cpufreq: Add policy create/remove notifiers back
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
748446bb
MG
53static unsigned long release_freepages(struct list_head *freelist)
54{
55 struct page *page, *next;
6bace090 56 unsigned long high_pfn = 0;
748446bb
MG
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 59 unsigned long pfn = page_to_pfn(page);
748446bb
MG
60 list_del(&page->lru);
61 __free_page(page);
6bace090
VB
62 if (pfn > high_pfn)
63 high_pfn = pfn;
748446bb
MG
64 }
65
6bace090 66 return high_pfn;
748446bb
MG
67}
68
4469ab98 69static void split_map_pages(struct list_head *list)
ff9543fd 70{
66c64223
JK
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
66c64223 80
46f24fd8 81 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
82 if (order)
83 split_page(page, order);
ff9543fd 84
66c64223
JK
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
ff9543fd 89 }
66c64223
JK
90
91 list_splice(&tmp_list, list);
ff9543fd
MN
92}
93
bb13ffeb 94#ifdef CONFIG_COMPACTION
24e2716f 95
bda807d4
MK
96int PageMovable(struct page *page)
97{
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109}
110EXPORT_SYMBOL(PageMovable);
111
112void __SetPageMovable(struct page *page, struct address_space *mapping)
113{
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117}
118EXPORT_SYMBOL(__SetPageMovable);
119
120void __ClearPageMovable(struct page *page)
121{
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__ClearPageMovable);
133
24e2716f
JK
134/* Do not skip compaction more than 64 times */
135#define COMPACT_MAX_DEFER_SHIFT 6
136
137/*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142void defer_compaction(struct zone *zone, int order)
143{
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154}
155
156/* Returns true if compaction should be skipped this time */
157bool compaction_deferred(struct zone *zone, int order)
158{
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174}
175
176/*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183{
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192}
193
194/* Returns true if restarting compaction after many failures */
195bool compaction_restarting(struct zone *zone, int order)
196{
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202}
203
bb13ffeb
MG
204/* Returns true if the pageblock should be scanned for pages to isolate. */
205static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207{
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212}
213
02333641
VB
214static void reset_cached_positions(struct zone *zone)
215{
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 218 zone->compact_cached_free_pfn =
06b6640a 219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
220}
221
21dc7e02 222/*
b527cfe5
VB
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 226 */
b527cfe5 227static bool pageblock_skip_persistent(struct page *page)
21dc7e02 228{
b527cfe5 229 if (!PageCompound(page))
21dc7e02 230 return false;
b527cfe5
VB
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
21dc7e02
DR
238}
239
e332f741
MG
240static bool
241__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243{
244 struct page *page = pfn_to_online_page(pfn);
6b0868c8 245 struct page *block_page;
e332f741
MG
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
6b0868c8
MG
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274 if (block_page) {
275 page = block_page;
276 pfn = block_pfn;
277 }
278
279 /* Ensure the end of the pageblock or zone is online and valid */
280 block_pfn += pageblock_nr_pages;
281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282 end_page = pfn_to_online_page(block_pfn);
283 if (!end_page)
284 return false;
285
e332f741
MG
286 /*
287 * Only clear the hint if a sample indicates there is either a
288 * free page or an LRU page in the block. One or other condition
289 * is necessary for the block to be a migration source/target.
290 */
e332f741
MG
291 do {
292 if (pfn_valid_within(pfn)) {
293 if (check_source && PageLRU(page)) {
294 clear_pageblock_skip(page);
295 return true;
296 }
297
298 if (check_target && PageBuddy(page)) {
299 clear_pageblock_skip(page);
300 return true;
301 }
302 }
303
304 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 } while (page < end_page);
307
308 return false;
309}
310
bb13ffeb
MG
311/*
312 * This function is called to clear all cached information on pageblocks that
313 * should be skipped for page isolation when the migrate and free page scanner
314 * meet.
315 */
62997027 316static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 317{
e332f741 318 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 319 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
320 unsigned long reset_migrate = free_pfn;
321 unsigned long reset_free = migrate_pfn;
322 bool source_set = false;
323 bool free_set = false;
324
325 if (!zone->compact_blockskip_flush)
326 return;
bb13ffeb 327
62997027 328 zone->compact_blockskip_flush = false;
bb13ffeb 329
e332f741
MG
330 /*
331 * Walk the zone and update pageblock skip information. Source looks
332 * for PageLRU while target looks for PageBuddy. When the scanner
333 * is found, both PageBuddy and PageLRU are checked as the pageblock
334 * is suitable as both source and target.
335 */
336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
338 cond_resched();
339
e332f741
MG
340 /* Update the migrate PFN */
341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342 migrate_pfn < reset_migrate) {
343 source_set = true;
344 reset_migrate = migrate_pfn;
345 zone->compact_init_migrate_pfn = reset_migrate;
346 zone->compact_cached_migrate_pfn[0] = reset_migrate;
347 zone->compact_cached_migrate_pfn[1] = reset_migrate;
348 }
bb13ffeb 349
e332f741
MG
350 /* Update the free PFN */
351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352 free_pfn > reset_free) {
353 free_set = true;
354 reset_free = free_pfn;
355 zone->compact_init_free_pfn = reset_free;
356 zone->compact_cached_free_pfn = reset_free;
357 }
bb13ffeb 358 }
02333641 359
e332f741
MG
360 /* Leave no distance if no suitable block was reset */
361 if (reset_migrate >= reset_free) {
362 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364 zone->compact_cached_free_pfn = free_pfn;
365 }
bb13ffeb
MG
366}
367
62997027
MG
368void reset_isolation_suitable(pg_data_t *pgdat)
369{
370 int zoneid;
371
372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373 struct zone *zone = &pgdat->node_zones[zoneid];
374 if (!populated_zone(zone))
375 continue;
376
377 /* Only flush if a full compaction finished recently */
378 if (zone->compact_blockskip_flush)
379 __reset_isolation_suitable(zone);
380 }
381}
382
e380bebe
MG
383/*
384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385 * locks are not required for read/writers. Returns true if it was already set.
386 */
387static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388 unsigned long pfn)
389{
390 bool skip;
391
392 /* Do no update if skip hint is being ignored */
393 if (cc->ignore_skip_hint)
394 return false;
395
396 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397 return false;
398
399 skip = get_pageblock_skip(page);
400 if (!skip && !cc->no_set_skip_hint)
401 set_pageblock_skip(page);
402
403 return skip;
404}
405
406static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407{
408 struct zone *zone = cc->zone;
409
410 pfn = pageblock_end_pfn(pfn);
411
412 /* Set for isolation rather than compaction */
413 if (cc->no_set_skip_hint)
414 return;
415
416 if (pfn > zone->compact_cached_migrate_pfn[0])
417 zone->compact_cached_migrate_pfn[0] = pfn;
418 if (cc->mode != MIGRATE_ASYNC &&
419 pfn > zone->compact_cached_migrate_pfn[1])
420 zone->compact_cached_migrate_pfn[1] = pfn;
421}
422
bb13ffeb
MG
423/*
424 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 425 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 426 */
c89511ab 427static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 428 struct page *page, unsigned long pfn)
bb13ffeb 429{
c89511ab 430 struct zone *zone = cc->zone;
6815bf3f 431
2583d671 432 if (cc->no_set_skip_hint)
6815bf3f
JK
433 return;
434
bb13ffeb
MG
435 if (!page)
436 return;
437
edc2ca61 438 set_pageblock_skip(page);
c89511ab 439
35979ef3 440 /* Update where async and sync compaction should restart */
e380bebe
MG
441 if (pfn < zone->compact_cached_free_pfn)
442 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
443}
444#else
445static inline bool isolation_suitable(struct compact_control *cc,
446 struct page *page)
447{
448 return true;
449}
450
b527cfe5 451static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
452{
453 return false;
454}
455
456static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 457 struct page *page, unsigned long pfn)
bb13ffeb
MG
458{
459}
e380bebe
MG
460
461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462{
463}
464
465static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466 unsigned long pfn)
467{
468 return false;
469}
bb13ffeb
MG
470#endif /* CONFIG_COMPACTION */
471
8b44d279
VB
472/*
473 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
474 * very heavily contended. For async compaction, trylock and record if the
475 * lock is contended. The lock will still be acquired but compaction will
476 * abort when the current block is finished regardless of success rate.
477 * Sync compaction acquires the lock.
8b44d279 478 *
cb2dcaf0 479 * Always returns true which makes it easier to track lock state in callers.
8b44d279 480 */
cb2dcaf0 481static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 482 struct compact_control *cc)
2a1402aa 483{
cb2dcaf0
MG
484 /* Track if the lock is contended in async mode */
485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486 if (spin_trylock_irqsave(lock, *flags))
487 return true;
488
489 cc->contended = true;
8b44d279 490 }
1f9efdef 491
cb2dcaf0 492 spin_lock_irqsave(lock, *flags);
8b44d279 493 return true;
2a1402aa
MG
494}
495
c67fe375
MG
496/*
497 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
498 * very heavily contended. The lock should be periodically unlocked to avoid
499 * having disabled IRQs for a long time, even when there is nobody waiting on
500 * the lock. It might also be that allowing the IRQs will result in
501 * need_resched() becoming true. If scheduling is needed, async compaction
502 * aborts. Sync compaction schedules.
503 * Either compaction type will also abort if a fatal signal is pending.
504 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 505 *
8b44d279
VB
506 * Returns true if compaction should abort due to fatal signal pending, or
507 * async compaction due to need_resched()
508 * Returns false when compaction can continue (sync compaction might have
509 * scheduled)
c67fe375 510 */
8b44d279
VB
511static bool compact_unlock_should_abort(spinlock_t *lock,
512 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 513{
8b44d279
VB
514 if (*locked) {
515 spin_unlock_irqrestore(lock, flags);
516 *locked = false;
517 }
1f9efdef 518
8b44d279 519 if (fatal_signal_pending(current)) {
c3486f53 520 cc->contended = true;
8b44d279
VB
521 return true;
522 }
c67fe375 523
cf66f070 524 cond_resched();
be976572
VB
525
526 return false;
527}
528
85aa125f 529/*
9e4be470
JM
530 * Isolate free pages onto a private freelist. If @strict is true, will abort
531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532 * (even though it may still end up isolating some pages).
