UAPI: fix endianness conditionals in M32R's asm/stat.h
[linux-2.6-block.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
125c4c70 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
8bc3bcc9 32#include <linux/export.h>
1da177e4 33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
88eca020 37#include <linux/spinlock.h>
d5c7409f
TH
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
1da177e4 40
e8c8d1bc
TH
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
e18b890b 50static struct kmem_cache *idr_layer_cache;
d5c7409f
TH
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
88eca020 53static DEFINE_SPINLOCK(simple_ida_lock);
1da177e4 54
326cf0f0
TH
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
54616283
TH
63/*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68static int idr_layer_prefix_mask(int layer)
69{
70 return ~idr_max(layer + 1);
71}
72
4ae53789 73static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
74{
75 struct idr_layer *p;
c259cc28 76 unsigned long flags;
1da177e4 77
c259cc28 78 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
c259cc28 84 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
85 return(p);
86}
87
d5c7409f
TH
88/**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102{
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
109 /* try to allocate directly from kmem_cache */
110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 if (new)
112 return new;
113
114 /*
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
117 */
118 if (in_interrupt())
119 return NULL;
120
121 preempt_disable();
122 new = __this_cpu_read(idr_preload_head);
123 if (new) {
124 __this_cpu_write(idr_preload_head, new->ary[0]);
125 __this_cpu_dec(idr_preload_cnt);
126 new->ary[0] = NULL;
127 }
128 preempt_enable();
129 return new;
130}
131
cf481c20
ND
132static void idr_layer_rcu_free(struct rcu_head *head)
133{
134 struct idr_layer *layer;
135
136 layer = container_of(head, struct idr_layer, rcu_head);
137 kmem_cache_free(idr_layer_cache, layer);
138}
139
0ffc2a9c 140static inline void free_layer(struct idr *idr, struct idr_layer *p)
cf481c20 141{
0ffc2a9c
TH
142 if (idr->hint && idr->hint == p)
143 RCU_INIT_POINTER(idr->hint, NULL);
cf481c20
ND
144 call_rcu(&p->rcu_head, idr_layer_rcu_free);
145}
146
1eec0056 147/* only called when idp->lock is held */
4ae53789 148static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
149{
150 p->ary[0] = idp->id_free;
151 idp->id_free = p;
152 idp->id_free_cnt++;
153}
154
4ae53789 155static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 156{
c259cc28
RD
157 unsigned long flags;
158
1da177e4
LT
159 /*
160 * Depends on the return element being zeroed.
161 */
c259cc28 162 spin_lock_irqsave(&idp->lock, flags);
4ae53789 163 __move_to_free_list(idp, p);
c259cc28 164 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
165}
166
e33ac8bd
TH
167static void idr_mark_full(struct idr_layer **pa, int id)
168{
169 struct idr_layer *p = pa[0];
170 int l = 0;
171
1d9b2e1e 172 __set_bit(id & IDR_MASK, p->bitmap);
e33ac8bd
TH
173 /*
174 * If this layer is full mark the bit in the layer above to
175 * show that this part of the radix tree is full. This may
176 * complete the layer above and require walking up the radix
177 * tree.
178 */
1d9b2e1e 179 while (bitmap_full(p->bitmap, IDR_SIZE)) {
e33ac8bd
TH
180 if (!(p = pa[++l]))
181 break;
182 id = id >> IDR_BITS;
1d9b2e1e 183 __set_bit((id & IDR_MASK), p->bitmap);
e33ac8bd
TH
184 }
185}
186
c8615d37 187int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4 188{
125c4c70 189 while (idp->id_free_cnt < MAX_IDR_FREE) {
1da177e4 190 struct idr_layer *new;
5b019e99 191 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 192 if (new == NULL)
1da177e4 193 return (0);
4ae53789 194 move_to_free_list(idp, new);
1da177e4
LT
195 }
196 return 1;
197}
c8615d37 198EXPORT_SYMBOL(__idr_pre_get);
1da177e4 199
12d1b439
TH
200/**
201 * sub_alloc - try to allocate an id without growing the tree depth
202 * @idp: idr handle
203 * @starting_id: id to start search at
12d1b439 204 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
d5c7409f
TH
205 * @gfp_mask: allocation mask for idr_layer_alloc()
206 * @layer_idr: optional idr passed to idr_layer_alloc()
12d1b439
TH
207 *
208 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
209 * growing its depth. Returns
210 *
211 * the allocated id >= 0 if successful,
212 * -EAGAIN if the tree needs to grow for allocation to succeed,
213 * -ENOSPC if the id space is exhausted,
214 * -ENOMEM if more idr_layers need to be allocated.
