mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERM
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
c7df8ad2 37#include <linux/shmem_fs.h>
f1820361 38#include <linux/rmap.h>
b1d29ba8 39#include <linux/delayacct.h>
eb414681 40#include <linux/psi.h>
0f8053a5
NP
41#include "internal.h"
42
fe0bfaaf
RJ
43#define CREATE_TRACE_POINTS
44#include <trace/events/filemap.h>
45
1da177e4 46/*
1da177e4
LT
47 * FIXME: remove all knowledge of the buffer layer from the core VM
48 */
148f948b 49#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 50
1da177e4
LT
51#include <asm/mman.h>
52
53/*
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
56 *
57 * Shared mappings now work. 15.8.1995 Bruno.
58 *
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61 *
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 */
64
65/*
66 * Lock ordering:
67 *
c8c06efa 68 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 70 * ->swap_lock (exclusive_swap_page, others)
b93b0163 71 * ->i_pages lock
1da177e4 72 *
1b1dcc1b 73 * ->i_mutex
c8c06efa 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
75 *
76 * ->mmap_sem
c8c06efa 77 * ->i_mmap_rwsem
b8072f09 78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
80 *
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
83 *
ccad2365 84 * ->i_mutex (generic_perform_write)
82591e6e 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 86 *
f758eeab 87 * bdi->wb.list_lock
a66979ab 88 * sb_lock (fs/fs-writeback.c)
b93b0163 89 * ->i_pages lock (__sync_single_inode)
1da177e4 90 *
c8c06efa 91 * ->i_mmap_rwsem
1da177e4
LT
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
b8072f09 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 96 *
b8072f09 97 * ->page_table_lock or pte_lock
5d337b91 98 * ->swap_lock (try_to_unmap_one)
1da177e4 99 * ->private_lock (try_to_unmap_one)
b93b0163 100 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
101 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
102 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 103 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 104 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 *
c8c06efa 112 * ->i_mmap_rwsem
9a3c531d 113 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
114 */
115
5c024e6a 116static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
117 struct page *page, void *shadow)
118{
5c024e6a
MW
119 XA_STATE(xas, &mapping->i_pages, page->index);
120 unsigned int nr = 1;
c70b647d 121
5c024e6a 122 mapping_set_update(&xas, mapping);
c70b647d 123
5c024e6a
MW
124 /* hugetlb pages are represented by a single entry in the xarray */
125 if (!PageHuge(page)) {
126 xas_set_order(&xas, page->index, compound_order(page));
127 nr = 1U << compound_order(page);
128 }
91b0abe3 129
83929372
KS
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 VM_BUG_ON_PAGE(PageTail(page), page);
132 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 133
5c024e6a
MW
134 xas_store(&xas, shadow);
135 xas_init_marks(&xas);
d3798ae8 136
2300638b
JK
137 page->mapping = NULL;
138 /* Leave page->index set: truncation lookup relies upon it */
139
d3798ae8
JW
140 if (shadow) {
141 mapping->nrexceptional += nr;
142 /*
143 * Make sure the nrexceptional update is committed before
144 * the nrpages update so that final truncate racing
145 * with reclaim does not see both counters 0 at the
146 * same time and miss a shadow entry.
147 */
148 smp_wmb();
149 }
150 mapping->nrpages -= nr;
91b0abe3
JW
151}
152
5ecc4d85
JK
153static void unaccount_page_cache_page(struct address_space *mapping,
154 struct page *page)
1da177e4 155{
5ecc4d85 156 int nr;
1da177e4 157
c515e1fd
DM
158 /*
159 * if we're uptodate, flush out into the cleancache, otherwise
160 * invalidate any existing cleancache entries. We can't leave
161 * stale data around in the cleancache once our page is gone
162 */
163 if (PageUptodate(page) && PageMappedToDisk(page))
164 cleancache_put_page(page);
165 else
3167760f 166 cleancache_invalidate_page(mapping, page);
c515e1fd 167
83929372 168 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
169 VM_BUG_ON_PAGE(page_mapped(page), page);
170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 int mapcount;
172
173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
174 current->comm, page_to_pfn(page));
175 dump_page(page, "still mapped when deleted");
176 dump_stack();
177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178
179 mapcount = page_mapcount(page);
180 if (mapping_exiting(mapping) &&
181 page_count(page) >= mapcount + 2) {
182 /*
183 * All vmas have already been torn down, so it's
184 * a good bet that actually the page is unmapped,
185 * and we'd prefer not to leak it: if we're wrong,
186 * some other bad page check should catch it later.
187 */
188 page_mapcount_reset(page);
6d061f9f 189 page_ref_sub(page, mapcount);
06b241f3
HD
190 }
191 }
192
4165b9b4 193 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
194 if (PageHuge(page))
195 return;
09612fa6 196
5ecc4d85
JK
197 nr = hpage_nr_pages(page);
198
199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 if (PageSwapBacked(page)) {
201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 if (PageTransHuge(page))
203 __dec_node_page_state(page, NR_SHMEM_THPS);
204 } else {
205 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 206 }
5ecc4d85
JK
207
208 /*
209 * At this point page must be either written or cleaned by
210 * truncate. Dirty page here signals a bug and loss of
211 * unwritten data.
212 *
213 * This fixes dirty accounting after removing the page entirely
214 * but leaves PageDirty set: it has no effect for truncated
215 * page and anyway will be cleared before returning page into
216 * buddy allocator.
217 */
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220}
221
222/*
223 * Delete a page from the page cache and free it. Caller has to make
224 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 225 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
226 */
227void __delete_from_page_cache(struct page *page, void *shadow)
228{
229 struct address_space *mapping = page->mapping;
230
231 trace_mm_filemap_delete_from_page_cache(page);
232
233 unaccount_page_cache_page(mapping, page);
5c024e6a 234 page_cache_delete(mapping, page, shadow);
1da177e4
LT
235}
236
59c66c5f
JK
237static void page_cache_free_page(struct address_space *mapping,
238 struct page *page)
239{
240 void (*freepage)(struct page *);
241
242 freepage = mapping->a_ops->freepage;
243 if (freepage)
244 freepage(page);
245
246 if (PageTransHuge(page) && !PageHuge(page)) {
247 page_ref_sub(page, HPAGE_PMD_NR);
248 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 } else {
250 put_page(page);
251 }
252}
253
702cfbf9
MK
254/**
255 * delete_from_page_cache - delete page from page cache
256 * @page: the page which the kernel is trying to remove from page cache
257 *
258 * This must be called only on pages that have been verified to be in the page
259 * cache and locked. It will never put the page into the free list, the caller
260 * has a reference on the page.
261 */
262void delete_from_page_cache(struct page *page)
1da177e4 263{
83929372 264 struct address_space *mapping = page_mapping(page);
c4843a75 265 unsigned long flags;
1da177e4 266
cd7619d6 267 BUG_ON(!PageLocked(page));
b93b0163 268 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 269 __delete_from_page_cache(page, NULL);
b93b0163 270 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 271
59c66c5f 272 page_cache_free_page(mapping, page);
97cecb5a
MK
273}
274EXPORT_SYMBOL(delete_from_page_cache);
275
aa65c29c 276/*
ef8e5717 277 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
280 *
b93b0163 281 * The function walks over mapping->i_pages and removes pages passed in @pvec
5fd4ca2d
MW
282 * from the mapping. The function expects @pvec to be sorted by page index
283 * and is optimised for it to be dense.
b93b0163 284 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 285 * modified). The function expects only THP head pages to be present in the
5fd4ca2d 286 * @pvec.
aa65c29c 287 *
b93b0163 288 * The function expects the i_pages lock to be held.
aa65c29c 289 */
ef8e5717 290static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
291 struct pagevec *pvec)
292{
ef8e5717 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 294 int total_pages = 0;
5fd4ca2d 295 int i = 0;
aa65c29c 296 struct page *page;
aa65c29c 297
ef8e5717
MW
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
5fd4ca2d 300 if (i >= pagevec_count(pvec))
aa65c29c 301 break;
5fd4ca2d
MW
302
303 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 304 if (xa_is_value(page))
aa65c29c 305 continue;
5fd4ca2d
MW
306 /*
307 * A page got inserted in our range? Skip it. We have our
308 * pages locked so they are protected from being removed.
309 * If we see a page whose index is higher than ours, it
310 * means our page has been removed, which shouldn't be
311 * possible because we're holding the PageLock.
312 */
313 if (page != pvec->pages[i]) {
314 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
315 page);
316 continue;
317 }
318
319 WARN_ON_ONCE(!PageLocked(page));
320
321 if (page->index == xas.xa_index)
aa65c29c 322 page->mapping = NULL;
5fd4ca2d
MW
323 /* Leave page->index set: truncation lookup relies on it */
324
325 /*
326 * Move to the next page in the vector if this is a regular
327 * page or the index is of the last sub-page of this compound
328 * page.
329 */
330 if (page->index + (1UL << compound_order(page)) - 1 ==
331 xas.xa_index)
aa65c29c 332 i++;
ef8e5717 333 xas_store(&xas, NULL);
aa65c29c
JK
334 total_pages++;
335 }
336 mapping->nrpages -= total_pages;
337}
338
339void delete_from_page_cache_batch(struct address_space *mapping,
340 struct pagevec *pvec)
341{
342 int i;
343 unsigned long flags;
344
345 if (!pagevec_count(pvec))
346 return;
347
b93b0163 348 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
349 for (i = 0; i < pagevec_count(pvec); i++) {
350 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
351
352 unaccount_page_cache_page(mapping, pvec->pages[i]);
353 }
ef8e5717 354 page_cache_delete_batch(mapping, pvec);
b93b0163 355 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
356
357 for (i = 0; i < pagevec_count(pvec); i++)
358 page_cache_free_page(mapping, pvec->pages[i]);
359}
360
d72d9e2a 361int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
362{
363 int ret = 0;
364 /* Check for outstanding write errors */
7fcbbaf1
JA
365 if (test_bit(AS_ENOSPC, &mapping->flags) &&
366 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 367 ret = -ENOSPC;
7fcbbaf1
JA
368 if (test_bit(AS_EIO, &mapping->flags) &&
369 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
370 ret = -EIO;
371 return ret;
372}
d72d9e2a 373EXPORT_SYMBOL(filemap_check_errors);
865ffef3 374
76341cab
JL
375static int filemap_check_and_keep_errors(struct address_space *mapping)
376{
377 /* Check for outstanding write errors */
378 if (test_bit(AS_EIO, &mapping->flags))
379 return -EIO;
380 if (test_bit(AS_ENOSPC, &mapping->flags))
381 return -ENOSPC;
382 return 0;
383}
384
1da177e4 385/**
485bb99b 386 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
387 * @mapping: address space structure to write
388 * @start: offset in bytes where the range starts
469eb4d0 389 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 390 * @sync_mode: enable synchronous operation
1da177e4 391 *
485bb99b
RD
392 * Start writeback against all of a mapping's dirty pages that lie
393 * within the byte offsets <start, end> inclusive.
394 *
1da177e4 395 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 396 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
397 * these two operations is that if a dirty page/buffer is encountered, it must
398 * be waited upon, and not just skipped over.
a862f68a
MR
399 *
400 * Return: %0 on success, negative error code otherwise.
1da177e4 401 */
ebcf28e1
AM
402int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
403 loff_t end, int sync_mode)
1da177e4
LT
404{
405 int ret;
406 struct writeback_control wbc = {
407 .sync_mode = sync_mode,
05fe478d 408 .nr_to_write = LONG_MAX,
111ebb6e
OH
409 .range_start = start,
410 .range_end = end,
1da177e4
LT
411 };
412
413 if (!mapping_cap_writeback_dirty(mapping))
414 return 0;
415
b16b1deb 416 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 417 ret = do_writepages(mapping, &wbc);
b16b1deb 418 wbc_detach_inode(&wbc);
1da177e4
LT
419 return ret;
420}
421
422static inline int __filemap_fdatawrite(struct address_space *mapping,
423 int sync_mode)
424{
111ebb6e 425 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
426}
427
428int filemap_fdatawrite(struct address_space *mapping)
429{
430 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
431}
432EXPORT_SYMBOL(filemap_fdatawrite);
433
f4c0a0fd 434int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 435 loff_t end)
1da177e4
LT
436{
437 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
438}
f4c0a0fd 439EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 440
485bb99b
RD
441/**
442 * filemap_flush - mostly a non-blocking flush
443 * @mapping: target address_space
444 *
1da177e4
LT
445 * This is a mostly non-blocking flush. Not suitable for data-integrity
446 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
447 *
448 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
449 */
450int filemap_flush(struct address_space *mapping)
451{
452 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
453}
454EXPORT_SYMBOL(filemap_flush);
455
7fc9e472
GR
456/**
457 * filemap_range_has_page - check if a page exists in range.
458 * @mapping: address space within which to check
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Find at least one page in the range supplied, usually used to check if
463 * direct writing in this range will trigger a writeback.
a862f68a
MR
464 *
465 * Return: %true if at least one page exists in the specified range,
466 * %false otherwise.
7fc9e472
GR
467 */
468bool filemap_range_has_page(struct address_space *mapping,
469 loff_t start_byte, loff_t end_byte)
470{
f7b68046 471 struct page *page;
8fa8e538
MW
472 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
473 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
474
475 if (end_byte < start_byte)
476 return false;
477
8fa8e538
MW
478 rcu_read_lock();
479 for (;;) {
480 page = xas_find(&xas, max);
481 if (xas_retry(&xas, page))
482 continue;
483 /* Shadow entries don't count */
484 if (xa_is_value(page))
485 continue;
486 /*
487 * We don't need to try to pin this page; we're about to
488 * release the RCU lock anyway. It is enough to know that
489 * there was a page here recently.
490 */
491 break;
492 }
493 rcu_read_unlock();
7fc9e472 494
8fa8e538 495 return page != NULL;
7fc9e472
GR
496}
497EXPORT_SYMBOL(filemap_range_has_page);
498
5e8fcc1a 499static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 500 loff_t start_byte, loff_t end_byte)
1da177e4 501{
09cbfeaf
KS
502 pgoff_t index = start_byte >> PAGE_SHIFT;
503 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
504 struct pagevec pvec;
505 int nr_pages;
1da177e4 506
94004ed7 507 if (end_byte < start_byte)
5e8fcc1a 508 return;
1da177e4 509
86679820 510 pagevec_init(&pvec);
312e9d2f 511 while (index <= end) {
1da177e4
LT
512 unsigned i;
513
312e9d2f 514 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 515 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
516 if (!nr_pages)
517 break;
518
1da177e4
LT
519 for (i = 0; i < nr_pages; i++) {
520 struct page *page = pvec.pages[i];
521
1da177e4 522 wait_on_page_writeback(page);
5e8fcc1a 523 ClearPageError(page);
1da177e4
LT
524 }
525 pagevec_release(&pvec);
526 cond_resched();
527 }
aa750fd7
JN
528}
529
530/**
531 * filemap_fdatawait_range - wait for writeback to complete
532 * @mapping: address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
535 *
536 * Walk the list of under-writeback pages of the given address space
537 * in the given range and wait for all of them. Check error status of
538 * the address space and return it.
