workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43
TH
150
151 struct list_head worklist; /* L: list of pending works */
152 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
153
154 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
155 int nr_idle; /* L: currently idle ones */
156
157 struct list_head idle_list; /* X: list of idle workers */
158 struct timer_list idle_timer; /* L: worker idle timeout */
159 struct timer_list mayday_timer; /* L: SOS timer for workers */
160
c5aa87bb 161 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
162 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
163 /* L: hash of busy workers */
164
bc3a1afc 165 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 166 struct mutex manager_arb; /* manager arbitration */
2607d7a6 167 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
168 struct mutex attach_mutex; /* attach/detach exclusion */
169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
4690c4ab 262 struct lockdep_map lockdep_map;
4e6045f1 263#endif
ecf6881f 264 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 265
e2dca7ad
TH
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
2728fd2f
TH
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
277};
278
e904e6c2
TH
279static struct kmem_cache *pwq_cache;
280
bce90380
TH
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
d55262c4
TH
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
cee22a15 287/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 288static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
bce90380
TH
291static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
292
4c16bd32
TH
293/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295
68e13a67 296static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 297static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 298
e2dca7ad 299static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 300static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 301
042f7df1 302static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
b05a7928 303
7d19c5ce
TH
304/* the per-cpu worker pools */
305static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
306 cpu_worker_pools);
307
68e13a67 308static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 309
68e13a67 310/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
311static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
312
c5aa87bb 313/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
314static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
315
8a2b7538
TH
316/* I: attributes used when instantiating ordered pools on demand */
317static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
318
d320c038 319struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 320EXPORT_SYMBOL(system_wq);
044c782c 321struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 322EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 323struct workqueue_struct *system_long_wq __read_mostly;
d320c038 324EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 325struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 326EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 327struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 328EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
329struct workqueue_struct *system_power_efficient_wq __read_mostly;
330EXPORT_SYMBOL_GPL(system_power_efficient_wq);
331struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
332EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 333
7d19c5ce 334static int worker_thread(void *__worker);
6ba94429 335static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 336
97bd2347
TH
337#define CREATE_TRACE_POINTS
338#include <trace/events/workqueue.h>
339
68e13a67 340#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
342 !lockdep_is_held(&wq_pool_mutex), \
343 "sched RCU or wq_pool_mutex should be held")
5bcab335 344
b09f4fd3 345#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
346 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
347 !lockdep_is_held(&wq->mutex), \
348 "sched RCU or wq->mutex should be held")
76af4d93 349
5b95e1af 350#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
351 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
352 !lockdep_is_held(&wq->mutex) && \
353 !lockdep_is_held(&wq_pool_mutex), \
354 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 355
f02ae73a
TH
356#define for_each_cpu_worker_pool(pool, cpu) \
357 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
358 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 359 (pool)++)
4ce62e9e 360
17116969
TH
361/**
362 * for_each_pool - iterate through all worker_pools in the system
363 * @pool: iteration cursor
611c92a0 364 * @pi: integer used for iteration
fa1b54e6 365 *
68e13a67
LJ
366 * This must be called either with wq_pool_mutex held or sched RCU read
367 * locked. If the pool needs to be used beyond the locking in effect, the
368 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
369 *
370 * The if/else clause exists only for the lockdep assertion and can be
371 * ignored.
17116969 372 */
611c92a0
TH
373#define for_each_pool(pool, pi) \
374 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 375 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 376 else
17116969 377
822d8405
TH
378/**
379 * for_each_pool_worker - iterate through all workers of a worker_pool
380 * @worker: iteration cursor
822d8405
TH
381 * @pool: worker_pool to iterate workers of
382 *
92f9c5c4 383 * This must be called with @pool->attach_mutex.
822d8405
TH
384 *
385 * The if/else clause exists only for the lockdep assertion and can be
386 * ignored.
387 */
da028469
LJ
388#define for_each_pool_worker(worker, pool) \
389 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 390 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
391 else
392
49e3cf44
TH
393/**
394 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
395 * @pwq: iteration cursor
396 * @wq: the target workqueue
76af4d93 397 *
b09f4fd3 398 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
399 * If the pwq needs to be used beyond the locking in effect, the caller is
400 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
49e3cf44
TH
404 */
405#define for_each_pwq(pwq, wq) \
76af4d93 406 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 407 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 408 else
f3421797 409
dc186ad7
TG
410#ifdef CONFIG_DEBUG_OBJECTS_WORK
411
412static struct debug_obj_descr work_debug_descr;
413
99777288
SG
414static void *work_debug_hint(void *addr)
415{
416 return ((struct work_struct *) addr)->func;
417}
418
dc186ad7
TG
419/*
420 * fixup_init is called when:
421 * - an active object is initialized
422 */
423static int work_fixup_init(void *addr, enum debug_obj_state state)
424{
425 struct work_struct *work = addr;
426
427 switch (state) {
428 case ODEBUG_STATE_ACTIVE:
429 cancel_work_sync(work);
430 debug_object_init(work, &work_debug_descr);
431 return 1;
432 default:
433 return 0;
434 }
435}
436
437/*
438 * fixup_activate is called when:
439 * - an active object is activated
440 * - an unknown object is activated (might be a statically initialized object)
441 */
442static int work_fixup_activate(void *addr, enum debug_obj_state state)
443{
444 struct work_struct *work = addr;
445
446 switch (state) {
447
448 case ODEBUG_STATE_NOTAVAILABLE:
449 /*
450 * This is not really a fixup. The work struct was
451 * statically initialized. We just make sure that it
452 * is tracked in the object tracker.
453 */
22df02bb 454 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
455 debug_object_init(work, &work_debug_descr);
456 debug_object_activate(work, &work_debug_descr);
457 return 0;
458 }
459 WARN_ON_ONCE(1);
460 return 0;
461
462 case ODEBUG_STATE_ACTIVE:
463 WARN_ON(1);
464
465 default:
466 return 0;
467 }
468}
469
470/*
471 * fixup_free is called when:
472 * - an active object is freed
473 */
474static int work_fixup_free(void *addr, enum debug_obj_state state)
475{
476 struct work_struct *work = addr;
477
478 switch (state) {
479 case ODEBUG_STATE_ACTIVE:
480 cancel_work_sync(work);
481 debug_object_free(work, &work_debug_descr);
482 return 1;
483 default:
484 return 0;
485 }
486}
487
488static struct debug_obj_descr work_debug_descr = {
489 .name = "work_struct",
99777288 490 .debug_hint = work_debug_hint,
dc186ad7
TG
491 .fixup_init = work_fixup_init,
492 .fixup_activate = work_fixup_activate,
493 .fixup_free = work_fixup_free,
494};
495
496static inline void debug_work_activate(struct work_struct *work)
497{
498 debug_object_activate(work, &work_debug_descr);
499}
500
501static inline void debug_work_deactivate(struct work_struct *work)
502{
503 debug_object_deactivate(work, &work_debug_descr);
504}
505
506void __init_work(struct work_struct *work, int onstack)
507{
508 if (onstack)
509 debug_object_init_on_stack(work, &work_debug_descr);
510 else
511 debug_object_init(work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(__init_work);
514
515void destroy_work_on_stack(struct work_struct *work)
516{
517 debug_object_free(work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_work_on_stack);
520
ea2e64f2
TG
521void destroy_delayed_work_on_stack(struct delayed_work *work)
522{
523 destroy_timer_on_stack(&work->timer);
524 debug_object_free(&work->work, &work_debug_descr);
525}
526EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
527
dc186ad7
TG
528#else
529static inline void debug_work_activate(struct work_struct *work) { }
530static inline void debug_work_deactivate(struct work_struct *work) { }
531#endif
532
4e8b22bd
LB
533/**
534 * worker_pool_assign_id - allocate ID and assing it to @pool
535 * @pool: the pool pointer of interest
536 *
537 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
538 * successfully, -errno on failure.
539 */
9daf9e67
TH
540static int worker_pool_assign_id(struct worker_pool *pool)
541{
542 int ret;
543
68e13a67 544 lockdep_assert_held(&wq_pool_mutex);
5bcab335 545
4e8b22bd
LB
546 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
547 GFP_KERNEL);
229641a6 548 if (ret >= 0) {
e68035fb 549 pool->id = ret;
229641a6
TH
550 return 0;
551 }
fa1b54e6 552 return ret;
7c3eed5c
TH
553}
554
df2d5ae4
TH
555/**
556 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
557 * @wq: the target workqueue
558 * @node: the node ID
559 *
5b95e1af
LJ
560 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
561 * read locked.
df2d5ae4
TH
562 * If the pwq needs to be used beyond the locking in effect, the caller is
563 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
564 *
565 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
566 */
567static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
568 int node)
569{
5b95e1af 570 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
df2d5ae4
TH
571 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
572}
573
73f53c4a
TH
574static unsigned int work_color_to_flags(int color)
575{
576 return color << WORK_STRUCT_COLOR_SHIFT;
577}
578
579static int get_work_color(struct work_struct *work)
580{
581 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
582 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
583}
584
585static int work_next_color(int color)
586{
587 return (color + 1) % WORK_NR_COLORS;
588}
1da177e4 589
14441960 590/*
112202d9
TH
591 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
592 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 593 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 594 *
112202d9
TH
595 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
596 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
597 * work->data. These functions should only be called while the work is
598 * owned - ie. while the PENDING bit is set.
7a22ad75 599 *
112202d9 600 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 601 * corresponding to a work. Pool is available once the work has been
112202d9 602 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 603 * available only while the work item is queued.
7a22ad75 604 *
bbb68dfa
TH
605 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
606 * canceled. While being canceled, a work item may have its PENDING set
607 * but stay off timer and worklist for arbitrarily long and nobody should
608 * try to steal the PENDING bit.
14441960 609 */
7a22ad75
TH
610static inline void set_work_data(struct work_struct *work, unsigned long data,
611 unsigned long flags)
365970a1 612{
6183c009 613 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
614 atomic_long_set(&work->data, data | flags | work_static(work));
615}
365970a1 616
112202d9 617static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
618 unsigned long extra_flags)
619{
112202d9
TH
620 set_work_data(work, (unsigned long)pwq,
621 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
622}
623
4468a00f
LJ
624static void set_work_pool_and_keep_pending(struct work_struct *work,
625 int pool_id)
626{
627 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
628 WORK_STRUCT_PENDING);
629}
630
7c3eed5c
TH
631static void set_work_pool_and_clear_pending(struct work_struct *work,
632 int pool_id)
7a22ad75 633{
23657bb1
TH
634 /*
635 * The following wmb is paired with the implied mb in
636 * test_and_set_bit(PENDING) and ensures all updates to @work made
637 * here are visible to and precede any updates by the next PENDING
638 * owner.
639 */
640 smp_wmb();
7c3eed5c 641 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 642}
f756d5e2 643
7a22ad75 644static void clear_work_data(struct work_struct *work)
1da177e4 645{
7c3eed5c
TH
646 smp_wmb(); /* see set_work_pool_and_clear_pending() */
647 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
648}
649
112202d9 650static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 651{
e120153d 652 unsigned long data = atomic_long_read(&work->data);
7a22ad75 653
112202d9 654 if (data & WORK_STRUCT_PWQ)
e120153d
TH
655 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
656 else
657 return NULL;
4d707b9f
ON
658}
659
7c3eed5c
TH
660/**
661 * get_work_pool - return the worker_pool a given work was associated with
662 * @work: the work item of interest
663 *
68e13a67
LJ
664 * Pools are created and destroyed under wq_pool_mutex, and allows read
665 * access under sched-RCU read lock. As such, this function should be
666 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
667 *
668 * All fields of the returned pool are accessible as long as the above
669 * mentioned locking is in effect. If the returned pool needs to be used
670 * beyond the critical section, the caller is responsible for ensuring the
671 * returned pool is and stays online.
d185af30
YB
672 *
673 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
674 */
675static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 676{
e120153d 677 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 678 int pool_id;
7a22ad75 679
68e13a67 680 assert_rcu_or_pool_mutex();
fa1b54e6 681
112202d9
TH
682 if (data & WORK_STRUCT_PWQ)
683 return ((struct pool_workqueue *)
7c3eed5c 684 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 685
7c3eed5c
TH
686 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
687 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
688 return NULL;
689
fa1b54e6 690 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
691}
692
693/**
694 * get_work_pool_id - return the worker pool ID a given work is associated with
695 * @work: the work item of interest
696 *
d185af30 697 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
698 * %WORK_OFFQ_POOL_NONE if none.
699 */
700static int get_work_pool_id(struct work_struct *work)
701{
54d5b7d0
LJ
702 unsigned long data = atomic_long_read(&work->data);
703
112202d9
TH
704 if (data & WORK_STRUCT_PWQ)
705 return ((struct pool_workqueue *)
54d5b7d0 706 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 707
54d5b7d0 708 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
709}
710
bbb68dfa
TH
711static void mark_work_canceling(struct work_struct *work)
712{
7c3eed5c 713 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 714
7c3eed5c
TH
715 pool_id <<= WORK_OFFQ_POOL_SHIFT;
716 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
717}
718
719static bool work_is_canceling(struct work_struct *work)
720{
721 unsigned long data = atomic_long_read(&work->data);
722
112202d9 723 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
724}
725
e22bee78 726/*
3270476a
TH
727 * Policy functions. These define the policies on how the global worker
728 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 729 * they're being called with pool->lock held.
e22bee78
TH
730 */
731
63d95a91 732static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 733{
e19e397a 734 return !atomic_read(&pool->nr_running);
a848e3b6
ON
735}
736
4594bf15 737/*
e22bee78
TH
738 * Need to wake up a worker? Called from anything but currently
739 * running workers.
974271c4
TH
740 *
741 * Note that, because unbound workers never contribute to nr_running, this
706026c2 742 * function will always return %true for unbound pools as long as the
974271c4 743 * worklist isn't empty.
4594bf15 744 */
63d95a91 745static bool need_more_worker(struct worker_pool *pool)
365970a1 746{
63d95a91 747 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 748}
4594bf15 749
e22bee78 750/* Can I start working? Called from busy but !running workers. */
63d95a91 751static bool may_start_working(struct worker_pool *pool)
e22bee78 752{
63d95a91 753 return pool->nr_idle;
e22bee78
TH
754}
755
756/* Do I need to keep working? Called from currently running workers. */
63d95a91 757static bool keep_working(struct worker_pool *pool)
e22bee78 758{
e19e397a
TH
759 return !list_empty(&pool->worklist) &&
760 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
761}
762
763/* Do we need a new worker? Called from manager. */
63d95a91 764static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 765{
63d95a91 766 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 767}
365970a1 768
e22bee78 769/* Do we have too many workers and should some go away? */
63d95a91 770static bool too_many_workers(struct worker_pool *pool)
e22bee78 771{
34a06bd6 772 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
773 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
774 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
775
776 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
777}
778
4d707b9f 779/*
e22bee78
TH
780 * Wake up functions.
781 */
782
1037de36
LJ
783/* Return the first idle worker. Safe with preemption disabled */
784static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 785{
63d95a91 786 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
787 return NULL;
788
63d95a91 789 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
790}
791
792/**
793 * wake_up_worker - wake up an idle worker
63d95a91 794 * @pool: worker pool to wake worker from
7e11629d 795 *
63d95a91 796 * Wake up the first idle worker of @pool.
7e11629d
TH
797 *
798 * CONTEXT:
d565ed63 799 * spin_lock_irq(pool->lock).
7e11629d 800 */
63d95a91 801static void wake_up_worker(struct worker_pool *pool)
7e11629d 802{
1037de36 803 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
804
805 if (likely(worker))
806 wake_up_process(worker->task);
807}
808
d302f017 809/**
e22bee78
TH
810 * wq_worker_waking_up - a worker is waking up
811 * @task: task waking up
812 * @cpu: CPU @task is waking up to
813 *
814 * This function is called during try_to_wake_up() when a worker is
815 * being awoken.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 */
d84ff051 820void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
821{
822 struct worker *worker = kthread_data(task);
823
36576000 824 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 825 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 826 atomic_inc(&worker->pool->nr_running);
36576000 827 }
e22bee78
TH
828}
829
830/**
831 * wq_worker_sleeping - a worker is going to sleep
832 * @task: task going to sleep
833 * @cpu: CPU in question, must be the current CPU number
834 *
835 * This function is called during schedule() when a busy worker is
836 * going to sleep. Worker on the same cpu can be woken up by
837 * returning pointer to its task.
838 *
839 * CONTEXT:
840 * spin_lock_irq(rq->lock)
841 *
d185af30 842 * Return:
e22bee78
TH
843 * Worker task on @cpu to wake up, %NULL if none.
844 */
d84ff051 845struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 848 struct worker_pool *pool;
e22bee78 849
111c225a
TH
850 /*
851 * Rescuers, which may not have all the fields set up like normal
852 * workers, also reach here, let's not access anything before
853 * checking NOT_RUNNING.
854 */
2d64672e 855 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
856 return NULL;
857
111c225a 858 pool = worker->pool;
111c225a 859
e22bee78 860 /* this can only happen on the local cpu */
92b69f50 861 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 862 return NULL;
e22bee78
TH
863
864 /*
865 * The counterpart of the following dec_and_test, implied mb,
866 * worklist not empty test sequence is in insert_work().
867 * Please read comment there.
