ARC: mmu: clarify the MMUv3 programming model
[linux-2.6-block.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
e157b555 25#include <linux/cpu.h>
1da177e4
LT
26#include <linux/errno.h>
27#include <linux/init.h>
28#include <linux/kernel.h>
8bc3bcc9 29#include <linux/export.h>
1da177e4
LT
30#include <linux/radix-tree.h>
31#include <linux/percpu.h>
32#include <linux/slab.h>
ce80b067 33#include <linux/kmemleak.h>
1da177e4 34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
148deab2
MW
72static inline struct radix_tree_node *entry_to_node(void *ptr)
73{
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75}
76
a4db4dce 77static inline void *node_to_entry(void *ptr)
27d20fdd 78{
30ff46cc 79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
80}
81
a4db4dce 82#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 83
db050f29
MW
84#ifdef CONFIG_RADIX_TREE_MULTIORDER
85/* Sibling slots point directly to another slot in the same node */
86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87{
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91}
92#else
93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94{
95 return false;
96}
97#endif
98
99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
101{
102 return slot - parent->slots;
103}
104
9e85d811
MW
105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
db050f29 107{
9e85d811 108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
110
111#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 112 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
117 }
118 }
119#endif
120
121 *nodep = (void *)entry;
122 return offset;
123}
124
612d6c19
NP
125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126{
127 return root->gfp_mask & __GFP_BITS_MASK;
128}
129
643b52b9
NP
130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132{
133 __set_bit(offset, node->tags[tag]);
134}
135
136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138{
139 __clear_bit(offset, node->tags[tag]);
140}
141
142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
144{
145 return test_bit(offset, node->tags[tag]);
146}
147
148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149{
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151}
152
2fcd9005 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
154{
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156}
157
158static inline void root_tag_clear_all(struct radix_tree_root *root)
159{
160 root->gfp_mask &= __GFP_BITS_MASK;
161}
162
163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164{
2fcd9005 165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
166}
167
7b60e9ad
MW
168static inline unsigned root_tags_get(struct radix_tree_root *root)
169{
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171}
172
643b52b9
NP
173/*
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
176 */
177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178{
2fcd9005 179 unsigned idx;
643b52b9
NP
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
183 }
184 return 0;
185}
78c1d784
KK
186
187/**
188 * radix_tree_find_next_bit - find the next set bit in a memory region
189 *
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
193 *
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
197 */
198static __always_inline unsigned long
bc412fca
MW
199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
78c1d784 201{
bc412fca 202 const unsigned long *addr = node->tags[tag];
78c1d784 203
bc412fca 204 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
205 unsigned long tmp;
206
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 212 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
217 }
218 }
bc412fca 219 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
220}
221
268f42de
MW
222static unsigned int iter_offset(const struct radix_tree_iter *iter)
223{
224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
225}
226
218ed750
MW
227/*
228 * The maximum index which can be stored in a radix tree
229 */
230static inline unsigned long shift_maxindex(unsigned int shift)
231{
232 return (RADIX_TREE_MAP_SIZE << shift) - 1;
233}
234
235static inline unsigned long node_maxindex(struct radix_tree_node *node)
236{
237 return shift_maxindex(node->shift);
238}
239
0796c583 240#ifndef __KERNEL__
d0891265 241static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 242{
0796c583 243 unsigned long i;
7cf19af4 244
218ed750
MW
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node, node->offset, index, index | node_maxindex(node),
247 node->parent,
0796c583 248 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 249 node->shift, node->count, node->exceptional);
0796c583
RZ
250
251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
252 unsigned long first = index | (i << node->shift);
253 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
254 void *entry = node->slots[i];
255 if (!entry)
256 continue;
218ed750
MW
257 if (entry == RADIX_TREE_RETRY) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i, first, last, node);
b194d16c 260 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry, i, first, last, node);
263 } else if (is_sibling_entry(node, entry)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry, i, first, last, node,
266 *(void **)entry_to_node(entry));
0796c583 267 } else {
4dd6c098 268 dump_node(entry_to_node(entry), first);
0796c583
RZ
269 }
270 }
7cf19af4
MW
271}
272
273/* For debug */
274static void radix_tree_dump(struct radix_tree_root *root)
275{
d0891265
MW
276 pr_debug("radix root: %p rnode %p tags %x\n",
277 root, root->rnode,
7cf19af4 278 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 279 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 280 return;
4dd6c098 281 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
282}
283#endif
284
1da177e4
LT
285/*
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
288 */
289static struct radix_tree_node *
e8de4340
MW
290radix_tree_node_alloc(struct radix_tree_root *root,
291 struct radix_tree_node *parent,
292 unsigned int shift, unsigned int offset,
293 unsigned int count, unsigned int exceptional)
1da177e4 294{
e2848a0e 295 struct radix_tree_node *ret = NULL;
612d6c19 296 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 297
5e4c0d97 298 /*
2fcd9005
MW
299 * Preload code isn't irq safe and it doesn't make sense to use
300 * preloading during an interrupt anyway as all the allocations have
301 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 302 */
d0164adc 303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
304 struct radix_tree_preload *rtp;
305
58e698af
VD
306 /*
307 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
308 * cache first for the new node to get accounted to the memory
309 * cgroup.
58e698af
VD
310 */
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 312 gfp_mask | __GFP_NOWARN);
58e698af
VD
313 if (ret)
314 goto out;
315
e2848a0e
NP
316 /*
317 * Provided the caller has preloaded here, we will always
318 * succeed in getting a node here (and never reach
319 * kmem_cache_alloc)
320 */
7c8e0181 321 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 322 if (rtp->nr) {
9d2a8da0
KS
323 ret = rtp->nodes;
324 rtp->nodes = ret->private_data;
325 ret->private_data = NULL;
1da177e4
LT
326 rtp->nr--;
327 }
ce80b067
CM
328 /*
329 * Update the allocation stack trace as this is more useful
330 * for debugging.
331 */
332 kmemleak_update_trace(ret);
58e698af 333 goto out;
1da177e4 334 }
05eb6e72 335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 336out:
b194d16c 337 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340
MW
338 if (ret) {
339 ret->parent = parent;
340 ret->shift = shift;
341 ret->offset = offset;
342 ret->count = count;
343 ret->exceptional = exceptional;
344 }
1da177e4
LT
345 return ret;
346}
347
7cf9c2c7
NP
348static void radix_tree_node_rcu_free(struct rcu_head *head)
349{
350 struct radix_tree_node *node =
351 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
352
353 /*
175542f5
MW
354 * Must only free zeroed nodes into the slab. We can be left with
355 * non-NULL entries by radix_tree_free_nodes, so clear the entries
356 * and tags here.
643b52b9 357 */
175542f5
MW
358 memset(node->slots, 0, sizeof(node->slots));
359 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 360 INIT_LIST_HEAD(&node->private_list);
643b52b9 361
7cf9c2c7
NP
362 kmem_cache_free(radix_tree_node_cachep, node);
363}
364
1da177e4
LT
365static inline void
366radix_tree_node_free(struct radix_tree_node *node)
367{
7cf9c2c7 368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
369}
370
371/*
372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
373 * ensure that the addition of a single element in the tree cannot fail. On
374 * success, return zero, with preemption disabled. On error, return -ENOMEM
375 * with preemption not disabled.
b34df792
DH
376 *
377 * To make use of this facility, the radix tree must be initialised without
d0164adc 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 379 */
2791653a 380static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
381{
382 struct radix_tree_preload *rtp;
383 struct radix_tree_node *node;
384 int ret = -ENOMEM;
385
05eb6e72
VD
386 /*
387 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 * they should never be accounted to any particular memory cgroup.
