x86/asm: Change all ENTRY+ENDPROC to SYM_FUNC_*
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
0f8053a5
NP
43#include "internal.h"
44
fe0bfaaf
RJ
45#define CREATE_TRACE_POINTS
46#include <trace/events/filemap.h>
47
1da177e4 48/*
1da177e4
LT
49 * FIXME: remove all knowledge of the buffer layer from the core VM
50 */
148f948b 51#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 52
1da177e4
LT
53#include <asm/mman.h>
54
55/*
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * though.
58 *
59 * Shared mappings now work. 15.8.1995 Bruno.
60 *
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63 *
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 */
66
67/*
68 * Lock ordering:
69 *
c8c06efa 70 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 72 * ->swap_lock (exclusive_swap_page, others)
b93b0163 73 * ->i_pages lock
1da177e4 74 *
1b1dcc1b 75 * ->i_mutex
c8c06efa 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
77 *
78 * ->mmap_sem
c8c06efa 79 * ->i_mmap_rwsem
b8072f09 80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
82 *
83 * ->mmap_sem
84 * ->lock_page (access_process_vm)
85 *
ccad2365 86 * ->i_mutex (generic_perform_write)
82591e6e 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 88 *
f758eeab 89 * bdi->wb.list_lock
a66979ab 90 * sb_lock (fs/fs-writeback.c)
b93b0163 91 * ->i_pages lock (__sync_single_inode)
1da177e4 92 *
c8c06efa 93 * ->i_mmap_rwsem
1da177e4
LT
94 * ->anon_vma.lock (vma_adjust)
95 *
96 * ->anon_vma.lock
b8072f09 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 98 *
b8072f09 99 * ->page_table_lock or pte_lock
5d337b91 100 * ->swap_lock (try_to_unmap_one)
1da177e4 101 * ->private_lock (try_to_unmap_one)
b93b0163 102 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 105 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
113 *
c8c06efa 114 * ->i_mmap_rwsem
9a3c531d 115 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
116 */
117
5c024e6a 118static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
119 struct page *page, void *shadow)
120{
5c024e6a
MW
121 XA_STATE(xas, &mapping->i_pages, page->index);
122 unsigned int nr = 1;
c70b647d 123
5c024e6a 124 mapping_set_update(&xas, mapping);
c70b647d 125
5c024e6a
MW
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 129 nr = compound_nr(page);
5c024e6a 130 }
91b0abe3 131
83929372
KS
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 135
5c024e6a
MW
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
d3798ae8 138
2300638b
JK
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
141
d3798ae8
JW
142 if (shadow) {
143 mapping->nrexceptional += nr;
144 /*
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
149 */
150 smp_wmb();
151 }
152 mapping->nrpages -= nr;
91b0abe3
JW
153}
154
5ecc4d85
JK
155static void unaccount_page_cache_page(struct address_space *mapping,
156 struct page *page)
1da177e4 157{
5ecc4d85 158 int nr;
1da177e4 159
c515e1fd
DM
160 /*
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
164 */
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
167 else
3167760f 168 cleancache_invalidate_page(mapping, page);
c515e1fd 169
83929372 170 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 int mapcount;
174
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
178 dump_stack();
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
184 /*
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
189 */
190 page_mapcount_reset(page);
6d061f9f 191 page_ref_sub(page, mapcount);
06b241f3
HD
192 }
193 }
194
4165b9b4 195 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
196 if (PageHuge(page))
197 return;
09612fa6 198
5ecc4d85
JK
199 nr = hpage_nr_pages(page);
200
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
206 } else if (PageTransHuge(page)) {
207 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 208 filemap_nr_thps_dec(mapping);
800d8c63 209 }
5ecc4d85
JK
210
211 /*
212 * At this point page must be either written or cleaned by
213 * truncate. Dirty page here signals a bug and loss of
214 * unwritten data.
215 *
216 * This fixes dirty accounting after removing the page entirely
217 * but leaves PageDirty set: it has no effect for truncated
218 * page and anyway will be cleared before returning page into
219 * buddy allocator.
220 */
221 if (WARN_ON_ONCE(PageDirty(page)))
222 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
223}
224
225/*
226 * Delete a page from the page cache and free it. Caller has to make
227 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 228 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
229 */
230void __delete_from_page_cache(struct page *page, void *shadow)
231{
232 struct address_space *mapping = page->mapping;
233
234 trace_mm_filemap_delete_from_page_cache(page);
235
236 unaccount_page_cache_page(mapping, page);
5c024e6a 237 page_cache_delete(mapping, page, shadow);
1da177e4
LT
238}
239
59c66c5f
JK
240static void page_cache_free_page(struct address_space *mapping,
241 struct page *page)
242{
243 void (*freepage)(struct page *);
244
245 freepage = mapping->a_ops->freepage;
246 if (freepage)
247 freepage(page);
248
249 if (PageTransHuge(page) && !PageHuge(page)) {
250 page_ref_sub(page, HPAGE_PMD_NR);
251 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
252 } else {
253 put_page(page);
254 }
255}
256
702cfbf9
MK
257/**
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
260 *
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
264 */
265void delete_from_page_cache(struct page *page)
1da177e4 266{
83929372 267 struct address_space *mapping = page_mapping(page);
c4843a75 268 unsigned long flags;
1da177e4 269
cd7619d6 270 BUG_ON(!PageLocked(page));
b93b0163 271 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 272 __delete_from_page_cache(page, NULL);
b93b0163 273 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 274
59c66c5f 275 page_cache_free_page(mapping, page);
97cecb5a
MK
276}
277EXPORT_SYMBOL(delete_from_page_cache);
278
aa65c29c 279/*
ef8e5717 280 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
281 * @mapping: the mapping to which pages belong
282 * @pvec: pagevec with pages to delete
283 *
b93b0163 284 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
285 * from the mapping. The function expects @pvec to be sorted by page index
286 * and is optimised for it to be dense.
b93b0163 287 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 288 * modified). The function expects only THP head pages to be present in the
4101196b 289 * @pvec.
aa65c29c 290 *
b93b0163 291 * The function expects the i_pages lock to be held.
aa65c29c 292 */
ef8e5717 293static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
294 struct pagevec *pvec)
295{
ef8e5717 296 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 297 int total_pages = 0;
4101196b 298 int i = 0;
aa65c29c 299 struct page *page;
aa65c29c 300
ef8e5717
MW
301 mapping_set_update(&xas, mapping);
302 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 303 if (i >= pagevec_count(pvec))
aa65c29c 304 break;
4101196b
MWO
305
306 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 307 if (xa_is_value(page))
aa65c29c 308 continue;
4101196b
MWO
309 /*
310 * A page got inserted in our range? Skip it. We have our
311 * pages locked so they are protected from being removed.
312 * If we see a page whose index is higher than ours, it
313 * means our page has been removed, which shouldn't be
314 * possible because we're holding the PageLock.
315 */
316 if (page != pvec->pages[i]) {
317 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
318 page);
319 continue;
320 }
321
322 WARN_ON_ONCE(!PageLocked(page));
323
324 if (page->index == xas.xa_index)
aa65c29c 325 page->mapping = NULL;
4101196b
MWO
326 /* Leave page->index set: truncation lookup relies on it */
327
328 /*
329 * Move to the next page in the vector if this is a regular
330 * page or the index is of the last sub-page of this compound
331 * page.
332 */
333 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 334 i++;
ef8e5717 335 xas_store(&xas, NULL);
aa65c29c
JK
336 total_pages++;
337 }
338 mapping->nrpages -= total_pages;
339}
340
341void delete_from_page_cache_batch(struct address_space *mapping,
342 struct pagevec *pvec)
343{
344 int i;
345 unsigned long flags;
346
347 if (!pagevec_count(pvec))
348 return;
349
b93b0163 350 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
351 for (i = 0; i < pagevec_count(pvec); i++) {
352 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
353
354 unaccount_page_cache_page(mapping, pvec->pages[i]);
355 }
ef8e5717 356 page_cache_delete_batch(mapping, pvec);
b93b0163 357 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
358
359 for (i = 0; i < pagevec_count(pvec); i++)
360 page_cache_free_page(mapping, pvec->pages[i]);
361}
362
d72d9e2a 363int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
364{
365 int ret = 0;
366 /* Check for outstanding write errors */
7fcbbaf1
JA
367 if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 369 ret = -ENOSPC;
7fcbbaf1
JA
370 if (test_bit(AS_EIO, &mapping->flags) &&
371 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
372 ret = -EIO;
373 return ret;
374}
d72d9e2a 375EXPORT_SYMBOL(filemap_check_errors);
865ffef3 376
76341cab
JL
377static int filemap_check_and_keep_errors(struct address_space *mapping)
378{
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO, &mapping->flags))
381 return -EIO;
382 if (test_bit(AS_ENOSPC, &mapping->flags))
383 return -ENOSPC;
384 return 0;
385}
386
1da177e4 387/**
485bb99b 388 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
389 * @mapping: address space structure to write
390 * @start: offset in bytes where the range starts
469eb4d0 391 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 392 * @sync_mode: enable synchronous operation
1da177e4 393 *
485bb99b
RD
394 * Start writeback against all of a mapping's dirty pages that lie
395 * within the byte offsets <start, end> inclusive.
396 *
1da177e4 397 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 398 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
399 * these two operations is that if a dirty page/buffer is encountered, it must
400 * be waited upon, and not just skipped over.
a862f68a
MR
401 *
402 * Return: %0 on success, negative error code otherwise.
1da177e4 403 */
ebcf28e1
AM
404int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
405 loff_t end, int sync_mode)
1da177e4
LT
406{
407 int ret;
408 struct writeback_control wbc = {
409 .sync_mode = sync_mode,
05fe478d 410 .nr_to_write = LONG_MAX,
111ebb6e
OH
411 .range_start = start,
412 .range_end = end,
1da177e4
LT
413 };
414
c3aab9a0
KK
415 if (!mapping_cap_writeback_dirty(mapping) ||
416 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
417 return 0;
418
b16b1deb 419 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 420 ret = do_writepages(mapping, &wbc);
b16b1deb 421 wbc_detach_inode(&wbc);
1da177e4
LT
422 return ret;
423}
424
425static inline int __filemap_fdatawrite(struct address_space *mapping,
426 int sync_mode)
427{
111ebb6e 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
429}
430
431int filemap_fdatawrite(struct address_space *mapping)
432{
433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434}
435EXPORT_SYMBOL(filemap_fdatawrite);
436
f4c0a0fd 437int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 438 loff_t end)
1da177e4
LT
439{
440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441}
f4c0a0fd 442EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 443
485bb99b
RD
444/**
445 * filemap_flush - mostly a non-blocking flush
446 * @mapping: target address_space
447 *
1da177e4
LT
448 * This is a mostly non-blocking flush. Not suitable for data-integrity
449 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
450 *
451 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
452 */
453int filemap_flush(struct address_space *mapping)
454{
455 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456}
457EXPORT_SYMBOL(filemap_flush);
458
7fc9e472
GR
459/**
460 * filemap_range_has_page - check if a page exists in range.
461 * @mapping: address space within which to check
462 * @start_byte: offset in bytes where the range starts
463 * @end_byte: offset in bytes where the range ends (inclusive)
464 *
465 * Find at least one page in the range supplied, usually used to check if
466 * direct writing in this range will trigger a writeback.
a862f68a
MR
467 *
468 * Return: %true if at least one page exists in the specified range,
469 * %false otherwise.
7fc9e472
GR
470 */
471bool filemap_range_has_page(struct address_space *mapping,
472 loff_t start_byte, loff_t end_byte)
473{
f7b68046 474 struct page *page;
8fa8e538
MW
475 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
476 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
477
478 if (end_byte < start_byte)
479 return false;
480
8fa8e538
MW
481 rcu_read_lock();
482 for (;;) {
483 page = xas_find(&xas, max);
484 if (xas_retry(&xas, page))
485 continue;
486 /* Shadow entries don't count */
487 if (xa_is_value(page))
488 continue;
489 /*
490 * We don't need to try to pin this page; we're about to
491 * release the RCU lock anyway. It is enough to know that
492 * there was a page here recently.
493 */
494 break;
495 }
496 rcu_read_unlock();
7fc9e472 497
8fa8e538 498 return page != NULL;
7fc9e472
GR
499}
500EXPORT_SYMBOL(filemap_range_has_page);
501
5e8fcc1a 502static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 503 loff_t start_byte, loff_t end_byte)
1da177e4 504{
09cbfeaf
KS
505 pgoff_t index = start_byte >> PAGE_SHIFT;
506 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
507 struct pagevec pvec;
508 int nr_pages;
1da177e4 509
94004ed7 510 if (end_byte < start_byte)
5e8fcc1a 511 return;
1da177e4 512
86679820 513 pagevec_init(&pvec);
312e9d2f 514 while (index <= end) {
1da177e4
LT
515 unsigned i;
516
312e9d2f 517 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 518 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
519 if (!nr_pages)
520 break;
521
1da177e4
LT
522 for (i = 0; i < nr_pages; i++) {
523 struct page *page = pvec.pages[i];
524
1da177e4 525 wait_on_page_writeback(page);
5e8fcc1a 526 ClearPageError(page);
1da177e4
LT
527 }
528 pagevec_release(&pvec);
529 cond_resched();
530 }
aa750fd7
JN
531}
532
533/**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
a862f68a
MR
546 *
547 * Return: error status of the address space.
aa750fd7
JN
548 */
549int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551{
5e8fcc1a
JL
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
1da177e4 554}
d3bccb6f
JK
555EXPORT_SYMBOL(filemap_fdatawait_range);
556
aa0bfcd9
RZ
557/**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573{
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576}
577EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
a823e458
JL
579/**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
a862f68a
MR
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
594 */
595int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596{
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601}
602EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 603
aa750fd7
JN
604/**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
a862f68a
MR
615 *
616 * Return: error status of the address space.
aa750fd7 617 */
76341cab 618int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 619{
ffb959bb 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 621 return filemap_check_and_keep_errors(mapping);
aa750fd7 622}
76341cab 623EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 624
875d91b1 625/* Returns true if writeback might be needed or already in progress. */
9326c9b2 626static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 627{
875d91b1
KK
628 if (dax_mapping(mapping))
629 return mapping->nrexceptional;
630
631 return mapping->nrpages;
1da177e4 632}
1da177e4
LT
633
634int filemap_write_and_wait(struct address_space *mapping)
635{
28fd1298 636 int err = 0;
1da177e4 637
9326c9b2 638 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
639 err = filemap_fdatawrite(mapping);
640 /*
641 * Even if the above returned error, the pages may be
642 * written partially (e.g. -ENOSPC), so we wait for it.