215 */
d5c7409f
TH
216static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
217 gfp_t gfp_mask, struct idr *layer_idr)
1da177e4
LT
218{
219 int n, m, sh;
220 struct idr_layer *p, *new;
7aae6dd8 221 int l, id, oid;
1da177e4
LT
222
223 id = *starting_id;
7aae6dd8 224 restart:
1da177e4
LT
225 p = idp->top;
226 l = idp->layers;
227 pa[l--] = NULL;
228 while (1) {
229 /*
230 * We run around this while until we reach the leaf node...
231 */
232 n = (id >> (IDR_BITS*l)) & IDR_MASK;
1d9b2e1e 233 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1da177e4
LT
234 if (m == IDR_SIZE) {
235 /* no space available go back to previous layer. */
236 l++;
7aae6dd8 237 oid = id;
e15ae2dd 238 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
239
240 /* if already at the top layer, we need to grow */
d2e7276b 241 if (id >= 1 << (idp->layers * IDR_BITS)) {
1da177e4 242 *starting_id = id;
12d1b439 243 return -EAGAIN;
1da177e4 244 }
d2e7276b
TH
245 p = pa[l];
246 BUG_ON(!p);
7aae6dd8
TH
247
248 /* If we need to go up one layer, continue the
249 * loop; otherwise, restart from the top.
250 */
251 sh = IDR_BITS * (l + 1);
252 if (oid >> sh == id >> sh)
253 continue;
254 else
255 goto restart;
1da177e4
LT
256 }
257 if (m != n) {
258 sh = IDR_BITS*l;
259 id = ((id >> sh) ^ n ^ m) << sh;
260 }
125c4c70 261 if ((id >= MAX_IDR_BIT) || (id < 0))
12d1b439 262 return -ENOSPC;
1da177e4
LT
263 if (l == 0)
264 break;
265 /*
266 * Create the layer below if it is missing.
267 */
268 if (!p->ary[m]) {
d5c7409f 269 new = idr_layer_alloc(gfp_mask, layer_idr);
4ae53789 270 if (!new)
12d1b439 271 return -ENOMEM;
6ff2d39b 272 new->layer = l-1;
54616283 273 new->prefix = id & idr_layer_prefix_mask(new->layer);
3219b3b7 274 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
275 p->count++;
276 }
277 pa[l--] = p;
278 p = p->ary[m];
279 }
e33ac8bd
TH
280
281 pa[l] = p;
282 return id;
1da177e4
LT
283}
284
e33ac8bd 285static int idr_get_empty_slot(struct idr *idp, int starting_id,
d5c7409f
TH
286 struct idr_layer **pa, gfp_t gfp_mask,
287 struct idr *layer_idr)
1da177e4
LT
288{
289 struct idr_layer *p, *new;
290 int layers, v, id;
c259cc28 291 unsigned long flags;
e15ae2dd 292
1da177e4
LT
293 id = starting_id;
294build_up:
295 p = idp->top;
296 layers = idp->layers;
297 if (unlikely(!p)) {
d5c7409f 298 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
12d1b439 299 return -ENOMEM;
6ff2d39b 300 p->layer = 0;
1da177e4
LT
301 layers = 1;
302 }
303 /*
304 * Add a new layer to the top of the tree if the requested
305 * id is larger than the currently allocated space.
306 */
326cf0f0 307 while (id > idr_max(layers)) {
1da177e4 308 layers++;
711a49a0
MS
309 if (!p->count) {
310 /* special case: if the tree is currently empty,
311 * then we grow the tree by moving the top node
312 * upwards.
313 */
314 p->layer++;
54616283 315 WARN_ON_ONCE(p->prefix);
1da177e4 316 continue;
711a49a0 317 }
d5c7409f 318 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1da177e4
LT
319 /*
320 * The allocation failed. If we built part of
321 * the structure tear it down.