389 */
390 gfp_mask &= ~__GFP_ACCOUNT;
391
1da177e4 392 preempt_disable();
7c8e0181 393 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 394 while (rtp->nr < nr) {
1da177e4 395 preempt_enable();
488514d1 396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
397 if (node == NULL)
398 goto out;
399 preempt_disable();
7c8e0181 400 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 401 if (rtp->nr < nr) {
9d2a8da0
KS
402 node->private_data = rtp->nodes;
403 rtp->nodes = node;
404 rtp->nr++;
405 } else {
1da177e4 406 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 407 }
1da177e4
LT
408 }
409 ret = 0;
410out:
411 return ret;
412}
5e4c0d97
JK
413
414/*
415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
416 * ensure that the addition of a single element in the tree cannot fail. On
417 * success, return zero, with preemption disabled. On error, return -ENOMEM
418 * with preemption not disabled.
419 *
420 * To make use of this facility, the radix tree must be initialised without
d0164adc 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
422 */
423int radix_tree_preload(gfp_t gfp_mask)
424{
425 /* Warn on non-sensical use... */
d0164adc 426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 428}
d7f0923d 429EXPORT_SYMBOL(radix_tree_preload);
1da177e4 430
5e4c0d97
JK
431/*
432 * The same as above function, except we don't guarantee preloading happens.
433 * We do it, if we decide it helps. On success, return zero with preemption
434 * disabled. On error, return -ENOMEM with preemption not disabled.
435 */
436int radix_tree_maybe_preload(gfp_t gfp_mask)
437{
d0164adc 438 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
440 /* Preloading doesn't help anything with this gfp mask, skip it */
441 preempt_disable();
442 return 0;
443}
444EXPORT_SYMBOL(radix_tree_maybe_preload);
445
2791653a
MW
446#ifdef CONFIG_RADIX_TREE_MULTIORDER
447/*
448 * Preload with enough objects to ensure that we can split a single entry
449 * of order @old_order into many entries of size @new_order
450 */
451int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
452 gfp_t gfp_mask)
453{
454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
456 (new_order / RADIX_TREE_MAP_SHIFT);
457 unsigned nr = 0;
458
459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
460 BUG_ON(new_order >= old_order);
461
462 while (layers--)
463 nr = nr * RADIX_TREE_MAP_SIZE + 1;
464 return __radix_tree_preload(gfp_mask, top * nr);
465}
466#endif
467
c78c66d1
KS
468/*
469 * The same as function above, but preload number of nodes required to insert
470 * (1 << order) continuous naturally-aligned elements.
471 */
472int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
473{
474 unsigned long nr_subtrees;
475 int nr_nodes, subtree_height;
476
477 /* Preloading doesn't help anything with this gfp mask, skip it */
478 if (!gfpflags_allow_blocking(gfp_mask)) {
479 preempt_disable();
480 return 0;
481 }
482
483 /*
484 * Calculate number and height of fully populated subtrees it takes to
485 * store (1 << order) elements.
486 */
487 nr_subtrees = 1 << order;
488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
489 subtree_height++)
490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
491
492 /*
493 * The worst case is zero height tree with a single item at index 0 and
494 * then inserting items starting at ULONG_MAX - (1 << order).
495 *
496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
497 * 0-index item.
498 */
499 nr_nodes = RADIX_TREE_MAX_PATH;
500
501 /* Plus branch to fully populated subtrees. */
502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
503
504 /* Root node is shared. */
505 nr_nodes--;
506
507 /* Plus nodes required to build subtrees. */
508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
509
510 return __radix_tree_preload(gfp_mask, nr_nodes);
511}
512
1456a439
MW
513static unsigned radix_tree_load_root(struct radix_tree_root *root,
514 struct radix_tree_node **nodep, unsigned long *maxindex)
515{
516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
517
518 *nodep = node;
519
b194d16c 520 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 521 node = entry_to_node(node);
1456a439 522 *maxindex = node_maxindex(node);
c12e51b0 523 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
524 }
525
526 *maxindex = 0;
527 return 0;
528}
529
1da177e4
LT
530/*
531 * Extend a radix tree so it can store key @index.
532 */
e6145236 533static int radix_tree_extend(struct radix_tree_root *root,
d0891265 534 unsigned long index, unsigned int shift)
1da177e4 535{
e2bdb933 536 struct radix_tree_node *slot;
d0891265 537 unsigned int maxshift;
1da177e4
LT
538 int tag;
539
d0891265
MW
540 /* Figure out what the shift should be. */
541 maxshift = shift;
542 while (index > shift_maxindex(maxshift))
543 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 544
d0891265
MW
545 slot = root->rnode;
546 if (!slot)
1da177e4 547 goto out;
1da177e4 548
1da177e4 549 do {
e8de4340
MW
550 struct radix_tree_node *node = radix_tree_node_alloc(root,
551 NULL, shift, 0, 1, 0);
2fcd9005 552 if (!node)
1da177e4
LT
553 return -ENOMEM;
554
1da177e4 555 /* Propagate the aggregated tag info into the new root */
daff89f3 556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 557 if (root_tag_get(root, tag))
1da177e4
LT
558 tag_set(node, tag, 0);
559 }
560
d0891265 561 BUG_ON(shift > BITS_PER_LONG);
f7942430 562 if (radix_tree_is_internal_node(slot)) {
4dd6c098 563 entry_to_node(slot)->parent = node;
e8de4340 564 } else if (radix_tree_exceptional_entry(slot)) {
f7942430 565 /* Moving an exceptional root->rnode to a node */
e8de4340 566 node->exceptional = 1;
f7942430 567 }
e2bdb933 568 node->slots[0] = slot;
a4db4dce
MW
569 slot = node_to_entry(node);
570 rcu_assign_pointer(root->rnode, slot);
d0891265 571 shift += RADIX_TREE_MAP_SHIFT;
d0891265 572 } while (shift <= maxshift);
1da177e4 573out:
d0891265 574 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
575}
576
f4b109c6
JW
577/**
578 * radix_tree_shrink - shrink radix tree to minimum height
579 * @root radix tree root
580 */
14b46879 581static inline void radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
582 radix_tree_update_node_t update_node,
583 void *private)
f4b109c6 584{
f4b109c6
JW
585 for (;;) {
586 struct radix_tree_node *node = root->rnode;
587 struct radix_tree_node *child;
588
589 if (!radix_tree_is_internal_node(node))
590 break;
591 node = entry_to_node(node);
592
593 /*
594 * The candidate node has more than one child, or its child
595 * is not at the leftmost slot, or the child is a multiorder
596 * entry, we cannot shrink.
597 */
598 if (node->count != 1)
599 break;
600 child = node->slots[0];
601 if (!child)
602 break;
603 if (!radix_tree_is_internal_node(child) && node->shift)
604 break;
605
606 if (radix_tree_is_internal_node(child))
607 entry_to_node(child)->parent = NULL;
608
609 /*
610 * We don't need rcu_assign_pointer(), since we are simply
611 * moving the node from one part of the tree to another: if it
612 * was safe to dereference the old pointer to it
613 * (node->slots[0]), it will be safe to dereference the new
614 * one (root->rnode) as far as dependent read barriers go.
615 */
616 root->rnode = child;
617
618 /*
619 * We have a dilemma here. The node's slot[0] must not be
620 * NULLed in case there are concurrent lookups expecting to
621 * find the item. However if this was a bottom-level node,
622 * then it may be subject to the slot pointer being visible
623 * to callers dereferencing it. If item corresponding to
624 * slot[0] is subsequently deleted, these callers would expect
625 * their slot to become empty sooner or later.
