kernel/kexec.c: convert printk to pr_foo()
[linux-2.6-block.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
125c4c70 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
8bc3bcc9 32#include <linux/export.h>
1da177e4 33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
88eca020 37#include <linux/spinlock.h>
d5c7409f
TH
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
1da177e4 40
e8c8d1bc
TH
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
e18b890b 50static struct kmem_cache *idr_layer_cache;
d5c7409f
TH
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
88eca020 53static DEFINE_SPINLOCK(simple_ida_lock);
1da177e4 54
326cf0f0
TH
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
54616283
TH
63/*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68static int idr_layer_prefix_mask(int layer)
69{
70 return ~idr_max(layer + 1);
71}
72
4ae53789 73static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
74{
75 struct idr_layer *p;
c259cc28 76 unsigned long flags;
1da177e4 77
c259cc28 78 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
c259cc28 84 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
85 return(p);
86}
87
d5c7409f
TH
88/**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102{
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
59bfbcf0
TH
109 /*
110 * Try to allocate directly from kmem_cache. We want to try this
111 * before preload buffer; otherwise, non-preloading idr_alloc()
112 * users will end up taking advantage of preloading ones. As the
113 * following is allowed to fail for preloaded cases, suppress
114 * warning this time.
115 */
116 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
d5c7409f
TH
117 if (new)
118 return new;
119
120 /*
121 * Try to fetch one from the per-cpu preload buffer if in process
122 * context. See idr_preload() for details.
123 */
59bfbcf0
TH
124 if (!in_interrupt()) {
125 preempt_disable();
126 new = __this_cpu_read(idr_preload_head);
127 if (new) {
128 __this_cpu_write(idr_preload_head, new->ary[0]);
129 __this_cpu_dec(idr_preload_cnt);
130 new->ary[0] = NULL;
131 }
132 preempt_enable();
133 if (new)
134 return new;
d5c7409f 135 }
59bfbcf0
TH
136
137 /*
138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
139 * that memory allocation failure warning is printed as intended.
140 */
141 return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
d5c7409f
TH
142}
143
cf481c20
ND
144static void idr_layer_rcu_free(struct rcu_head *head)
145{
146 struct idr_layer *layer;
147
148 layer = container_of(head, struct idr_layer, rcu_head);
149 kmem_cache_free(idr_layer_cache, layer);
150}
151
0ffc2a9c 152static inline void free_layer(struct idr *idr, struct idr_layer *p)
cf481c20 153{
0ffc2a9c
TH
154 if (idr->hint && idr->hint == p)
155 RCU_INIT_POINTER(idr->hint, NULL);
cf481c20
ND
156 call_rcu(&p->rcu_head, idr_layer_rcu_free);
157}
158
1eec0056 159/* only called when idp->lock is held */
4ae53789 160static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
161{
162 p->ary[0] = idp->id_free;
163 idp->id_free = p;
164 idp->id_free_cnt++;
165}
166
4ae53789 167static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 168{
c259cc28
RD
169 unsigned long flags;
170
1da177e4
LT
171 /*
172 * Depends on the return element being zeroed.
173 */
c259cc28 174 spin_lock_irqsave(&idp->lock, flags);
4ae53789 175 __move_to_free_list(idp, p);
c259cc28 176 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
177}
178
e33ac8bd
TH
179static void idr_mark_full(struct idr_layer **pa, int id)
180{
181 struct idr_layer *p = pa[0];
182 int l = 0;
183
1d9b2e1e 184 __set_bit(id & IDR_MASK, p->bitmap);
e33ac8bd
TH
185 /*
186 * If this layer is full mark the bit in the layer above to
187 * show that this part of the radix tree is full. This may
188 * complete the layer above and require walking up the radix
189 * tree.
190 */
1d9b2e1e 191 while (bitmap_full(p->bitmap, IDR_SIZE)) {
e33ac8bd
TH
192 if (!(p = pa[++l]))
193 break;
194 id = id >> IDR_BITS;
1d9b2e1e 195 __set_bit((id & IDR_MASK), p->bitmap);
e33ac8bd
TH
196 }
197}
198
90ae3ae5 199static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4 200{
125c4c70 201 while (idp->id_free_cnt < MAX_IDR_FREE) {
1da177e4 202 struct idr_layer *new;
5b019e99 203 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 204 if (new == NULL)
1da177e4 205 return (0);
4ae53789 206 move_to_free_list(idp, new);
1da177e4
LT
207 }
208 return 1;
209}
1da177e4 210
12d1b439
TH
211/**
212 * sub_alloc - try to allocate an id without growing the tree depth
213 * @idp: idr handle
214 * @starting_id: id to start search at
12d1b439 215 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
d5c7409f
TH
216 * @gfp_mask: allocation mask for idr_layer_alloc()
217 * @layer_idr: optional idr passed to idr_layer_alloc()
12d1b439
TH
218 *
219 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
220 * growing its depth. Returns
221 *
222 * the allocated id >= 0 if successful,
223 * -EAGAIN if the tree needs to grow for allocation to succeed,
224 * -ENOSPC if the id space is exhausted,
225 * -ENOMEM if more idr_layers need to be allocated.
