2346 }
2347
83929372
KS
2348 head = compound_head(page);
2349 if (!page_cache_get_speculative(head))
f1820361
KS
2350 goto repeat;
2351
83929372
KS
2352 /* The page was split under us? */
2353 if (compound_head(page) != head) {
2354 put_page(head);
2355 goto repeat;
2356 }
2357
f1820361
KS
2358 /* Has the page moved? */
2359 if (unlikely(page != *slot)) {
83929372 2360 put_page(head);
f1820361
KS
2361 goto repeat;
2362 }
2363
2364 if (!PageUptodate(page) ||
2365 PageReadahead(page) ||
2366 PageHWPoison(page))
2367 goto skip;
2368 if (!trylock_page(page))
2369 goto skip;
2370
2371 if (page->mapping != mapping || !PageUptodate(page))
2372 goto unlock;
2373
9ab2594f
MW
2374 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2375 if (page->index >= max_idx)
f1820361
KS
2376 goto unlock;
2377
f1820361
KS
2378 if (file->f_ra.mmap_miss > 0)
2379 file->f_ra.mmap_miss--;
7267ec00 2380
82b0f8c3
JK
2381 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2382 if (vmf->pte)
2383 vmf->pte += iter.index - last_pgoff;
7267ec00 2384 last_pgoff = iter.index;
82b0f8c3 2385 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2386 goto unlock;
f1820361
KS
2387 unlock_page(page);
2388 goto next;
2389unlock:
2390 unlock_page(page);
2391skip:
09cbfeaf 2392 put_page(page);
f1820361 2393next:
7267ec00 2394 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2395 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2396 break;
bae473a4 2397 if (iter.index == end_pgoff)
f1820361
KS
2398 break;
2399 }
2400 rcu_read_unlock();
2401}
2402EXPORT_SYMBOL(filemap_map_pages);
2403
11bac800 2404int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2405{
2406 struct page *page = vmf->page;
11bac800 2407 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2408 int ret = VM_FAULT_LOCKED;
2409
14da9200 2410 sb_start_pagefault(inode->i_sb);
11bac800 2411 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2412 lock_page(page);
2413 if (page->mapping != inode->i_mapping) {
2414 unlock_page(page);
2415 ret = VM_FAULT_NOPAGE;
2416 goto out;
2417 }
14da9200
JK
2418 /*
2419 * We mark the page dirty already here so that when freeze is in
2420 * progress, we are guaranteed that writeback during freezing will
2421 * see the dirty page and writeprotect it again.
2422 */
2423 set_page_dirty(page);
1d1d1a76 2424 wait_for_stable_page(page);
4fcf1c62 2425out:
14da9200 2426 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2427 return ret;
2428}
2429EXPORT_SYMBOL(filemap_page_mkwrite);
2430
f0f37e2f 2431const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2432 .fault = filemap_fault,
f1820361 2433 .map_pages = filemap_map_pages,
4fcf1c62 2434 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2435};
2436
2437/* This is used for a general mmap of a disk file */
2438
2439int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2440{
2441 struct address_space *mapping = file->f_mapping;
2442
2443 if (!mapping->a_ops->readpage)
2444 return -ENOEXEC;
2445 file_accessed(file);
2446 vma->vm_ops = &generic_file_vm_ops;
2447 return 0;
2448}
1da177e4
LT
2449
2450/*
2451 * This is for filesystems which do not implement ->writepage.