643 * But the -EIO is special case, it may indicate the worst
644 * thing (e.g. bug) happened, so we avoid waiting for it.
645 */
646 if (err != -EIO) {
647 int err2 = filemap_fdatawait(mapping);
648 if (!err)
649 err = err2;
cbeaf951
JL
650 } else {
651 /* Clear any previously stored errors */
652 filemap_check_errors(mapping);
28fd1298 653 }
865ffef3
DM
654 } else {
655 err = filemap_check_errors(mapping);
1da177e4 656 }
28fd1298 657 return err;
1da177e4 658}
28fd1298 659EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 660
485bb99b
RD
661/**
662 * filemap_write_and_wait_range - write out & wait on a file range
663 * @mapping: the address_space for the pages
664 * @lstart: offset in bytes where the range starts
665 * @lend: offset in bytes where the range ends (inclusive)
666 *
469eb4d0
AM
667 * Write out and wait upon file offsets lstart->lend, inclusive.
668 *
0e056eb5 669 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 670 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
671 *
672 * Return: error status of the address space.
469eb4d0 673 */
1da177e4
LT
674int filemap_write_and_wait_range(struct address_space *mapping,
675 loff_t lstart, loff_t lend)
676{
28fd1298 677 int err = 0;
1da177e4 678
9326c9b2 679 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
680 err = __filemap_fdatawrite_range(mapping, lstart, lend,
681 WB_SYNC_ALL);
682 /* See comment of filemap_write_and_wait() */
683 if (err != -EIO) {
94004ed7
CH
684 int err2 = filemap_fdatawait_range(mapping,
685 lstart, lend);
28fd1298
OH
686 if (!err)
687 err = err2;
cbeaf951
JL
688 } else {
689 /* Clear any previously stored errors */
690 filemap_check_errors(mapping);
28fd1298 691 }
865ffef3
DM
692 } else {
693 err = filemap_check_errors(mapping);
1da177e4 694 }
28fd1298 695 return err;
1da177e4 696}
f6995585 697EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 698
5660e13d
JL
699void __filemap_set_wb_err(struct address_space *mapping, int err)
700{
3acdfd28 701 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
702
703 trace_filemap_set_wb_err(mapping, eseq);
704}
705EXPORT_SYMBOL(__filemap_set_wb_err);
706
707/**
708 * file_check_and_advance_wb_err - report wb error (if any) that was previously
709 * and advance wb_err to current one
710 * @file: struct file on which the error is being reported
711 *
712 * When userland calls fsync (or something like nfsd does the equivalent), we
713 * want to report any writeback errors that occurred since the last fsync (or
714 * since the file was opened if there haven't been any).
715 *
716 * Grab the wb_err from the mapping. If it matches what we have in the file,
717 * then just quickly return 0. The file is all caught up.
718 *
719 * If it doesn't match, then take the mapping value, set the "seen" flag in
720 * it and try to swap it into place. If it works, or another task beat us
721 * to it with the new value, then update the f_wb_err and return the error
722 * portion. The error at this point must be reported via proper channels
723 * (a'la fsync, or NFS COMMIT operation, etc.).
724 *
725 * While we handle mapping->wb_err with atomic operations, the f_wb_err
726 * value is protected by the f_lock since we must ensure that it reflects
727 * the latest value swapped in for this file descriptor.
a862f68a
MR
728 *
729 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
730 */
731int file_check_and_advance_wb_err(struct file *file)
732{
733 int err = 0;
734 errseq_t old = READ_ONCE(file->f_wb_err);
735 struct address_space *mapping = file->f_mapping;
736
737 /* Locklessly handle the common case where nothing has changed */
738 if (errseq_check(&mapping->wb_err, old)) {
739 /* Something changed, must use slow path */
740 spin_lock(&file->f_lock);
741 old = file->f_wb_err;
742 err = errseq_check_and_advance(&mapping->wb_err,
743 &file->f_wb_err);
744 trace_file_check_and_advance_wb_err(file, old);
745 spin_unlock(&file->f_lock);
746 }
f4e222c5
JL
747
748 /*
749 * We're mostly using this function as a drop in replacement for
750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 * that the legacy code would have had on these flags.
752 */
753 clear_bit(AS_EIO, &mapping->flags);
754 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
755 return err;
756}
757EXPORT_SYMBOL(file_check_and_advance_wb_err);
758
759/**
760 * file_write_and_wait_range - write out & wait on a file range
761 * @file: file pointing to address_space with pages
762 * @lstart: offset in bytes where the range starts
763 * @lend: offset in bytes where the range ends (inclusive)
764 *
765 * Write out and wait upon file offsets lstart->lend, inclusive.
766 *
767 * Note that @lend is inclusive (describes the last byte to be written) so
768 * that this function can be used to write to the very end-of-file (end = -1).
769 *
770 * After writing out and waiting on the data, we check and advance the
771 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
772 *
773 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
774 */
775int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776{
777 int err = 0, err2;
778 struct address_space *mapping = file->f_mapping;
779
9326c9b2 780 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791}
792EXPORT_SYMBOL(file_write_and_wait_range);
793
ef6a3c63
MS
794/**
795 * replace_page_cache_page - replace a pagecache page with a new one
796 * @old: page to be replaced
797 * @new: page to replace with
798 * @gfp_mask: allocation mode
799 *
800 * This function replaces a page in the pagecache with a new one. On
801 * success it acquires the pagecache reference for the new page and
802 * drops it for the old page. Both the old and new pages must be
803 * locked. This function does not add the new page to the LRU, the
804 * caller must do that.
805 *
74d60958 806 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
807 *
808 * Return: %0
ef6a3c63
MS
809 */
810int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
811{
74d60958
MW
812 struct address_space *mapping = old->mapping;
813 void (*freepage)(struct page *) = mapping->a_ops->freepage;
814 pgoff_t offset = old->index;
815 XA_STATE(xas, &mapping->i_pages, offset);
816 unsigned long flags;
ef6a3c63 817
309381fe
SL
818 VM_BUG_ON_PAGE(!PageLocked(old), old);
819 VM_BUG_ON_PAGE(!PageLocked(new), new);
820 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 821
74d60958
MW
822 get_page(new);
823 new->mapping = mapping;
824 new->index = offset;
ef6a3c63 825
74d60958
MW
826 xas_lock_irqsave(&xas, flags);
827 xas_store(&xas, new);
4165b9b4 828
74d60958
MW
829 old->mapping = NULL;
830 /* hugetlb pages do not participate in page cache accounting. */
831 if (!PageHuge(old))
832 __dec_node_page_state(new, NR_FILE_PAGES);
833 if (!PageHuge(new))
834 __inc_node_page_state(new, NR_FILE_PAGES);
835 if (PageSwapBacked(old))
836 __dec_node_page_state(new, NR_SHMEM);
837 if (PageSwapBacked(new))
838 __inc_node_page_state(new, NR_SHMEM);
839 xas_unlock_irqrestore(&xas, flags);
840 mem_cgroup_migrate(old, new);
841 if (freepage)
842 freepage(old);
843 put_page(old);
ef6a3c63 844
74d60958 845 return 0;
ef6a3c63
MS
846}
847EXPORT_SYMBOL_GPL(replace_page_cache_page);
848
a528910e
JW
849static int __add_to_page_cache_locked(struct page *page,
850 struct address_space *mapping,
851 pgoff_t offset, gfp_t gfp_mask,
852 void **shadowp)
1da177e4 853{
74d60958 854 XA_STATE(xas, &mapping->i_pages, offset);
00501b53
JW
855 int huge = PageHuge(page);
856 struct mem_cgroup *memcg;
e286781d 857 int error;
74d60958 858 void *old;
e286781d 859
309381fe
SL
860 VM_BUG_ON_PAGE(!PageLocked(page), page);
861 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 862 mapping_set_update(&xas, mapping);
e286781d 863
00501b53
JW
864 if (!huge) {
865 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 866 gfp_mask, &memcg, false);
00501b53
JW
867 if (error)
868 return error;
869 }
1da177e4 870
09cbfeaf 871 get_page(page);
66a0c8ee
KS
872 page->mapping = mapping;
873 page->index = offset;
874
74d60958
MW
875 do {
876 xas_lock_irq(&xas);
877 old = xas_load(&xas);
878 if (old && !xa_is_value(old))
879 xas_set_err(&xas, -EEXIST);
880 xas_store(&xas, page);
881 if (xas_error(&xas))
882 goto unlock;
883
884 if (xa_is_value(old)) {
885 mapping->nrexceptional--;
886 if (shadowp)
887 *shadowp = old;
888 }
889 mapping->nrpages++;
890
891 /* hugetlb pages do not participate in page cache accounting */
892 if (!huge)
893 __inc_node_page_state(page, NR_FILE_PAGES);
894unlock:
895 xas_unlock_irq(&xas);
896 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
897
898 if (xas_error(&xas))
899 goto error;
4165b9b4 900
00501b53 901 if (!huge)
f627c2f5 902 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
74d60958 905error:
66a0c8ee
KS
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
00501b53 908 if (!huge)
f627c2f5 909 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 910 put_page(page);
74d60958 911 return xas_error(&xas);
1da177e4 912}
cfcbfb13 913ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
914
915/**
916 * add_to_page_cache_locked - add a locked page to the pagecache
917 * @page: page to add
918 * @mapping: the page's address_space
919 * @offset: page index
920 * @gfp_mask: page allocation mode
921 *
922 * This function is used to add a page to the pagecache. It must be locked.
923 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
924 *
925 * Return: %0 on success, negative error code otherwise.
a528910e
JW
926 */
927int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
928 pgoff_t offset, gfp_t gfp_mask)
929{
930 return __add_to_page_cache_locked(page, mapping, offset,
931 gfp_mask, NULL);
932}
e286781d 933EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
934
935int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 936 pgoff_t offset, gfp_t gfp_mask)
1da177e4 937{
a528910e 938 void *shadow = NULL;
4f98a2fe
RR
939 int ret;
940
48c935ad 941 __SetPageLocked(page);
a528910e
JW
942 ret = __add_to_page_cache_locked(page, mapping, offset,
943 gfp_mask, &shadow);
944 if (unlikely(ret))
48c935ad 945 __ClearPageLocked(page);
a528910e
JW
946 else {
947 /*
948 * The page might have been evicted from cache only
949 * recently, in which case it should be activated like
950 * any other repeatedly accessed page.
f0281a00
RR
951 * The exception is pages getting rewritten; evicting other
952 * data from the working set, only to cache data that will
953 * get overwritten with something else, is a waste of memory.
a528910e 954 */
1899ad18
JW
955 WARN_ON_ONCE(PageActive(page));
956 if (!(gfp_mask & __GFP_WRITE) && shadow)
957 workingset_refault(page, shadow);
a528910e
JW
958 lru_cache_add(page);
959 }
1da177e4
LT
960 return ret;
961}
18bc0bbd 962EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 963
44110fe3 964#ifdef CONFIG_NUMA
2ae88149 965struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 966{
c0ff7453
MX
967 int n;
968 struct page *page;
969
44110fe3 970 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
971 unsigned int cpuset_mems_cookie;
972 do {
d26914d1 973 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 974 n = cpuset_mem_spread_node();
96db800f 975 page = __alloc_pages_node(n, gfp, 0);
d26914d1 976 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 977
c0ff7453 978 return page;
44110fe3 979 }
2ae88149 980 return alloc_pages(gfp, 0);
44110fe3 981}
2ae88149 982EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
983#endif
984
1da177e4
LT
985/*
986 * In order to wait for pages to become available there must be
987 * waitqueues associated with pages. By using a hash table of
988 * waitqueues where the bucket discipline is to maintain all
989 * waiters on the same queue and wake all when any of the pages
990 * become available, and for the woken contexts to check to be
991 * sure the appropriate page became available, this saves space
992 * at a cost of "thundering herd" phenomena during rare hash
993 * collisions.
994 */
62906027
NP
995#define PAGE_WAIT_TABLE_BITS 8
996#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
997static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
998
999static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 1000{
62906027 1001 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1002}
1da177e4 1003
62906027 1004void __init pagecache_init(void)
1da177e4 1005{
62906027 1006 int i;
1da177e4 1007
62906027
NP
1008 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1009 init_waitqueue_head(&page_wait_table[i]);
1010
1011 page_writeback_init();
1da177e4 1012}
1da177e4 1013
3510ca20 1014/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
1015struct wait_page_key {
1016 struct page *page;
1017 int bit_nr;
1018 int page_match;
1019};
1020
1021struct wait_page_queue {
1022 struct page *page;
1023 int bit_nr;
ac6424b9 1024 wait_queue_entry_t wait;
62906027
NP
1025};
1026
ac6424b9 1027static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1028{
62906027
NP
1029 struct wait_page_key *key = arg;
1030 struct wait_page_queue *wait_page
1031 = container_of(wait, struct wait_page_queue, wait);
1032
1033 if (wait_page->page != key->page)
1034 return 0;
1035 key->page_match = 1;
f62e00cc 1036
62906027
NP
1037 if (wait_page->bit_nr != key->bit_nr)
1038 return 0;
3510ca20 1039
9a1ea439
HD
1040 /*
1041 * Stop walking if it's locked.
1042 * Is this safe if put_and_wait_on_page_locked() is in use?
