powerpc/mm:book3s: Enable THP migration support
[linux-2.6-block.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
e52bc7c2 15#include <linux/kernel.h>
c42b65e3 16#include <linux/slab.h>
e52bc7c2 17#include <linux/string.h>
13d4ea09 18#include <linux/uaccess.h>
5aaba363
SH
19
20#include <asm/page.h>
1da177e4 21
7d7363e4
RD
22/**
23 * DOC: bitmap introduction
24 *
1da177e4
LT
25 * bitmaps provide an array of bits, implemented using an an
26 * array of unsigned longs. The number of valid bits in a
27 * given bitmap does _not_ need to be an exact multiple of
28 * BITS_PER_LONG.
29 *
30 * The possible unused bits in the last, partially used word
31 * of a bitmap are 'don't care'. The implementation makes
32 * no particular effort to keep them zero. It ensures that
33 * their value will not affect the results of any operation.
34 * The bitmap operations that return Boolean (bitmap_empty,
35 * for example) or scalar (bitmap_weight, for example) results
36 * carefully filter out these unused bits from impacting their
37 * results.
38 *
39 * These operations actually hold to a slightly stronger rule:
40 * if you don't input any bitmaps to these ops that have some
41 * unused bits set, then they won't output any set unused bits
42 * in output bitmaps.
43 *
44 * The byte ordering of bitmaps is more natural on little
45 * endian architectures. See the big-endian headers
46 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
47 * for the best explanations of this ordering.
48 */
49
1da177e4 50int __bitmap_equal(const unsigned long *bitmap1,
5e068069 51 const unsigned long *bitmap2, unsigned int bits)
1da177e4 52{
5e068069 53 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
54 for (k = 0; k < lim; ++k)
55 if (bitmap1[k] != bitmap2[k])
56 return 0;
57
58 if (bits % BITS_PER_LONG)
59 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
60 return 0;
61
62 return 1;
63}
64EXPORT_SYMBOL(__bitmap_equal);
65
3d6684f4 66void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 67{
ca1250bb 68 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
69 for (k = 0; k < lim; ++k)
70 dst[k] = ~src[k];
1da177e4
LT
71}
72EXPORT_SYMBOL(__bitmap_complement);
73
72fd4a35 74/**
1da177e4 75 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
76 * @dst : destination bitmap
77 * @src : source bitmap
78 * @shift : shift by this many bits
2fbad299 79 * @nbits : bitmap size, in bits
1da177e4
LT
80 *
81 * Shifting right (dividing) means moving bits in the MS -> LS bit
82 * direction. Zeros are fed into the vacated MS positions and the
83 * LS bits shifted off the bottom are lost.
84 */
2fbad299
RV
85void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
86 unsigned shift, unsigned nbits)
1da177e4 87{
cfac1d08 88 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 89 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 90 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
91 for (k = 0; off + k < lim; ++k) {
92 unsigned long upper, lower;
93
94 /*
95 * If shift is not word aligned, take lower rem bits of
96 * word above and make them the top rem bits of result.
97 */
98 if (!rem || off + k + 1 >= lim)
99 upper = 0;
100 else {
101 upper = src[off + k + 1];
cfac1d08 102 if (off + k + 1 == lim - 1)
1da177e4 103 upper &= mask;
9d8a6b2a 104 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
105 }
106 lower = src[off + k];
cfac1d08 107 if (off + k == lim - 1)
1da177e4 108 lower &= mask;
9d8a6b2a
RV
109 lower >>= rem;
110 dst[k] = lower | upper;
1da177e4
LT
111 }
112 if (off)
113 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
114}
115EXPORT_SYMBOL(__bitmap_shift_right);
116
117
72fd4a35 118/**
1da177e4 119 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
120 * @dst : destination bitmap
121 * @src : source bitmap
122 * @shift : shift by this many bits
dba94c25 123 * @nbits : bitmap size, in bits
1da177e4
LT
124 *
125 * Shifting left (multiplying) means moving bits in the LS -> MS
126 * direction. Zeros are fed into the vacated LS bit positions
127 * and those MS bits shifted off the top are lost.
128 */
129
dba94c25
RV
130void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
131 unsigned int shift, unsigned int nbits)
1da177e4 132{
dba94c25 133 int k;
7f590657 134 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 135 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
136 for (k = lim - off - 1; k >= 0; --k) {
137 unsigned long upper, lower;
138
139 /*
140 * If shift is not word aligned, take upper rem bits of
141 * word below and make them the bottom rem bits of result.