2452 */
2453int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2454{
2455 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2456 return -EINVAL;
2457 return generic_file_mmap(file, vma);
2458}
2459#else
2460int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2461{
2462 return -ENOSYS;
2463}
2464int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2465{
2466 return -ENOSYS;
2467}
2468#endif /* CONFIG_MMU */
2469
2470EXPORT_SYMBOL(generic_file_mmap);
2471EXPORT_SYMBOL(generic_file_readonly_mmap);
2472
67f9fd91
SL
2473static struct page *wait_on_page_read(struct page *page)
2474{
2475 if (!IS_ERR(page)) {
2476 wait_on_page_locked(page);
2477 if (!PageUptodate(page)) {
09cbfeaf 2478 put_page(page);
67f9fd91
SL
2479 page = ERR_PTR(-EIO);
2480 }
2481 }
2482 return page;
2483}
2484
32b63529 2485static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2486 pgoff_t index,
5e5358e7 2487 int (*filler)(void *, struct page *),
0531b2aa
LT
2488 void *data,
2489 gfp_t gfp)
1da177e4 2490{
eb2be189 2491 struct page *page;
1da177e4
LT
2492 int err;
2493repeat:
2494 page = find_get_page(mapping, index);
2495 if (!page) {
0531b2aa 2496 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2497 if (!page)
2498 return ERR_PTR(-ENOMEM);
e6f67b8c 2499 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2500 if (unlikely(err)) {
09cbfeaf 2501 put_page(page);
eb2be189
NP
2502 if (err == -EEXIST)
2503 goto repeat;
1da177e4 2504 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2505 return ERR_PTR(err);
2506 }
32b63529
MG
2507
2508filler:
1da177e4
LT
2509 err = filler(data, page);
2510 if (err < 0) {
09cbfeaf 2511 put_page(page);
32b63529 2512 return ERR_PTR(err);
1da177e4 2513 }
1da177e4 2514
32b63529
MG
2515 page = wait_on_page_read(page);
2516 if (IS_ERR(page))
2517 return page;
2518 goto out;
2519 }
1da177e4
LT
2520 if (PageUptodate(page))
2521 goto out;
2522
ebded027
MG
2523 /*
2524 * Page is not up to date and may be locked due one of the following
2525 * case a: Page is being filled and the page lock is held
2526 * case b: Read/write error clearing the page uptodate status
2527 * case c: Truncation in progress (page locked)
2528 * case d: Reclaim in progress
2529 *
2530 * Case a, the page will be up to date when the page is unlocked.
2531 * There is no need to serialise on the page lock here as the page
2532 * is pinned so the lock gives no additional protection. Even if the
2533 * the page is truncated, the data is still valid if PageUptodate as
2534 * it's a race vs truncate race.
2535 * Case b, the page will not be up to date
2536 * Case c, the page may be truncated but in itself, the data may still
2537 * be valid after IO completes as it's a read vs truncate race. The
2538 * operation must restart if the page is not uptodate on unlock but
2539 * otherwise serialising on page lock to stabilise the mapping gives
2540 * no additional guarantees to the caller as the page lock is
2541 * released before return.
2542 * Case d, similar to truncation. If reclaim holds the page lock, it
2543 * will be a race with remove_mapping that determines if the mapping
2544 * is valid on unlock but otherwise the data is valid and there is
2545 * no need to serialise with page lock.
2546 *
2547 * As the page lock gives no additional guarantee, we optimistically
2548 * wait on the page to be unlocked and check if it's up to date and
2549 * use the page if it is. Otherwise, the page lock is required to
2550 * distinguish between the different cases. The motivation is that we
2551 * avoid spurious serialisations and wakeups when multiple processes
2552 * wait on the same page for IO to complete.
2553 */
2554 wait_on_page_locked(page);
2555 if (PageUptodate(page))
2556 goto out;
2557
2558 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2559 lock_page(page);
ebded027
MG
2560
2561 /* Case c or d, restart the operation */
1da177e4
LT
2562 if (!page->mapping) {
2563 unlock_page(page);
09cbfeaf 2564 put_page(page);
32b63529 2565 goto repeat;
1da177e4 2566 }
ebded027
MG
2567
2568 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2569 if (PageUptodate(page)) {
2570 unlock_page(page);
2571 goto out;
2572 }
32b63529
MG
2573 goto filler;
2574
c855ff37 2575out:
6fe6900e
NP
2576 mark_page_accessed(page);
2577 return page;
2578}
0531b2aa
LT
2579
2580/**
67f9fd91 2581 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2582 * @mapping: the page's address_space
2583 * @index: the page index
2584 * @filler: function to perform the read
5e5358e7 2585 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2586 *
0531b2aa 2587 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2588 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2589 *
2590 * If the page does not get brought uptodate, return -EIO.
2591 */
67f9fd91 2592struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2593 pgoff_t index,
5e5358e7 2594 int (*filler)(void *, struct page *),
0531b2aa
LT
2595 void *data)
2596{
2597 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2598}
67f9fd91 2599EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2600
2601/**
2602 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2603 * @mapping: the page's address_space
2604 * @index: the page index
2605 * @gfp: the page allocator flags to use if allocating
2606 *
2607 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2608 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2609 *
2610 * If the page does not get brought uptodate, return -EIO.
2611 */
2612struct page *read_cache_page_gfp(struct address_space *mapping,
2613 pgoff_t index,
2614 gfp_t gfp)
2615{
2616 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2617
67f9fd91 2618 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2619}
2620EXPORT_SYMBOL(read_cache_page_gfp);
2621
1da177e4
LT
2622/*
2623 * Performs necessary checks before doing a write
2624 *
485bb99b 2625 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2626 * Returns appropriate error code that caller should return or
2627 * zero in case that write should be allowed.