322 */
c259cc28 323 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
324 for (new = p; p && p != idp->top; new = p) {
325 p = p->ary[0];
326 new->ary[0] = NULL;
1d9b2e1e
TH
327 new->count = 0;
328 bitmap_clear(new->bitmap, 0, IDR_SIZE);
4ae53789 329 __move_to_free_list(idp, new);
1da177e4 330 }
c259cc28 331 spin_unlock_irqrestore(&idp->lock, flags);
12d1b439 332 return -ENOMEM;
1da177e4
LT
333 }
334 new->ary[0] = p;
335 new->count = 1;
6ff2d39b 336 new->layer = layers-1;
54616283 337 new->prefix = id & idr_layer_prefix_mask(new->layer);
1d9b2e1e
TH
338 if (bitmap_full(p->bitmap, IDR_SIZE))
339 __set_bit(0, new->bitmap);
1da177e4
LT
340 p = new;
341 }
3219b3b7 342 rcu_assign_pointer(idp->top, p);
1da177e4 343 idp->layers = layers;
d5c7409f 344 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
12d1b439 345 if (v == -EAGAIN)
1da177e4
LT
346 goto build_up;
347 return(v);
348}
349
3594eb28
TH
350/*
351 * @id and @pa are from a successful allocation from idr_get_empty_slot().
352 * Install the user pointer @ptr and mark the slot full.
353 */
0ffc2a9c
TH
354static void idr_fill_slot(struct idr *idr, void *ptr, int id,
355 struct idr_layer **pa)
e33ac8bd 356{
0ffc2a9c
TH
357 /* update hint used for lookup, cleared from free_layer() */
358 rcu_assign_pointer(idr->hint, pa[0]);
359
3594eb28
TH
360 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
361 pa[0]->count++;
362 idr_mark_full(pa, id);
e33ac8bd
TH
363}
364
c8615d37 365int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
1da177e4 366{
326cf0f0 367 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1da177e4 368 int rv;
e15ae2dd 369
d5c7409f 370 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
944ca05c 371 if (rv < 0)
12d1b439 372 return rv == -ENOMEM ? -EAGAIN : rv;
3594eb28 373
0ffc2a9c 374 idr_fill_slot(idp, ptr, rv, pa);
1da177e4
LT
375 *id = rv;
376 return 0;
377}
c8615d37 378EXPORT_SYMBOL(__idr_get_new_above);
1da177e4 379
d5c7409f
TH
380/**
381 * idr_preload - preload for idr_alloc()
382 * @gfp_mask: allocation mask to use for preloading
383 *
384 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
385 * process context and each idr_preload() invocation should be matched with
386 * idr_preload_end(). Note that preemption is disabled while preloaded.
387 *
388 * The first idr_alloc() in the preloaded section can be treated as if it
389 * were invoked with @gfp_mask used for preloading. This allows using more
390 * permissive allocation masks for idrs protected by spinlocks.
391 *
392 * For example, if idr_alloc() below fails, the failure can be treated as
393 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
394 *
395 * idr_preload(GFP_KERNEL);
396 * spin_lock(lock);
397 *
398 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
399 *
400 * spin_unlock(lock);
401 * idr_preload_end();
402 * if (id < 0)
403 * error;
404 */
405void idr_preload(gfp_t gfp_mask)
406{
407 /*
408 * Consuming preload buffer from non-process context breaks preload
409 * allocation guarantee. Disallow usage from those contexts.
410 */
411 WARN_ON_ONCE(in_interrupt());
412 might_sleep_if(gfp_mask & __GFP_WAIT);
413
414 preempt_disable();
415
416 /*
417 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
418 * return value from idr_alloc() needs to be checked for failure
419 * anyway. Silently give up if allocation fails. The caller can
420 * treat failures from idr_alloc() as if idr_alloc() were called
421 * with @gfp_mask which should be enough.
422 */
423 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
424 struct idr_layer *new;
425
426 preempt_enable();
427 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
428 preempt_disable();
429 if (!new)
430 break;
431
432 /* link the new one to per-cpu preload list */
433 new->ary[0] = __this_cpu_read(idr_preload_head);
434 __this_cpu_write(idr_preload_head, new);
435 __this_cpu_inc(idr_preload_cnt);
436 }
437}
438EXPORT_SYMBOL(idr_preload);
439
440/**
441 * idr_alloc - allocate new idr entry
442 * @idr: the (initialized) idr
443 * @ptr: pointer to be associated with the new id
444 * @start: the minimum id (inclusive)
445 * @end: the maximum id (exclusive, <= 0 for max)
446 * @gfp_mask: memory allocation flags
447 *
448 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
449 * available in the specified range, returns -ENOSPC. On memory allocation
450 * failure, returns -ENOMEM.
451 *
452 * Note that @end is treated as max when <= 0. This is to always allow
453 * using @start + N as @end as long as N is inside integer range.
454 *
455 * The user is responsible for exclusively synchronizing all operations
456 * which may modify @idr. However, read-only accesses such as idr_find()
457 * or iteration can be performed under RCU read lock provided the user
458 * destroys @ptr in RCU-safe way after removal from idr.