142 */
143 if (rem && k > 0)
6d874eca 144 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
145 else
146 lower = 0;
7f590657 147 upper = src[k] << rem;
6d874eca 148 dst[k + off] = lower | upper;
1da177e4
LT
149 }
150 if (off)
151 memset(dst, 0, off*sizeof(unsigned long));
152}
153EXPORT_SYMBOL(__bitmap_shift_left);
154
f4b0373b 155int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 156 const unsigned long *bitmap2, unsigned int bits)
1da177e4 157{
2f9305eb 158 unsigned int k;
7e5f97d1 159 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 160 unsigned long result = 0;
1da177e4 161
7e5f97d1 162 for (k = 0; k < lim; k++)
f4b0373b 163 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
164 if (bits % BITS_PER_LONG)
165 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
166 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 167 return result != 0;
1da177e4
LT
168}
169EXPORT_SYMBOL(__bitmap_and);
170
171void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 172 const unsigned long *bitmap2, unsigned int bits)
1da177e4 173{
2f9305eb
RV
174 unsigned int k;
175 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
176
177 for (k = 0; k < nr; k++)
178 dst[k] = bitmap1[k] | bitmap2[k];
179}
180EXPORT_SYMBOL(__bitmap_or);
181
182void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 183 const unsigned long *bitmap2, unsigned int bits)
1da177e4 184{
2f9305eb
RV
185 unsigned int k;
186 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
187
188 for (k = 0; k < nr; k++)
189 dst[k] = bitmap1[k] ^ bitmap2[k];
190}
191EXPORT_SYMBOL(__bitmap_xor);
192
f4b0373b 193int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 194 const unsigned long *bitmap2, unsigned int bits)
1da177e4 195{
2f9305eb 196 unsigned int k;
74e76531 197 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 198 unsigned long result = 0;
1da177e4 199
74e76531 200 for (k = 0; k < lim; k++)
f4b0373b 201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
202 if (bits % BITS_PER_LONG)
203 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
204 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 205 return result != 0;
1da177e4
LT
206}
207EXPORT_SYMBOL(__bitmap_andnot);
208
209int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 210 const unsigned long *bitmap2, unsigned int bits)
1da177e4 211{
6dfe9799 212 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
213 for (k = 0; k < lim; ++k)
214 if (bitmap1[k] & bitmap2[k])
215 return 1;
216
217 if (bits % BITS_PER_LONG)
218 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
219 return 1;
220 return 0;
221}
222EXPORT_SYMBOL(__bitmap_intersects);
223
224int __bitmap_subset(const unsigned long *bitmap1,
5be20213 225 const unsigned long *bitmap2, unsigned int bits)
1da177e4 226{
5be20213 227 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
228 for (k = 0; k < lim; ++k)
229 if (bitmap1[k] & ~bitmap2[k])
230 return 0;
231
232 if (bits % BITS_PER_LONG)
233 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
234 return 0;
235 return 1;
236}
237EXPORT_SYMBOL(__bitmap_subset);
238
877d9f3b 239int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 240{
877d9f3b
RV
241 unsigned int k, lim = bits/BITS_PER_LONG;
242 int w = 0;
1da177e4
LT
243
244 for (k = 0; k < lim; k++)
37d54111 245 w += hweight_long(bitmap[k]);
1da177e4
LT
246
247 if (bits % BITS_PER_LONG)
37d54111 248 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
249
250 return w;
251}
1da177e4
LT
252EXPORT_SYMBOL(__bitmap_weight);
253
e5af323c 254void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
255{
256 unsigned long *p = map + BIT_WORD(start);
fb5ac542 257 const unsigned int size = start + len;
c1a2a962
AM
258 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
259 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
260
fb5ac542 261 while (len - bits_to_set >= 0) {
c1a2a962 262 *p |= mask_to_set;
fb5ac542 263 len -= bits_to_set;
c1a2a962
AM
264 bits_to_set = BITS_PER_LONG;
265 mask_to_set = ~0UL;
266 p++;
267 }
fb5ac542 268 if (len) {
c1a2a962
AM
269 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
270 *p |= mask_to_set;
271 }
272}
e5af323c 273EXPORT_SYMBOL(__bitmap_set);
c1a2a962 274
e5af323c 275void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
276{
277 unsigned long *p = map + BIT_WORD(start);
154f5e38 278 const unsigned int size = start + len;
c1a2a962
AM
279 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
280 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
281
154f5e38 282 while (len - bits_to_clear >= 0) {
c1a2a962 283 *p &= ~mask_to_clear;
154f5e38 284 len -= bits_to_clear;
c1a2a962
AM
285 bits_to_clear = BITS_PER_LONG;
286 mask_to_clear = ~0UL;
287 p++;
288 }
154f5e38 289 if (len) {
c1a2a962
AM
290 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
291 *p &= ~mask_to_clear;
292 }
293}
e5af323c 294EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 295
5e19b013
MN
296/**
297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
298 * @map: The address to base the search on
299 * @size: The bitmap size in bits
300 * @start: The bitnumber to start searching at
301 * @nr: The number of zeroed bits we're looking for
302 * @align_mask: Alignment mask for zero area
5e19b013 303 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
304 *
305 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
306 * the bit offset of all zero areas this function finds plus @align_offset
307 * is multiple of that power of 2.
c1a2a962 308 */
5e19b013
MN
309unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
310 unsigned long size,
311 unsigned long start,
312 unsigned int nr,
313 unsigned long align_mask,
314 unsigned long align_offset)
c1a2a962
AM
315{
316 unsigned long index, end, i;
317again:
318 index = find_next_zero_bit(map, size, start);
319
320 /* Align allocation */
5e19b013 321 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
322
323 end = index + nr;
324 if (end > size)
325 return end;
326 i = find_next_bit(map, end, index);
327 if (i < end) {
328 start = i + 1;
329 goto again;
330 }
331 return index;
332}
5e19b013 333EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 334
1da177e4 335/*
6d49e352 336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
337 * second version by Paul Jackson, third by Joe Korty.
