idr: make idr_layer larger
[linux-2.6-block.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
125c4c70 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
8bc3bcc9 32#include <linux/export.h>
1da177e4 33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
88eca020 37#include <linux/spinlock.h>
d5c7409f
TH
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
1da177e4 40
e8c8d1bc
TH
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
e18b890b 50static struct kmem_cache *idr_layer_cache;
d5c7409f
TH
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
88eca020 53static DEFINE_SPINLOCK(simple_ida_lock);
1da177e4 54
326cf0f0
TH
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
4ae53789 63static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
64{
65 struct idr_layer *p;
c259cc28 66 unsigned long flags;
1da177e4 67
c259cc28 68 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
69 if ((p = idp->id_free)) {
70 idp->id_free = p->ary[0];
71 idp->id_free_cnt--;
72 p->ary[0] = NULL;
73 }
c259cc28 74 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
75 return(p);
76}
77
d5c7409f
TH
78/**
79 * idr_layer_alloc - allocate a new idr_layer
80 * @gfp_mask: allocation mask
81 * @layer_idr: optional idr to allocate from
82 *
83 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
84 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
85 * an idr_layer from @idr->id_free.
86 *
87 * @layer_idr is to maintain backward compatibility with the old alloc
88 * interface - idr_pre_get() and idr_get_new*() - and will be removed
89 * together with per-pool preload buffer.
90 */
91static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
92{
93 struct idr_layer *new;
94
95 /* this is the old path, bypass to get_from_free_list() */
96 if (layer_idr)
97 return get_from_free_list(layer_idr);
98
99 /* try to allocate directly from kmem_cache */
100 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
101 if (new)
102 return new;
103
104 /*
105 * Try to fetch one from the per-cpu preload buffer if in process
106 * context. See idr_preload() for details.
107 */
108 if (in_interrupt())
109 return NULL;
110
111 preempt_disable();
112 new = __this_cpu_read(idr_preload_head);
113 if (new) {
114 __this_cpu_write(idr_preload_head, new->ary[0]);
115 __this_cpu_dec(idr_preload_cnt);
116 new->ary[0] = NULL;
117 }
118 preempt_enable();
119 return new;
120}
121
cf481c20
ND
122static void idr_layer_rcu_free(struct rcu_head *head)
123{
124 struct idr_layer *layer;
125
126 layer = container_of(head, struct idr_layer, rcu_head);
127 kmem_cache_free(idr_layer_cache, layer);
128}
129
130static inline void free_layer(struct idr_layer *p)
131{
132 call_rcu(&p->rcu_head, idr_layer_rcu_free);
133}
134
1eec0056 135/* only called when idp->lock is held */
4ae53789 136static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
137{
138 p->ary[0] = idp->id_free;
139 idp->id_free = p;
140 idp->id_free_cnt++;
141}
142
4ae53789 143static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 144{
c259cc28
RD
145 unsigned long flags;
146
1da177e4
LT
147 /*
148 * Depends on the return element being zeroed.
149 */
c259cc28 150 spin_lock_irqsave(&idp->lock, flags);
4ae53789 151 __move_to_free_list(idp, p);
c259cc28 152 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
153}
154
e33ac8bd
TH
155static void idr_mark_full(struct idr_layer **pa, int id)
156{
157 struct idr_layer *p = pa[0];
158 int l = 0;
159
1d9b2e1e 160 __set_bit(id & IDR_MASK, p->bitmap);
e33ac8bd
TH
161 /*
162 * If this layer is full mark the bit in the layer above to
163 * show that this part of the radix tree is full. This may
164 * complete the layer above and require walking up the radix
165 * tree.
166 */
1d9b2e1e 167 while (bitmap_full(p->bitmap, IDR_SIZE)) {
e33ac8bd
TH
168 if (!(p = pa[++l]))
169 break;
170 id = id >> IDR_BITS;
1d9b2e1e 171 __set_bit((id & IDR_MASK), p->bitmap);
e33ac8bd
TH
172 }
173}
174
1da177e4 175/**
56083ab1 176 * idr_pre_get - reserve resources for idr allocation
1da177e4
LT
177 * @idp: idr handle
178 * @gfp_mask: memory allocation flags
179 *
066a9be6
NA
180 * This function should be called prior to calling the idr_get_new* functions.
181 * It preallocates enough memory to satisfy the worst possible allocation. The
182 * caller should pass in GFP_KERNEL if possible. This of course requires that
183 * no spinning locks be held.
1da177e4 184 *
56083ab1
RD
185 * If the system is REALLY out of memory this function returns %0,
186 * otherwise %1.