539 *
540 * Since the error status of the address space is cleared by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
a862f68a
MR
543 *
544 * Return: error status of the address space.
aa750fd7
JN
545 */
546int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
547 loff_t end_byte)
548{
5e8fcc1a
JL
549 __filemap_fdatawait_range(mapping, start_byte, end_byte);
550 return filemap_check_errors(mapping);
1da177e4 551}
d3bccb6f
JK
552EXPORT_SYMBOL(filemap_fdatawait_range);
553
a823e458
JL
554/**
555 * file_fdatawait_range - wait for writeback to complete
556 * @file: file pointing to address space structure to wait for
557 * @start_byte: offset in bytes where the range starts
558 * @end_byte: offset in bytes where the range ends (inclusive)
559 *
560 * Walk the list of under-writeback pages of the address space that file
561 * refers to, in the given range and wait for all of them. Check error
562 * status of the address space vs. the file->f_wb_err cursor and return it.
563 *
564 * Since the error status of the file is advanced by this function,
565 * callers are responsible for checking the return value and handling and/or
566 * reporting the error.
a862f68a
MR
567 *
568 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
569 */
570int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
571{
572 struct address_space *mapping = file->f_mapping;
573
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return file_check_and_advance_wb_err(file);
576}
577EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 578
aa750fd7
JN
579/**
580 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
581 * @mapping: address space structure to wait for
582 *
583 * Walk the list of under-writeback pages of the given address space
584 * and wait for all of them. Unlike filemap_fdatawait(), this function
585 * does not clear error status of the address space.
586 *
587 * Use this function if callers don't handle errors themselves. Expected
588 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
589 * fsfreeze(8)
a862f68a
MR
590 *
591 * Return: error status of the address space.
aa750fd7 592 */
76341cab 593int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 594{
ffb959bb 595 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 596 return filemap_check_and_keep_errors(mapping);
aa750fd7 597}
76341cab 598EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 599
9326c9b2 600static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 601{
9326c9b2
JL
602 return (!dax_mapping(mapping) && mapping->nrpages) ||
603 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 604}
1da177e4
LT
605
606int filemap_write_and_wait(struct address_space *mapping)
607{
28fd1298 608 int err = 0;
1da177e4 609
9326c9b2 610 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
611 err = filemap_fdatawrite(mapping);
612 /*
613 * Even if the above returned error, the pages may be
614 * written partially (e.g. -ENOSPC), so we wait for it.
615 * But the -EIO is special case, it may indicate the worst
616 * thing (e.g. bug) happened, so we avoid waiting for it.
617 */
618 if (err != -EIO) {
619 int err2 = filemap_fdatawait(mapping);
620 if (!err)
621 err = err2;
cbeaf951
JL
622 } else {
623 /* Clear any previously stored errors */
624 filemap_check_errors(mapping);
28fd1298 625 }
865ffef3
DM
626 } else {
627 err = filemap_check_errors(mapping);
1da177e4 628 }
28fd1298 629 return err;
1da177e4 630}
28fd1298 631EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 632
485bb99b
RD
633/**
634 * filemap_write_and_wait_range - write out & wait on a file range
635 * @mapping: the address_space for the pages
636 * @lstart: offset in bytes where the range starts
637 * @lend: offset in bytes where the range ends (inclusive)
638 *
469eb4d0
AM
639 * Write out and wait upon file offsets lstart->lend, inclusive.
640 *
0e056eb5 641 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 642 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
643 *
644 * Return: error status of the address space.
469eb4d0 645 */
1da177e4
LT
646int filemap_write_and_wait_range(struct address_space *mapping,
647 loff_t lstart, loff_t lend)
648{
28fd1298 649 int err = 0;
1da177e4 650
9326c9b2 651 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
652 err = __filemap_fdatawrite_range(mapping, lstart, lend,
653 WB_SYNC_ALL);
654 /* See comment of filemap_write_and_wait() */
655 if (err != -EIO) {
94004ed7
CH
656 int err2 = filemap_fdatawait_range(mapping,
657 lstart, lend);
28fd1298
OH
658 if (!err)
659 err = err2;
cbeaf951
JL
660 } else {
661 /* Clear any previously stored errors */
662 filemap_check_errors(mapping);
28fd1298 663 }
865ffef3
DM
664 } else {
665 err = filemap_check_errors(mapping);
1da177e4 666 }
28fd1298 667 return err;
1da177e4 668}
f6995585 669EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 670
5660e13d
JL
671void __filemap_set_wb_err(struct address_space *mapping, int err)
672{
3acdfd28 673 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
674
675 trace_filemap_set_wb_err(mapping, eseq);
676}
677EXPORT_SYMBOL(__filemap_set_wb_err);
678
679/**
680 * file_check_and_advance_wb_err - report wb error (if any) that was previously
681 * and advance wb_err to current one
682 * @file: struct file on which the error is being reported
683 *
684 * When userland calls fsync (or something like nfsd does the equivalent), we
685 * want to report any writeback errors that occurred since the last fsync (or
686 * since the file was opened if there haven't been any).
687 *
688 * Grab the wb_err from the mapping. If it matches what we have in the file,
689 * then just quickly return 0. The file is all caught up.
690 *
691 * If it doesn't match, then take the mapping value, set the "seen" flag in
692 * it and try to swap it into place. If it works, or another task beat us
693 * to it with the new value, then update the f_wb_err and return the error
694 * portion. The error at this point must be reported via proper channels
695 * (a'la fsync, or NFS COMMIT operation, etc.).
696 *
697 * While we handle mapping->wb_err with atomic operations, the f_wb_err
698 * value is protected by the f_lock since we must ensure that it reflects
699 * the latest value swapped in for this file descriptor.
a862f68a
MR
700 *
701 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
702 */
703int file_check_and_advance_wb_err(struct file *file)
704{
705 int err = 0;
706 errseq_t old = READ_ONCE(file->f_wb_err);
707 struct address_space *mapping = file->f_mapping;
708
709 /* Locklessly handle the common case where nothing has changed */
710 if (errseq_check(&mapping->wb_err, old)) {
711 /* Something changed, must use slow path */
712 spin_lock(&file->f_lock);
713 old = file->f_wb_err;
714 err = errseq_check_and_advance(&mapping->wb_err,
715 &file->f_wb_err);
716 trace_file_check_and_advance_wb_err(file, old);
717 spin_unlock(&file->f_lock);
718 }
f4e222c5
JL
719
720 /*
721 * We're mostly using this function as a drop in replacement for
722 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
723 * that the legacy code would have had on these flags.
724 */
725 clear_bit(AS_EIO, &mapping->flags);
726 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
727 return err;
728}
729EXPORT_SYMBOL(file_check_and_advance_wb_err);
730
731/**
732 * file_write_and_wait_range - write out & wait on a file range
733 * @file: file pointing to address_space with pages
734 * @lstart: offset in bytes where the range starts
735 * @lend: offset in bytes where the range ends (inclusive)
736 *
737 * Write out and wait upon file offsets lstart->lend, inclusive.
738 *
739 * Note that @lend is inclusive (describes the last byte to be written) so
740 * that this function can be used to write to the very end-of-file (end = -1).
741 *
742 * After writing out and waiting on the data, we check and advance the
743 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
744 *
745 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
746 */
747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
748{
749 int err = 0, err2;
750 struct address_space *mapping = file->f_mapping;
751
9326c9b2 752 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
754 WB_SYNC_ALL);
755 /* See comment of filemap_write_and_wait() */
756 if (err != -EIO)
757 __filemap_fdatawait_range(mapping, lstart, lend);
758 }
759 err2 = file_check_and_advance_wb_err(file);
760 if (!err)
761 err = err2;
762 return err;
763}
764EXPORT_SYMBOL(file_write_and_wait_range);
765
ef6a3c63
MS
766/**
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
771 *
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
777 *
74d60958 778 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
779 *
780 * Return: %0
ef6a3c63
MS
781 */
782int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
783{
74d60958
MW
784 struct address_space *mapping = old->mapping;
785 void (*freepage)(struct page *) = mapping->a_ops->freepage;
786 pgoff_t offset = old->index;
787 XA_STATE(xas, &mapping->i_pages, offset);
788 unsigned long flags;
ef6a3c63 789
309381fe
SL
790 VM_BUG_ON_PAGE(!PageLocked(old), old);
791 VM_BUG_ON_PAGE(!PageLocked(new), new);
792 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 793
74d60958
MW
794 get_page(new);
795 new->mapping = mapping;
796 new->index = offset;
ef6a3c63 797
74d60958
MW
798 xas_lock_irqsave(&xas, flags);
799 xas_store(&xas, new);
4165b9b4 800
74d60958
MW
801 old->mapping = NULL;
802 /* hugetlb pages do not participate in page cache accounting. */
803 if (!PageHuge(old))
804 __dec_node_page_state(new, NR_FILE_PAGES);
805 if (!PageHuge(new))
806 __inc_node_page_state(new, NR_FILE_PAGES);
807 if (PageSwapBacked(old))
808 __dec_node_page_state(new, NR_SHMEM);
809 if (PageSwapBacked(new))
810 __inc_node_page_state(new, NR_SHMEM);
811 xas_unlock_irqrestore(&xas, flags);
812 mem_cgroup_migrate(old, new);
813 if (freepage)
814 freepage(old);
815 put_page(old);
ef6a3c63 816
74d60958 817 return 0;
ef6a3c63
MS
818}
819EXPORT_SYMBOL_GPL(replace_page_cache_page);
820
a528910e
JW
821static int __add_to_page_cache_locked(struct page *page,
822 struct address_space *mapping,
823 pgoff_t offset, gfp_t gfp_mask,
824 void **shadowp)
1da177e4 825{
74d60958 826 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
827 int huge = PageHuge(page);
828 struct mem_cgroup *memcg;
e286781d 829 int error;
74d60958 830 void *old;
e286781d 831
309381fe
SL
832 VM_BUG_ON_PAGE(!PageLocked(page), page);
833 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 834 mapping_set_update(&xas, mapping);
e286781d 835
00501b53
JW
836 if (!huge) {
837 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 838 gfp_mask, &memcg, false);
00501b53
JW
839 if (error)
840 return error;
841 }
1da177e4 842
09cbfeaf 843 get_page(page);
66a0c8ee
KS
844 page->mapping = mapping;
845 page->index = offset;
846
74d60958
MW
847 do {
848 xas_lock_irq(&xas);
849 old = xas_load(&xas);
850 if (old && !xa_is_value(old))
851 xas_set_err(&xas, -EEXIST);
852 xas_store(&xas, page);
853 if (xas_error(&xas))
854 goto unlock;
855
856 if (xa_is_value(old)) {
857 mapping->nrexceptional--;
858 if (shadowp)
859 *shadowp = old;
860 }
861 mapping->nrpages++;
862
863 /* hugetlb pages do not participate in page cache accounting */
864 if (!huge)
865 __inc_node_page_state(page, NR_FILE_PAGES);
866unlock:
867 xas_unlock_irq(&xas);
868 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
869
870 if (xas_error(&xas))
871 goto error;
4165b9b4 872
00501b53 873 if (!huge)
f627c2f5 874 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
875 trace_mm_filemap_add_to_page_cache(page);
876 return 0;
74d60958 877error:
66a0c8ee
KS
878 page->mapping = NULL;
879 /* Leave page->index set: truncation relies upon it */
00501b53 880 if (!huge)
f627c2f5 881 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 882 put_page(page);
74d60958 883 return xas_error(&xas);
1da177e4 884}
a528910e
JW
885
886/**
887 * add_to_page_cache_locked - add a locked page to the pagecache
888 * @page: page to add
889 * @mapping: the page's address_space
890 * @offset: page index
891 * @gfp_mask: page allocation mode
892 *
893 * This function is used to add a page to the pagecache. It must be locked.
894 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
895 *
896 * Return: %0 on success, negative error code otherwise.
a528910e
JW
897 */
898int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
899 pgoff_t offset, gfp_t gfp_mask)
900{
901 return __add_to_page_cache_locked(page, mapping, offset,
902 gfp_mask, NULL);
903}
e286781d 904EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
905
906int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 907 pgoff_t offset, gfp_t gfp_mask)
1da177e4 908{
a528910e 909 void *shadow = NULL;
4f98a2fe
RR
910 int ret;
911
48c935ad 912 __SetPageLocked(page);
a528910e
JW
913 ret = __add_to_page_cache_locked(page, mapping, offset,
914 gfp_mask, &shadow);
915 if (unlikely(ret))
48c935ad 916 __ClearPageLocked(page);
a528910e
JW
917 else {
918 /*
919 * The page might have been evicted from cache only
920 * recently, in which case it should be activated like
921 * any other repeatedly accessed page.
f0281a00
RR
922 * The exception is pages getting rewritten; evicting other
923 * data from the working set, only to cache data that will
924 * get overwritten with something else, is a waste of memory.
a528910e 925 */
1899ad18
JW
926 WARN_ON_ONCE(PageActive(page));
927 if (!(gfp_mask & __GFP_WRITE) && shadow)
928 workingset_refault(page, shadow);
a528910e
JW
929 lru_cache_add(page);
930 }
1da177e4
LT
931 return ret;
932}
18bc0bbd 933EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 934
44110fe3 935#ifdef CONFIG_NUMA
2ae88149 936struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 937{
c0ff7453
MX
938 int n;
939 struct page *page;
940
44110fe3 941 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
942 unsigned int cpuset_mems_cookie;
943 do {
d26914d1 944 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 945 n = cpuset_mem_spread_node();
96db800f 946 page = __alloc_pages_node(n, gfp, 0);
d26914d1 947 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 948
c0ff7453 949 return page;
44110fe3 950 }
2ae88149 951 return alloc_pages(gfp, 0);
44110fe3 952}
2ae88149 953EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
954#endif
955
1da177e4
LT
956/*
957 * In order to wait for pages to become available there must be
958 * waitqueues associated with pages. By using a hash table of
959 * waitqueues where the bucket discipline is to maintain all
960 * waiters on the same queue and wake all when any of the pages
961 * become available, and for the woken contexts to check to be
962 * sure the appropriate page became available, this saves space
963 * at a cost of "thundering herd" phenomena during rare hash
964 * collisions.