226 */
d5c7409f
TH
227static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
228 gfp_t gfp_mask, struct idr *layer_idr)
1da177e4
LT
229{
230 int n, m, sh;
231 struct idr_layer *p, *new;
7aae6dd8 232 int l, id, oid;
1da177e4
LT
233
234 id = *starting_id;
7aae6dd8 235 restart:
1da177e4
LT
236 p = idp->top;
237 l = idp->layers;
238 pa[l--] = NULL;
239 while (1) {
240 /*
241 * We run around this while until we reach the leaf node...
242 */
243 n = (id >> (IDR_BITS*l)) & IDR_MASK;
1d9b2e1e 244 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1da177e4
LT
245 if (m == IDR_SIZE) {
246 /* no space available go back to previous layer. */
247 l++;
7aae6dd8 248 oid = id;
e15ae2dd 249 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
250
251 /* if already at the top layer, we need to grow */
d2e7276b 252 if (id >= 1 << (idp->layers * IDR_BITS)) {
1da177e4 253 *starting_id = id;
12d1b439 254 return -EAGAIN;
1da177e4 255 }
d2e7276b
TH
256 p = pa[l];
257 BUG_ON(!p);
7aae6dd8
TH
258
259 /* If we need to go up one layer, continue the
260 * loop; otherwise, restart from the top.
261 */
262 sh = IDR_BITS * (l + 1);
263 if (oid >> sh == id >> sh)
264 continue;
265 else
266 goto restart;
1da177e4
LT
267 }
268 if (m != n) {
269 sh = IDR_BITS*l;
270 id = ((id >> sh) ^ n ^ m) << sh;
271 }
125c4c70 272 if ((id >= MAX_IDR_BIT) || (id < 0))
12d1b439 273 return -ENOSPC;
1da177e4
LT
274 if (l == 0)
275 break;
276 /*
277 * Create the layer below if it is missing.
278 */
279 if (!p->ary[m]) {
d5c7409f 280 new = idr_layer_alloc(gfp_mask, layer_idr);
4ae53789 281 if (!new)
12d1b439 282 return -ENOMEM;
6ff2d39b 283 new->layer = l-1;
54616283 284 new->prefix = id & idr_layer_prefix_mask(new->layer);
3219b3b7 285 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
286 p->count++;
287 }
288 pa[l--] = p;
289 p = p->ary[m];
290 }
e33ac8bd
TH
291
292 pa[l] = p;
293 return id;
1da177e4
LT
294}
295
e33ac8bd 296static int idr_get_empty_slot(struct idr *idp, int starting_id,
d5c7409f
TH
297 struct idr_layer **pa, gfp_t gfp_mask,
298 struct idr *layer_idr)
1da177e4
LT
299{
300 struct idr_layer *p, *new;
301 int layers, v, id;
c259cc28 302 unsigned long flags;
e15ae2dd 303
1da177e4
LT
304 id = starting_id;
305build_up:
306 p = idp->top;
307 layers = idp->layers;
308 if (unlikely(!p)) {
d5c7409f 309 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
12d1b439 310 return -ENOMEM;
6ff2d39b 311 p->layer = 0;
1da177e4
LT
312 layers = 1;
313 }
314 /*
315 * Add a new layer to the top of the tree if the requested
316 * id is larger than the currently allocated space.
317 */
326cf0f0 318 while (id > idr_max(layers)) {
1da177e4 319 layers++;
711a49a0
MS
320 if (!p->count) {
321 /* special case: if the tree is currently empty,
322 * then we grow the tree by moving the top node
323 * upwards.
324 */
325 p->layer++;
54616283 326 WARN_ON_ONCE(p->prefix);
1da177e4 327 continue;
711a49a0 328 }
d5c7409f 329 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1da177e4
LT
330 /*
331 * The allocation failed. If we built part of
332 * the structure tear it down.