338 */
339
340#define CHUNKSZ 32
341#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
342#define BASEDEC 10 /* fancier cpuset lists input in decimal */
343
1da177e4 344/**
01a3ee2b
RC
345 * __bitmap_parse - convert an ASCII hex string into a bitmap.
346 * @buf: pointer to buffer containing string.
347 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 348 * then it must be terminated with a \0.
01a3ee2b 349 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
350 * @maskp: pointer to bitmap array that will contain result.
351 * @nmaskbits: size of bitmap, in bits.
352 *
353 * Commas group hex digits into chunks. Each chunk defines exactly 32
354 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
357 * characters and for grouping errors such as "1,,5", ",44", "," and "".
358 * Leading and trailing whitespace accepted, but not embedded whitespace.
359 */
01a3ee2b
RC
360int __bitmap_parse(const char *buf, unsigned int buflen,
361 int is_user, unsigned long *maskp,
362 int nmaskbits)
1da177e4
LT
363{
364 int c, old_c, totaldigits, ndigits, nchunks, nbits;
365 u32 chunk;
b9c321fd 366 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
367
368 bitmap_zero(maskp, nmaskbits);
369
370 nchunks = nbits = totaldigits = c = 0;
371 do {
d21c3d4d
PX
372 chunk = 0;
373 ndigits = totaldigits;
1da177e4
LT
374
375 /* Get the next chunk of the bitmap */
01a3ee2b 376 while (buflen) {
1da177e4 377 old_c = c;
01a3ee2b
RC
378 if (is_user) {
379 if (__get_user(c, ubuf++))
380 return -EFAULT;
381 }
382 else
383 c = *buf++;
384 buflen--;
1da177e4
LT
385 if (isspace(c))
386 continue;
387
388 /*
389 * If the last character was a space and the current
390 * character isn't '\0', we've got embedded whitespace.
391 * This is a no-no, so throw an error.
392 */
393 if (totaldigits && c && isspace(old_c))
394 return -EINVAL;
395
396 /* A '\0' or a ',' signal the end of the chunk */
397 if (c == '\0' || c == ',')
398 break;
399
400 if (!isxdigit(c))
401 return -EINVAL;
402
403 /*
404 * Make sure there are at least 4 free bits in 'chunk'.
405 * If not, this hexdigit will overflow 'chunk', so
406 * throw an error.
407 */
408 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
409 return -EOVERFLOW;
410
66f1991b 411 chunk = (chunk << 4) | hex_to_bin(c);
d21c3d4d 412 totaldigits++;
1da177e4 413 }
d21c3d4d 414 if (ndigits == totaldigits)
1da177e4
LT
415 return -EINVAL;
416 if (nchunks == 0 && chunk == 0)
417 continue;
418
419 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
420 *maskp |= chunk;
421 nchunks++;
422 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
423 if (nbits > nmaskbits)
424 return -EOVERFLOW;
01a3ee2b 425 } while (buflen && c == ',');
1da177e4
LT
426
427 return 0;
428}
01a3ee2b
RC
429EXPORT_SYMBOL(__bitmap_parse);
430
431/**
9a86e2ba 432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
433 *
434 * @ubuf: pointer to user buffer containing string.
435 * @ulen: buffer size in bytes. If string is smaller than this
436 * then it must be terminated with a \0.
437 * @maskp: pointer to bitmap array that will contain result.
438 * @nmaskbits: size of bitmap, in bits.
439 *
440 * Wrapper for __bitmap_parse(), providing it with user buffer.
441 *
442 * We cannot have this as an inline function in bitmap.h because it needs
443 * linux/uaccess.h to get the access_ok() declaration and this causes
444 * cyclic dependencies.
445 */
446int bitmap_parse_user(const char __user *ubuf,
447 unsigned int ulen, unsigned long *maskp,
448 int nmaskbits)
449{
450 if (!access_ok(VERIFY_READ, ubuf, ulen))
451 return -EFAULT;
b9c321fd
HS
452 return __bitmap_parse((const char __force *)ubuf,
453 ulen, 1, maskp, nmaskbits);
454
01a3ee2b
RC
455}
456EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 457
5aaba363
SH
458/**
459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460 * @list: indicates whether the bitmap must be list
461 * @buf: page aligned buffer into which string is placed
462 * @maskp: pointer to bitmap to convert
463 * @nmaskbits: size of bitmap, in bits
464 *
465 * Output format is a comma-separated list of decimal numbers and
466 * ranges if list is specified or hex digits grouped into comma-separated
467 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11
SH
468 *
469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470 * sufficient storage remains at @buf to accommodate the
471 * bitmap_print_to_pagebuf() output.