626 *
627 * For example, lockless pagecache will look up a slot, deref
628 * the page pointer, and if the page has 0 refcount it means it
629 * was concurrently deleted from pagecache so try the deref
630 * again. Fortunately there is already a requirement for logic
631 * to retry the entire slot lookup -- the indirect pointer
632 * problem (replacing direct root node with an indirect pointer
633 * also results in a stale slot). So tag the slot as indirect
634 * to force callers to retry.
635 */
4d693d08
JW
636 node->count = 0;
637 if (!radix_tree_is_internal_node(child)) {
f4b109c6 638 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
639 if (update_node)
640 update_node(node, private);
641 }
f4b109c6
JW
642
643 radix_tree_node_free(node);
f4b109c6 644 }
f4b109c6
JW
645}
646
14b46879 647static void delete_node(struct radix_tree_root *root,
4d693d08
JW
648 struct radix_tree_node *node,
649 radix_tree_update_node_t update_node, void *private)
f4b109c6 650{
f4b109c6
JW
651 do {
652 struct radix_tree_node *parent;
653
654 if (node->count) {
655 if (node == entry_to_node(root->rnode))
14b46879
JW
656 radix_tree_shrink(root, update_node, private);
657 return;
f4b109c6
JW
658 }
659
660 parent = node->parent;
661 if (parent) {
662 parent->slots[node->offset] = NULL;
663 parent->count--;
664 } else {
665 root_tag_clear_all(root);
666 root->rnode = NULL;
667 }
668
669 radix_tree_node_free(node);
f4b109c6
JW
670
671 node = parent;
672 } while (node);
f4b109c6
JW
673}
674
1da177e4 675/**
139e5616 676 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
677 * @root: radix tree root
678 * @index: index key
e6145236 679 * @order: index occupies 2^order aligned slots
139e5616
JW
680 * @nodep: returns node
681 * @slotp: returns slot
1da177e4 682 *
139e5616
JW
683 * Create, if necessary, and return the node and slot for an item
684 * at position @index in the radix tree @root.
685 *
686 * Until there is more than one item in the tree, no nodes are
687 * allocated and @root->rnode is used as a direct slot instead of
688 * pointing to a node, in which case *@nodep will be NULL.
689 *
690 * Returns -ENOMEM, or 0 for success.
1da177e4 691 */
139e5616 692int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
693 unsigned order, struct radix_tree_node **nodep,
694 void ***slotp)
1da177e4 695{
89148aa4
MW
696 struct radix_tree_node *node = NULL, *child;
697 void **slot = (void **)&root->rnode;
49ea6ebc 698 unsigned long maxindex;
89148aa4 699 unsigned int shift, offset = 0;
49ea6ebc
MW
700 unsigned long max = index | ((1UL << order) - 1);
701
89148aa4 702 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
703
704 /* Make sure the tree is high enough. */
175542f5
MW
705 if (order > 0 && max == ((1UL << order) - 1))
706 max++;
49ea6ebc 707 if (max > maxindex) {
d0891265 708 int error = radix_tree_extend(root, max, shift);
49ea6ebc 709 if (error < 0)
1da177e4 710 return error;
49ea6ebc 711 shift = error;
89148aa4 712 child = root->rnode;
1da177e4
LT
713 }
714
e6145236 715 while (shift > order) {
c12e51b0 716 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 717 if (child == NULL) {
1da177e4 718 /* Have to add a child node. */
e8de4340
MW
719 child = radix_tree_node_alloc(root, node, shift,
720 offset, 0, 0);
89148aa4 721 if (!child)
1da177e4 722 return -ENOMEM;
89148aa4
MW
723 rcu_assign_pointer(*slot, node_to_entry(child));
724 if (node)
1da177e4 725 node->count++;
89148aa4 726 } else if (!radix_tree_is_internal_node(child))
e6145236 727 break;
1da177e4
LT
728
729 /* Go a level down */
89148aa4 730 node = entry_to_node(child);
9e85d811 731 offset = radix_tree_descend(node, &child, index);
89148aa4 732 slot = &node->slots[offset];
e6145236
MW
733 }
734
175542f5
MW
735 if (nodep)
736 *nodep = node;
737 if (slotp)
738 *slotp = slot;
739 return 0;
740}
741
57578c2e 742#ifdef CONFIG_RADIX_TREE_MULTIORDER
175542f5
MW
743/*
744 * Free any nodes below this node. The tree is presumed to not need
745 * shrinking, and any user data in the tree is presumed to not need a
746 * destructor called on it. If we need to add a destructor, we can
747 * add that functionality later. Note that we may not clear tags or
748 * slots from the tree as an RCU walker may still have a pointer into
749 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
750 * but we'll still have to clear those in rcu_free.
751 */
752static void radix_tree_free_nodes(struct radix_tree_node *node)
753{
754 unsigned offset = 0;
755 struct radix_tree_node *child = entry_to_node(node);
756
757 for (;;) {
758 void *entry = child->slots[offset];
759 if (radix_tree_is_internal_node(entry) &&
760 !is_sibling_entry(child, entry)) {
761 child = entry_to_node(entry);
762 offset = 0;
763 continue;
764 }
765 offset++;
766 while (offset == RADIX_TREE_MAP_SIZE) {
767 struct radix_tree_node *old = child;
768 offset = child->offset + 1;
769 child = child->parent;
770 radix_tree_node_free(old);
771 if (old == entry_to_node(node))
772 return;
773 }
774 }
775}
776
777static inline int insert_entries(struct radix_tree_node *node, void **slot,
778 void *item, unsigned order, bool replace)
779{
780 struct radix_tree_node *child;
781 unsigned i, n, tag, offset, tags = 0;
782
783 if (node) {
e157b555
MW
784 if (order > node->shift)
785 n = 1 << (order - node->shift);
786 else
787 n = 1;
175542f5
MW
788 offset = get_slot_offset(node, slot);
789 } else {
790 n = 1;
791 offset = 0;
792 }
793
794 if (n > 1) {
e6145236 795 offset = offset & ~(n - 1);
89148aa4 796 slot = &node->slots[offset];
175542f5
MW
797 }
798 child = node_to_entry(slot);
799
800 for (i = 0; i < n; i++) {
801 if (slot[i]) {
802 if (replace) {
803 node->count--;
804 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
805 if (tag_get(node, tag, offset + i))
806 tags |= 1 << tag;
807 } else
e6145236
MW
808 return -EEXIST;
809 }
175542f5 810 }
e6145236 811
175542f5
MW
812 for (i = 0; i < n; i++) {
813 struct radix_tree_node *old = slot[i];
814 if (i) {
89148aa4 815 rcu_assign_pointer(slot[i], child);
175542f5
MW
816 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
817 if (tags & (1 << tag))
818 tag_clear(node, tag, offset + i);
819 } else {
820 rcu_assign_pointer(slot[i], item);
821 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
822 if (tags & (1 << tag))
823 tag_set(node, tag, offset);
e6145236 824 }
175542f5 825 if (radix_tree_is_internal_node(old) &&
e157b555
MW
826 !is_sibling_entry(node, old) &&
827 (old != RADIX_TREE_RETRY))
175542f5
MW
828 radix_tree_free_nodes(old);
829 if (radix_tree_exceptional_entry(old))
830 node->exceptional--;
612d6c19 831 }
175542f5
MW
832 if (node) {
833 node->count += n;
834 if (radix_tree_exceptional_entry(item))
835 node->exceptional += n;
836 }
837 return n;
139e5616 838}
175542f5
MW
839#else
840static inline int insert_entries(struct radix_tree_node *node, void **slot,
841 void *item, unsigned order, bool replace)
842{
843 if (*slot)
844 return -EEXIST;
845 rcu_assign_pointer(*slot, item);
846 if (node) {
847 node->count++;
848 if (radix_tree_exceptional_entry(item))
849 node->exceptional++;
850 }
851 return 1;
852}
853#endif
139e5616
JW
854
855/**
e6145236 856 * __radix_tree_insert - insert into a radix tree
139e5616
JW
857 * @root: radix tree root
858 * @index: index key
e6145236 859 * @order: key covers the 2^order indices around index
139e5616
JW
860 * @item: item to insert
861 *
862 * Insert an item into the radix tree at position @index.