85aa125f 533 */
f40d1e42 534static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 535 unsigned long *start_pfn,
85aa125f
MN
536 unsigned long end_pfn,
537 struct list_head *freelist,
4fca9730 538 unsigned int stride,
85aa125f 539 bool strict)
748446bb 540{
b7aba698 541 int nr_scanned = 0, total_isolated = 0;
d097a6f6 542 struct page *cursor;
b8b2d825 543 unsigned long flags = 0;
f40d1e42 544 bool locked = false;
e14c720e 545 unsigned long blockpfn = *start_pfn;
66c64223 546 unsigned int order;
748446bb 547
4fca9730
MG
548 /* Strict mode is for isolation, speed is secondary */
549 if (strict)
550 stride = 1;
551
748446bb
MG
552 cursor = pfn_to_page(blockpfn);
553
f40d1e42 554 /* Isolate free pages. */
4fca9730 555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 556 int isolated;
748446bb
MG
557 struct page *page = cursor;
558
8b44d279
VB
559 /*
560 * Periodically drop the lock (if held) regardless of its
561 * contention, to give chance to IRQs. Abort if fatal signal
562 * pending or async compaction detects need_resched()
563 */
564 if (!(blockpfn % SWAP_CLUSTER_MAX)
565 && compact_unlock_should_abort(&cc->zone->lock, flags,
566 &locked, cc))
567 break;
568
b7aba698 569 nr_scanned++;
f40d1e42 570 if (!pfn_valid_within(blockpfn))
2af120bc
LA
571 goto isolate_fail;
572
9fcd6d2e
VB
573 /*
574 * For compound pages such as THP and hugetlbfs, we can save
575 * potentially a lot of iterations if we skip them at once.
576 * The check is racy, but we can consider only valid values
577 * and the only danger is skipping too much.
578 */
579 if (PageCompound(page)) {
21dc7e02
DR
580 const unsigned int order = compound_order(page);
581
d3c85bad 582 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
583 blockpfn += (1UL << order) - 1;
584 cursor += (1UL << order) - 1;
9fcd6d2e 585 }
9fcd6d2e
VB
586 goto isolate_fail;
587 }
588
f40d1e42 589 if (!PageBuddy(page))
2af120bc 590 goto isolate_fail;
f40d1e42
MG
591
592 /*
69b7189f
VB
593 * If we already hold the lock, we can skip some rechecking.
594 * Note that if we hold the lock now, checked_pageblock was
595 * already set in some previous iteration (or strict is true),
596 * so it is correct to skip the suitable migration target
597 * recheck as well.
f40d1e42 598 */
69b7189f 599 if (!locked) {
cb2dcaf0 600 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 601 &flags, cc);
f40d1e42 602
69b7189f
VB
603 /* Recheck this is a buddy page under lock */
604 if (!PageBuddy(page))
605 goto isolate_fail;
606 }
748446bb 607
66c64223
JK
608 /* Found a free page, will break it into order-0 pages */
609 order = page_order(page);
610 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
611 if (!isolated)
612 break;
66c64223 613 set_page_private(page, order);
a4f04f2c 614
748446bb 615 total_isolated += isolated;
a4f04f2c 616 cc->nr_freepages += isolated;
66c64223
JK
617 list_add_tail(&page->lru, freelist);
618
a4f04f2c
DR
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
748446bb 622 }
a4f04f2c
DR
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
2af120bc
LA
627
628isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
748446bb
MG
634 }
635
a4f04f2c
DR
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
9fcd6d2e
VB
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
e34d85f0
JK
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
e14c720e
VB
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
f40d1e42
MG
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
2af120bc 657 if (strict && blockpfn < end_pfn)
f40d1e42
MG
658 total_isolated = 0;
659
7f354a54 660 cc->total_free_scanned += nr_scanned;
397487db 661 if (total_isolated)
010fc29a 662 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
663 return total_isolated;
664}
665
85aa125f
MN
666/**
667 * isolate_freepages_range() - isolate free pages.
e8b098fc 668 * @cc: Compaction control structure.
85aa125f
MN
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
ff9543fd 680unsigned long
bb13ffeb
MG
681isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 683{
e1409c32 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
685 LIST_HEAD(freelist);
686
7d49d886 687 pfn = start_pfn;
06b6640a 688 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 691 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
692
693 for (; pfn < end_pfn; pfn += isolated,
e1409c32 694 block_start_pfn = block_end_pfn,
7d49d886 695 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
85aa125f 698
85aa125f
MN
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
58420016
JK
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
06b6640a
VB
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
e1409c32
JK
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
7d49d886
VB
714 break;
715
e14c720e 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 717 block_end_pfn, &freelist, 0, true);
85aa125f
MN
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
66c64223 734 /* __isolate_free_page() does not map the pages */
4469ab98 735 split_map_pages(&freelist);
85aa125f
MN
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745}
746
748446bb 747/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 748static bool too_many_isolated(pg_data_t *pgdat)
748446bb 749{
bc693045 750 unsigned long active, inactive, isolated;
748446bb 751
5f438eee
AR
752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753 node_page_state(pgdat, NR_INACTIVE_ANON);
754 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755 node_page_state(pgdat, NR_ACTIVE_ANON);
756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 758
bc693045 759 return isolated > (inactive + active) / 2;
748446bb
MG
760}
761
2fe86e00 762/**
edc2ca61
VB
763 * isolate_migratepages_block() - isolate all migrate-able pages within
764 * a single pageblock
2fe86e00 765 * @cc: Compaction control structure.
edc2ca61
VB
766 * @low_pfn: The first PFN to isolate
767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
768 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
769 *
770 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
771 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772 * Returns zero if there is a fatal signal pending, otherwise PFN of the
773 * first page that was not scanned (which may be both less, equal to or more
774 * than end_pfn).
2fe86e00 775 *
edc2ca61
VB
776 * The pages are isolated on cc->migratepages list (not required to be empty),
777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778 * is neither read nor updated.
748446bb 779 */
edc2ca61
VB
780static unsigned long
781isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 783{
5f438eee 784 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 785 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 786 struct lruvec *lruvec;
b8b2d825 787 unsigned long flags = 0;
2a1402aa 788 bool locked = false;
bb13ffeb 789 struct page *page = NULL, *valid_page = NULL;
e34d85f0 790 unsigned long start_pfn = low_pfn;
fdd048e1
VB
791 bool skip_on_failure = false;
792 unsigned long next_skip_pfn = 0;
e380bebe 793 bool skip_updated = false;
748446bb 794
748446bb
MG
795 /*
796 * Ensure that there are not too many pages isolated from the LRU
797 * list by either parallel reclaimers or compaction. If there are,
798 * delay for some time until fewer pages are isolated
799 */
5f438eee 800 while (unlikely(too_many_isolated(pgdat))) {
f9e35b3b 801 /* async migration should just abort */
e0b9daeb 802 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 803 return 0;
f9e35b3b 804
748446bb
MG
805 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807 if (fatal_signal_pending(current))
2fe86e00 808 return 0;
748446bb
MG
809 }
810
cf66f070 811 cond_resched();
aeef4b83 812
fdd048e1
VB
813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814 skip_on_failure = true;
815 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816 }
817
748446bb 818 /* Time to isolate some pages for migration */
748446bb 819 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 820
fdd048e1
VB
821 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822 /*
823 * We have isolated all migration candidates in the
824 * previous order-aligned block, and did not skip it due
825 * to failure. We should migrate the pages now and
826 * hopefully succeed compaction.
827 */
828 if (nr_isolated)
829 break;
830
831 /*
832 * We failed to isolate in the previous order-aligned
833 * block. Set the new boundary to the end of the
834 * current block. Note we can't simply increase
835 * next_skip_pfn by 1 << order, as low_pfn might have
836 * been incremented by a higher number due to skipping
837 * a compound or a high-order buddy page in the
838 * previous loop iteration.
839 */
840 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841 }
842
8b44d279
VB
843 /*
844 * Periodically drop the lock (if held) regardless of its
670105a2
MG
845 * contention, to give chance to IRQs. Abort completely if
846 * a fatal signal is pending.
8b44d279
VB
847 */
848 if (!(low_pfn % SWAP_CLUSTER_MAX)
f4b7e272 849 && compact_unlock_should_abort(&pgdat->lru_lock,
670105a2
MG
850 flags, &locked, cc)) {
851 low_pfn = 0;
852 goto fatal_pending;
853 }
c67fe375 854
748446bb 855 if (!pfn_valid_within(low_pfn))
fdd048e1 856 goto isolate_fail;
b7aba698 857 nr_scanned++;
748446bb 858
748446bb 859 page = pfn_to_page(low_pfn);
dc908600 860
e380bebe
MG
861 /*
862 * Check if the pageblock has already been marked skipped.
863 * Only the aligned PFN is checked as the caller isolates
864 * COMPACT_CLUSTER_MAX at a time so the second call must
865 * not falsely conclude that the block should be skipped.
866 */
867 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
868 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
869 low_pfn = end_pfn;
870 goto isolate_abort;
871 }
bb13ffeb 872 valid_page = page;
e380bebe 873 }
bb13ffeb 874
6c14466c 875 /*
99c0fd5e
VB
876 * Skip if free. We read page order here without zone lock
877 * which is generally unsafe, but the race window is small and
878 * the worst thing that can happen is that we skip some
879 * potential isolation targets.
6c14466c 880 */
99c0fd5e
VB
881 if (PageBuddy(page)) {
882 unsigned long freepage_order = page_order_unsafe(page);
883
884 /*
885 * Without lock, we cannot be sure that what we got is
886 * a valid page order. Consider only values in the
887 * valid order range to prevent low_pfn overflow.
888 */
889 if (freepage_order > 0 && freepage_order < MAX_ORDER)
890 low_pfn += (1UL << freepage_order) - 1;
748446bb 891 continue;
99c0fd5e 892 }
748446bb 893
bc835011 894 /*
29c0dde8
VB
895 * Regardless of being on LRU, compound pages such as THP and
896 * hugetlbfs are not to be compacted. We can potentially save
897 * a lot of iterations if we skip them at once. The check is
898 * racy, but we can consider only valid values and the only
899 * danger is skipping too much.
bc835011 900 */
29c0dde8 901 if (PageCompound(page)) {
21dc7e02 902 const unsigned int order = compound_order(page);
edc2ca61 903
d3c85bad 904 if (likely(order < MAX_ORDER))
21dc7e02 905 low_pfn += (1UL << order) - 1;
fdd048e1 906 goto isolate_fail;
2a1402aa
MG
907 }
908
bda807d4
MK
909 /*
910 * Check may be lockless but that's ok as we recheck later.