5aaba363
SH
472 */
473int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
474 int nmaskbits)
475{
9cf79d11 476 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
5aaba363
SH
477 int n = 0;
478
9cf79d11
SH
479 if (len > 1)
480 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
481 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
482 return n;
483}
484EXPORT_SYMBOL(bitmap_print_to_pagebuf);
485
1da177e4 486/**
4b060420 487 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 488 * @buf: read nul-terminated user string from this buffer
4b060420
MT
489 * @buflen: buffer size in bytes. If string is smaller than this
490 * then it must be terminated with a \0.
491 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 492 * @maskp: write resulting mask here
1da177e4
LT
493 * @nmaskbits: number of bits in mask to be written
494 *
495 * Input format is a comma-separated list of decimal numbers and
496 * ranges. Consecutively set bits are shown as two hyphen-separated
497 * decimal numbers, the smallest and largest bit numbers set in
498 * the range.
2d13e6ca
NC
499 * Optionally each range can be postfixed to denote that only parts of it
500 * should be set. The range will divided to groups of specific size.
501 * From each group will be used only defined amount of bits.
502 * Syntax: range:used_size/group_size
503 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 504 *
40bf19a8 505 * Returns: 0 on success, -errno on invalid input strings. Error values:
506 *
507 * - ``-EINVAL``: second number in range smaller than first
508 * - ``-EINVAL``: invalid character in string
509 * - ``-ERANGE``: bit number specified too large for mask
1da177e4 510 */
4b060420
MT
511static int __bitmap_parselist(const char *buf, unsigned int buflen,
512 int is_user, unsigned long *maskp,
513 int nmaskbits)
1da177e4 514{
2d13e6ca 515 unsigned int a, b, old_a, old_b;
0a5ce083 516 unsigned int group_size, used_size, off;
9bf98f16 517 int c, old_c, totaldigits, ndigits;
b9c321fd 518 const char __user __force *ubuf = (const char __user __force *)buf;
2d13e6ca 519 int at_start, in_range, in_partial_range;
1da177e4 520
4b060420 521 totaldigits = c = 0;
2d13e6ca
NC
522 old_a = old_b = 0;
523 group_size = used_size = 0;
1da177e4
LT
524 bitmap_zero(maskp, nmaskbits);
525 do {
2528a8b8 526 at_start = 1;
4b060420 527 in_range = 0;
2d13e6ca 528 in_partial_range = 0;
4b060420 529 a = b = 0;
9bf98f16 530 ndigits = totaldigits;
4b060420
MT
531
532 /* Get the next cpu# or a range of cpu#'s */
533 while (buflen) {
534 old_c = c;
535 if (is_user) {
536 if (__get_user(c, ubuf++))
537 return -EFAULT;
538 } else
539 c = *buf++;
540 buflen--;
541 if (isspace(c))
542 continue;
543
4b060420
MT
544 /* A '\0' or a ',' signal the end of a cpu# or range */
545 if (c == '\0' || c == ',')
546 break;
9bf98f16
PX
547 /*
548 * whitespaces between digits are not allowed,
549 * but it's ok if whitespaces are on head or tail.
550 * when old_c is whilespace,
551 * if totaldigits == ndigits, whitespace is on head.
552 * if whitespace is on tail, it should not run here.
553 * as c was ',' or '\0',
554 * the last code line has broken the current loop.
555 */
556 if ((totaldigits != ndigits) && isspace(old_c))
557 return -EINVAL;
4b060420 558
2d13e6ca
NC
559 if (c == '/') {
560 used_size = a;
561 at_start = 1;
562 in_range = 0;
563 a = b = 0;
564 continue;
565 }
566
567 if (c == ':') {
568 old_a = a;
569 old_b = b;
570 at_start = 1;
571 in_range = 0;
572 in_partial_range = 1;
573 a = b = 0;
574 continue;
575 }
576
4b060420 577 if (c == '-') {
2528a8b8 578 if (at_start || in_range)
4b060420
MT
579 return -EINVAL;
580 b = 0;
581 in_range = 1;
d9282cb6 582 at_start = 1;
4b060420
MT
583 continue;
584 }
585
586 if (!isdigit(c))
1da177e4 587 return -EINVAL;
4b060420
MT
588
589 b = b * 10 + (c - '0');
590 if (!in_range)
591 a = b;
2528a8b8 592 at_start = 0;
4b060420 593 totaldigits++;
1da177e4 594 }
9bf98f16
PX
595 if (ndigits == totaldigits)
596 continue;
2d13e6ca
NC
597 if (in_partial_range) {
598 group_size = a;
599 a = old_a;
600 b = old_b;
601 old_a = old_b = 0;
0a5ce083
YN
602 } else {
603 used_size = group_size = b - a + 1;
2d13e6ca 604 }
d9282cb6
PX
605 /* if no digit is after '-', it's wrong*/
606 if (at_start && in_range)
607 return -EINVAL;
8351760f 608 if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
1da177e4
LT
609 return -EINVAL;
610 if (b >= nmaskbits)
611 return -ERANGE;
9bf98f16 612 while (a <= b) {
0a5ce083
YN
613 off = min(b - a + 1, used_size);
614 bitmap_set(maskp, a, off);
615 a += group_size;
1da177e4 616 }
4b060420 617 } while (buflen && c == ',');
1da177e4
LT
618 return 0;
619}
4b060420
MT
620
621int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
622{
bc5be182
RV
623 char *nl = strchrnul(bp, '\n');
624 int len = nl - bp;
4b060420
MT
625
626 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
627}
1da177e4
LT
628EXPORT_SYMBOL(bitmap_parselist);
629
4b060420
MT
630
631/**
632 * bitmap_parselist_user()
633 *
634 * @ubuf: pointer to user buffer containing string.