1043 * Yes: the waker must hold a reference to this page, and if PG_locked
1044 * has now already been set by another task, that task must also hold
1045 * a reference to the *same usage* of this page; so there is no need
1046 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1047 */
62906027 1048 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1049 return -1;
f62e00cc 1050
62906027 1051 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1052}
1053
74d81bfa 1054static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1055{
62906027
NP
1056 wait_queue_head_t *q = page_waitqueue(page);
1057 struct wait_page_key key;
1058 unsigned long flags;
11a19c7b 1059 wait_queue_entry_t bookmark;
cbbce822 1060
62906027
NP
1061 key.page = page;
1062 key.bit_nr = bit_nr;
1063 key.page_match = 0;
1064
11a19c7b
TC
1065 bookmark.flags = 0;
1066 bookmark.private = NULL;
1067 bookmark.func = NULL;
1068 INIT_LIST_HEAD(&bookmark.entry);
1069
62906027 1070 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1071 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1072
1073 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1074 /*
1075 * Take a breather from holding the lock,
1076 * allow pages that finish wake up asynchronously
1077 * to acquire the lock and remove themselves
1078 * from wait queue
1079 */
1080 spin_unlock_irqrestore(&q->lock, flags);
1081 cpu_relax();
1082 spin_lock_irqsave(&q->lock, flags);
1083 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1084 }
1085
62906027
NP
1086 /*
1087 * It is possible for other pages to have collided on the waitqueue
1088 * hash, so in that case check for a page match. That prevents a long-
1089 * term waiter
1090 *
1091 * It is still possible to miss a case here, when we woke page waiters
1092 * and removed them from the waitqueue, but there are still other
1093 * page waiters.
1094 */
1095 if (!waitqueue_active(q) || !key.page_match) {
1096 ClearPageWaiters(page);
1097 /*
1098 * It's possible to miss clearing Waiters here, when we woke
1099 * our page waiters, but the hashed waitqueue has waiters for
1100 * other pages on it.
1101 *
1102 * That's okay, it's a rare case. The next waker will clear it.
1103 */
1104 }
1105 spin_unlock_irqrestore(&q->lock, flags);
1106}
74d81bfa
NP
1107
1108static void wake_up_page(struct page *page, int bit)
1109{
1110 if (!PageWaiters(page))
1111 return;
1112 wake_up_page_bit(page, bit);
1113}
62906027 1114
9a1ea439
HD
1115/*
1116 * A choice of three behaviors for wait_on_page_bit_common():
1117 */
1118enum behavior {
1119 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1120 * __lock_page() waiting on then setting PG_locked.
1121 */
1122 SHARED, /* Hold ref to page and check the bit when woken, like
1123 * wait_on_page_writeback() waiting on PG_writeback.
1124 */
1125 DROP, /* Drop ref to page before wait, no check when woken,
1126 * like put_and_wait_on_page_locked() on PG_locked.
1127 */
1128};
1129
62906027 1130static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1131 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1132{
1133 struct wait_page_queue wait_page;
ac6424b9 1134 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1135 bool bit_is_set;
b1d29ba8 1136 bool thrashing = false;
9a1ea439 1137 bool delayacct = false;
eb414681 1138 unsigned long pflags;
62906027
NP
1139 int ret = 0;
1140
eb414681 1141 if (bit_nr == PG_locked &&
b1d29ba8 1142 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1143 if (!PageSwapBacked(page)) {
eb414681 1144 delayacct_thrashing_start();
9a1ea439
HD
1145 delayacct = true;
1146 }
eb414681 1147 psi_memstall_enter(&pflags);
b1d29ba8
JW
1148 thrashing = true;
1149 }
1150
62906027 1151 init_wait(wait);
9a1ea439 1152 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1153 wait->func = wake_page_function;
1154 wait_page.page = page;
1155 wait_page.bit_nr = bit_nr;
1156
1157 for (;;) {
1158 spin_lock_irq(&q->lock);
1159
2055da97 1160 if (likely(list_empty(&wait->entry))) {
3510ca20 1161 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1162 SetPageWaiters(page);
1163 }
1164
1165 set_current_state(state);
1166
1167 spin_unlock_irq(&q->lock);
1168
9a1ea439
HD
1169 bit_is_set = test_bit(bit_nr, &page->flags);
1170 if (behavior == DROP)
1171 put_page(page);
1172
1173 if (likely(bit_is_set))
62906027 1174 io_schedule();
62906027 1175
9a1ea439 1176 if (behavior == EXCLUSIVE) {
62906027
NP
1177 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1178 break;
9a1ea439 1179 } else if (behavior == SHARED) {
62906027
NP
1180 if (!test_bit(bit_nr, &page->flags))
1181 break;
1182 }
a8b169af 1183
fa45f116 1184 if (signal_pending_state(state, current)) {
a8b169af
LT
1185 ret = -EINTR;
1186 break;
1187 }
9a1ea439
HD
1188
1189 if (behavior == DROP) {
1190 /*
1191 * We can no longer safely access page->flags:
1192 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1193 * there is a risk of waiting forever on a page reused
1194 * for something that keeps it locked indefinitely.
1195 * But best check for -EINTR above before breaking.
1196 */
1197 break;
1198 }
62906027
NP
1199 }
1200
1201 finish_wait(q, wait);
1202
eb414681 1203 if (thrashing) {
9a1ea439 1204 if (delayacct)
eb414681
JW
1205 delayacct_thrashing_end();
1206 psi_memstall_leave(&pflags);
1207 }
b1d29ba8 1208
62906027
NP
1209 /*
1210 * A signal could leave PageWaiters set. Clearing it here if
1211 * !waitqueue_active would be possible (by open-coding finish_wait),
1212 * but still fail to catch it in the case of wait hash collision. We
1213 * already can fail to clear wait hash collision cases, so don't
1214 * bother with signals either.
1215 */
1216
1217 return ret;
1218}
1219
1220void wait_on_page_bit(struct page *page, int bit_nr)
1221{
1222 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1223 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1224}
1225EXPORT_SYMBOL(wait_on_page_bit);
1226
1227int wait_on_page_bit_killable(struct page *page, int bit_nr)
1228{
1229 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1230 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1231}
4343d008 1232EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1233
9a1ea439
HD
1234/**
1235 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1236 * @page: The page to wait for.
1237 *
1238 * The caller should hold a reference on @page. They expect the page to
1239 * become unlocked relatively soon, but do not wish to hold up migration
1240 * (for example) by holding the reference while waiting for the page to
1241 * come unlocked. After this function returns, the caller should not
1242 * dereference @page.
1243 */
1244void put_and_wait_on_page_locked(struct page *page)
1245{
1246 wait_queue_head_t *q;
1247
1248 page = compound_head(page);
1249 q = page_waitqueue(page);
1250 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1251}
1252
385e1ca5
DH
1253/**
1254 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1255 * @page: Page defining the wait queue of interest
1256 * @waiter: Waiter to add to the queue
385e1ca5
DH
1257 *
1258 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1259 */
ac6424b9 1260void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1261{
1262 wait_queue_head_t *q = page_waitqueue(page);
1263 unsigned long flags;
1264
1265 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1266 __add_wait_queue_entry_tail(q, waiter);
62906027 1267 SetPageWaiters(page);
385e1ca5
DH
1268 spin_unlock_irqrestore(&q->lock, flags);
1269}
1270EXPORT_SYMBOL_GPL(add_page_wait_queue);
1271
b91e1302
LT
1272#ifndef clear_bit_unlock_is_negative_byte
1273
1274/*
1275 * PG_waiters is the high bit in the same byte as PG_lock.
1276 *
1277 * On x86 (and on many other architectures), we can clear PG_lock and
1278 * test the sign bit at the same time. But if the architecture does
1279 * not support that special operation, we just do this all by hand
1280 * instead.
1281 *
1282 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1283 * being cleared, but a memory barrier should be unneccssary since it is
1284 * in the same byte as PG_locked.
1285 */
1286static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1287{
1288 clear_bit_unlock(nr, mem);
1289 /* smp_mb__after_atomic(); */
98473f9f 1290 return test_bit(PG_waiters, mem);
b91e1302
LT
1291}
1292
1293#endif
1294
1da177e4 1295/**
485bb99b 1296 * unlock_page - unlock a locked page
1da177e4
LT
1297 * @page: the page
1298 *
1299 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1300 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1301 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1302 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1303 *
b91e1302
LT
1304 * Note that this depends on PG_waiters being the sign bit in the byte
1305 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1306 * clear the PG_locked bit and test PG_waiters at the same time fairly
1307 * portably (architectures that do LL/SC can test any bit, while x86 can
1308 * test the sign bit).
1da177e4 1309 */
920c7a5d 1310void unlock_page(struct page *page)
1da177e4 1311{
b91e1302 1312 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1313 page = compound_head(page);
309381fe 1314 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1315 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1316 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1317}
1318EXPORT_SYMBOL(unlock_page);
1319
485bb99b
RD
1320/**
1321 * end_page_writeback - end writeback against a page
1322 * @page: the page
1da177e4
LT
1323 */
1324void end_page_writeback(struct page *page)
1325{
888cf2db
MG
1326 /*
1327 * TestClearPageReclaim could be used here but it is an atomic
1328 * operation and overkill in this particular case. Failing to
1329 * shuffle a page marked for immediate reclaim is too mild to
1330 * justify taking an atomic operation penalty at the end of
1331 * ever page writeback.
1332 */
1333 if (PageReclaim(page)) {
1334 ClearPageReclaim(page);
ac6aadb2 1335 rotate_reclaimable_page(page);
888cf2db 1336 }
ac6aadb2
MS
1337
1338 if (!test_clear_page_writeback(page))
1339 BUG();
1340
4e857c58 1341 smp_mb__after_atomic();
1da177e4
LT
1342 wake_up_page(page, PG_writeback);
1343}
1344EXPORT_SYMBOL(end_page_writeback);
1345
57d99845
MW
1346/*
1347 * After completing I/O on a page, call this routine to update the page
1348 * flags appropriately
1349 */
c11f0c0b 1350void page_endio(struct page *page, bool is_write, int err)
57d99845 1351{
c11f0c0b 1352 if (!is_write) {
57d99845
MW
1353 if (!err) {
1354 SetPageUptodate(page);
1355 } else {
1356 ClearPageUptodate(page);
1357 SetPageError(page);
1358 }
1359 unlock_page(page);
abf54548 1360 } else {
57d99845 1361 if (err) {
dd8416c4
MK
1362 struct address_space *mapping;
1363
57d99845 1364 SetPageError(page);
dd8416c4
MK
1365 mapping = page_mapping(page);
1366 if (mapping)
1367 mapping_set_error(mapping, err);
57d99845
MW
1368 }
1369 end_page_writeback(page);
1370 }
1371}
1372EXPORT_SYMBOL_GPL(page_endio);
1373
485bb99b
RD
1374/**
1375 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1376 * @__page: the page to lock
1da177e4 1377 */
62906027 1378void __lock_page(struct page *__page)
1da177e4 1379{
62906027
NP
1380 struct page *page = compound_head(__page);
1381 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1382 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1383 EXCLUSIVE);
1da177e4
LT
1384}
1385EXPORT_SYMBOL(__lock_page);
1386
62906027 1387int __lock_page_killable(struct page *__page)
2687a356 1388{
62906027
NP
1389 struct page *page = compound_head(__page);
1390 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1391 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1392 EXCLUSIVE);
2687a356 1393}
18bc0bbd 1394EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1395
9a95f3cf
PC
1396/*
1397 * Return values:
1398 * 1 - page is locked; mmap_sem is still held.
1399 * 0 - page is not locked.
1400 * mmap_sem has been released (up_read()), unless flags had both
1401 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1402 * which case mmap_sem is still held.
1403 *
1404 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1405 * with the page locked and the mmap_sem unperturbed.
1406 */
d065bd81
ML
1407int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1408 unsigned int flags)
1409{
37b23e05
KM
1410 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1411 /*
1412 * CAUTION! In this case, mmap_sem is not released
1413 * even though return 0.
1414 */
1415 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1416 return 0;
1417
1418 up_read(&mm->mmap_sem);
1419 if (flags & FAULT_FLAG_KILLABLE)
1420 wait_on_page_locked_killable(page);
1421 else
318b275f 1422 wait_on_page_locked(page);
d065bd81 1423 return 0;
37b23e05
KM
1424 } else {
1425 if (flags & FAULT_FLAG_KILLABLE) {
1426 int ret;
1427
1428 ret = __lock_page_killable(page);
1429 if (ret) {
1430 up_read(&mm->mmap_sem);
1431 return 0;
1432 }
1433 } else
1434 __lock_page(page);
1435 return 1;
d065bd81
ML
1436 }
1437}
1438
e7b563bb 1439/**
0d3f9296
MW
1440 * page_cache_next_miss() - Find the next gap in the page cache.
1441 * @mapping: Mapping.
1442 * @index: Index.
1443 * @max_scan: Maximum range to search.
e7b563bb 1444 *
0d3f9296
MW
1445 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1446 * gap with the lowest index.
e7b563bb 1447 *
0d3f9296
MW
1448 * This function may be called under the rcu_read_lock. However, this will
1449 * not atomically search a snapshot of the cache at a single point in time.
1450 * For example, if a gap is created at index 5, then subsequently a gap is
1451 * created at index 10, page_cache_next_miss covering both indices may
1452 * return 10 if called under the rcu_read_lock.
e7b563bb 1453 *
0d3f9296
MW
1454 * Return: The index of the gap if found, otherwise an index outside the
1455 * range specified (in which case 'return - index >= max_scan' will be true).
1456 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1457 */
0d3f9296 1458pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1459 pgoff_t index, unsigned long max_scan)
1460{
0d3f9296 1461 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1462
0d3f9296
MW
1463 while (max_scan--) {
1464 void *entry = xas_next(&xas);
1465 if (!entry || xa_is_value(entry))
e7b563bb 1466 break;
0d3f9296 1467 if (xas.xa_index == 0)
e7b563bb
JW
1468 break;
1469 }
1470
0d3f9296 1471 return xas.xa_index;
e7b563bb 1472}
0d3f9296 1473EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1474
1475/**
2346a560 1476 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1477 * @mapping: Mapping.
1478 * @index: Index.