1da177e4 187 */
fd4f2df2 188int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4 189{
125c4c70 190 while (idp->id_free_cnt < MAX_IDR_FREE) {
1da177e4 191 struct idr_layer *new;
5b019e99 192 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 193 if (new == NULL)
1da177e4 194 return (0);
4ae53789 195 move_to_free_list(idp, new);
1da177e4
LT
196 }
197 return 1;
198}
199EXPORT_SYMBOL(idr_pre_get);
200
12d1b439
TH
201/**
202 * sub_alloc - try to allocate an id without growing the tree depth
203 * @idp: idr handle
204 * @starting_id: id to start search at
205 * @id: pointer to the allocated handle
206 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
d5c7409f
TH
207 * @gfp_mask: allocation mask for idr_layer_alloc()
208 * @layer_idr: optional idr passed to idr_layer_alloc()
12d1b439
TH
209 *
210 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
211 * growing its depth. Returns
212 *
213 * the allocated id >= 0 if successful,
214 * -EAGAIN if the tree needs to grow for allocation to succeed,
215 * -ENOSPC if the id space is exhausted,
216 * -ENOMEM if more idr_layers need to be allocated.
217 */
d5c7409f
TH
218static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
219 gfp_t gfp_mask, struct idr *layer_idr)
1da177e4
LT
220{
221 int n, m, sh;
222 struct idr_layer *p, *new;
7aae6dd8 223 int l, id, oid;
1da177e4
LT
224
225 id = *starting_id;
7aae6dd8 226 restart:
1da177e4
LT
227 p = idp->top;
228 l = idp->layers;
229 pa[l--] = NULL;
230 while (1) {
231 /*
232 * We run around this while until we reach the leaf node...
233 */
234 n = (id >> (IDR_BITS*l)) & IDR_MASK;
1d9b2e1e 235 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1da177e4
LT
236 if (m == IDR_SIZE) {
237 /* no space available go back to previous layer. */
238 l++;
7aae6dd8 239 oid = id;
e15ae2dd 240 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
241
242 /* if already at the top layer, we need to grow */
d2e7276b 243 if (id >= 1 << (idp->layers * IDR_BITS)) {
1da177e4 244 *starting_id = id;
12d1b439 245 return -EAGAIN;
1da177e4 246 }
d2e7276b
TH
247 p = pa[l];
248 BUG_ON(!p);
7aae6dd8
TH
249
250 /* If we need to go up one layer, continue the
251 * loop; otherwise, restart from the top.
252 */
253 sh = IDR_BITS * (l + 1);
254 if (oid >> sh == id >> sh)
255 continue;
256 else
257 goto restart;
1da177e4
LT
258 }
259 if (m != n) {
260 sh = IDR_BITS*l;
261 id = ((id >> sh) ^ n ^ m) << sh;
262 }
125c4c70 263 if ((id >= MAX_IDR_BIT) || (id < 0))
12d1b439 264 return -ENOSPC;
1da177e4
LT
265 if (l == 0)
266 break;
267 /*
268 * Create the layer below if it is missing.
269 */
270 if (!p->ary[m]) {
d5c7409f 271 new = idr_layer_alloc(gfp_mask, layer_idr);
4ae53789 272 if (!new)
12d1b439 273 return -ENOMEM;
6ff2d39b 274 new->layer = l-1;
3219b3b7 275 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
276 p->count++;
277 }
278 pa[l--] = p;
279 p = p->ary[m];
280 }
e33ac8bd
TH
281
282 pa[l] = p;
283 return id;
1da177e4
LT
284}
285
e33ac8bd 286static int idr_get_empty_slot(struct idr *idp, int starting_id,
d5c7409f
TH
287 struct idr_layer **pa, gfp_t gfp_mask,
288 struct idr *layer_idr)
1da177e4
LT
289{
290 struct idr_layer *p, *new;
291 int layers, v, id;
c259cc28 292 unsigned long flags;
e15ae2dd 293
1da177e4
LT
294 id = starting_id;
295build_up:
296 p = idp->top;
297 layers = idp->layers;
298 if (unlikely(!p)) {
d5c7409f 299 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
12d1b439 300 return -ENOMEM;
6ff2d39b 301 p->layer = 0;
1da177e4
LT
302 layers = 1;
303 }
304 /*
305 * Add a new layer to the top of the tree if the requested
306 * id is larger than the currently allocated space.
307 */
326cf0f0 308 while (id > idr_max(layers)) {
1da177e4 309 layers++;
711a49a0
MS
310 if (!p->count) {
311 /* special case: if the tree is currently empty,
312 * then we grow the tree by moving the top node
313 * upwards.
314 */
315 p->layer++;
1da177e4 316 continue;
711a49a0 317 }
d5c7409f 318 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1da177e4
LT
319 /*
320 * The allocation failed. If we built part of
321 * the structure tear it down.