965 */
62906027
NP
966#define PAGE_WAIT_TABLE_BITS 8
967#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
968static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
969
970static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 971{
62906027 972 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 973}
1da177e4 974
62906027 975void __init pagecache_init(void)
1da177e4 976{
62906027 977 int i;
1da177e4 978
62906027
NP
979 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
980 init_waitqueue_head(&page_wait_table[i]);
981
982 page_writeback_init();
1da177e4 983}
1da177e4 984
3510ca20 985/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
986struct wait_page_key {
987 struct page *page;
988 int bit_nr;
989 int page_match;
990};
991
992struct wait_page_queue {
993 struct page *page;
994 int bit_nr;
ac6424b9 995 wait_queue_entry_t wait;
62906027
NP
996};
997
ac6424b9 998static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 999{
62906027
NP
1000 struct wait_page_key *key = arg;
1001 struct wait_page_queue *wait_page
1002 = container_of(wait, struct wait_page_queue, wait);
1003
1004 if (wait_page->page != key->page)
1005 return 0;
1006 key->page_match = 1;
f62e00cc 1007
62906027
NP
1008 if (wait_page->bit_nr != key->bit_nr)
1009 return 0;
3510ca20 1010
9a1ea439
HD
1011 /*
1012 * Stop walking if it's locked.
1013 * Is this safe if put_and_wait_on_page_locked() is in use?
1014 * Yes: the waker must hold a reference to this page, and if PG_locked
1015 * has now already been set by another task, that task must also hold
1016 * a reference to the *same usage* of this page; so there is no need
1017 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1018 */
62906027 1019 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1020 return -1;
f62e00cc 1021
62906027 1022 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1023}
1024
74d81bfa 1025static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1026{
62906027
NP
1027 wait_queue_head_t *q = page_waitqueue(page);
1028 struct wait_page_key key;
1029 unsigned long flags;
11a19c7b 1030 wait_queue_entry_t bookmark;
cbbce822 1031
62906027
NP
1032 key.page = page;
1033 key.bit_nr = bit_nr;
1034 key.page_match = 0;
1035
11a19c7b
TC
1036 bookmark.flags = 0;
1037 bookmark.private = NULL;
1038 bookmark.func = NULL;
1039 INIT_LIST_HEAD(&bookmark.entry);
1040
62906027 1041 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043
1044 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1045 /*
1046 * Take a breather from holding the lock,
1047 * allow pages that finish wake up asynchronously
1048 * to acquire the lock and remove themselves
1049 * from wait queue
1050 */
1051 spin_unlock_irqrestore(&q->lock, flags);
1052 cpu_relax();
1053 spin_lock_irqsave(&q->lock, flags);
1054 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1055 }
1056
62906027
NP
1057 /*
1058 * It is possible for other pages to have collided on the waitqueue
1059 * hash, so in that case check for a page match. That prevents a long-
1060 * term waiter
1061 *
1062 * It is still possible to miss a case here, when we woke page waiters
1063 * and removed them from the waitqueue, but there are still other
1064 * page waiters.
1065 */
1066 if (!waitqueue_active(q) || !key.page_match) {
1067 ClearPageWaiters(page);
1068 /*
1069 * It's possible to miss clearing Waiters here, when we woke
1070 * our page waiters, but the hashed waitqueue has waiters for
1071 * other pages on it.
1072 *
1073 * That's okay, it's a rare case. The next waker will clear it.
1074 */
1075 }
1076 spin_unlock_irqrestore(&q->lock, flags);
1077}
74d81bfa
NP
1078
1079static void wake_up_page(struct page *page, int bit)
1080{
1081 if (!PageWaiters(page))
1082 return;
1083 wake_up_page_bit(page, bit);
1084}
62906027 1085
9a1ea439
HD
1086/*
1087 * A choice of three behaviors for wait_on_page_bit_common():
1088 */
1089enum behavior {
1090 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1091 * __lock_page() waiting on then setting PG_locked.
1092 */
1093 SHARED, /* Hold ref to page and check the bit when woken, like
1094 * wait_on_page_writeback() waiting on PG_writeback.
1095 */
1096 DROP, /* Drop ref to page before wait, no check when woken,
1097 * like put_and_wait_on_page_locked() on PG_locked.
1098 */
1099};
1100
62906027 1101static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1102 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1103{
1104 struct wait_page_queue wait_page;
ac6424b9 1105 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1106 bool bit_is_set;
b1d29ba8 1107 bool thrashing = false;
9a1ea439 1108 bool delayacct = false;
eb414681 1109 unsigned long pflags;
62906027
NP
1110 int ret = 0;
1111
eb414681 1112 if (bit_nr == PG_locked &&
b1d29ba8 1113 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1114 if (!PageSwapBacked(page)) {
eb414681 1115 delayacct_thrashing_start();
9a1ea439
HD
1116 delayacct = true;
1117 }
eb414681 1118 psi_memstall_enter(&pflags);
b1d29ba8
JW
1119 thrashing = true;
1120 }
1121
62906027 1122 init_wait(wait);
9a1ea439 1123 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1124 wait->func = wake_page_function;
1125 wait_page.page = page;
1126 wait_page.bit_nr = bit_nr;
1127
1128 for (;;) {
1129 spin_lock_irq(&q->lock);
1130
2055da97 1131 if (likely(list_empty(&wait->entry))) {
3510ca20 1132 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1133 SetPageWaiters(page);
1134 }
1135
1136 set_current_state(state);
1137
1138 spin_unlock_irq(&q->lock);
1139
9a1ea439
HD
1140 bit_is_set = test_bit(bit_nr, &page->flags);
1141 if (behavior == DROP)
1142 put_page(page);
1143
1144 if (likely(bit_is_set))
62906027 1145 io_schedule();
62906027 1146
9a1ea439 1147 if (behavior == EXCLUSIVE) {
62906027
NP
1148 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1149 break;
9a1ea439 1150 } else if (behavior == SHARED) {
62906027
NP
1151 if (!test_bit(bit_nr, &page->flags))
1152 break;
1153 }
a8b169af 1154
fa45f116 1155 if (signal_pending_state(state, current)) {
a8b169af
LT
1156 ret = -EINTR;
1157 break;
1158 }
9a1ea439
HD
1159
1160 if (behavior == DROP) {
1161 /*
1162 * We can no longer safely access page->flags:
1163 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1164 * there is a risk of waiting forever on a page reused
1165 * for something that keeps it locked indefinitely.
1166 * But best check for -EINTR above before breaking.
1167 */
1168 break;
1169 }
62906027
NP
1170 }
1171
1172 finish_wait(q, wait);
1173
eb414681 1174 if (thrashing) {
9a1ea439 1175 if (delayacct)
eb414681
JW
1176 delayacct_thrashing_end();
1177 psi_memstall_leave(&pflags);
1178 }
b1d29ba8 1179
62906027
NP
1180 /*
1181 * A signal could leave PageWaiters set. Clearing it here if
1182 * !waitqueue_active would be possible (by open-coding finish_wait),
1183 * but still fail to catch it in the case of wait hash collision. We
1184 * already can fail to clear wait hash collision cases, so don't
1185 * bother with signals either.
1186 */
1187
1188 return ret;
1189}
1190
1191void wait_on_page_bit(struct page *page, int bit_nr)
1192{
1193 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1194 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1195}
1196EXPORT_SYMBOL(wait_on_page_bit);
1197
1198int wait_on_page_bit_killable(struct page *page, int bit_nr)
1199{
1200 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1201 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1202}
4343d008 1203EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1204
9a1ea439
HD
1205/**
1206 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1207 * @page: The page to wait for.
1208 *
1209 * The caller should hold a reference on @page. They expect the page to
1210 * become unlocked relatively soon, but do not wish to hold up migration
1211 * (for example) by holding the reference while waiting for the page to
1212 * come unlocked. After this function returns, the caller should not
1213 * dereference @page.
1214 */
1215void put_and_wait_on_page_locked(struct page *page)
1216{
1217 wait_queue_head_t *q;
1218
1219 page = compound_head(page);
1220 q = page_waitqueue(page);
1221 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1222}
1223
385e1ca5
DH
1224/**
1225 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1226 * @page: Page defining the wait queue of interest
1227 * @waiter: Waiter to add to the queue
385e1ca5
DH
1228 *
1229 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1230 */
ac6424b9 1231void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1232{
1233 wait_queue_head_t *q = page_waitqueue(page);
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1237 __add_wait_queue_entry_tail(q, waiter);
62906027 1238 SetPageWaiters(page);
385e1ca5
DH
1239 spin_unlock_irqrestore(&q->lock, flags);
1240}
1241EXPORT_SYMBOL_GPL(add_page_wait_queue);
1242
b91e1302
LT
1243#ifndef clear_bit_unlock_is_negative_byte
1244
1245/*
1246 * PG_waiters is the high bit in the same byte as PG_lock.
1247 *
1248 * On x86 (and on many other architectures), we can clear PG_lock and
1249 * test the sign bit at the same time. But if the architecture does
1250 * not support that special operation, we just do this all by hand
1251 * instead.
1252 *
1253 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1254 * being cleared, but a memory barrier should be unneccssary since it is
1255 * in the same byte as PG_locked.
1256 */
1257static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1258{
1259 clear_bit_unlock(nr, mem);
1260 /* smp_mb__after_atomic(); */
98473f9f 1261 return test_bit(PG_waiters, mem);
b91e1302
LT
1262}
1263
1264#endif
1265
1da177e4 1266/**
485bb99b 1267 * unlock_page - unlock a locked page
1da177e4
LT
1268 * @page: the page
1269 *
1270 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1271 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1272 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1273 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1274 *
b91e1302
LT
1275 * Note that this depends on PG_waiters being the sign bit in the byte
1276 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1277 * clear the PG_locked bit and test PG_waiters at the same time fairly
1278 * portably (architectures that do LL/SC can test any bit, while x86 can
1279 * test the sign bit).
1da177e4 1280 */
920c7a5d 1281void unlock_page(struct page *page)
1da177e4 1282{
b91e1302 1283 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1284 page = compound_head(page);
309381fe 1285 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1286 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1287 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1288}
1289EXPORT_SYMBOL(unlock_page);
1290
485bb99b
RD
1291/**
1292 * end_page_writeback - end writeback against a page
1293 * @page: the page
1da177e4
LT
1294 */
1295void end_page_writeback(struct page *page)
1296{
888cf2db
MG
1297 /*
1298 * TestClearPageReclaim could be used here but it is an atomic
1299 * operation and overkill in this particular case. Failing to
1300 * shuffle a page marked for immediate reclaim is too mild to
1301 * justify taking an atomic operation penalty at the end of
1302 * ever page writeback.
1303 */
1304 if (PageReclaim(page)) {
1305 ClearPageReclaim(page);
ac6aadb2 1306 rotate_reclaimable_page(page);
888cf2db 1307 }
ac6aadb2
MS
1308
1309 if (!test_clear_page_writeback(page))
1310 BUG();
1311
4e857c58 1312 smp_mb__after_atomic();
1da177e4
LT
1313 wake_up_page(page, PG_writeback);
1314}
1315EXPORT_SYMBOL(end_page_writeback);
1316
57d99845
MW
1317/*
1318 * After completing I/O on a page, call this routine to update the page
1319 * flags appropriately
1320 */
c11f0c0b 1321void page_endio(struct page *page, bool is_write, int err)
57d99845 1322{
c11f0c0b 1323 if (!is_write) {
57d99845
MW
1324 if (!err) {
1325 SetPageUptodate(page);
1326 } else {
1327 ClearPageUptodate(page);
1328 SetPageError(page);
1329 }
1330 unlock_page(page);
abf54548 1331 } else {
57d99845 1332 if (err) {
dd8416c4
MK
1333 struct address_space *mapping;
1334
57d99845 1335 SetPageError(page);
dd8416c4
MK
1336 mapping = page_mapping(page);
1337 if (mapping)
1338 mapping_set_error(mapping, err);
57d99845
MW
1339 }
1340 end_page_writeback(page);
1341 }
1342}
1343EXPORT_SYMBOL_GPL(page_endio);
1344
485bb99b
RD
1345/**
1346 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1347 * @__page: the page to lock
1da177e4 1348 */
62906027 1349void __lock_page(struct page *__page)
1da177e4 1350{
62906027
NP
1351 struct page *page = compound_head(__page);
1352 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1353 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1354 EXCLUSIVE);
1da177e4
LT
1355}
1356EXPORT_SYMBOL(__lock_page);
1357
62906027 1358int __lock_page_killable(struct page *__page)
2687a356 1359{
62906027
NP
1360 struct page *page = compound_head(__page);
1361 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1362 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1363 EXCLUSIVE);
2687a356 1364}
18bc0bbd 1365EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1366
9a95f3cf
PC
1367/*
1368 * Return values:
1369 * 1 - page is locked; mmap_sem is still held.
1370 * 0 - page is not locked.
1371 * mmap_sem has been released (up_read()), unless flags had both
1372 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1373 * which case mmap_sem is still held.
1374 *
1375 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1376 * with the page locked and the mmap_sem unperturbed.
1377 */
d065bd81
ML
1378int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1379 unsigned int flags)
1380{
37b23e05
KM
1381 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1382 /*
1383 * CAUTION! In this case, mmap_sem is not released
1384 * even though return 0.
1385 */
1386 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1387 return 0;
1388
1389 up_read(&mm->mmap_sem);
1390 if (flags & FAULT_FLAG_KILLABLE)
1391 wait_on_page_locked_killable(page);
1392 else
318b275f 1393 wait_on_page_locked(page);
d065bd81 1394 return 0;
37b23e05
KM
1395 } else {
1396 if (flags & FAULT_FLAG_KILLABLE) {
1397 int ret;
1398
1399 ret = __lock_page_killable(page);
1400 if (ret) {
1401 up_read(&mm->mmap_sem);
1402 return 0;
1403 }
1404 } else
1405 __lock_page(page);
1406 return 1;
d065bd81
ML
1407 }
1408}
1409
e7b563bb 1410/**
0d3f9296
MW
1411 * page_cache_next_miss() - Find the next gap in the page cache.
1412 * @mapping: Mapping.
1413 * @index: Index.