1479 * @max_scan: Maximum range to search.
e7b563bb 1480 *
0d3f9296
MW
1481 * Search the range [max(index - max_scan + 1, 0), index] for the
1482 * gap with the highest index.
e7b563bb 1483 *
0d3f9296
MW
1484 * This function may be called under the rcu_read_lock. However, this will
1485 * not atomically search a snapshot of the cache at a single point in time.
1486 * For example, if a gap is created at index 10, then subsequently a gap is
1487 * created at index 5, page_cache_prev_miss() covering both indices may
1488 * return 5 if called under the rcu_read_lock.
e7b563bb 1489 *
0d3f9296
MW
1490 * Return: The index of the gap if found, otherwise an index outside the
1491 * range specified (in which case 'index - return >= max_scan' will be true).
1492 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1493 */
0d3f9296 1494pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1495 pgoff_t index, unsigned long max_scan)
1496{
0d3f9296 1497 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1498
0d3f9296
MW
1499 while (max_scan--) {
1500 void *entry = xas_prev(&xas);
1501 if (!entry || xa_is_value(entry))
e7b563bb 1502 break;
0d3f9296 1503 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1504 break;
1505 }
1506
0d3f9296 1507 return xas.xa_index;
e7b563bb 1508}
0d3f9296 1509EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1510
485bb99b 1511/**
0cd6144a 1512 * find_get_entry - find and get a page cache entry
485bb99b 1513 * @mapping: the address_space to search
0cd6144a
JW
1514 * @offset: the page cache index
1515 *
1516 * Looks up the page cache slot at @mapping & @offset. If there is a
1517 * page cache page, it is returned with an increased refcount.
485bb99b 1518 *
139b6a6f
JW
1519 * If the slot holds a shadow entry of a previously evicted page, or a
1520 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1521 *
a862f68a 1522 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1523 */
0cd6144a 1524struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1525{
4c7472c0 1526 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1527 struct page *page;
1da177e4 1528
a60637c8
NP
1529 rcu_read_lock();
1530repeat:
4c7472c0
MW
1531 xas_reset(&xas);
1532 page = xas_load(&xas);
1533 if (xas_retry(&xas, page))
1534 goto repeat;
1535 /*
1536 * A shadow entry of a recently evicted page, or a swap entry from
1537 * shmem/tmpfs. Return it without attempting to raise page count.
1538 */
1539 if (!page || xa_is_value(page))
1540 goto out;
83929372 1541
4101196b 1542 if (!page_cache_get_speculative(page))
4c7472c0 1543 goto repeat;
83929372 1544
4c7472c0 1545 /*
4101196b 1546 * Has the page moved or been split?
4c7472c0
MW
1547 * This is part of the lockless pagecache protocol. See
1548 * include/linux/pagemap.h for details.
1549 */
1550 if (unlikely(page != xas_reload(&xas))) {
4101196b 1551 put_page(page);
4c7472c0 1552 goto repeat;
a60637c8 1553 }
4101196b 1554 page = find_subpage(page, offset);
27d20fdd 1555out:
a60637c8
NP
1556 rcu_read_unlock();
1557
1da177e4
LT
1558 return page;
1559}
0cd6144a 1560EXPORT_SYMBOL(find_get_entry);
1da177e4 1561
0cd6144a
JW
1562/**
1563 * find_lock_entry - locate, pin and lock a page cache entry
1564 * @mapping: the address_space to search
1565 * @offset: the page cache index
1566 *
1567 * Looks up the page cache slot at @mapping & @offset. If there is a
1568 * page cache page, it is returned locked and with an increased
1569 * refcount.
1570 *
139b6a6f
JW
1571 * If the slot holds a shadow entry of a previously evicted page, or a
1572 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1573 *
0cd6144a 1574 * find_lock_entry() may sleep.
a862f68a
MR
1575 *
1576 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1577 */
1578struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1579{
1580 struct page *page;
1581
1da177e4 1582repeat:
0cd6144a 1583 page = find_get_entry(mapping, offset);
4c7472c0 1584 if (page && !xa_is_value(page)) {
a60637c8
NP
1585 lock_page(page);
1586 /* Has the page been truncated? */
83929372 1587 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1588 unlock_page(page);
09cbfeaf 1589 put_page(page);
a60637c8 1590 goto repeat;
1da177e4 1591 }
83929372 1592 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1593 }
1da177e4
LT
1594 return page;
1595}
0cd6144a
JW
1596EXPORT_SYMBOL(find_lock_entry);
1597
1598/**
2457aec6 1599 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1600 * @mapping: the address_space to search
1601 * @offset: the page index
2457aec6 1602 * @fgp_flags: PCG flags
45f87de5 1603 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1604 *
2457aec6 1605 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1606 *
75325189 1607 * PCG flags modify how the page is returned.
0cd6144a 1608 *
0e056eb5 1609 * @fgp_flags can be:
1610 *
1611 * - FGP_ACCESSED: the page will be marked accessed
1612 * - FGP_LOCK: Page is return locked
1613 * - FGP_CREAT: If page is not present then a new page is allocated using
1614 * @gfp_mask and added to the page cache and the VM's LRU
1615 * list. The page is returned locked and with an increased
a862f68a 1616 * refcount.
a75d4c33
JB
1617 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1618 * its own locking dance if the page is already in cache, or unlock the page
1619 * before returning if we had to add the page to pagecache.
1da177e4 1620 *
2457aec6
MG
1621 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1622 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1623 *
2457aec6 1624 * If there is a page cache page, it is returned with an increased refcount.
a862f68a
MR
1625 *
1626 * Return: the found page or %NULL otherwise.
1da177e4 1627 */
2457aec6 1628struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1629 int fgp_flags, gfp_t gfp_mask)
1da177e4 1630{
eb2be189 1631 struct page *page;
2457aec6 1632
1da177e4 1633repeat:
2457aec6 1634 page = find_get_entry(mapping, offset);
3159f943 1635 if (xa_is_value(page))
2457aec6
MG
1636 page = NULL;
1637 if (!page)
1638 goto no_page;
1639
1640 if (fgp_flags & FGP_LOCK) {
1641 if (fgp_flags & FGP_NOWAIT) {
1642 if (!trylock_page(page)) {
09cbfeaf 1643 put_page(page);
2457aec6
MG
1644 return NULL;
1645 }
1646 } else {
1647 lock_page(page);
1648 }
1649
1650 /* Has the page been truncated? */
31895438 1651 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1652 unlock_page(page);
09cbfeaf 1653 put_page(page);
2457aec6
MG
1654 goto repeat;
1655 }
1656 VM_BUG_ON_PAGE(page->index != offset, page);
1657 }
1658
c16eb000 1659 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1660 mark_page_accessed(page);
1661
1662no_page:
1663 if (!page && (fgp_flags & FGP_CREAT)) {
1664 int err;
1665 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1666 gfp_mask |= __GFP_WRITE;
1667 if (fgp_flags & FGP_NOFS)
1668 gfp_mask &= ~__GFP_FS;
2457aec6 1669
45f87de5 1670 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1671 if (!page)
1672 return NULL;
2457aec6 1673
a75d4c33 1674 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1675 fgp_flags |= FGP_LOCK;
1676
eb39d618 1677 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1678 if (fgp_flags & FGP_ACCESSED)
eb39d618 1679 __SetPageReferenced(page);
2457aec6 1680
abc1be13 1681 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1682 if (unlikely(err)) {
09cbfeaf 1683 put_page(page);
eb2be189
NP
1684 page = NULL;
1685 if (err == -EEXIST)
1686 goto repeat;
1da177e4 1687 }
a75d4c33
JB
1688
1689 /*
1690 * add_to_page_cache_lru locks the page, and for mmap we expect
1691 * an unlocked page.
1692 */
1693 if (page && (fgp_flags & FGP_FOR_MMAP))
1694 unlock_page(page);
1da177e4 1695 }
2457aec6 1696
1da177e4
LT
1697 return page;
1698}
2457aec6 1699EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1700
0cd6144a
JW
1701/**
1702 * find_get_entries - gang pagecache lookup
1703 * @mapping: The address_space to search
1704 * @start: The starting page cache index
1705 * @nr_entries: The maximum number of entries
1706 * @entries: Where the resulting entries are placed
1707 * @indices: The cache indices corresponding to the entries in @entries
1708 *
1709 * find_get_entries() will search for and return a group of up to
1710 * @nr_entries entries in the mapping. The entries are placed at
1711 * @entries. find_get_entries() takes a reference against any actual
1712 * pages it returns.
1713 *
1714 * The search returns a group of mapping-contiguous page cache entries
1715 * with ascending indexes. There may be holes in the indices due to
1716 * not-present pages.
1717 *
139b6a6f
JW
1718 * Any shadow entries of evicted pages, or swap entries from
1719 * shmem/tmpfs, are included in the returned array.
0cd6144a 1720 *
a862f68a 1721 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1722 */
1723unsigned find_get_entries(struct address_space *mapping,
1724 pgoff_t start, unsigned int nr_entries,
1725 struct page **entries, pgoff_t *indices)
1726{
f280bf09
MW
1727 XA_STATE(xas, &mapping->i_pages, start);
1728 struct page *page;
0cd6144a 1729 unsigned int ret = 0;
0cd6144a
JW
1730
1731 if (!nr_entries)
1732 return 0;
1733
1734 rcu_read_lock();
f280bf09 1735 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1736 if (xas_retry(&xas, page))
0cd6144a 1737 continue;
f280bf09
MW
1738 /*
1739 * A shadow entry of a recently evicted page, a swap
1740 * entry from shmem/tmpfs or a DAX entry. Return it
1741 * without attempting to raise page count.
1742 */
1743 if (xa_is_value(page))
0cd6144a 1744 goto export;
83929372 1745
4101196b 1746 if (!page_cache_get_speculative(page))
f280bf09 1747 goto retry;
83929372 1748
4101196b 1749 /* Has the page moved or been split? */
f280bf09
MW
1750 if (unlikely(page != xas_reload(&xas)))
1751 goto put_page;
4101196b 1752 page = find_subpage(page, xas.xa_index);
f280bf09 1753
0cd6144a 1754export:
f280bf09 1755 indices[ret] = xas.xa_index;
0cd6144a
JW
1756 entries[ret] = page;
1757 if (++ret == nr_entries)
1758 break;
f280bf09
MW
1759 continue;
1760put_page:
4101196b 1761 put_page(page);
f280bf09
MW
1762retry:
1763 xas_reset(&xas);
0cd6144a
JW
1764 }
1765 rcu_read_unlock();
1766 return ret;
1767}
1768
1da177e4 1769/**
b947cee4 1770 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1771 * @mapping: The address_space to search
1772 * @start: The starting page index
b947cee4 1773 * @end: The final page index (inclusive)
1da177e4
LT
1774 * @nr_pages: The maximum number of pages
1775 * @pages: Where the resulting pages are placed
1776 *
b947cee4
JK
1777 * find_get_pages_range() will search for and return a group of up to @nr_pages
1778 * pages in the mapping starting at index @start and up to index @end
1779 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1780 * a reference against the returned pages.
1da177e4
LT
1781 *
1782 * The search returns a group of mapping-contiguous pages with ascending
1783 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1784 * We also update @start to index the next page for the traversal.
1da177e4 1785 *
a862f68a
MR
1786 * Return: the number of pages which were found. If this number is
1787 * smaller than @nr_pages, the end of specified range has been
b947cee4 1788 * reached.
1da177e4 1789 */
b947cee4
JK
1790unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1791 pgoff_t end, unsigned int nr_pages,
1792 struct page **pages)
1da177e4 1793{
fd1b3cee
MW
1794 XA_STATE(xas, &mapping->i_pages, *start);
1795 struct page *page;
0fc9d104
KK
1796 unsigned ret = 0;
1797
1798 if (unlikely(!nr_pages))
1799 return 0;
a60637c8
NP
1800
1801 rcu_read_lock();
fd1b3cee 1802 xas_for_each(&xas, page, end) {
fd1b3cee 1803 if (xas_retry(&xas, page))
a60637c8 1804 continue;
fd1b3cee
MW
1805 /* Skip over shadow, swap and DAX entries */
1806 if (xa_is_value(page))
8079b1c8 1807 continue;
a60637c8 1808
4101196b 1809 if (!page_cache_get_speculative(page))
fd1b3cee 1810 goto retry;
83929372 1811
4101196b 1812 /* Has the page moved or been split? */
fd1b3cee
MW
1813 if (unlikely(page != xas_reload(&xas)))
1814 goto put_page;
1da177e4 1815
4101196b 1816 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1817 if (++ret == nr_pages) {
5d3ee42f 1818 *start = xas.xa_index + 1;
b947cee4
JK
1819 goto out;
1820 }
fd1b3cee
MW
1821 continue;
1822put_page:
4101196b 1823 put_page(page);
fd1b3cee
MW
1824retry:
1825 xas_reset(&xas);
a60637c8 1826 }
5b280c0c 1827
b947cee4
JK
1828 /*
1829 * We come here when there is no page beyond @end. We take care to not
1830 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1831 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1832 * already broken anyway.
1833 */
1834 if (end == (pgoff_t)-1)
1835 *start = (pgoff_t)-1;
1836 else
1837 *start = end + 1;
1838out:
a60637c8 1839 rcu_read_unlock();
d72dc8a2 1840
1da177e4
LT
1841 return ret;
1842}
1843
ebf43500
JA
1844/**
1845 * find_get_pages_contig - gang contiguous pagecache lookup
1846 * @mapping: The address_space to search
1847 * @index: The starting page index
1848 * @nr_pages: The maximum number of pages
1849 * @pages: Where the resulting pages are placed
1850 *
1851 * find_get_pages_contig() works exactly like find_get_pages(), except
1852 * that the returned number of pages are guaranteed to be contiguous.
1853 *
a862f68a 1854 * Return: the number of pages which were found.
ebf43500
JA
1855 */
1856unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1857 unsigned int nr_pages, struct page **pages)
1858{
3ece58a2
MW
1859 XA_STATE(xas, &mapping->i_pages, index);
1860 struct page *page;
0fc9d104
KK
1861 unsigned int ret = 0;
1862
1863 if (unlikely(!nr_pages))
1864 return 0;
a60637c8
NP
1865
1866 rcu_read_lock();
3ece58a2 1867 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1868 if (xas_retry(&xas, page))
1869 continue;
1870 /*
1871 * If the entry has been swapped out, we can stop looking.