635 * @ulen: buffer size in bytes. If string is smaller than this
636 * then it must be terminated with a \0.
637 * @maskp: pointer to bitmap array that will contain result.
638 * @nmaskbits: size of bitmap, in bits.
639 *
640 * Wrapper for bitmap_parselist(), providing it with user buffer.
641 *
642 * We cannot have this as an inline function in bitmap.h because it needs
643 * linux/uaccess.h to get the access_ok() declaration and this causes
644 * cyclic dependencies.
645 */
646int bitmap_parselist_user(const char __user *ubuf,
647 unsigned int ulen, unsigned long *maskp,
648 int nmaskbits)
649{
650 if (!access_ok(VERIFY_READ, ubuf, ulen))
651 return -EFAULT;
b9c321fd 652 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
653 ulen, 1, maskp, nmaskbits);
654}
655EXPORT_SYMBOL(bitmap_parselist_user);
656
657
72fd4a35 658/**
9a86e2ba 659 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 660 * @buf: pointer to a bitmap
df1d80a9
RV
661 * @pos: a bit position in @buf (0 <= @pos < @nbits)
662 * @nbits: number of valid bit positions in @buf
fb5eeeee 663 *
df1d80a9 664 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 665 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 666 * is not a valid bit position, map to -1.
fb5eeeee
PJ
667 *
668 * If for example, just bits 4 through 7 are set in @buf, then @pos
669 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 670 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
671 * gets mapped to (returns) @ord value 3 in this example, that means
672 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
673 *
674 * The bit positions 0 through @bits are valid positions in @buf.
675 */
df1d80a9 676static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 677{
df1d80a9 678 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 679 return -1;
fb5eeeee 680
df1d80a9 681 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
682}
683
684/**
9a86e2ba 685 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
686 * @buf: pointer to bitmap
687 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 688 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
689 *
690 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
691 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
692 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
693 *
694 * If for example, just bits 4 through 7 are set in @buf, then @ord
695 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 696 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
697 * gets mapped to (returns) @pos value 7 in this example, that means
698 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
699 *
f6a1f5db 700 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 701 */
f6a1f5db 702unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 703{
f6a1f5db 704 unsigned int pos;
fb5eeeee 705
f6a1f5db
RV
706 for (pos = find_first_bit(buf, nbits);
707 pos < nbits && ord;
708 pos = find_next_bit(buf, nbits, pos + 1))
709 ord--;
fb5eeeee
PJ
710
711 return pos;
712}
713
714/**
715 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 716 * @dst: remapped result
96b7f341 717 * @src: subset to be remapped
fb5eeeee
PJ
718 * @old: defines domain of map
719 * @new: defines range of map
9814ec13 720 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
721 *
722 * Let @old and @new define a mapping of bit positions, such that
723 * whatever position is held by the n-th set bit in @old is mapped
724 * to the n-th set bit in @new. In the more general case, allowing
725 * for the possibility that the weight 'w' of @new is less than the
726 * weight of @old, map the position of the n-th set bit in @old to
727 * the position of the m-th set bit in @new, where m == n % w.
728 *
96b7f341
PJ
729 * If either of the @old and @new bitmaps are empty, or if @src and
730 * @dst point to the same location, then this routine copies @src
731 * to @dst.
fb5eeeee 732 *
96b7f341
PJ
733 * The positions of unset bits in @old are mapped to themselves
734 * (the identify map).
fb5eeeee
PJ
735 *
736 * Apply the above specified mapping to @src, placing the result in
737 * @dst, clearing any bits previously set in @dst.