1414 * @max_scan: Maximum range to search.
e7b563bb 1415 *
0d3f9296
MW
1416 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1417 * gap with the lowest index.
e7b563bb 1418 *
0d3f9296
MW
1419 * This function may be called under the rcu_read_lock. However, this will
1420 * not atomically search a snapshot of the cache at a single point in time.
1421 * For example, if a gap is created at index 5, then subsequently a gap is
1422 * created at index 10, page_cache_next_miss covering both indices may
1423 * return 10 if called under the rcu_read_lock.
e7b563bb 1424 *
0d3f9296
MW
1425 * Return: The index of the gap if found, otherwise an index outside the
1426 * range specified (in which case 'return - index >= max_scan' will be true).
1427 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1428 */
0d3f9296 1429pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1430 pgoff_t index, unsigned long max_scan)
1431{
0d3f9296 1432 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1433
0d3f9296
MW
1434 while (max_scan--) {
1435 void *entry = xas_next(&xas);
1436 if (!entry || xa_is_value(entry))
e7b563bb 1437 break;
0d3f9296 1438 if (xas.xa_index == 0)
e7b563bb
JW
1439 break;
1440 }
1441
0d3f9296 1442 return xas.xa_index;
e7b563bb 1443}
0d3f9296 1444EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1445
1446/**
0d3f9296
MW
1447 * page_cache_prev_miss() - Find the next gap in the page cache.
1448 * @mapping: Mapping.
1449 * @index: Index.
1450 * @max_scan: Maximum range to search.
e7b563bb 1451 *
0d3f9296
MW
1452 * Search the range [max(index - max_scan + 1, 0), index] for the
1453 * gap with the highest index.
e7b563bb 1454 *
0d3f9296
MW
1455 * This function may be called under the rcu_read_lock. However, this will
1456 * not atomically search a snapshot of the cache at a single point in time.
1457 * For example, if a gap is created at index 10, then subsequently a gap is
1458 * created at index 5, page_cache_prev_miss() covering both indices may
1459 * return 5 if called under the rcu_read_lock.
e7b563bb 1460 *
0d3f9296
MW
1461 * Return: The index of the gap if found, otherwise an index outside the
1462 * range specified (in which case 'index - return >= max_scan' will be true).
1463 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1464 */
0d3f9296 1465pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1466 pgoff_t index, unsigned long max_scan)
1467{
0d3f9296 1468 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1469
0d3f9296
MW
1470 while (max_scan--) {
1471 void *entry = xas_prev(&xas);
1472 if (!entry || xa_is_value(entry))
e7b563bb 1473 break;
0d3f9296 1474 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1475 break;
1476 }
1477
0d3f9296 1478 return xas.xa_index;
e7b563bb 1479}
0d3f9296 1480EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1481
485bb99b 1482/**
0cd6144a 1483 * find_get_entry - find and get a page cache entry
485bb99b 1484 * @mapping: the address_space to search
0cd6144a
JW
1485 * @offset: the page cache index
1486 *
1487 * Looks up the page cache slot at @mapping & @offset. If there is a
1488 * page cache page, it is returned with an increased refcount.
485bb99b 1489 *
139b6a6f
JW
1490 * If the slot holds a shadow entry of a previously evicted page, or a
1491 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1492 *
a862f68a 1493 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1494 */
0cd6144a 1495struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1496{
4c7472c0 1497 XA_STATE(xas, &mapping->i_pages, offset);
5fd4ca2d 1498 struct page *page;
1da177e4 1499
a60637c8
NP
1500 rcu_read_lock();
1501repeat:
4c7472c0
MW
1502 xas_reset(&xas);
1503 page = xas_load(&xas);
1504 if (xas_retry(&xas, page))
1505 goto repeat;
1506 /*
1507 * A shadow entry of a recently evicted page, or a swap entry from
1508 * shmem/tmpfs. Return it without attempting to raise page count.
1509 */
1510 if (!page || xa_is_value(page))
1511 goto out;
83929372 1512
5fd4ca2d 1513 if (!page_cache_get_speculative(page))
4c7472c0 1514 goto repeat;
83929372 1515
4c7472c0 1516 /*
5fd4ca2d 1517 * Has the page moved or been split?
4c7472c0
MW
1518 * This is part of the lockless pagecache protocol. See
1519 * include/linux/pagemap.h for details.
1520 */
1521 if (unlikely(page != xas_reload(&xas))) {
5fd4ca2d 1522 put_page(page);
4c7472c0 1523 goto repeat;
a60637c8 1524 }
5fd4ca2d 1525 page = find_subpage(page, offset);
27d20fdd 1526out:
a60637c8
NP
1527 rcu_read_unlock();
1528
1da177e4
LT
1529 return page;
1530}
0cd6144a 1531EXPORT_SYMBOL(find_get_entry);
1da177e4 1532
0cd6144a
JW
1533/**
1534 * find_lock_entry - locate, pin and lock a page cache entry
1535 * @mapping: the address_space to search
1536 * @offset: the page cache index
1537 *
1538 * Looks up the page cache slot at @mapping & @offset. If there is a
1539 * page cache page, it is returned locked and with an increased
1540 * refcount.
1541 *
139b6a6f
JW
1542 * If the slot holds a shadow entry of a previously evicted page, or a
1543 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1544 *
0cd6144a 1545 * find_lock_entry() may sleep.
a862f68a
MR
1546 *
1547 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1548 */
1549struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1550{
1551 struct page *page;
1552
1da177e4 1553repeat:
0cd6144a 1554 page = find_get_entry(mapping, offset);
4c7472c0 1555 if (page && !xa_is_value(page)) {
a60637c8
NP
1556 lock_page(page);
1557 /* Has the page been truncated? */
83929372 1558 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1559 unlock_page(page);
09cbfeaf 1560 put_page(page);
a60637c8 1561 goto repeat;
1da177e4 1562 }
83929372 1563 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1564 }
1da177e4
LT
1565 return page;
1566}
0cd6144a
JW
1567EXPORT_SYMBOL(find_lock_entry);
1568
1569/**
2457aec6 1570 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1571 * @mapping: the address_space to search
1572 * @offset: the page index
2457aec6 1573 * @fgp_flags: PCG flags
45f87de5 1574 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1575 *
2457aec6 1576 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1577 *
75325189 1578 * PCG flags modify how the page is returned.
0cd6144a 1579 *
0e056eb5 1580 * @fgp_flags can be:
1581 *
1582 * - FGP_ACCESSED: the page will be marked accessed
1583 * - FGP_LOCK: Page is return locked
1584 * - FGP_CREAT: If page is not present then a new page is allocated using
1585 * @gfp_mask and added to the page cache and the VM's LRU
1586 * list. The page is returned locked and with an increased
a862f68a 1587 * refcount.
a75d4c33
JB
1588 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1589 * its own locking dance if the page is already in cache, or unlock the page
1590 * before returning if we had to add the page to pagecache.
1da177e4 1591 *
2457aec6
MG
1592 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1593 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1594 *
2457aec6 1595 * If there is a page cache page, it is returned with an increased refcount.
a862f68a
MR
1596 *
1597 * Return: the found page or %NULL otherwise.
1da177e4 1598 */
2457aec6 1599struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1600 int fgp_flags, gfp_t gfp_mask)
1da177e4 1601{
eb2be189 1602 struct page *page;
2457aec6 1603
1da177e4 1604repeat:
2457aec6 1605 page = find_get_entry(mapping, offset);
3159f943 1606 if (xa_is_value(page))
2457aec6
MG
1607 page = NULL;
1608 if (!page)
1609 goto no_page;
1610
1611 if (fgp_flags & FGP_LOCK) {
1612 if (fgp_flags & FGP_NOWAIT) {
1613 if (!trylock_page(page)) {
09cbfeaf 1614 put_page(page);
2457aec6
MG
1615 return NULL;
1616 }
1617 } else {
1618 lock_page(page);
1619 }
1620
1621 /* Has the page been truncated? */
1622 if (unlikely(page->mapping != mapping)) {
1623 unlock_page(page);
09cbfeaf 1624 put_page(page);
2457aec6
MG
1625 goto repeat;
1626 }
1627 VM_BUG_ON_PAGE(page->index != offset, page);
1628 }
1629
c16eb000 1630 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1631 mark_page_accessed(page);
1632
1633no_page:
1634 if (!page && (fgp_flags & FGP_CREAT)) {
1635 int err;
1636 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1637 gfp_mask |= __GFP_WRITE;
1638 if (fgp_flags & FGP_NOFS)
1639 gfp_mask &= ~__GFP_FS;
2457aec6 1640
45f87de5 1641 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1642 if (!page)
1643 return NULL;
2457aec6 1644
a75d4c33 1645 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1646 fgp_flags |= FGP_LOCK;
1647
eb39d618 1648 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1649 if (fgp_flags & FGP_ACCESSED)
eb39d618 1650 __SetPageReferenced(page);
2457aec6 1651
abc1be13 1652 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1653 if (unlikely(err)) {
09cbfeaf 1654 put_page(page);
eb2be189
NP
1655 page = NULL;
1656 if (err == -EEXIST)
1657 goto repeat;
1da177e4 1658 }
a75d4c33
JB
1659
1660 /*
1661 * add_to_page_cache_lru locks the page, and for mmap we expect
1662 * an unlocked page.
1663 */
1664 if (page && (fgp_flags & FGP_FOR_MMAP))
1665 unlock_page(page);
1da177e4 1666 }
2457aec6 1667
1da177e4
LT
1668 return page;
1669}
2457aec6 1670EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1671
0cd6144a
JW
1672/**
1673 * find_get_entries - gang pagecache lookup
1674 * @mapping: The address_space to search
1675 * @start: The starting page cache index
1676 * @nr_entries: The maximum number of entries
1677 * @entries: Where the resulting entries are placed
1678 * @indices: The cache indices corresponding to the entries in @entries
1679 *
1680 * find_get_entries() will search for and return a group of up to
1681 * @nr_entries entries in the mapping. The entries are placed at
1682 * @entries. find_get_entries() takes a reference against any actual
1683 * pages it returns.
1684 *
1685 * The search returns a group of mapping-contiguous page cache entries
1686 * with ascending indexes. There may be holes in the indices due to
1687 * not-present pages.
1688 *
139b6a6f
JW
1689 * Any shadow entries of evicted pages, or swap entries from
1690 * shmem/tmpfs, are included in the returned array.
0cd6144a 1691 *
a862f68a 1692 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1693 */
1694unsigned find_get_entries(struct address_space *mapping,
1695 pgoff_t start, unsigned int nr_entries,
1696 struct page **entries, pgoff_t *indices)
1697{
f280bf09
MW
1698 XA_STATE(xas, &mapping->i_pages, start);
1699 struct page *page;
0cd6144a 1700 unsigned int ret = 0;
0cd6144a
JW
1701
1702 if (!nr_entries)
1703 return 0;
1704
1705 rcu_read_lock();
f280bf09 1706 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1707 if (xas_retry(&xas, page))
0cd6144a 1708 continue;
f280bf09
MW
1709 /*
1710 * A shadow entry of a recently evicted page, a swap
1711 * entry from shmem/tmpfs or a DAX entry. Return it
1712 * without attempting to raise page count.
1713 */
1714 if (xa_is_value(page))
0cd6144a 1715 goto export;
83929372 1716
5fd4ca2d 1717 if (!page_cache_get_speculative(page))
f280bf09 1718 goto retry;
83929372 1719
5fd4ca2d 1720 /* Has the page moved or been split? */
f280bf09
MW
1721 if (unlikely(page != xas_reload(&xas)))
1722 goto put_page;
5fd4ca2d 1723 page = find_subpage(page, xas.xa_index);
f280bf09 1724
0cd6144a 1725export:
f280bf09 1726 indices[ret] = xas.xa_index;
0cd6144a
JW
1727 entries[ret] = page;
1728 if (++ret == nr_entries)
1729 break;
f280bf09
MW
1730 continue;
1731put_page:
5fd4ca2d 1732 put_page(page);
f280bf09
MW
1733retry:
1734 xas_reset(&xas);
0cd6144a
JW
1735 }
1736 rcu_read_unlock();
1737 return ret;
1738}
1739
1da177e4 1740/**
b947cee4 1741 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1742 * @mapping: The address_space to search
1743 * @start: The starting page index
b947cee4 1744 * @end: The final page index (inclusive)
1da177e4
LT
1745 * @nr_pages: The maximum number of pages
1746 * @pages: Where the resulting pages are placed
1747 *
b947cee4
JK
1748 * find_get_pages_range() will search for and return a group of up to @nr_pages
1749 * pages in the mapping starting at index @start and up to index @end
1750 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1751 * a reference against the returned pages.
1da177e4
LT
1752 *
1753 * The search returns a group of mapping-contiguous pages with ascending
1754 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1755 * We also update @start to index the next page for the traversal.
1da177e4 1756 *
a862f68a
MR
1757 * Return: the number of pages which were found. If this number is
1758 * smaller than @nr_pages, the end of specified range has been
b947cee4 1759 * reached.
1da177e4 1760 */
b947cee4
JK
1761unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1762 pgoff_t end, unsigned int nr_pages,
1763 struct page **pages)
1da177e4 1764{
fd1b3cee
MW
1765 XA_STATE(xas, &mapping->i_pages, *start);
1766 struct page *page;
0fc9d104
KK
1767 unsigned ret = 0;
1768
1769 if (unlikely(!nr_pages))
1770 return 0;
a60637c8
NP
1771
1772 rcu_read_lock();
fd1b3cee 1773 xas_for_each(&xas, page, end) {
fd1b3cee 1774 if (xas_retry(&xas, page))
a60637c8 1775 continue;
fd1b3cee
MW
1776 /* Skip over shadow, swap and DAX entries */
1777 if (xa_is_value(page))
8079b1c8 1778 continue;
a60637c8 1779
5fd4ca2d 1780 if (!page_cache_get_speculative(page))
fd1b3cee 1781 goto retry;
83929372 1782
5fd4ca2d 1783 /* Has the page moved or been split? */
fd1b3cee
MW
1784 if (unlikely(page != xas_reload(&xas)))
1785 goto put_page;
1da177e4 1786
5fd4ca2d 1787 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1788 if (++ret == nr_pages) {
5d3ee42f 1789 *start = xas.xa_index + 1;
b947cee4
JK
1790 goto out;
1791 }
fd1b3cee
MW
1792 continue;
1793put_page:
5fd4ca2d 1794 put_page(page);
fd1b3cee
MW
1795retry:
1796 xas_reset(&xas);
a60637c8 1797 }
5b280c0c 1798
b947cee4
JK
1799 /*
1800 * We come here when there is no page beyond @end. We take care to not
1801 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1802 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1803 * already broken anyway.