333 */
c259cc28 334 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
335 for (new = p; p && p != idp->top; new = p) {
336 p = p->ary[0];
337 new->ary[0] = NULL;
1d9b2e1e
TH
338 new->count = 0;
339 bitmap_clear(new->bitmap, 0, IDR_SIZE);
4ae53789 340 __move_to_free_list(idp, new);
1da177e4 341 }
c259cc28 342 spin_unlock_irqrestore(&idp->lock, flags);
12d1b439 343 return -ENOMEM;
1da177e4
LT
344 }
345 new->ary[0] = p;
346 new->count = 1;
6ff2d39b 347 new->layer = layers-1;
54616283 348 new->prefix = id & idr_layer_prefix_mask(new->layer);
1d9b2e1e
TH
349 if (bitmap_full(p->bitmap, IDR_SIZE))
350 __set_bit(0, new->bitmap);
1da177e4
LT
351 p = new;
352 }
3219b3b7 353 rcu_assign_pointer(idp->top, p);
1da177e4 354 idp->layers = layers;
d5c7409f 355 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
12d1b439 356 if (v == -EAGAIN)
1da177e4
LT
357 goto build_up;
358 return(v);
359}
360
3594eb28
TH
361/*
362 * @id and @pa are from a successful allocation from idr_get_empty_slot().
363 * Install the user pointer @ptr and mark the slot full.
364 */
0ffc2a9c
TH
365static void idr_fill_slot(struct idr *idr, void *ptr, int id,
366 struct idr_layer **pa)
e33ac8bd 367{
0ffc2a9c
TH
368 /* update hint used for lookup, cleared from free_layer() */
369 rcu_assign_pointer(idr->hint, pa[0]);
370
3594eb28
TH
371 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
372 pa[0]->count++;
373 idr_mark_full(pa, id);
e33ac8bd
TH
374}
375
1da177e4 376
d5c7409f
TH
377/**
378 * idr_preload - preload for idr_alloc()
379 * @gfp_mask: allocation mask to use for preloading
380 *
381 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
382 * process context and each idr_preload() invocation should be matched with
383 * idr_preload_end(). Note that preemption is disabled while preloaded.
384 *
385 * The first idr_alloc() in the preloaded section can be treated as if it
386 * were invoked with @gfp_mask used for preloading. This allows using more
387 * permissive allocation masks for idrs protected by spinlocks.
388 *
389 * For example, if idr_alloc() below fails, the failure can be treated as
390 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
391 *
392 * idr_preload(GFP_KERNEL);
393 * spin_lock(lock);
394 *
395 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
396 *
397 * spin_unlock(lock);
398 * idr_preload_end();
399 * if (id < 0)
400 * error;
401 */
402void idr_preload(gfp_t gfp_mask)
403{
404 /*
405 * Consuming preload buffer from non-process context breaks preload
406 * allocation guarantee. Disallow usage from those contexts.
407 */
408 WARN_ON_ONCE(in_interrupt());
409 might_sleep_if(gfp_mask & __GFP_WAIT);
410
411 preempt_disable();
412
413 /*
414 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
415 * return value from idr_alloc() needs to be checked for failure
416 * anyway. Silently give up if allocation fails. The caller can
417 * treat failures from idr_alloc() as if idr_alloc() were called
418 * with @gfp_mask which should be enough.
419 */
420 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
421 struct idr_layer *new;
422
423 preempt_enable();
424 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
425 preempt_disable();
426 if (!new)
427 break;
428
429 /* link the new one to per-cpu preload list */
430 new->ary[0] = __this_cpu_read(idr_preload_head);
431 __this_cpu_write(idr_preload_head, new);
432 __this_cpu_inc(idr_preload_cnt);
433 }
434}
435EXPORT_SYMBOL(idr_preload);
436
437/**
438 * idr_alloc - allocate new idr entry
439 * @idr: the (initialized) idr
440 * @ptr: pointer to be associated with the new id
441 * @start: the minimum id (inclusive)
442 * @end: the maximum id (exclusive, <= 0 for max)
443 * @gfp_mask: memory allocation flags
444 *
445 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
446 * available in the specified range, returns -ENOSPC. On memory allocation
447 * failure, returns -ENOMEM.
448 *
449 * Note that @end is treated as max when <= 0. This is to always allow
450 * using @start + N as @end as long as N is inside integer range.
451 *
452 * The user is responsible for exclusively synchronizing all operations
453 * which may modify @idr. However, read-only accesses such as idr_find()
454 * or iteration can be performed under RCU read lock provided the user
455 * destroys @ptr in RCU-safe way after removal from idr.