911 * It's possible to migrate LRU and non-lru movable pages.
912 * Skip any other type of page
913 */
914 if (!PageLRU(page)) {
bda807d4
MK
915 /*
916 * __PageMovable can return false positive so we need
917 * to verify it under page_lock.
918 */
919 if (unlikely(__PageMovable(page)) &&
920 !PageIsolated(page)) {
921 if (locked) {
f4b7e272 922 spin_unlock_irqrestore(&pgdat->lru_lock,
bda807d4
MK
923 flags);
924 locked = false;
925 }
926
9e5bcd61 927 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
928 goto isolate_success;
929 }
930
fdd048e1 931 goto isolate_fail;
bda807d4 932 }
29c0dde8 933
119d6d59
DR
934 /*
935 * Migration will fail if an anonymous page is pinned in memory,
936 * so avoid taking lru_lock and isolating it unnecessarily in an
937 * admittedly racy check.
938 */
939 if (!page_mapping(page) &&
940 page_count(page) > page_mapcount(page))
fdd048e1 941 goto isolate_fail;
119d6d59 942
73e64c51
MH
943 /*
944 * Only allow to migrate anonymous pages in GFP_NOFS context
945 * because those do not depend on fs locks.
946 */
947 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
948 goto isolate_fail;
949
69b7189f
VB
950 /* If we already hold the lock, we can skip some rechecking */
951 if (!locked) {
f4b7e272 952 locked = compact_lock_irqsave(&pgdat->lru_lock,
8b44d279 953 &flags, cc);
e380bebe 954
e380bebe
MG
955 /* Try get exclusive access under lock */
956 if (!skip_updated) {
957 skip_updated = true;
958 if (test_and_set_skip(cc, page, low_pfn))
959 goto isolate_abort;
960 }
2a1402aa 961
29c0dde8 962 /* Recheck PageLRU and PageCompound under lock */
69b7189f 963 if (!PageLRU(page))
fdd048e1 964 goto isolate_fail;
29c0dde8
VB
965
966 /*
967 * Page become compound since the non-locked check,
968 * and it's on LRU. It can only be a THP so the order
969 * is safe to read and it's 0 for tail pages.
970 */
971 if (unlikely(PageCompound(page))) {
d3c85bad 972 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 973 goto isolate_fail;
69b7189f 974 }
bc835011
AA
975 }
976
f4b7e272 977 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 978
748446bb 979 /* Try isolate the page */
edc2ca61 980 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 981 goto isolate_fail;
748446bb 982
29c0dde8 983 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 984
748446bb 985 /* Successfully isolated */
fa9add64 986 del_page_from_lru_list(page, lruvec, page_lru(page));
6afcf8ef
ML
987 inc_node_page_state(page,
988 NR_ISOLATED_ANON + page_is_file_cache(page));
b6c75016
JK
989
990isolate_success:
fdd048e1 991 list_add(&page->lru, &cc->migratepages);
748446bb 992 cc->nr_migratepages++;
b7aba698 993 nr_isolated++;
748446bb 994
804d3121
MG
995 /*
996 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
997 * rescanned (e.g. dirty/writeback pages, parallel allocation)
998 * or a lock is contended. For contention, isolate quickly to
999 * potentially remove one source of contention.
804d3121 1000 */
cb2dcaf0
MG
1001 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1002 !cc->rescan && !cc->contended) {
31b8384a 1003 ++low_pfn;
748446bb 1004 break;
31b8384a 1005 }
fdd048e1
VB
1006
1007 continue;
1008isolate_fail:
1009 if (!skip_on_failure)
1010 continue;
1011
1012 /*
1013 * We have isolated some pages, but then failed. Release them
1014 * instead of migrating, as we cannot form the cc->order buddy
1015 * page anyway.
1016 */
1017 if (nr_isolated) {
1018 if (locked) {
f4b7e272 1019 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
fdd048e1
VB
1020 locked = false;
1021 }
fdd048e1
VB
1022 putback_movable_pages(&cc->migratepages);
1023 cc->nr_migratepages = 0;
fdd048e1
VB
1024 nr_isolated = 0;
1025 }
1026
1027 if (low_pfn < next_skip_pfn) {
1028 low_pfn = next_skip_pfn - 1;
1029 /*
1030 * The check near the loop beginning would have updated
1031 * next_skip_pfn too, but this is a bit simpler.
1032 */
1033 next_skip_pfn += 1UL << cc->order;
1034 }
748446bb
MG
1035 }
1036
99c0fd5e
VB
1037 /*
1038 * The PageBuddy() check could have potentially brought us outside
1039 * the range to be scanned.
1040 */
1041 if (unlikely(low_pfn > end_pfn))
1042 low_pfn = end_pfn;
1043
e380bebe 1044isolate_abort:
c67fe375 1045 if (locked)
f4b7e272 1046 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
748446bb 1047
50b5b094 1048 /*
804d3121
MG
1049 * Updated the cached scanner pfn once the pageblock has been scanned
1050 * Pages will either be migrated in which case there is no point
1051 * scanning in the near future or migration failed in which case the
1052 * failure reason may persist. The block is marked for skipping if
1053 * there were no pages isolated in the block or if the block is
1054 * rescanned twice in a row.
50b5b094 1055 */
804d3121 1056 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1057 if (valid_page && !skip_updated)
1058 set_pageblock_skip(valid_page);
1059 update_cached_migrate(cc, low_pfn);
1060 }
bb13ffeb 1061
e34d85f0
JK
1062 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1063 nr_scanned, nr_isolated);
b7aba698 1064
670105a2 1065fatal_pending:
7f354a54 1066 cc->total_migrate_scanned += nr_scanned;
397487db 1067 if (nr_isolated)
010fc29a 1068 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1069
2fe86e00
MN
1070 return low_pfn;
1071}
1072
edc2ca61
VB
1073/**
1074 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1075 * @cc: Compaction control structure.
1076 * @start_pfn: The first PFN to start isolating.
1077 * @end_pfn: The one-past-last PFN.
1078 *
1079 * Returns zero if isolation fails fatally due to e.g. pending signal.
1080 * Otherwise, function returns one-past-the-last PFN of isolated page
1081 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1082 */
1083unsigned long
1084isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1085 unsigned long end_pfn)
1086{
e1409c32 1087 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
1088
1089 /* Scan block by block. First and last block may be incomplete */
1090 pfn = start_pfn;
06b6640a 1091 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1092 if (block_start_pfn < cc->zone->zone_start_pfn)
1093 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1094 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1095
1096 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1097 block_start_pfn = block_end_pfn,
edc2ca61
VB
1098 block_end_pfn += pageblock_nr_pages) {
1099
1100 block_end_pfn = min(block_end_pfn, end_pfn);
1101
e1409c32
JK
1102 if (!pageblock_pfn_to_page(block_start_pfn,
1103 block_end_pfn, cc->zone))
edc2ca61
VB
1104 continue;
1105
1106 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1107 ISOLATE_UNEVICTABLE);
1108
14af4a5e 1109 if (!pfn)
edc2ca61 1110 break;
6ea41c0c
JK
1111
1112 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1113 break;
edc2ca61 1114 }
edc2ca61
VB
1115
1116 return pfn;
1117}
1118
ff9543fd
MN
1119#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1120#ifdef CONFIG_COMPACTION
018e9a49 1121
b682debd
VB
1122static bool suitable_migration_source(struct compact_control *cc,
1123 struct page *page)
1124{
282722b0
VB
1125 int block_mt;
1126
9bebefd5
MG
1127 if (pageblock_skip_persistent(page))
1128 return false;
1129
282722b0 1130 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1131 return true;
1132
282722b0
VB
1133 block_mt = get_pageblock_migratetype(page);
1134
1135 if (cc->migratetype == MIGRATE_MOVABLE)
1136 return is_migrate_movable(block_mt);
1137 else
1138 return block_mt == cc->migratetype;
b682debd
VB
1139}
1140
018e9a49 1141/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1142static bool suitable_migration_target(struct compact_control *cc,
1143 struct page *page)
018e9a49
AM
1144{
1145 /* If the page is a large free page, then disallow migration */
1146 if (PageBuddy(page)) {
1147 /*
1148 * We are checking page_order without zone->lock taken. But
1149 * the only small danger is that we skip a potentially suitable
1150 * pageblock, so it's not worth to check order for valid range.
1151 */
1152 if (page_order_unsafe(page) >= pageblock_order)
1153 return false;
1154 }
1155
1ef36db2
YX
1156 if (cc->ignore_block_suitable)
1157 return true;
1158
018e9a49 1159 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1160 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1161 return true;
1162
1163 /* Otherwise skip the block */
1164 return false;
1165}
1166
70b44595
MG
1167static inline unsigned int
1168freelist_scan_limit(struct compact_control *cc)
1169{
dd7ef7bd
QC
1170 unsigned short shift = BITS_PER_LONG - 1;
1171
1172 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1173}
1174
f2849aa0
VB
1175/*
1176 * Test whether the free scanner has reached the same or lower pageblock than
1177 * the migration scanner, and compaction should thus terminate.
1178 */
1179static inline bool compact_scanners_met(struct compact_control *cc)
1180{
1181 return (cc->free_pfn >> pageblock_order)
1182 <= (cc->migrate_pfn >> pageblock_order);
1183}
1184
5a811889
MG
1185/*
1186 * Used when scanning for a suitable migration target which scans freelists
1187 * in reverse. Reorders the list such as the unscanned pages are scanned
1188 * first on the next iteration of the free scanner
1189 */
1190static void
1191move_freelist_head(struct list_head *freelist, struct page *freepage)
1192{
1193 LIST_HEAD(sublist);
1194
1195 if (!list_is_last(freelist, &freepage->lru)) {
1196 list_cut_before(&sublist, freelist, &freepage->lru);
1197 if (!list_empty(&sublist))
1198 list_splice_tail(&sublist, freelist);
1199 }
1200}
1201
1202/*
1203 * Similar to move_freelist_head except used by the migration scanner
1204 * when scanning forward. It's possible for these list operations to
1205 * move against each other if they search the free list exactly in
1206 * lockstep.