2628 */
3309dd04 2629inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2630{
3309dd04 2631 struct file *file = iocb->ki_filp;
1da177e4 2632 struct inode *inode = file->f_mapping->host;
59e99e5b 2633 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2634 loff_t pos;
1da177e4 2635
3309dd04
AV
2636 if (!iov_iter_count(from))
2637 return 0;
1da177e4 2638
0fa6b005 2639 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2640 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2641 iocb->ki_pos = i_size_read(inode);
1da177e4 2642
3309dd04 2643 pos = iocb->ki_pos;
1da177e4 2644
0fa6b005 2645 if (limit != RLIM_INFINITY) {
3309dd04 2646 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2647 send_sig(SIGXFSZ, current, 0);
2648 return -EFBIG;
1da177e4 2649 }
3309dd04 2650 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2651 }
2652
2653 /*
2654 * LFS rule
2655 */
3309dd04 2656 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2657 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2658 if (pos >= MAX_NON_LFS)
1da177e4 2659 return -EFBIG;
3309dd04 2660 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2661 }
2662
2663 /*
2664 * Are we about to exceed the fs block limit ?
2665 *
2666 * If we have written data it becomes a short write. If we have
2667 * exceeded without writing data we send a signal and return EFBIG.
2668 * Linus frestrict idea will clean these up nicely..
2669 */
3309dd04
AV
2670 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2671 return -EFBIG;
1da177e4 2672
3309dd04
AV
2673 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2674 return iov_iter_count(from);
1da177e4
LT
2675}
2676EXPORT_SYMBOL(generic_write_checks);
2677
afddba49
NP
2678int pagecache_write_begin(struct file *file, struct address_space *mapping,
2679 loff_t pos, unsigned len, unsigned flags,
2680 struct page **pagep, void **fsdata)
2681{
2682 const struct address_space_operations *aops = mapping->a_ops;
2683
4e02ed4b 2684 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2685 pagep, fsdata);
afddba49
NP
2686}
2687EXPORT_SYMBOL(pagecache_write_begin);
2688
2689int pagecache_write_end(struct file *file, struct address_space *mapping,
2690 loff_t pos, unsigned len, unsigned copied,
2691 struct page *page, void *fsdata)
2692{
2693 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2694
4e02ed4b 2695 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2696}
2697EXPORT_SYMBOL(pagecache_write_end);
2698
1da177e4 2699ssize_t
1af5bb49 2700generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2701{
2702 struct file *file = iocb->ki_filp;
2703 struct address_space *mapping = file->f_mapping;
2704 struct inode *inode = mapping->host;
1af5bb49 2705 loff_t pos = iocb->ki_pos;
1da177e4 2706 ssize_t written;
a969e903
CH
2707 size_t write_len;
2708 pgoff_t end;
1da177e4 2709
0c949334 2710 write_len = iov_iter_count(from);
09cbfeaf 2711 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2712
48b47c56 2713 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2714 if (written)
2715 goto out;
2716
2717 /*
2718 * After a write we want buffered reads to be sure to go to disk to get
2719 * the new data. We invalidate clean cached page from the region we're
2720 * about to write. We do this *before* the write so that we can return
6ccfa806 2721 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2722 */
55635ba7 2723 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2724 pos >> PAGE_SHIFT, end);
55635ba7
AR
2725 /*
2726 * If a page can not be invalidated, return 0 to fall back
2727 * to buffered write.
2728 */
2729 if (written) {
2730 if (written == -EBUSY)
2731 return 0;
2732 goto out;
a969e903
CH
2733 }
2734
639a93a5 2735 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2736
2737 /*
2738 * Finally, try again to invalidate clean pages which might have been
2739 * cached by non-direct readahead, or faulted in by get_user_pages()
2740 * if the source of the write was an mmap'ed region of the file
2741 * we're writing. Either one is a pretty crazy thing to do,
2742 * so we don't support it 100%. If this invalidation
2743 * fails, tough, the write still worked...
2744 */
55635ba7
AR
2745 invalidate_inode_pages2_range(mapping,
2746 pos >> PAGE_SHIFT, end);
a969e903 2747
1da177e4 2748 if (written > 0) {
0116651c 2749 pos += written;
639a93a5 2750 write_len -= written;
0116651c
NK
2751 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2752 i_size_write(inode, pos);
1da177e4
LT
2753 mark_inode_dirty(inode);
2754 }
5cb6c6c7 2755 iocb->ki_pos = pos;
1da177e4 2756 }
639a93a5 2757 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2758out:
1da177e4
LT
2759 return written;
2760}
2761EXPORT_SYMBOL(generic_file_direct_write);
2762
eb2be189
NP
2763/*
2764 * Find or create a page at the given pagecache position. Return the locked
2765 * page. This function is specifically for buffered writes.