459 */
460int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
461{
462 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
326cf0f0 463 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
d5c7409f
TH
464 int id;
465
466 might_sleep_if(gfp_mask & __GFP_WAIT);
467
468 /* sanity checks */
469 if (WARN_ON_ONCE(start < 0))
470 return -EINVAL;
471 if (unlikely(max < start))
472 return -ENOSPC;
473
474 /* allocate id */
475 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
476 if (unlikely(id < 0))
477 return id;
478 if (unlikely(id > max))
479 return -ENOSPC;
480
0ffc2a9c 481 idr_fill_slot(idr, ptr, id, pa);
d5c7409f
TH
482 return id;
483}
484EXPORT_SYMBOL_GPL(idr_alloc);
485
1da177e4
LT
486static void idr_remove_warning(int id)
487{
f098ad65
ND
488 printk(KERN_WARNING
489 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
490 dump_stack();
491}
492
493static void sub_remove(struct idr *idp, int shift, int id)
494{
495 struct idr_layer *p = idp->top;
326cf0f0 496 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1da177e4 497 struct idr_layer ***paa = &pa[0];
cf481c20 498 struct idr_layer *to_free;
1da177e4
LT
499 int n;
500
501 *paa = NULL;
502 *++paa = &idp->top;
503
504 while ((shift > 0) && p) {
505 n = (id >> shift) & IDR_MASK;
1d9b2e1e 506 __clear_bit(n, p->bitmap);
1da177e4
LT
507 *++paa = &p->ary[n];
508 p = p->ary[n];
509 shift -= IDR_BITS;
510 }
511 n = id & IDR_MASK;
1d9b2e1e
TH
512 if (likely(p != NULL && test_bit(n, p->bitmap))) {
513 __clear_bit(n, p->bitmap);
cf481c20
ND
514 rcu_assign_pointer(p->ary[n], NULL);
515 to_free = NULL;
1da177e4 516 while(*paa && ! --((**paa)->count)){
cf481c20 517 if (to_free)
0ffc2a9c 518 free_layer(idp, to_free);
cf481c20 519 to_free = **paa;
1da177e4
LT
520 **paa-- = NULL;
521 }
e15ae2dd 522 if (!*paa)
1da177e4 523 idp->layers = 0;
cf481c20 524 if (to_free)
0ffc2a9c 525 free_layer(idp, to_free);
e15ae2dd 526 } else
1da177e4 527 idr_remove_warning(id);
1da177e4
LT
528}
529
530/**
56083ab1 531 * idr_remove - remove the given id and free its slot
72fd4a35
RD
532 * @idp: idr handle
533 * @id: unique key
1da177e4
LT
534 */
535void idr_remove(struct idr *idp, int id)
536{
537 struct idr_layer *p;
cf481c20 538 struct idr_layer *to_free;
1da177e4 539
2e1c9b28 540 if (id < 0)
e8c8d1bc 541 return;
1da177e4
LT
542
543 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 544 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
545 idp->top->ary[0]) {
546 /*
547 * Single child at leftmost slot: we can shrink the tree.
548 * This level is not needed anymore since when layers are
549 * inserted, they are inserted at the top of the existing
550 * tree.
551 */
552 to_free = idp->top;
1da177e4 553 p = idp->top->ary[0];
cf481c20 554 rcu_assign_pointer(idp->top, p);
1da177e4 555 --idp->layers;
1d9b2e1e
TH
556 to_free->count = 0;
557 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
0ffc2a9c 558 free_layer(idp, to_free);
1da177e4 559 }
125c4c70 560 while (idp->id_free_cnt >= MAX_IDR_FREE) {
4ae53789 561 p = get_from_free_list(idp);
cf481c20
ND
562 /*
563 * Note: we don't call the rcu callback here, since the only
564 * layers that fall into the freelist are those that have been
565 * preallocated.