868 *
628c78e7
TH
869 * NOT_RUNNING is clear. This means that we're bound to and
870 * running on the local cpu w/ rq lock held and preemption
871 * disabled, which in turn means that none else could be
d565ed63 872 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 873 * lock is safe.
e22bee78 874 */
e19e397a
TH
875 if (atomic_dec_and_test(&pool->nr_running) &&
876 !list_empty(&pool->worklist))
1037de36 877 to_wakeup = first_idle_worker(pool);
e22bee78
TH
878 return to_wakeup ? to_wakeup->task : NULL;
879}
880
881/**
882 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 883 * @worker: self
d302f017 884 * @flags: flags to set
d302f017 885 *
228f1d00 886 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 887 *
cb444766 888 * CONTEXT:
d565ed63 889 * spin_lock_irq(pool->lock)
d302f017 890 */
228f1d00 891static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 892{
bd7bdd43 893 struct worker_pool *pool = worker->pool;
e22bee78 894
cb444766
TH
895 WARN_ON_ONCE(worker->task != current);
896
228f1d00 897 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
898 if ((flags & WORKER_NOT_RUNNING) &&
899 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 900 atomic_dec(&pool->nr_running);
e22bee78
TH
901 }
902
d302f017
TH
903 worker->flags |= flags;
904}
905
906/**
e22bee78 907 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 908 * @worker: self
d302f017
TH
909 * @flags: flags to clear
910 *
e22bee78 911 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 912 *
cb444766 913 * CONTEXT:
d565ed63 914 * spin_lock_irq(pool->lock)
d302f017
TH
915 */
916static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
917{
63d95a91 918 struct worker_pool *pool = worker->pool;
e22bee78
TH
919 unsigned int oflags = worker->flags;
920
cb444766
TH
921 WARN_ON_ONCE(worker->task != current);
922
d302f017 923 worker->flags &= ~flags;
e22bee78 924
42c025f3
TH
925 /*
926 * If transitioning out of NOT_RUNNING, increment nr_running. Note
927 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
928 * of multiple flags, not a single flag.
929 */
e22bee78
TH
930 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
931 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 932 atomic_inc(&pool->nr_running);
d302f017
TH
933}
934
8cca0eea
TH
935/**
936 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 937 * @pool: pool of interest
8cca0eea
TH
938 * @work: work to find worker for
939 *
c9e7cf27
TH
940 * Find a worker which is executing @work on @pool by searching
941 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
942 * to match, its current execution should match the address of @work and
943 * its work function. This is to avoid unwanted dependency between
944 * unrelated work executions through a work item being recycled while still
945 * being executed.
946 *
947 * This is a bit tricky. A work item may be freed once its execution
948 * starts and nothing prevents the freed area from being recycled for
949 * another work item. If the same work item address ends up being reused
950 * before the original execution finishes, workqueue will identify the
951 * recycled work item as currently executing and make it wait until the
952 * current execution finishes, introducing an unwanted dependency.
953 *
c5aa87bb
TH
954 * This function checks the work item address and work function to avoid
955 * false positives. Note that this isn't complete as one may construct a
956 * work function which can introduce dependency onto itself through a
957 * recycled work item. Well, if somebody wants to shoot oneself in the
958 * foot that badly, there's only so much we can do, and if such deadlock
959 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
960 *
961 * CONTEXT:
d565ed63 962 * spin_lock_irq(pool->lock).
8cca0eea 963 *
d185af30
YB
964 * Return:
965 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 966 * otherwise.
4d707b9f 967 */
c9e7cf27 968static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 969 struct work_struct *work)
4d707b9f 970{
42f8570f 971 struct worker *worker;
42f8570f 972
b67bfe0d 973 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
974 (unsigned long)work)
975 if (worker->current_work == work &&
976 worker->current_func == work->func)
42f8570f
SL
977 return worker;
978
979 return NULL;
4d707b9f
ON
980}
981
bf4ede01
TH
982/**
983 * move_linked_works - move linked works to a list
984 * @work: start of series of works to be scheduled
985 * @head: target list to append @work to
402dd89d 986 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
987 *
988 * Schedule linked works starting from @work to @head. Work series to
989 * be scheduled starts at @work and includes any consecutive work with
990 * WORK_STRUCT_LINKED set in its predecessor.
991 *
992 * If @nextp is not NULL, it's updated to point to the next work of
993 * the last scheduled work. This allows move_linked_works() to be
994 * nested inside outer list_for_each_entry_safe().
995 *
996 * CONTEXT:
d565ed63 997 * spin_lock_irq(pool->lock).
bf4ede01
TH
998 */
999static void move_linked_works(struct work_struct *work, struct list_head *head,
1000 struct work_struct **nextp)
1001{
1002 struct work_struct *n;
1003
1004 /*
1005 * Linked worklist will always end before the end of the list,
1006 * use NULL for list head.
1007 */
1008 list_for_each_entry_safe_from(work, n, NULL, entry) {
1009 list_move_tail(&work->entry, head);
1010 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1011 break;
1012 }
1013
1014 /*
1015 * If we're already inside safe list traversal and have moved
1016 * multiple works to the scheduled queue, the next position
1017 * needs to be updated.
1018 */
1019 if (nextp)
1020 *nextp = n;
1021}
1022
8864b4e5
TH
1023/**
1024 * get_pwq - get an extra reference on the specified pool_workqueue
1025 * @pwq: pool_workqueue to get
1026 *
1027 * Obtain an extra reference on @pwq. The caller should guarantee that
1028 * @pwq has positive refcnt and be holding the matching pool->lock.
1029 */
1030static void get_pwq(struct pool_workqueue *pwq)
1031{
1032 lockdep_assert_held(&pwq->pool->lock);
1033 WARN_ON_ONCE(pwq->refcnt <= 0);
1034 pwq->refcnt++;
1035}
1036
1037/**
1038 * put_pwq - put a pool_workqueue reference
1039 * @pwq: pool_workqueue to put
1040 *
1041 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1042 * destruction. The caller should be holding the matching pool->lock.
1043 */
1044static void put_pwq(struct pool_workqueue *pwq)
1045{
1046 lockdep_assert_held(&pwq->pool->lock);
1047 if (likely(--pwq->refcnt))
1048 return;
1049 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1050 return;
1051 /*
1052 * @pwq can't be released under pool->lock, bounce to
1053 * pwq_unbound_release_workfn(). This never recurses on the same
1054 * pool->lock as this path is taken only for unbound workqueues and
1055 * the release work item is scheduled on a per-cpu workqueue. To
1056 * avoid lockdep warning, unbound pool->locks are given lockdep
1057 * subclass of 1 in get_unbound_pool().
1058 */
1059 schedule_work(&pwq->unbound_release_work);
1060}
1061
dce90d47
TH
1062/**
1063 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1064 * @pwq: pool_workqueue to put (can be %NULL)
1065 *
1066 * put_pwq() with locking. This function also allows %NULL @pwq.
1067 */
1068static void put_pwq_unlocked(struct pool_workqueue *pwq)
1069{
1070 if (pwq) {
1071 /*
1072 * As both pwqs and pools are sched-RCU protected, the
1073 * following lock operations are safe.
1074 */
1075 spin_lock_irq(&pwq->pool->lock);
1076 put_pwq(pwq);
1077 spin_unlock_irq(&pwq->pool->lock);
1078 }
1079}
1080
112202d9 1081static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1082{
112202d9 1083 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1084
1085 trace_workqueue_activate_work(work);
112202d9 1086 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1087 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1088 pwq->nr_active++;
bf4ede01
TH
1089}
1090
112202d9 1091static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1092{
112202d9 1093 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1094 struct work_struct, entry);
1095
112202d9 1096 pwq_activate_delayed_work(work);
3aa62497
LJ
1097}
1098
bf4ede01 1099/**
112202d9
TH
1100 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1101 * @pwq: pwq of interest
bf4ede01 1102 * @color: color of work which left the queue
bf4ede01
TH
1103 *
1104 * A work either has completed or is removed from pending queue,
112202d9 1105 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1106 *
1107 * CONTEXT:
d565ed63 1108 * spin_lock_irq(pool->lock).
bf4ede01 1109 */
112202d9 1110static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1111{
8864b4e5 1112 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1113 if (color == WORK_NO_COLOR)
8864b4e5 1114 goto out_put;
bf4ede01 1115
112202d9 1116 pwq->nr_in_flight[color]--;
bf4ede01 1117
112202d9
TH
1118 pwq->nr_active--;
1119 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1120 /* one down, submit a delayed one */
112202d9
TH
1121 if (pwq->nr_active < pwq->max_active)
1122 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1123 }
1124
1125 /* is flush in progress and are we at the flushing tip? */
112202d9 1126 if (likely(pwq->flush_color != color))
8864b4e5 1127 goto out_put;
bf4ede01
TH
1128
1129 /* are there still in-flight works? */
112202d9 1130 if (pwq->nr_in_flight[color])
8864b4e5 1131 goto out_put;
bf4ede01 1132
112202d9
TH
1133 /* this pwq is done, clear flush_color */
1134 pwq->flush_color = -1;
bf4ede01
TH
1135
1136 /*
112202d9 1137 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1138 * will handle the rest.
1139 */
112202d9
TH
1140 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1141 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1142out_put:
1143 put_pwq(pwq);
bf4ede01
TH
1144}
1145
36e227d2 1146/**
bbb68dfa 1147 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1148 * @work: work item to steal
1149 * @is_dwork: @work is a delayed_work
bbb68dfa 1150 * @flags: place to store irq state
36e227d2
TH
1151 *
1152 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1153 * stable state - idle, on timer or on worklist.
36e227d2 1154 *
d185af30 1155 * Return:
36e227d2
TH
1156 * 1 if @work was pending and we successfully stole PENDING
1157 * 0 if @work was idle and we claimed PENDING
1158 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1159 * -ENOENT if someone else is canceling @work, this state may persist
1160 * for arbitrarily long
36e227d2 1161 *
d185af30 1162 * Note:
bbb68dfa 1163 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1164 * interrupted while holding PENDING and @work off queue, irq must be
1165 * disabled on entry. This, combined with delayed_work->timer being
1166 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1167 *
1168 * On successful return, >= 0, irq is disabled and the caller is
1169 * responsible for releasing it using local_irq_restore(*@flags).
1170 *
e0aecdd8 1171 * This function is safe to call from any context including IRQ handler.
bf4ede01 1172 */
bbb68dfa
TH
1173static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1174 unsigned long *flags)
bf4ede01 1175{
d565ed63 1176 struct worker_pool *pool;
112202d9 1177 struct pool_workqueue *pwq;
bf4ede01 1178
bbb68dfa
TH
1179 local_irq_save(*flags);
1180
36e227d2
TH
1181 /* try to steal the timer if it exists */
1182 if (is_dwork) {
1183 struct delayed_work *dwork = to_delayed_work(work);
1184
e0aecdd8
TH
1185 /*
1186 * dwork->timer is irqsafe. If del_timer() fails, it's
1187 * guaranteed that the timer is not queued anywhere and not
1188 * running on the local CPU.
1189 */
36e227d2
TH
1190 if (likely(del_timer(&dwork->timer)))
1191 return 1;
1192 }
1193
1194 /* try to claim PENDING the normal way */
bf4ede01
TH
1195 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1196 return 0;
1197
1198 /*
1199 * The queueing is in progress, or it is already queued. Try to
1200 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1201 */
d565ed63
TH
1202 pool = get_work_pool(work);
1203 if (!pool)
bbb68dfa 1204 goto fail;
bf4ede01 1205
d565ed63 1206 spin_lock(&pool->lock);
0b3dae68 1207 /*
112202d9
TH
1208 * work->data is guaranteed to point to pwq only while the work
1209 * item is queued on pwq->wq, and both updating work->data to point
1210 * to pwq on queueing and to pool on dequeueing are done under
1211 * pwq->pool->lock. This in turn guarantees that, if work->data
1212 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1213 * item is currently queued on that pool.
1214 */
112202d9
TH
1215 pwq = get_work_pwq(work);
1216 if (pwq && pwq->pool == pool) {
16062836
TH
1217 debug_work_deactivate(work);
1218
1219 /*
1220 * A delayed work item cannot be grabbed directly because
1221 * it might have linked NO_COLOR work items which, if left
112202d9 1222 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1223 * management later on and cause stall. Make sure the work
1224 * item is activated before grabbing.
1225 */
1226 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1227 pwq_activate_delayed_work(work);
16062836
TH
1228
1229 list_del_init(&work->entry);
9c34a704 1230 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1231
112202d9 1232 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1233 set_work_pool_and_keep_pending(work, pool->id);
1234
1235 spin_unlock(&pool->lock);
1236 return 1;
bf4ede01 1237 }
d565ed63 1238 spin_unlock(&pool->lock);
bbb68dfa
TH
1239fail:
1240 local_irq_restore(*flags);
1241 if (work_is_canceling(work))
1242 return -ENOENT;
1243 cpu_relax();
36e227d2 1244 return -EAGAIN;
bf4ede01
TH
1245}
1246
4690c4ab 1247/**
706026c2 1248 * insert_work - insert a work into a pool
112202d9 1249 * @pwq: pwq @work belongs to
4690c4ab
TH
1250 * @work: work to insert
1251 * @head: insertion point
1252 * @extra_flags: extra WORK_STRUCT_* flags to set
1253 *
112202d9 1254 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1255 * work_struct flags.
4690c4ab
TH
1256 *
1257 * CONTEXT:
d565ed63 1258 * spin_lock_irq(pool->lock).
4690c4ab 1259 */
112202d9
TH
1260static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1261 struct list_head *head, unsigned int extra_flags)
b89deed3 1262{
112202d9 1263 struct worker_pool *pool = pwq->pool;
e22bee78 1264
4690c4ab 1265 /* we own @work, set data and link */
112202d9 1266 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1267 list_add_tail(&work->entry, head);
8864b4e5 1268 get_pwq(pwq);
e22bee78
TH
1269
1270 /*
c5aa87bb
TH
1271 * Ensure either wq_worker_sleeping() sees the above
1272 * list_add_tail() or we see zero nr_running to avoid workers lying
1273 * around lazily while there are works to be processed.
e22bee78
TH
1274 */
1275 smp_mb();
1276
63d95a91
TH
1277 if (__need_more_worker(pool))
1278 wake_up_worker(pool);
b89deed3
ON
1279}
1280
c8efcc25
TH
1281/*
1282 * Test whether @work is being queued from another work executing on the
8d03ecfe 1283 * same workqueue.
c8efcc25
TH
1284 */
1285static bool is_chained_work(struct workqueue_struct *wq)
1286{
8d03ecfe
TH
1287 struct worker *worker;
1288
1289 worker = current_wq_worker();
1290 /*
1291 * Return %true iff I'm a worker execuing a work item on @wq. If
1292 * I'm @worker, it's safe to dereference it without locking.
1293 */
112202d9 1294 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1295}
1296
d84ff051 1297static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1298 struct work_struct *work)
1299{
112202d9 1300 struct pool_workqueue *pwq;
c9178087 1301 struct worker_pool *last_pool;
1e19ffc6 1302 struct list_head *worklist;
8a2e8e5d 1303 unsigned int work_flags;
b75cac93 1304 unsigned int req_cpu = cpu;
8930caba
TH
1305
1306 /*
1307 * While a work item is PENDING && off queue, a task trying to
1308 * steal the PENDING will busy-loop waiting for it to either get
1309 * queued or lose PENDING. Grabbing PENDING and queueing should
1310 * happen with IRQ disabled.
1311 */
1312 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1313
dc186ad7 1314 debug_work_activate(work);
1e19ffc6 1315
9ef28a73 1316 /* if draining, only works from the same workqueue are allowed */
618b01eb 1317 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1318 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1319 return;
9e8cd2f5 1320retry:
df2d5ae4
TH
1321 if (req_cpu == WORK_CPU_UNBOUND)
1322 cpu = raw_smp_processor_id();
1323
c9178087 1324 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1325 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1326 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1327 else
1328 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1329
c9178087
TH
1330 /*
1331 * If @work was previously on a different pool, it might still be
1332 * running there, in which case the work needs to be queued on that
1333 * pool to guarantee non-reentrancy.
1334 */
1335 last_pool = get_work_pool(work);
1336 if (last_pool && last_pool != pwq->pool) {
1337 struct worker *worker;
18aa9eff 1338
c9178087 1339 spin_lock(&last_pool->lock);
18aa9eff 1340
c9178087 1341 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1342
c9178087
TH
1343 if (worker && worker->current_pwq->wq == wq) {
1344 pwq = worker->current_pwq;
8930caba 1345 } else {
c9178087
TH
1346 /* meh... not running there, queue here */
1347 spin_unlock(&last_pool->lock);
112202d9 1348 spin_lock(&pwq->pool->lock);
8930caba 1349 }
f3421797 1350 } else {
112202d9 1351 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1352 }
1353
9e8cd2f5
TH
1354 /*
1355 * pwq is determined and locked. For unbound pools, we could have
1356 * raced with pwq release and it could already be dead. If its
1357 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1358 * without another pwq replacing it in the numa_pwq_tbl or while
1359 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1360 * make forward-progress.