456 */
457int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
458{
459 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
326cf0f0 460 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
d5c7409f
TH
461 int id;
462
463 might_sleep_if(gfp_mask & __GFP_WAIT);
464
465 /* sanity checks */
466 if (WARN_ON_ONCE(start < 0))
467 return -EINVAL;
468 if (unlikely(max < start))
469 return -ENOSPC;
470
471 /* allocate id */
472 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
473 if (unlikely(id < 0))
474 return id;
475 if (unlikely(id > max))
476 return -ENOSPC;
477
0ffc2a9c 478 idr_fill_slot(idr, ptr, id, pa);
d5c7409f
TH
479 return id;
480}
481EXPORT_SYMBOL_GPL(idr_alloc);
482
3e6628c4
JL
483/**
484 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
485 * @idr: the (initialized) idr
486 * @ptr: pointer to be associated with the new id
487 * @start: the minimum id (inclusive)
488 * @end: the maximum id (exclusive, <= 0 for max)
489 * @gfp_mask: memory allocation flags
490 *
491 * Essentially the same as idr_alloc, but prefers to allocate progressively
492 * higher ids if it can. If the "cur" counter wraps, then it will start again
493 * at the "start" end of the range and allocate one that has already been used.
494 */
495int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
496 gfp_t gfp_mask)
497{
498 int id;
499
500 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
501 if (id == -ENOSPC)
502 id = idr_alloc(idr, ptr, start, end, gfp_mask);
503
504 if (likely(id >= 0))
505 idr->cur = id + 1;
506 return id;
507}
508EXPORT_SYMBOL(idr_alloc_cyclic);
509
1da177e4
LT
510static void idr_remove_warning(int id)
511{
dd04b452 512 WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
513}
514
515static void sub_remove(struct idr *idp, int shift, int id)
516{
517 struct idr_layer *p = idp->top;
326cf0f0 518 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1da177e4 519 struct idr_layer ***paa = &pa[0];
cf481c20 520 struct idr_layer *to_free;
1da177e4
LT
521 int n;
522
523 *paa = NULL;
524 *++paa = &idp->top;
525
526 while ((shift > 0) && p) {
527 n = (id >> shift) & IDR_MASK;
1d9b2e1e 528 __clear_bit(n, p->bitmap);
1da177e4
LT
529 *++paa = &p->ary[n];
530 p = p->ary[n];
531 shift -= IDR_BITS;
532 }
533 n = id & IDR_MASK;
1d9b2e1e
TH
534 if (likely(p != NULL && test_bit(n, p->bitmap))) {
535 __clear_bit(n, p->bitmap);
3f59b067 536 RCU_INIT_POINTER(p->ary[n], NULL);
cf481c20 537 to_free = NULL;
1da177e4 538 while(*paa && ! --((**paa)->count)){
cf481c20 539 if (to_free)
0ffc2a9c 540 free_layer(idp, to_free);
cf481c20 541 to_free = **paa;
1da177e4
LT
542 **paa-- = NULL;
543 }
e15ae2dd 544 if (!*paa)
1da177e4 545 idp->layers = 0;
cf481c20 546 if (to_free)
0ffc2a9c 547 free_layer(idp, to_free);
e15ae2dd 548 } else
1da177e4 549 idr_remove_warning(id);
1da177e4
LT
550}
551
552/**
56083ab1 553 * idr_remove - remove the given id and free its slot
72fd4a35
RD
554 * @idp: idr handle
555 * @id: unique key
1da177e4
LT
556 */
557void idr_remove(struct idr *idp, int id)
558{
559 struct idr_layer *p;
cf481c20 560 struct idr_layer *to_free;
1da177e4 561
2e1c9b28 562 if (id < 0)
e8c8d1bc 563 return;
1da177e4
LT
564
565 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 566 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
567 idp->top->ary[0]) {
568 /*
569 * Single child at leftmost slot: we can shrink the tree.
570 * This level is not needed anymore since when layers are
571 * inserted, they are inserted at the top of the existing
572 * tree.
573 */
574 to_free = idp->top;
1da177e4 575 p = idp->top->ary[0];
cf481c20 576 rcu_assign_pointer(idp->top, p);
1da177e4 577 --idp->layers;
1d9b2e1e
TH
578 to_free->count = 0;
579 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
0ffc2a9c 580 free_layer(idp, to_free);
1da177e4 581 }
125c4c70 582 while (idp->id_free_cnt >= MAX_IDR_FREE) {
4ae53789 583 p = get_from_free_list(idp);
cf481c20
ND
584 /*
585 * Note: we don't call the rcu callback here, since the only
586 * layers that fall into the freelist are those that have been
587 * preallocated.