322 */
c259cc28 323 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
324 for (new = p; p && p != idp->top; new = p) {
325 p = p->ary[0];
326 new->ary[0] = NULL;
1d9b2e1e
TH
327 new->count = 0;
328 bitmap_clear(new->bitmap, 0, IDR_SIZE);
4ae53789 329 __move_to_free_list(idp, new);
1da177e4 330 }
c259cc28 331 spin_unlock_irqrestore(&idp->lock, flags);
12d1b439 332 return -ENOMEM;
1da177e4
LT
333 }
334 new->ary[0] = p;
335 new->count = 1;
6ff2d39b 336 new->layer = layers-1;
1d9b2e1e
TH
337 if (bitmap_full(p->bitmap, IDR_SIZE))
338 __set_bit(0, new->bitmap);
1da177e4
LT
339 p = new;
340 }
3219b3b7 341 rcu_assign_pointer(idp->top, p);
1da177e4 342 idp->layers = layers;
d5c7409f 343 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
12d1b439 344 if (v == -EAGAIN)
1da177e4
LT
345 goto build_up;
346 return(v);
347}
348
3594eb28
TH
349/*
350 * @id and @pa are from a successful allocation from idr_get_empty_slot().
351 * Install the user pointer @ptr and mark the slot full.
352 */
353static void idr_fill_slot(void *ptr, int id, struct idr_layer **pa)
e33ac8bd 354{
3594eb28
TH
355 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
356 pa[0]->count++;
357 idr_mark_full(pa, id);
e33ac8bd
TH
358}
359
1da177e4 360/**
7c657f2f 361 * idr_get_new_above - allocate new idr entry above or equal to a start id
1da177e4 362 * @idp: idr handle
94e2bd68 363 * @ptr: pointer you want associated with the id
ea24ea85 364 * @starting_id: id to start search at
1da177e4
LT
365 * @id: pointer to the allocated handle
366 *
367 * This is the allocate id function. It should be called with any
368 * required locks.
369 *
066a9be6 370 * If allocation from IDR's private freelist fails, idr_get_new_above() will
56083ab1 371 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
066a9be6
NA
372 * IDR's preallocation and then retry the idr_get_new_above() call.
373 *
56083ab1 374 * If the idr is full idr_get_new_above() will return %-ENOSPC.
1da177e4 375 *
56083ab1 376 * @id returns a value in the range @starting_id ... %0x7fffffff
1da177e4
LT
377 */
378int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
379{
326cf0f0 380 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1da177e4 381 int rv;
e15ae2dd 382
d5c7409f 383 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
944ca05c 384 if (rv < 0)
12d1b439 385 return rv == -ENOMEM ? -EAGAIN : rv;
3594eb28
TH
386
387 idr_fill_slot(ptr, rv, pa);
1da177e4
LT
388 *id = rv;
389 return 0;
390}
391EXPORT_SYMBOL(idr_get_new_above);
392
d5c7409f
TH
393/**
394 * idr_preload - preload for idr_alloc()
395 * @gfp_mask: allocation mask to use for preloading
396 *
397 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
398 * process context and each idr_preload() invocation should be matched with
399 * idr_preload_end(). Note that preemption is disabled while preloaded.
400 *
401 * The first idr_alloc() in the preloaded section can be treated as if it
402 * were invoked with @gfp_mask used for preloading. This allows using more
403 * permissive allocation masks for idrs protected by spinlocks.
404 *
405 * For example, if idr_alloc() below fails, the failure can be treated as
406 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
407 *
408 * idr_preload(GFP_KERNEL);
409 * spin_lock(lock);
410 *
411 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
412 *
413 * spin_unlock(lock);
414 * idr_preload_end();
415 * if (id < 0)
416 * error;
417 */
418void idr_preload(gfp_t gfp_mask)
419{
420 /*
421 * Consuming preload buffer from non-process context breaks preload
422 * allocation guarantee. Disallow usage from those contexts.
423 */
424 WARN_ON_ONCE(in_interrupt());
425 might_sleep_if(gfp_mask & __GFP_WAIT);
426
427 preempt_disable();
428
429 /*
430 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
431 * return value from idr_alloc() needs to be checked for failure
432 * anyway. Silently give up if allocation fails. The caller can
433 * treat failures from idr_alloc() as if idr_alloc() were called
434 * with @gfp_mask which should be enough.
435 */
436 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
437 struct idr_layer *new;
438
439 preempt_enable();
440 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
441 preempt_disable();
442 if (!new)
443 break;
444
445 /* link the new one to per-cpu preload list */
446 new->ary[0] = __this_cpu_read(idr_preload_head);
447 __this_cpu_write(idr_preload_head, new);
448 __this_cpu_inc(idr_preload_cnt);
449 }
450}
451EXPORT_SYMBOL(idr_preload);
452
453/**
454 * idr_alloc - allocate new idr entry
455 * @idr: the (initialized) idr
456 * @ptr: pointer to be associated with the new id
457 * @start: the minimum id (inclusive)
458 * @end: the maximum id (exclusive, <= 0 for max)
459 * @gfp_mask: memory allocation flags
460 *
461 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
462 * available in the specified range, returns -ENOSPC. On memory allocation
463 * failure, returns -ENOMEM.