1361 */
1362 if (unlikely(!pwq->refcnt)) {
1363 if (wq->flags & WQ_UNBOUND) {
1364 spin_unlock(&pwq->pool->lock);
1365 cpu_relax();
1366 goto retry;
1367 }
1368 /* oops */
1369 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1370 wq->name, cpu);
1371 }
1372
112202d9
TH
1373 /* pwq determined, queue */
1374 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1375
f5b2552b 1376 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1377 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1378 return;
1379 }
1e19ffc6 1380
112202d9
TH
1381 pwq->nr_in_flight[pwq->work_color]++;
1382 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1383
112202d9 1384 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1385 trace_workqueue_activate_work(work);
112202d9
TH
1386 pwq->nr_active++;
1387 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1388 } else {
1389 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1390 worklist = &pwq->delayed_works;
8a2e8e5d 1391 }
1e19ffc6 1392
112202d9 1393 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1394
112202d9 1395 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1396}
1397
0fcb78c2 1398/**
c1a220e7
ZR
1399 * queue_work_on - queue work on specific cpu
1400 * @cpu: CPU number to execute work on
0fcb78c2
REB
1401 * @wq: workqueue to use
1402 * @work: work to queue
1403 *
c1a220e7
ZR
1404 * We queue the work to a specific CPU, the caller must ensure it
1405 * can't go away.
d185af30
YB
1406 *
1407 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1408 */
d4283e93
TH
1409bool queue_work_on(int cpu, struct workqueue_struct *wq,
1410 struct work_struct *work)
1da177e4 1411{
d4283e93 1412 bool ret = false;
8930caba 1413 unsigned long flags;
ef1ca236 1414
8930caba 1415 local_irq_save(flags);
c1a220e7 1416
22df02bb 1417 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1418 __queue_work(cpu, wq, work);
d4283e93 1419 ret = true;
c1a220e7 1420 }
ef1ca236 1421
8930caba 1422 local_irq_restore(flags);
1da177e4
LT
1423 return ret;
1424}
ad7b1f84 1425EXPORT_SYMBOL(queue_work_on);
1da177e4 1426
d8e794df 1427void delayed_work_timer_fn(unsigned long __data)
1da177e4 1428{
52bad64d 1429 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1430
e0aecdd8 1431 /* should have been called from irqsafe timer with irq already off */
60c057bc 1432 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1433}
1438ade5 1434EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1435
7beb2edf
TH
1436static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1437 struct delayed_work *dwork, unsigned long delay)
1da177e4 1438{
7beb2edf
TH
1439 struct timer_list *timer = &dwork->timer;
1440 struct work_struct *work = &dwork->work;
7beb2edf
TH
1441
1442 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1443 timer->data != (unsigned long)dwork);
fc4b514f
TH
1444 WARN_ON_ONCE(timer_pending(timer));
1445 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1446
8852aac2
TH
1447 /*
1448 * If @delay is 0, queue @dwork->work immediately. This is for
1449 * both optimization and correctness. The earliest @timer can
1450 * expire is on the closest next tick and delayed_work users depend
1451 * on that there's no such delay when @delay is 0.
1452 */
1453 if (!delay) {
1454 __queue_work(cpu, wq, &dwork->work);
1455 return;
1456 }
1457
7beb2edf 1458 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1459
60c057bc 1460 dwork->wq = wq;
874bbfe6
SL
1461 /* timer isn't guaranteed to run in this cpu, record earlier */
1462 if (cpu == WORK_CPU_UNBOUND)
1463 cpu = raw_smp_processor_id();
1265057f 1464 dwork->cpu = cpu;
7beb2edf
TH
1465 timer->expires = jiffies + delay;
1466
874bbfe6 1467 add_timer_on(timer, cpu);
1da177e4
LT
1468}
1469
0fcb78c2
REB
1470/**
1471 * queue_delayed_work_on - queue work on specific CPU after delay
1472 * @cpu: CPU number to execute work on
1473 * @wq: workqueue to use
af9997e4 1474 * @dwork: work to queue
0fcb78c2
REB
1475 * @delay: number of jiffies to wait before queueing
1476 *
d185af30 1477 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1478 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1479 * execution.
0fcb78c2 1480 */
d4283e93
TH
1481bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1482 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1483{
52bad64d 1484 struct work_struct *work = &dwork->work;
d4283e93 1485 bool ret = false;
8930caba 1486 unsigned long flags;
7a6bc1cd 1487
8930caba
TH
1488 /* read the comment in __queue_work() */
1489 local_irq_save(flags);
7a6bc1cd 1490
22df02bb 1491 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1492 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1493 ret = true;
7a6bc1cd 1494 }
8a3e77cc 1495
8930caba 1496 local_irq_restore(flags);
7a6bc1cd
VP
1497 return ret;
1498}
ad7b1f84 1499EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1500
8376fe22
TH
1501/**
1502 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1503 * @cpu: CPU number to execute work on
1504 * @wq: workqueue to use
1505 * @dwork: work to queue
1506 * @delay: number of jiffies to wait before queueing
1507 *
1508 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1509 * modify @dwork's timer so that it expires after @delay. If @delay is
1510 * zero, @work is guaranteed to be scheduled immediately regardless of its
1511 * current state.
1512 *
d185af30 1513 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1514 * pending and its timer was modified.
1515 *
e0aecdd8 1516 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1517 * See try_to_grab_pending() for details.
1518 */
1519bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1520 struct delayed_work *dwork, unsigned long delay)
1521{
1522 unsigned long flags;
1523 int ret;
c7fc77f7 1524
8376fe22
TH
1525 do {
1526 ret = try_to_grab_pending(&dwork->work, true, &flags);
1527 } while (unlikely(ret == -EAGAIN));
63bc0362 1528
8376fe22
TH
1529 if (likely(ret >= 0)) {
1530 __queue_delayed_work(cpu, wq, dwork, delay);
1531 local_irq_restore(flags);
7a6bc1cd 1532 }
8376fe22
TH
1533
1534 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1535 return ret;
1536}
8376fe22
TH
1537EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1538
c8e55f36
TH
1539/**
1540 * worker_enter_idle - enter idle state
1541 * @worker: worker which is entering idle state
1542 *
1543 * @worker is entering idle state. Update stats and idle timer if
1544 * necessary.
1545 *
1546 * LOCKING:
d565ed63 1547 * spin_lock_irq(pool->lock).
c8e55f36
TH
1548 */
1549static void worker_enter_idle(struct worker *worker)
1da177e4 1550{
bd7bdd43 1551 struct worker_pool *pool = worker->pool;
c8e55f36 1552
6183c009
TH
1553 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1554 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1555 (worker->hentry.next || worker->hentry.pprev)))
1556 return;
c8e55f36 1557
051e1850 1558 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1559 worker->flags |= WORKER_IDLE;
bd7bdd43 1560 pool->nr_idle++;
e22bee78 1561 worker->last_active = jiffies;
c8e55f36
TH
1562
1563 /* idle_list is LIFO */
bd7bdd43 1564 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1565
628c78e7
TH
1566 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1567 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1568
544ecf31 1569 /*
706026c2 1570 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1571 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1572 * nr_running, the warning may trigger spuriously. Check iff
1573 * unbind is not in progress.
544ecf31 1574 */
24647570 1575 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1576 pool->nr_workers == pool->nr_idle &&
e19e397a 1577 atomic_read(&pool->nr_running));
c8e55f36
TH
1578}
1579
1580/**
1581 * worker_leave_idle - leave idle state
1582 * @worker: worker which is leaving idle state
1583 *
1584 * @worker is leaving idle state. Update stats.
1585 *
1586 * LOCKING:
d565ed63 1587 * spin_lock_irq(pool->lock).
c8e55f36
TH
1588 */
1589static void worker_leave_idle(struct worker *worker)
1590{
bd7bdd43 1591 struct worker_pool *pool = worker->pool;
c8e55f36 1592
6183c009
TH
1593 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1594 return;
d302f017 1595 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1596 pool->nr_idle--;
c8e55f36
TH
1597 list_del_init(&worker->entry);
1598}
1599
f7537df5 1600static struct worker *alloc_worker(int node)
c34056a3
TH
1601{
1602 struct worker *worker;
1603
f7537df5 1604 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1605 if (worker) {
1606 INIT_LIST_HEAD(&worker->entry);
affee4b2 1607 INIT_LIST_HEAD(&worker->scheduled);
da028469 1608 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1609 /* on creation a worker is in !idle && prep state */
1610 worker->flags = WORKER_PREP;
c8e55f36 1611 }
c34056a3
TH
1612 return worker;
1613}
1614
4736cbf7
LJ
1615/**
1616 * worker_attach_to_pool() - attach a worker to a pool
1617 * @worker: worker to be attached
1618 * @pool: the target pool
1619 *
1620 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1621 * cpu-binding of @worker are kept coordinated with the pool across
1622 * cpu-[un]hotplugs.
1623 */
1624static void worker_attach_to_pool(struct worker *worker,
1625 struct worker_pool *pool)
1626{
1627 mutex_lock(&pool->attach_mutex);
1628
1629 /*
1630 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1631 * online CPUs. It'll be re-applied when any of the CPUs come up.
1632 */
1633 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1634
1635 /*
1636 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1637 * stable across this function. See the comments above the
1638 * flag definition for details.
1639 */
1640 if (pool->flags & POOL_DISASSOCIATED)
1641 worker->flags |= WORKER_UNBOUND;
1642
1643 list_add_tail(&worker->node, &pool->workers);
1644
1645 mutex_unlock(&pool->attach_mutex);
1646}
1647
60f5a4bc
LJ
1648/**
1649 * worker_detach_from_pool() - detach a worker from its pool
1650 * @worker: worker which is attached to its pool
1651 * @pool: the pool @worker is attached to
1652 *
4736cbf7
LJ
1653 * Undo the attaching which had been done in worker_attach_to_pool(). The
1654 * caller worker shouldn't access to the pool after detached except it has
1655 * other reference to the pool.
60f5a4bc
LJ
1656 */
1657static void worker_detach_from_pool(struct worker *worker,
1658 struct worker_pool *pool)
1659{
1660 struct completion *detach_completion = NULL;
1661
92f9c5c4 1662 mutex_lock(&pool->attach_mutex);
da028469
LJ
1663 list_del(&worker->node);
1664 if (list_empty(&pool->workers))
60f5a4bc 1665 detach_completion = pool->detach_completion;
92f9c5c4 1666 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1667
b62c0751
LJ
1668 /* clear leftover flags without pool->lock after it is detached */
1669 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1670
60f5a4bc
LJ
1671 if (detach_completion)
1672 complete(detach_completion);
1673}
1674
c34056a3
TH
1675/**
1676 * create_worker - create a new workqueue worker
63d95a91 1677 * @pool: pool the new worker will belong to
c34056a3 1678 *
051e1850 1679 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1680 *
1681 * CONTEXT:
1682 * Might sleep. Does GFP_KERNEL allocations.
1683 *
d185af30 1684 * Return:
c34056a3
TH
1685 * Pointer to the newly created worker.
1686 */
bc2ae0f5 1687static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1688{
c34056a3 1689 struct worker *worker = NULL;
f3421797 1690 int id = -1;
e3c916a4 1691 char id_buf[16];
c34056a3 1692
7cda9aae
LJ
1693 /* ID is needed to determine kthread name */
1694 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1695 if (id < 0)
1696 goto fail;
c34056a3 1697
f7537df5 1698 worker = alloc_worker(pool->node);
c34056a3
TH
1699 if (!worker)
1700 goto fail;
1701
bd7bdd43 1702 worker->pool = pool;
c34056a3
TH
1703 worker->id = id;
1704
29c91e99 1705 if (pool->cpu >= 0)
e3c916a4
TH
1706 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1707 pool->attrs->nice < 0 ? "H" : "");
f3421797 1708 else
e3c916a4
TH
1709 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1710
f3f90ad4 1711 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1712 "kworker/%s", id_buf);
c34056a3
TH
1713 if (IS_ERR(worker->task))
1714 goto fail;
1715
91151228 1716 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1717 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1718
da028469 1719 /* successful, attach the worker to the pool */
4736cbf7 1720 worker_attach_to_pool(worker, pool);
822d8405 1721
051e1850
LJ
1722 /* start the newly created worker */
1723 spin_lock_irq(&pool->lock);
1724 worker->pool->nr_workers++;
1725 worker_enter_idle(worker);
1726 wake_up_process(worker->task);
1727 spin_unlock_irq(&pool->lock);
1728
c34056a3 1729 return worker;
822d8405 1730
c34056a3 1731fail:
9625ab17 1732 if (id >= 0)
7cda9aae 1733 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1734 kfree(worker);
1735 return NULL;
1736}
1737
c34056a3
TH
1738/**
1739 * destroy_worker - destroy a workqueue worker
1740 * @worker: worker to be destroyed
1741 *
73eb7fe7
LJ
1742 * Destroy @worker and adjust @pool stats accordingly. The worker should
1743 * be idle.
c8e55f36
TH
1744 *
1745 * CONTEXT:
60f5a4bc 1746 * spin_lock_irq(pool->lock).
c34056a3
TH
1747 */
1748static void destroy_worker(struct worker *worker)
1749{
bd7bdd43 1750 struct worker_pool *pool = worker->pool;
c34056a3 1751
cd549687
TH
1752 lockdep_assert_held(&pool->lock);
1753
c34056a3 1754 /* sanity check frenzy */
6183c009 1755 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1756 WARN_ON(!list_empty(&worker->scheduled)) ||
1757 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1758 return;
c34056a3 1759
73eb7fe7
LJ
1760 pool->nr_workers--;
1761 pool->nr_idle--;
5bdfff96 1762
c8e55f36 1763 list_del_init(&worker->entry);
cb444766 1764 worker->flags |= WORKER_DIE;
60f5a4bc 1765 wake_up_process(worker->task);
c34056a3
TH
1766}
1767
63d95a91 1768static void idle_worker_timeout(unsigned long __pool)
e22bee78 1769{
63d95a91 1770 struct worker_pool *pool = (void *)__pool;
e22bee78 1771
d565ed63 1772 spin_lock_irq(&pool->lock);
e22bee78 1773
3347fc9f 1774 while (too_many_workers(pool)) {
e22bee78
TH
1775 struct worker *worker;
1776 unsigned long expires;
1777
1778 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1779 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1780 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1781
3347fc9f 1782 if (time_before(jiffies, expires)) {
63d95a91 1783 mod_timer(&pool->idle_timer, expires);
3347fc9f 1784 break;
d5abe669 1785 }
3347fc9f
LJ
1786
1787 destroy_worker(worker);
e22bee78
TH
1788 }
1789
d565ed63 1790 spin_unlock_irq(&pool->lock);
e22bee78 1791}
d5abe669 1792
493a1724 1793static void send_mayday(struct work_struct *work)
e22bee78 1794{
112202d9
TH
1795 struct pool_workqueue *pwq = get_work_pwq(work);
1796 struct workqueue_struct *wq = pwq->wq;
493a1724 1797
2e109a28 1798 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1799
493008a8 1800 if (!wq->rescuer)
493a1724 1801 return;
e22bee78
TH
1802
1803 /* mayday mayday mayday */
493a1724 1804 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1805 /*
1806 * If @pwq is for an unbound wq, its base ref may be put at
1807 * any time due to an attribute change. Pin @pwq until the
1808 * rescuer is done with it.
1809 */
1810 get_pwq(pwq);
493a1724 1811 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1812 wake_up_process(wq->rescuer->task);
493a1724 1813 }
e22bee78
TH
1814}
1815
706026c2 1816static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1817{
63d95a91 1818 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1819 struct work_struct *work;
1820
b2d82909
TH
1821 spin_lock_irq(&pool->lock);
1822 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1823
63d95a91 1824 if (need_to_create_worker(pool)) {
e22bee78
TH
1825 /*
1826 * We've been trying to create a new worker but
1827 * haven't been successful. We might be hitting an
1828 * allocation deadlock. Send distress signals to
1829 * rescuers.
1830 */
63d95a91 1831 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1832 send_mayday(work);
1da177e4 1833 }
e22bee78 1834
b2d82909
TH
1835 spin_unlock(&wq_mayday_lock);
1836 spin_unlock_irq(&pool->lock);
e22bee78 1837
63d95a91 1838 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1839}
1840
e22bee78
TH
1841/**
1842 * maybe_create_worker - create a new worker if necessary
63d95a91 1843 * @pool: pool to create a new worker for
e22bee78 1844 *
63d95a91 1845 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1846 * have at least one idle worker on return from this function. If
1847 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1848 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1849 * possible allocation deadlock.
1850 *
c5aa87bb
TH
1851 * On return, need_to_create_worker() is guaranteed to be %false and
1852 * may_start_working() %true.
e22bee78
TH
1853 *
1854 * LOCKING:
d565ed63 1855 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1856 * multiple times. Does GFP_KERNEL allocations. Called only from
1857 * manager.
e22bee78 1858 */
29187a9e 1859static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1860__releases(&pool->lock)
1861__acquires(&pool->lock)
1da177e4 1862{
e22bee78 1863restart:
d565ed63 1864 spin_unlock_irq(&pool->lock);
9f9c2364 1865
e22bee78 1866 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1867 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1868
1869 while (true) {
051e1850 1870 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1871 break;
1da177e4 1872
e212f361 1873 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1874
63d95a91 1875 if (!need_to_create_worker(pool))
e22bee78
TH
1876 break;
1877 }
1878
63d95a91 1879 del_timer_sync(&pool->mayday_timer);
d565ed63 1880 spin_lock_irq(&pool->lock);
051e1850
LJ
1881 /*
1882 * This is necessary even after a new worker was just successfully
1883 * created as @pool->lock was dropped and the new worker might have
1884 * already become busy.
1885 */
63d95a91 1886 if (need_to_create_worker(pool))
e22bee78 1887 goto restart;
e22bee78
TH
1888}
1889
73f53c4a 1890/**
e22bee78
TH
1891 * manage_workers - manage worker pool
1892 * @worker: self
73f53c4a 1893 *
706026c2 1894 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1895 * to. At any given time, there can be only zero or one manager per
706026c2 1896 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1897 *
1898 * The caller can safely start processing works on false return. On
1899 * true return, it's guaranteed that need_to_create_worker() is false
1900 * and may_start_working() is true.
73f53c4a
TH
1901 *
1902 * CONTEXT:
d565ed63 1903 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1904 * multiple times. Does GFP_KERNEL allocations.
1905 *
d185af30 1906 * Return:
29187a9e
TH
1907 * %false if the pool doesn't need management and the caller can safely
1908 * start processing works, %true if management function was performed and
1909 * the conditions that the caller verified before calling the function may
1910 * no longer be true.