738 *
fb5eeeee
PJ
739 * For example, lets say that @old has bits 4 through 7 set, and
740 * @new has bits 12 through 15 set. This defines the mapping of bit
741 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
742 * bit positions unchanged. So if say @src comes into this routine
743 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
744 * 13 and 15 set.
fb5eeeee
PJ
745 */
746void bitmap_remap(unsigned long *dst, const unsigned long *src,
747 const unsigned long *old, const unsigned long *new,
9814ec13 748 unsigned int nbits)
fb5eeeee 749{
9814ec13 750 unsigned int oldbit, w;
fb5eeeee 751
fb5eeeee
PJ
752 if (dst == src) /* following doesn't handle inplace remaps */
753 return;
9814ec13 754 bitmap_zero(dst, nbits);
96b7f341 755
9814ec13
RV
756 w = bitmap_weight(new, nbits);
757 for_each_set_bit(oldbit, src, nbits) {
758 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 759
96b7f341
PJ
760 if (n < 0 || w == 0)
761 set_bit(oldbit, dst); /* identity map */
762 else
9814ec13 763 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
764 }
765}
766EXPORT_SYMBOL(bitmap_remap);
767
768/**
769 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
770 * @oldbit: bit position to be mapped
771 * @old: defines domain of map
772 * @new: defines range of map
773 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
774 *
775 * Let @old and @new define a mapping of bit positions, such that
776 * whatever position is held by the n-th set bit in @old is mapped
777 * to the n-th set bit in @new. In the more general case, allowing
778 * for the possibility that the weight 'w' of @new is less than the
779 * weight of @old, map the position of the n-th set bit in @old to
780 * the position of the m-th set bit in @new, where m == n % w.
781 *
96b7f341
PJ
782 * The positions of unset bits in @old are mapped to themselves
783 * (the identify map).
fb5eeeee
PJ
784 *
785 * Apply the above specified mapping to bit position @oldbit, returning
786 * the new bit position.
787 *
788 * For example, lets say that @old has bits 4 through 7 set, and
789 * @new has bits 12 through 15 set. This defines the mapping of bit
790 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
791 * bit positions unchanged. So if say @oldbit is 5, then this routine
792 * returns 13.
fb5eeeee
PJ
793 */
794int bitmap_bitremap(int oldbit, const unsigned long *old,
795 const unsigned long *new, int bits)
796{
96b7f341
PJ
797 int w = bitmap_weight(new, bits);
798 int n = bitmap_pos_to_ord(old, oldbit, bits);
799 if (n < 0 || w == 0)
800 return oldbit;
801 else
802 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
803}
804EXPORT_SYMBOL(bitmap_bitremap);
805
7ea931c9
PJ
806/**
807 * bitmap_onto - translate one bitmap relative to another
808 * @dst: resulting translated bitmap
809 * @orig: original untranslated bitmap
810 * @relmap: bitmap relative to which translated
811 * @bits: number of bits in each of these bitmaps
812 *
813 * Set the n-th bit of @dst iff there exists some m such that the
814 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
815 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
816 * (If you understood the previous sentence the first time your
817 * read it, you're overqualified for your current job.)
818 *
819 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 820 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
821 * m-th set bit of @relmap }.
822 *
823 * Any set bits in @orig above bit number W, where W is the
824 * weight of (number of set bits in) @relmap are mapped nowhere.
825 * In particular, if for all bits m set in @orig, m >= W, then
826 * @dst will end up empty. In situations where the possibility
827 * of such an empty result is not desired, one way to avoid it is
828 * to use the bitmap_fold() operator, below, to first fold the
829 * @orig bitmap over itself so that all its set bits x are in the
830 * range 0 <= x < W. The bitmap_fold() operator does this by
831 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
832 *
833 * Example [1] for bitmap_onto():
834 * Let's say @relmap has bits 30-39 set, and @orig has bits
835 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
836 * @dst will have bits 31, 33, 35, 37 and 39 set.
837 *
838 * When bit 0 is set in @orig, it means turn on the bit in
839 * @dst corresponding to whatever is the first bit (if any)
840 * that is turned on in @relmap. Since bit 0 was off in the
841 * above example, we leave off that bit (bit 30) in @dst.
842 *
843 * When bit 1 is set in @orig (as in the above example), it
844 * means turn on the bit in @dst corresponding to whatever
845 * is the second bit that is turned on in @relmap. The second
846 * bit in @relmap that was turned on in the above example was
847 * bit 31, so we turned on bit 31 in @dst.
848 *
849 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
850 * because they were the 4th, 6th, 8th and 10th set bits
851 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
852 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
853 *
854 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 855 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
856 * turned on in @relmap. In the above example, there were
857 * only ten bits turned on in @relmap (30..39), so that bit
858 * 11 was set in @orig had no affect on @dst.
859 *
860 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8 861 * Let's say @relmap has these ten bits set::
862 *
7ea931c9 863 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 864 *
7ea931c9
PJ
865 * (for the curious, that's 40 plus the first ten terms of the
866 * Fibonacci sequence.)
867 *
868 * Further lets say we use the following code, invoking
869 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 870 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
871 *
872 * unsigned long *tmp; // a temporary bitmap's bits
873 *
874 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
875 * bitmap_onto(dst, tmp, relmap, bits);
876 *
877 * Then this table shows what various values of @dst would be, for
878 * various @orig's. I list the zero-based positions of each set bit.