566 */
1da177e4 567 kmem_cache_free(idr_layer_cache, p);
1da177e4 568 }
af8e2a4c 569 return;
1da177e4
LT
570}
571EXPORT_SYMBOL(idr_remove);
572
fe6e24ec 573void __idr_remove_all(struct idr *idp)
23936cc0 574{
6ace06dc 575 int n, id, max;
2dcb22b3 576 int bt_mask;
23936cc0 577 struct idr_layer *p;
326cf0f0 578 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
23936cc0
KH
579 struct idr_layer **paa = &pa[0];
580
581 n = idp->layers * IDR_BITS;
582 p = idp->top;
1b23336a 583 rcu_assign_pointer(idp->top, NULL);
326cf0f0 584 max = idr_max(idp->layers);
23936cc0
KH
585
586 id = 0;
326cf0f0 587 while (id >= 0 && id <= max) {
23936cc0
KH
588 while (n > IDR_BITS && p) {
589 n -= IDR_BITS;
590 *paa++ = p;
591 p = p->ary[(id >> n) & IDR_MASK];
592 }
593
2dcb22b3 594 bt_mask = id;
23936cc0 595 id += 1 << n;
2dcb22b3
ID
596 /* Get the highest bit that the above add changed from 0->1. */
597 while (n < fls(id ^ bt_mask)) {
cf481c20 598 if (p)
0ffc2a9c 599 free_layer(idp, p);
23936cc0
KH
600 n += IDR_BITS;
601 p = *--paa;
602 }
603 }
23936cc0
KH
604 idp->layers = 0;
605}
fe6e24ec 606EXPORT_SYMBOL(__idr_remove_all);
23936cc0 607
8d3b3591
AM
608/**
609 * idr_destroy - release all cached layers within an idr tree
ea24ea85 610 * @idp: idr handle
9bb26bc1
TH
611 *
612 * Free all id mappings and all idp_layers. After this function, @idp is
613 * completely unused and can be freed / recycled. The caller is
614 * responsible for ensuring that no one else accesses @idp during or after
615 * idr_destroy().
616 *
617 * A typical clean-up sequence for objects stored in an idr tree will use
618 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
619 * free up the id mappings and cached idr_layers.
8d3b3591
AM
620 */
621void idr_destroy(struct idr *idp)
622{
fe6e24ec 623 __idr_remove_all(idp);
9bb26bc1 624
8d3b3591 625 while (idp->id_free_cnt) {
4ae53789 626 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
627 kmem_cache_free(idr_layer_cache, p);
628 }
629}
630EXPORT_SYMBOL(idr_destroy);
631
0ffc2a9c 632void *idr_find_slowpath(struct idr *idp, int id)
1da177e4
LT
633{
634 int n;
635 struct idr_layer *p;
636
2e1c9b28 637 if (id < 0)
e8c8d1bc
TH
638 return NULL;
639
96be753a 640 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
641 if (!p)
642 return NULL;
643 n = (p->layer+1) * IDR_BITS;
1da177e4 644
326cf0f0 645 if (id > idr_max(p->layer + 1))
1da177e4 646 return NULL;
6ff2d39b 647 BUG_ON(n == 0);
1da177e4
LT
648
649 while (n > 0 && p) {
650 n -= IDR_BITS;
6ff2d39b 651 BUG_ON(n != p->layer*IDR_BITS);
96be753a 652 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
653 }
654 return((void *)p);
655}
0ffc2a9c 656EXPORT_SYMBOL(idr_find_slowpath);
1da177e4 657
96d7fa42
KH
658/**
659 * idr_for_each - iterate through all stored pointers
660 * @idp: idr handle
661 * @fn: function to be called for each pointer
662 * @data: data passed back to callback function
663 *
664 * Iterate over the pointers registered with the given idr. The
665 * callback function will be called for each pointer currently
666 * registered, passing the id, the pointer and the data pointer passed
667 * to this function. It is not safe to modify the idr tree while in
668 * the callback, so functions such as idr_get_new and idr_remove are
669 * not allowed.
670 *
671 * We check the return of @fn each time. If it returns anything other
56083ab1 672 * than %0, we break out and return that value.
96d7fa42
KH
673 *
674 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
675 */
676int idr_for_each(struct idr *idp,
677 int (*fn)(int id, void *p, void *data), void *data)
678{
679 int n, id, max, error = 0;
680 struct idr_layer *p;
326cf0f0 681 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
96d7fa42
KH
682 struct idr_layer **paa = &pa[0];
683
684 n = idp->layers * IDR_BITS;
96be753a 685 p = rcu_dereference_raw(idp->top);
326cf0f0 686 max = idr_max(idp->layers);
96d7fa42
KH
687
688 id = 0;
326cf0f0 689 while (id >= 0 && id <= max) {
96d7fa42
KH
690 while (n > 0 && p) {
691 n -= IDR_BITS;
692 *paa++ = p;
96be753a 693 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
694 }
695
696 if (p) {
697 error = fn(id, (void *)p, data);
698 if (error)
699 break;
700 }
701
702 id += 1 << n;
703 while (n < fls(id)) {
704 n += IDR_BITS;
705 p = *--paa;
706 }
707 }
708
709 return error;
710}
711EXPORT_SYMBOL(idr_for_each);
712
38460b48
KH
713/**
714 * idr_get_next - lookup next object of id to given id.