1872 * No current caller is looking for DAX entries.
1873 */
1874 if (xa_is_value(page))
8079b1c8 1875 break;
ebf43500 1876
4101196b 1877 if (!page_cache_get_speculative(page))
3ece58a2 1878 goto retry;
83929372 1879
4101196b 1880 /* Has the page moved or been split? */
3ece58a2
MW
1881 if (unlikely(page != xas_reload(&xas)))
1882 goto put_page;
a60637c8 1883
4101196b 1884 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1885 if (++ret == nr_pages)
1886 break;
3ece58a2
MW
1887 continue;
1888put_page:
4101196b 1889 put_page(page);
3ece58a2
MW
1890retry:
1891 xas_reset(&xas);
ebf43500 1892 }
a60637c8
NP
1893 rcu_read_unlock();
1894 return ret;
ebf43500 1895}
ef71c15c 1896EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1897
485bb99b 1898/**
72b045ae 1899 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1900 * @mapping: the address_space to search
1901 * @index: the starting page index
72b045ae 1902 * @end: The final page index (inclusive)
485bb99b
RD
1903 * @tag: the tag index
1904 * @nr_pages: the maximum number of pages
1905 * @pages: where the resulting pages are placed
1906 *
1da177e4 1907 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1908 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1909 *
1910 * Return: the number of pages which were found.
1da177e4 1911 */
72b045ae 1912unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1913 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1914 struct page **pages)
1da177e4 1915{
a6906972
MW
1916 XA_STATE(xas, &mapping->i_pages, *index);
1917 struct page *page;
0fc9d104
KK
1918 unsigned ret = 0;
1919
1920 if (unlikely(!nr_pages))
1921 return 0;
a60637c8
NP
1922
1923 rcu_read_lock();
a6906972 1924 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1925 if (xas_retry(&xas, page))
a60637c8 1926 continue;
a6906972
MW
1927 /*
1928 * Shadow entries should never be tagged, but this iteration
1929 * is lockless so there is a window for page reclaim to evict
1930 * a page we saw tagged. Skip over it.
1931 */
1932 if (xa_is_value(page))
139b6a6f 1933 continue;
a60637c8 1934
4101196b 1935 if (!page_cache_get_speculative(page))
a6906972 1936 goto retry;
a60637c8 1937
4101196b 1938 /* Has the page moved or been split? */
a6906972
MW
1939 if (unlikely(page != xas_reload(&xas)))
1940 goto put_page;
a60637c8 1941
4101196b 1942 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1943 if (++ret == nr_pages) {
5d3ee42f 1944 *index = xas.xa_index + 1;
72b045ae
JK
1945 goto out;
1946 }
a6906972
MW
1947 continue;
1948put_page:
4101196b 1949 put_page(page);
a6906972
MW
1950retry:
1951 xas_reset(&xas);
a60637c8 1952 }
5b280c0c 1953
72b045ae 1954 /*
a6906972 1955 * We come here when we got to @end. We take care to not overflow the
72b045ae 1956 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1957 * iteration when there is a page at index -1 but that is already
1958 * broken anyway.
72b045ae
JK
1959 */
1960 if (end == (pgoff_t)-1)
1961 *index = (pgoff_t)-1;
1962 else
1963 *index = end + 1;
1964out:
a60637c8 1965 rcu_read_unlock();
1da177e4 1966
1da177e4
LT
1967 return ret;
1968}
72b045ae 1969EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1970
76d42bd9
WF
1971/*
1972 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1973 * a _large_ part of the i/o request. Imagine the worst scenario:
1974 *
1975 * ---R__________________________________________B__________
1976 * ^ reading here ^ bad block(assume 4k)
1977 *
1978 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1979 * => failing the whole request => read(R) => read(R+1) =>
1980 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1981 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1982 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1983 *
1984 * It is going insane. Fix it by quickly scaling down the readahead size.
1985 */
1986static void shrink_readahead_size_eio(struct file *filp,
1987 struct file_ra_state *ra)
1988{
76d42bd9 1989 ra->ra_pages /= 4;
76d42bd9
WF
1990}
1991
485bb99b 1992/**
47c27bc4
CH
1993 * generic_file_buffered_read - generic file read routine
1994 * @iocb: the iocb to read
6e58e79d
AV
1995 * @iter: data destination
1996 * @written: already copied
485bb99b 1997 *
1da177e4 1998 * This is a generic file read routine, and uses the
485bb99b 1999 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2000 *
2001 * This is really ugly. But the goto's actually try to clarify some
2002 * of the logic when it comes to error handling etc.
a862f68a
MR
2003 *
2004 * Return:
2005 * * total number of bytes copied, including those the were already @written
2006 * * negative error code if nothing was copied
1da177e4 2007 */
47c27bc4 2008static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2009 struct iov_iter *iter, ssize_t written)
1da177e4 2010{
47c27bc4 2011 struct file *filp = iocb->ki_filp;
36e78914 2012 struct address_space *mapping = filp->f_mapping;
1da177e4 2013 struct inode *inode = mapping->host;
36e78914 2014 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2015 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2016 pgoff_t index;
2017 pgoff_t last_index;
2018 pgoff_t prev_index;
2019 unsigned long offset; /* offset into pagecache page */
ec0f1637 2020 unsigned int prev_offset;
6e58e79d 2021 int error = 0;
1da177e4 2022
c2a9737f 2023 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2024 return 0;
c2a9737f
WF
2025 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2026
09cbfeaf
KS
2027 index = *ppos >> PAGE_SHIFT;
2028 prev_index = ra->prev_pos >> PAGE_SHIFT;
2029 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2030 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2031 offset = *ppos & ~PAGE_MASK;
1da177e4 2032
1da177e4
LT
2033 for (;;) {
2034 struct page *page;
57f6b96c 2035 pgoff_t end_index;
a32ea1e1 2036 loff_t isize;
1da177e4
LT
2037 unsigned long nr, ret;
2038
1da177e4 2039 cond_resched();
1da177e4 2040find_page:
5abf186a
MH
2041 if (fatal_signal_pending(current)) {
2042 error = -EINTR;
2043 goto out;
2044 }
2045
1da177e4 2046 page = find_get_page(mapping, index);
3ea89ee8 2047 if (!page) {
3239d834
MT
2048 if (iocb->ki_flags & IOCB_NOWAIT)
2049 goto would_block;
cf914a7d 2050 page_cache_sync_readahead(mapping,
7ff81078 2051 ra, filp,
3ea89ee8
FW
2052 index, last_index - index);
2053 page = find_get_page(mapping, index);
2054 if (unlikely(page == NULL))
2055 goto no_cached_page;
2056 }
2057 if (PageReadahead(page)) {
cf914a7d 2058 page_cache_async_readahead(mapping,
7ff81078 2059 ra, filp, page,
3ea89ee8 2060 index, last_index - index);
1da177e4 2061 }
8ab22b9a 2062 if (!PageUptodate(page)) {
3239d834
MT
2063 if (iocb->ki_flags & IOCB_NOWAIT) {
2064 put_page(page);
2065 goto would_block;
2066 }
2067
ebded027
MG
2068 /*
2069 * See comment in do_read_cache_page on why
2070 * wait_on_page_locked is used to avoid unnecessarily
2071 * serialisations and why it's safe.
2072 */
c4b209a4
BVA
2073 error = wait_on_page_locked_killable(page);
2074 if (unlikely(error))
2075 goto readpage_error;
ebded027
MG
2076 if (PageUptodate(page))
2077 goto page_ok;
2078
09cbfeaf 2079 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2080 !mapping->a_ops->is_partially_uptodate)
2081 goto page_not_up_to_date;
6d6d36bc 2082 /* pipes can't handle partially uptodate pages */
00e23707 2083 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2084 goto page_not_up_to_date;
529ae9aa 2085 if (!trylock_page(page))
8ab22b9a 2086 goto page_not_up_to_date;
8d056cb9
DH
2087 /* Did it get truncated before we got the lock? */
2088 if (!page->mapping)
2089 goto page_not_up_to_date_locked;
8ab22b9a 2090 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2091 offset, iter->count))
8ab22b9a
HH
2092 goto page_not_up_to_date_locked;
2093 unlock_page(page);
2094 }
1da177e4 2095page_ok:
a32ea1e1
N
2096 /*
2097 * i_size must be checked after we know the page is Uptodate.
2098 *
2099 * Checking i_size after the check allows us to calculate
2100 * the correct value for "nr", which means the zero-filled
2101 * part of the page is not copied back to userspace (unless
2102 * another truncate extends the file - this is desired though).
2103 */
2104
2105 isize = i_size_read(inode);
09cbfeaf 2106 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2107 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2108 put_page(page);
a32ea1e1
N
2109 goto out;
2110 }
2111
2112 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2113 nr = PAGE_SIZE;
a32ea1e1 2114 if (index == end_index) {
09cbfeaf 2115 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2116 if (nr <= offset) {
09cbfeaf 2117 put_page(page);
a32ea1e1
N
2118 goto out;
2119 }
2120 }
2121 nr = nr - offset;
1da177e4
LT
2122
2123 /* If users can be writing to this page using arbitrary
2124 * virtual addresses, take care about potential aliasing
2125 * before reading the page on the kernel side.
2126 */
2127 if (mapping_writably_mapped(mapping))
2128 flush_dcache_page(page);
2129
2130 /*
ec0f1637
JK
2131 * When a sequential read accesses a page several times,
2132 * only mark it as accessed the first time.
1da177e4 2133 */
ec0f1637 2134 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2135 mark_page_accessed(page);
2136 prev_index = index;
2137
2138 /*
2139 * Ok, we have the page, and it's up-to-date, so
2140 * now we can copy it to user space...
1da177e4 2141 */
6e58e79d
AV
2142
2143 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2144 offset += ret;
09cbfeaf
KS
2145 index += offset >> PAGE_SHIFT;
2146 offset &= ~PAGE_MASK;
6ce745ed 2147 prev_offset = offset;
1da177e4 2148
09cbfeaf 2149 put_page(page);
6e58e79d
AV
2150 written += ret;
2151 if (!iov_iter_count(iter))
2152 goto out;
2153 if (ret < nr) {
2154 error = -EFAULT;
2155 goto out;
2156 }
2157 continue;
1da177e4
LT
2158
2159page_not_up_to_date:
2160 /* Get exclusive access to the page ... */
85462323
ON
2161 error = lock_page_killable(page);
2162 if (unlikely(error))
2163 goto readpage_error;
1da177e4 2164
8ab22b9a 2165page_not_up_to_date_locked:
da6052f7 2166 /* Did it get truncated before we got the lock? */
1da177e4
LT
2167 if (!page->mapping) {
2168 unlock_page(page);
09cbfeaf 2169 put_page(page);
1da177e4
LT
2170 continue;
2171 }
2172
2173 /* Did somebody else fill it already? */
2174 if (PageUptodate(page)) {
2175 unlock_page(page);
2176 goto page_ok;
2177 }
2178
2179readpage:
91803b49
JM
2180 /*
2181 * A previous I/O error may have been due to temporary
2182 * failures, eg. multipath errors.
2183 * PG_error will be set again if readpage fails.
2184 */
2185 ClearPageError(page);
1da177e4
LT
2186 /* Start the actual read. The read will unlock the page. */
2187 error = mapping->a_ops->readpage(filp, page);
2188
994fc28c
ZB
2189 if (unlikely(error)) {
2190 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2191 put_page(page);
6e58e79d 2192 error = 0;
994fc28c
ZB
2193 goto find_page;
2194 }
1da177e4 2195 goto readpage_error;
994fc28c 2196 }
1da177e4
LT
2197
2198 if (!PageUptodate(page)) {
85462323
ON
2199 error = lock_page_killable(page);
2200 if (unlikely(error))
2201 goto readpage_error;
1da177e4
LT
2202 if (!PageUptodate(page)) {
2203 if (page->mapping == NULL) {
2204 /*
2ecdc82e 2205 * invalidate_mapping_pages got it
1da177e4
LT
2206 */
2207 unlock_page(page);
09cbfeaf 2208 put_page(page);
1da177e4
LT
2209 goto find_page;
2210 }
2211 unlock_page(page);
7ff81078 2212 shrink_readahead_size_eio(filp, ra);
85462323
ON
2213 error = -EIO;
2214 goto readpage_error;
1da177e4
LT
2215 }
2216 unlock_page(page);
2217 }
2218
1da177e4
LT
2219 goto page_ok;
2220
2221readpage_error:
2222 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2223 put_page(page);
1da177e4
LT
2224 goto out;
2225
2226no_cached_page:
2227 /*
2228 * Ok, it wasn't cached, so we need to create a new
2229 * page..