73f53c4a 1911 */
e22bee78 1912static bool manage_workers(struct worker *worker)
73f53c4a 1913{
63d95a91 1914 struct worker_pool *pool = worker->pool;
73f53c4a 1915
bc3a1afc 1916 /*
bc3a1afc
TH
1917 * Anyone who successfully grabs manager_arb wins the arbitration
1918 * and becomes the manager. mutex_trylock() on pool->manager_arb
1919 * failure while holding pool->lock reliably indicates that someone
1920 * else is managing the pool and the worker which failed trylock
1921 * can proceed to executing work items. This means that anyone
1922 * grabbing manager_arb is responsible for actually performing
1923 * manager duties. If manager_arb is grabbed and released without
1924 * actual management, the pool may stall indefinitely.
bc3a1afc 1925 */
34a06bd6 1926 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1927 return false;
2607d7a6 1928 pool->manager = worker;
1e19ffc6 1929
29187a9e 1930 maybe_create_worker(pool);
e22bee78 1931
2607d7a6 1932 pool->manager = NULL;
34a06bd6 1933 mutex_unlock(&pool->manager_arb);
29187a9e 1934 return true;
73f53c4a
TH
1935}
1936
a62428c0
TH
1937/**
1938 * process_one_work - process single work
c34056a3 1939 * @worker: self
a62428c0
TH
1940 * @work: work to process
1941 *
1942 * Process @work. This function contains all the logics necessary to
1943 * process a single work including synchronization against and
1944 * interaction with other workers on the same cpu, queueing and
1945 * flushing. As long as context requirement is met, any worker can
1946 * call this function to process a work.
1947 *
1948 * CONTEXT:
d565ed63 1949 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1950 */
c34056a3 1951static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1952__releases(&pool->lock)
1953__acquires(&pool->lock)
a62428c0 1954{
112202d9 1955 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1956 struct worker_pool *pool = worker->pool;
112202d9 1957 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1958 int work_color;
7e11629d 1959 struct worker *collision;
a62428c0
TH
1960#ifdef CONFIG_LOCKDEP
1961 /*
1962 * It is permissible to free the struct work_struct from
1963 * inside the function that is called from it, this we need to
1964 * take into account for lockdep too. To avoid bogus "held
1965 * lock freed" warnings as well as problems when looking into
1966 * work->lockdep_map, make a copy and use that here.
1967 */
4d82a1de
PZ
1968 struct lockdep_map lockdep_map;
1969
1970 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1971#endif
807407c0 1972 /* ensure we're on the correct CPU */
85327af6 1973 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1974 raw_smp_processor_id() != pool->cpu);
25511a47 1975
7e11629d
TH
1976 /*
1977 * A single work shouldn't be executed concurrently by
1978 * multiple workers on a single cpu. Check whether anyone is
1979 * already processing the work. If so, defer the work to the
1980 * currently executing one.
1981 */
c9e7cf27 1982 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1983 if (unlikely(collision)) {
1984 move_linked_works(work, &collision->scheduled, NULL);
1985 return;
1986 }
1987
8930caba 1988 /* claim and dequeue */
a62428c0 1989 debug_work_deactivate(work);
c9e7cf27 1990 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1991 worker->current_work = work;
a2c1c57b 1992 worker->current_func = work->func;
112202d9 1993 worker->current_pwq = pwq;
73f53c4a 1994 work_color = get_work_color(work);
7a22ad75 1995
a62428c0
TH
1996 list_del_init(&work->entry);
1997
fb0e7beb 1998 /*
228f1d00
LJ
1999 * CPU intensive works don't participate in concurrency management.
2000 * They're the scheduler's responsibility. This takes @worker out
2001 * of concurrency management and the next code block will chain
2002 * execution of the pending work items.
fb0e7beb
TH
2003 */
2004 if (unlikely(cpu_intensive))
228f1d00 2005 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2006
974271c4 2007 /*
a489a03e
LJ
2008 * Wake up another worker if necessary. The condition is always
2009 * false for normal per-cpu workers since nr_running would always
2010 * be >= 1 at this point. This is used to chain execution of the
2011 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2012 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2013 */
a489a03e 2014 if (need_more_worker(pool))
63d95a91 2015 wake_up_worker(pool);
974271c4 2016
8930caba 2017 /*
7c3eed5c 2018 * Record the last pool and clear PENDING which should be the last
d565ed63 2019 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2020 * PENDING and queued state changes happen together while IRQ is
2021 * disabled.
8930caba 2022 */
7c3eed5c 2023 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2024
d565ed63 2025 spin_unlock_irq(&pool->lock);
a62428c0 2026
112202d9 2027 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2028 lock_map_acquire(&lockdep_map);
e36c886a 2029 trace_workqueue_execute_start(work);
a2c1c57b 2030 worker->current_func(work);
e36c886a
AV
2031 /*
2032 * While we must be careful to not use "work" after this, the trace
2033 * point will only record its address.
2034 */
2035 trace_workqueue_execute_end(work);
a62428c0 2036 lock_map_release(&lockdep_map);
112202d9 2037 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2038
2039 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2040 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2041 " last function: %pf\n",
a2c1c57b
TH
2042 current->comm, preempt_count(), task_pid_nr(current),
2043 worker->current_func);
a62428c0
TH
2044 debug_show_held_locks(current);
2045 dump_stack();
2046 }
2047
b22ce278
TH
2048 /*
2049 * The following prevents a kworker from hogging CPU on !PREEMPT
2050 * kernels, where a requeueing work item waiting for something to
2051 * happen could deadlock with stop_machine as such work item could
2052 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2053 * stop_machine. At the same time, report a quiescent RCU state so
2054 * the same condition doesn't freeze RCU.
b22ce278 2055 */
3e28e377 2056 cond_resched_rcu_qs();
b22ce278 2057
d565ed63 2058 spin_lock_irq(&pool->lock);
a62428c0 2059
fb0e7beb
TH
2060 /* clear cpu intensive status */
2061 if (unlikely(cpu_intensive))
2062 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2063
a62428c0 2064 /* we're done with it, release */
42f8570f 2065 hash_del(&worker->hentry);
c34056a3 2066 worker->current_work = NULL;
a2c1c57b 2067 worker->current_func = NULL;
112202d9 2068 worker->current_pwq = NULL;
3d1cb205 2069 worker->desc_valid = false;
112202d9 2070 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2071}
2072
affee4b2
TH
2073/**
2074 * process_scheduled_works - process scheduled works
2075 * @worker: self
2076 *
2077 * Process all scheduled works. Please note that the scheduled list
2078 * may change while processing a work, so this function repeatedly
2079 * fetches a work from the top and executes it.
2080 *
2081 * CONTEXT:
d565ed63 2082 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2083 * multiple times.
2084 */
2085static void process_scheduled_works(struct worker *worker)
1da177e4 2086{
affee4b2
TH
2087 while (!list_empty(&worker->scheduled)) {
2088 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2089 struct work_struct, entry);
c34056a3 2090 process_one_work(worker, work);
1da177e4 2091 }
1da177e4
LT
2092}
2093
4690c4ab
TH
2094/**
2095 * worker_thread - the worker thread function
c34056a3 2096 * @__worker: self
4690c4ab 2097 *
c5aa87bb
TH
2098 * The worker thread function. All workers belong to a worker_pool -
2099 * either a per-cpu one or dynamic unbound one. These workers process all
2100 * work items regardless of their specific target workqueue. The only
2101 * exception is work items which belong to workqueues with a rescuer which
2102 * will be explained in rescuer_thread().
d185af30
YB
2103 *
2104 * Return: 0
4690c4ab 2105 */
c34056a3 2106static int worker_thread(void *__worker)
1da177e4 2107{
c34056a3 2108 struct worker *worker = __worker;
bd7bdd43 2109 struct worker_pool *pool = worker->pool;
1da177e4 2110
e22bee78
TH
2111 /* tell the scheduler that this is a workqueue worker */
2112 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2113woke_up:
d565ed63 2114 spin_lock_irq(&pool->lock);
1da177e4 2115
a9ab775b
TH
2116 /* am I supposed to die? */
2117 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2118 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2119 WARN_ON_ONCE(!list_empty(&worker->entry));
2120 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2121
2122 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2123 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2124 worker_detach_from_pool(worker, pool);
2125 kfree(worker);
a9ab775b 2126 return 0;
c8e55f36 2127 }
affee4b2 2128
c8e55f36 2129 worker_leave_idle(worker);
db7bccf4 2130recheck:
e22bee78 2131 /* no more worker necessary? */
63d95a91 2132 if (!need_more_worker(pool))
e22bee78
TH
2133 goto sleep;
2134
2135 /* do we need to manage? */
63d95a91 2136 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2137 goto recheck;
2138
c8e55f36
TH
2139 /*
2140 * ->scheduled list can only be filled while a worker is
2141 * preparing to process a work or actually processing it.
2142 * Make sure nobody diddled with it while I was sleeping.
2143 */
6183c009 2144 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2145
e22bee78 2146 /*
a9ab775b
TH
2147 * Finish PREP stage. We're guaranteed to have at least one idle
2148 * worker or that someone else has already assumed the manager
2149 * role. This is where @worker starts participating in concurrency
2150 * management if applicable and concurrency management is restored
2151 * after being rebound. See rebind_workers() for details.
e22bee78 2152 */
a9ab775b 2153 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2154
2155 do {
c8e55f36 2156 struct work_struct *work =
bd7bdd43 2157 list_first_entry(&pool->worklist,
c8e55f36
TH
2158 struct work_struct, entry);
2159
2160 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2161 /* optimization path, not strictly necessary */
2162 process_one_work(worker, work);
2163 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2164 process_scheduled_works(worker);
c8e55f36
TH
2165 } else {
2166 move_linked_works(work, &worker->scheduled, NULL);
2167 process_scheduled_works(worker);
affee4b2 2168 }
63d95a91 2169 } while (keep_working(pool));
e22bee78 2170
228f1d00 2171 worker_set_flags(worker, WORKER_PREP);
d313dd85 2172sleep:
c8e55f36 2173 /*
d565ed63
TH
2174 * pool->lock is held and there's no work to process and no need to
2175 * manage, sleep. Workers are woken up only while holding
2176 * pool->lock or from local cpu, so setting the current state
2177 * before releasing pool->lock is enough to prevent losing any
2178 * event.
c8e55f36
TH
2179 */
2180 worker_enter_idle(worker);
2181 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2182 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2183 schedule();
2184 goto woke_up;
1da177e4
LT
2185}
2186
e22bee78
TH
2187/**
2188 * rescuer_thread - the rescuer thread function
111c225a 2189 * @__rescuer: self
e22bee78
TH
2190 *
2191 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2192 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2193 *
706026c2 2194 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2195 * worker which uses GFP_KERNEL allocation which has slight chance of
2196 * developing into deadlock if some works currently on the same queue
2197 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2198 * the problem rescuer solves.
2199 *
706026c2
TH
2200 * When such condition is possible, the pool summons rescuers of all
2201 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2202 * those works so that forward progress can be guaranteed.
2203 *
2204 * This should happen rarely.
d185af30
YB
2205 *
2206 * Return: 0
e22bee78 2207 */
111c225a 2208static int rescuer_thread(void *__rescuer)
e22bee78 2209{
111c225a
TH
2210 struct worker *rescuer = __rescuer;
2211 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2212 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2213 bool should_stop;
e22bee78
TH
2214
2215 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2216
2217 /*
2218 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2219 * doesn't participate in concurrency management.
2220 */
2221 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2222repeat:
2223 set_current_state(TASK_INTERRUPTIBLE);
2224
4d595b86
LJ
2225 /*
2226 * By the time the rescuer is requested to stop, the workqueue
2227 * shouldn't have any work pending, but @wq->maydays may still have
2228 * pwq(s) queued. This can happen by non-rescuer workers consuming
2229 * all the work items before the rescuer got to them. Go through
2230 * @wq->maydays processing before acting on should_stop so that the
2231 * list is always empty on exit.
2232 */
2233 should_stop = kthread_should_stop();
e22bee78 2234
493a1724 2235 /* see whether any pwq is asking for help */
2e109a28 2236 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2237
2238 while (!list_empty(&wq->maydays)) {
2239 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2240 struct pool_workqueue, mayday_node);
112202d9 2241 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2242 struct work_struct *work, *n;
2243
2244 __set_current_state(TASK_RUNNING);
493a1724
TH
2245 list_del_init(&pwq->mayday_node);
2246
2e109a28 2247 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2248
51697d39
LJ
2249 worker_attach_to_pool(rescuer, pool);
2250
2251 spin_lock_irq(&pool->lock);
b3104104 2252 rescuer->pool = pool;
e22bee78
TH
2253
2254 /*
2255 * Slurp in all works issued via this workqueue and
2256 * process'em.
2257 */
0479c8c5 2258 WARN_ON_ONCE(!list_empty(scheduled));
bd7bdd43 2259 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2260 if (get_work_pwq(work) == pwq)
e22bee78
TH
2261 move_linked_works(work, scheduled, &n);
2262
008847f6
N
2263 if (!list_empty(scheduled)) {
2264 process_scheduled_works(rescuer);
2265
2266 /*
2267 * The above execution of rescued work items could
2268 * have created more to rescue through
2269 * pwq_activate_first_delayed() or chained
2270 * queueing. Let's put @pwq back on mayday list so
2271 * that such back-to-back work items, which may be
2272 * being used to relieve memory pressure, don't
2273 * incur MAYDAY_INTERVAL delay inbetween.
2274 */
2275 if (need_to_create_worker(pool)) {
2276 spin_lock(&wq_mayday_lock);
2277 get_pwq(pwq);
2278 list_move_tail(&pwq->mayday_node, &wq->maydays);
2279 spin_unlock(&wq_mayday_lock);
2280 }
2281 }
7576958a 2282
77668c8b
LJ
2283 /*
2284 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2285 * go away while we're still attached to it.
77668c8b
LJ
2286 */
2287 put_pwq(pwq);
2288
7576958a 2289 /*
d8ca83e6 2290 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2291 * regular worker; otherwise, we end up with 0 concurrency
2292 * and stalling the execution.
2293 */
d8ca83e6 2294 if (need_more_worker(pool))
63d95a91 2295 wake_up_worker(pool);
7576958a 2296
b3104104 2297 rescuer->pool = NULL;
13b1d625
LJ
2298 spin_unlock_irq(&pool->lock);
2299
2300 worker_detach_from_pool(rescuer, pool);
2301
2302 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2303 }
2304
2e109a28 2305 spin_unlock_irq(&wq_mayday_lock);
493a1724 2306
4d595b86
LJ
2307 if (should_stop) {
2308 __set_current_state(TASK_RUNNING);
2309 rescuer->task->flags &= ~PF_WQ_WORKER;
2310 return 0;
2311 }
2312
111c225a
TH
2313 /* rescuers should never participate in concurrency management */
2314 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2315 schedule();
2316 goto repeat;
1da177e4
LT
2317}
2318
fca839c0
TH
2319/**
2320 * check_flush_dependency - check for flush dependency sanity
2321 * @target_wq: workqueue being flushed
2322 * @target_work: work item being flushed (NULL for workqueue flushes)
2323 *
2324 * %current is trying to flush the whole @target_wq or @target_work on it.
2325 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2326 * reclaiming memory or running on a workqueue which doesn't have
2327 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2328 * a deadlock.
2329 */
2330static void check_flush_dependency(struct workqueue_struct *target_wq,
2331 struct work_struct *target_work)
2332{
2333 work_func_t target_func = target_work ? target_work->func : NULL;
2334 struct worker *worker;
2335
2336 if (target_wq->flags & WQ_MEM_RECLAIM)
2337 return;
2338
2339 worker = current_wq_worker();
2340
2341 WARN_ONCE(current->flags & PF_MEMALLOC,
2342 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2343 current->pid, current->comm, target_wq->name, target_func);
2344 WARN_ONCE(worker && (worker->current_pwq->wq->flags & WQ_MEM_RECLAIM),
2345 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2346 worker->current_pwq->wq->name, worker->current_func,
2347 target_wq->name, target_func);
2348}
2349
fc2e4d70
ON
2350struct wq_barrier {
2351 struct work_struct work;
2352 struct completion done;
2607d7a6 2353 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2354};
2355
2356static void wq_barrier_func(struct work_struct *work)
2357{
2358 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2359 complete(&barr->done);
2360}
2361
4690c4ab
TH
2362/**
2363 * insert_wq_barrier - insert a barrier work
112202d9 2364 * @pwq: pwq to insert barrier into
4690c4ab 2365 * @barr: wq_barrier to insert
affee4b2
TH
2366 * @target: target work to attach @barr to
2367 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2368 *
affee4b2
TH
2369 * @barr is linked to @target such that @barr is completed only after
2370 * @target finishes execution. Please note that the ordering
2371 * guarantee is observed only with respect to @target and on the local
2372 * cpu.
2373 *
2374 * Currently, a queued barrier can't be canceled. This is because
2375 * try_to_grab_pending() can't determine whether the work to be
2376 * grabbed is at the head of the queue and thus can't clear LINKED
2377 * flag of the previous work while there must be a valid next work
2378 * after a work with LINKED flag set.
2379 *
2380 * Note that when @worker is non-NULL, @target may be modified
112202d9 2381 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2382 *
2383 * CONTEXT:
d565ed63 2384 * spin_lock_irq(pool->lock).
4690c4ab 2385 */
112202d9 2386static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2387 struct wq_barrier *barr,
2388 struct work_struct *target, struct worker *worker)
fc2e4d70 2389{
affee4b2
TH
2390 struct list_head *head;
2391 unsigned int linked = 0;
2392
dc186ad7 2393 /*
d565ed63 2394 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2395 * as we know for sure that this will not trigger any of the
2396 * checks and call back into the fixup functions where we
2397 * might deadlock.
2398 */
ca1cab37 2399 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2400 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2401 init_completion(&barr->done);
2607d7a6 2402 barr->task = current;
83c22520 2403
affee4b2
TH
2404 /*
2405 * If @target is currently being executed, schedule the
2406 * barrier to the worker; otherwise, put it after @target.