1207 */
70b44595
MG
1208static void
1209move_freelist_tail(struct list_head *freelist, struct page *freepage)
1210{
1211 LIST_HEAD(sublist);
1212
1213 if (!list_is_first(freelist, &freepage->lru)) {
1214 list_cut_position(&sublist, freelist, &freepage->lru);
1215 if (!list_empty(&sublist))
1216 list_splice_tail(&sublist, freelist);
1217 }
1218}
1219
5a811889
MG
1220static void
1221fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1222{
1223 unsigned long start_pfn, end_pfn;
1224 struct page *page = pfn_to_page(pfn);
1225
1226 /* Do not search around if there are enough pages already */
1227 if (cc->nr_freepages >= cc->nr_migratepages)
1228 return;
1229
1230 /* Minimise scanning during async compaction */
1231 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1232 return;
1233
1234 /* Pageblock boundaries */
1235 start_pfn = pageblock_start_pfn(pfn);
60fce36a 1236 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
5a811889
MG
1237
1238 /* Scan before */
1239 if (start_pfn != pfn) {
4fca9730 1240 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1241 if (cc->nr_freepages >= cc->nr_migratepages)
1242 return;
1243 }
1244
1245 /* Scan after */
1246 start_pfn = pfn + nr_isolated;
60fce36a 1247 if (start_pfn < end_pfn)
4fca9730 1248 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1249
1250 /* Skip this pageblock in the future as it's full or nearly full */
1251 if (cc->nr_freepages < cc->nr_migratepages)
1252 set_pageblock_skip(page);
1253}
1254
dbe2d4e4
MG
1255/* Search orders in round-robin fashion */
1256static int next_search_order(struct compact_control *cc, int order)
1257{
1258 order--;
1259 if (order < 0)
1260 order = cc->order - 1;
1261
1262 /* Search wrapped around? */
1263 if (order == cc->search_order) {
1264 cc->search_order--;
1265 if (cc->search_order < 0)
1266 cc->search_order = cc->order - 1;
1267 return -1;
1268 }
1269
1270 return order;
1271}
1272
5a811889
MG
1273static unsigned long
1274fast_isolate_freepages(struct compact_control *cc)
1275{
1276 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1277 unsigned int nr_scanned = 0;
1278 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1279 unsigned long nr_isolated = 0;
1280 unsigned long distance;
1281 struct page *page = NULL;
1282 bool scan_start = false;
1283 int order;
1284
1285 /* Full compaction passes in a negative order */
1286 if (cc->order <= 0)
1287 return cc->free_pfn;
1288
1289 /*
1290 * If starting the scan, use a deeper search and use the highest
1291 * PFN found if a suitable one is not found.
1292 */
e332f741 1293 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1294 limit = pageblock_nr_pages >> 1;
1295 scan_start = true;
1296 }
1297
1298 /*
1299 * Preferred point is in the top quarter of the scan space but take
1300 * a pfn from the top half if the search is problematic.
1301 */
1302 distance = (cc->free_pfn - cc->migrate_pfn);
1303 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1304 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1305
1306 if (WARN_ON_ONCE(min_pfn > low_pfn))
1307 low_pfn = min_pfn;
1308
dbe2d4e4
MG
1309 /*
1310 * Search starts from the last successful isolation order or the next
1311 * order to search after a previous failure
1312 */
1313 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1314
1315 for (order = cc->search_order;
1316 !page && order >= 0;
1317 order = next_search_order(cc, order)) {
5a811889
MG
1318 struct free_area *area = &cc->zone->free_area[order];
1319 struct list_head *freelist;
1320 struct page *freepage;
1321 unsigned long flags;
1322 unsigned int order_scanned = 0;
1323
1324 if (!area->nr_free)
1325 continue;
1326
1327 spin_lock_irqsave(&cc->zone->lock, flags);
1328 freelist = &area->free_list[MIGRATE_MOVABLE];
1329 list_for_each_entry_reverse(freepage, freelist, lru) {
1330 unsigned long pfn;
1331
1332 order_scanned++;
1333 nr_scanned++;
1334 pfn = page_to_pfn(freepage);
1335
1336 if (pfn >= highest)
1337 highest = pageblock_start_pfn(pfn);
1338
1339 if (pfn >= low_pfn) {
1340 cc->fast_search_fail = 0;
dbe2d4e4 1341 cc->search_order = order;
5a811889
MG
1342 page = freepage;
1343 break;
1344 }
1345
1346 if (pfn >= min_pfn && pfn > high_pfn) {
1347 high_pfn = pfn;
1348
1349 /* Shorten the scan if a candidate is found */
1350 limit >>= 1;
1351 }
1352
1353 if (order_scanned >= limit)
1354 break;
1355 }
1356
1357 /* Use a minimum pfn if a preferred one was not found */
1358 if (!page && high_pfn) {
1359 page = pfn_to_page(high_pfn);
1360
1361 /* Update freepage for the list reorder below */
1362 freepage = page;
1363 }
1364
1365 /* Reorder to so a future search skips recent pages */
1366 move_freelist_head(freelist, freepage);
1367
1368 /* Isolate the page if available */
1369 if (page) {
1370 if (__isolate_free_page(page, order)) {
1371 set_page_private(page, order);
1372 nr_isolated = 1 << order;
1373 cc->nr_freepages += nr_isolated;
1374 list_add_tail(&page->lru, &cc->freepages);
1375 count_compact_events(COMPACTISOLATED, nr_isolated);
1376 } else {
1377 /* If isolation fails, abort the search */
5b56d996 1378 order = cc->search_order + 1;
5a811889
MG
1379 page = NULL;
1380 }
1381 }
1382
1383 spin_unlock_irqrestore(&cc->zone->lock, flags);
1384
1385 /*
1386 * Smaller scan on next order so the total scan ig related
1387 * to freelist_scan_limit.
1388 */
1389 if (order_scanned >= limit)
1390 limit = min(1U, limit >> 1);
1391 }
1392
1393 if (!page) {
1394 cc->fast_search_fail++;
1395 if (scan_start) {
1396 /*
1397 * Use the highest PFN found above min. If one was
1398 * not found, be pessemistic for direct compaction
1399 * and use the min mark.
1400 */
1401 if (highest) {
1402 page = pfn_to_page(highest);
1403 cc->free_pfn = highest;
1404 } else {
e577c8b6 1405 if (cc->direct_compaction && pfn_valid(min_pfn)) {
5a811889
MG
1406 page = pfn_to_page(min_pfn);
1407 cc->free_pfn = min_pfn;
1408 }
1409 }
1410 }
1411 }
1412
d097a6f6
MG
1413 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1414 highest -= pageblock_nr_pages;
5a811889 1415 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1416 }
5a811889
MG
1417
1418 cc->total_free_scanned += nr_scanned;
1419 if (!page)
1420 return cc->free_pfn;
1421
1422 low_pfn = page_to_pfn(page);
1423 fast_isolate_around(cc, low_pfn, nr_isolated);
1424 return low_pfn;
1425}
1426
2fe86e00 1427/*
ff9543fd
MN
1428 * Based on information in the current compact_control, find blocks
1429 * suitable for isolating free pages from and then isolate them.
2fe86e00 1430 */
edc2ca61 1431static void isolate_freepages(struct compact_control *cc)
2fe86e00 1432{
edc2ca61 1433 struct zone *zone = cc->zone;
ff9543fd 1434 struct page *page;
c96b9e50 1435 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1436 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1437 unsigned long block_end_pfn; /* end of current pageblock */
1438 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1439 struct list_head *freelist = &cc->freepages;
4fca9730 1440 unsigned int stride;
2fe86e00 1441
5a811889
MG
1442 /* Try a small search of the free lists for a candidate */
1443 isolate_start_pfn = fast_isolate_freepages(cc);
1444 if (cc->nr_freepages)
1445 goto splitmap;
1446
ff9543fd
MN
1447 /*
1448 * Initialise the free scanner. The starting point is where we last
49e068f0 1449 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1450 * zone when isolating for the first time. For looping we also need
1451 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1452 * block_start_pfn -= pageblock_nr_pages in the for loop.
1453 * For ending point, take care when isolating in last pageblock of a
1454 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1455 * The low boundary is the end of the pageblock the migration scanner
1456 * is using.
ff9543fd 1457 */
e14c720e 1458 isolate_start_pfn = cc->free_pfn;
5a811889 1459 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1460 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1461 zone_end_pfn(zone));
06b6640a 1462 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1463 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1464
ff9543fd
MN
1465 /*
1466 * Isolate free pages until enough are available to migrate the
1467 * pages on cc->migratepages. We stop searching if the migrate
1468 * and free page scanners meet or enough free pages are isolated.
1469 */
f5f61a32 1470 for (; block_start_pfn >= low_pfn;
c96b9e50 1471 block_end_pfn = block_start_pfn,
e14c720e
VB
1472 block_start_pfn -= pageblock_nr_pages,
1473 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1474 unsigned long nr_isolated;
1475
f6ea3adb
DR
1476 /*
1477 * This can iterate a massively long zone without finding any
cb810ad2 1478 * suitable migration targets, so periodically check resched.
f6ea3adb 1479 */
cb810ad2 1480 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1481 cond_resched();
f6ea3adb 1482
7d49d886
VB
1483 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1484 zone);
1485 if (!page)
ff9543fd
MN
1486 continue;
1487
1488 /* Check the block is suitable for migration */
9f7e3387 1489 if (!suitable_migration_target(cc, page))
ff9543fd 1490 continue;
68e3e926 1491
bb13ffeb
MG
1492 /* If isolation recently failed, do not retry */
1493 if (!isolation_suitable(cc, page))
1494 continue;
1495
e14c720e 1496 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1497 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1498 block_end_pfn, freelist, stride, false);
ff9543fd 1499
d097a6f6
MG
1500 /* Update the skip hint if the full pageblock was scanned */
1501 if (isolate_start_pfn == block_end_pfn)
1502 update_pageblock_skip(cc, page, block_start_pfn);
1503
cb2dcaf0
MG
1504 /* Are enough freepages isolated? */
1505 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1506 if (isolate_start_pfn >= block_end_pfn) {
1507 /*
1508 * Restart at previous pageblock if more
1509 * freepages can be isolated next time.