863 */
e6145236
MW
864int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
865 unsigned order, void *item)
139e5616
JW
866{
867 struct radix_tree_node *node;
868 void **slot;
869 int error;
870
b194d16c 871 BUG_ON(radix_tree_is_internal_node(item));
139e5616 872
e6145236 873 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
874 if (error)
875 return error;
175542f5
MW
876
877 error = insert_entries(node, slot, item, order, false);
878 if (error < 0)
879 return error;
201b6264 880
612d6c19 881 if (node) {
7b60e9ad 882 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
883 BUG_ON(tag_get(node, 0, offset));
884 BUG_ON(tag_get(node, 1, offset));
885 BUG_ON(tag_get(node, 2, offset));
612d6c19 886 } else {
7b60e9ad 887 BUG_ON(root_tags_get(root));
612d6c19 888 }
1da177e4 889
1da177e4
LT
890 return 0;
891}
e6145236 892EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 893
139e5616
JW
894/**
895 * __radix_tree_lookup - lookup an item in a radix tree
896 * @root: radix tree root
897 * @index: index key
898 * @nodep: returns node
899 * @slotp: returns slot
900 *
901 * Lookup and return the item at position @index in the radix
902 * tree @root.
903 *
904 * Until there is more than one item in the tree, no nodes are
905 * allocated and @root->rnode is used as a direct slot instead of
906 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 907 */
139e5616
JW
908void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
909 struct radix_tree_node **nodep, void ***slotp)
1da177e4 910{
139e5616 911 struct radix_tree_node *node, *parent;
85829954 912 unsigned long maxindex;
139e5616 913 void **slot;
612d6c19 914
85829954
MW
915 restart:
916 parent = NULL;
917 slot = (void **)&root->rnode;
9e85d811 918 radix_tree_load_root(root, &node, &maxindex);
85829954 919 if (index > maxindex)
1da177e4
LT
920 return NULL;
921
b194d16c 922 while (radix_tree_is_internal_node(node)) {
85829954 923 unsigned offset;
1da177e4 924
85829954
MW
925 if (node == RADIX_TREE_RETRY)
926 goto restart;
4dd6c098 927 parent = entry_to_node(node);
9e85d811 928 offset = radix_tree_descend(parent, &node, index);
85829954
MW
929 slot = parent->slots + offset;
930 }
1da177e4 931
139e5616
JW
932 if (nodep)
933 *nodep = parent;
934 if (slotp)
935 *slotp = slot;
936 return node;
b72b71c6
HS
937}
938
939/**
940 * radix_tree_lookup_slot - lookup a slot in a radix tree
941 * @root: radix tree root
942 * @index: index key
943 *
944 * Returns: the slot corresponding to the position @index in the
945 * radix tree @root. This is useful for update-if-exists operations.
946 *
947 * This function can be called under rcu_read_lock iff the slot is not
948 * modified by radix_tree_replace_slot, otherwise it must be called
949 * exclusive from other writers. Any dereference of the slot must be done
950 * using radix_tree_deref_slot.
951 */
952void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
953{
139e5616
JW
954 void **slot;
955
956 if (!__radix_tree_lookup(root, index, NULL, &slot))
957 return NULL;
958 return slot;
a4331366 959}
a4331366
HR
960EXPORT_SYMBOL(radix_tree_lookup_slot);
961
962/**
963 * radix_tree_lookup - perform lookup operation on a radix tree
964 * @root: radix tree root
965 * @index: index key
966 *
967 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
968 *
969 * This function can be called under rcu_read_lock, however the caller
970 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
971 * them safely). No RCU barriers are required to access or modify the
972 * returned item, however.
a4331366
HR
973 */
974void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
975{
139e5616 976 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
977}
978EXPORT_SYMBOL(radix_tree_lookup);
979
a90eb3a2
MW
980static inline int slot_count(struct radix_tree_node *node,
981 void **slot)
982{
983 int n = 1;
984#ifdef CONFIG_RADIX_TREE_MULTIORDER
985 void *ptr = node_to_entry(slot);
986 unsigned offset = get_slot_offset(node, slot);
987 int i;
988
989 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
990 if (node->slots[offset + i] != ptr)
991 break;
992 n++;
993 }
994#endif
995 return n;
996}
997
6d75f366
JW
998static void replace_slot(struct radix_tree_root *root,
999 struct radix_tree_node *node,
1000 void **slot, void *item,
1001 bool warn_typeswitch)
f7942430
JW
1002{
1003 void *old = rcu_dereference_raw(*slot);
f4b109c6 1004 int count, exceptional;
f7942430
JW
1005
1006 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 1007
f4b109c6 1008 count = !!item - !!old;
f7942430
JW
1009 exceptional = !!radix_tree_exceptional_entry(item) -
1010 !!radix_tree_exceptional_entry(old);
1011
f4b109c6 1012 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 1013
f4b109c6
JW
1014 if (node) {
1015 node->count += count;
a90eb3a2
MW
1016 if (exceptional) {
1017 exceptional *= slot_count(node, slot);
1018 node->exceptional += exceptional;
1019 }
f4b109c6 1020 }
f7942430
JW
1021
1022 rcu_assign_pointer(*slot, item);
1023}
1024
a90eb3a2
MW
1025static inline void delete_sibling_entries(struct radix_tree_node *node,
1026 void **slot)
1027{
1028#ifdef CONFIG_RADIX_TREE_MULTIORDER
1029 bool exceptional = radix_tree_exceptional_entry(*slot);
1030 void *ptr = node_to_entry(slot);
1031 unsigned offset = get_slot_offset(node, slot);
1032 int i;
1033
1034 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1035 if (node->slots[offset + i] != ptr)
1036 break;
1037 node->slots[offset + i] = NULL;
1038 node->count--;
1039 if (exceptional)
1040 node->exceptional--;
1041 }
1042#endif
1043}
1044
6d75f366
JW
1045/**
1046 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1047 * @root: radix tree root
1048 * @node: pointer to tree node
1049 * @slot: pointer to slot in @node
1050 * @item: new item to store in the slot.
1051 * @update_node: callback for changing leaf nodes
1052 * @private: private data to pass to @update_node
6d75f366
JW
1053 *
1054 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1055 * across slot lookup and replacement.
1056 */
1057void __radix_tree_replace(struct radix_tree_root *root,
1058 struct radix_tree_node *node,
4d693d08
JW
1059 void **slot, void *item,
1060 radix_tree_update_node_t update_node, void *private)
6d75f366 1061{
a90eb3a2
MW
1062 if (!item)
1063 delete_sibling_entries(node, slot);
6d75f366 1064 /*
f4b109c6
JW
1065 * This function supports replacing exceptional entries and
1066 * deleting entries, but that needs accounting against the
1067 * node unless the slot is root->rnode.