879 * The tmp column shows the intermediate result, as computed by
880 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 881 * (the weight of @relmap):
7ea931c9 882 *
40bf19a8 883 * =============== ============== =================
7ea931c9
PJ
884 * @orig tmp @dst
885 * 0 0 40
886 * 1 1 41
887 * 9 9 95
40bf19a8 888 * 10 0 40 [#f1]_
7ea931c9
PJ
889 * 1 3 5 7 1 3 5 7 41 43 48 61
890 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
891 * 0 9 18 27 0 9 8 7 40 61 74 95
892 * 0 10 20 30 0 40
893 * 0 11 22 33 0 1 2 3 40 41 42 43
894 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8 895 * 78 102 211 1 2 8 41 42 74 [#f1]_
896 * =============== ============== =================
897 *
898 * .. [#f1]
7ea931c9 899 *
40bf19a8 900 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
901 * into tmp, then the @dst result would have been empty.
902 *
903 * If either of @orig or @relmap is empty (no set bits), then @dst
904 * will be returned empty.
905 *
906 * If (as explained above) the only set bits in @orig are in positions
907 * m where m >= W, (where W is the weight of @relmap) then @dst will
908 * once again be returned empty.
909 *
910 * All bits in @dst not set by the above rule are cleared.
911 */
912void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 913 const unsigned long *relmap, unsigned int bits)
7ea931c9 914{
eb569883 915 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
916
917 if (dst == orig) /* following doesn't handle inplace mappings */
918 return;
919 bitmap_zero(dst, bits);
920
921 /*
922 * The following code is a more efficient, but less
923 * obvious, equivalent to the loop:
924 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
925 * n = bitmap_ord_to_pos(orig, m, bits);
926 * if (test_bit(m, orig))
927 * set_bit(n, dst);
928 * }
929 */
930
931 m = 0;
08564fb7 932 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
933 /* m == bitmap_pos_to_ord(relmap, n, bits) */
934 if (test_bit(m, orig))
935 set_bit(n, dst);
936 m++;
937 }
938}
939EXPORT_SYMBOL(bitmap_onto);
940
941/**
942 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
943 * @dst: resulting smaller bitmap
944 * @orig: original larger bitmap
945 * @sz: specified size
b26ad583 946 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
947 *
948 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
949 * Clear all other bits in @dst. See further the comment and
950 * Example [2] for bitmap_onto() for why and how to use this.
951 */
952void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 953 unsigned int sz, unsigned int nbits)
7ea931c9 954{
b26ad583 955 unsigned int oldbit;
7ea931c9
PJ
956
957 if (dst == orig) /* following doesn't handle inplace mappings */
958 return;
b26ad583 959 bitmap_zero(dst, nbits);
7ea931c9 960
b26ad583 961 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
962 set_bit(oldbit % sz, dst);
963}
964EXPORT_SYMBOL(bitmap_fold);
965
3cf64b93
PJ
966/*
967 * Common code for bitmap_*_region() routines.
968 * bitmap: array of unsigned longs corresponding to the bitmap
969 * pos: the beginning of the region
970 * order: region size (log base 2 of number of bits)
971 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 972 *
3cf64b93
PJ
973 * Can set, verify and/or release a region of bits in a bitmap,
974 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 975 *
3cf64b93
PJ
976 * A region of a bitmap is a sequence of bits in the bitmap, of
977 * some size '1 << order' (a power of two), aligned to that same
978 * '1 << order' power of two.
979 *
980 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
981 * Returns 0 in all other cases and reg_ops.
1da177e4 982 */
3cf64b93
PJ
983
984enum {
985 REG_OP_ISFREE, /* true if region is all zero bits */
986 REG_OP_ALLOC, /* set all bits in region */
987 REG_OP_RELEASE, /* clear all bits in region */
988};
989
9279d328 990static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 991{
3cf64b93
PJ
992 int nbits_reg; /* number of bits in region */
993 int index; /* index first long of region in bitmap */
994 int offset; /* bit offset region in bitmap[index] */
995 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 996 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 997 unsigned long mask; /* bitmask for one long of region */
74373c6a 998 int i; /* scans bitmap by longs */
3cf64b93 999 int ret = 0; /* return value */
74373c6a 1000
3cf64b93
PJ
1001 /*
1002 * Either nlongs_reg == 1 (for small orders that fit in one long)
1003 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1004 */
1005 nbits_reg = 1 << order;
1006 index = pos / BITS_PER_LONG;
1007 offset = pos - (index * BITS_PER_LONG);
1008 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1009 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1010
3cf64b93
PJ
1011 /*
1012 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1013 * overflows if nbitsinlong == BITS_PER_LONG.