1510 */
f5f61a32
VB
1511 isolate_start_pfn =
1512 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1513 }
be976572 1514 break;
a46cbf3b 1515 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1516 /*
a46cbf3b
DR
1517 * If isolation failed early, do not continue
1518 * needlessly.
f5f61a32 1519 */
a46cbf3b 1520 break;
f5f61a32 1521 }
4fca9730
MG
1522
1523 /* Adjust stride depending on isolation */
1524 if (nr_isolated) {
1525 stride = 1;
1526 continue;
1527 }
1528 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1529 }
1530
7ed695e0 1531 /*
f5f61a32
VB
1532 * Record where the free scanner will restart next time. Either we
1533 * broke from the loop and set isolate_start_pfn based on the last
1534 * call to isolate_freepages_block(), or we met the migration scanner
1535 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1536 */
f5f61a32 1537 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1538
1539splitmap:
1540 /* __isolate_free_page() does not map the pages */
1541 split_map_pages(freelist);
748446bb
MG
1542}
1543
1544/*
1545 * This is a migrate-callback that "allocates" freepages by taking pages
1546 * from the isolated freelists in the block we are migrating to.
1547 */
1548static struct page *compaction_alloc(struct page *migratepage,
666feb21 1549 unsigned long data)
748446bb
MG
1550{
1551 struct compact_control *cc = (struct compact_control *)data;
1552 struct page *freepage;
1553
748446bb 1554 if (list_empty(&cc->freepages)) {
cb2dcaf0 1555 isolate_freepages(cc);
748446bb
MG
1556
1557 if (list_empty(&cc->freepages))
1558 return NULL;
1559 }
1560
1561 freepage = list_entry(cc->freepages.next, struct page, lru);
1562 list_del(&freepage->lru);
1563 cc->nr_freepages--;
1564
1565 return freepage;
1566}
1567
1568/*
d53aea3d
DR
1569 * This is a migrate-callback that "frees" freepages back to the isolated
1570 * freelist. All pages on the freelist are from the same zone, so there is no
1571 * special handling needed for NUMA.
1572 */
1573static void compaction_free(struct page *page, unsigned long data)
1574{
1575 struct compact_control *cc = (struct compact_control *)data;
1576
1577 list_add(&page->lru, &cc->freepages);
1578 cc->nr_freepages++;
1579}
1580
ff9543fd
MN
1581/* possible outcome of isolate_migratepages */
1582typedef enum {
1583 ISOLATE_ABORT, /* Abort compaction now */
1584 ISOLATE_NONE, /* No pages isolated, continue scanning */
1585 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1586} isolate_migrate_t;
1587
5bbe3547
EM
1588/*
1589 * Allow userspace to control policy on scanning the unevictable LRU for
1590 * compactable pages.
1591 */
1592int sysctl_compact_unevictable_allowed __read_mostly = 1;
1593
70b44595
MG
1594static inline void
1595update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1596{
1597 if (cc->fast_start_pfn == ULONG_MAX)
1598 return;
1599
1600 if (!cc->fast_start_pfn)
1601 cc->fast_start_pfn = pfn;
1602
1603 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1604}
1605
1606static inline unsigned long
1607reinit_migrate_pfn(struct compact_control *cc)
1608{
1609 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1610 return cc->migrate_pfn;
1611
1612 cc->migrate_pfn = cc->fast_start_pfn;
1613 cc->fast_start_pfn = ULONG_MAX;
1614
1615 return cc->migrate_pfn;
1616}
1617
1618/*
1619 * Briefly search the free lists for a migration source that already has
1620 * some free pages to reduce the number of pages that need migration
1621 * before a pageblock is free.
1622 */
1623static unsigned long fast_find_migrateblock(struct compact_control *cc)
1624{
1625 unsigned int limit = freelist_scan_limit(cc);
1626 unsigned int nr_scanned = 0;
1627 unsigned long distance;
1628 unsigned long pfn = cc->migrate_pfn;
1629 unsigned long high_pfn;
1630 int order;
1631
1632 /* Skip hints are relied on to avoid repeats on the fast search */
1633 if (cc->ignore_skip_hint)
1634 return pfn;
1635
1636 /*
1637 * If the migrate_pfn is not at the start of a zone or the start
1638 * of a pageblock then assume this is a continuation of a previous
1639 * scan restarted due to COMPACT_CLUSTER_MAX.
1640 */
1641 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1642 return pfn;
1643
1644 /*
1645 * For smaller orders, just linearly scan as the number of pages
1646 * to migrate should be relatively small and does not necessarily
1647 * justify freeing up a large block for a small allocation.
1648 */
1649 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1650 return pfn;
1651
1652 /*
1653 * Only allow kcompactd and direct requests for movable pages to
1654 * quickly clear out a MOVABLE pageblock for allocation. This
1655 * reduces the risk that a large movable pageblock is freed for
1656 * an unmovable/reclaimable small allocation.
1657 */
1658 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1659 return pfn;
1660
1661 /*
1662 * When starting the migration scanner, pick any pageblock within the
1663 * first half of the search space. Otherwise try and pick a pageblock
1664 * within the first eighth to reduce the chances that a migration
1665 * target later becomes a source.
1666 */
1667 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1668 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1669 distance >>= 2;
1670 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1671
1672 for (order = cc->order - 1;
1673 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1674 order--) {
1675 struct free_area *area = &cc->zone->free_area[order];
1676 struct list_head *freelist;
1677 unsigned long flags;
1678 struct page *freepage;
1679
1680 if (!area->nr_free)
1681 continue;
1682
1683 spin_lock_irqsave(&cc->zone->lock, flags);
1684 freelist = &area->free_list[MIGRATE_MOVABLE];
1685 list_for_each_entry(freepage, freelist, lru) {
1686 unsigned long free_pfn;
1687
1688 nr_scanned++;
1689 free_pfn = page_to_pfn(freepage);
1690 if (free_pfn < high_pfn) {
70b44595
MG
1691 /*
1692 * Avoid if skipped recently. Ideally it would
1693 * move to the tail but even safe iteration of
1694 * the list assumes an entry is deleted, not
1695 * reordered.
1696 */
1697 if (get_pageblock_skip(freepage)) {
1698 if (list_is_last(freelist, &freepage->lru))
1699 break;
1700
1701 continue;
1702 }
1703
1704 /* Reorder to so a future search skips recent pages */
1705 move_freelist_tail(freelist, freepage);
1706
e380bebe 1707 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1708 pfn = pageblock_start_pfn(free_pfn);
1709 cc->fast_search_fail = 0;
1710 set_pageblock_skip(freepage);
1711 break;
1712 }
1713
1714 if (nr_scanned >= limit) {
1715 cc->fast_search_fail++;
1716 move_freelist_tail(freelist, freepage);
1717 break;
1718 }
1719 }
1720 spin_unlock_irqrestore(&cc->zone->lock, flags);
1721 }
1722
1723 cc->total_migrate_scanned += nr_scanned;
1724
1725 /*
1726 * If fast scanning failed then use a cached entry for a page block
1727 * that had free pages as the basis for starting a linear scan.
1728 */
1729 if (pfn == cc->migrate_pfn)
1730 pfn = reinit_migrate_pfn(cc);
1731
1732 return pfn;
1733}
1734
ff9543fd 1735/*
edc2ca61
VB
1736 * Isolate all pages that can be migrated from the first suitable block,
1737 * starting at the block pointed to by the migrate scanner pfn within
1738 * compact_control.
ff9543fd
MN
1739 */
1740static isolate_migrate_t isolate_migratepages(struct zone *zone,
1741 struct compact_control *cc)
1742{
e1409c32
JK
1743 unsigned long block_start_pfn;
1744 unsigned long block_end_pfn;
1745 unsigned long low_pfn;
edc2ca61
VB
1746 struct page *page;
1747 const isolate_mode_t isolate_mode =
5bbe3547 1748 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1749 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1750 bool fast_find_block;
ff9543fd 1751
edc2ca61
VB
1752 /*
1753 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1754 * initialized by compact_zone(). The first failure will use
1755 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1756 */
70b44595 1757 low_pfn = fast_find_migrateblock(cc);
06b6640a 1758 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1759 if (block_start_pfn < zone->zone_start_pfn)
1760 block_start_pfn = zone->zone_start_pfn;
ff9543fd 1761
70b44595
MG
1762 /*
1763 * fast_find_migrateblock marks a pageblock skipped so to avoid
1764 * the isolation_suitable check below, check whether the fast
1765 * search was successful.
1766 */
1767 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1768
ff9543fd 1769 /* Only scan within a pageblock boundary */
06b6640a 1770 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1771
edc2ca61
VB
1772 /*
1773 * Iterate over whole pageblocks until we find the first suitable.
1774 * Do not cross the free scanner.
1775 */
e1409c32 1776 for (; block_end_pfn <= cc->free_pfn;
70b44595 1777 fast_find_block = false,
e1409c32
JK
1778 low_pfn = block_end_pfn,
1779 block_start_pfn = block_end_pfn,
1780 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1781
edc2ca61
VB
1782 /*
1783 * This can potentially iterate a massively long zone with
1784 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1785 * need to schedule.
edc2ca61 1786 */
cb810ad2 1787 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1788 cond_resched();
ff9543fd 1789
e1409c32
JK
1790 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1791 zone);
7d49d886 1792 if (!page)
edc2ca61
VB
1793 continue;
1794
e380bebe
MG
1795 /*
1796 * If isolation recently failed, do not retry. Only check the
1797 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1798 * to be visited multiple times. Assume skip was checked
1799 * before making it "skip" so other compaction instances do
1800 * not scan the same block.
1801 */
1802 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1803 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1804 continue;
1805
1806 /*
9bebefd5
MG
1807 * For async compaction, also only scan in MOVABLE blocks
1808 * without huge pages. Async compaction is optimistic to see
1809 * if the minimum amount of work satisfies the allocation.
1810 * The cached PFN is updated as it's possible that all
1811 * remaining blocks between source and target are unsuitable
1812 * and the compaction scanners fail to meet.
edc2ca61 1813 */
9bebefd5
MG
1814 if (!suitable_migration_source(cc, page)) {
1815 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1816 continue;
9bebefd5 1817 }
edc2ca61
VB
1818
1819 /* Perform the isolation */
e1409c32
JK
1820 low_pfn = isolate_migratepages_block(cc, low_pfn,
1821 block_end_pfn, isolate_mode);
edc2ca61 1822
cb2dcaf0 1823 if (!low_pfn)
edc2ca61
VB
1824 return ISOLATE_ABORT;
1825
1826 /*
1827 * Either we isolated something and proceed with migration. Or
1828 * we failed and compact_zone should decide if we should
1829 * continue or not.