2230 */
453f85d4 2231 page = page_cache_alloc(mapping);
eb2be189 2232 if (!page) {
6e58e79d 2233 error = -ENOMEM;
eb2be189 2234 goto out;
1da177e4 2235 }
6afdb859 2236 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2237 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2238 if (error) {
09cbfeaf 2239 put_page(page);
6e58e79d
AV
2240 if (error == -EEXIST) {
2241 error = 0;
1da177e4 2242 goto find_page;
6e58e79d 2243 }
1da177e4
LT
2244 goto out;
2245 }
1da177e4
LT
2246 goto readpage;
2247 }
2248
3239d834
MT
2249would_block:
2250 error = -EAGAIN;
1da177e4 2251out:
7ff81078 2252 ra->prev_pos = prev_index;
09cbfeaf 2253 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2254 ra->prev_pos |= prev_offset;
1da177e4 2255
09cbfeaf 2256 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2257 file_accessed(filp);
6e58e79d 2258 return written ? written : error;
1da177e4
LT
2259}
2260
485bb99b 2261/**
6abd2322 2262 * generic_file_read_iter - generic filesystem read routine
485bb99b 2263 * @iocb: kernel I/O control block
6abd2322 2264 * @iter: destination for the data read
485bb99b 2265 *
6abd2322 2266 * This is the "read_iter()" routine for all filesystems
1da177e4 2267 * that can use the page cache directly.
a862f68a
MR
2268 * Return:
2269 * * number of bytes copied, even for partial reads
2270 * * negative error code if nothing was read
1da177e4
LT
2271 */
2272ssize_t
ed978a81 2273generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2274{
e7080a43 2275 size_t count = iov_iter_count(iter);
47c27bc4 2276 ssize_t retval = 0;
e7080a43
NS
2277
2278 if (!count)
2279 goto out; /* skip atime */
1da177e4 2280
2ba48ce5 2281 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2282 struct file *file = iocb->ki_filp;
ed978a81
AV
2283 struct address_space *mapping = file->f_mapping;
2284 struct inode *inode = mapping->host;
543ade1f 2285 loff_t size;
1da177e4 2286
1da177e4 2287 size = i_size_read(inode);
6be96d3a
GR
2288 if (iocb->ki_flags & IOCB_NOWAIT) {
2289 if (filemap_range_has_page(mapping, iocb->ki_pos,
2290 iocb->ki_pos + count - 1))
2291 return -EAGAIN;
2292 } else {
2293 retval = filemap_write_and_wait_range(mapping,
2294 iocb->ki_pos,
2295 iocb->ki_pos + count - 1);
2296 if (retval < 0)
2297 goto out;
2298 }
d8d3d94b 2299
0d5b0cf2
CH
2300 file_accessed(file);
2301
5ecda137 2302 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2303 if (retval >= 0) {
c64fb5c7 2304 iocb->ki_pos += retval;
5ecda137 2305 count -= retval;
9fe55eea 2306 }
5b47d59a 2307 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2308
9fe55eea
SW
2309 /*
2310 * Btrfs can have a short DIO read if we encounter
2311 * compressed extents, so if there was an error, or if
2312 * we've already read everything we wanted to, or if
2313 * there was a short read because we hit EOF, go ahead
2314 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2315 * the rest of the read. Buffered reads will not work for
2316 * DAX files, so don't bother trying.
9fe55eea 2317 */
5ecda137 2318 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2319 IS_DAX(inode))
9fe55eea 2320 goto out;
1da177e4
LT
2321 }
2322
47c27bc4 2323 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2324out:
2325 return retval;
2326}
ed978a81 2327EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2328
1da177e4 2329#ifdef CONFIG_MMU
1da177e4 2330#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2331static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2332 struct file *fpin)
2333{
2334 int flags = vmf->flags;
2335
2336 if (fpin)
2337 return fpin;
2338
2339 /*
2340 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2341 * anything, so we only pin the file and drop the mmap_sem if only
2342 * FAULT_FLAG_ALLOW_RETRY is set.
2343 */
2344 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2345 FAULT_FLAG_ALLOW_RETRY) {
2346 fpin = get_file(vmf->vma->vm_file);
2347 up_read(&vmf->vma->vm_mm->mmap_sem);
2348 }
2349 return fpin;
2350}
2351
2352/*
2353 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2354 * @vmf - the vm_fault for this fault.
2355 * @page - the page to lock.
2356 * @fpin - the pointer to the file we may pin (or is already pinned).
2357 *
2358 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2359 * It differs in that it actually returns the page locked if it returns 1 and 0
2360 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2361 * will point to the pinned file and needs to be fput()'ed at a later point.
2362 */
2363static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2364 struct file **fpin)
2365{
2366 if (trylock_page(page))
2367 return 1;
2368
8b0f9fa2
LT
2369 /*
2370 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2371 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2372 * is supposed to work. We have way too many special cases..
2373 */
6b4c9f44
JB
2374 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2375 return 0;
2376
2377 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2378 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2379 if (__lock_page_killable(page)) {
2380 /*
2381 * We didn't have the right flags to drop the mmap_sem,
2382 * but all fault_handlers only check for fatal signals
2383 * if we return VM_FAULT_RETRY, so we need to drop the
2384 * mmap_sem here and return 0 if we don't have a fpin.
2385 */
2386 if (*fpin == NULL)
2387 up_read(&vmf->vma->vm_mm->mmap_sem);
2388 return 0;
2389 }
2390 } else
2391 __lock_page(page);
2392 return 1;
2393}
2394
1da177e4 2395
ef00e08e 2396/*
6b4c9f44
JB
2397 * Synchronous readahead happens when we don't even find a page in the page
2398 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2399 * to drop the mmap sem we return the file that was pinned in order for us to do
2400 * that. If we didn't pin a file then we return NULL. The file that is
2401 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2402 */
6b4c9f44 2403static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2404{
2a1180f1
JB
2405 struct file *file = vmf->vma->vm_file;
2406 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2407 struct address_space *mapping = file->f_mapping;
6b4c9f44 2408 struct file *fpin = NULL;
2a1180f1 2409 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2410
2411 /* If we don't want any read-ahead, don't bother */
2a1180f1 2412 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2413 return fpin;
275b12bf 2414 if (!ra->ra_pages)
6b4c9f44 2415 return fpin;
ef00e08e 2416
2a1180f1 2417 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2418 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2419 page_cache_sync_readahead(mapping, ra, file, offset,
2420 ra->ra_pages);
6b4c9f44 2421 return fpin;
ef00e08e
LT
2422 }
2423
207d04ba
AK
2424 /* Avoid banging the cache line if not needed */
2425 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2426 ra->mmap_miss++;
2427
2428 /*
2429 * Do we miss much more than hit in this file? If so,
2430 * stop bothering with read-ahead. It will only hurt.
2431 */
2432 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2433 return fpin;
ef00e08e 2434
d30a1100
WF
2435 /*
2436 * mmap read-around
2437 */
6b4c9f44 2438 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2439 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2440 ra->size = ra->ra_pages;
2441 ra->async_size = ra->ra_pages / 4;
275b12bf 2442 ra_submit(ra, mapping, file);
6b4c9f44 2443 return fpin;
ef00e08e
LT
2444}
2445
2446/*
2447 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2448 * so we want to possibly extend the readahead further. We return the file that
2449 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2450 */
6b4c9f44
JB
2451static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2452 struct page *page)
ef00e08e 2453{
2a1180f1
JB
2454 struct file *file = vmf->vma->vm_file;
2455 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2456 struct address_space *mapping = file->f_mapping;
6b4c9f44 2457 struct file *fpin = NULL;
2a1180f1 2458 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2459
2460 /* If we don't want any read-ahead, don't bother */
2a1180f1 2461 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2462 return fpin;
ef00e08e
LT
2463 if (ra->mmap_miss > 0)
2464 ra->mmap_miss--;
6b4c9f44
JB
2465 if (PageReadahead(page)) {
2466 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2467 page_cache_async_readahead(mapping, ra, file,
2468 page, offset, ra->ra_pages);
6b4c9f44
JB
2469 }
2470 return fpin;
ef00e08e
LT
2471}
2472
485bb99b 2473/**
54cb8821 2474 * filemap_fault - read in file data for page fault handling
d0217ac0 2475 * @vmf: struct vm_fault containing details of the fault
485bb99b 2476 *
54cb8821 2477 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2478 * mapped memory region to read in file data during a page fault.
2479 *
2480 * The goto's are kind of ugly, but this streamlines the normal case of having
2481 * it in the page cache, and handles the special cases reasonably without
2482 * having a lot of duplicated code.
9a95f3cf
PC
2483 *
2484 * vma->vm_mm->mmap_sem must be held on entry.
2485 *
a4985833
YS
2486 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2487 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf
PC
2488 *
2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490 * has not been released.
2491 *
2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2493 *
2494 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2495 */
2bcd6454 2496vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2497{
2498 int error;
11bac800 2499 struct file *file = vmf->vma->vm_file;
6b4c9f44 2500 struct file *fpin = NULL;
1da177e4
LT
2501 struct address_space *mapping = file->f_mapping;
2502 struct file_ra_state *ra = &file->f_ra;
2503 struct inode *inode = mapping->host;
ef00e08e 2504 pgoff_t offset = vmf->pgoff;
9ab2594f 2505 pgoff_t max_off;
1da177e4 2506 struct page *page;
2bcd6454 2507 vm_fault_t ret = 0;
1da177e4 2508
9ab2594f
MW
2509 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2510 if (unlikely(offset >= max_off))
5307cc1a 2511 return VM_FAULT_SIGBUS;
1da177e4 2512
1da177e4 2513 /*
49426420 2514 * Do we have something in the page cache already?
1da177e4 2515 */
ef00e08e 2516 page = find_get_page(mapping, offset);
45cac65b 2517 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2518 /*
ef00e08e
LT
2519 * We found the page, so try async readahead before
2520 * waiting for the lock.
1da177e4 2521 */
6b4c9f44 2522 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2523 } else if (!page) {
ef00e08e 2524 /* No page in the page cache at all */
ef00e08e 2525 count_vm_event(PGMAJFAULT);
2262185c 2526 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2527 ret = VM_FAULT_MAJOR;
6b4c9f44 2528 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2529retry_find:
a75d4c33
JB
2530 page = pagecache_get_page(mapping, offset,
2531 FGP_CREAT|FGP_FOR_MMAP,
2532 vmf->gfp_mask);
6b4c9f44
JB
2533 if (!page) {
2534 if (fpin)
2535 goto out_retry;
a75d4c33 2536 return vmf_error(-ENOMEM);
6b4c9f44 2537 }
1da177e4
LT
2538 }
2539
6b4c9f44
JB
2540 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2541 goto out_retry;
b522c94d
ML
2542
2543 /* Did it get truncated? */
585e5a7b 2544 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2545 unlock_page(page);
2546 put_page(page);
2547 goto retry_find;
2548 }
520e5ba4 2549 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2550
1da177e4 2551 /*
d00806b1
NP
2552 * We have a locked page in the page cache, now we need to check
2553 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2554 */
d00806b1 2555 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2556 goto page_not_uptodate;
2557
6b4c9f44
JB
2558 /*
2559 * We've made it this far and we had to drop our mmap_sem, now is the
2560 * time to return to the upper layer and have it re-find the vma and
2561 * redo the fault.
2562 */
2563 if (fpin) {
2564 unlock_page(page);
2565 goto out_retry;
2566 }
2567
ef00e08e
LT
2568 /*
2569 * Found the page and have a reference on it.
2570 * We must recheck i_size under page lock.
2571 */
9ab2594f
MW
2572 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2573 if (unlikely(offset >= max_off)) {
d00806b1 2574 unlock_page(page);
09cbfeaf 2575 put_page(page);
5307cc1a 2576 return VM_FAULT_SIGBUS;
d00806b1
NP
2577 }
2578
d0217ac0 2579 vmf->page = page;
83c54070 2580 return ret | VM_FAULT_LOCKED;
1da177e4 2581
1da177e4 2582page_not_uptodate:
1da177e4
LT
2583 /*
2584 * Umm, take care of errors if the page isn't up-to-date.
2585 * Try to re-read it _once_. We do this synchronously,
2586 * because there really aren't any performance issues here
2587 * and we need to check for errors.
2588 */
1da177e4 2589 ClearPageError(page);
6b4c9f44 2590 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2591 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2592 if (!error) {
2593 wait_on_page_locked(page);
2594 if (!PageUptodate(page))
2595 error = -EIO;
2596 }
6b4c9f44
JB
2597 if (fpin)
2598 goto out_retry;
09cbfeaf 2599 put_page(page);
d00806b1
NP
2600
2601 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2602 goto retry_find;
1da177e4 2603
d00806b1 2604 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2605 shrink_readahead_size_eio(file, ra);
d0217ac0 2606 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2607
2608out_retry:
2609 /*
2610 * We dropped the mmap_sem, we need to return to the fault handler to
2611 * re-find the vma and come back and find our hopefully still populated
2612 * page.
2613 */
2614 if (page)
2615 put_page(page);
2616 if (fpin)
2617 fput(fpin);
2618 return ret | VM_FAULT_RETRY;
54cb8821
NP
2619}
2620EXPORT_SYMBOL(filemap_fault);
2621
82b0f8c3 2622void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2623 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2624{
82b0f8c3 2625 struct file *file = vmf->vma->vm_file;
f1820361 2626 struct address_space *mapping = file->f_mapping;
bae473a4 2627 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2628 unsigned long max_idx;
070e807c 2629 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2630 struct page *page;
f1820361
KS
2631
2632 rcu_read_lock();
070e807c
MW
2633 xas_for_each(&xas, page, end_pgoff) {
2634 if (xas_retry(&xas, page))
2635 continue;
2636 if (xa_is_value(page))
2cf938aa 2637 goto next;
f1820361 2638
e0975b2a
MH
2639 /*
2640 * Check for a locked page first, as a speculative
2641 * reference may adversely influence page migration.
2642 */
4101196b 2643 if (PageLocked(page))
e0975b2a 2644 goto next;
4101196b 2645 if (!page_cache_get_speculative(page))
070e807c 2646 goto next;
f1820361 2647
4101196b 2648 /* Has the page moved or been split? */
070e807c
MW
2649 if (unlikely(page != xas_reload(&xas)))
2650 goto skip;
4101196b 2651 page = find_subpage(page, xas.xa_index);
f1820361
KS
2652
2653 if (!PageUptodate(page) ||
2654 PageReadahead(page) ||
2655 PageHWPoison(page))
2656 goto skip;
2657 if (!trylock_page(page))
2658 goto skip;
2659
2660 if (page->mapping != mapping || !PageUptodate(page))
2661 goto unlock;
2662
9ab2594f
MW
2663 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2664 if (page->index >= max_idx)
f1820361
KS
2665 goto unlock;
2666
f1820361
KS
2667 if (file->f_ra.mmap_miss > 0)
2668 file->f_ra.mmap_miss--;
7267ec00 2669
070e807c 2670 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2671 if (vmf->pte)
070e807c
MW
2672 vmf->pte += xas.xa_index - last_pgoff;
2673 last_pgoff = xas.xa_index;
82b0f8c3 2674 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2675 goto unlock;
f1820361
KS
2676 unlock_page(page);
2677 goto next;
2678unlock:
2679 unlock_page(page);
2680skip:
09cbfeaf 2681 put_page(page);
f1820361 2682next:
7267ec00 2683 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2684 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2685 break;
f1820361
KS
2686 }
2687 rcu_read_unlock();
2688}
2689EXPORT_SYMBOL(filemap_map_pages);
2690
2bcd6454 2691vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2692{
2693 struct page *page = vmf->page;
11bac800 2694 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2695 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2696
14da9200 2697 sb_start_pagefault(inode->i_sb);
11bac800 2698 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2699 lock_page(page);
2700 if (page->mapping != inode->i_mapping) {
2701 unlock_page(page);
2702 ret = VM_FAULT_NOPAGE;
2703 goto out;
2704 }
14da9200
JK
2705 /*
2706 * We mark the page dirty already here so that when freeze is in
2707 * progress, we are guaranteed that writeback during freezing will
2708 * see the dirty page and writeprotect it again.