464 *
465 * Note that @end is treated as max when <= 0. This is to always allow
466 * using @start + N as @end as long as N is inside integer range.
467 *
468 * The user is responsible for exclusively synchronizing all operations
469 * which may modify @idr. However, read-only accesses such as idr_find()
470 * or iteration can be performed under RCU read lock provided the user
471 * destroys @ptr in RCU-safe way after removal from idr.
472 */
473int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
474{
475 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
326cf0f0 476 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
d5c7409f
TH
477 int id;
478
479 might_sleep_if(gfp_mask & __GFP_WAIT);
480
481 /* sanity checks */
482 if (WARN_ON_ONCE(start < 0))
483 return -EINVAL;
484 if (unlikely(max < start))
485 return -ENOSPC;
486
487 /* allocate id */
488 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
489 if (unlikely(id < 0))
490 return id;
491 if (unlikely(id > max))
492 return -ENOSPC;
493
494 idr_fill_slot(ptr, id, pa);
495 return id;
496}
497EXPORT_SYMBOL_GPL(idr_alloc);
498
1da177e4
LT
499static void idr_remove_warning(int id)
500{
f098ad65
ND
501 printk(KERN_WARNING
502 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
503 dump_stack();
504}
505
506static void sub_remove(struct idr *idp, int shift, int id)
507{
508 struct idr_layer *p = idp->top;
326cf0f0 509 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1da177e4 510 struct idr_layer ***paa = &pa[0];
cf481c20 511 struct idr_layer *to_free;
1da177e4
LT
512 int n;
513
514 *paa = NULL;
515 *++paa = &idp->top;
516
517 while ((shift > 0) && p) {
518 n = (id >> shift) & IDR_MASK;
1d9b2e1e 519 __clear_bit(n, p->bitmap);
1da177e4
LT
520 *++paa = &p->ary[n];
521 p = p->ary[n];
522 shift -= IDR_BITS;
523 }
524 n = id & IDR_MASK;
1d9b2e1e
TH
525 if (likely(p != NULL && test_bit(n, p->bitmap))) {
526 __clear_bit(n, p->bitmap);
cf481c20
ND
527 rcu_assign_pointer(p->ary[n], NULL);
528 to_free = NULL;
1da177e4 529 while(*paa && ! --((**paa)->count)){
cf481c20
ND
530 if (to_free)
531 free_layer(to_free);
532 to_free = **paa;
1da177e4
LT
533 **paa-- = NULL;
534 }
e15ae2dd 535 if (!*paa)
1da177e4 536 idp->layers = 0;
cf481c20
ND
537 if (to_free)
538 free_layer(to_free);
e15ae2dd 539 } else
1da177e4 540 idr_remove_warning(id);
1da177e4
LT
541}
542
543/**
56083ab1 544 * idr_remove - remove the given id and free its slot
72fd4a35
RD
545 * @idp: idr handle
546 * @id: unique key
1da177e4
LT
547 */
548void idr_remove(struct idr *idp, int id)
549{
550 struct idr_layer *p;
cf481c20 551 struct idr_layer *to_free;
1da177e4 552
e8c8d1bc
TH
553 if (WARN_ON_ONCE(id < 0))
554 return;
1da177e4
LT
555
556 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 557 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
558 idp->top->ary[0]) {
559 /*
560 * Single child at leftmost slot: we can shrink the tree.
561 * This level is not needed anymore since when layers are
562 * inserted, they are inserted at the top of the existing
563 * tree.
564 */
565 to_free = idp->top;
1da177e4 566 p = idp->top->ary[0];
cf481c20 567 rcu_assign_pointer(idp->top, p);
1da177e4 568 --idp->layers;
1d9b2e1e
TH
569 to_free->count = 0;
570 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
cf481c20 571 free_layer(to_free);
1da177e4 572 }
125c4c70 573 while (idp->id_free_cnt >= MAX_IDR_FREE) {
4ae53789 574 p = get_from_free_list(idp);
cf481c20
ND
575 /*
576 * Note: we don't call the rcu callback here, since the only
577 * layers that fall into the freelist are those that have been
578 * preallocated.