1830 */
1831 break;
1832 }
1833
f2849aa0
VB
1834 /* Record where migration scanner will be restarted. */
1835 cc->migrate_pfn = low_pfn;
ff9543fd 1836
edc2ca61 1837 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1838}
1839
21c527a3
YB
1840/*
1841 * order == -1 is expected when compacting via
1842 * /proc/sys/vm/compact_memory
1843 */
1844static inline bool is_via_compact_memory(int order)
1845{
1846 return order == -1;
1847}
1848
40cacbcb 1849static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 1850{
8fb74b9f 1851 unsigned int order;
d39773a0 1852 const int migratetype = cc->migratetype;
cb2dcaf0 1853 int ret;
748446bb 1854
753341a4 1855 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1856 if (compact_scanners_met(cc)) {
55b7c4c9 1857 /* Let the next compaction start anew. */
40cacbcb 1858 reset_cached_positions(cc->zone);
55b7c4c9 1859
62997027
MG
1860 /*
1861 * Mark that the PG_migrate_skip information should be cleared
accf6242 1862 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1863 * flag itself as the decision to be clear should be directly
1864 * based on an allocation request.
1865 */
accf6242 1866 if (cc->direct_compaction)
40cacbcb 1867 cc->zone->compact_blockskip_flush = true;
62997027 1868
c8f7de0b
MH
1869 if (cc->whole_zone)
1870 return COMPACT_COMPLETE;
1871 else
1872 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1873 }
748446bb 1874
21c527a3 1875 if (is_via_compact_memory(cc->order))
56de7263
MG
1876 return COMPACT_CONTINUE;
1877
efe771c7
MG
1878 /*
1879 * Always finish scanning a pageblock to reduce the possibility of
1880 * fallbacks in the future. This is particularly important when
1881 * migration source is unmovable/reclaimable but it's not worth
1882 * special casing.
1883 */
1884 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1885 return COMPACT_CONTINUE;
baf6a9a1 1886
56de7263 1887 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 1888 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 1889 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 1890 struct free_area *area = &cc->zone->free_area[order];
2149cdae 1891 bool can_steal;
8fb74b9f
MG
1892
1893 /* Job done if page is free of the right migratetype */
b03641af 1894 if (!free_area_empty(area, migratetype))
cf378319 1895 return COMPACT_SUCCESS;
8fb74b9f 1896
2149cdae
JK
1897#ifdef CONFIG_CMA
1898 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1899 if (migratetype == MIGRATE_MOVABLE &&
b03641af 1900 !free_area_empty(area, MIGRATE_CMA))
cf378319 1901 return COMPACT_SUCCESS;
2149cdae
JK
1902#endif
1903 /*
1904 * Job done if allocation would steal freepages from
1905 * other migratetype buddy lists.
1906 */
1907 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
1908 true, &can_steal) != -1) {
1909
1910 /* movable pages are OK in any pageblock */
1911 if (migratetype == MIGRATE_MOVABLE)
1912 return COMPACT_SUCCESS;
1913
1914 /*
1915 * We are stealing for a non-movable allocation. Make
1916 * sure we finish compacting the current pageblock
1917 * first so it is as free as possible and we won't
1918 * have to steal another one soon. This only applies
1919 * to sync compaction, as async compaction operates
1920 * on pageblocks of the same migratetype.
1921 */
1922 if (cc->mode == MIGRATE_ASYNC ||
1923 IS_ALIGNED(cc->migrate_pfn,
1924 pageblock_nr_pages)) {
1925 return COMPACT_SUCCESS;
1926 }
1927
cb2dcaf0
MG
1928 ret = COMPACT_CONTINUE;
1929 break;
baf6a9a1 1930 }
56de7263
MG
1931 }
1932
cb2dcaf0
MG
1933 if (cc->contended || fatal_signal_pending(current))
1934 ret = COMPACT_CONTENDED;
1935
1936 return ret;
837d026d
JK
1937}
1938
40cacbcb 1939static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
1940{
1941 int ret;
1942
40cacbcb
MG
1943 ret = __compact_finished(cc);
1944 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
1945 if (ret == COMPACT_NO_SUITABLE_PAGE)
1946 ret = COMPACT_CONTINUE;
1947
1948 return ret;
748446bb
MG
1949}
1950
3e7d3449
MG
1951/*
1952 * compaction_suitable: Is this suitable to run compaction on this zone now?
1953 * Returns
1954 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1955 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1956 * COMPACT_CONTINUE - If compaction should run now
1957 */
ea7ab982 1958static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1959 unsigned int alloc_flags,
86a294a8
MH
1960 int classzone_idx,
1961 unsigned long wmark_target)
3e7d3449 1962{
3e7d3449
MG
1963 unsigned long watermark;
1964
21c527a3 1965 if (is_via_compact_memory(order))
3957c776
MH
1966 return COMPACT_CONTINUE;
1967
a9214443 1968 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
1969 /*
1970 * If watermarks for high-order allocation are already met, there
1971 * should be no need for compaction at all.
1972 */
1973 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1974 alloc_flags))
cf378319 1975 return COMPACT_SUCCESS;
ebff3980 1976
3e7d3449 1977 /*
9861a62c 1978 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1979 * isolate free pages for migration targets. This means that the
1980 * watermark and alloc_flags have to match, or be more pessimistic than
1981 * the check in __isolate_free_page(). We don't use the direct
1982 * compactor's alloc_flags, as they are not relevant for freepage
1983 * isolation. We however do use the direct compactor's classzone_idx to
1984 * skip over zones where lowmem reserves would prevent allocation even
1985 * if compaction succeeds.
8348faf9
VB
1986 * For costly orders, we require low watermark instead of min for
1987 * compaction to proceed to increase its chances.
d883c6cf
JK
1988 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1989 * suitable migration targets
3e7d3449 1990 */
8348faf9
VB
1991 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1992 low_wmark_pages(zone) : min_wmark_pages(zone);
1993 watermark += compact_gap(order);
86a294a8 1994 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
d883c6cf 1995 ALLOC_CMA, wmark_target))
3e7d3449
MG
1996 return COMPACT_SKIPPED;
1997
cc5c9f09
VB
1998 return COMPACT_CONTINUE;
1999}
2000
2001enum compact_result compaction_suitable(struct zone *zone, int order,
2002 unsigned int alloc_flags,
2003 int classzone_idx)
2004{
2005 enum compact_result ret;
2006 int fragindex;
2007
2008 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2009 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2010 /*
2011 * fragmentation index determines if allocation failures are due to
2012 * low memory or external fragmentation
2013 *
ebff3980
VB
2014 * index of -1000 would imply allocations might succeed depending on
2015 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2016 * index towards 0 implies failure is due to lack of memory
2017 * index towards 1000 implies failure is due to fragmentation
2018 *
20311420
VB
2019 * Only compact if a failure would be due to fragmentation. Also
2020 * ignore fragindex for non-costly orders where the alternative to
2021 * a successful reclaim/compaction is OOM. Fragindex and the
2022 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2023 * excessive compaction for costly orders, but it should not be at the
2024 * expense of system stability.
3e7d3449 2025 */
20311420 2026 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2027 fragindex = fragmentation_index(zone, order);
2028 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2029 ret = COMPACT_NOT_SUITABLE_ZONE;
2030 }
837d026d 2031
837d026d
JK
2032 trace_mm_compaction_suitable(zone, order, ret);
2033 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2034 ret = COMPACT_SKIPPED;
2035
2036 return ret;
2037}
2038
86a294a8
MH
2039bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2040 int alloc_flags)
2041{
2042 struct zone *zone;
2043 struct zoneref *z;
2044
2045 /*
2046 * Make sure at least one zone would pass __compaction_suitable if we continue
2047 * retrying the reclaim.
2048 */
2049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2050 ac->nodemask) {
2051 unsigned long available;
2052 enum compact_result compact_result;
2053
2054 /*
2055 * Do not consider all the reclaimable memory because we do not
2056 * want to trash just for a single high order allocation which
2057 * is even not guaranteed to appear even if __compaction_suitable
2058 * is happy about the watermark check.
2059 */
5a1c84b4 2060 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2061 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2062 compact_result = __compaction_suitable(zone, order, alloc_flags,
2063 ac_classzone_idx(ac), available);
cc5c9f09 2064 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2065 return true;
2066 }
2067
2068 return false;
2069}
2070
5e1f0f09
MG
2071static enum compact_result
2072compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2073{
ea7ab982 2074 enum compact_result ret;
40cacbcb
MG
2075 unsigned long start_pfn = cc->zone->zone_start_pfn;
2076 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2077 unsigned long last_migrated_pfn;
e0b9daeb 2078 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2079 bool update_cached;
748446bb 2080
d39773a0 2081 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
40cacbcb 2082 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
ebff3980 2083 cc->classzone_idx);
c46649de 2084 /* Compaction is likely to fail */
cf378319 2085 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2086 return ret;
c46649de
MH
2087
2088 /* huh, compaction_suitable is returning something unexpected */
2089 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2090
d3132e4b
VB
2091 /*
2092 * Clear pageblock skip if there were failures recently and compaction
accf6242 2093 * is about to be retried after being deferred.
d3132e4b 2094 */
40cacbcb
MG
2095 if (compaction_restarting(cc->zone, cc->order))
2096 __reset_isolation_suitable(cc->zone);
d3132e4b 2097
c89511ab
MG
2098 /*
2099 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2100 * information on where the scanners should start (unless we explicitly
2101 * want to compact the whole zone), but check that it is initialised
2102 * by ensuring the values are within zone boundaries.
c89511ab 2103 */
70b44595 2104 cc->fast_start_pfn = 0;
06ed2998 2105 if (cc->whole_zone) {
c89511ab 2106 cc->migrate_pfn = start_pfn;
06ed2998
VB
2107 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108 } else {
40cacbcb
MG
2109 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2110 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2111 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2112 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2113 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2114 }
2115 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2116 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2117 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2118 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2119 }
c8f7de0b 2120
e332f741 2121 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2122 cc->whole_zone = true;
2123 }
c8f7de0b 2124
566e54e1 2125 last_migrated_pfn = 0;
748446bb 2126
8854c55f
MG
2127 /*
2128 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2129 * the basis that some migrations will fail in ASYNC mode. However,
2130 * if the cached PFNs match and pageblocks are skipped due to having
2131 * no isolation candidates, then the sync state does not matter.