2407 */
2408 if (worker)
2409 head = worker->scheduled.next;
2410 else {
2411 unsigned long *bits = work_data_bits(target);
2412
2413 head = target->entry.next;
2414 /* there can already be other linked works, inherit and set */
2415 linked = *bits & WORK_STRUCT_LINKED;
2416 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2417 }
2418
dc186ad7 2419 debug_work_activate(&barr->work);
112202d9 2420 insert_work(pwq, &barr->work, head,
affee4b2 2421 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2422}
2423
73f53c4a 2424/**
112202d9 2425 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2426 * @wq: workqueue being flushed
2427 * @flush_color: new flush color, < 0 for no-op
2428 * @work_color: new work color, < 0 for no-op
2429 *
112202d9 2430 * Prepare pwqs for workqueue flushing.
73f53c4a 2431 *
112202d9
TH
2432 * If @flush_color is non-negative, flush_color on all pwqs should be
2433 * -1. If no pwq has in-flight commands at the specified color, all
2434 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2435 * has in flight commands, its pwq->flush_color is set to
2436 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2437 * wakeup logic is armed and %true is returned.
2438 *
2439 * The caller should have initialized @wq->first_flusher prior to
2440 * calling this function with non-negative @flush_color. If
2441 * @flush_color is negative, no flush color update is done and %false
2442 * is returned.
2443 *
112202d9 2444 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2445 * work_color which is previous to @work_color and all will be
2446 * advanced to @work_color.
2447 *
2448 * CONTEXT:
3c25a55d 2449 * mutex_lock(wq->mutex).
73f53c4a 2450 *
d185af30 2451 * Return:
73f53c4a
TH
2452 * %true if @flush_color >= 0 and there's something to flush. %false
2453 * otherwise.
2454 */
112202d9 2455static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2456 int flush_color, int work_color)
1da177e4 2457{
73f53c4a 2458 bool wait = false;
49e3cf44 2459 struct pool_workqueue *pwq;
1da177e4 2460
73f53c4a 2461 if (flush_color >= 0) {
6183c009 2462 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2463 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2464 }
2355b70f 2465
49e3cf44 2466 for_each_pwq(pwq, wq) {
112202d9 2467 struct worker_pool *pool = pwq->pool;
fc2e4d70 2468
b09f4fd3 2469 spin_lock_irq(&pool->lock);
83c22520 2470
73f53c4a 2471 if (flush_color >= 0) {
6183c009 2472 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2473
112202d9
TH
2474 if (pwq->nr_in_flight[flush_color]) {
2475 pwq->flush_color = flush_color;
2476 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2477 wait = true;
2478 }
2479 }
1da177e4 2480
73f53c4a 2481 if (work_color >= 0) {
6183c009 2482 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2483 pwq->work_color = work_color;
73f53c4a 2484 }
1da177e4 2485
b09f4fd3 2486 spin_unlock_irq(&pool->lock);
1da177e4 2487 }
2355b70f 2488
112202d9 2489 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2490 complete(&wq->first_flusher->done);
14441960 2491
73f53c4a 2492 return wait;
1da177e4
LT
2493}
2494
0fcb78c2 2495/**
1da177e4 2496 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2497 * @wq: workqueue to flush
1da177e4 2498 *
c5aa87bb
TH
2499 * This function sleeps until all work items which were queued on entry
2500 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2501 */
7ad5b3a5 2502void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2503{
73f53c4a
TH
2504 struct wq_flusher this_flusher = {
2505 .list = LIST_HEAD_INIT(this_flusher.list),
2506 .flush_color = -1,
2507 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2508 };
2509 int next_color;
1da177e4 2510
3295f0ef
IM
2511 lock_map_acquire(&wq->lockdep_map);
2512 lock_map_release(&wq->lockdep_map);
73f53c4a 2513
3c25a55d 2514 mutex_lock(&wq->mutex);
73f53c4a
TH
2515
2516 /*
2517 * Start-to-wait phase
2518 */
2519 next_color = work_next_color(wq->work_color);
2520
2521 if (next_color != wq->flush_color) {
2522 /*
2523 * Color space is not full. The current work_color
2524 * becomes our flush_color and work_color is advanced
2525 * by one.
2526 */
6183c009 2527 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2528 this_flusher.flush_color = wq->work_color;
2529 wq->work_color = next_color;
2530
2531 if (!wq->first_flusher) {
2532 /* no flush in progress, become the first flusher */
6183c009 2533 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2534
2535 wq->first_flusher = &this_flusher;
2536
112202d9 2537 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2538 wq->work_color)) {
2539 /* nothing to flush, done */
2540 wq->flush_color = next_color;
2541 wq->first_flusher = NULL;
2542 goto out_unlock;
2543 }
2544 } else {
2545 /* wait in queue */
6183c009 2546 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2547 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2548 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2549 }
2550 } else {
2551 /*
2552 * Oops, color space is full, wait on overflow queue.
2553 * The next flush completion will assign us
2554 * flush_color and transfer to flusher_queue.
2555 */
2556 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2557 }
2558
fca839c0
TH
2559 check_flush_dependency(wq, NULL);
2560
3c25a55d 2561 mutex_unlock(&wq->mutex);
73f53c4a
TH
2562
2563 wait_for_completion(&this_flusher.done);
2564
2565 /*
2566 * Wake-up-and-cascade phase
2567 *
2568 * First flushers are responsible for cascading flushes and
2569 * handling overflow. Non-first flushers can simply return.
2570 */
2571 if (wq->first_flusher != &this_flusher)
2572 return;
2573
3c25a55d 2574 mutex_lock(&wq->mutex);
73f53c4a 2575
4ce48b37
TH
2576 /* we might have raced, check again with mutex held */
2577 if (wq->first_flusher != &this_flusher)
2578 goto out_unlock;
2579
73f53c4a
TH
2580 wq->first_flusher = NULL;
2581
6183c009
TH
2582 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2583 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2584
2585 while (true) {
2586 struct wq_flusher *next, *tmp;
2587
2588 /* complete all the flushers sharing the current flush color */
2589 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2590 if (next->flush_color != wq->flush_color)
2591 break;
2592 list_del_init(&next->list);
2593 complete(&next->done);
2594 }
2595
6183c009
TH
2596 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2597 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2598
2599 /* this flush_color is finished, advance by one */
2600 wq->flush_color = work_next_color(wq->flush_color);
2601
2602 /* one color has been freed, handle overflow queue */
2603 if (!list_empty(&wq->flusher_overflow)) {
2604 /*
2605 * Assign the same color to all overflowed
2606 * flushers, advance work_color and append to
2607 * flusher_queue. This is the start-to-wait
2608 * phase for these overflowed flushers.
2609 */
2610 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2611 tmp->flush_color = wq->work_color;
2612
2613 wq->work_color = work_next_color(wq->work_color);
2614
2615 list_splice_tail_init(&wq->flusher_overflow,
2616 &wq->flusher_queue);
112202d9 2617 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2618 }
2619
2620 if (list_empty(&wq->flusher_queue)) {
6183c009 2621 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2622 break;
2623 }
2624
2625 /*
2626 * Need to flush more colors. Make the next flusher
112202d9 2627 * the new first flusher and arm pwqs.
73f53c4a 2628 */
6183c009
TH
2629 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2630 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2631
2632 list_del_init(&next->list);
2633 wq->first_flusher = next;
2634
112202d9 2635 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2636 break;
2637
2638 /*
2639 * Meh... this color is already done, clear first
2640 * flusher and repeat cascading.
2641 */
2642 wq->first_flusher = NULL;
2643 }
2644
2645out_unlock:
3c25a55d 2646 mutex_unlock(&wq->mutex);
1da177e4 2647}
1dadafa8 2648EXPORT_SYMBOL(flush_workqueue);
1da177e4 2649
9c5a2ba7
TH
2650/**
2651 * drain_workqueue - drain a workqueue
2652 * @wq: workqueue to drain
2653 *
2654 * Wait until the workqueue becomes empty. While draining is in progress,
2655 * only chain queueing is allowed. IOW, only currently pending or running
2656 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2657 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2658 * by the depth of chaining and should be relatively short. Whine if it
2659 * takes too long.
2660 */
2661void drain_workqueue(struct workqueue_struct *wq)
2662{
2663 unsigned int flush_cnt = 0;
49e3cf44 2664 struct pool_workqueue *pwq;
9c5a2ba7
TH
2665
2666 /*
2667 * __queue_work() needs to test whether there are drainers, is much
2668 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2669 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2670 */
87fc741e 2671 mutex_lock(&wq->mutex);
9c5a2ba7 2672 if (!wq->nr_drainers++)
618b01eb 2673 wq->flags |= __WQ_DRAINING;
87fc741e 2674 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2675reflush:
2676 flush_workqueue(wq);
2677
b09f4fd3 2678 mutex_lock(&wq->mutex);
76af4d93 2679
49e3cf44 2680 for_each_pwq(pwq, wq) {
fa2563e4 2681 bool drained;
9c5a2ba7 2682
b09f4fd3 2683 spin_lock_irq(&pwq->pool->lock);
112202d9 2684 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2685 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2686
2687 if (drained)
9c5a2ba7
TH
2688 continue;
2689
2690 if (++flush_cnt == 10 ||
2691 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2692 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2693 wq->name, flush_cnt);
76af4d93 2694
b09f4fd3 2695 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2696 goto reflush;
2697 }
2698
9c5a2ba7 2699 if (!--wq->nr_drainers)
618b01eb 2700 wq->flags &= ~__WQ_DRAINING;
87fc741e 2701 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2702}
2703EXPORT_SYMBOL_GPL(drain_workqueue);
2704
606a5020 2705static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2706{
affee4b2 2707 struct worker *worker = NULL;
c9e7cf27 2708 struct worker_pool *pool;
112202d9 2709 struct pool_workqueue *pwq;
db700897
ON
2710
2711 might_sleep();
fa1b54e6
TH
2712
2713 local_irq_disable();
c9e7cf27 2714 pool = get_work_pool(work);
fa1b54e6
TH
2715 if (!pool) {
2716 local_irq_enable();
baf59022 2717 return false;
fa1b54e6 2718 }
db700897 2719
fa1b54e6 2720 spin_lock(&pool->lock);
0b3dae68 2721 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2722 pwq = get_work_pwq(work);
2723 if (pwq) {
2724 if (unlikely(pwq->pool != pool))
4690c4ab 2725 goto already_gone;
606a5020 2726 } else {
c9e7cf27 2727 worker = find_worker_executing_work(pool, work);
affee4b2 2728 if (!worker)
4690c4ab 2729 goto already_gone;
112202d9 2730 pwq = worker->current_pwq;
606a5020 2731 }
db700897 2732
fca839c0
TH
2733 check_flush_dependency(pwq->wq, work);
2734
112202d9 2735 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2736 spin_unlock_irq(&pool->lock);
7a22ad75 2737
e159489b
TH
2738 /*
2739 * If @max_active is 1 or rescuer is in use, flushing another work
2740 * item on the same workqueue may lead to deadlock. Make sure the
2741 * flusher is not running on the same workqueue by verifying write
2742 * access.
2743 */
493008a8 2744 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2745 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2746 else
112202d9
TH
2747 lock_map_acquire_read(&pwq->wq->lockdep_map);
2748 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2749
401a8d04 2750 return true;
4690c4ab 2751already_gone:
d565ed63 2752 spin_unlock_irq(&pool->lock);
401a8d04 2753 return false;
db700897 2754}
baf59022
TH
2755
2756/**
2757 * flush_work - wait for a work to finish executing the last queueing instance
2758 * @work: the work to flush
2759 *
606a5020
TH
2760 * Wait until @work has finished execution. @work is guaranteed to be idle
2761 * on return if it hasn't been requeued since flush started.
baf59022 2762 *
d185af30 2763 * Return:
baf59022
TH
2764 * %true if flush_work() waited for the work to finish execution,
2765 * %false if it was already idle.
2766 */
2767bool flush_work(struct work_struct *work)
2768{
12997d1a
BH
2769 struct wq_barrier barr;
2770
0976dfc1
SB
2771 lock_map_acquire(&work->lockdep_map);
2772 lock_map_release(&work->lockdep_map);
2773
12997d1a
BH
2774 if (start_flush_work(work, &barr)) {
2775 wait_for_completion(&barr.done);
2776 destroy_work_on_stack(&barr.work);
2777 return true;
2778 } else {
2779 return false;
2780 }
6e84d644 2781}
606a5020 2782EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2783
8603e1b3
TH
2784struct cwt_wait {
2785 wait_queue_t wait;
2786 struct work_struct *work;
2787};
2788
2789static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2790{
2791 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2792
2793 if (cwait->work != key)
2794 return 0;
2795 return autoremove_wake_function(wait, mode, sync, key);
2796}
2797
36e227d2 2798static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2799{
8603e1b3 2800 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2801 unsigned long flags;
1f1f642e
ON
2802 int ret;
2803
2804 do {
bbb68dfa
TH
2805 ret = try_to_grab_pending(work, is_dwork, &flags);
2806 /*
8603e1b3
TH
2807 * If someone else is already canceling, wait for it to
2808 * finish. flush_work() doesn't work for PREEMPT_NONE
2809 * because we may get scheduled between @work's completion
2810 * and the other canceling task resuming and clearing
2811 * CANCELING - flush_work() will return false immediately
2812 * as @work is no longer busy, try_to_grab_pending() will
2813 * return -ENOENT as @work is still being canceled and the
2814 * other canceling task won't be able to clear CANCELING as
2815 * we're hogging the CPU.
2816 *
2817 * Let's wait for completion using a waitqueue. As this
2818 * may lead to the thundering herd problem, use a custom
2819 * wake function which matches @work along with exclusive
2820 * wait and wakeup.
bbb68dfa 2821 */
8603e1b3
TH
2822 if (unlikely(ret == -ENOENT)) {
2823 struct cwt_wait cwait;
2824
2825 init_wait(&cwait.wait);
2826 cwait.wait.func = cwt_wakefn;
2827 cwait.work = work;
2828
2829 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2830 TASK_UNINTERRUPTIBLE);
2831 if (work_is_canceling(work))
2832 schedule();
2833 finish_wait(&cancel_waitq, &cwait.wait);
2834 }
1f1f642e
ON
2835 } while (unlikely(ret < 0));
2836
bbb68dfa
TH
2837 /* tell other tasks trying to grab @work to back off */
2838 mark_work_canceling(work);
2839 local_irq_restore(flags);
2840
606a5020 2841 flush_work(work);
7a22ad75 2842 clear_work_data(work);
8603e1b3
TH
2843
2844 /*
2845 * Paired with prepare_to_wait() above so that either
2846 * waitqueue_active() is visible here or !work_is_canceling() is
2847 * visible there.
2848 */
2849 smp_mb();
2850 if (waitqueue_active(&cancel_waitq))
2851 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2852
1f1f642e
ON
2853 return ret;
2854}
2855
6e84d644 2856/**
401a8d04
TH
2857 * cancel_work_sync - cancel a work and wait for it to finish
2858 * @work: the work to cancel
6e84d644 2859 *
401a8d04
TH
2860 * Cancel @work and wait for its execution to finish. This function
2861 * can be used even if the work re-queues itself or migrates to
2862 * another workqueue. On return from this function, @work is
2863 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2864 *
401a8d04
TH
2865 * cancel_work_sync(&delayed_work->work) must not be used for
2866 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2867 *
401a8d04 2868 * The caller must ensure that the workqueue on which @work was last
6e84d644 2869 * queued can't be destroyed before this function returns.
401a8d04 2870 *
d185af30 2871 * Return:
401a8d04 2872 * %true if @work was pending, %false otherwise.
6e84d644 2873 */
401a8d04 2874bool cancel_work_sync(struct work_struct *work)
6e84d644 2875{
36e227d2 2876 return __cancel_work_timer(work, false);
b89deed3 2877}
28e53bdd 2878EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2879
6e84d644 2880/**
401a8d04
TH
2881 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2882 * @dwork: the delayed work to flush
6e84d644 2883 *
401a8d04
TH
2884 * Delayed timer is cancelled and the pending work is queued for
2885 * immediate execution. Like flush_work(), this function only
2886 * considers the last queueing instance of @dwork.
1f1f642e 2887 *
d185af30 2888 * Return:
401a8d04
TH
2889 * %true if flush_work() waited for the work to finish execution,
2890 * %false if it was already idle.
6e84d644 2891 */
401a8d04
TH
2892bool flush_delayed_work(struct delayed_work *dwork)
2893{
8930caba 2894 local_irq_disable();
401a8d04 2895 if (del_timer_sync(&dwork->timer))
60c057bc 2896 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2897 local_irq_enable();
401a8d04
TH
2898 return flush_work(&dwork->work);
2899}
2900EXPORT_SYMBOL(flush_delayed_work);
2901
09383498 2902/**
57b30ae7
TH
2903 * cancel_delayed_work - cancel a delayed work
2904 * @dwork: delayed_work to cancel
09383498 2905 *
d185af30
YB
2906 * Kill off a pending delayed_work.
2907 *
2908 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2909 * pending.
2910 *
2911 * Note:
2912 * The work callback function may still be running on return, unless
2913 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2914 * use cancel_delayed_work_sync() to wait on it.
09383498 2915 *
57b30ae7 2916 * This function is safe to call from any context including IRQ handler.
09383498 2917 */
57b30ae7 2918bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2919{
57b30ae7
TH
2920 unsigned long flags;
2921 int ret;
2922
2923 do {
2924 ret = try_to_grab_pending(&dwork->work, true, &flags);
2925 } while (unlikely(ret == -EAGAIN));
2926
2927 if (unlikely(ret < 0))
2928 return false;
2929
7c3eed5c
TH
2930 set_work_pool_and_clear_pending(&dwork->work,
2931 get_work_pool_id(&dwork->work));
57b30ae7 2932 local_irq_restore(flags);
c0158ca6 2933 return ret;
09383498 2934}
57b30ae7 2935EXPORT_SYMBOL(cancel_delayed_work);
09383498 2936
401a8d04
TH
2937/**
2938 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2939 * @dwork: the delayed work cancel
2940 *
2941 * This is cancel_work_sync() for delayed works.