6d75f366
JW
1068 */
1069 replace_slot(root, node, slot, item,
1070 !node && slot != (void **)&root->rnode);
f4b109c6 1071
4d693d08
JW
1072 if (!node)
1073 return;
1074
1075 if (update_node)
1076 update_node(node, private);
1077
1078 delete_node(root, node, update_node, private);
6d75f366
JW
1079}
1080
1081/**
1082 * radix_tree_replace_slot - replace item in a slot
1083 * @root: radix tree root
1084 * @slot: pointer to slot
1085 * @item: new item to store in the slot.
1086 *
1087 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1088 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1089 * across slot lookup and replacement.
1090 *
1091 * NOTE: This cannot be used to switch between non-entries (empty slots),
1092 * regular entries, and exceptional entries, as that requires accounting
f4b109c6 1093 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1094 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1095 * radix_tree_iter_replace().
6d75f366
JW
1096 */
1097void radix_tree_replace_slot(struct radix_tree_root *root,
1098 void **slot, void *item)
1099{
1100 replace_slot(root, NULL, slot, item, true);
1101}
1102
e157b555
MW
1103/**
1104 * radix_tree_iter_replace - replace item in a slot
1105 * @root: radix tree root
1106 * @slot: pointer to slot
1107 * @item: new item to store in the slot.
1108 *
1109 * For use with radix_tree_split() and radix_tree_for_each_slot().
1110 * Caller must hold tree write locked across split and replacement.
1111 */
1112void radix_tree_iter_replace(struct radix_tree_root *root,
1113 const struct radix_tree_iter *iter, void **slot, void *item)
1114{
1115 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1116}
1117
175542f5
MW
1118#ifdef CONFIG_RADIX_TREE_MULTIORDER
1119/**
1120 * radix_tree_join - replace multiple entries with one multiorder entry
1121 * @root: radix tree root
1122 * @index: an index inside the new entry
1123 * @order: order of the new entry
1124 * @item: new entry
1125 *
1126 * Call this function to replace several entries with one larger entry.
1127 * The existing entries are presumed to not need freeing as a result of
1128 * this call.
1129 *
1130 * The replacement entry will have all the tags set on it that were set
1131 * on any of the entries it is replacing.
1132 */
1133int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1134 unsigned order, void *item)
1135{
1136 struct radix_tree_node *node;
1137 void **slot;
1138 int error;
1139
1140 BUG_ON(radix_tree_is_internal_node(item));
1141
1142 error = __radix_tree_create(root, index, order, &node, &slot);
1143 if (!error)
1144 error = insert_entries(node, slot, item, order, true);
1145 if (error > 0)
1146 error = 0;
1147
1148 return error;
1149}
e157b555
MW
1150
1151/**
1152 * radix_tree_split - Split an entry into smaller entries
1153 * @root: radix tree root
1154 * @index: An index within the large entry
1155 * @order: Order of new entries
1156 *
1157 * Call this function as the first step in replacing a multiorder entry
1158 * with several entries of lower order. After this function returns,
1159 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1160 * and call radix_tree_iter_replace() to set up each new entry.
1161 *
1162 * The tags from this entry are replicated to all the new entries.
1163 *
1164 * The radix tree should be locked against modification during the entire
1165 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1166 * should prompt RCU walkers to restart the lookup from the root.
1167 */
1168int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1169 unsigned order)
1170{
1171 struct radix_tree_node *parent, *node, *child;
1172 void **slot;
1173 unsigned int offset, end;
1174 unsigned n, tag, tags = 0;
1175
1176 if (!__radix_tree_lookup(root, index, &parent, &slot))
1177 return -ENOENT;
1178 if (!parent)
1179 return -ENOENT;
1180
1181 offset = get_slot_offset(parent, slot);
1182
1183 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1184 if (tag_get(parent, tag, offset))
1185 tags |= 1 << tag;
1186
1187 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1188 if (!is_sibling_entry(parent, parent->slots[end]))
1189 break;
1190 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1191 if (tags & (1 << tag))
1192 tag_set(parent, tag, end);
1193 /* rcu_assign_pointer ensures tags are set before RETRY */
1194 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1195 }
1196 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1197 parent->exceptional -= (end - offset);
1198
1199 if (order == parent->shift)
1200 return 0;
1201 if (order > parent->shift) {
1202 while (offset < end)
1203 offset += insert_entries(parent, &parent->slots[offset],
1204 RADIX_TREE_RETRY, order, true);
1205 return 0;
1206 }
1207
1208 node = parent;
1209
1210 for (;;) {
1211 if (node->shift > order) {
e8de4340
MW
1212 child = radix_tree_node_alloc(root, node,
1213 node->shift - RADIX_TREE_MAP_SHIFT,
1214 offset, 0, 0);
e157b555
MW
1215 if (!child)
1216 goto nomem;
e157b555
MW
1217 if (node != parent) {
1218 node->count++;
1219 node->slots[offset] = node_to_entry(child);
1220 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1221 if (tags & (1 << tag))
1222 tag_set(node, tag, offset);
1223 }
1224
1225 node = child;
1226 offset = 0;
1227 continue;
1228 }
1229
1230 n = insert_entries(node, &node->slots[offset],
1231 RADIX_TREE_RETRY, order, false);
1232 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1233
1234 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1235 if (tags & (1 << tag))
1236 tag_set(node, tag, offset);
1237 offset += n;
1238
1239 while (offset == RADIX_TREE_MAP_SIZE) {
1240 if (node == parent)
1241 break;
1242 offset = node->offset;
1243 child = node;
1244 node = node->parent;
1245 rcu_assign_pointer(node->slots[offset],
1246 node_to_entry(child));
1247 offset++;
1248 }
1249 if ((node == parent) && (offset == end))
1250 return 0;
1251 }
1252
1253 nomem:
1254 /* Shouldn't happen; did user forget to preload? */
1255 /* TODO: free all the allocated nodes */
1256 WARN_ON(1);
1257 return -ENOMEM;
1258}
175542f5
MW
1259#endif
1260
1da177e4
LT
1261/**
1262 * radix_tree_tag_set - set a tag on a radix tree node
1263 * @root: radix tree root
1264 * @index: index key
2fcd9005 1265 * @tag: tag index
1da177e4 1266 *
daff89f3
JC
1267 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1268 * corresponding to @index in the radix tree. From
1da177e4
LT
1269 * the root all the way down to the leaf node.
1270 *
2fcd9005 1271 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1272 * item is a bug.