1804 */
1805 if (end == (pgoff_t)-1)
1806 *start = (pgoff_t)-1;
1807 else
1808 *start = end + 1;
1809out:
a60637c8 1810 rcu_read_unlock();
d72dc8a2 1811
1da177e4
LT
1812 return ret;
1813}
1814
ebf43500
JA
1815/**
1816 * find_get_pages_contig - gang contiguous pagecache lookup
1817 * @mapping: The address_space to search
1818 * @index: The starting page index
1819 * @nr_pages: The maximum number of pages
1820 * @pages: Where the resulting pages are placed
1821 *
1822 * find_get_pages_contig() works exactly like find_get_pages(), except
1823 * that the returned number of pages are guaranteed to be contiguous.
1824 *
a862f68a 1825 * Return: the number of pages which were found.
ebf43500
JA
1826 */
1827unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1828 unsigned int nr_pages, struct page **pages)
1829{
3ece58a2
MW
1830 XA_STATE(xas, &mapping->i_pages, index);
1831 struct page *page;
0fc9d104
KK
1832 unsigned int ret = 0;
1833
1834 if (unlikely(!nr_pages))
1835 return 0;
a60637c8
NP
1836
1837 rcu_read_lock();
3ece58a2 1838 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1839 if (xas_retry(&xas, page))
1840 continue;
1841 /*
1842 * If the entry has been swapped out, we can stop looking.
1843 * No current caller is looking for DAX entries.
1844 */
1845 if (xa_is_value(page))
8079b1c8 1846 break;
ebf43500 1847
5fd4ca2d 1848 if (!page_cache_get_speculative(page))
3ece58a2 1849 goto retry;
83929372 1850
5fd4ca2d 1851 /* Has the page moved or been split? */
3ece58a2
MW
1852 if (unlikely(page != xas_reload(&xas)))
1853 goto put_page;
a60637c8 1854
5fd4ca2d 1855 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1856 if (++ret == nr_pages)
1857 break;
3ece58a2
MW
1858 continue;
1859put_page:
5fd4ca2d 1860 put_page(page);
3ece58a2
MW
1861retry:
1862 xas_reset(&xas);
ebf43500 1863 }
a60637c8
NP
1864 rcu_read_unlock();
1865 return ret;
ebf43500 1866}
ef71c15c 1867EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1868
485bb99b 1869/**
72b045ae 1870 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1871 * @mapping: the address_space to search
1872 * @index: the starting page index
72b045ae 1873 * @end: The final page index (inclusive)
485bb99b
RD
1874 * @tag: the tag index
1875 * @nr_pages: the maximum number of pages
1876 * @pages: where the resulting pages are placed
1877 *
1da177e4 1878 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1879 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1880 *
1881 * Return: the number of pages which were found.
1da177e4 1882 */
72b045ae 1883unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1884 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1885 struct page **pages)
1da177e4 1886{
a6906972
MW
1887 XA_STATE(xas, &mapping->i_pages, *index);
1888 struct page *page;
0fc9d104
KK
1889 unsigned ret = 0;
1890
1891 if (unlikely(!nr_pages))
1892 return 0;
a60637c8
NP
1893
1894 rcu_read_lock();
a6906972 1895 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1896 if (xas_retry(&xas, page))
a60637c8 1897 continue;
a6906972
MW
1898 /*
1899 * Shadow entries should never be tagged, but this iteration
1900 * is lockless so there is a window for page reclaim to evict
1901 * a page we saw tagged. Skip over it.
1902 */
1903 if (xa_is_value(page))
139b6a6f 1904 continue;
a60637c8 1905
5fd4ca2d 1906 if (!page_cache_get_speculative(page))
a6906972 1907 goto retry;
a60637c8 1908
5fd4ca2d 1909 /* Has the page moved or been split? */
a6906972
MW
1910 if (unlikely(page != xas_reload(&xas)))
1911 goto put_page;
a60637c8 1912
5fd4ca2d 1913 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1914 if (++ret == nr_pages) {
5d3ee42f 1915 *index = xas.xa_index + 1;
72b045ae
JK
1916 goto out;
1917 }
a6906972
MW
1918 continue;
1919put_page:
5fd4ca2d 1920 put_page(page);
a6906972
MW
1921retry:
1922 xas_reset(&xas);
a60637c8 1923 }
5b280c0c 1924
72b045ae 1925 /*
a6906972 1926 * We come here when we got to @end. We take care to not overflow the
72b045ae 1927 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1928 * iteration when there is a page at index -1 but that is already
1929 * broken anyway.
72b045ae
JK
1930 */
1931 if (end == (pgoff_t)-1)
1932 *index = (pgoff_t)-1;
1933 else
1934 *index = end + 1;
1935out:
a60637c8 1936 rcu_read_unlock();
1da177e4 1937
1da177e4
LT
1938 return ret;
1939}
72b045ae 1940EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1941
7e7f7749
RZ
1942/**
1943 * find_get_entries_tag - find and return entries that match @tag
1944 * @mapping: the address_space to search
1945 * @start: the starting page cache index
1946 * @tag: the tag index
1947 * @nr_entries: the maximum number of entries
1948 * @entries: where the resulting entries are placed
1949 * @indices: the cache indices corresponding to the entries in @entries
1950 *
1951 * Like find_get_entries, except we only return entries which are tagged with
1952 * @tag.
a862f68a
MR
1953 *
1954 * Return: the number of entries which were found.
7e7f7749
RZ
1955 */
1956unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
c1901cd3 1957 xa_mark_t tag, unsigned int nr_entries,
7e7f7749
RZ
1958 struct page **entries, pgoff_t *indices)
1959{
c1901cd3
MW
1960 XA_STATE(xas, &mapping->i_pages, start);
1961 struct page *page;
7e7f7749 1962 unsigned int ret = 0;
7e7f7749
RZ
1963
1964 if (!nr_entries)
1965 return 0;
1966
1967 rcu_read_lock();
c1901cd3 1968 xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
c1901cd3 1969 if (xas_retry(&xas, page))
7e7f7749 1970 continue;
c1901cd3
MW
1971 /*
1972 * A shadow entry of a recently evicted page, a swap
1973 * entry from shmem/tmpfs or a DAX entry. Return it
1974 * without attempting to raise page count.
1975 */
1976 if (xa_is_value(page))
7e7f7749 1977 goto export;
83929372 1978
5fd4ca2d 1979 if (!page_cache_get_speculative(page))
c1901cd3 1980 goto retry;
7e7f7749 1981
5fd4ca2d 1982 /* Has the page moved or been split? */
c1901cd3
MW
1983 if (unlikely(page != xas_reload(&xas)))
1984 goto put_page;
5fd4ca2d 1985 page = find_subpage(page, xas.xa_index);
c1901cd3 1986
7e7f7749 1987export:
c1901cd3 1988 indices[ret] = xas.xa_index;
7e7f7749
RZ
1989 entries[ret] = page;
1990 if (++ret == nr_entries)
1991 break;
c1901cd3
MW
1992 continue;
1993put_page:
5fd4ca2d 1994 put_page(page);
c1901cd3
MW
1995retry:
1996 xas_reset(&xas);
7e7f7749
RZ
1997 }
1998 rcu_read_unlock();
1999 return ret;
2000}
2001EXPORT_SYMBOL(find_get_entries_tag);
2002
76d42bd9
WF
2003/*
2004 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2005 * a _large_ part of the i/o request. Imagine the worst scenario:
2006 *
2007 * ---R__________________________________________B__________
2008 * ^ reading here ^ bad block(assume 4k)
2009 *
2010 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2011 * => failing the whole request => read(R) => read(R+1) =>
2012 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2013 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2014 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2015 *
2016 * It is going insane. Fix it by quickly scaling down the readahead size.
2017 */
2018static void shrink_readahead_size_eio(struct file *filp,
2019 struct file_ra_state *ra)
2020{
76d42bd9 2021 ra->ra_pages /= 4;
76d42bd9
WF
2022}
2023
485bb99b 2024/**
47c27bc4
CH
2025 * generic_file_buffered_read - generic file read routine
2026 * @iocb: the iocb to read
6e58e79d
AV
2027 * @iter: data destination
2028 * @written: already copied
485bb99b 2029 *
1da177e4 2030 * This is a generic file read routine, and uses the
485bb99b 2031 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2032 *
2033 * This is really ugly. But the goto's actually try to clarify some
2034 * of the logic when it comes to error handling etc.
a862f68a
MR
2035 *
2036 * Return:
2037 * * total number of bytes copied, including those the were already @written
2038 * * negative error code if nothing was copied
1da177e4 2039 */
47c27bc4 2040static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2041 struct iov_iter *iter, ssize_t written)
1da177e4 2042{
47c27bc4 2043 struct file *filp = iocb->ki_filp;
36e78914 2044 struct address_space *mapping = filp->f_mapping;
1da177e4 2045 struct inode *inode = mapping->host;
36e78914 2046 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2047 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2048 pgoff_t index;
2049 pgoff_t last_index;
2050 pgoff_t prev_index;
2051 unsigned long offset; /* offset into pagecache page */
ec0f1637 2052 unsigned int prev_offset;
6e58e79d 2053 int error = 0;
1da177e4 2054
c2a9737f 2055 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2056 return 0;
c2a9737f
WF
2057 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2058
09cbfeaf
KS
2059 index = *ppos >> PAGE_SHIFT;
2060 prev_index = ra->prev_pos >> PAGE_SHIFT;
2061 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2062 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2063 offset = *ppos & ~PAGE_MASK;
1da177e4 2064
1da177e4
LT
2065 for (;;) {
2066 struct page *page;
57f6b96c 2067 pgoff_t end_index;
a32ea1e1 2068 loff_t isize;
1da177e4
LT
2069 unsigned long nr, ret;
2070
1da177e4 2071 cond_resched();
1da177e4 2072find_page:
5abf186a
MH
2073 if (fatal_signal_pending(current)) {
2074 error = -EINTR;
2075 goto out;
2076 }
2077
1da177e4 2078 page = find_get_page(mapping, index);
3ea89ee8 2079 if (!page) {
3239d834
MT
2080 if (iocb->ki_flags & IOCB_NOWAIT)
2081 goto would_block;
cf914a7d 2082 page_cache_sync_readahead(mapping,
7ff81078 2083 ra, filp,
3ea89ee8
FW
2084 index, last_index - index);
2085 page = find_get_page(mapping, index);
2086 if (unlikely(page == NULL))
2087 goto no_cached_page;
2088 }
2089 if (PageReadahead(page)) {
cf914a7d 2090 page_cache_async_readahead(mapping,
7ff81078 2091 ra, filp, page,
3ea89ee8 2092 index, last_index - index);
1da177e4 2093 }
8ab22b9a 2094 if (!PageUptodate(page)) {
3239d834
MT
2095 if (iocb->ki_flags & IOCB_NOWAIT) {
2096 put_page(page);
2097 goto would_block;
2098 }
2099
ebded027
MG
2100 /*
2101 * See comment in do_read_cache_page on why
2102 * wait_on_page_locked is used to avoid unnecessarily
2103 * serialisations and why it's safe.
2104 */
c4b209a4
BVA
2105 error = wait_on_page_locked_killable(page);
2106 if (unlikely(error))
2107 goto readpage_error;
ebded027
MG
2108 if (PageUptodate(page))
2109 goto page_ok;
2110
09cbfeaf 2111 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2112 !mapping->a_ops->is_partially_uptodate)
2113 goto page_not_up_to_date;
6d6d36bc 2114 /* pipes can't handle partially uptodate pages */
00e23707 2115 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2116 goto page_not_up_to_date;
529ae9aa 2117 if (!trylock_page(page))
8ab22b9a 2118 goto page_not_up_to_date;
8d056cb9
DH
2119 /* Did it get truncated before we got the lock? */
2120 if (!page->mapping)
2121 goto page_not_up_to_date_locked;
8ab22b9a 2122 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2123 offset, iter->count))
8ab22b9a
HH
2124 goto page_not_up_to_date_locked;
2125 unlock_page(page);
2126 }
1da177e4 2127page_ok:
a32ea1e1
N
2128 /*
2129 * i_size must be checked after we know the page is Uptodate.
2130 *
2131 * Checking i_size after the check allows us to calculate
2132 * the correct value for "nr", which means the zero-filled
2133 * part of the page is not copied back to userspace (unless
2134 * another truncate extends the file - this is desired though).
2135 */
2136
2137 isize = i_size_read(inode);
09cbfeaf 2138 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2139 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2140 put_page(page);
a32ea1e1
N
2141 goto out;
2142 }
2143
2144 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2145 nr = PAGE_SIZE;
a32ea1e1 2146 if (index == end_index) {
09cbfeaf 2147 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2148 if (nr <= offset) {
09cbfeaf 2149 put_page(page);
a32ea1e1
N
2150 goto out;
2151 }
2152 }
2153 nr = nr - offset;
1da177e4
LT
2154
2155 /* If users can be writing to this page using arbitrary
2156 * virtual addresses, take care about potential aliasing
2157 * before reading the page on the kernel side.
2158 */
2159 if (mapping_writably_mapped(mapping))
2160 flush_dcache_page(page);
2161
2162 /*
ec0f1637
JK
2163 * When a sequential read accesses a page several times,
2164 * only mark it as accessed the first time.
1da177e4 2165 */
ec0f1637 2166 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2167 mark_page_accessed(page);
2168 prev_index = index;
2169
2170 /*
2171 * Ok, we have the page, and it's up-to-date, so
2172 * now we can copy it to user space...
1da177e4 2173 */
6e58e79d
AV
2174
2175 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2176 offset += ret;
09cbfeaf
KS
2177 index += offset >> PAGE_SHIFT;
2178 offset &= ~PAGE_MASK;
6ce745ed 2179 prev_offset = offset;
1da177e4 2180
09cbfeaf 2181 put_page(page);
6e58e79d
AV
2182 written += ret;
2183 if (!iov_iter_count(iter))
2184 goto out;
2185 if (ret < nr) {
2186 error = -EFAULT;
2187 goto out;
2188 }
2189 continue;
1da177e4
LT
2190
2191page_not_up_to_date:
2192 /* Get exclusive access to the page ... */
85462323
ON
2193 error = lock_page_killable(page);
2194 if (unlikely(error))
2195 goto readpage_error;
1da177e4 2196
8ab22b9a 2197page_not_up_to_date_locked:
da6052f7 2198 /* Did it get truncated before we got the lock? */
1da177e4
LT
2199 if (!page->mapping) {
2200 unlock_page(page);
09cbfeaf 2201 put_page(page);
1da177e4
LT
2202 continue;
2203 }
2204
2205 /* Did somebody else fill it already? */
2206 if (PageUptodate(page)) {
2207 unlock_page(page);
2208 goto page_ok;
2209 }
2210
2211readpage:
91803b49
JM
2212 /*
2213 * A previous I/O error may have been due to temporary
2214 * failures, eg. multipath errors.