2942 *
d185af30 2943 * Return:
401a8d04
TH
2944 * %true if @dwork was pending, %false otherwise.
2945 */
2946bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2947{
36e227d2 2948 return __cancel_work_timer(&dwork->work, true);
6e84d644 2949}
f5a421a4 2950EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2951
b6136773 2952/**
31ddd871 2953 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2954 * @func: the function to call
b6136773 2955 *
31ddd871
TH
2956 * schedule_on_each_cpu() executes @func on each online CPU using the
2957 * system workqueue and blocks until all CPUs have completed.
b6136773 2958 * schedule_on_each_cpu() is very slow.
31ddd871 2959 *
d185af30 2960 * Return:
31ddd871 2961 * 0 on success, -errno on failure.
b6136773 2962 */
65f27f38 2963int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2964{
2965 int cpu;
38f51568 2966 struct work_struct __percpu *works;
15316ba8 2967
b6136773
AM
2968 works = alloc_percpu(struct work_struct);
2969 if (!works)
15316ba8 2970 return -ENOMEM;
b6136773 2971
93981800
TH
2972 get_online_cpus();
2973
15316ba8 2974 for_each_online_cpu(cpu) {
9bfb1839
IM
2975 struct work_struct *work = per_cpu_ptr(works, cpu);
2976
2977 INIT_WORK(work, func);
b71ab8c2 2978 schedule_work_on(cpu, work);
65a64464 2979 }
93981800
TH
2980
2981 for_each_online_cpu(cpu)
2982 flush_work(per_cpu_ptr(works, cpu));
2983
95402b38 2984 put_online_cpus();
b6136773 2985 free_percpu(works);
15316ba8
CL
2986 return 0;
2987}
2988
1fa44eca
JB
2989/**
2990 * execute_in_process_context - reliably execute the routine with user context
2991 * @fn: the function to execute
1fa44eca
JB
2992 * @ew: guaranteed storage for the execute work structure (must
2993 * be available when the work executes)
2994 *
2995 * Executes the function immediately if process context is available,
2996 * otherwise schedules the function for delayed execution.
2997 *
d185af30 2998 * Return: 0 - function was executed
1fa44eca
JB
2999 * 1 - function was scheduled for execution
3000 */
65f27f38 3001int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3002{
3003 if (!in_interrupt()) {
65f27f38 3004 fn(&ew->work);
1fa44eca
JB
3005 return 0;
3006 }
3007
65f27f38 3008 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3009 schedule_work(&ew->work);
3010
3011 return 1;
3012}
3013EXPORT_SYMBOL_GPL(execute_in_process_context);
3014
6ba94429
FW
3015/**
3016 * free_workqueue_attrs - free a workqueue_attrs
3017 * @attrs: workqueue_attrs to free
226223ab 3018 *
6ba94429 3019 * Undo alloc_workqueue_attrs().
226223ab 3020 */
6ba94429 3021void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3022{
6ba94429
FW
3023 if (attrs) {
3024 free_cpumask_var(attrs->cpumask);
3025 kfree(attrs);
3026 }
226223ab
TH
3027}
3028
6ba94429
FW
3029/**
3030 * alloc_workqueue_attrs - allocate a workqueue_attrs
3031 * @gfp_mask: allocation mask to use
3032 *
3033 * Allocate a new workqueue_attrs, initialize with default settings and
3034 * return it.
3035 *
3036 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3037 */
3038struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3039{
6ba94429 3040 struct workqueue_attrs *attrs;
226223ab 3041
6ba94429
FW
3042 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3043 if (!attrs)
3044 goto fail;
3045 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3046 goto fail;
3047
3048 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3049 return attrs;
3050fail:
3051 free_workqueue_attrs(attrs);
3052 return NULL;
226223ab
TH
3053}
3054
6ba94429
FW
3055static void copy_workqueue_attrs(struct workqueue_attrs *to,
3056 const struct workqueue_attrs *from)
226223ab 3057{
6ba94429
FW
3058 to->nice = from->nice;
3059 cpumask_copy(to->cpumask, from->cpumask);
3060 /*
3061 * Unlike hash and equality test, this function doesn't ignore
3062 * ->no_numa as it is used for both pool and wq attrs. Instead,
3063 * get_unbound_pool() explicitly clears ->no_numa after copying.
3064 */
3065 to->no_numa = from->no_numa;
226223ab
TH
3066}
3067
6ba94429
FW
3068/* hash value of the content of @attr */
3069static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3070{
6ba94429 3071 u32 hash = 0;
226223ab 3072
6ba94429
FW
3073 hash = jhash_1word(attrs->nice, hash);
3074 hash = jhash(cpumask_bits(attrs->cpumask),
3075 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3076 return hash;
226223ab 3077}
226223ab 3078
6ba94429
FW
3079/* content equality test */
3080static bool wqattrs_equal(const struct workqueue_attrs *a,
3081 const struct workqueue_attrs *b)
226223ab 3082{
6ba94429
FW
3083 if (a->nice != b->nice)
3084 return false;
3085 if (!cpumask_equal(a->cpumask, b->cpumask))
3086 return false;
3087 return true;
226223ab
TH
3088}
3089
6ba94429
FW
3090/**
3091 * init_worker_pool - initialize a newly zalloc'd worker_pool
3092 * @pool: worker_pool to initialize
3093 *
402dd89d 3094 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3095 *
3096 * Return: 0 on success, -errno on failure. Even on failure, all fields
3097 * inside @pool proper are initialized and put_unbound_pool() can be called
3098 * on @pool safely to release it.
3099 */
3100static int init_worker_pool(struct worker_pool *pool)
226223ab 3101{
6ba94429
FW
3102 spin_lock_init(&pool->lock);
3103 pool->id = -1;
3104 pool->cpu = -1;
3105 pool->node = NUMA_NO_NODE;
3106 pool->flags |= POOL_DISASSOCIATED;
3107 INIT_LIST_HEAD(&pool->worklist);
3108 INIT_LIST_HEAD(&pool->idle_list);
3109 hash_init(pool->busy_hash);
226223ab 3110
6ba94429
FW
3111 init_timer_deferrable(&pool->idle_timer);
3112 pool->idle_timer.function = idle_worker_timeout;
3113 pool->idle_timer.data = (unsigned long)pool;
226223ab 3114
6ba94429
FW
3115 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3116 (unsigned long)pool);
226223ab 3117
6ba94429
FW
3118 mutex_init(&pool->manager_arb);
3119 mutex_init(&pool->attach_mutex);
3120 INIT_LIST_HEAD(&pool->workers);
226223ab 3121
6ba94429
FW
3122 ida_init(&pool->worker_ida);
3123 INIT_HLIST_NODE(&pool->hash_node);
3124 pool->refcnt = 1;
226223ab 3125
6ba94429
FW
3126 /* shouldn't fail above this point */
3127 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3128 if (!pool->attrs)
3129 return -ENOMEM;
3130 return 0;
226223ab
TH
3131}
3132
6ba94429 3133static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3134{
6ba94429
FW
3135 struct workqueue_struct *wq =
3136 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3137
6ba94429
FW
3138 if (!(wq->flags & WQ_UNBOUND))
3139 free_percpu(wq->cpu_pwqs);
226223ab 3140 else
6ba94429 3141 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3142
6ba94429
FW
3143 kfree(wq->rescuer);
3144 kfree(wq);
226223ab
TH
3145}
3146
6ba94429 3147static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3148{
6ba94429 3149 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3150
6ba94429
FW
3151 ida_destroy(&pool->worker_ida);
3152 free_workqueue_attrs(pool->attrs);
3153 kfree(pool);
226223ab
TH
3154}
3155
6ba94429
FW
3156/**
3157 * put_unbound_pool - put a worker_pool
3158 * @pool: worker_pool to put
3159 *
3160 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3161 * safe manner. get_unbound_pool() calls this function on its failure path
3162 * and this function should be able to release pools which went through,
3163 * successfully or not, init_worker_pool().
3164 *
3165 * Should be called with wq_pool_mutex held.
3166 */
3167static void put_unbound_pool(struct worker_pool *pool)
226223ab 3168{
6ba94429
FW
3169 DECLARE_COMPLETION_ONSTACK(detach_completion);
3170 struct worker *worker;
226223ab 3171
6ba94429 3172 lockdep_assert_held(&wq_pool_mutex);
226223ab 3173
6ba94429
FW
3174 if (--pool->refcnt)
3175 return;
226223ab 3176
6ba94429
FW
3177 /* sanity checks */
3178 if (WARN_ON(!(pool->cpu < 0)) ||
3179 WARN_ON(!list_empty(&pool->worklist)))
3180 return;
226223ab 3181
6ba94429
FW
3182 /* release id and unhash */
3183 if (pool->id >= 0)
3184 idr_remove(&worker_pool_idr, pool->id);
3185 hash_del(&pool->hash_node);
d55262c4 3186
6ba94429
FW
3187 /*
3188 * Become the manager and destroy all workers. Grabbing
3189 * manager_arb prevents @pool's workers from blocking on
3190 * attach_mutex.
3191 */
3192 mutex_lock(&pool->manager_arb);
d55262c4 3193
6ba94429
FW
3194 spin_lock_irq(&pool->lock);
3195 while ((worker = first_idle_worker(pool)))
3196 destroy_worker(worker);
3197 WARN_ON(pool->nr_workers || pool->nr_idle);
3198 spin_unlock_irq(&pool->lock);
d55262c4 3199
6ba94429
FW
3200 mutex_lock(&pool->attach_mutex);
3201 if (!list_empty(&pool->workers))
3202 pool->detach_completion = &detach_completion;
3203 mutex_unlock(&pool->attach_mutex);
226223ab 3204
6ba94429
FW
3205 if (pool->detach_completion)
3206 wait_for_completion(pool->detach_completion);
226223ab 3207
6ba94429 3208 mutex_unlock(&pool->manager_arb);
226223ab 3209
6ba94429
FW
3210 /* shut down the timers */
3211 del_timer_sync(&pool->idle_timer);
3212 del_timer_sync(&pool->mayday_timer);
226223ab 3213
6ba94429
FW
3214 /* sched-RCU protected to allow dereferences from get_work_pool() */
3215 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3216}
3217
3218/**
6ba94429
FW
3219 * get_unbound_pool - get a worker_pool with the specified attributes
3220 * @attrs: the attributes of the worker_pool to get
226223ab 3221 *
6ba94429
FW
3222 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3223 * reference count and return it. If there already is a matching
3224 * worker_pool, it will be used; otherwise, this function attempts to
3225 * create a new one.
226223ab 3226 *
6ba94429 3227 * Should be called with wq_pool_mutex held.
226223ab 3228 *
6ba94429
FW
3229 * Return: On success, a worker_pool with the same attributes as @attrs.
3230 * On failure, %NULL.
226223ab 3231 */
6ba94429 3232static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3233{
6ba94429
FW
3234 u32 hash = wqattrs_hash(attrs);
3235 struct worker_pool *pool;
3236 int node;
e2273584 3237 int target_node = NUMA_NO_NODE;
226223ab 3238
6ba94429 3239 lockdep_assert_held(&wq_pool_mutex);
226223ab 3240
6ba94429
FW
3241 /* do we already have a matching pool? */
3242 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3243 if (wqattrs_equal(pool->attrs, attrs)) {
3244 pool->refcnt++;
3245 return pool;
3246 }
3247 }
226223ab 3248
e2273584
XP
3249 /* if cpumask is contained inside a NUMA node, we belong to that node */
3250 if (wq_numa_enabled) {
3251 for_each_node(node) {
3252 if (cpumask_subset(attrs->cpumask,
3253 wq_numa_possible_cpumask[node])) {
3254 target_node = node;
3255 break;
3256 }
3257 }
3258 }
3259
6ba94429 3260 /* nope, create a new one */
e2273584 3261 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3262 if (!pool || init_worker_pool(pool) < 0)
3263 goto fail;
3264
3265 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3266 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3267 pool->node = target_node;
226223ab
TH
3268
3269 /*
6ba94429
FW
3270 * no_numa isn't a worker_pool attribute, always clear it. See
3271 * 'struct workqueue_attrs' comments for detail.
226223ab 3272 */
6ba94429 3273 pool->attrs->no_numa = false;
226223ab 3274
6ba94429
FW
3275 if (worker_pool_assign_id(pool) < 0)
3276 goto fail;
226223ab 3277
6ba94429
FW
3278 /* create and start the initial worker */
3279 if (!create_worker(pool))
3280 goto fail;
226223ab 3281
6ba94429
FW
3282 /* install */
3283 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3284
6ba94429
FW
3285 return pool;
3286fail:
3287 if (pool)
3288 put_unbound_pool(pool);
3289 return NULL;
226223ab 3290}
226223ab 3291
6ba94429 3292static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3293{
6ba94429
FW
3294 kmem_cache_free(pwq_cache,
3295 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3296}
3297
6ba94429
FW
3298/*
3299 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3300 * and needs to be destroyed.
7a4e344c 3301 */
6ba94429 3302static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3303{
6ba94429
FW
3304 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3305 unbound_release_work);
3306 struct workqueue_struct *wq = pwq->wq;
3307 struct worker_pool *pool = pwq->pool;
3308 bool is_last;
7a4e344c 3309
6ba94429
FW
3310 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3311 return;
7a4e344c 3312
6ba94429
FW
3313 mutex_lock(&wq->mutex);
3314 list_del_rcu(&pwq->pwqs_node);
3315 is_last = list_empty(&wq->pwqs);
3316 mutex_unlock(&wq->mutex);
3317
3318 mutex_lock(&wq_pool_mutex);
3319 put_unbound_pool(pool);
3320 mutex_unlock(&wq_pool_mutex);
3321
3322 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3323
2865a8fb 3324 /*
6ba94429
FW
3325 * If we're the last pwq going away, @wq is already dead and no one
3326 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3327 */
6ba94429
FW
3328 if (is_last)
3329 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3330}
3331
7a4e344c 3332/**
6ba94429
FW
3333 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3334 * @pwq: target pool_workqueue
d185af30 3335 *
6ba94429
FW
3336 * If @pwq isn't freezing, set @pwq->max_active to the associated
3337 * workqueue's saved_max_active and activate delayed work items
3338 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3339 */
6ba94429 3340static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3341{
6ba94429
FW
3342 struct workqueue_struct *wq = pwq->wq;
3343 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3344
6ba94429
FW
3345 /* for @wq->saved_max_active */
3346 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3347
6ba94429
FW
3348 /* fast exit for non-freezable wqs */
3349 if (!freezable && pwq->max_active == wq->saved_max_active)
3350 return;
7a4e344c 3351
6ba94429 3352 spin_lock_irq(&pwq->pool->lock);
29c91e99 3353
6ba94429
FW
3354 /*
3355 * During [un]freezing, the caller is responsible for ensuring that
3356 * this function is called at least once after @workqueue_freezing
3357 * is updated and visible.
3358 */
3359 if (!freezable || !workqueue_freezing) {
3360 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3361
6ba94429
FW
3362 while (!list_empty(&pwq->delayed_works) &&
3363 pwq->nr_active < pwq->max_active)
3364 pwq_activate_first_delayed(pwq);
e2dca7ad 3365
6ba94429
FW
3366 /*
3367 * Need to kick a worker after thawed or an unbound wq's
3368 * max_active is bumped. It's a slow path. Do it always.
3369 */
3370 wake_up_worker(pwq->pool);
3371 } else {
3372 pwq->max_active = 0;
3373 }
e2dca7ad 3374
6ba94429 3375 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3376}
3377
6ba94429
FW
3378/* initialize newly alloced @pwq which is associated with @wq and @pool */
3379static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3380 struct worker_pool *pool)
29c91e99 3381{
6ba94429 3382 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3383
6ba94429
FW
3384 memset(pwq, 0, sizeof(*pwq));
3385
3386 pwq->pool = pool;
3387 pwq->wq = wq;
3388 pwq->flush_color = -1;
3389 pwq->refcnt = 1;
3390 INIT_LIST_HEAD(&pwq->delayed_works);
3391 INIT_LIST_HEAD(&pwq->pwqs_node);
3392 INIT_LIST_HEAD(&pwq->mayday_node);
3393 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3394}
3395
6ba94429
FW
3396/* sync @pwq with the current state of its associated wq and link it */
3397static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3398{
6ba94429 3399 struct workqueue_struct *wq = pwq->wq;
29c91e99 3400
6ba94429 3401 lockdep_assert_held(&wq->mutex);
a892cacc 3402
6ba94429
FW
3403 /* may be called multiple times, ignore if already linked */
3404 if (!list_empty(&pwq->pwqs_node))
29c91e99 3405 return;
29c91e99 3406
6ba94429
FW
3407 /* set the matching work_color */
3408 pwq->work_color = wq->work_color;
29c91e99 3409
6ba94429
FW
3410 /* sync max_active to the current setting */
3411 pwq_adjust_max_active(pwq);
29c91e99 3412
6ba94429
FW
3413 /* link in @pwq */
3414 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3415}
29c91e99 3416
6ba94429
FW
3417/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3418static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3419 const struct workqueue_attrs *attrs)
3420{
3421 struct worker_pool *pool;
3422 struct pool_workqueue *pwq;
60f5a4bc 3423
6ba94429 3424 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3425
6ba94429
FW
3426 pool = get_unbound_pool(attrs);
3427 if (!pool)
3428 return NULL;
60f5a4bc 3429
6ba94429
FW
3430 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3431 if (!pwq) {
3432 put_unbound_pool(pool);
3433 return NULL;
3434 }
29c91e99 3435
6ba94429
FW
3436 init_pwq(pwq, wq, pool);
3437 return pwq;
3438}
29c91e99 3439
29c91e99 3440/**
30186c6f 3441 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3442 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3443 * @node: the target NUMA node
3444 * @cpu_going_down: if >= 0, the CPU to consider as offline
3445 * @cpumask: outarg, the resulting cpumask
29c91e99 3446 *
6ba94429
FW
3447 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3448 * @cpu_going_down is >= 0, that cpu is considered offline during
3449 * calculation. The result is stored in @cpumask.
a892cacc 3450 *
6ba94429
FW
3451 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3452 * enabled and @node has online CPUs requested by @attrs, the returned
3453 * cpumask is the intersection of the possible CPUs of @node and
3454 * @attrs->cpumask.
d185af30 3455 *
6ba94429
FW
3456 * The caller is responsible for ensuring that the cpumask of @node stays
3457 * stable.