2709 */
2710 set_page_dirty(page);
1d1d1a76 2711 wait_for_stable_page(page);
4fcf1c62 2712out:
14da9200 2713 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2714 return ret;
2715}
4fcf1c62 2716
f0f37e2f 2717const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2718 .fault = filemap_fault,
f1820361 2719 .map_pages = filemap_map_pages,
4fcf1c62 2720 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2721};
2722
2723/* This is used for a general mmap of a disk file */
2724
2725int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2726{
2727 struct address_space *mapping = file->f_mapping;
2728
2729 if (!mapping->a_ops->readpage)
2730 return -ENOEXEC;
2731 file_accessed(file);
2732 vma->vm_ops = &generic_file_vm_ops;
2733 return 0;
2734}
1da177e4
LT
2735
2736/*
2737 * This is for filesystems which do not implement ->writepage.
2738 */
2739int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2740{
2741 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2742 return -EINVAL;
2743 return generic_file_mmap(file, vma);
2744}
2745#else
4b96a37d 2746vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2747{
4b96a37d 2748 return VM_FAULT_SIGBUS;
45397228 2749}
1da177e4
LT
2750int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2751{
2752 return -ENOSYS;
2753}
2754int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2755{
2756 return -ENOSYS;
2757}
2758#endif /* CONFIG_MMU */
2759
45397228 2760EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2761EXPORT_SYMBOL(generic_file_mmap);
2762EXPORT_SYMBOL(generic_file_readonly_mmap);
2763
67f9fd91
SL
2764static struct page *wait_on_page_read(struct page *page)
2765{
2766 if (!IS_ERR(page)) {
2767 wait_on_page_locked(page);
2768 if (!PageUptodate(page)) {
09cbfeaf 2769 put_page(page);
67f9fd91
SL
2770 page = ERR_PTR(-EIO);
2771 }
2772 }
2773 return page;
2774}
2775
32b63529 2776static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2777 pgoff_t index,
5e5358e7 2778 int (*filler)(void *, struct page *),
0531b2aa
LT
2779 void *data,
2780 gfp_t gfp)
1da177e4 2781{
eb2be189 2782 struct page *page;
1da177e4
LT
2783 int err;
2784repeat:
2785 page = find_get_page(mapping, index);
2786 if (!page) {
453f85d4 2787 page = __page_cache_alloc(gfp);
eb2be189
NP
2788 if (!page)
2789 return ERR_PTR(-ENOMEM);
e6f67b8c 2790 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2791 if (unlikely(err)) {
09cbfeaf 2792 put_page(page);
eb2be189
NP
2793 if (err == -EEXIST)
2794 goto repeat;
22ecdb4f 2795 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2796 return ERR_PTR(err);
2797 }
32b63529
MG
2798
2799filler:
6c45b454
CH
2800 if (filler)
2801 err = filler(data, page);
2802 else
2803 err = mapping->a_ops->readpage(data, page);
2804
1da177e4 2805 if (err < 0) {
09cbfeaf 2806 put_page(page);
32b63529 2807 return ERR_PTR(err);
1da177e4 2808 }
1da177e4 2809
32b63529
MG
2810 page = wait_on_page_read(page);
2811 if (IS_ERR(page))
2812 return page;
2813 goto out;
2814 }
1da177e4
LT
2815 if (PageUptodate(page))
2816 goto out;
2817
ebded027
MG
2818 /*
2819 * Page is not up to date and may be locked due one of the following
2820 * case a: Page is being filled and the page lock is held
2821 * case b: Read/write error clearing the page uptodate status
2822 * case c: Truncation in progress (page locked)
2823 * case d: Reclaim in progress
2824 *
2825 * Case a, the page will be up to date when the page is unlocked.
2826 * There is no need to serialise on the page lock here as the page
2827 * is pinned so the lock gives no additional protection. Even if the
2828 * the page is truncated, the data is still valid if PageUptodate as
2829 * it's a race vs truncate race.
2830 * Case b, the page will not be up to date
2831 * Case c, the page may be truncated but in itself, the data may still
2832 * be valid after IO completes as it's a read vs truncate race. The
2833 * operation must restart if the page is not uptodate on unlock but
2834 * otherwise serialising on page lock to stabilise the mapping gives
2835 * no additional guarantees to the caller as the page lock is
2836 * released before return.
2837 * Case d, similar to truncation. If reclaim holds the page lock, it
2838 * will be a race with remove_mapping that determines if the mapping
2839 * is valid on unlock but otherwise the data is valid and there is
2840 * no need to serialise with page lock.
2841 *
2842 * As the page lock gives no additional guarantee, we optimistically
2843 * wait on the page to be unlocked and check if it's up to date and
2844 * use the page if it is. Otherwise, the page lock is required to
2845 * distinguish between the different cases. The motivation is that we
2846 * avoid spurious serialisations and wakeups when multiple processes
2847 * wait on the same page for IO to complete.
2848 */
2849 wait_on_page_locked(page);
2850 if (PageUptodate(page))
2851 goto out;
2852
2853 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2854 lock_page(page);
ebded027
MG
2855
2856 /* Case c or d, restart the operation */
1da177e4
LT
2857 if (!page->mapping) {
2858 unlock_page(page);
09cbfeaf 2859 put_page(page);
32b63529 2860 goto repeat;
1da177e4 2861 }
ebded027
MG
2862
2863 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2864 if (PageUptodate(page)) {
2865 unlock_page(page);
2866 goto out;
2867 }
32b63529
MG
2868 goto filler;
2869
c855ff37 2870out:
6fe6900e
NP
2871 mark_page_accessed(page);
2872 return page;
2873}
0531b2aa
LT
2874
2875/**
67f9fd91 2876 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2877 * @mapping: the page's address_space
2878 * @index: the page index
2879 * @filler: function to perform the read
5e5358e7 2880 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2881 *
0531b2aa 2882 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2883 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2884 *
2885 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2886 *
2887 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2888 */
67f9fd91 2889struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2890 pgoff_t index,
5e5358e7 2891 int (*filler)(void *, struct page *),
0531b2aa
LT
2892 void *data)
2893{
d322a8e5
CH
2894 return do_read_cache_page(mapping, index, filler, data,
2895 mapping_gfp_mask(mapping));
0531b2aa 2896}
67f9fd91 2897EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2898
2899/**
2900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2901 * @mapping: the page's address_space
2902 * @index: the page index
2903 * @gfp: the page allocator flags to use if allocating
2904 *
2905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2906 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2907 *
2908 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2909 *
2910 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2911 */
2912struct page *read_cache_page_gfp(struct address_space *mapping,
2913 pgoff_t index,
2914 gfp_t gfp)
2915{
6c45b454 2916 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2917}
2918EXPORT_SYMBOL(read_cache_page_gfp);
2919
9fd91a90
DW
2920/*
2921 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2922 * LFS limits. If pos is under the limit it becomes a short access. If it
2923 * exceeds the limit we return -EFBIG.
2924 */
9fd91a90
DW
2925static int generic_write_check_limits(struct file *file, loff_t pos,
2926 loff_t *count)
2927{
646955cd
AG
2928 struct inode *inode = file->f_mapping->host;
2929 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2930 loff_t limit = rlimit(RLIMIT_FSIZE);
2931
2932 if (limit != RLIM_INFINITY) {
2933 if (pos >= limit) {
2934 send_sig(SIGXFSZ, current, 0);
2935 return -EFBIG;
2936 }
2937 *count = min(*count, limit - pos);
2938 }
2939
646955cd
AG
2940 if (!(file->f_flags & O_LARGEFILE))
2941 max_size = MAX_NON_LFS;
2942
2943 if (unlikely(pos >= max_size))
2944 return -EFBIG;
2945
2946 *count = min(*count, max_size - pos);
2947
2948 return 0;
9fd91a90
DW
2949}
2950
1da177e4
LT
2951/*
2952 * Performs necessary checks before doing a write
2953 *
485bb99b 2954 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2955 * Returns appropriate error code that caller should return or
2956 * zero in case that write should be allowed.
2957 */
3309dd04 2958inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2959{
3309dd04 2960 struct file *file = iocb->ki_filp;
1da177e4 2961 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2962 loff_t count;
2963 int ret;
1da177e4 2964
dc617f29
DW
2965 if (IS_SWAPFILE(inode))
2966 return -ETXTBSY;
2967
3309dd04
AV
2968 if (!iov_iter_count(from))
2969 return 0;
1da177e4 2970
0fa6b005 2971 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2972 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2973 iocb->ki_pos = i_size_read(inode);
1da177e4 2974
6be96d3a
GR
2975 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2976 return -EINVAL;
2977
9fd91a90
DW
2978 count = iov_iter_count(from);
2979 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2980 if (ret)
2981 return ret;
1da177e4 2982
9fd91a90 2983 iov_iter_truncate(from, count);
3309dd04 2984 return iov_iter_count(from);
1da177e4
LT
2985}
2986EXPORT_SYMBOL(generic_write_checks);
2987
1383a7ed
DW
2988/*
2989 * Performs necessary checks before doing a clone.
2990 *
646955cd 2991 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2992 * Returns appropriate error code that caller should return or
2993 * zero in case the clone should be allowed.
2994 */
2995int generic_remap_checks(struct file *file_in, loff_t pos_in,
2996 struct file *file_out, loff_t pos_out,
42ec3d4c 2997 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2998{
2999 struct inode *inode_in = file_in->f_mapping->host;
3000 struct inode *inode_out = file_out->f_mapping->host;
3001 uint64_t count = *req_count;
3002 uint64_t bcount;
3003 loff_t size_in, size_out;
3004 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3005 int ret;
1383a7ed
DW
3006
3007 /* The start of both ranges must be aligned to an fs block. */
3008 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3009 return -EINVAL;
3010
3011 /* Ensure offsets don't wrap. */
3012 if (pos_in + count < pos_in || pos_out + count < pos_out)
3013 return -EINVAL;
3014
3015 size_in = i_size_read(inode_in);
3016 size_out = i_size_read(inode_out);
3017
3018 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3019 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3020 (pos_in >= size_in || pos_in + count > size_in ||
3021 pos_out >= size_out || pos_out + count > size_out))
3022 return -EINVAL;
3023
3024 /* Ensure the infile range is within the infile. */
3025 if (pos_in >= size_in)
3026 return -EINVAL;
3027 count = min(count, size_in - (uint64_t)pos_in);
3028
9fd91a90
DW
3029 ret = generic_write_check_limits(file_out, pos_out, &count);
3030 if (ret)
3031 return ret;
1da177e4
LT
3032
3033 /*
1383a7ed
DW
3034 * If the user wanted us to link to the infile's EOF, round up to the
3035 * next block boundary for this check.
3036 *
3037 * Otherwise, make sure the count is also block-aligned, having
3038 * already confirmed the starting offsets' block alignment.
1da177e4 3039 */
1383a7ed
DW
3040 if (pos_in + count == size_in) {
3041 bcount = ALIGN(size_in, bs) - pos_in;
3042 } else {
3043 if (!IS_ALIGNED(count, bs))
eca3654e 3044 count = ALIGN_DOWN(count, bs);
1383a7ed 3045 bcount = count;
1da177e4
LT
3046 }
3047
1383a7ed
DW
3048 /* Don't allow overlapped cloning within the same file. */
3049 if (inode_in == inode_out &&
3050 pos_out + bcount > pos_in &&
3051 pos_out < pos_in + bcount)
3052 return -EINVAL;
3053
1da177e4 3054 /*
eca3654e
DW
3055 * We shortened the request but the caller can't deal with that, so
3056 * bounce the request back to userspace.
1da177e4 3057 */
eca3654e 3058 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3059 return -EINVAL;
1da177e4 3060
eca3654e 3061 *req_count = count;
1383a7ed 3062 return 0;
1da177e4 3063}
1da177e4 3064
a3171351
AG
3065
3066/*
3067 * Performs common checks before doing a file copy/clone
3068 * from @file_in to @file_out.
3069 */
3070int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3071{
3072 struct inode *inode_in = file_inode(file_in);
3073 struct inode *inode_out = file_inode(file_out);
3074
3075 /* Don't copy dirs, pipes, sockets... */
3076 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3077 return -EISDIR;
3078 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3079 return -EINVAL;
3080
3081 if (!(file_in->f_mode & FMODE_READ) ||
3082 !(file_out->f_mode & FMODE_WRITE) ||
3083 (file_out->f_flags & O_APPEND))
3084 return -EBADF;
3085
3086 return 0;
3087}
3088
96e6e8f4
AG
3089/*
3090 * Performs necessary checks before doing a file copy
3091 *
3092 * Can adjust amount of bytes to copy via @req_count argument.
3093 * Returns appropriate error code that caller should return or
3094 * zero in case the copy should be allowed.