2215 * PG_error will be set again if readpage fails.
2216 */
2217 ClearPageError(page);
1da177e4
LT
2218 /* Start the actual read. The read will unlock the page. */
2219 error = mapping->a_ops->readpage(filp, page);
2220
994fc28c
ZB
2221 if (unlikely(error)) {
2222 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2223 put_page(page);
6e58e79d 2224 error = 0;
994fc28c
ZB
2225 goto find_page;
2226 }
1da177e4 2227 goto readpage_error;
994fc28c 2228 }
1da177e4
LT
2229
2230 if (!PageUptodate(page)) {
85462323
ON
2231 error = lock_page_killable(page);
2232 if (unlikely(error))
2233 goto readpage_error;
1da177e4
LT
2234 if (!PageUptodate(page)) {
2235 if (page->mapping == NULL) {
2236 /*
2ecdc82e 2237 * invalidate_mapping_pages got it
1da177e4
LT
2238 */
2239 unlock_page(page);
09cbfeaf 2240 put_page(page);
1da177e4
LT
2241 goto find_page;
2242 }
2243 unlock_page(page);
7ff81078 2244 shrink_readahead_size_eio(filp, ra);
85462323
ON
2245 error = -EIO;
2246 goto readpage_error;
1da177e4
LT
2247 }
2248 unlock_page(page);
2249 }
2250
1da177e4
LT
2251 goto page_ok;
2252
2253readpage_error:
2254 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2255 put_page(page);
1da177e4
LT
2256 goto out;
2257
2258no_cached_page:
2259 /*
2260 * Ok, it wasn't cached, so we need to create a new
2261 * page..
2262 */
453f85d4 2263 page = page_cache_alloc(mapping);
eb2be189 2264 if (!page) {
6e58e79d 2265 error = -ENOMEM;
eb2be189 2266 goto out;
1da177e4 2267 }
6afdb859 2268 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2269 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2270 if (error) {
09cbfeaf 2271 put_page(page);
6e58e79d
AV
2272 if (error == -EEXIST) {
2273 error = 0;
1da177e4 2274 goto find_page;
6e58e79d 2275 }
1da177e4
LT
2276 goto out;
2277 }
1da177e4
LT
2278 goto readpage;
2279 }
2280
3239d834
MT
2281would_block:
2282 error = -EAGAIN;
1da177e4 2283out:
7ff81078 2284 ra->prev_pos = prev_index;
09cbfeaf 2285 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2286 ra->prev_pos |= prev_offset;
1da177e4 2287
09cbfeaf 2288 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2289 file_accessed(filp);
6e58e79d 2290 return written ? written : error;
1da177e4
LT
2291}
2292
485bb99b 2293/**
6abd2322 2294 * generic_file_read_iter - generic filesystem read routine
485bb99b 2295 * @iocb: kernel I/O control block
6abd2322 2296 * @iter: destination for the data read
485bb99b 2297 *
6abd2322 2298 * This is the "read_iter()" routine for all filesystems
1da177e4 2299 * that can use the page cache directly.
a862f68a
MR
2300 * Return:
2301 * * number of bytes copied, even for partial reads
2302 * * negative error code if nothing was read
1da177e4
LT
2303 */
2304ssize_t
ed978a81 2305generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2306{
e7080a43 2307 size_t count = iov_iter_count(iter);
47c27bc4 2308 ssize_t retval = 0;
e7080a43
NS
2309
2310 if (!count)
2311 goto out; /* skip atime */
1da177e4 2312
2ba48ce5 2313 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2314 struct file *file = iocb->ki_filp;
ed978a81
AV
2315 struct address_space *mapping = file->f_mapping;
2316 struct inode *inode = mapping->host;
543ade1f 2317 loff_t size;
1da177e4 2318
1da177e4 2319 size = i_size_read(inode);
6be96d3a
GR
2320 if (iocb->ki_flags & IOCB_NOWAIT) {
2321 if (filemap_range_has_page(mapping, iocb->ki_pos,
2322 iocb->ki_pos + count - 1))
2323 return -EAGAIN;
2324 } else {
2325 retval = filemap_write_and_wait_range(mapping,
2326 iocb->ki_pos,
2327 iocb->ki_pos + count - 1);
2328 if (retval < 0)
2329 goto out;
2330 }
d8d3d94b 2331
0d5b0cf2
CH
2332 file_accessed(file);
2333
5ecda137 2334 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2335 if (retval >= 0) {
c64fb5c7 2336 iocb->ki_pos += retval;
5ecda137 2337 count -= retval;
9fe55eea 2338 }
5b47d59a 2339 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2340
9fe55eea
SW
2341 /*
2342 * Btrfs can have a short DIO read if we encounter
2343 * compressed extents, so if there was an error, or if
2344 * we've already read everything we wanted to, or if
2345 * there was a short read because we hit EOF, go ahead
2346 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2347 * the rest of the read. Buffered reads will not work for
2348 * DAX files, so don't bother trying.
9fe55eea 2349 */
5ecda137 2350 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2351 IS_DAX(inode))
9fe55eea 2352 goto out;
1da177e4
LT
2353 }
2354
47c27bc4 2355 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2356out:
2357 return retval;
2358}
ed978a81 2359EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2360
1da177e4 2361#ifdef CONFIG_MMU
1da177e4 2362#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2363static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2364 struct file *fpin)
2365{
2366 int flags = vmf->flags;
2367
2368 if (fpin)
2369 return fpin;
2370
2371 /*
2372 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2373 * anything, so we only pin the file and drop the mmap_sem if only
2374 * FAULT_FLAG_ALLOW_RETRY is set.
2375 */
2376 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2377 FAULT_FLAG_ALLOW_RETRY) {
2378 fpin = get_file(vmf->vma->vm_file);
2379 up_read(&vmf->vma->vm_mm->mmap_sem);
2380 }
2381 return fpin;
2382}
2383
2384/*
2385 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2386 * @vmf - the vm_fault for this fault.
2387 * @page - the page to lock.
2388 * @fpin - the pointer to the file we may pin (or is already pinned).
2389 *
2390 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2391 * It differs in that it actually returns the page locked if it returns 1 and 0
2392 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2393 * will point to the pinned file and needs to be fput()'ed at a later point.
2394 */
2395static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2396 struct file **fpin)
2397{
2398 if (trylock_page(page))
2399 return 1;
2400
8b0f9fa2
LT
2401 /*
2402 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2403 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2404 * is supposed to work. We have way too many special cases..
2405 */
6b4c9f44
JB
2406 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2407 return 0;
2408
2409 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2410 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2411 if (__lock_page_killable(page)) {
2412 /*
2413 * We didn't have the right flags to drop the mmap_sem,
2414 * but all fault_handlers only check for fatal signals
2415 * if we return VM_FAULT_RETRY, so we need to drop the
2416 * mmap_sem here and return 0 if we don't have a fpin.
2417 */
2418 if (*fpin == NULL)
2419 up_read(&vmf->vma->vm_mm->mmap_sem);
2420 return 0;
2421 }
2422 } else
2423 __lock_page(page);
2424 return 1;
2425}
2426
1da177e4 2427
ef00e08e 2428/*
6b4c9f44
JB
2429 * Synchronous readahead happens when we don't even find a page in the page
2430 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2431 * to drop the mmap sem we return the file that was pinned in order for us to do
2432 * that. If we didn't pin a file then we return NULL. The file that is
2433 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2434 */
6b4c9f44 2435static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2436{
2a1180f1
JB
2437 struct file *file = vmf->vma->vm_file;
2438 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2439 struct address_space *mapping = file->f_mapping;
6b4c9f44 2440 struct file *fpin = NULL;
2a1180f1 2441 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2442
2443 /* If we don't want any read-ahead, don't bother */
2a1180f1 2444 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2445 return fpin;
275b12bf 2446 if (!ra->ra_pages)
6b4c9f44 2447 return fpin;
ef00e08e 2448
2a1180f1 2449 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2450 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2451 page_cache_sync_readahead(mapping, ra, file, offset,
2452 ra->ra_pages);
6b4c9f44 2453 return fpin;
ef00e08e
LT
2454 }
2455
207d04ba
AK
2456 /* Avoid banging the cache line if not needed */
2457 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2458 ra->mmap_miss++;
2459
2460 /*
2461 * Do we miss much more than hit in this file? If so,
2462 * stop bothering with read-ahead. It will only hurt.
2463 */
2464 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2465 return fpin;
ef00e08e 2466
d30a1100
WF
2467 /*
2468 * mmap read-around
2469 */
6b4c9f44 2470 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2471 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2472 ra->size = ra->ra_pages;
2473 ra->async_size = ra->ra_pages / 4;
275b12bf 2474 ra_submit(ra, mapping, file);
6b4c9f44 2475 return fpin;
ef00e08e
LT
2476}
2477
2478/*
2479 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2480 * so we want to possibly extend the readahead further. We return the file that
2481 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2482 */
6b4c9f44
JB
2483static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2484 struct page *page)
ef00e08e 2485{
2a1180f1
JB
2486 struct file *file = vmf->vma->vm_file;
2487 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2488 struct address_space *mapping = file->f_mapping;
6b4c9f44 2489 struct file *fpin = NULL;
2a1180f1 2490 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2491
2492 /* If we don't want any read-ahead, don't bother */
2a1180f1 2493 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2494 return fpin;
ef00e08e
LT
2495 if (ra->mmap_miss > 0)
2496 ra->mmap_miss--;
6b4c9f44
JB
2497 if (PageReadahead(page)) {
2498 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2499 page_cache_async_readahead(mapping, ra, file,
2500 page, offset, ra->ra_pages);
6b4c9f44
JB
2501 }
2502 return fpin;
ef00e08e
LT
2503}
2504
485bb99b 2505/**
54cb8821 2506 * filemap_fault - read in file data for page fault handling
d0217ac0 2507 * @vmf: struct vm_fault containing details of the fault
485bb99b 2508 *
54cb8821 2509 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2510 * mapped memory region to read in file data during a page fault.
2511 *
2512 * The goto's are kind of ugly, but this streamlines the normal case of having
2513 * it in the page cache, and handles the special cases reasonably without
2514 * having a lot of duplicated code.
9a95f3cf
PC
2515 *
2516 * vma->vm_mm->mmap_sem must be held on entry.
2517 *
2518 * If our return value has VM_FAULT_RETRY set, it's because
2519 * lock_page_or_retry() returned 0.
2520 * The mmap_sem has usually been released in this case.
2521 * See __lock_page_or_retry() for the exception.
2522 *
2523 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2524 * has not been released.
2525 *
2526 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2527 *
2528 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2529 */
2bcd6454 2530vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2531{
2532 int error;
11bac800 2533 struct file *file = vmf->vma->vm_file;
6b4c9f44 2534 struct file *fpin = NULL;
1da177e4
LT
2535 struct address_space *mapping = file->f_mapping;
2536 struct file_ra_state *ra = &file->f_ra;
2537 struct inode *inode = mapping->host;
ef00e08e 2538 pgoff_t offset = vmf->pgoff;
9ab2594f 2539 pgoff_t max_off;
1da177e4 2540 struct page *page;
2bcd6454 2541 vm_fault_t ret = 0;
1da177e4 2542
9ab2594f
MW
2543 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2544 if (unlikely(offset >= max_off))
5307cc1a 2545 return VM_FAULT_SIGBUS;
1da177e4 2546
1da177e4 2547 /*
49426420 2548 * Do we have something in the page cache already?
1da177e4 2549 */
ef00e08e 2550 page = find_get_page(mapping, offset);
45cac65b 2551 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2552 /*
ef00e08e
LT
2553 * We found the page, so try async readahead before
2554 * waiting for the lock.
1da177e4 2555 */
6b4c9f44 2556 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2557 } else if (!page) {
ef00e08e 2558 /* No page in the page cache at all */
ef00e08e 2559 count_vm_event(PGMAJFAULT);
2262185c 2560 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2561 ret = VM_FAULT_MAJOR;
6b4c9f44 2562 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2563retry_find:
a75d4c33
JB
2564 page = pagecache_get_page(mapping, offset,
2565 FGP_CREAT|FGP_FOR_MMAP,
2566 vmf->gfp_mask);
6b4c9f44
JB
2567 if (!page) {
2568 if (fpin)
2569 goto out_retry;
a75d4c33 2570 return vmf_error(-ENOMEM);
6b4c9f44 2571 }
1da177e4
LT
2572 }
2573
6b4c9f44
JB
2574 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2575 goto out_retry;
b522c94d
ML
2576
2577 /* Did it get truncated? */
2578 if (unlikely(page->mapping != mapping)) {
2579 unlock_page(page);
2580 put_page(page);
2581 goto retry_find;
2582 }
309381fe 2583 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2584
1da177e4 2585 /*
d00806b1
NP
2586 * We have a locked page in the page cache, now we need to check
2587 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2588 */
d00806b1 2589 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2590 goto page_not_uptodate;
2591
6b4c9f44
JB
2592 /*
2593 * We've made it this far and we had to drop our mmap_sem, now is the
2594 * time to return to the upper layer and have it re-find the vma and
2595 * redo the fault.
2596 */
2597 if (fpin) {
2598 unlock_page(page);
2599 goto out_retry;
2600 }
2601
ef00e08e
LT
2602 /*
2603 * Found the page and have a reference on it.
2604 * We must recheck i_size under page lock.
2605 */
9ab2594f
MW
2606 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2607 if (unlikely(offset >= max_off)) {
d00806b1 2608 unlock_page(page);
09cbfeaf 2609 put_page(page);
5307cc1a 2610 return VM_FAULT_SIGBUS;
d00806b1
NP
2611 }
2612
d0217ac0 2613 vmf->page = page;
83c54070 2614 return ret | VM_FAULT_LOCKED;
1da177e4 2615
1da177e4 2616page_not_uptodate:
1da177e4
LT
2617 /*
2618 * Umm, take care of errors if the page isn't up-to-date.