715 * @idp: idr handle
ea24ea85 716 * @nextidp: pointer to lookup key
38460b48
KH
717 *
718 * Returns pointer to registered object with id, which is next number to
1458ce16
NA
719 * given id. After being looked up, *@nextidp will be updated for the next
720 * iteration.
9f7de827
HD
721 *
722 * This function can be called under rcu_read_lock(), given that the leaf
723 * pointers lifetimes are correctly managed.
38460b48 724 */
38460b48
KH
725void *idr_get_next(struct idr *idp, int *nextidp)
726{
326cf0f0 727 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
38460b48
KH
728 struct idr_layer **paa = &pa[0];
729 int id = *nextidp;
730 int n, max;
731
732 /* find first ent */
94bfa3b6 733 p = rcu_dereference_raw(idp->top);
38460b48
KH
734 if (!p)
735 return NULL;
9f7de827 736 n = (p->layer + 1) * IDR_BITS;
326cf0f0 737 max = idr_max(p->layer + 1);
38460b48 738
326cf0f0 739 while (id >= 0 && id <= max) {
38460b48
KH
740 while (n > 0 && p) {
741 n -= IDR_BITS;
742 *paa++ = p;
94bfa3b6 743 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
38460b48
KH
744 }
745
746 if (p) {
747 *nextidp = id;
748 return p;
749 }
750
6cdae741
TH
751 /*
752 * Proceed to the next layer at the current level. Unlike
753 * idr_for_each(), @id isn't guaranteed to be aligned to
754 * layer boundary at this point and adding 1 << n may
755 * incorrectly skip IDs. Make sure we jump to the
756 * beginning of the next layer using round_up().
757 */
758 id = round_up(id + 1, 1 << n);
38460b48
KH
759 while (n < fls(id)) {
760 n += IDR_BITS;
761 p = *--paa;
762 }
763 }
764 return NULL;
765}
4d1ee80f 766EXPORT_SYMBOL(idr_get_next);
38460b48
KH
767
768
5806f07c
JM
769/**
770 * idr_replace - replace pointer for given id
771 * @idp: idr handle
772 * @ptr: pointer you want associated with the id
773 * @id: lookup key
774 *
775 * Replace the pointer registered with an id and return the old value.
56083ab1
RD
776 * A %-ENOENT return indicates that @id was not found.
777 * A %-EINVAL return indicates that @id was not within valid constraints.
5806f07c 778 *
cf481c20 779 * The caller must serialize with writers.
5806f07c
JM
780 */
781void *idr_replace(struct idr *idp, void *ptr, int id)
782{
783 int n;
784 struct idr_layer *p, *old_p;
785
2e1c9b28 786 if (id < 0)
e8c8d1bc
TH
787 return ERR_PTR(-EINVAL);
788
5806f07c 789 p = idp->top;
6ff2d39b
MS
790 if (!p)
791 return ERR_PTR(-EINVAL);
792
793 n = (p->layer+1) * IDR_BITS;
5806f07c 794
5806f07c
JM
795 if (id >= (1 << n))
796 return ERR_PTR(-EINVAL);
797
798 n -= IDR_BITS;
799 while ((n > 0) && p) {
800 p = p->ary[(id >> n) & IDR_MASK];
801 n -= IDR_BITS;
802 }
803
804 n = id & IDR_MASK;
1d9b2e1e 805 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
5806f07c
JM
806 return ERR_PTR(-ENOENT);
807
808 old_p = p->ary[n];
cf481c20 809 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
810
811 return old_p;
812}
813EXPORT_SYMBOL(idr_replace);
814
199f0ca5 815void __init idr_init_cache(void)
1da177e4 816{
199f0ca5 817 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 818 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
819}
820
821/**
822 * idr_init - initialize idr handle
823 * @idp: idr handle
824 *
825 * This function is use to set up the handle (@idp) that you will pass
826 * to the rest of the functions.
827 */
828void idr_init(struct idr *idp)
829{
1da177e4
LT
830 memset(idp, 0, sizeof(struct idr));
831 spin_lock_init(&idp->lock);
832}
833EXPORT_SYMBOL(idr_init);
72dba584
TH
834
835
56083ab1
RD
836/**
837 * DOC: IDA description
72dba584
TH
838 * IDA - IDR based ID allocator
839 *
56083ab1 840 * This is id allocator without id -> pointer translation. Memory
72dba584
TH
841 * usage is much lower than full blown idr because each id only
842 * occupies a bit. ida uses a custom leaf node which contains
843 * IDA_BITMAP_BITS slots.