3458 *
3459 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3460 * %false if equal.
29c91e99 3461 */
6ba94429
FW
3462static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3463 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3464{
6ba94429
FW
3465 if (!wq_numa_enabled || attrs->no_numa)
3466 goto use_dfl;
29c91e99 3467
6ba94429
FW
3468 /* does @node have any online CPUs @attrs wants? */
3469 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3470 if (cpu_going_down >= 0)
3471 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3472
6ba94429
FW
3473 if (cpumask_empty(cpumask))
3474 goto use_dfl;
4c16bd32
TH
3475
3476 /* yeap, return possible CPUs in @node that @attrs wants */
3477 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3478 return !cpumask_equal(cpumask, attrs->cpumask);
3479
3480use_dfl:
3481 cpumask_copy(cpumask, attrs->cpumask);
3482 return false;
3483}
3484
1befcf30
TH
3485/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3486static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3487 int node,
3488 struct pool_workqueue *pwq)
3489{
3490 struct pool_workqueue *old_pwq;
3491
5b95e1af 3492 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3493 lockdep_assert_held(&wq->mutex);
3494
3495 /* link_pwq() can handle duplicate calls */
3496 link_pwq(pwq);
3497
3498 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3499 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3500 return old_pwq;
3501}
3502
2d5f0764
LJ
3503/* context to store the prepared attrs & pwqs before applying */
3504struct apply_wqattrs_ctx {
3505 struct workqueue_struct *wq; /* target workqueue */
3506 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3507 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3508 struct pool_workqueue *dfl_pwq;
3509 struct pool_workqueue *pwq_tbl[];
3510};
3511
3512/* free the resources after success or abort */
3513static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3514{
3515 if (ctx) {
3516 int node;
3517
3518 for_each_node(node)
3519 put_pwq_unlocked(ctx->pwq_tbl[node]);
3520 put_pwq_unlocked(ctx->dfl_pwq);
3521
3522 free_workqueue_attrs(ctx->attrs);
3523
3524 kfree(ctx);
3525 }
3526}
3527
3528/* allocate the attrs and pwqs for later installation */
3529static struct apply_wqattrs_ctx *
3530apply_wqattrs_prepare(struct workqueue_struct *wq,
3531 const struct workqueue_attrs *attrs)
9e8cd2f5 3532{
2d5f0764 3533 struct apply_wqattrs_ctx *ctx;
4c16bd32 3534 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3535 int node;
9e8cd2f5 3536
2d5f0764 3537 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3538
2d5f0764
LJ
3539 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3540 GFP_KERNEL);
8719dcea 3541
13e2e556 3542 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3543 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3544 if (!ctx || !new_attrs || !tmp_attrs)
3545 goto out_free;
13e2e556 3546
042f7df1
LJ
3547 /*
3548 * Calculate the attrs of the default pwq.
3549 * If the user configured cpumask doesn't overlap with the
3550 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3551 */
13e2e556 3552 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3553 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3554 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3555 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3556
4c16bd32
TH
3557 /*
3558 * We may create multiple pwqs with differing cpumasks. Make a
3559 * copy of @new_attrs which will be modified and used to obtain
3560 * pools.
3561 */
3562 copy_workqueue_attrs(tmp_attrs, new_attrs);
3563
4c16bd32
TH
3564 /*
3565 * If something goes wrong during CPU up/down, we'll fall back to
3566 * the default pwq covering whole @attrs->cpumask. Always create
3567 * it even if we don't use it immediately.
3568 */
2d5f0764
LJ
3569 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3570 if (!ctx->dfl_pwq)
3571 goto out_free;
4c16bd32
TH
3572
3573 for_each_node(node) {
042f7df1 3574 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3575 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3576 if (!ctx->pwq_tbl[node])
3577 goto out_free;
4c16bd32 3578 } else {
2d5f0764
LJ
3579 ctx->dfl_pwq->refcnt++;
3580 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3581 }
3582 }
3583
042f7df1
LJ
3584 /* save the user configured attrs and sanitize it. */
3585 copy_workqueue_attrs(new_attrs, attrs);
3586 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3587 ctx->attrs = new_attrs;
042f7df1 3588
2d5f0764
LJ
3589 ctx->wq = wq;
3590 free_workqueue_attrs(tmp_attrs);
3591 return ctx;
3592
3593out_free:
3594 free_workqueue_attrs(tmp_attrs);
3595 free_workqueue_attrs(new_attrs);
3596 apply_wqattrs_cleanup(ctx);
3597 return NULL;
3598}
3599
3600/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3601static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3602{
3603 int node;
9e8cd2f5 3604
4c16bd32 3605 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3606 mutex_lock(&ctx->wq->mutex);
a892cacc 3607
2d5f0764 3608 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3609
3610 /* save the previous pwq and install the new one */
f147f29e 3611 for_each_node(node)
2d5f0764
LJ
3612 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3613 ctx->pwq_tbl[node]);
4c16bd32
TH
3614
3615 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3616 link_pwq(ctx->dfl_pwq);
3617 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3618
2d5f0764
LJ
3619 mutex_unlock(&ctx->wq->mutex);
3620}
9e8cd2f5 3621
a0111cf6
LJ
3622static void apply_wqattrs_lock(void)
3623{
3624 /* CPUs should stay stable across pwq creations and installations */
3625 get_online_cpus();
3626 mutex_lock(&wq_pool_mutex);
3627}
3628
3629static void apply_wqattrs_unlock(void)
3630{
3631 mutex_unlock(&wq_pool_mutex);
3632 put_online_cpus();
3633}
3634
3635static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3636 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3637{
3638 struct apply_wqattrs_ctx *ctx;
3639 int ret = -ENOMEM;
4c16bd32 3640
2d5f0764
LJ
3641 /* only unbound workqueues can change attributes */
3642 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3643 return -EINVAL;
13e2e556 3644
2d5f0764
LJ
3645 /* creating multiple pwqs breaks ordering guarantee */
3646 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3647 return -EINVAL;
3648
2d5f0764 3649 ctx = apply_wqattrs_prepare(wq, attrs);
2d5f0764
LJ
3650
3651 /* the ctx has been prepared successfully, let's commit it */
3652 if (ctx) {
3653 apply_wqattrs_commit(ctx);
3654 ret = 0;
3655 }
3656
2d5f0764
LJ
3657 apply_wqattrs_cleanup(ctx);
3658
3659 return ret;
9e8cd2f5
TH
3660}
3661
a0111cf6
LJ
3662/**
3663 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3664 * @wq: the target workqueue
3665 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3666 *
3667 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3668 * machines, this function maps a separate pwq to each NUMA node with
3669 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3670 * NUMA node it was issued on. Older pwqs are released as in-flight work
3671 * items finish. Note that a work item which repeatedly requeues itself
3672 * back-to-back will stay on its current pwq.
3673 *
3674 * Performs GFP_KERNEL allocations.
3675 *
3676 * Return: 0 on success and -errno on failure.
3677 */
3678int apply_workqueue_attrs(struct workqueue_struct *wq,
3679 const struct workqueue_attrs *attrs)
3680{
3681 int ret;
3682
3683 apply_wqattrs_lock();
3684 ret = apply_workqueue_attrs_locked(wq, attrs);
3685 apply_wqattrs_unlock();
3686
3687 return ret;
3688}
3689
4c16bd32
TH
3690/**
3691 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3692 * @wq: the target workqueue
3693 * @cpu: the CPU coming up or going down
3694 * @online: whether @cpu is coming up or going down
3695 *
3696 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3697 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3698 * @wq accordingly.
3699 *
3700 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3701 * falls back to @wq->dfl_pwq which may not be optimal but is always
3702 * correct.
3703 *
3704 * Note that when the last allowed CPU of a NUMA node goes offline for a
3705 * workqueue with a cpumask spanning multiple nodes, the workers which were
3706 * already executing the work items for the workqueue will lose their CPU
3707 * affinity and may execute on any CPU. This is similar to how per-cpu
3708 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3709 * affinity, it's the user's responsibility to flush the work item from
3710 * CPU_DOWN_PREPARE.
3711 */
3712static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3713 bool online)
3714{
3715 int node = cpu_to_node(cpu);
3716 int cpu_off = online ? -1 : cpu;
3717 struct pool_workqueue *old_pwq = NULL, *pwq;
3718 struct workqueue_attrs *target_attrs;
3719 cpumask_t *cpumask;
3720
3721 lockdep_assert_held(&wq_pool_mutex);
3722
f7142ed4
LJ
3723 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3724 wq->unbound_attrs->no_numa)
4c16bd32
TH
3725 return;
3726
3727 /*
3728 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3729 * Let's use a preallocated one. The following buf is protected by
3730 * CPU hotplug exclusion.
3731 */
3732 target_attrs = wq_update_unbound_numa_attrs_buf;
3733 cpumask = target_attrs->cpumask;
3734
4c16bd32
TH
3735 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3736 pwq = unbound_pwq_by_node(wq, node);
3737
3738 /*
3739 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3740 * different from the default pwq's, we need to compare it to @pwq's
3741 * and create a new one if they don't match. If the target cpumask
3742 * equals the default pwq's, the default pwq should be used.
4c16bd32 3743 */
042f7df1 3744 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3745 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3746 return;
4c16bd32 3747 } else {
534a3fbb 3748 goto use_dfl_pwq;
4c16bd32
TH
3749 }
3750
4c16bd32
TH
3751 /* create a new pwq */
3752 pwq = alloc_unbound_pwq(wq, target_attrs);
3753 if (!pwq) {
2d916033
FF
3754 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3755 wq->name);
77f300b1 3756 goto use_dfl_pwq;
4c16bd32
TH
3757 }
3758
f7142ed4 3759 /* Install the new pwq. */
4c16bd32
TH
3760 mutex_lock(&wq->mutex);
3761 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3762 goto out_unlock;
3763
3764use_dfl_pwq:
f7142ed4 3765 mutex_lock(&wq->mutex);
4c16bd32
TH
3766 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3767 get_pwq(wq->dfl_pwq);
3768 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3769 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3770out_unlock:
3771 mutex_unlock(&wq->mutex);
3772 put_pwq_unlocked(old_pwq);
3773}
3774
30cdf249 3775static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3776{
49e3cf44 3777 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3778 int cpu, ret;
30cdf249
TH
3779
3780 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3781 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3782 if (!wq->cpu_pwqs)
30cdf249
TH
3783 return -ENOMEM;
3784
3785 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3786 struct pool_workqueue *pwq =
3787 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3788 struct worker_pool *cpu_pools =
f02ae73a 3789 per_cpu(cpu_worker_pools, cpu);
f3421797 3790
f147f29e
TH
3791 init_pwq(pwq, wq, &cpu_pools[highpri]);
3792
3793 mutex_lock(&wq->mutex);
1befcf30 3794 link_pwq(pwq);
f147f29e 3795 mutex_unlock(&wq->mutex);
30cdf249 3796 }
9e8cd2f5 3797 return 0;
8a2b7538
TH
3798 } else if (wq->flags & __WQ_ORDERED) {
3799 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3800 /* there should only be single pwq for ordering guarantee */
3801 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3802 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3803 "ordering guarantee broken for workqueue %s\n", wq->name);
3804 return ret;
30cdf249 3805 } else {
9e8cd2f5 3806 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3807 }
0f900049
TH
3808}
3809
f3421797
TH
3810static int wq_clamp_max_active(int max_active, unsigned int flags,
3811 const char *name)
b71ab8c2 3812{
f3421797
TH
3813 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3814
3815 if (max_active < 1 || max_active > lim)
044c782c
VI
3816 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3817 max_active, name, 1, lim);
b71ab8c2 3818
f3421797 3819 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3820}
3821
b196be89 3822struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3823 unsigned int flags,
3824 int max_active,
3825 struct lock_class_key *key,
b196be89 3826 const char *lock_name, ...)
1da177e4 3827{
df2d5ae4 3828 size_t tbl_size = 0;
ecf6881f 3829 va_list args;
1da177e4 3830 struct workqueue_struct *wq;
49e3cf44 3831 struct pool_workqueue *pwq;
b196be89 3832
cee22a15
VK
3833 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3834 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3835 flags |= WQ_UNBOUND;
3836
ecf6881f 3837 /* allocate wq and format name */
df2d5ae4 3838 if (flags & WQ_UNBOUND)
ddcb57e2 3839 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3840
3841 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3842 if (!wq)
d2c1d404 3843 return NULL;
b196be89 3844
6029a918
TH
3845 if (flags & WQ_UNBOUND) {
3846 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3847 if (!wq->unbound_attrs)
3848 goto err_free_wq;
3849 }
3850
ecf6881f
TH
3851 va_start(args, lock_name);
3852 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3853 va_end(args);
1da177e4 3854
d320c038 3855 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3856 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3857
b196be89 3858 /* init wq */
97e37d7b 3859 wq->flags = flags;
a0a1a5fd 3860 wq->saved_max_active = max_active;
3c25a55d 3861 mutex_init(&wq->mutex);
112202d9 3862 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3863 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3864 INIT_LIST_HEAD(&wq->flusher_queue);
3865 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3866 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3867
eb13ba87 3868 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3869 INIT_LIST_HEAD(&wq->list);
3af24433 3870
30cdf249 3871 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3872 goto err_free_wq;
1537663f 3873
493008a8
TH
3874 /*
3875 * Workqueues which may be used during memory reclaim should
3876 * have a rescuer to guarantee forward progress.
3877 */
3878 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3879 struct worker *rescuer;
3880
f7537df5 3881 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3882 if (!rescuer)
d2c1d404 3883 goto err_destroy;
e22bee78 3884
111c225a
TH
3885 rescuer->rescue_wq = wq;
3886 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3887 wq->name);
d2c1d404
TH
3888 if (IS_ERR(rescuer->task)) {
3889 kfree(rescuer);
3890 goto err_destroy;
3891 }
e22bee78 3892
d2c1d404 3893 wq->rescuer = rescuer;
25834c73 3894 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3895 wake_up_process(rescuer->task);
3af24433
ON
3896 }
3897
226223ab
TH
3898 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3899 goto err_destroy;
3900
a0a1a5fd 3901 /*
68e13a67
LJ
3902 * wq_pool_mutex protects global freeze state and workqueues list.
3903 * Grab it, adjust max_active and add the new @wq to workqueues
3904 * list.
a0a1a5fd 3905 */
68e13a67 3906 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3907
a357fc03 3908 mutex_lock(&wq->mutex);
699ce097
TH
3909 for_each_pwq(pwq, wq)
3910 pwq_adjust_max_active(pwq);
a357fc03 3911 mutex_unlock(&wq->mutex);
a0a1a5fd 3912
e2dca7ad 3913 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3914
68e13a67 3915 mutex_unlock(&wq_pool_mutex);
1537663f 3916
3af24433 3917 return wq;
d2c1d404
TH
3918
3919err_free_wq:
6029a918 3920 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3921 kfree(wq);
3922 return NULL;
3923err_destroy:
3924 destroy_workqueue(wq);
4690c4ab 3925 return NULL;
3af24433 3926}
d320c038 3927EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3928
3af24433
ON
3929/**
3930 * destroy_workqueue - safely terminate a workqueue
3931 * @wq: target workqueue
3932 *
3933 * Safely destroy a workqueue. All work currently pending will be done first.
3934 */
3935void destroy_workqueue(struct workqueue_struct *wq)
3936{
49e3cf44 3937 struct pool_workqueue *pwq;
4c16bd32 3938 int node;
3af24433 3939
9c5a2ba7
TH
3940 /* drain it before proceeding with destruction */
3941 drain_workqueue(wq);
c8efcc25 3942
6183c009 3943 /* sanity checks */
b09f4fd3 3944 mutex_lock(&wq->mutex);
49e3cf44 3945 for_each_pwq(pwq, wq) {
6183c009
TH
3946 int i;
3947
76af4d93
TH
3948 for (i = 0; i < WORK_NR_COLORS; i++) {
3949 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3950 mutex_unlock(&wq->mutex);
6183c009 3951 return;
76af4d93
TH
3952 }
3953 }
3954
5c529597 3955 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 3956 WARN_ON(pwq->nr_active) ||
76af4d93 3957 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3958 mutex_unlock(&wq->mutex);
6183c009 3959 return;
76af4d93 3960 }
6183c009 3961 }
b09f4fd3 3962 mutex_unlock(&wq->mutex);
6183c009 3963
a0a1a5fd
TH
3964 /*
3965 * wq list is used to freeze wq, remove from list after
3966 * flushing is complete in case freeze races us.
3967 */
68e13a67 3968 mutex_lock(&wq_pool_mutex);
e2dca7ad 3969 list_del_rcu(&wq->list);
68e13a67 3970 mutex_unlock(&wq_pool_mutex);
3af24433 3971
226223ab
TH
3972 workqueue_sysfs_unregister(wq);
3973
e2dca7ad 3974 if (wq->rescuer)
e22bee78 3975 kthread_stop(wq->rescuer->task);
e22bee78 3976
8864b4e5
TH
3977 if (!(wq->flags & WQ_UNBOUND)) {
3978 /*
3979 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 3980 * schedule RCU free.
8864b4e5 3981 */
e2dca7ad 3982 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
3983 } else {
3984 /*
3985 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
3986 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3987 * @wq will be freed when the last pwq is released.
8864b4e5 3988 */
4c16bd32
TH
3989 for_each_node(node) {
3990 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3991 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3992 put_pwq_unlocked(pwq);
3993 }
3994
3995 /*
3996 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
3997 * put. Don't access it afterwards.