2619 * Try to re-read it _once_. We do this synchronously,
2620 * because there really aren't any performance issues here
2621 * and we need to check for errors.
2622 */
1da177e4 2623 ClearPageError(page);
6b4c9f44 2624 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2625 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2626 if (!error) {
2627 wait_on_page_locked(page);
2628 if (!PageUptodate(page))
2629 error = -EIO;
2630 }
6b4c9f44
JB
2631 if (fpin)
2632 goto out_retry;
09cbfeaf 2633 put_page(page);
d00806b1
NP
2634
2635 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2636 goto retry_find;
1da177e4 2637
d00806b1 2638 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2639 shrink_readahead_size_eio(file, ra);
d0217ac0 2640 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2641
2642out_retry:
2643 /*
2644 * We dropped the mmap_sem, we need to return to the fault handler to
2645 * re-find the vma and come back and find our hopefully still populated
2646 * page.
2647 */
2648 if (page)
2649 put_page(page);
2650 if (fpin)
2651 fput(fpin);
2652 return ret | VM_FAULT_RETRY;
54cb8821
NP
2653}
2654EXPORT_SYMBOL(filemap_fault);
2655
82b0f8c3 2656void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2657 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2658{
82b0f8c3 2659 struct file *file = vmf->vma->vm_file;
f1820361 2660 struct address_space *mapping = file->f_mapping;
bae473a4 2661 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2662 unsigned long max_idx;
070e807c 2663 XA_STATE(xas, &mapping->i_pages, start_pgoff);
5fd4ca2d 2664 struct page *page;
f1820361
KS
2665
2666 rcu_read_lock();
070e807c
MW
2667 xas_for_each(&xas, page, end_pgoff) {
2668 if (xas_retry(&xas, page))
2669 continue;
2670 if (xa_is_value(page))
2cf938aa 2671 goto next;
f1820361 2672
e0975b2a
MH
2673 /*
2674 * Check for a locked page first, as a speculative
2675 * reference may adversely influence page migration.
2676 */
5fd4ca2d 2677 if (PageLocked(page))
e0975b2a 2678 goto next;
5fd4ca2d 2679 if (!page_cache_get_speculative(page))
070e807c 2680 goto next;
f1820361 2681
5fd4ca2d 2682 /* Has the page moved or been split? */
070e807c
MW
2683 if (unlikely(page != xas_reload(&xas)))
2684 goto skip;
5fd4ca2d 2685 page = find_subpage(page, xas.xa_index);
f1820361
KS
2686
2687 if (!PageUptodate(page) ||
2688 PageReadahead(page) ||
2689 PageHWPoison(page))
2690 goto skip;
2691 if (!trylock_page(page))
2692 goto skip;
2693
2694 if (page->mapping != mapping || !PageUptodate(page))
2695 goto unlock;
2696
9ab2594f
MW
2697 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2698 if (page->index >= max_idx)
f1820361
KS
2699 goto unlock;
2700
f1820361
KS
2701 if (file->f_ra.mmap_miss > 0)
2702 file->f_ra.mmap_miss--;
7267ec00 2703
070e807c 2704 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2705 if (vmf->pte)
070e807c
MW
2706 vmf->pte += xas.xa_index - last_pgoff;
2707 last_pgoff = xas.xa_index;
82b0f8c3 2708 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2709 goto unlock;
f1820361
KS
2710 unlock_page(page);
2711 goto next;
2712unlock:
2713 unlock_page(page);
2714skip:
09cbfeaf 2715 put_page(page);
f1820361 2716next:
7267ec00 2717 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2718 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2719 break;
f1820361
KS
2720 }
2721 rcu_read_unlock();
2722}
2723EXPORT_SYMBOL(filemap_map_pages);
2724
2bcd6454 2725vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2726{
2727 struct page *page = vmf->page;
11bac800 2728 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2729 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2730
14da9200 2731 sb_start_pagefault(inode->i_sb);
11bac800 2732 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2733 lock_page(page);
2734 if (page->mapping != inode->i_mapping) {
2735 unlock_page(page);
2736 ret = VM_FAULT_NOPAGE;
2737 goto out;
2738 }
14da9200
JK
2739 /*
2740 * We mark the page dirty already here so that when freeze is in
2741 * progress, we are guaranteed that writeback during freezing will
2742 * see the dirty page and writeprotect it again.
2743 */
2744 set_page_dirty(page);
1d1d1a76 2745 wait_for_stable_page(page);
4fcf1c62 2746out:
14da9200 2747 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2748 return ret;
2749}
4fcf1c62 2750
f0f37e2f 2751const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2752 .fault = filemap_fault,
f1820361 2753 .map_pages = filemap_map_pages,
4fcf1c62 2754 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2755};
2756
2757/* This is used for a general mmap of a disk file */
2758
2759int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761 struct address_space *mapping = file->f_mapping;
2762
2763 if (!mapping->a_ops->readpage)
2764 return -ENOEXEC;
2765 file_accessed(file);
2766 vma->vm_ops = &generic_file_vm_ops;
2767 return 0;
2768}
1da177e4
LT
2769
2770/*
2771 * This is for filesystems which do not implement ->writepage.
2772 */
2773int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2774{
2775 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2776 return -EINVAL;
2777 return generic_file_mmap(file, vma);
2778}
2779#else
4b96a37d 2780vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2781{
4b96a37d 2782 return VM_FAULT_SIGBUS;
45397228 2783}
1da177e4
LT
2784int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2785{
2786 return -ENOSYS;
2787}
2788int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2789{
2790 return -ENOSYS;
2791}
2792#endif /* CONFIG_MMU */
2793
45397228 2794EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2795EXPORT_SYMBOL(generic_file_mmap);
2796EXPORT_SYMBOL(generic_file_readonly_mmap);
2797
67f9fd91
SL
2798static struct page *wait_on_page_read(struct page *page)
2799{
2800 if (!IS_ERR(page)) {
2801 wait_on_page_locked(page);
2802 if (!PageUptodate(page)) {
09cbfeaf 2803 put_page(page);
67f9fd91
SL
2804 page = ERR_PTR(-EIO);
2805 }
2806 }
2807 return page;
2808}
2809
32b63529 2810static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2811 pgoff_t index,
5e5358e7 2812 int (*filler)(void *, struct page *),
0531b2aa
LT
2813 void *data,
2814 gfp_t gfp)
1da177e4 2815{
eb2be189 2816 struct page *page;
1da177e4
LT
2817 int err;
2818repeat:
2819 page = find_get_page(mapping, index);
2820 if (!page) {
453f85d4 2821 page = __page_cache_alloc(gfp);
eb2be189
NP
2822 if (!page)
2823 return ERR_PTR(-ENOMEM);
e6f67b8c 2824 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2825 if (unlikely(err)) {
09cbfeaf 2826 put_page(page);
eb2be189
NP
2827 if (err == -EEXIST)
2828 goto repeat;
22ecdb4f 2829 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2830 return ERR_PTR(err);
2831 }
32b63529
MG
2832
2833filler:
1da177e4
LT
2834 err = filler(data, page);
2835 if (err < 0) {
09cbfeaf 2836 put_page(page);
32b63529 2837 return ERR_PTR(err);
1da177e4 2838 }
1da177e4 2839
32b63529
MG
2840 page = wait_on_page_read(page);
2841 if (IS_ERR(page))
2842 return page;
2843 goto out;
2844 }
1da177e4
LT
2845 if (PageUptodate(page))
2846 goto out;
2847
ebded027
MG
2848 /*
2849 * Page is not up to date and may be locked due one of the following
2850 * case a: Page is being filled and the page lock is held
2851 * case b: Read/write error clearing the page uptodate status
2852 * case c: Truncation in progress (page locked)
2853 * case d: Reclaim in progress
2854 *
2855 * Case a, the page will be up to date when the page is unlocked.
2856 * There is no need to serialise on the page lock here as the page
2857 * is pinned so the lock gives no additional protection. Even if the
2858 * the page is truncated, the data is still valid if PageUptodate as
2859 * it's a race vs truncate race.
2860 * Case b, the page will not be up to date
2861 * Case c, the page may be truncated but in itself, the data may still
2862 * be valid after IO completes as it's a read vs truncate race. The
2863 * operation must restart if the page is not uptodate on unlock but
2864 * otherwise serialising on page lock to stabilise the mapping gives
2865 * no additional guarantees to the caller as the page lock is
2866 * released before return.
2867 * Case d, similar to truncation. If reclaim holds the page lock, it
2868 * will be a race with remove_mapping that determines if the mapping
2869 * is valid on unlock but otherwise the data is valid and there is
2870 * no need to serialise with page lock.
2871 *
2872 * As the page lock gives no additional guarantee, we optimistically
2873 * wait on the page to be unlocked and check if it's up to date and
2874 * use the page if it is. Otherwise, the page lock is required to
2875 * distinguish between the different cases. The motivation is that we
2876 * avoid spurious serialisations and wakeups when multiple processes
2877 * wait on the same page for IO to complete.
2878 */
2879 wait_on_page_locked(page);
2880 if (PageUptodate(page))
2881 goto out;
2882
2883 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2884 lock_page(page);
ebded027
MG
2885
2886 /* Case c or d, restart the operation */
1da177e4
LT
2887 if (!page->mapping) {
2888 unlock_page(page);
09cbfeaf 2889 put_page(page);
32b63529 2890 goto repeat;
1da177e4 2891 }
ebded027
MG
2892
2893 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2894 if (PageUptodate(page)) {
2895 unlock_page(page);
2896 goto out;
2897 }
32b63529
MG
2898 goto filler;
2899
c855ff37 2900out:
6fe6900e
NP
2901 mark_page_accessed(page);
2902 return page;
2903}
0531b2aa
LT
2904
2905/**
67f9fd91 2906 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2907 * @mapping: the page's address_space
2908 * @index: the page index
2909 * @filler: function to perform the read
5e5358e7 2910 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2911 *
0531b2aa 2912 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2913 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2914 *
2915 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2916 *
2917 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2918 */
67f9fd91 2919struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2920 pgoff_t index,
5e5358e7 2921 int (*filler)(void *, struct page *),
0531b2aa
LT
2922 void *data)
2923{
2924 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2925}
67f9fd91 2926EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2927
2928/**
2929 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2930 * @mapping: the page's address_space
2931 * @index: the page index
2932 * @gfp: the page allocator flags to use if allocating
2933 *
2934 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2935 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2936 *
2937 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2938 *
2939 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2940 */
2941struct page *read_cache_page_gfp(struct address_space *mapping,
2942 pgoff_t index,
2943 gfp_t gfp)
2944{
2945 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2946
67f9fd91 2947 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2948}
2949EXPORT_SYMBOL(read_cache_page_gfp);
2950
9fd91a90
DW
2951/*
2952 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2953 * LFS limits. If pos is under the limit it becomes a short access. If it
2954 * exceeds the limit we return -EFBIG.
2955 */
2956static int generic_access_check_limits(struct file *file, loff_t pos,
2957 loff_t *count)
2958{
2959 struct inode *inode = file->f_mapping->host;
2960 loff_t max_size = inode->i_sb->s_maxbytes;
2961
2962 if (!(file->f_flags & O_LARGEFILE))
2963 max_size = MAX_NON_LFS;
2964
2965 if (unlikely(pos >= max_size))
2966 return -EFBIG;
2967 *count = min(*count, max_size - pos);
2968 return 0;
2969}
2970
2971static int generic_write_check_limits(struct file *file, loff_t pos,
2972 loff_t *count)
2973{
2974 loff_t limit = rlimit(RLIMIT_FSIZE);
2975
2976 if (limit != RLIM_INFINITY) {
2977 if (pos >= limit) {
2978 send_sig(SIGXFSZ, current, 0);
2979 return -EFBIG;
2980 }
2981 *count = min(*count, limit - pos);
2982 }
2983
2984 return generic_access_check_limits(file, pos, count);
2985}
2986
1da177e4
LT
2987/*
2988 * Performs necessary checks before doing a write
2989 *
485bb99b 2990 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2991 * Returns appropriate error code that caller should return or
2992 * zero in case that write should be allowed.
2993 */
3309dd04 2994inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2995{
3309dd04 2996 struct file *file = iocb->ki_filp;
1da177e4 2997 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2998 loff_t count;
2999 int ret;
1da177e4 3000
3309dd04
AV
3001 if (!iov_iter_count(from))
3002 return 0;
1da177e4 3003
0fa6b005 3004 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 3005 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 3006 iocb->ki_pos = i_size_read(inode);
1da177e4 3007
6be96d3a
GR
3008 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3009 return -EINVAL;
3010
9fd91a90
DW
3011 count = iov_iter_count(from);
3012 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3013 if (ret)
3014 return ret;
1da177e4 3015
9fd91a90 3016 iov_iter_truncate(from, count);
3309dd04 3017 return iov_iter_count(from);
1da177e4
LT
3018}
3019EXPORT_SYMBOL(generic_write_checks);
3020
1383a7ed
DW
3021/*
3022 * Performs necessary checks before doing a clone.
3023 *
3024 * Can adjust amount of bytes to clone.
3025 * Returns appropriate error code that caller should return or
3026 * zero in case the clone should be allowed.
3027 */
3028int generic_remap_checks(struct file *file_in, loff_t pos_in,
3029 struct file *file_out, loff_t pos_out,
42ec3d4c 3030 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
3031{
3032 struct inode *inode_in = file_in->f_mapping->host;
3033 struct inode *inode_out = file_out->f_mapping->host;
3034 uint64_t count = *req_count;
3035 uint64_t bcount;
3036 loff_t size_in, size_out;
3037 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3038 int ret;
1383a7ed
DW
3039
3040 /* The start of both ranges must be aligned to an fs block. */
3041 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3042 return -EINVAL;
3043
3044 /* Ensure offsets don't wrap. */
3045 if (pos_in + count < pos_in || pos_out + count < pos_out)
3046 return -EINVAL;
3047
3048 size_in = i_size_read(inode_in);
3049 size_out = i_size_read(inode_out);
3050
3051 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3052 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3053 (pos_in >= size_in || pos_in + count > size_in ||
3054 pos_out >= size_out || pos_out + count > size_out))
3055 return -EINVAL;
3056
3057 /* Ensure the infile range is within the infile. */
3058 if (pos_in >= size_in)
3059 return -EINVAL;
3060 count = min(count, size_in - (uint64_t)pos_in);
3061
9fd91a90
DW
3062 ret = generic_access_check_limits(file_in, pos_in, &count);
3063 if (ret)
3064 return ret;
3065
3066 ret = generic_write_check_limits(file_out, pos_out, &count);
3067 if (ret)
3068 return ret;
1da177e4
LT
3069
3070 /*
1383a7ed
DW
3071 * If the user wanted us to link to the infile's EOF, round up to the
3072 * next block boundary for this check.