579 */
1da177e4 580 kmem_cache_free(idr_layer_cache, p);
1da177e4 581 }
af8e2a4c 582 return;
1da177e4
LT
583}
584EXPORT_SYMBOL(idr_remove);
585
fe6e24ec 586void __idr_remove_all(struct idr *idp)
23936cc0 587{
6ace06dc 588 int n, id, max;
2dcb22b3 589 int bt_mask;
23936cc0 590 struct idr_layer *p;
326cf0f0 591 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
23936cc0
KH
592 struct idr_layer **paa = &pa[0];
593
594 n = idp->layers * IDR_BITS;
595 p = idp->top;
1b23336a 596 rcu_assign_pointer(idp->top, NULL);
326cf0f0 597 max = idr_max(idp->layers);
23936cc0
KH
598
599 id = 0;
326cf0f0 600 while (id >= 0 && id <= max) {
23936cc0
KH
601 while (n > IDR_BITS && p) {
602 n -= IDR_BITS;
603 *paa++ = p;
604 p = p->ary[(id >> n) & IDR_MASK];
605 }
606
2dcb22b3 607 bt_mask = id;
23936cc0 608 id += 1 << n;
2dcb22b3
ID
609 /* Get the highest bit that the above add changed from 0->1. */
610 while (n < fls(id ^ bt_mask)) {
cf481c20
ND
611 if (p)
612 free_layer(p);
23936cc0
KH
613 n += IDR_BITS;
614 p = *--paa;
615 }
616 }
23936cc0
KH
617 idp->layers = 0;
618}
fe6e24ec 619EXPORT_SYMBOL(__idr_remove_all);
23936cc0 620
8d3b3591
AM
621/**
622 * idr_destroy - release all cached layers within an idr tree
ea24ea85 623 * @idp: idr handle
9bb26bc1
TH
624 *
625 * Free all id mappings and all idp_layers. After this function, @idp is
626 * completely unused and can be freed / recycled. The caller is
627 * responsible for ensuring that no one else accesses @idp during or after
628 * idr_destroy().
629 *
630 * A typical clean-up sequence for objects stored in an idr tree will use
631 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
632 * free up the id mappings and cached idr_layers.
8d3b3591
AM
633 */
634void idr_destroy(struct idr *idp)
635{
fe6e24ec 636 __idr_remove_all(idp);
9bb26bc1 637
8d3b3591 638 while (idp->id_free_cnt) {
4ae53789 639 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
640 kmem_cache_free(idr_layer_cache, p);
641 }
642}
643EXPORT_SYMBOL(idr_destroy);
644
1da177e4
LT
645/**
646 * idr_find - return pointer for given id
647 * @idp: idr handle
648 * @id: lookup key
649 *
650 * Return the pointer given the id it has been registered with. A %NULL
651 * return indicates that @id is not valid or you passed %NULL in
652 * idr_get_new().
653 *
f9c46d6e
ND
654 * This function can be called under rcu_read_lock(), given that the leaf
655 * pointers lifetimes are correctly managed.
1da177e4
LT
656 */
657void *idr_find(struct idr *idp, int id)
658{
659 int n;
660 struct idr_layer *p;
661
e8c8d1bc
TH
662 if (WARN_ON_ONCE(id < 0))
663 return NULL;
664
96be753a 665 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
666 if (!p)
667 return NULL;
668 n = (p->layer+1) * IDR_BITS;
1da177e4 669
326cf0f0 670 if (id > idr_max(p->layer + 1))
1da177e4 671 return NULL;
6ff2d39b 672 BUG_ON(n == 0);
1da177e4
LT
673
674 while (n > 0 && p) {
675 n -= IDR_BITS;
6ff2d39b 676 BUG_ON(n != p->layer*IDR_BITS);
96be753a 677 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
678 }
679 return((void *)p);
680}
681EXPORT_SYMBOL(idr_find);
682
96d7fa42
KH
683/**
684 * idr_for_each - iterate through all stored pointers
685 * @idp: idr handle
686 * @fn: function to be called for each pointer
687 * @data: data passed back to callback function
688 *
689 * Iterate over the pointers registered with the given idr. The
690 * callback function will be called for each pointer currently
691 * registered, passing the id, the pointer and the data pointer passed
692 * to this function. It is not safe to modify the idr tree while in
693 * the callback, so functions such as idr_get_new and idr_remove are
694 * not allowed.
695 *
696 * We check the return of @fn each time. If it returns anything other
56083ab1 697 * than %0, we break out and return that value.