2132 * Until a pageblock with isolation candidates is found, keep the
2133 * cached PFNs in sync to avoid revisiting the same blocks.
2134 */
2135 update_cached = !sync &&
2136 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2137
16c4a097
JK
2138 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2139 cc->free_pfn, end_pfn, sync);
0eb927c0 2140
748446bb
MG
2141 migrate_prep_local();
2142
40cacbcb 2143 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2144 int err;
566e54e1 2145 unsigned long start_pfn = cc->migrate_pfn;
748446bb 2146
804d3121
MG
2147 /*
2148 * Avoid multiple rescans which can happen if a page cannot be
2149 * isolated (dirty/writeback in async mode) or if the migrated
2150 * pages are being allocated before the pageblock is cleared.
2151 * The first rescan will capture the entire pageblock for
2152 * migration. If it fails, it'll be marked skip and scanning
2153 * will proceed as normal.
2154 */
2155 cc->rescan = false;
2156 if (pageblock_start_pfn(last_migrated_pfn) ==
2157 pageblock_start_pfn(start_pfn)) {
2158 cc->rescan = true;
2159 }
2160
40cacbcb 2161 switch (isolate_migratepages(cc->zone, cc)) {
f9e35b3b 2162 case ISOLATE_ABORT:
2d1e1041 2163 ret = COMPACT_CONTENDED;
5733c7d1 2164 putback_movable_pages(&cc->migratepages);
e64c5237 2165 cc->nr_migratepages = 0;
566e54e1 2166 last_migrated_pfn = 0;
f9e35b3b
MG
2167 goto out;
2168 case ISOLATE_NONE:
8854c55f
MG
2169 if (update_cached) {
2170 cc->zone->compact_cached_migrate_pfn[1] =
2171 cc->zone->compact_cached_migrate_pfn[0];
2172 }
2173
fdaf7f5c
VB
2174 /*
2175 * We haven't isolated and migrated anything, but
2176 * there might still be unflushed migrations from
2177 * previous cc->order aligned block.
2178 */
2179 goto check_drain;
f9e35b3b 2180 case ISOLATE_SUCCESS:
8854c55f 2181 update_cached = false;
566e54e1 2182 last_migrated_pfn = start_pfn;
f9e35b3b
MG
2183 ;
2184 }
748446bb 2185
d53aea3d 2186 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2187 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2188 MR_COMPACTION);
748446bb 2189
f8c9301f
VB
2190 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2191 &cc->migratepages);
748446bb 2192
f8c9301f
VB
2193 /* All pages were either migrated or will be released */
2194 cc->nr_migratepages = 0;
9d502c1c 2195 if (err) {
5733c7d1 2196 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2197 /*
2198 * migrate_pages() may return -ENOMEM when scanners meet
2199 * and we want compact_finished() to detect it
2200 */
f2849aa0 2201 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2202 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2203 goto out;
2204 }
fdd048e1
VB
2205 /*
2206 * We failed to migrate at least one page in the current
2207 * order-aligned block, so skip the rest of it.
2208 */
2209 if (cc->direct_compaction &&
2210 (cc->mode == MIGRATE_ASYNC)) {
2211 cc->migrate_pfn = block_end_pfn(
2212 cc->migrate_pfn - 1, cc->order);
2213 /* Draining pcplists is useless in this case */
566e54e1 2214 last_migrated_pfn = 0;
fdd048e1 2215 }
748446bb 2216 }
fdaf7f5c 2217
fdaf7f5c
VB
2218check_drain:
2219 /*
2220 * Has the migration scanner moved away from the previous
2221 * cc->order aligned block where we migrated from? If yes,
2222 * flush the pages that were freed, so that they can merge and
2223 * compact_finished() can detect immediately if allocation
2224 * would succeed.
2225 */
566e54e1 2226 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c
VB
2227 int cpu;
2228 unsigned long current_block_start =
06b6640a 2229 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2230
566e54e1 2231 if (last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
2232 cpu = get_cpu();
2233 lru_add_drain_cpu(cpu);
40cacbcb 2234 drain_local_pages(cc->zone);
fdaf7f5c
VB
2235 put_cpu();
2236 /* No more flushing until we migrate again */
566e54e1 2237 last_migrated_pfn = 0;
fdaf7f5c
VB
2238 }
2239 }
2240
5e1f0f09
MG
2241 /* Stop if a page has been captured */
2242 if (capc && capc->page) {
2243 ret = COMPACT_SUCCESS;
2244 break;
2245 }
748446bb
MG
2246 }
2247
f9e35b3b 2248out:
6bace090
VB
2249 /*
2250 * Release free pages and update where the free scanner should restart,
2251 * so we don't leave any returned pages behind in the next attempt.
2252 */
2253 if (cc->nr_freepages > 0) {
2254 unsigned long free_pfn = release_freepages(&cc->freepages);
2255
2256 cc->nr_freepages = 0;
2257 VM_BUG_ON(free_pfn == 0);
2258 /* The cached pfn is always the first in a pageblock */
06b6640a 2259 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2260 /*
2261 * Only go back, not forward. The cached pfn might have been
2262 * already reset to zone end in compact_finished()
2263 */
40cacbcb
MG
2264 if (free_pfn > cc->zone->compact_cached_free_pfn)
2265 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2266 }
748446bb 2267
7f354a54
DR
2268 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2269 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2270
16c4a097
JK
2271 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2272 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2273
748446bb
MG
2274 return ret;
2275}
76ab0f53 2276
ea7ab982 2277static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2278 gfp_t gfp_mask, enum compact_priority prio,
5e1f0f09
MG
2279 unsigned int alloc_flags, int classzone_idx,
2280 struct page **capture)
56de7263 2281{
ea7ab982 2282 enum compact_result ret;
56de7263
MG
2283 struct compact_control cc = {
2284 .nr_freepages = 0,
2285 .nr_migratepages = 0,
7f354a54
DR
2286 .total_migrate_scanned = 0,
2287 .total_free_scanned = 0,
56de7263 2288 .order = order,
dbe2d4e4 2289 .search_order = order,
6d7ce559 2290 .gfp_mask = gfp_mask,
56de7263 2291 .zone = zone,
a5508cd8
VB
2292 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2293 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
2294 .alloc_flags = alloc_flags,
2295 .classzone_idx = classzone_idx,
accf6242 2296 .direct_compaction = true,
a8e025e5 2297 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2298 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2299 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2300 };
5e1f0f09
MG
2301 struct capture_control capc = {
2302 .cc = &cc,
2303 .page = NULL,
2304 };
2305
2306 if (capture)
2307 current->capture_control = &capc;
56de7263
MG
2308 INIT_LIST_HEAD(&cc.freepages);
2309 INIT_LIST_HEAD(&cc.migratepages);
2310
5e1f0f09 2311 ret = compact_zone(&cc, &capc);
e64c5237
SL
2312
2313 VM_BUG_ON(!list_empty(&cc.freepages));
2314 VM_BUG_ON(!list_empty(&cc.migratepages));
2315
5e1f0f09
MG
2316 *capture = capc.page;
2317 current->capture_control = NULL;
2318
e64c5237 2319 return ret;
56de7263
MG
2320}
2321
5e771905
MG
2322int sysctl_extfrag_threshold = 500;
2323
56de7263
MG
2324/**
2325 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2326 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2327 * @order: The order of the current allocation
2328 * @alloc_flags: The allocation flags of the current allocation
2329 * @ac: The context of current allocation
112d2d29 2330 * @prio: Determines how hard direct compaction should try to succeed
56de7263
MG
2331 *
2332 * This is the main entry point for direct page compaction.
2333 */
ea7ab982 2334enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2335 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2336 enum compact_priority prio, struct page **capture)
56de7263 2337{
56de7263 2338 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2339 struct zoneref *z;
2340 struct zone *zone;
1d4746d3 2341 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2342
73e64c51
MH
2343 /*
2344 * Check if the GFP flags allow compaction - GFP_NOIO is really
2345 * tricky context because the migration might require IO
2346 */
2347 if (!may_perform_io)
53853e2d 2348 return COMPACT_SKIPPED;
56de7263 2349
a5508cd8 2350 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2351
56de7263 2352 /* Compact each zone in the list */
1a6d53a1
VB
2353 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2354 ac->nodemask) {
ea7ab982 2355 enum compact_result status;
56de7263 2356
a8e025e5
VB
2357 if (prio > MIN_COMPACT_PRIORITY
2358 && compaction_deferred(zone, order)) {
1d4746d3 2359 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2360 continue;
1d4746d3 2361 }
53853e2d 2362
a5508cd8 2363 status = compact_zone_order(zone, order, gfp_mask, prio,
5e1f0f09 2364 alloc_flags, ac_classzone_idx(ac), capture);
56de7263
MG
2365 rc = max(status, rc);
2366
7ceb009a
VB
2367 /* The allocation should succeed, stop compacting */
2368 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2369 /*
2370 * We think the allocation will succeed in this zone,
2371 * but it is not certain, hence the false. The caller
2372 * will repeat this with true if allocation indeed
2373 * succeeds in this zone.
2374 */
2375 compaction_defer_reset(zone, order, false);
1f9efdef 2376
c3486f53 2377 break;
1f9efdef
VB
2378 }
2379
a5508cd8 2380 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2381 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2382 /*
2383 * We think that allocation won't succeed in this zone
2384 * so we defer compaction there. If it ends up
2385 * succeeding after all, it will be reset.