1273 */
1274void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1275 unsigned long index, unsigned int tag)
1da177e4 1276{
fb969909
RZ
1277 struct radix_tree_node *node, *parent;
1278 unsigned long maxindex;
1da177e4 1279
9e85d811 1280 radix_tree_load_root(root, &node, &maxindex);
fb969909 1281 BUG_ON(index > maxindex);
1da177e4 1282
b194d16c 1283 while (radix_tree_is_internal_node(node)) {
fb969909 1284 unsigned offset;
1da177e4 1285
4dd6c098 1286 parent = entry_to_node(node);
9e85d811 1287 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1288 BUG_ON(!node);
1289
1290 if (!tag_get(parent, tag, offset))
1291 tag_set(parent, tag, offset);
1da177e4
LT
1292 }
1293
612d6c19 1294 /* set the root's tag bit */
fb969909 1295 if (!root_tag_get(root, tag))
612d6c19
NP
1296 root_tag_set(root, tag);
1297
fb969909 1298 return node;
1da177e4
LT
1299}
1300EXPORT_SYMBOL(radix_tree_tag_set);
1301
d604c324
MW
1302static void node_tag_clear(struct radix_tree_root *root,
1303 struct radix_tree_node *node,
1304 unsigned int tag, unsigned int offset)
1305{
1306 while (node) {
1307 if (!tag_get(node, tag, offset))
1308 return;
1309 tag_clear(node, tag, offset);
1310 if (any_tag_set(node, tag))
1311 return;
1312
1313 offset = node->offset;
1314 node = node->parent;
1315 }
1316
1317 /* clear the root's tag bit */
1318 if (root_tag_get(root, tag))
1319 root_tag_clear(root, tag);
1320}
1321
9498d2bb
MW
1322static void node_tag_set(struct radix_tree_root *root,
1323 struct radix_tree_node *node,
1324 unsigned int tag, unsigned int offset)
1325{
1326 while (node) {
1327 if (tag_get(node, tag, offset))
1328 return;
1329 tag_set(node, tag, offset);
1330 offset = node->offset;
1331 node = node->parent;
1332 }
1333
1334 if (!root_tag_get(root, tag))
1335 root_tag_set(root, tag);
1336}
1337
268f42de
MW
1338/**
1339 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1340 * @root: radix tree root
1341 * @iter: iterator state
1342 * @tag: tag to set
1343 */
1344void radix_tree_iter_tag_set(struct radix_tree_root *root,
1345 const struct radix_tree_iter *iter, unsigned int tag)
1346{
1347 node_tag_set(root, iter->node, tag, iter_offset(iter));
1348}
1349
1da177e4
LT
1350/**
1351 * radix_tree_tag_clear - clear a tag on a radix tree node
1352 * @root: radix tree root
1353 * @index: index key
2fcd9005 1354 * @tag: tag index
1da177e4 1355 *
daff89f3 1356 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1357 * corresponding to @index in the radix tree. If this causes
1358 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1359 * next-to-leaf node, etc.
1360 *
1361 * Returns the address of the tagged item on success, else NULL. ie:
1362 * has the same return value and semantics as radix_tree_lookup().
1363 */
1364void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1365 unsigned long index, unsigned int tag)
1da177e4 1366{
00f47b58
RZ
1367 struct radix_tree_node *node, *parent;
1368 unsigned long maxindex;
e2bdb933 1369 int uninitialized_var(offset);
1da177e4 1370
9e85d811 1371 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1372 if (index > maxindex)
1373 return NULL;
1da177e4 1374
00f47b58 1375 parent = NULL;
1da177e4 1376
b194d16c 1377 while (radix_tree_is_internal_node(node)) {
4dd6c098 1378 parent = entry_to_node(node);
9e85d811 1379 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1380 }
1381
d604c324
MW
1382 if (node)
1383 node_tag_clear(root, parent, tag, offset);
1da177e4 1384
00f47b58 1385 return node;
1da177e4
LT
1386}
1387EXPORT_SYMBOL(radix_tree_tag_clear);
1388
1da177e4 1389/**
32605a18
MT
1390 * radix_tree_tag_get - get a tag on a radix tree node
1391 * @root: radix tree root
1392 * @index: index key
2fcd9005 1393 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1394 *
32605a18 1395 * Return values:
1da177e4 1396 *
612d6c19
NP
1397 * 0: tag not present or not set
1398 * 1: tag set
ce82653d
DH
1399 *
1400 * Note that the return value of this function may not be relied on, even if
1401 * the RCU lock is held, unless tag modification and node deletion are excluded
1402 * from concurrency.
1da177e4
LT
1403 */
1404int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1405 unsigned long index, unsigned int tag)
1da177e4 1406{
4589ba6d
RZ
1407 struct radix_tree_node *node, *parent;
1408 unsigned long maxindex;
1da177e4 1409
612d6c19
NP
1410 if (!root_tag_get(root, tag))
1411 return 0;
1412
9e85d811 1413 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1414 if (index > maxindex)
1415 return 0;
7cf9c2c7
NP
1416 if (node == NULL)
1417 return 0;
1418
b194d16c 1419 while (radix_tree_is_internal_node(node)) {
9e85d811 1420 unsigned offset;
1da177e4 1421
4dd6c098 1422 parent = entry_to_node(node);
9e85d811 1423 offset = radix_tree_descend(parent, &node, index);
1da177e4 1424
4589ba6d 1425 if (!node)
1da177e4 1426 return 0;
4589ba6d 1427 if (!tag_get(parent, tag, offset))
3fa36acb 1428 return 0;
4589ba6d
RZ
1429 if (node == RADIX_TREE_RETRY)
1430 break;
1da177e4 1431 }
4589ba6d
RZ
1432
1433 return 1;
1da177e4
LT
1434}
1435EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1436
21ef5339
RZ
1437static inline void __set_iter_shift(struct radix_tree_iter *iter,
1438 unsigned int shift)
1439{
1440#ifdef CONFIG_RADIX_TREE_MULTIORDER
1441 iter->shift = shift;
1442#endif
1443}
1444
148deab2
MW
1445/* Construct iter->tags bit-mask from node->tags[tag] array */
1446static void set_iter_tags(struct radix_tree_iter *iter,
1447 struct radix_tree_node *node, unsigned offset,
1448 unsigned tag)
1449{
1450 unsigned tag_long = offset / BITS_PER_LONG;
1451 unsigned tag_bit = offset % BITS_PER_LONG;
1452
1453 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1454
1455 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1456 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1457 /* Pick tags from next element */
1458 if (tag_bit)
1459 iter->tags |= node->tags[tag][tag_long + 1] <<
1460 (BITS_PER_LONG - tag_bit);
1461 /* Clip chunk size, here only BITS_PER_LONG tags */
1462 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1463 }
1464}
1465
1466#ifdef CONFIG_RADIX_TREE_MULTIORDER
1467static void **skip_siblings(struct radix_tree_node **nodep,
1468 void **slot, struct radix_tree_iter *iter)
1469{
1470 void *sib = node_to_entry(slot - 1);
1471
1472 while (iter->index < iter->next_index) {
1473 *nodep = rcu_dereference_raw(*slot);
1474 if (*nodep && *nodep != sib)
1475 return slot;
1476 slot++;
1477 iter->index = __radix_tree_iter_add(iter, 1);
1478 iter->tags >>= 1;
1479 }
1480
1481 *nodep = NULL;
1482 return NULL;
1483}
1484
1485void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1486 unsigned flags)
1487{
1488 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1489 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1490
1491 slot = skip_siblings(&node, slot, iter);
1492
1493 while (radix_tree_is_internal_node(node)) {
1494 unsigned offset;
1495 unsigned long next_index;
1496
1497 if (node == RADIX_TREE_RETRY)
1498 return slot;
1499 node = entry_to_node(node);
268f42de 1500 iter->node = node;
148deab2
MW
1501 iter->shift = node->shift;
1502
1503 if (flags & RADIX_TREE_ITER_TAGGED) {
1504 offset = radix_tree_find_next_bit(node, tag, 0);
1505 if (offset == RADIX_TREE_MAP_SIZE)
1506 return NULL;
1507 slot = &node->slots[offset];
1508 iter->index = __radix_tree_iter_add(iter, offset);
1509 set_iter_tags(iter, node, offset, tag);
1510 node = rcu_dereference_raw(*slot);
1511 } else {
1512 offset = 0;
1513 slot = &node->slots[0];
1514 for (;;) {
1515 node = rcu_dereference_raw(*slot);
1516 if (node)
1517 break;
1518 slot++;
1519 offset++;
1520 if (offset == RADIX_TREE_MAP_SIZE)
1521 return NULL;
1522 }
1523 iter->index = __radix_tree_iter_add(iter, offset);
1524 }
1525 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1526 goto none;
1527 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1528 if (next_index < iter->next_index)
1529 iter->next_index = next_index;
1530 }
1531
1532 return slot;
1533 none:
1534 iter->next_index = 0;
1535 return NULL;
1536}
1537EXPORT_SYMBOL(__radix_tree_next_slot);
1538#else
1539static void **skip_siblings(struct radix_tree_node **nodep,
1540 void **slot, struct radix_tree_iter *iter)
1541{
1542 return slot;
1543}
1544#endif
1545
1546void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1547{
1548 struct radix_tree_node *node;
1549
1550 slot++;
1551 iter->index = __radix_tree_iter_add(iter, 1);
1552 node = rcu_dereference_raw(*slot);
1553 skip_siblings(&node, slot, iter);
1554 iter->next_index = iter->index;
1555 iter->tags = 0;
1556 return NULL;
1557}
1558EXPORT_SYMBOL(radix_tree_iter_resume);
1559
78c1d784
KK
1560/**
1561 * radix_tree_next_chunk - find next chunk of slots for iteration
1562 *
1563 * @root: radix tree root
1564 * @iter: iterator state
1565 * @flags: RADIX_TREE_ITER_* flags and tag index
1566 * Returns: pointer to chunk first slot, or NULL if iteration is over
1567 */
1568void **radix_tree_next_chunk(struct radix_tree_root *root,
1569 struct radix_tree_iter *iter, unsigned flags)
1570{
9e85d811 1571 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1572 struct radix_tree_node *node, *child;
21ef5339 1573 unsigned long index, offset, maxindex;
78c1d784
KK
1574
1575 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1576 return NULL;
1577
1578 /*
1579 * Catch next_index overflow after ~0UL. iter->index never overflows
1580 * during iterating; it can be zero only at the beginning.