588 */
1da177e4 589 kmem_cache_free(idr_layer_cache, p);
1da177e4 590 }
af8e2a4c 591 return;
1da177e4
LT
592}
593EXPORT_SYMBOL(idr_remove);
594
90ae3ae5 595static void __idr_remove_all(struct idr *idp)
23936cc0 596{
6ace06dc 597 int n, id, max;
2dcb22b3 598 int bt_mask;
23936cc0 599 struct idr_layer *p;
326cf0f0 600 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
23936cc0
KH
601 struct idr_layer **paa = &pa[0];
602
603 n = idp->layers * IDR_BITS;
604 p = idp->top;
3f59b067 605 RCU_INIT_POINTER(idp->top, NULL);
326cf0f0 606 max = idr_max(idp->layers);
23936cc0
KH
607
608 id = 0;
326cf0f0 609 while (id >= 0 && id <= max) {
23936cc0
KH
610 while (n > IDR_BITS && p) {
611 n -= IDR_BITS;
612 *paa++ = p;
613 p = p->ary[(id >> n) & IDR_MASK];
614 }
615
2dcb22b3 616 bt_mask = id;
23936cc0 617 id += 1 << n;
2dcb22b3
ID
618 /* Get the highest bit that the above add changed from 0->1. */
619 while (n < fls(id ^ bt_mask)) {
cf481c20 620 if (p)
0ffc2a9c 621 free_layer(idp, p);
23936cc0
KH
622 n += IDR_BITS;
623 p = *--paa;
624 }
625 }
23936cc0
KH
626 idp->layers = 0;
627}
23936cc0 628
8d3b3591
AM
629/**
630 * idr_destroy - release all cached layers within an idr tree
ea24ea85 631 * @idp: idr handle
9bb26bc1
TH
632 *
633 * Free all id mappings and all idp_layers. After this function, @idp is
634 * completely unused and can be freed / recycled. The caller is
635 * responsible for ensuring that no one else accesses @idp during or after
636 * idr_destroy().
637 *
638 * A typical clean-up sequence for objects stored in an idr tree will use
639 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
640 * free up the id mappings and cached idr_layers.
8d3b3591
AM
641 */
642void idr_destroy(struct idr *idp)
643{
fe6e24ec 644 __idr_remove_all(idp);
9bb26bc1 645
8d3b3591 646 while (idp->id_free_cnt) {
4ae53789 647 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
648 kmem_cache_free(idr_layer_cache, p);
649 }
650}
651EXPORT_SYMBOL(idr_destroy);
652
0ffc2a9c 653void *idr_find_slowpath(struct idr *idp, int id)
1da177e4
LT
654{
655 int n;
656 struct idr_layer *p;
657
2e1c9b28 658 if (id < 0)
e8c8d1bc
TH
659 return NULL;
660
96be753a 661 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
662 if (!p)
663 return NULL;
664 n = (p->layer+1) * IDR_BITS;
1da177e4 665
326cf0f0 666 if (id > idr_max(p->layer + 1))
1da177e4 667 return NULL;
6ff2d39b 668 BUG_ON(n == 0);
1da177e4
LT
669
670 while (n > 0 && p) {
671 n -= IDR_BITS;
6ff2d39b 672 BUG_ON(n != p->layer*IDR_BITS);
96be753a 673 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
674 }
675 return((void *)p);
676}
0ffc2a9c 677EXPORT_SYMBOL(idr_find_slowpath);
1da177e4 678
96d7fa42
KH
679/**
680 * idr_for_each - iterate through all stored pointers
681 * @idp: idr handle
682 * @fn: function to be called for each pointer
683 * @data: data passed back to callback function
684 *
685 * Iterate over the pointers registered with the given idr. The
686 * callback function will be called for each pointer currently
687 * registered, passing the id, the pointer and the data pointer passed
688 * to this function. It is not safe to modify the idr tree while in
689 * the callback, so functions such as idr_get_new and idr_remove are
690 * not allowed.
691 *
692 * We check the return of @fn each time. If it returns anything other
56083ab1 693 * than %0, we break out and return that value.
96d7fa42
KH
694 *
695 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
696 */
697int idr_for_each(struct idr *idp,
698 int (*fn)(int id, void *p, void *data), void *data)
699{
700 int n, id, max, error = 0;
701 struct idr_layer *p;
326cf0f0 702 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
96d7fa42
KH
703 struct idr_layer **paa = &pa[0];
704
705 n = idp->layers * IDR_BITS;
96be753a 706 p = rcu_dereference_raw(idp->top);
326cf0f0 707 max = idr_max(idp->layers);
96d7fa42
KH
708
709 id = 0;
326cf0f0 710 while (id >= 0 && id <= max) {
96d7fa42
KH
711 while (n > 0 && p) {
712 n -= IDR_BITS;
713 *paa++ = p;
96be753a 714 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
715 }
716
717 if (p) {
718 error = fn(id, (void *)p, data);
719 if (error)
720 break;
721 }
722
723 id += 1 << n;
724 while (n < fls(id)) {
725 n += IDR_BITS;
726 p = *--paa;
727 }
728 }
729
730 return error;
731}
732EXPORT_SYMBOL(idr_for_each);
733
38460b48
KH
734/**
735 * idr_get_next - lookup next object of id to given id.