844 *
845 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
846 */
847
848static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
849{
850 unsigned long flags;
851
852 if (!ida->free_bitmap) {
853 spin_lock_irqsave(&ida->idr.lock, flags);
854 if (!ida->free_bitmap) {
855 ida->free_bitmap = bitmap;
856 bitmap = NULL;
857 }
858 spin_unlock_irqrestore(&ida->idr.lock, flags);
859 }
860
861 kfree(bitmap);
862}
863
864/**
865 * ida_pre_get - reserve resources for ida allocation
866 * @ida: ida handle
867 * @gfp_mask: memory allocation flag
868 *
869 * This function should be called prior to locking and calling the
870 * following function. It preallocates enough memory to satisfy the
871 * worst possible allocation.
872 *
56083ab1
RD
873 * If the system is REALLY out of memory this function returns %0,
874 * otherwise %1.
72dba584
TH
875 */
876int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
877{
878 /* allocate idr_layers */
c8615d37 879 if (!__idr_pre_get(&ida->idr, gfp_mask))
72dba584
TH
880 return 0;
881
882 /* allocate free_bitmap */
883 if (!ida->free_bitmap) {
884 struct ida_bitmap *bitmap;
885
886 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
887 if (!bitmap)
888 return 0;
889
890 free_bitmap(ida, bitmap);
891 }
892
893 return 1;
894}
895EXPORT_SYMBOL(ida_pre_get);
896
897/**
898 * ida_get_new_above - allocate new ID above or equal to a start id
899 * @ida: ida handle
ea24ea85 900 * @starting_id: id to start search at
72dba584
TH
901 * @p_id: pointer to the allocated handle
902 *
e3816c54
WSH
903 * Allocate new ID above or equal to @starting_id. It should be called
904 * with any required locks.
72dba584 905 *
56083ab1 906 * If memory is required, it will return %-EAGAIN, you should unlock
72dba584 907 * and go back to the ida_pre_get() call. If the ida is full, it will
56083ab1 908 * return %-ENOSPC.
72dba584 909 *
56083ab1 910 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
72dba584
TH
911 */
912int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
913{
326cf0f0 914 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
72dba584
TH
915 struct ida_bitmap *bitmap;
916 unsigned long flags;
917 int idr_id = starting_id / IDA_BITMAP_BITS;
918 int offset = starting_id % IDA_BITMAP_BITS;
919 int t, id;
920
921 restart:
922 /* get vacant slot */
d5c7409f 923 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
944ca05c 924 if (t < 0)
12d1b439 925 return t == -ENOMEM ? -EAGAIN : t;
72dba584 926
125c4c70 927 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
72dba584
TH
928 return -ENOSPC;
929
930 if (t != idr_id)
931 offset = 0;
932 idr_id = t;
933
934 /* if bitmap isn't there, create a new one */
935 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
936 if (!bitmap) {
937 spin_lock_irqsave(&ida->idr.lock, flags);
938 bitmap = ida->free_bitmap;
939 ida->free_bitmap = NULL;
940 spin_unlock_irqrestore(&ida->idr.lock, flags);
941
942 if (!bitmap)
943 return -EAGAIN;
944
945 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
946 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
947 (void *)bitmap);
72dba584
TH
948 pa[0]->count++;
949 }
950
951 /* lookup for empty slot */
952 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
953 if (t == IDA_BITMAP_BITS) {
954 /* no empty slot after offset, continue to the next chunk */
955 idr_id++;
956 offset = 0;
957 goto restart;
958 }
959
960 id = idr_id * IDA_BITMAP_BITS + t;
125c4c70 961 if (id >= MAX_IDR_BIT)
72dba584
TH
962 return -ENOSPC;
963
964 __set_bit(t, bitmap->bitmap);
965 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
966 idr_mark_full(pa, idr_id);
967
968 *p_id = id;
969
970 /* Each leaf node can handle nearly a thousand slots and the
971 * whole idea of ida is to have small memory foot print.
972 * Throw away extra resources one by one after each successful
973 * allocation.