2766 */
54566b2c
NP
2767struct page *grab_cache_page_write_begin(struct address_space *mapping,
2768 pgoff_t index, unsigned flags)
eb2be189 2769{
eb2be189 2770 struct page *page;
bbddabe2 2771 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2772
54566b2c 2773 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2774 fgp_flags |= FGP_NOFS;
2775
2776 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2777 mapping_gfp_mask(mapping));
c585a267 2778 if (page)
2457aec6 2779 wait_for_stable_page(page);
eb2be189 2780
eb2be189
NP
2781 return page;
2782}
54566b2c 2783EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2784
3b93f911 2785ssize_t generic_perform_write(struct file *file,
afddba49
NP
2786 struct iov_iter *i, loff_t pos)
2787{
2788 struct address_space *mapping = file->f_mapping;
2789 const struct address_space_operations *a_ops = mapping->a_ops;
2790 long status = 0;
2791 ssize_t written = 0;
674b892e
NP
2792 unsigned int flags = 0;
2793
afddba49
NP
2794 do {
2795 struct page *page;
afddba49
NP
2796 unsigned long offset; /* Offset into pagecache page */
2797 unsigned long bytes; /* Bytes to write to page */
2798 size_t copied; /* Bytes copied from user */
2799 void *fsdata;
2800
09cbfeaf
KS
2801 offset = (pos & (PAGE_SIZE - 1));
2802 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2803 iov_iter_count(i));
2804
2805again:
00a3d660
LT
2806 /*
2807 * Bring in the user page that we will copy from _first_.
2808 * Otherwise there's a nasty deadlock on copying from the
2809 * same page as we're writing to, without it being marked
2810 * up-to-date.
2811 *
2812 * Not only is this an optimisation, but it is also required
2813 * to check that the address is actually valid, when atomic
2814 * usercopies are used, below.
2815 */
2816 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2817 status = -EFAULT;
2818 break;
2819 }
2820
296291cd
JK
2821 if (fatal_signal_pending(current)) {
2822 status = -EINTR;
2823 break;
2824 }
2825
674b892e 2826 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2827 &page, &fsdata);
2457aec6 2828 if (unlikely(status < 0))
afddba49
NP
2829 break;
2830
931e80e4 2831 if (mapping_writably_mapped(mapping))
2832 flush_dcache_page(page);
00a3d660 2833
afddba49 2834 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2835 flush_dcache_page(page);
2836
2837 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2838 page, fsdata);
2839 if (unlikely(status < 0))
2840 break;
2841 copied = status;
2842
2843 cond_resched();
2844
124d3b70 2845 iov_iter_advance(i, copied);
afddba49
NP
2846 if (unlikely(copied == 0)) {
2847 /*
2848 * If we were unable to copy any data at all, we must
2849 * fall back to a single segment length write.
2850 *
2851 * If we didn't fallback here, we could livelock
2852 * because not all segments in the iov can be copied at
2853 * once without a pagefault.
2854 */
09cbfeaf 2855 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2856 iov_iter_single_seg_count(i));
2857 goto again;
2858 }
afddba49
NP
2859 pos += copied;
2860 written += copied;
2861
2862 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2863 } while (iov_iter_count(i));
2864
2865 return written ? written : status;
2866}
3b93f911 2867EXPORT_SYMBOL(generic_perform_write);
1da177e4 2868
e4dd9de3 2869/**
8174202b 2870 * __generic_file_write_iter - write data to a file
e4dd9de3 2871 * @iocb: IO state structure (file, offset, etc.)
8174202b 2872 * @from: iov_iter with data to write
e4dd9de3
JK
2873 *
2874 * This function does all the work needed for actually writing data to a
2875 * file. It does all basic checks, removes SUID from the file, updates
2876 * modification times and calls proper subroutines depending on whether we
2877 * do direct IO or a standard buffered write.
2878 *
2879 * It expects i_mutex to be grabbed unless we work on a block device or similar
2880 * object which does not need locking at all.
2881 *
2882 * This function does *not* take care of syncing data in case of O_SYNC write.
2883 * A caller has to handle it. This is mainly due to the fact that we want to
2884 * avoid syncing under i_mutex.