736 * @idp: idr handle
ea24ea85 737 * @nextidp: pointer to lookup key
38460b48
KH
738 *
739 * Returns pointer to registered object with id, which is next number to
1458ce16
NA
740 * given id. After being looked up, *@nextidp will be updated for the next
741 * iteration.
9f7de827
HD
742 *
743 * This function can be called under rcu_read_lock(), given that the leaf
744 * pointers lifetimes are correctly managed.
38460b48 745 */
38460b48
KH
746void *idr_get_next(struct idr *idp, int *nextidp)
747{
326cf0f0 748 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
38460b48
KH
749 struct idr_layer **paa = &pa[0];
750 int id = *nextidp;
751 int n, max;
752
753 /* find first ent */
94bfa3b6 754 p = rcu_dereference_raw(idp->top);
38460b48
KH
755 if (!p)
756 return NULL;
9f7de827 757 n = (p->layer + 1) * IDR_BITS;
326cf0f0 758 max = idr_max(p->layer + 1);
38460b48 759
326cf0f0 760 while (id >= 0 && id <= max) {
38460b48
KH
761 while (n > 0 && p) {
762 n -= IDR_BITS;
763 *paa++ = p;
94bfa3b6 764 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
38460b48
KH
765 }
766
767 if (p) {
768 *nextidp = id;
769 return p;
770 }
771
6cdae741
TH
772 /*
773 * Proceed to the next layer at the current level. Unlike
774 * idr_for_each(), @id isn't guaranteed to be aligned to
775 * layer boundary at this point and adding 1 << n may
776 * incorrectly skip IDs. Make sure we jump to the
777 * beginning of the next layer using round_up().
778 */
779 id = round_up(id + 1, 1 << n);
38460b48
KH
780 while (n < fls(id)) {
781 n += IDR_BITS;
782 p = *--paa;
783 }
784 }
785 return NULL;
786}
4d1ee80f 787EXPORT_SYMBOL(idr_get_next);
38460b48
KH
788
789
5806f07c
JM
790/**
791 * idr_replace - replace pointer for given id
792 * @idp: idr handle
793 * @ptr: pointer you want associated with the id
794 * @id: lookup key
795 *
796 * Replace the pointer registered with an id and return the old value.
56083ab1
RD
797 * A %-ENOENT return indicates that @id was not found.
798 * A %-EINVAL return indicates that @id was not within valid constraints.
5806f07c 799 *
cf481c20 800 * The caller must serialize with writers.
5806f07c
JM
801 */
802void *idr_replace(struct idr *idp, void *ptr, int id)
803{
804 int n;
805 struct idr_layer *p, *old_p;
806
2e1c9b28 807 if (id < 0)
e8c8d1bc
TH
808 return ERR_PTR(-EINVAL);
809
5806f07c 810 p = idp->top;
6ff2d39b
MS
811 if (!p)
812 return ERR_PTR(-EINVAL);
813
814 n = (p->layer+1) * IDR_BITS;
5806f07c 815
5806f07c
JM
816 if (id >= (1 << n))
817 return ERR_PTR(-EINVAL);
818
819 n -= IDR_BITS;
820 while ((n > 0) && p) {
821 p = p->ary[(id >> n) & IDR_MASK];
822 n -= IDR_BITS;
823 }
824
825 n = id & IDR_MASK;
1d9b2e1e 826 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
5806f07c
JM
827 return ERR_PTR(-ENOENT);
828
829 old_p = p->ary[n];
cf481c20 830 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
831
832 return old_p;
833}
834EXPORT_SYMBOL(idr_replace);
835
199f0ca5 836void __init idr_init_cache(void)
1da177e4 837{
199f0ca5 838 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 839 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
840}
841
842/**
843 * idr_init - initialize idr handle
844 * @idp: idr handle
845 *
846 * This function is use to set up the handle (@idp) that you will pass
847 * to the rest of the functions.
848 */
849void idr_init(struct idr *idp)
850{
1da177e4
LT
851 memset(idp, 0, sizeof(struct idr));
852 spin_lock_init(&idp->lock);
853}
854EXPORT_SYMBOL(idr_init);
72dba584 855
05f7a7d6
AG
856static int idr_has_entry(int id, void *p, void *data)
857{
858 return 1;
859}
860
861bool idr_is_empty(struct idr *idp)
862{
863 return !idr_for_each(idp, idr_has_entry, NULL);
864}
865EXPORT_SYMBOL(idr_is_empty);
72dba584 866
56083ab1
RD
867/**
868 * DOC: IDA description
72dba584
TH
869 * IDA - IDR based ID allocator
870 *
56083ab1 871 * This is id allocator without id -> pointer translation. Memory
72dba584
TH
872 * usage is much lower than full blown idr because each id only
873 * occupies a bit. ida uses a custom leaf node which contains
874 * IDA_BITMAP_BITS slots.