1014 */
74373c6a 1015 mask = (1UL << (nbitsinlong - 1));
1da177e4 1016 mask += mask - 1;
3cf64b93 1017 mask <<= offset;
1da177e4 1018
3cf64b93
PJ
1019 switch (reg_op) {
1020 case REG_OP_ISFREE:
1021 for (i = 0; i < nlongs_reg; i++) {
1022 if (bitmap[index + i] & mask)
1023 goto done;
1024 }
1025 ret = 1; /* all bits in region free (zero) */
1026 break;
1027
1028 case REG_OP_ALLOC:
1029 for (i = 0; i < nlongs_reg; i++)
1030 bitmap[index + i] |= mask;
1031 break;
1032
1033 case REG_OP_RELEASE:
1034 for (i = 0; i < nlongs_reg; i++)
1035 bitmap[index + i] &= ~mask;
1036 break;
1da177e4 1037 }
3cf64b93
PJ
1038done:
1039 return ret;
1040}
1041
1042/**
1043 * bitmap_find_free_region - find a contiguous aligned mem region
1044 * @bitmap: array of unsigned longs corresponding to the bitmap
1045 * @bits: number of bits in the bitmap
1046 * @order: region size (log base 2 of number of bits) to find
1047 *
1048 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1049 * allocate them (set them to one). Only consider regions of length
1050 * a power (@order) of two, aligned to that power of two, which
1051 * makes the search algorithm much faster.
1052 *
1053 * Return the bit offset in bitmap of the allocated region,
1054 * or -errno on failure.
1055 */
9279d328 1056int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1057{
9279d328 1058 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1059
9279d328 1060 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1061 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1062 continue;
1063 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1064 return pos;
1065 }
1066 return -ENOMEM;
1da177e4
LT
1067}
1068EXPORT_SYMBOL(bitmap_find_free_region);
1069
1070/**
87e24802 1071 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1072 * @bitmap: array of unsigned longs corresponding to the bitmap
1073 * @pos: beginning of bit region to release
1074 * @order: region size (log base 2 of number of bits) to release
1da177e4 1075 *
72fd4a35 1076 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1077 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1078 *
1079 * No return value.
1da177e4 1080 */
9279d328 1081void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1082{
3cf64b93 1083 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1084}
1085EXPORT_SYMBOL(bitmap_release_region);
1086
87e24802
PJ
1087/**
1088 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1089 * @bitmap: array of unsigned longs corresponding to the bitmap
1090 * @pos: beginning of bit region to allocate
1091 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1092 *
1093 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1094 *
6e1907ff 1095 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1096 * free (not all bits were zero).
1097 */
9279d328 1098int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1099{
3cf64b93
PJ
1100 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1101 return -EBUSY;
2ac521d3 1102 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1103}
1104EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1105
1106/**
1107 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1108 * @dst: destination buffer
1109 * @src: bitmap to copy
1110 * @nbits: number of bits in the bitmap
1111 *
1112 * Require nbits % BITS_PER_LONG == 0.
1113 */
e8f24278 1114#ifdef __BIG_ENDIAN
9b6c2d2e 1115void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1116{
9b6c2d2e 1117 unsigned int i;
ccbe329b
DV
1118
1119 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1120 if (BITS_PER_LONG == 64)
9b6c2d2e 1121 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1122 else
9b6c2d2e 1123 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1124 }
1125}
1126EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1127#endif
c724f193 1128
c42b65e3
AS
1129unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1130{
1131 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1132 flags);
1133}
1134EXPORT_SYMBOL(bitmap_alloc);
1135
1136unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1137{
1138 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1139}
1140EXPORT_SYMBOL(bitmap_zalloc);
1141
1142void bitmap_free(const unsigned long *bitmap)
1143{
1144 kfree(bitmap);
1145}
1146EXPORT_SYMBOL(bitmap_free);
1147
c724f193
YN
1148#if BITS_PER_LONG == 64
1149/**
1150 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1151 * @bitmap: array of unsigned longs, the destination bitmap
1152 * @buf: array of u32 (in host byte order), the source bitmap
1153 * @nbits: number of bits in @bitmap
1154 */
ccf7a6d4 1155void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1156{
1157 unsigned int i, halfwords;
1158
c724f193
YN
1159 halfwords = DIV_ROUND_UP(nbits, 32);
1160 for (i = 0; i < halfwords; i++) {
1161 bitmap[i/2] = (unsigned long) buf[i];
1162 if (++i < halfwords)
1163 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1164 }
1165
1166 /* Clear tail bits in last word beyond nbits. */
1167 if (nbits % BITS_PER_LONG)
1168 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1169}
1170EXPORT_SYMBOL(bitmap_from_arr32);
1171
1172/**
1173 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1174 * @buf: array of u32 (in host byte order), the dest bitmap
1175 * @bitmap: array of unsigned longs, the source bitmap
1176 * @nbits: number of bits in @bitmap
1177 */
1178void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1179{
1180 unsigned int i, halfwords;
1181
c724f193
YN
1182 halfwords = DIV_ROUND_UP(nbits, 32);
1183 for (i = 0; i < halfwords; i++) {
1184 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1185 if (++i < halfwords)
1186 buf[i] = (u32) (bitmap[i/2] >> 32);
1187 }
1188
1189 /* Clear tail bits in last element of array beyond nbits. */
1190 if (nbits % BITS_PER_LONG)
1191 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1192}
1193EXPORT_SYMBOL(bitmap_to_arr32);
1194
1195#endif