96d7fa42
KH
698 *
699 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
700 */
701int idr_for_each(struct idr *idp,
702 int (*fn)(int id, void *p, void *data), void *data)
703{
704 int n, id, max, error = 0;
705 struct idr_layer *p;
326cf0f0 706 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
96d7fa42
KH
707 struct idr_layer **paa = &pa[0];
708
709 n = idp->layers * IDR_BITS;
96be753a 710 p = rcu_dereference_raw(idp->top);
326cf0f0 711 max = idr_max(idp->layers);
96d7fa42
KH
712
713 id = 0;
326cf0f0 714 while (id >= 0 && id <= max) {
96d7fa42
KH
715 while (n > 0 && p) {
716 n -= IDR_BITS;
717 *paa++ = p;
96be753a 718 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
719 }
720
721 if (p) {
722 error = fn(id, (void *)p, data);
723 if (error)
724 break;
725 }
726
727 id += 1 << n;
728 while (n < fls(id)) {
729 n += IDR_BITS;
730 p = *--paa;
731 }
732 }
733
734 return error;
735}
736EXPORT_SYMBOL(idr_for_each);
737
38460b48
KH
738/**
739 * idr_get_next - lookup next object of id to given id.
740 * @idp: idr handle
ea24ea85 741 * @nextidp: pointer to lookup key
38460b48
KH
742 *
743 * Returns pointer to registered object with id, which is next number to
1458ce16
NA
744 * given id. After being looked up, *@nextidp will be updated for the next
745 * iteration.
9f7de827
HD
746 *
747 * This function can be called under rcu_read_lock(), given that the leaf
748 * pointers lifetimes are correctly managed.
38460b48 749 */
38460b48
KH
750void *idr_get_next(struct idr *idp, int *nextidp)
751{
326cf0f0 752 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
38460b48
KH
753 struct idr_layer **paa = &pa[0];
754 int id = *nextidp;
755 int n, max;
756
757 /* find first ent */
94bfa3b6 758 p = rcu_dereference_raw(idp->top);
38460b48
KH
759 if (!p)
760 return NULL;
9f7de827 761 n = (p->layer + 1) * IDR_BITS;
326cf0f0 762 max = idr_max(p->layer + 1);
38460b48 763
326cf0f0 764 while (id >= 0 && id <= max) {
38460b48
KH
765 while (n > 0 && p) {
766 n -= IDR_BITS;
767 *paa++ = p;
94bfa3b6 768 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
38460b48
KH
769 }
770
771 if (p) {
772 *nextidp = id;
773 return p;
774 }
775
6cdae741
TH
776 /*
777 * Proceed to the next layer at the current level. Unlike
778 * idr_for_each(), @id isn't guaranteed to be aligned to
779 * layer boundary at this point and adding 1 << n may
780 * incorrectly skip IDs. Make sure we jump to the
781 * beginning of the next layer using round_up().
782 */
783 id = round_up(id + 1, 1 << n);
38460b48
KH
784 while (n < fls(id)) {
785 n += IDR_BITS;
786 p = *--paa;
787 }
788 }
789 return NULL;
790}
4d1ee80f 791EXPORT_SYMBOL(idr_get_next);
38460b48
KH
792
793
5806f07c
JM
794/**
795 * idr_replace - replace pointer for given id
796 * @idp: idr handle
797 * @ptr: pointer you want associated with the id
798 * @id: lookup key
799 *
800 * Replace the pointer registered with an id and return the old value.
56083ab1
RD
801 * A %-ENOENT return indicates that @id was not found.
802 * A %-EINVAL return indicates that @id was not within valid constraints.
5806f07c 803 *
cf481c20 804 * The caller must serialize with writers.
5806f07c
JM
805 */
806void *idr_replace(struct idr *idp, void *ptr, int id)
807{
808 int n;
809 struct idr_layer *p, *old_p;
810
e8c8d1bc
TH
811 if (WARN_ON_ONCE(id < 0))
812 return ERR_PTR(-EINVAL);
813
5806f07c 814 p = idp->top;
6ff2d39b
MS
815 if (!p)
816 return ERR_PTR(-EINVAL);
817
818 n = (p->layer+1) * IDR_BITS;
5806f07c 819
5806f07c
JM
820 if (id >= (1 << n))
821 return ERR_PTR(-EINVAL);
822
823 n -= IDR_BITS;
824 while ((n > 0) && p) {
825 p = p->ary[(id >> n) & IDR_MASK];
826 n -= IDR_BITS;
827 }
828
829 n = id & IDR_MASK;
1d9b2e1e 830 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
5806f07c
JM
831 return ERR_PTR(-ENOENT);
832
833 old_p = p->ary[n];
cf481c20 834 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
835
836 return old_p;
837}
838EXPORT_SYMBOL(idr_replace);
839
199f0ca5 840void __init idr_init_cache(void)
1da177e4 841{
199f0ca5 842 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 843 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
844}
845
846/**
847 * idr_init - initialize idr handle
848 * @idp: idr handle
849 *
850 * This function is use to set up the handle (@idp) that you will pass
851 * to the rest of the functions.