875 *
876 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
877 */
878
879static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
880{
881 unsigned long flags;
882
883 if (!ida->free_bitmap) {
884 spin_lock_irqsave(&ida->idr.lock, flags);
885 if (!ida->free_bitmap) {
886 ida->free_bitmap = bitmap;
887 bitmap = NULL;
888 }
889 spin_unlock_irqrestore(&ida->idr.lock, flags);
890 }
891
892 kfree(bitmap);
893}
894
895/**
896 * ida_pre_get - reserve resources for ida allocation
897 * @ida: ida handle
898 * @gfp_mask: memory allocation flag
899 *
900 * This function should be called prior to locking and calling the
901 * following function. It preallocates enough memory to satisfy the
902 * worst possible allocation.
903 *
56083ab1
RD
904 * If the system is REALLY out of memory this function returns %0,
905 * otherwise %1.
72dba584
TH
906 */
907int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
908{
909 /* allocate idr_layers */
c8615d37 910 if (!__idr_pre_get(&ida->idr, gfp_mask))
72dba584
TH
911 return 0;
912
913 /* allocate free_bitmap */
914 if (!ida->free_bitmap) {
915 struct ida_bitmap *bitmap;
916
917 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
918 if (!bitmap)
919 return 0;
920
921 free_bitmap(ida, bitmap);
922 }
923
924 return 1;
925}
926EXPORT_SYMBOL(ida_pre_get);
927
928/**
929 * ida_get_new_above - allocate new ID above or equal to a start id
930 * @ida: ida handle
ea24ea85 931 * @starting_id: id to start search at
72dba584
TH
932 * @p_id: pointer to the allocated handle
933 *
e3816c54
WSH
934 * Allocate new ID above or equal to @starting_id. It should be called
935 * with any required locks.
72dba584 936 *
56083ab1 937 * If memory is required, it will return %-EAGAIN, you should unlock
72dba584 938 * and go back to the ida_pre_get() call. If the ida is full, it will
56083ab1 939 * return %-ENOSPC.
72dba584 940 *
56083ab1 941 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
72dba584
TH
942 */
943int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
944{
326cf0f0 945 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
72dba584
TH
946 struct ida_bitmap *bitmap;
947 unsigned long flags;
948 int idr_id = starting_id / IDA_BITMAP_BITS;
949 int offset = starting_id % IDA_BITMAP_BITS;
950 int t, id;
951
952 restart:
953 /* get vacant slot */
d5c7409f 954 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
944ca05c 955 if (t < 0)
12d1b439 956 return t == -ENOMEM ? -EAGAIN : t;
72dba584 957
125c4c70 958 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
72dba584
TH
959 return -ENOSPC;
960
961 if (t != idr_id)
962 offset = 0;
963 idr_id = t;
964
965 /* if bitmap isn't there, create a new one */
966 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
967 if (!bitmap) {
968 spin_lock_irqsave(&ida->idr.lock, flags);
969 bitmap = ida->free_bitmap;
970 ida->free_bitmap = NULL;
971 spin_unlock_irqrestore(&ida->idr.lock, flags);
972
973 if (!bitmap)
974 return -EAGAIN;
975
976 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
977 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
978 (void *)bitmap);
72dba584
TH
979 pa[0]->count++;
980 }
981
982 /* lookup for empty slot */
983 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
984 if (t == IDA_BITMAP_BITS) {
985 /* no empty slot after offset, continue to the next chunk */
986 idr_id++;
987 offset = 0;
988 goto restart;
989 }
990
991 id = idr_id * IDA_BITMAP_BITS + t;
125c4c70 992 if (id >= MAX_IDR_BIT)
72dba584
TH
993 return -ENOSPC;
994
995 __set_bit(t, bitmap->bitmap);
996 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
997 idr_mark_full(pa, idr_id);
998
999 *p_id = id;
1000
1001 /* Each leaf node can handle nearly a thousand slots and the
1002 * whole idea of ida is to have small memory foot print.
1003 * Throw away extra resources one by one after each successful
1004 * allocation.