974 */
975 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 976 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
977 if (p)
978 kmem_cache_free(idr_layer_cache, p);
979 }
980
981 return 0;
982}
983EXPORT_SYMBOL(ida_get_new_above);
984
72dba584
TH
985/**
986 * ida_remove - remove the given ID
987 * @ida: ida handle
988 * @id: ID to free
989 */
990void ida_remove(struct ida *ida, int id)
991{
992 struct idr_layer *p = ida->idr.top;
993 int shift = (ida->idr.layers - 1) * IDR_BITS;
994 int idr_id = id / IDA_BITMAP_BITS;
995 int offset = id % IDA_BITMAP_BITS;
996 int n;
997 struct ida_bitmap *bitmap;
998
999 /* clear full bits while looking up the leaf idr_layer */
1000 while ((shift > 0) && p) {
1001 n = (idr_id >> shift) & IDR_MASK;
1d9b2e1e 1002 __clear_bit(n, p->bitmap);
72dba584
TH
1003 p = p->ary[n];
1004 shift -= IDR_BITS;
1005 }
1006
1007 if (p == NULL)
1008 goto err;
1009
1010 n = idr_id & IDR_MASK;
1d9b2e1e 1011 __clear_bit(n, p->bitmap);
72dba584
TH
1012
1013 bitmap = (void *)p->ary[n];
1014 if (!test_bit(offset, bitmap->bitmap))
1015 goto err;
1016
1017 /* update bitmap and remove it if empty */
1018 __clear_bit(offset, bitmap->bitmap);
1019 if (--bitmap->nr_busy == 0) {
1d9b2e1e 1020 __set_bit(n, p->bitmap); /* to please idr_remove() */
72dba584
TH
1021 idr_remove(&ida->idr, idr_id);
1022 free_bitmap(ida, bitmap);
1023 }
1024
1025 return;
1026
1027 err:
1028 printk(KERN_WARNING
1029 "ida_remove called for id=%d which is not allocated.\n", id);
1030}
1031EXPORT_SYMBOL(ida_remove);
1032
1033/**
1034 * ida_destroy - release all cached layers within an ida tree
ea24ea85 1035 * @ida: ida handle
72dba584
TH
1036 */
1037void ida_destroy(struct ida *ida)
1038{
1039 idr_destroy(&ida->idr);
1040 kfree(ida->free_bitmap);
1041}
1042EXPORT_SYMBOL(ida_destroy);
1043
88eca020
RR
1044/**
1045 * ida_simple_get - get a new id.
1046 * @ida: the (initialized) ida.
1047 * @start: the minimum id (inclusive, < 0x8000000)
1048 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1049 * @gfp_mask: memory allocation flags
1050 *
1051 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1052 * On memory allocation failure, returns -ENOMEM.
1053 *
1054 * Use ida_simple_remove() to get rid of an id.
1055 */
1056int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1057 gfp_t gfp_mask)
1058{
1059 int ret, id;
1060 unsigned int max;
46cbc1d3 1061 unsigned long flags;
88eca020
RR
1062
1063 BUG_ON((int)start < 0);
1064 BUG_ON((int)end < 0);
1065
1066 if (end == 0)
1067 max = 0x80000000;
1068 else {
1069 BUG_ON(end < start);
1070 max = end - 1;
1071 }
1072
1073again:
1074 if (!ida_pre_get(ida, gfp_mask))
1075 return -ENOMEM;
1076
46cbc1d3 1077 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020
RR
1078 ret = ida_get_new_above(ida, start, &id);
1079 if (!ret) {
1080 if (id > max) {
1081 ida_remove(ida, id);
1082 ret = -ENOSPC;
1083 } else {
1084 ret = id;
1085 }
1086 }
46cbc1d3 1087 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1088
1089 if (unlikely(ret == -EAGAIN))
1090 goto again;
1091
1092 return ret;
1093}
1094EXPORT_SYMBOL(ida_simple_get);
1095
1096/**
1097 * ida_simple_remove - remove an allocated id.
1098 * @ida: the (initialized) ida.
1099 * @id: the id returned by ida_simple_get.
1100 */
1101void ida_simple_remove(struct ida *ida, unsigned int id)
1102{
46cbc1d3
TH
1103 unsigned long flags;
1104
88eca020 1105 BUG_ON((int)id < 0);
46cbc1d3 1106 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020 1107 ida_remove(ida, id);
46cbc1d3 1108 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1109}
1110EXPORT_SYMBOL(ida_simple_remove);
1111
72dba584
TH
1112/**
1113 * ida_init - initialize ida handle
1114 * @ida: ida handle
1115 *
1116 * This function is use to set up the handle (@ida) that you will pass
1117 * to the rest of the functions.
1118 */
1119void ida_init(struct ida *ida)
1120{
1121 memset(ida, 0, sizeof(struct ida));
1122 idr_init(&ida->idr);
1123
1124}
1125EXPORT_SYMBOL(ida_init);