852 */
853void idr_init(struct idr *idp)
854{
1da177e4
LT
855 memset(idp, 0, sizeof(struct idr));
856 spin_lock_init(&idp->lock);
857}
858EXPORT_SYMBOL(idr_init);
72dba584
TH
859
860
56083ab1
RD
861/**
862 * DOC: IDA description
72dba584
TH
863 * IDA - IDR based ID allocator
864 *
56083ab1 865 * This is id allocator without id -> pointer translation. Memory
72dba584
TH
866 * usage is much lower than full blown idr because each id only
867 * occupies a bit. ida uses a custom leaf node which contains
868 * IDA_BITMAP_BITS slots.
869 *
870 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
871 */
872
873static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
874{
875 unsigned long flags;
876
877 if (!ida->free_bitmap) {
878 spin_lock_irqsave(&ida->idr.lock, flags);
879 if (!ida->free_bitmap) {
880 ida->free_bitmap = bitmap;
881 bitmap = NULL;
882 }
883 spin_unlock_irqrestore(&ida->idr.lock, flags);
884 }
885
886 kfree(bitmap);
887}
888
889/**
890 * ida_pre_get - reserve resources for ida allocation
891 * @ida: ida handle
892 * @gfp_mask: memory allocation flag
893 *
894 * This function should be called prior to locking and calling the
895 * following function. It preallocates enough memory to satisfy the
896 * worst possible allocation.
897 *
56083ab1
RD
898 * If the system is REALLY out of memory this function returns %0,
899 * otherwise %1.
72dba584
TH
900 */
901int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
902{
903 /* allocate idr_layers */
904 if (!idr_pre_get(&ida->idr, gfp_mask))
905 return 0;
906
907 /* allocate free_bitmap */
908 if (!ida->free_bitmap) {
909 struct ida_bitmap *bitmap;
910
911 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
912 if (!bitmap)
913 return 0;
914
915 free_bitmap(ida, bitmap);
916 }
917
918 return 1;
919}
920EXPORT_SYMBOL(ida_pre_get);
921
922/**
923 * ida_get_new_above - allocate new ID above or equal to a start id
924 * @ida: ida handle
ea24ea85 925 * @starting_id: id to start search at
72dba584
TH
926 * @p_id: pointer to the allocated handle
927 *
e3816c54
WSH
928 * Allocate new ID above or equal to @starting_id. It should be called
929 * with any required locks.
72dba584 930 *
56083ab1 931 * If memory is required, it will return %-EAGAIN, you should unlock
72dba584 932 * and go back to the ida_pre_get() call. If the ida is full, it will
56083ab1 933 * return %-ENOSPC.
72dba584 934 *
56083ab1 935 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
72dba584
TH
936 */
937int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
938{
326cf0f0 939 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
72dba584
TH
940 struct ida_bitmap *bitmap;
941 unsigned long flags;
942 int idr_id = starting_id / IDA_BITMAP_BITS;
943 int offset = starting_id % IDA_BITMAP_BITS;
944 int t, id;
945
946 restart:
947 /* get vacant slot */
d5c7409f 948 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
944ca05c 949 if (t < 0)
12d1b439 950 return t == -ENOMEM ? -EAGAIN : t;
72dba584 951
125c4c70 952 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
72dba584
TH
953 return -ENOSPC;
954
955 if (t != idr_id)
956 offset = 0;
957 idr_id = t;
958
959 /* if bitmap isn't there, create a new one */
960 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
961 if (!bitmap) {
962 spin_lock_irqsave(&ida->idr.lock, flags);
963 bitmap = ida->free_bitmap;
964 ida->free_bitmap = NULL;
965 spin_unlock_irqrestore(&ida->idr.lock, flags);
966
967 if (!bitmap)
968 return -EAGAIN;
969
970 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
971 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
972 (void *)bitmap);
72dba584
TH
973 pa[0]->count++;
974 }
975
976 /* lookup for empty slot */
977 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
978 if (t == IDA_BITMAP_BITS) {
979 /* no empty slot after offset, continue to the next chunk */
980 idr_id++;
981 offset = 0;
982 goto restart;
983 }
984
985 id = idr_id * IDA_BITMAP_BITS + t;
125c4c70 986 if (id >= MAX_IDR_BIT)
72dba584
TH
987 return -ENOSPC;
988
989 __set_bit(t, bitmap->bitmap);
990 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
991 idr_mark_full(pa, idr_id);
992
993 *p_id = id;
994
995 /* Each leaf node can handle nearly a thousand slots and the
996 * whole idea of ida is to have small memory foot print.
997 * Throw away extra resources one by one after each successful
998 * allocation.