1005 */
1006 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 1007 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
1008 if (p)
1009 kmem_cache_free(idr_layer_cache, p);
1010 }
1011
1012 return 0;
1013}
1014EXPORT_SYMBOL(ida_get_new_above);
1015
72dba584
TH
1016/**
1017 * ida_remove - remove the given ID
1018 * @ida: ida handle
1019 * @id: ID to free
1020 */
1021void ida_remove(struct ida *ida, int id)
1022{
1023 struct idr_layer *p = ida->idr.top;
1024 int shift = (ida->idr.layers - 1) * IDR_BITS;
1025 int idr_id = id / IDA_BITMAP_BITS;
1026 int offset = id % IDA_BITMAP_BITS;
1027 int n;
1028 struct ida_bitmap *bitmap;
1029
1030 /* clear full bits while looking up the leaf idr_layer */
1031 while ((shift > 0) && p) {
1032 n = (idr_id >> shift) & IDR_MASK;
1d9b2e1e 1033 __clear_bit(n, p->bitmap);
72dba584
TH
1034 p = p->ary[n];
1035 shift -= IDR_BITS;
1036 }
1037
1038 if (p == NULL)
1039 goto err;
1040
1041 n = idr_id & IDR_MASK;
1d9b2e1e 1042 __clear_bit(n, p->bitmap);
72dba584
TH
1043
1044 bitmap = (void *)p->ary[n];
1045 if (!test_bit(offset, bitmap->bitmap))
1046 goto err;
1047
1048 /* update bitmap and remove it if empty */
1049 __clear_bit(offset, bitmap->bitmap);
1050 if (--bitmap->nr_busy == 0) {
1d9b2e1e 1051 __set_bit(n, p->bitmap); /* to please idr_remove() */
72dba584
TH
1052 idr_remove(&ida->idr, idr_id);
1053 free_bitmap(ida, bitmap);
1054 }
1055
1056 return;
1057
1058 err:
dd04b452 1059 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
72dba584
TH
1060}
1061EXPORT_SYMBOL(ida_remove);
1062
1063/**
1064 * ida_destroy - release all cached layers within an ida tree
ea24ea85 1065 * @ida: ida handle
72dba584
TH
1066 */
1067void ida_destroy(struct ida *ida)
1068{
1069 idr_destroy(&ida->idr);
1070 kfree(ida->free_bitmap);
1071}
1072EXPORT_SYMBOL(ida_destroy);
1073
88eca020
RR
1074/**
1075 * ida_simple_get - get a new id.
1076 * @ida: the (initialized) ida.
1077 * @start: the minimum id (inclusive, < 0x8000000)
1078 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1079 * @gfp_mask: memory allocation flags
1080 *
1081 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1082 * On memory allocation failure, returns -ENOMEM.
1083 *
1084 * Use ida_simple_remove() to get rid of an id.
1085 */
1086int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1087 gfp_t gfp_mask)
1088{
1089 int ret, id;
1090 unsigned int max;
46cbc1d3 1091 unsigned long flags;
88eca020
RR
1092
1093 BUG_ON((int)start < 0);
1094 BUG_ON((int)end < 0);
1095
1096 if (end == 0)
1097 max = 0x80000000;
1098 else {
1099 BUG_ON(end < start);
1100 max = end - 1;
1101 }
1102
1103again:
1104 if (!ida_pre_get(ida, gfp_mask))
1105 return -ENOMEM;
1106
46cbc1d3 1107 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020
RR
1108 ret = ida_get_new_above(ida, start, &id);
1109 if (!ret) {
1110 if (id > max) {
1111 ida_remove(ida, id);
1112 ret = -ENOSPC;
1113 } else {
1114 ret = id;
1115 }
1116 }
46cbc1d3 1117 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1118
1119 if (unlikely(ret == -EAGAIN))
1120 goto again;
1121
1122 return ret;
1123}
1124EXPORT_SYMBOL(ida_simple_get);
1125
1126/**
1127 * ida_simple_remove - remove an allocated id.
1128 * @ida: the (initialized) ida.
1129 * @id: the id returned by ida_simple_get.
1130 */
1131void ida_simple_remove(struct ida *ida, unsigned int id)
1132{
46cbc1d3
TH
1133 unsigned long flags;
1134
88eca020 1135 BUG_ON((int)id < 0);
46cbc1d3 1136 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020 1137 ida_remove(ida, id);
46cbc1d3 1138 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1139}
1140EXPORT_SYMBOL(ida_simple_remove);
1141
72dba584
TH
1142/**
1143 * ida_init - initialize ida handle
1144 * @ida: ida handle
1145 *
1146 * This function is use to set up the handle (@ida) that you will pass
1147 * to the rest of the functions.
1148 */
1149void ida_init(struct ida *ida)
1150{
1151 memset(ida, 0, sizeof(struct ida));
1152 idr_init(&ida->idr);
1153
1154}
1155EXPORT_SYMBOL(ida_init);