1581 * And we cannot overflow iter->next_index in a single step,
1582 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1583 *
1584 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1585 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1586 */
1587 index = iter->next_index;
1588 if (!index && iter->index)
1589 return NULL;
1590
21ef5339 1591 restart:
9e85d811 1592 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1593 if (index > maxindex)
1594 return NULL;
8c1244de
MW
1595 if (!child)
1596 return NULL;
21ef5339 1597
8c1244de 1598 if (!radix_tree_is_internal_node(child)) {
78c1d784 1599 /* Single-slot tree */
21ef5339
RZ
1600 iter->index = index;
1601 iter->next_index = maxindex + 1;
78c1d784 1602 iter->tags = 1;
268f42de 1603 iter->node = NULL;
8c1244de 1604 __set_iter_shift(iter, 0);
78c1d784 1605 return (void **)&root->rnode;
8c1244de 1606 }
21ef5339 1607
8c1244de
MW
1608 do {
1609 node = entry_to_node(child);
9e85d811 1610 offset = radix_tree_descend(node, &child, index);
21ef5339 1611
78c1d784 1612 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1613 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1614 /* Hole detected */
1615 if (flags & RADIX_TREE_ITER_CONTIG)
1616 return NULL;
1617
1618 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1619 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1620 offset + 1);
1621 else
1622 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1623 void *slot = node->slots[offset];
1624 if (is_sibling_entry(node, slot))
1625 continue;
1626 if (slot)
78c1d784
KK
1627 break;
1628 }
8c1244de 1629 index &= ~node_maxindex(node);
9e85d811 1630 index += offset << node->shift;
78c1d784
KK
1631 /* Overflow after ~0UL */
1632 if (!index)
1633 return NULL;
1634 if (offset == RADIX_TREE_MAP_SIZE)
1635 goto restart;
8c1244de 1636 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1637 }
1638
e157b555 1639 if (!child)
78c1d784 1640 goto restart;
e157b555
MW
1641 if (child == RADIX_TREE_RETRY)
1642 break;
8c1244de 1643 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1644
1645 /* Update the iterator state */
8c1244de
MW
1646 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1647 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1648 iter->node = node;
9e85d811 1649 __set_iter_shift(iter, node->shift);
78c1d784 1650
148deab2
MW
1651 if (flags & RADIX_TREE_ITER_TAGGED)
1652 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1653
1654 return node->slots + offset;
1655}
1656EXPORT_SYMBOL(radix_tree_next_chunk);
1657
1da177e4
LT
1658/**
1659 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1660 * @root: radix tree root
1661 * @results: where the results of the lookup are placed
1662 * @first_index: start the lookup from this key
1663 * @max_items: place up to this many items at *results
1664 *
1665 * Performs an index-ascending scan of the tree for present items. Places
1666 * them at *@results and returns the number of items which were placed at
1667 * *@results.
1668 *
1669 * The implementation is naive.
7cf9c2c7
NP
1670 *
1671 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1672 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1673 * an atomic snapshot of the tree at a single point in time, the
1674 * semantics of an RCU protected gang lookup are as though multiple
1675 * radix_tree_lookups have been issued in individual locks, and results
1676 * stored in 'results'.
1da177e4
LT
1677 */
1678unsigned int
1679radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1680 unsigned long first_index, unsigned int max_items)
1681{
cebbd29e
KK
1682 struct radix_tree_iter iter;
1683 void **slot;
1684 unsigned int ret = 0;
7cf9c2c7 1685
cebbd29e 1686 if (unlikely(!max_items))
7cf9c2c7 1687 return 0;
1da177e4 1688
cebbd29e 1689 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1690 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1691 if (!results[ret])
1692 continue;
b194d16c 1693 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1694 slot = radix_tree_iter_retry(&iter);
1695 continue;
1696 }
cebbd29e 1697 if (++ret == max_items)
1da177e4 1698 break;
1da177e4 1699 }
7cf9c2c7 1700
1da177e4
LT
1701 return ret;
1702}
1703EXPORT_SYMBOL(radix_tree_gang_lookup);
1704
47feff2c
NP
1705/**
1706 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1707 * @root: radix tree root
1708 * @results: where the results of the lookup are placed
6328650b 1709 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1710 * @first_index: start the lookup from this key
1711 * @max_items: place up to this many items at *results
1712 *
1713 * Performs an index-ascending scan of the tree for present items. Places
1714 * their slots at *@results and returns the number of items which were
1715 * placed at *@results.
1716 *
1717 * The implementation is naive.
1718 *
1719 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1720 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1721 * protection, radix_tree_deref_slot may fail requiring a retry.
1722 */
1723unsigned int
6328650b
HD
1724radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1725 void ***results, unsigned long *indices,
47feff2c
NP
1726 unsigned long first_index, unsigned int max_items)
1727{
cebbd29e
KK
1728 struct radix_tree_iter iter;
1729 void **slot;
1730 unsigned int ret = 0;
47feff2c 1731
cebbd29e 1732 if (unlikely(!max_items))
47feff2c
NP
1733 return 0;
1734
cebbd29e
KK
1735 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1736 results[ret] = slot;
6328650b 1737 if (indices)
cebbd29e
KK
1738 indices[ret] = iter.index;
1739 if (++ret == max_items)
47feff2c 1740 break;
47feff2c
NP
1741 }
1742
1743 return ret;
1744}
1745EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1746
1da177e4
LT
1747/**
1748 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1749 * based on a tag
1750 * @root: radix tree root
1751 * @results: where the results of the lookup are placed
1752 * @first_index: start the lookup from this key
1753 * @max_items: place up to this many items at *results
daff89f3 1754 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1755 *
1756 * Performs an index-ascending scan of the tree for present items which
1757 * have the tag indexed by @tag set. Places the items at *@results and
1758 * returns the number of items which were placed at *@results.