3073 *
3074 * Otherwise, make sure the count is also block-aligned, having
3075 * already confirmed the starting offsets' block alignment.
1da177e4 3076 */
1383a7ed
DW
3077 if (pos_in + count == size_in) {
3078 bcount = ALIGN(size_in, bs) - pos_in;
3079 } else {
3080 if (!IS_ALIGNED(count, bs))
eca3654e 3081 count = ALIGN_DOWN(count, bs);
1383a7ed 3082 bcount = count;
1da177e4
LT
3083 }
3084
1383a7ed
DW
3085 /* Don't allow overlapped cloning within the same file. */
3086 if (inode_in == inode_out &&
3087 pos_out + bcount > pos_in &&
3088 pos_out < pos_in + bcount)
3089 return -EINVAL;
3090
1da177e4 3091 /*
eca3654e
DW
3092 * We shortened the request but the caller can't deal with that, so
3093 * bounce the request back to userspace.
1da177e4 3094 */
eca3654e 3095 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3096 return -EINVAL;
1da177e4 3097
eca3654e 3098 *req_count = count;
1383a7ed 3099 return 0;
1da177e4 3100}
1da177e4 3101
afddba49
NP
3102int pagecache_write_begin(struct file *file, struct address_space *mapping,
3103 loff_t pos, unsigned len, unsigned flags,
3104 struct page **pagep, void **fsdata)
3105{
3106 const struct address_space_operations *aops = mapping->a_ops;
3107
4e02ed4b 3108 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3109 pagep, fsdata);
afddba49
NP
3110}
3111EXPORT_SYMBOL(pagecache_write_begin);
3112
3113int pagecache_write_end(struct file *file, struct address_space *mapping,
3114 loff_t pos, unsigned len, unsigned copied,
3115 struct page *page, void *fsdata)
3116{
3117 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3118
4e02ed4b 3119 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3120}
3121EXPORT_SYMBOL(pagecache_write_end);
3122
1da177e4 3123ssize_t
1af5bb49 3124generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3125{
3126 struct file *file = iocb->ki_filp;
3127 struct address_space *mapping = file->f_mapping;
3128 struct inode *inode = mapping->host;
1af5bb49 3129 loff_t pos = iocb->ki_pos;
1da177e4 3130 ssize_t written;
a969e903
CH
3131 size_t write_len;
3132 pgoff_t end;
1da177e4 3133
0c949334 3134 write_len = iov_iter_count(from);
09cbfeaf 3135 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3136
6be96d3a
GR
3137 if (iocb->ki_flags & IOCB_NOWAIT) {
3138 /* If there are pages to writeback, return */
3139 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3140 pos + write_len - 1))
6be96d3a
GR
3141 return -EAGAIN;
3142 } else {
3143 written = filemap_write_and_wait_range(mapping, pos,
3144 pos + write_len - 1);
3145 if (written)
3146 goto out;
3147 }
a969e903
CH
3148
3149 /*
3150 * After a write we want buffered reads to be sure to go to disk to get
3151 * the new data. We invalidate clean cached page from the region we're
3152 * about to write. We do this *before* the write so that we can return
6ccfa806 3153 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3154 */
55635ba7 3155 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3156 pos >> PAGE_SHIFT, end);
55635ba7
AR
3157 /*
3158 * If a page can not be invalidated, return 0 to fall back
3159 * to buffered write.
3160 */
3161 if (written) {
3162 if (written == -EBUSY)
3163 return 0;
3164 goto out;
a969e903
CH
3165 }
3166
639a93a5 3167 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3168
3169 /*
3170 * Finally, try again to invalidate clean pages which might have been
3171 * cached by non-direct readahead, or faulted in by get_user_pages()
3172 * if the source of the write was an mmap'ed region of the file
3173 * we're writing. Either one is a pretty crazy thing to do,
3174 * so we don't support it 100%. If this invalidation
3175 * fails, tough, the write still worked...
332391a9
LC
3176 *
3177 * Most of the time we do not need this since dio_complete() will do
3178 * the invalidation for us. However there are some file systems that
3179 * do not end up with dio_complete() being called, so let's not break
3180 * them by removing it completely
a969e903 3181 */
332391a9
LC
3182 if (mapping->nrpages)
3183 invalidate_inode_pages2_range(mapping,
3184 pos >> PAGE_SHIFT, end);
a969e903 3185
1da177e4 3186 if (written > 0) {
0116651c 3187 pos += written;
639a93a5 3188 write_len -= written;
0116651c
NK
3189 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3190 i_size_write(inode, pos);
1da177e4
LT
3191 mark_inode_dirty(inode);
3192 }
5cb6c6c7 3193 iocb->ki_pos = pos;
1da177e4 3194 }
639a93a5 3195 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3196out:
1da177e4
LT
3197 return written;
3198}
3199EXPORT_SYMBOL(generic_file_direct_write);
3200
eb2be189
NP
3201/*
3202 * Find or create a page at the given pagecache position. Return the locked
3203 * page. This function is specifically for buffered writes.
3204 */
54566b2c
NP
3205struct page *grab_cache_page_write_begin(struct address_space *mapping,
3206 pgoff_t index, unsigned flags)
eb2be189 3207{
eb2be189 3208 struct page *page;
bbddabe2 3209 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3210
54566b2c 3211 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3212 fgp_flags |= FGP_NOFS;
3213
3214 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3215 mapping_gfp_mask(mapping));
c585a267 3216 if (page)
2457aec6 3217 wait_for_stable_page(page);
eb2be189 3218
eb2be189
NP
3219 return page;
3220}
54566b2c 3221EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3222
3b93f911 3223ssize_t generic_perform_write(struct file *file,
afddba49
NP
3224 struct iov_iter *i, loff_t pos)
3225{
3226 struct address_space *mapping = file->f_mapping;
3227 const struct address_space_operations *a_ops = mapping->a_ops;
3228 long status = 0;
3229 ssize_t written = 0;
674b892e
NP
3230 unsigned int flags = 0;
3231
afddba49
NP
3232 do {
3233 struct page *page;
afddba49
NP
3234 unsigned long offset; /* Offset into pagecache page */
3235 unsigned long bytes; /* Bytes to write to page */
3236 size_t copied; /* Bytes copied from user */
3237 void *fsdata;
3238
09cbfeaf
KS
3239 offset = (pos & (PAGE_SIZE - 1));
3240 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3241 iov_iter_count(i));
3242
3243again:
00a3d660
LT
3244 /*
3245 * Bring in the user page that we will copy from _first_.
3246 * Otherwise there's a nasty deadlock on copying from the
3247 * same page as we're writing to, without it being marked
3248 * up-to-date.
3249 *
3250 * Not only is this an optimisation, but it is also required
3251 * to check that the address is actually valid, when atomic
3252 * usercopies are used, below.
3253 */
3254 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3255 status = -EFAULT;
3256 break;
3257 }
3258
296291cd
JK
3259 if (fatal_signal_pending(current)) {
3260 status = -EINTR;
3261 break;
3262 }
3263
674b892e 3264 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3265 &page, &fsdata);
2457aec6 3266 if (unlikely(status < 0))
afddba49
NP
3267 break;
3268
931e80e4 3269 if (mapping_writably_mapped(mapping))
3270 flush_dcache_page(page);
00a3d660 3271
afddba49 3272 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3273 flush_dcache_page(page);
3274
3275 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3276 page, fsdata);
3277 if (unlikely(status < 0))
3278 break;
3279 copied = status;
3280
3281 cond_resched();
3282
124d3b70 3283 iov_iter_advance(i, copied);
afddba49
NP
3284 if (unlikely(copied == 0)) {
3285 /*
3286 * If we were unable to copy any data at all, we must
3287 * fall back to a single segment length write.
3288 *
3289 * If we didn't fallback here, we could livelock
3290 * because not all segments in the iov can be copied at
3291 * once without a pagefault.
3292 */
09cbfeaf 3293 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3294 iov_iter_single_seg_count(i));
3295 goto again;
3296 }
afddba49
NP
3297 pos += copied;
3298 written += copied;
3299
3300 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3301 } while (iov_iter_count(i));
3302
3303 return written ? written : status;
3304}
3b93f911 3305EXPORT_SYMBOL(generic_perform_write);
1da177e4 3306
e4dd9de3 3307/**
8174202b 3308 * __generic_file_write_iter - write data to a file
e4dd9de3 3309 * @iocb: IO state structure (file, offset, etc.)
8174202b 3310 * @from: iov_iter with data to write
e4dd9de3
JK
3311 *
3312 * This function does all the work needed for actually writing data to a
3313 * file. It does all basic checks, removes SUID from the file, updates
3314 * modification times and calls proper subroutines depending on whether we
3315 * do direct IO or a standard buffered write.
3316 *
3317 * It expects i_mutex to be grabbed unless we work on a block device or similar
3318 * object which does not need locking at all.
3319 *
3320 * This function does *not* take care of syncing data in case of O_SYNC write.
3321 * A caller has to handle it. This is mainly due to the fact that we want to
3322 * avoid syncing under i_mutex.
a862f68a
MR
3323 *
3324 * Return:
3325 * * number of bytes written, even for truncated writes
3326 * * negative error code if no data has been written at all
e4dd9de3 3327 */
8174202b 3328ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3329{
3330 struct file *file = iocb->ki_filp;
fb5527e6 3331 struct address_space * mapping = file->f_mapping;
1da177e4 3332 struct inode *inode = mapping->host;
3b93f911 3333 ssize_t written = 0;
1da177e4 3334 ssize_t err;
3b93f911 3335 ssize_t status;
1da177e4 3336
1da177e4 3337 /* We can write back this queue in page reclaim */
de1414a6 3338 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3339 err = file_remove_privs(file);
1da177e4
LT
3340 if (err)
3341 goto out;
3342
c3b2da31
JB
3343 err = file_update_time(file);
3344 if (err)
3345 goto out;
1da177e4 3346
2ba48ce5 3347 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3348 loff_t pos, endbyte;
fb5527e6 3349
1af5bb49 3350 written = generic_file_direct_write(iocb, from);
1da177e4 3351 /*
fbbbad4b
MW
3352 * If the write stopped short of completing, fall back to
3353 * buffered writes. Some filesystems do this for writes to
3354 * holes, for example. For DAX files, a buffered write will
3355 * not succeed (even if it did, DAX does not handle dirty
3356 * page-cache pages correctly).
1da177e4 3357 */
0b8def9d 3358 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3359 goto out;
3360
0b8def9d 3361 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3362 /*
3b93f911 3363 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3364 * then we want to return the number of bytes which were
3365 * direct-written, or the error code if that was zero. Note
3366 * that this differs from normal direct-io semantics, which
3367 * will return -EFOO even if some bytes were written.
3368 */
60bb4529 3369 if (unlikely(status < 0)) {
3b93f911 3370 err = status;
fb5527e6
JM
3371 goto out;
3372 }
fb5527e6
JM
3373 /*
3374 * We need to ensure that the page cache pages are written to
3375 * disk and invalidated to preserve the expected O_DIRECT
3376 * semantics.
3377 */
3b93f911 3378 endbyte = pos + status - 1;
0b8def9d 3379 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3380 if (err == 0) {
0b8def9d 3381 iocb->ki_pos = endbyte + 1;
3b93f911 3382 written += status;
fb5527e6 3383 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3384 pos >> PAGE_SHIFT,
3385 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3386 } else {
3387 /*
3388 * We don't know how much we wrote, so just return
3389 * the number of bytes which were direct-written
3390 */
3391 }
3392 } else {
0b8def9d
AV
3393 written = generic_perform_write(file, from, iocb->ki_pos);
3394 if (likely(written > 0))
3395 iocb->ki_pos += written;
fb5527e6 3396 }
1da177e4
LT
3397out:
3398 current->backing_dev_info = NULL;
3399 return written ? written : err;
3400}
8174202b 3401EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3402
e4dd9de3 3403/**
8174202b 3404 * generic_file_write_iter - write data to a file
e4dd9de3 3405 * @iocb: IO state structure
8174202b 3406 * @from: iov_iter with data to write
e4dd9de3 3407 *
8174202b 3408 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3409 * filesystems. It takes care of syncing the file in case of O_SYNC file
3410 * and acquires i_mutex as needed.
a862f68a
MR
3411 * Return:
3412 * * negative error code if no data has been written at all of
3413 * vfs_fsync_range() failed for a synchronous write
3414 * * number of bytes written, even for truncated writes
e4dd9de3 3415 */
8174202b 3416ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3417{
3418 struct file *file = iocb->ki_filp;
148f948b 3419 struct inode *inode = file->f_mapping->host;
1da177e4 3420 ssize_t ret;
1da177e4 3421
5955102c 3422 inode_lock(inode);
3309dd04
AV
3423 ret = generic_write_checks(iocb, from);
3424 if (ret > 0)
5f380c7f 3425 ret = __generic_file_write_iter(iocb, from);
5955102c 3426 inode_unlock(inode);
1da177e4 3427
e2592217
CH
3428 if (ret > 0)
3429 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3430 return ret;
3431}
8174202b 3432EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3433
cf9a2ae8
DH
3434/**
3435 * try_to_release_page() - release old fs-specific metadata on a page
3436 *
3437 * @page: the page which the kernel is trying to free
3438 * @gfp_mask: memory allocation flags (and I/O mode)
3439 *
3440 * The address_space is to try to release any data against the page
a862f68a 3441 * (presumably at page->private).
cf9a2ae8 3442 *
266cf658
DH
3443 * This may also be called if PG_fscache is set on a page, indicating that the
3444 * page is known to the local caching routines.
3445 *
cf9a2ae8 3446 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3447 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3448 *
a862f68a 3449 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3450 */
3451int try_to_release_page(struct page *page, gfp_t gfp_mask)
3452{
3453 struct address_space * const mapping = page->mapping;
3454
3455 BUG_ON(!PageLocked(page));
3456 if (PageWriteback(page))
3457 return 0;
3458
3459 if (mapping && mapping->a_ops->releasepage)
3460 return mapping->a_ops->releasepage(page, gfp_mask);
3461 return try_to_free_buffers(page);
3462}
3463
3464EXPORT_SYMBOL(try_to_release_page);