2885 */
8174202b 2886ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2887{
2888 struct file *file = iocb->ki_filp;
fb5527e6 2889 struct address_space * mapping = file->f_mapping;
1da177e4 2890 struct inode *inode = mapping->host;
3b93f911 2891 ssize_t written = 0;
1da177e4 2892 ssize_t err;
3b93f911 2893 ssize_t status;
1da177e4 2894
1da177e4 2895 /* We can write back this queue in page reclaim */
de1414a6 2896 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2897 err = file_remove_privs(file);
1da177e4
LT
2898 if (err)
2899 goto out;
2900
c3b2da31
JB
2901 err = file_update_time(file);
2902 if (err)
2903 goto out;
1da177e4 2904
2ba48ce5 2905 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2906 loff_t pos, endbyte;
fb5527e6 2907
1af5bb49 2908 written = generic_file_direct_write(iocb, from);
1da177e4 2909 /*
fbbbad4b
MW
2910 * If the write stopped short of completing, fall back to
2911 * buffered writes. Some filesystems do this for writes to
2912 * holes, for example. For DAX files, a buffered write will
2913 * not succeed (even if it did, DAX does not handle dirty
2914 * page-cache pages correctly).
1da177e4 2915 */
0b8def9d 2916 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2917 goto out;
2918
0b8def9d 2919 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2920 /*
3b93f911 2921 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2922 * then we want to return the number of bytes which were
2923 * direct-written, or the error code if that was zero. Note
2924 * that this differs from normal direct-io semantics, which
2925 * will return -EFOO even if some bytes were written.
2926 */
60bb4529 2927 if (unlikely(status < 0)) {
3b93f911 2928 err = status;
fb5527e6
JM
2929 goto out;
2930 }
fb5527e6
JM
2931 /*
2932 * We need to ensure that the page cache pages are written to
2933 * disk and invalidated to preserve the expected O_DIRECT
2934 * semantics.
2935 */
3b93f911 2936 endbyte = pos + status - 1;
0b8def9d 2937 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2938 if (err == 0) {
0b8def9d 2939 iocb->ki_pos = endbyte + 1;
3b93f911 2940 written += status;
fb5527e6 2941 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2942 pos >> PAGE_SHIFT,
2943 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2944 } else {
2945 /*
2946 * We don't know how much we wrote, so just return
2947 * the number of bytes which were direct-written
2948 */
2949 }
2950 } else {
0b8def9d
AV
2951 written = generic_perform_write(file, from, iocb->ki_pos);
2952 if (likely(written > 0))
2953 iocb->ki_pos += written;
fb5527e6 2954 }
1da177e4
LT
2955out:
2956 current->backing_dev_info = NULL;
2957 return written ? written : err;
2958}
8174202b 2959EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2960
e4dd9de3 2961/**
8174202b 2962 * generic_file_write_iter - write data to a file
e4dd9de3 2963 * @iocb: IO state structure
8174202b 2964 * @from: iov_iter with data to write
e4dd9de3 2965 *
8174202b 2966 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2967 * filesystems. It takes care of syncing the file in case of O_SYNC file
2968 * and acquires i_mutex as needed.
2969 */
8174202b 2970ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2971{
2972 struct file *file = iocb->ki_filp;
148f948b 2973 struct inode *inode = file->f_mapping->host;
1da177e4 2974 ssize_t ret;
1da177e4 2975
5955102c 2976 inode_lock(inode);
3309dd04
AV
2977 ret = generic_write_checks(iocb, from);
2978 if (ret > 0)
5f380c7f 2979 ret = __generic_file_write_iter(iocb, from);
5955102c 2980 inode_unlock(inode);
1da177e4 2981
e2592217
CH
2982 if (ret > 0)
2983 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2984 return ret;
2985}
8174202b 2986EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2987
cf9a2ae8
DH
2988/**
2989 * try_to_release_page() - release old fs-specific metadata on a page
2990 *
2991 * @page: the page which the kernel is trying to free
2992 * @gfp_mask: memory allocation flags (and I/O mode)
2993 *
2994 * The address_space is to try to release any data against the page
0e056eb5 2995 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
2996 * Otherwise return zero.
2997 *
266cf658
DH
2998 * This may also be called if PG_fscache is set on a page, indicating that the
2999 * page is known to the local caching routines.
3000 *
cf9a2ae8 3001 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3003 *
cf9a2ae8
DH
3004 */
3005int try_to_release_page(struct page *page, gfp_t gfp_mask)
3006{
3007 struct address_space * const mapping = page->mapping;
3008
3009 BUG_ON(!PageLocked(page));
3010 if (PageWriteback(page))
3011 return 0;
3012
3013 if (mapping && mapping->a_ops->releasepage)
3014 return mapping->a_ops->releasepage(page, gfp_mask);
3015 return try_to_free_buffers(page);
3016}
3017
3018EXPORT_SYMBOL(try_to_release_page);