1759 */
1760unsigned int
1761radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1762 unsigned long first_index, unsigned int max_items,
1763 unsigned int tag)
1da177e4 1764{
cebbd29e
KK
1765 struct radix_tree_iter iter;
1766 void **slot;
1767 unsigned int ret = 0;
612d6c19 1768
cebbd29e 1769 if (unlikely(!max_items))
7cf9c2c7
NP
1770 return 0;
1771
cebbd29e 1772 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1773 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1774 if (!results[ret])
1775 continue;
b194d16c 1776 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1777 slot = radix_tree_iter_retry(&iter);
1778 continue;
1779 }
cebbd29e 1780 if (++ret == max_items)
1da177e4 1781 break;
1da177e4 1782 }
7cf9c2c7 1783
1da177e4
LT
1784 return ret;
1785}
1786EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1787
47feff2c
NP
1788/**
1789 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1790 * radix tree based on a tag
1791 * @root: radix tree root
1792 * @results: where the results of the lookup are placed
1793 * @first_index: start the lookup from this key
1794 * @max_items: place up to this many items at *results
1795 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1796 *
1797 * Performs an index-ascending scan of the tree for present items which
1798 * have the tag indexed by @tag set. Places the slots at *@results and
1799 * returns the number of slots which were placed at *@results.
1800 */
1801unsigned int
1802radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1803 unsigned long first_index, unsigned int max_items,
1804 unsigned int tag)
1805{
cebbd29e
KK
1806 struct radix_tree_iter iter;
1807 void **slot;
1808 unsigned int ret = 0;
47feff2c 1809
cebbd29e 1810 if (unlikely(!max_items))
47feff2c
NP
1811 return 0;
1812
cebbd29e
KK
1813 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1814 results[ret] = slot;
1815 if (++ret == max_items)
47feff2c 1816 break;
47feff2c
NP
1817 }
1818
1819 return ret;
1820}
1821EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1822
139e5616
JW
1823/**
1824 * __radix_tree_delete_node - try to free node after clearing a slot
1825 * @root: radix tree root
139e5616
JW
1826 * @node: node containing @index
1827 *
1828 * After clearing the slot at @index in @node from radix tree
1829 * rooted at @root, call this function to attempt freeing the
1830 * node and shrinking the tree.
139e5616 1831 */
14b46879 1832void __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1833 struct radix_tree_node *node)
1834{
14b46879 1835 delete_node(root, node, NULL, NULL);
139e5616
JW
1836}
1837
1da177e4 1838/**
53c59f26 1839 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1840 * @root: radix tree root
1841 * @index: index key
53c59f26 1842 * @item: expected item
1da177e4 1843 *
53c59f26 1844 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1845 *
53c59f26
JW
1846 * Returns the address of the deleted item, or NULL if it was not present
1847 * or the entry at the given @index was not @item.
1da177e4 1848 */
53c59f26
JW
1849void *radix_tree_delete_item(struct radix_tree_root *root,
1850 unsigned long index, void *item)
1da177e4 1851{
139e5616 1852 struct radix_tree_node *node;
57578c2e 1853 unsigned int offset;
139e5616
JW
1854 void **slot;
1855 void *entry;
d5274261 1856 int tag;
1da177e4 1857
139e5616
JW
1858 entry = __radix_tree_lookup(root, index, &node, &slot);
1859 if (!entry)
1860 return NULL;
1da177e4 1861
139e5616
JW
1862 if (item && entry != item)
1863 return NULL;
1864
1865 if (!node) {
612d6c19
NP
1866 root_tag_clear_all(root);
1867 root->rnode = NULL;
139e5616 1868 return entry;
612d6c19 1869 }
1da177e4 1870
29e0967c 1871 offset = get_slot_offset(node, slot);
53c59f26 1872
d604c324
MW
1873 /* Clear all tags associated with the item to be deleted. */
1874 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1875 node_tag_clear(root, node, tag, offset);
1da177e4 1876
4d693d08 1877 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1878
139e5616 1879 return entry;
1da177e4 1880}
53c59f26
JW
1881EXPORT_SYMBOL(radix_tree_delete_item);
1882
1883/**
1884 * radix_tree_delete - delete an item from a radix tree
1885 * @root: radix tree root
1886 * @index: index key
1887 *
1888 * Remove the item at @index from the radix tree rooted at @root.
1889 *
1890 * Returns the address of the deleted item, or NULL if it was not present.
1891 */
1892void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1893{
1894 return radix_tree_delete_item(root, index, NULL);
1895}
1da177e4
LT
1896EXPORT_SYMBOL(radix_tree_delete);
1897
d3798ae8
JW
1898void radix_tree_clear_tags(struct radix_tree_root *root,
1899 struct radix_tree_node *node,
1900 void **slot)
d604c324 1901{
d604c324
MW
1902 if (node) {
1903 unsigned int tag, offset = get_slot_offset(node, slot);
1904 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1905 node_tag_clear(root, node, tag, offset);
1906 } else {
1907 /* Clear root node tags */
1908 root->gfp_mask &= __GFP_BITS_MASK;
1909 }
d604c324
MW
1910}
1911
1da177e4
LT
1912/**
1913 * radix_tree_tagged - test whether any items in the tree are tagged
1914 * @root: radix tree root
1915 * @tag: tag to test
1916 */
daff89f3 1917int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1918{
612d6c19 1919 return root_tag_get(root, tag);
1da177e4
LT
1920}
1921EXPORT_SYMBOL(radix_tree_tagged);
1922
1923static void
449dd698 1924radix_tree_node_ctor(void *arg)
1da177e4 1925{
449dd698
JW
1926 struct radix_tree_node *node = arg;
1927
1928 memset(node, 0, sizeof(*node));
1929 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1930}
1931
c78c66d1
KS
1932static __init unsigned long __maxindex(unsigned int height)
1933{
1934 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1935 int shift = RADIX_TREE_INDEX_BITS - width;
1936
1937 if (shift < 0)
1938 return ~0UL;
1939 if (shift >= BITS_PER_LONG)
1940 return 0UL;
1941 return ~0UL >> shift;
1942}
1943
1944static __init void radix_tree_init_maxnodes(void)
1945{
1946 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1947 unsigned int i, j;
1948
1949 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1950 height_to_maxindex[i] = __maxindex(i);
1951 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1952 for (j = i; j > 0; j--)
1953 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1954 }
1955}
1956
d544abd5 1957static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1958{
2fcd9005
MW
1959 struct radix_tree_preload *rtp;
1960 struct radix_tree_node *node;
1961
1962 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1963 rtp = &per_cpu(radix_tree_preloads, cpu);
1964 while (rtp->nr) {
1965 node = rtp->nodes;
1966 rtp->nodes = node->private_data;
1967 kmem_cache_free(radix_tree_node_cachep, node);
1968 rtp->nr--;
2fcd9005 1969 }
d544abd5 1970 return 0;
1da177e4 1971}
1da177e4
LT
1972
1973void __init radix_tree_init(void)
1974{
d544abd5 1975 int ret;
1da177e4
LT
1976 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1977 sizeof(struct radix_tree_node), 0,
488514d1
CL
1978 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1979 radix_tree_node_ctor);
c78c66d1 1980 radix_tree_init_maxnodes();
d544abd5
SAS
1981 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1982 NULL, radix_tree_cpu_dead);
1983 WARN_ON(ret < 0);
1da177e4 1984}