2386 */
2387 defer_compaction(zone, order);
1f9efdef
VB
2388
2389 /*
2390 * We might have stopped compacting due to need_resched() in
2391 * async compaction, or due to a fatal signal detected. In that
c3486f53 2392 * case do not try further zones
1f9efdef 2393 */
c3486f53
VB
2394 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2395 || fatal_signal_pending(current))
2396 break;
56de7263
MG
2397 }
2398
2399 return rc;
2400}
2401
2402
76ab0f53 2403/* Compact all zones within a node */
791cae96 2404static void compact_node(int nid)
76ab0f53 2405{
791cae96 2406 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2407 int zoneid;
76ab0f53 2408 struct zone *zone;
791cae96
VB
2409 struct compact_control cc = {
2410 .order = -1,
7f354a54
DR
2411 .total_migrate_scanned = 0,
2412 .total_free_scanned = 0,
791cae96
VB
2413 .mode = MIGRATE_SYNC,
2414 .ignore_skip_hint = true,
2415 .whole_zone = true,
73e64c51 2416 .gfp_mask = GFP_KERNEL,
791cae96
VB
2417 };
2418
76ab0f53 2419
76ab0f53 2420 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2421
2422 zone = &pgdat->node_zones[zoneid];
2423 if (!populated_zone(zone))
2424 continue;
2425
791cae96
VB
2426 cc.nr_freepages = 0;
2427 cc.nr_migratepages = 0;
2428 cc.zone = zone;
2429 INIT_LIST_HEAD(&cc.freepages);
2430 INIT_LIST_HEAD(&cc.migratepages);
76ab0f53 2431
5e1f0f09 2432 compact_zone(&cc, NULL);
75469345 2433
791cae96
VB
2434 VM_BUG_ON(!list_empty(&cc.freepages));
2435 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2436 }
76ab0f53
MG
2437}
2438
2439/* Compact all nodes in the system */
7964c06d 2440static void compact_nodes(void)
76ab0f53
MG
2441{
2442 int nid;
2443
8575ec29
HD
2444 /* Flush pending updates to the LRU lists */
2445 lru_add_drain_all();
2446
76ab0f53
MG
2447 for_each_online_node(nid)
2448 compact_node(nid);
76ab0f53
MG
2449}
2450
2451/* The written value is actually unused, all memory is compacted */
2452int sysctl_compact_memory;
2453
fec4eb2c
YB
2454/*
2455 * This is the entry point for compacting all nodes via
2456 * /proc/sys/vm/compact_memory
2457 */
76ab0f53
MG
2458int sysctl_compaction_handler(struct ctl_table *table, int write,
2459 void __user *buffer, size_t *length, loff_t *ppos)
2460{
2461 if (write)
7964c06d 2462 compact_nodes();
76ab0f53
MG
2463
2464 return 0;
2465}
ed4a6d7f
MG
2466
2467#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2468static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2469 struct device_attribute *attr,
ed4a6d7f
MG
2470 const char *buf, size_t count)
2471{
8575ec29
HD
2472 int nid = dev->id;
2473
2474 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2475 /* Flush pending updates to the LRU lists */
2476 lru_add_drain_all();
2477
2478 compact_node(nid);
2479 }
ed4a6d7f
MG
2480
2481 return count;
2482}
0825a6f9 2483static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2484
2485int compaction_register_node(struct node *node)
2486{
10fbcf4c 2487 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2488}
2489
2490void compaction_unregister_node(struct node *node)
2491{
10fbcf4c 2492 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2493}
2494#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2495
698b1b30
VB
2496static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2497{
172400c6 2498 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2499}
2500
2501static bool kcompactd_node_suitable(pg_data_t *pgdat)
2502{
2503 int zoneid;
2504 struct zone *zone;
2505 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2506
6cd9dc3e 2507 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
2508 zone = &pgdat->node_zones[zoneid];
2509
2510 if (!populated_zone(zone))
2511 continue;
2512
2513 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2514 classzone_idx) == COMPACT_CONTINUE)
2515 return true;
2516 }
2517
2518 return false;
2519}
2520
2521static void kcompactd_do_work(pg_data_t *pgdat)
2522{
2523 /*
2524 * With no special task, compact all zones so that a page of requested
2525 * order is allocatable.
2526 */
2527 int zoneid;
2528 struct zone *zone;
2529 struct compact_control cc = {
2530 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2531 .search_order = pgdat->kcompactd_max_order,
7f354a54
DR
2532 .total_migrate_scanned = 0,
2533 .total_free_scanned = 0,
698b1b30
VB
2534 .classzone_idx = pgdat->kcompactd_classzone_idx,
2535 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2536 .ignore_skip_hint = false,
73e64c51 2537 .gfp_mask = GFP_KERNEL,
698b1b30 2538 };
698b1b30
VB
2539 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2540 cc.classzone_idx);
7f354a54 2541 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2542
6cd9dc3e 2543 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
2544 int status;
2545
2546 zone = &pgdat->node_zones[zoneid];
2547 if (!populated_zone(zone))
2548 continue;
2549
2550 if (compaction_deferred(zone, cc.order))
2551 continue;
2552
2553 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2554 COMPACT_CONTINUE)
2555 continue;
2556
2557 cc.nr_freepages = 0;
2558 cc.nr_migratepages = 0;
7f354a54
DR
2559 cc.total_migrate_scanned = 0;
2560 cc.total_free_scanned = 0;
698b1b30
VB
2561 cc.zone = zone;
2562 INIT_LIST_HEAD(&cc.freepages);
2563 INIT_LIST_HEAD(&cc.migratepages);
2564
172400c6
VB
2565 if (kthread_should_stop())
2566 return;
5e1f0f09 2567 status = compact_zone(&cc, NULL);
698b1b30 2568
7ceb009a 2569 if (status == COMPACT_SUCCESS) {
698b1b30 2570 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2571 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2572 /*
2573 * Buddy pages may become stranded on pcps that could
2574 * otherwise coalesce on the zone's free area for
2575 * order >= cc.order. This is ratelimited by the
2576 * upcoming deferral.
2577 */
2578 drain_all_pages(zone);
2579
698b1b30
VB
2580 /*
2581 * We use sync migration mode here, so we defer like
2582 * sync direct compaction does.
2583 */
2584 defer_compaction(zone, cc.order);
2585 }
2586
7f354a54
DR
2587 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2588 cc.total_migrate_scanned);
2589 count_compact_events(KCOMPACTD_FREE_SCANNED,
2590 cc.total_free_scanned);
2591
698b1b30
VB
2592 VM_BUG_ON(!list_empty(&cc.freepages));
2593 VM_BUG_ON(!list_empty(&cc.migratepages));
2594 }
2595
2596 /*
2597 * Regardless of success, we are done until woken up next. But remember
2598 * the requested order/classzone_idx in case it was higher/tighter than
2599 * our current ones
2600 */
2601 if (pgdat->kcompactd_max_order <= cc.order)
2602 pgdat->kcompactd_max_order = 0;
2603 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2604 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2605}
2606
2607void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2608{
2609 if (!order)
2610 return;
2611
2612 if (pgdat->kcompactd_max_order < order)
2613 pgdat->kcompactd_max_order = order;
2614
2615 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2616 pgdat->kcompactd_classzone_idx = classzone_idx;
2617
6818600f
DB
2618 /*
2619 * Pairs with implicit barrier in wait_event_freezable()
2620 * such that wakeups are not missed.
2621 */
2622 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2623 return;
2624
2625 if (!kcompactd_node_suitable(pgdat))
2626 return;
2627
2628 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2629 classzone_idx);
2630 wake_up_interruptible(&pgdat->kcompactd_wait);
2631}
2632
2633/*
2634 * The background compaction daemon, started as a kernel thread
2635 * from the init process.
2636 */
2637static int kcompactd(void *p)
2638{
2639 pg_data_t *pgdat = (pg_data_t*)p;
2640 struct task_struct *tsk = current;
2641
2642 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643
2644 if (!cpumask_empty(cpumask))
2645 set_cpus_allowed_ptr(tsk, cpumask);
2646
2647 set_freezable();
2648
2649 pgdat->kcompactd_max_order = 0;
2650 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2651
2652 while (!kthread_should_stop()) {
eb414681
JW
2653 unsigned long pflags;
2654
698b1b30
VB
2655 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2656 wait_event_freezable(pgdat->kcompactd_wait,
2657 kcompactd_work_requested(pgdat));
2658
eb414681 2659 psi_memstall_enter(&pflags);
698b1b30 2660 kcompactd_do_work(pgdat);
eb414681 2661 psi_memstall_leave(&pflags);
698b1b30
VB
2662 }
2663
2664 return 0;
2665}
2666
2667/*
2668 * This kcompactd start function will be called by init and node-hot-add.
2669 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2670 */
2671int kcompactd_run(int nid)
2672{
2673 pg_data_t *pgdat = NODE_DATA(nid);
2674 int ret = 0;
2675
2676 if (pgdat->kcompactd)
2677 return 0;
2678
2679 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2680 if (IS_ERR(pgdat->kcompactd)) {
2681 pr_err("Failed to start kcompactd on node %d\n", nid);
2682 ret = PTR_ERR(pgdat->kcompactd);
2683 pgdat->kcompactd = NULL;
2684 }
2685 return ret;
2686}
2687
2688/*
2689 * Called by memory hotplug when all memory in a node is offlined. Caller must
2690 * hold mem_hotplug_begin/end().
2691 */
2692void kcompactd_stop(int nid)
2693{
2694 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2695
2696 if (kcompactd) {
2697 kthread_stop(kcompactd);
2698 NODE_DATA(nid)->kcompactd = NULL;
2699 }
2700}
2701
2702/*
2703 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2704 * not required for correctness. So if the last cpu in a node goes
2705 * away, we get changed to run anywhere: as the first one comes back,
2706 * restore their cpu bindings.
2707 */
e46b1db2 2708static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2709{
2710 int nid;
2711
e46b1db2
AMG
2712 for_each_node_state(nid, N_MEMORY) {
2713 pg_data_t *pgdat = NODE_DATA(nid);
2714 const struct cpumask *mask;
698b1b30 2715
e46b1db2 2716 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2717
e46b1db2
AMG
2718 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2719 /* One of our CPUs online: restore mask */
2720 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2721 }
e46b1db2 2722 return 0;
698b1b30
VB
2723}
2724
2725static int __init kcompactd_init(void)
2726{
2727 int nid;
e46b1db2
AMG
2728 int ret;
2729
2730 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2731 "mm/compaction:online",
2732 kcompactd_cpu_online, NULL);
2733 if (ret < 0) {
2734 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2735 return ret;
2736 }
698b1b30
VB
2737
2738 for_each_node_state(nid, N_MEMORY)
2739 kcompactd_run(nid);
698b1b30
VB
2740 return 0;
2741}
2742subsys_initcall(kcompactd_init)
2743
ff9543fd 2744#endif /* CONFIG_COMPACTION */