3095 */
3096int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3097 struct file *file_out, loff_t pos_out,
3098 size_t *req_count, unsigned int flags)
3099{
3100 struct inode *inode_in = file_inode(file_in);
3101 struct inode *inode_out = file_inode(file_out);
3102 uint64_t count = *req_count;
3103 loff_t size_in;
3104 int ret;
3105
3106 ret = generic_file_rw_checks(file_in, file_out);
3107 if (ret)
3108 return ret;
3109
3110 /* Don't touch certain kinds of inodes */
3111 if (IS_IMMUTABLE(inode_out))
3112 return -EPERM;
3113
3114 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3115 return -ETXTBSY;
3116
3117 /* Ensure offsets don't wrap. */
3118 if (pos_in + count < pos_in || pos_out + count < pos_out)
3119 return -EOVERFLOW;
3120
3121 /* Shorten the copy to EOF */
3122 size_in = i_size_read(inode_in);
3123 if (pos_in >= size_in)
3124 count = 0;
3125 else
3126 count = min(count, size_in - (uint64_t)pos_in);
3127
3128 ret = generic_write_check_limits(file_out, pos_out, &count);
3129 if (ret)
3130 return ret;
3131
3132 /* Don't allow overlapped copying within the same file. */
3133 if (inode_in == inode_out &&
3134 pos_out + count > pos_in &&
3135 pos_out < pos_in + count)
3136 return -EINVAL;
3137
3138 *req_count = count;
3139 return 0;
3140}
3141
afddba49
NP
3142int pagecache_write_begin(struct file *file, struct address_space *mapping,
3143 loff_t pos, unsigned len, unsigned flags,
3144 struct page **pagep, void **fsdata)
3145{
3146 const struct address_space_operations *aops = mapping->a_ops;
3147
4e02ed4b 3148 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3149 pagep, fsdata);
afddba49
NP
3150}
3151EXPORT_SYMBOL(pagecache_write_begin);
3152
3153int pagecache_write_end(struct file *file, struct address_space *mapping,
3154 loff_t pos, unsigned len, unsigned copied,
3155 struct page *page, void *fsdata)
3156{
3157 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3158
4e02ed4b 3159 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3160}
3161EXPORT_SYMBOL(pagecache_write_end);
3162
1da177e4 3163ssize_t
1af5bb49 3164generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3165{
3166 struct file *file = iocb->ki_filp;
3167 struct address_space *mapping = file->f_mapping;
3168 struct inode *inode = mapping->host;
1af5bb49 3169 loff_t pos = iocb->ki_pos;
1da177e4 3170 ssize_t written;
a969e903
CH
3171 size_t write_len;
3172 pgoff_t end;
1da177e4 3173
0c949334 3174 write_len = iov_iter_count(from);
09cbfeaf 3175 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3176
6be96d3a
GR
3177 if (iocb->ki_flags & IOCB_NOWAIT) {
3178 /* If there are pages to writeback, return */
3179 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3180 pos + write_len - 1))
6be96d3a
GR
3181 return -EAGAIN;
3182 } else {
3183 written = filemap_write_and_wait_range(mapping, pos,
3184 pos + write_len - 1);
3185 if (written)
3186 goto out;
3187 }
a969e903
CH
3188
3189 /*
3190 * After a write we want buffered reads to be sure to go to disk to get
3191 * the new data. We invalidate clean cached page from the region we're
3192 * about to write. We do this *before* the write so that we can return
6ccfa806 3193 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3194 */
55635ba7 3195 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3196 pos >> PAGE_SHIFT, end);
55635ba7
AR
3197 /*
3198 * If a page can not be invalidated, return 0 to fall back
3199 * to buffered write.
3200 */
3201 if (written) {
3202 if (written == -EBUSY)
3203 return 0;
3204 goto out;
a969e903
CH
3205 }
3206
639a93a5 3207 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3208
3209 /*
3210 * Finally, try again to invalidate clean pages which might have been
3211 * cached by non-direct readahead, or faulted in by get_user_pages()
3212 * if the source of the write was an mmap'ed region of the file
3213 * we're writing. Either one is a pretty crazy thing to do,
3214 * so we don't support it 100%. If this invalidation
3215 * fails, tough, the write still worked...
332391a9
LC
3216 *
3217 * Most of the time we do not need this since dio_complete() will do
3218 * the invalidation for us. However there are some file systems that
3219 * do not end up with dio_complete() being called, so let's not break
3220 * them by removing it completely
a969e903 3221 */
332391a9
LC
3222 if (mapping->nrpages)
3223 invalidate_inode_pages2_range(mapping,
3224 pos >> PAGE_SHIFT, end);
a969e903 3225
1da177e4 3226 if (written > 0) {
0116651c 3227 pos += written;
639a93a5 3228 write_len -= written;
0116651c
NK
3229 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3230 i_size_write(inode, pos);
1da177e4
LT
3231 mark_inode_dirty(inode);
3232 }
5cb6c6c7 3233 iocb->ki_pos = pos;
1da177e4 3234 }
639a93a5 3235 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3236out:
1da177e4
LT
3237 return written;
3238}
3239EXPORT_SYMBOL(generic_file_direct_write);
3240
eb2be189
NP
3241/*
3242 * Find or create a page at the given pagecache position. Return the locked
3243 * page. This function is specifically for buffered writes.
3244 */
54566b2c
NP
3245struct page *grab_cache_page_write_begin(struct address_space *mapping,
3246 pgoff_t index, unsigned flags)
eb2be189 3247{
eb2be189 3248 struct page *page;
bbddabe2 3249 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3250
54566b2c 3251 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3252 fgp_flags |= FGP_NOFS;
3253
3254 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3255 mapping_gfp_mask(mapping));
c585a267 3256 if (page)
2457aec6 3257 wait_for_stable_page(page);
eb2be189 3258
eb2be189
NP
3259 return page;
3260}
54566b2c 3261EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3262
3b93f911 3263ssize_t generic_perform_write(struct file *file,
afddba49
NP
3264 struct iov_iter *i, loff_t pos)
3265{
3266 struct address_space *mapping = file->f_mapping;
3267 const struct address_space_operations *a_ops = mapping->a_ops;
3268 long status = 0;
3269 ssize_t written = 0;
674b892e
NP
3270 unsigned int flags = 0;
3271
afddba49
NP
3272 do {
3273 struct page *page;
afddba49
NP
3274 unsigned long offset; /* Offset into pagecache page */
3275 unsigned long bytes; /* Bytes to write to page */
3276 size_t copied; /* Bytes copied from user */
3277 void *fsdata;
3278
09cbfeaf
KS
3279 offset = (pos & (PAGE_SIZE - 1));
3280 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3281 iov_iter_count(i));
3282
3283again:
00a3d660
LT
3284 /*
3285 * Bring in the user page that we will copy from _first_.
3286 * Otherwise there's a nasty deadlock on copying from the
3287 * same page as we're writing to, without it being marked
3288 * up-to-date.
3289 *
3290 * Not only is this an optimisation, but it is also required
3291 * to check that the address is actually valid, when atomic
3292 * usercopies are used, below.
3293 */
3294 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3295 status = -EFAULT;
3296 break;
3297 }
3298
296291cd
JK
3299 if (fatal_signal_pending(current)) {
3300 status = -EINTR;
3301 break;
3302 }
3303
674b892e 3304 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3305 &page, &fsdata);
2457aec6 3306 if (unlikely(status < 0))
afddba49
NP
3307 break;
3308
931e80e4 3309 if (mapping_writably_mapped(mapping))
3310 flush_dcache_page(page);
00a3d660 3311
afddba49 3312 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3313 flush_dcache_page(page);
3314
3315 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3316 page, fsdata);
3317 if (unlikely(status < 0))
3318 break;
3319 copied = status;
3320
3321 cond_resched();
3322
124d3b70 3323 iov_iter_advance(i, copied);
afddba49
NP
3324 if (unlikely(copied == 0)) {
3325 /*
3326 * If we were unable to copy any data at all, we must
3327 * fall back to a single segment length write.
3328 *
3329 * If we didn't fallback here, we could livelock
3330 * because not all segments in the iov can be copied at
3331 * once without a pagefault.
3332 */
09cbfeaf 3333 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3334 iov_iter_single_seg_count(i));
3335 goto again;
3336 }
afddba49
NP
3337 pos += copied;
3338 written += copied;
3339
3340 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3341 } while (iov_iter_count(i));
3342
3343 return written ? written : status;
3344}
3b93f911 3345EXPORT_SYMBOL(generic_perform_write);
1da177e4 3346
e4dd9de3 3347/**
8174202b 3348 * __generic_file_write_iter - write data to a file
e4dd9de3 3349 * @iocb: IO state structure (file, offset, etc.)
8174202b 3350 * @from: iov_iter with data to write
e4dd9de3
JK
3351 *
3352 * This function does all the work needed for actually writing data to a
3353 * file. It does all basic checks, removes SUID from the file, updates
3354 * modification times and calls proper subroutines depending on whether we
3355 * do direct IO or a standard buffered write.
3356 *
3357 * It expects i_mutex to be grabbed unless we work on a block device or similar
3358 * object which does not need locking at all.
3359 *
3360 * This function does *not* take care of syncing data in case of O_SYNC write.
3361 * A caller has to handle it. This is mainly due to the fact that we want to
3362 * avoid syncing under i_mutex.
a862f68a
MR
3363 *
3364 * Return:
3365 * * number of bytes written, even for truncated writes
3366 * * negative error code if no data has been written at all
e4dd9de3 3367 */
8174202b 3368ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3369{
3370 struct file *file = iocb->ki_filp;
fb5527e6 3371 struct address_space * mapping = file->f_mapping;
1da177e4 3372 struct inode *inode = mapping->host;
3b93f911 3373 ssize_t written = 0;
1da177e4 3374 ssize_t err;
3b93f911 3375 ssize_t status;
1da177e4 3376
1da177e4 3377 /* We can write back this queue in page reclaim */
de1414a6 3378 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3379 err = file_remove_privs(file);
1da177e4
LT
3380 if (err)
3381 goto out;
3382
c3b2da31
JB
3383 err = file_update_time(file);
3384 if (err)
3385 goto out;
1da177e4 3386
2ba48ce5 3387 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3388 loff_t pos, endbyte;
fb5527e6 3389
1af5bb49 3390 written = generic_file_direct_write(iocb, from);
1da177e4 3391 /*
fbbbad4b
MW
3392 * If the write stopped short of completing, fall back to
3393 * buffered writes. Some filesystems do this for writes to
3394 * holes, for example. For DAX files, a buffered write will
3395 * not succeed (even if it did, DAX does not handle dirty
3396 * page-cache pages correctly).
1da177e4 3397 */
0b8def9d 3398 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3399 goto out;
3400
0b8def9d 3401 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3402 /*
3b93f911 3403 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3404 * then we want to return the number of bytes which were
3405 * direct-written, or the error code if that was zero. Note
3406 * that this differs from normal direct-io semantics, which
3407 * will return -EFOO even if some bytes were written.
3408 */
60bb4529 3409 if (unlikely(status < 0)) {
3b93f911 3410 err = status;
fb5527e6
JM
3411 goto out;
3412 }
fb5527e6
JM
3413 /*
3414 * We need to ensure that the page cache pages are written to
3415 * disk and invalidated to preserve the expected O_DIRECT
3416 * semantics.
3417 */
3b93f911 3418 endbyte = pos + status - 1;
0b8def9d 3419 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3420 if (err == 0) {
0b8def9d 3421 iocb->ki_pos = endbyte + 1;
3b93f911 3422 written += status;
fb5527e6 3423 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3424 pos >> PAGE_SHIFT,
3425 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3426 } else {
3427 /*
3428 * We don't know how much we wrote, so just return
3429 * the number of bytes which were direct-written
3430 */
3431 }
3432 } else {
0b8def9d
AV
3433 written = generic_perform_write(file, from, iocb->ki_pos);
3434 if (likely(written > 0))
3435 iocb->ki_pos += written;
fb5527e6 3436 }
1da177e4
LT
3437out:
3438 current->backing_dev_info = NULL;
3439 return written ? written : err;
3440}
8174202b 3441EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3442
e4dd9de3 3443/**
8174202b 3444 * generic_file_write_iter - write data to a file
e4dd9de3 3445 * @iocb: IO state structure
8174202b 3446 * @from: iov_iter with data to write
e4dd9de3 3447 *
8174202b 3448 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3449 * filesystems. It takes care of syncing the file in case of O_SYNC file
3450 * and acquires i_mutex as needed.
a862f68a
MR
3451 * Return:
3452 * * negative error code if no data has been written at all of
3453 * vfs_fsync_range() failed for a synchronous write
3454 * * number of bytes written, even for truncated writes
e4dd9de3 3455 */
8174202b 3456ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3457{
3458 struct file *file = iocb->ki_filp;
148f948b 3459 struct inode *inode = file->f_mapping->host;
1da177e4 3460 ssize_t ret;
1da177e4 3461
5955102c 3462 inode_lock(inode);
3309dd04
AV
3463 ret = generic_write_checks(iocb, from);
3464 if (ret > 0)
5f380c7f 3465 ret = __generic_file_write_iter(iocb, from);
5955102c 3466 inode_unlock(inode);
1da177e4 3467
e2592217
CH
3468 if (ret > 0)
3469 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3470 return ret;
3471}
8174202b 3472EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3473
cf9a2ae8
DH
3474/**
3475 * try_to_release_page() - release old fs-specific metadata on a page
3476 *
3477 * @page: the page which the kernel is trying to free
3478 * @gfp_mask: memory allocation flags (and I/O mode)
3479 *
3480 * The address_space is to try to release any data against the page
a862f68a 3481 * (presumably at page->private).
cf9a2ae8 3482 *
266cf658
DH
3483 * This may also be called if PG_fscache is set on a page, indicating that the
3484 * page is known to the local caching routines.
3485 *
cf9a2ae8 3486 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3487 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3488 *
a862f68a 3489 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3490 */
3491int try_to_release_page(struct page *page, gfp_t gfp_mask)
3492{
3493 struct address_space * const mapping = page->mapping;
3494
3495 BUG_ON(!PageLocked(page));
3496 if (PageWriteback(page))
3497 return 0;
3498
3499 if (mapping && mapping->a_ops->releasepage)
3500 return mapping->a_ops->releasepage(page, gfp_mask);
3501 return try_to_free_buffers(page);
3502}
3503
3504EXPORT_SYMBOL(try_to_release_page);