999 */
1000 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 1001 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
1002 if (p)
1003 kmem_cache_free(idr_layer_cache, p);
1004 }
1005
1006 return 0;
1007}
1008EXPORT_SYMBOL(ida_get_new_above);
1009
72dba584
TH
1010/**
1011 * ida_remove - remove the given ID
1012 * @ida: ida handle
1013 * @id: ID to free
1014 */
1015void ida_remove(struct ida *ida, int id)
1016{
1017 struct idr_layer *p = ida->idr.top;
1018 int shift = (ida->idr.layers - 1) * IDR_BITS;
1019 int idr_id = id / IDA_BITMAP_BITS;
1020 int offset = id % IDA_BITMAP_BITS;
1021 int n;
1022 struct ida_bitmap *bitmap;
1023
1024 /* clear full bits while looking up the leaf idr_layer */
1025 while ((shift > 0) && p) {
1026 n = (idr_id >> shift) & IDR_MASK;
1d9b2e1e 1027 __clear_bit(n, p->bitmap);
72dba584
TH
1028 p = p->ary[n];
1029 shift -= IDR_BITS;
1030 }
1031
1032 if (p == NULL)
1033 goto err;
1034
1035 n = idr_id & IDR_MASK;
1d9b2e1e 1036 __clear_bit(n, p->bitmap);
72dba584
TH
1037
1038 bitmap = (void *)p->ary[n];
1039 if (!test_bit(offset, bitmap->bitmap))
1040 goto err;
1041
1042 /* update bitmap and remove it if empty */
1043 __clear_bit(offset, bitmap->bitmap);
1044 if (--bitmap->nr_busy == 0) {
1d9b2e1e 1045 __set_bit(n, p->bitmap); /* to please idr_remove() */
72dba584
TH
1046 idr_remove(&ida->idr, idr_id);
1047 free_bitmap(ida, bitmap);
1048 }
1049
1050 return;
1051
1052 err:
1053 printk(KERN_WARNING
1054 "ida_remove called for id=%d which is not allocated.\n", id);
1055}
1056EXPORT_SYMBOL(ida_remove);
1057
1058/**
1059 * ida_destroy - release all cached layers within an ida tree
ea24ea85 1060 * @ida: ida handle
72dba584
TH
1061 */
1062void ida_destroy(struct ida *ida)
1063{
1064 idr_destroy(&ida->idr);
1065 kfree(ida->free_bitmap);
1066}
1067EXPORT_SYMBOL(ida_destroy);
1068
88eca020
RR
1069/**
1070 * ida_simple_get - get a new id.
1071 * @ida: the (initialized) ida.
1072 * @start: the minimum id (inclusive, < 0x8000000)
1073 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1074 * @gfp_mask: memory allocation flags
1075 *
1076 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1077 * On memory allocation failure, returns -ENOMEM.
1078 *
1079 * Use ida_simple_remove() to get rid of an id.
1080 */
1081int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1082 gfp_t gfp_mask)
1083{
1084 int ret, id;
1085 unsigned int max;
46cbc1d3 1086 unsigned long flags;
88eca020
RR
1087
1088 BUG_ON((int)start < 0);
1089 BUG_ON((int)end < 0);
1090
1091 if (end == 0)
1092 max = 0x80000000;
1093 else {
1094 BUG_ON(end < start);
1095 max = end - 1;
1096 }
1097
1098again:
1099 if (!ida_pre_get(ida, gfp_mask))
1100 return -ENOMEM;
1101
46cbc1d3 1102 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020
RR
1103 ret = ida_get_new_above(ida, start, &id);
1104 if (!ret) {
1105 if (id > max) {
1106 ida_remove(ida, id);
1107 ret = -ENOSPC;
1108 } else {
1109 ret = id;
1110 }
1111 }
46cbc1d3 1112 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1113
1114 if (unlikely(ret == -EAGAIN))
1115 goto again;
1116
1117 return ret;
1118}
1119EXPORT_SYMBOL(ida_simple_get);
1120
1121/**
1122 * ida_simple_remove - remove an allocated id.
1123 * @ida: the (initialized) ida.
1124 * @id: the id returned by ida_simple_get.
1125 */
1126void ida_simple_remove(struct ida *ida, unsigned int id)
1127{
46cbc1d3
TH
1128 unsigned long flags;
1129
88eca020 1130 BUG_ON((int)id < 0);
46cbc1d3 1131 spin_lock_irqsave(&simple_ida_lock, flags);
88eca020 1132 ida_remove(ida, id);
46cbc1d3 1133 spin_unlock_irqrestore(&simple_ida_lock, flags);
88eca020
RR
1134}
1135EXPORT_SYMBOL(ida_simple_remove);
1136
72dba584
TH
1137/**
1138 * ida_init - initialize ida handle
1139 * @ida: ida handle
1140 *
1141 * This function is use to set up the handle (@ida) that you will pass
1142 * to the rest of the functions.
1143 */
1144void ida_init(struct ida *ida)
1145{
1146 memset(ida, 0, sizeof(struct ida));
1147 idr_init(&ida->idr);
1148
1149}
1150EXPORT_SYMBOL(ida_init);