3998 */
3999 pwq = wq->dfl_pwq;
4000 wq->dfl_pwq = NULL;
dce90d47 4001 put_pwq_unlocked(pwq);
29c91e99 4002 }
3af24433
ON
4003}
4004EXPORT_SYMBOL_GPL(destroy_workqueue);
4005
dcd989cb
TH
4006/**
4007 * workqueue_set_max_active - adjust max_active of a workqueue
4008 * @wq: target workqueue
4009 * @max_active: new max_active value.
4010 *
4011 * Set max_active of @wq to @max_active.
4012 *
4013 * CONTEXT:
4014 * Don't call from IRQ context.
4015 */
4016void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4017{
49e3cf44 4018 struct pool_workqueue *pwq;
dcd989cb 4019
8719dcea
TH
4020 /* disallow meddling with max_active for ordered workqueues */
4021 if (WARN_ON(wq->flags & __WQ_ORDERED))
4022 return;
4023
f3421797 4024 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4025
a357fc03 4026 mutex_lock(&wq->mutex);
dcd989cb
TH
4027
4028 wq->saved_max_active = max_active;
4029
699ce097
TH
4030 for_each_pwq(pwq, wq)
4031 pwq_adjust_max_active(pwq);
93981800 4032
a357fc03 4033 mutex_unlock(&wq->mutex);
15316ba8 4034}
dcd989cb 4035EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4036
e6267616
TH
4037/**
4038 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4039 *
4040 * Determine whether %current is a workqueue rescuer. Can be used from
4041 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4042 *
4043 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4044 */
4045bool current_is_workqueue_rescuer(void)
4046{
4047 struct worker *worker = current_wq_worker();
4048
6a092dfd 4049 return worker && worker->rescue_wq;
e6267616
TH
4050}
4051
eef6a7d5 4052/**
dcd989cb
TH
4053 * workqueue_congested - test whether a workqueue is congested
4054 * @cpu: CPU in question
4055 * @wq: target workqueue
eef6a7d5 4056 *
dcd989cb
TH
4057 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4058 * no synchronization around this function and the test result is
4059 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4060 *
d3251859
TH
4061 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4062 * Note that both per-cpu and unbound workqueues may be associated with
4063 * multiple pool_workqueues which have separate congested states. A
4064 * workqueue being congested on one CPU doesn't mean the workqueue is also
4065 * contested on other CPUs / NUMA nodes.
4066 *
d185af30 4067 * Return:
dcd989cb 4068 * %true if congested, %false otherwise.
eef6a7d5 4069 */
d84ff051 4070bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4071{
7fb98ea7 4072 struct pool_workqueue *pwq;
76af4d93
TH
4073 bool ret;
4074
88109453 4075 rcu_read_lock_sched();
7fb98ea7 4076
d3251859
TH
4077 if (cpu == WORK_CPU_UNBOUND)
4078 cpu = smp_processor_id();
4079
7fb98ea7
TH
4080 if (!(wq->flags & WQ_UNBOUND))
4081 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4082 else
df2d5ae4 4083 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4084
76af4d93 4085 ret = !list_empty(&pwq->delayed_works);
88109453 4086 rcu_read_unlock_sched();
76af4d93
TH
4087
4088 return ret;
1da177e4 4089}
dcd989cb 4090EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4091
dcd989cb
TH
4092/**
4093 * work_busy - test whether a work is currently pending or running
4094 * @work: the work to be tested
4095 *
4096 * Test whether @work is currently pending or running. There is no
4097 * synchronization around this function and the test result is
4098 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4099 *
d185af30 4100 * Return:
dcd989cb
TH
4101 * OR'd bitmask of WORK_BUSY_* bits.
4102 */
4103unsigned int work_busy(struct work_struct *work)
1da177e4 4104{
fa1b54e6 4105 struct worker_pool *pool;
dcd989cb
TH
4106 unsigned long flags;
4107 unsigned int ret = 0;
1da177e4 4108
dcd989cb
TH
4109 if (work_pending(work))
4110 ret |= WORK_BUSY_PENDING;
1da177e4 4111
fa1b54e6
TH
4112 local_irq_save(flags);
4113 pool = get_work_pool(work);
038366c5 4114 if (pool) {
fa1b54e6 4115 spin_lock(&pool->lock);
038366c5
LJ
4116 if (find_worker_executing_work(pool, work))
4117 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4118 spin_unlock(&pool->lock);
038366c5 4119 }
fa1b54e6 4120 local_irq_restore(flags);
1da177e4 4121
dcd989cb 4122 return ret;
1da177e4 4123}
dcd989cb 4124EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4125
3d1cb205
TH
4126/**
4127 * set_worker_desc - set description for the current work item
4128 * @fmt: printf-style format string
4129 * @...: arguments for the format string
4130 *
4131 * This function can be called by a running work function to describe what
4132 * the work item is about. If the worker task gets dumped, this
4133 * information will be printed out together to help debugging. The
4134 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4135 */
4136void set_worker_desc(const char *fmt, ...)
4137{
4138 struct worker *worker = current_wq_worker();
4139 va_list args;
4140
4141 if (worker) {
4142 va_start(args, fmt);
4143 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4144 va_end(args);
4145 worker->desc_valid = true;
4146 }
4147}
4148
4149/**
4150 * print_worker_info - print out worker information and description
4151 * @log_lvl: the log level to use when printing
4152 * @task: target task
4153 *
4154 * If @task is a worker and currently executing a work item, print out the
4155 * name of the workqueue being serviced and worker description set with
4156 * set_worker_desc() by the currently executing work item.
4157 *
4158 * This function can be safely called on any task as long as the
4159 * task_struct itself is accessible. While safe, this function isn't
4160 * synchronized and may print out mixups or garbages of limited length.
4161 */
4162void print_worker_info(const char *log_lvl, struct task_struct *task)
4163{
4164 work_func_t *fn = NULL;
4165 char name[WQ_NAME_LEN] = { };
4166 char desc[WORKER_DESC_LEN] = { };
4167 struct pool_workqueue *pwq = NULL;
4168 struct workqueue_struct *wq = NULL;
4169 bool desc_valid = false;
4170 struct worker *worker;
4171
4172 if (!(task->flags & PF_WQ_WORKER))
4173 return;
4174
4175 /*
4176 * This function is called without any synchronization and @task
4177 * could be in any state. Be careful with dereferences.
4178 */
4179 worker = probe_kthread_data(task);
4180
4181 /*
4182 * Carefully copy the associated workqueue's workfn and name. Keep
4183 * the original last '\0' in case the original contains garbage.
4184 */
4185 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4186 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4187 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4188 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4189
4190 /* copy worker description */
4191 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4192 if (desc_valid)
4193 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4194
4195 if (fn || name[0] || desc[0]) {
4196 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4197 if (desc[0])
4198 pr_cont(" (%s)", desc);
4199 pr_cont("\n");
4200 }
4201}
4202
3494fc30
TH
4203static void pr_cont_pool_info(struct worker_pool *pool)
4204{
4205 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4206 if (pool->node != NUMA_NO_NODE)
4207 pr_cont(" node=%d", pool->node);
4208 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4209}
4210
4211static void pr_cont_work(bool comma, struct work_struct *work)
4212{
4213 if (work->func == wq_barrier_func) {
4214 struct wq_barrier *barr;
4215
4216 barr = container_of(work, struct wq_barrier, work);
4217
4218 pr_cont("%s BAR(%d)", comma ? "," : "",
4219 task_pid_nr(barr->task));
4220 } else {
4221 pr_cont("%s %pf", comma ? "," : "", work->func);
4222 }
4223}
4224
4225static void show_pwq(struct pool_workqueue *pwq)
4226{
4227 struct worker_pool *pool = pwq->pool;
4228 struct work_struct *work;
4229 struct worker *worker;
4230 bool has_in_flight = false, has_pending = false;
4231 int bkt;
4232
4233 pr_info(" pwq %d:", pool->id);
4234 pr_cont_pool_info(pool);
4235
4236 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4237 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4238
4239 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4240 if (worker->current_pwq == pwq) {
4241 has_in_flight = true;
4242 break;
4243 }
4244 }
4245 if (has_in_flight) {
4246 bool comma = false;
4247
4248 pr_info(" in-flight:");
4249 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4250 if (worker->current_pwq != pwq)
4251 continue;
4252
4253 pr_cont("%s %d%s:%pf", comma ? "," : "",
4254 task_pid_nr(worker->task),
4255 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4256 worker->current_func);
4257 list_for_each_entry(work, &worker->scheduled, entry)
4258 pr_cont_work(false, work);
4259 comma = true;
4260 }
4261 pr_cont("\n");
4262 }
4263
4264 list_for_each_entry(work, &pool->worklist, entry) {
4265 if (get_work_pwq(work) == pwq) {
4266 has_pending = true;
4267 break;
4268 }
4269 }
4270 if (has_pending) {
4271 bool comma = false;
4272
4273 pr_info(" pending:");
4274 list_for_each_entry(work, &pool->worklist, entry) {
4275 if (get_work_pwq(work) != pwq)
4276 continue;
4277
4278 pr_cont_work(comma, work);
4279 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4280 }
4281 pr_cont("\n");
4282 }
4283
4284 if (!list_empty(&pwq->delayed_works)) {
4285 bool comma = false;
4286
4287 pr_info(" delayed:");
4288 list_for_each_entry(work, &pwq->delayed_works, entry) {
4289 pr_cont_work(comma, work);
4290 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4291 }
4292 pr_cont("\n");
4293 }
4294}
4295
4296/**
4297 * show_workqueue_state - dump workqueue state
4298 *
4299 * Called from a sysrq handler and prints out all busy workqueues and
4300 * pools.
4301 */
4302void show_workqueue_state(void)
4303{
4304 struct workqueue_struct *wq;
4305 struct worker_pool *pool;
4306 unsigned long flags;
4307 int pi;
4308
4309 rcu_read_lock_sched();
4310
4311 pr_info("Showing busy workqueues and worker pools:\n");
4312
4313 list_for_each_entry_rcu(wq, &workqueues, list) {
4314 struct pool_workqueue *pwq;
4315 bool idle = true;
4316
4317 for_each_pwq(pwq, wq) {
4318 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4319 idle = false;
4320 break;
4321 }
4322 }
4323 if (idle)
4324 continue;
4325
4326 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4327
4328 for_each_pwq(pwq, wq) {
4329 spin_lock_irqsave(&pwq->pool->lock, flags);
4330 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4331 show_pwq(pwq);
4332 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4333 }
4334 }
4335
4336 for_each_pool(pool, pi) {
4337 struct worker *worker;
4338 bool first = true;
4339
4340 spin_lock_irqsave(&pool->lock, flags);
4341 if (pool->nr_workers == pool->nr_idle)
4342 goto next_pool;
4343
4344 pr_info("pool %d:", pool->id);
4345 pr_cont_pool_info(pool);
4346 pr_cont(" workers=%d", pool->nr_workers);
4347 if (pool->manager)
4348 pr_cont(" manager: %d",
4349 task_pid_nr(pool->manager->task));
4350 list_for_each_entry(worker, &pool->idle_list, entry) {
4351 pr_cont(" %s%d", first ? "idle: " : "",
4352 task_pid_nr(worker->task));
4353 first = false;
4354 }
4355 pr_cont("\n");
4356 next_pool:
4357 spin_unlock_irqrestore(&pool->lock, flags);
4358 }
4359
4360 rcu_read_unlock_sched();
4361}
4362
db7bccf4
TH
4363/*
4364 * CPU hotplug.
4365 *
e22bee78 4366 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4367 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4368 * pool which make migrating pending and scheduled works very
e22bee78 4369 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4370 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4371 * blocked draining impractical.
4372 *
24647570 4373 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4374 * running as an unbound one and allowing it to be reattached later if the
4375 * cpu comes back online.
db7bccf4 4376 */
1da177e4 4377
706026c2 4378static void wq_unbind_fn(struct work_struct *work)
3af24433 4379{
38db41d9 4380 int cpu = smp_processor_id();
4ce62e9e 4381 struct worker_pool *pool;
db7bccf4 4382 struct worker *worker;
3af24433 4383
f02ae73a 4384 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4385 mutex_lock(&pool->attach_mutex);
94cf58bb 4386 spin_lock_irq(&pool->lock);
3af24433 4387
94cf58bb 4388 /*
92f9c5c4 4389 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4390 * unbound and set DISASSOCIATED. Before this, all workers
4391 * except for the ones which are still executing works from
4392 * before the last CPU down must be on the cpu. After
4393 * this, they may become diasporas.
4394 */
da028469 4395 for_each_pool_worker(worker, pool)
c9e7cf27 4396 worker->flags |= WORKER_UNBOUND;
06ba38a9 4397
24647570 4398 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4399
94cf58bb 4400 spin_unlock_irq(&pool->lock);
92f9c5c4 4401 mutex_unlock(&pool->attach_mutex);
628c78e7 4402
eb283428
LJ
4403 /*
4404 * Call schedule() so that we cross rq->lock and thus can
4405 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4406 * This is necessary as scheduler callbacks may be invoked
4407 * from other cpus.
4408 */
4409 schedule();
06ba38a9 4410
eb283428
LJ
4411 /*
4412 * Sched callbacks are disabled now. Zap nr_running.
4413 * After this, nr_running stays zero and need_more_worker()
4414 * and keep_working() are always true as long as the
4415 * worklist is not empty. This pool now behaves as an
4416 * unbound (in terms of concurrency management) pool which
4417 * are served by workers tied to the pool.
4418 */
e19e397a 4419 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4420
4421 /*
4422 * With concurrency management just turned off, a busy
4423 * worker blocking could lead to lengthy stalls. Kick off
4424 * unbound chain execution of currently pending work items.
4425 */
4426 spin_lock_irq(&pool->lock);
4427 wake_up_worker(pool);
4428 spin_unlock_irq(&pool->lock);
4429 }
3af24433 4430}
3af24433 4431
bd7c089e
TH
4432/**
4433 * rebind_workers - rebind all workers of a pool to the associated CPU
4434 * @pool: pool of interest
4435 *
a9ab775b 4436 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4437 */
4438static void rebind_workers(struct worker_pool *pool)
4439{
a9ab775b 4440 struct worker *worker;
bd7c089e 4441
92f9c5c4 4442 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4443
a9ab775b
TH
4444 /*
4445 * Restore CPU affinity of all workers. As all idle workers should
4446 * be on the run-queue of the associated CPU before any local
402dd89d 4447 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4448 * of all workers first and then clear UNBOUND. As we're called
4449 * from CPU_ONLINE, the following shouldn't fail.
4450 */
da028469 4451 for_each_pool_worker(worker, pool)
a9ab775b
TH
4452 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4453 pool->attrs->cpumask) < 0);
bd7c089e 4454
a9ab775b 4455 spin_lock_irq(&pool->lock);
3de5e884 4456 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4457
da028469 4458 for_each_pool_worker(worker, pool) {
a9ab775b 4459 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4460
4461 /*
a9ab775b
TH
4462 * A bound idle worker should actually be on the runqueue
4463 * of the associated CPU for local wake-ups targeting it to
4464 * work. Kick all idle workers so that they migrate to the
4465 * associated CPU. Doing this in the same loop as
4466 * replacing UNBOUND with REBOUND is safe as no worker will
4467 * be bound before @pool->lock is released.
bd7c089e 4468 */
a9ab775b
TH
4469 if (worker_flags & WORKER_IDLE)
4470 wake_up_process(worker->task);
bd7c089e 4471
a9ab775b
TH
4472 /*
4473 * We want to clear UNBOUND but can't directly call
4474 * worker_clr_flags() or adjust nr_running. Atomically
4475 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4476 * @worker will clear REBOUND using worker_clr_flags() when
4477 * it initiates the next execution cycle thus restoring
4478 * concurrency management. Note that when or whether
4479 * @worker clears REBOUND doesn't affect correctness.
4480 *
4481 * ACCESS_ONCE() is necessary because @worker->flags may be
4482 * tested without holding any lock in
4483 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4484 * fail incorrectly leading to premature concurrency
4485 * management operations.
4486 */
4487 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4488 worker_flags |= WORKER_REBOUND;
4489 worker_flags &= ~WORKER_UNBOUND;
4490 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4491 }
a9ab775b
TH
4492
4493 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4494}
4495
7dbc725e
TH
4496/**
4497 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4498 * @pool: unbound pool of interest
4499 * @cpu: the CPU which is coming up
4500 *
4501 * An unbound pool may end up with a cpumask which doesn't have any online
4502 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4503 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4504 * online CPU before, cpus_allowed of all its workers should be restored.
4505 */
4506static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4507{
4508 static cpumask_t cpumask;
4509 struct worker *worker;
7dbc725e 4510
92f9c5c4 4511 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4512
4513 /* is @cpu allowed for @pool? */
4514 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4515 return;
4516
4517 /* is @cpu the only online CPU? */
4518 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4519 if (cpumask_weight(&cpumask) != 1)
4520 return;
4521
4522 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4523 for_each_pool_worker(worker, pool)
7dbc725e
TH
4524 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4525 pool->attrs->cpumask) < 0);
4526}
4527
8db25e78
TH
4528/*
4529 * Workqueues should be brought up before normal priority CPU notifiers.
4530 * This will be registered high priority CPU notifier.
4531 */
0db0628d 4532static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4533 unsigned long action,
4534 void *hcpu)
3af24433 4535{
d84ff051 4536 int cpu = (unsigned long)hcpu;
4ce62e9e 4537 struct worker_pool *pool;
4c16bd32 4538 struct workqueue_struct *wq;
7dbc725e 4539 int pi;
3ce63377 4540
8db25e78 4541 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4542 case CPU_UP_PREPARE:
f02ae73a 4543 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4544 if (pool->nr_workers)
4545 continue;
051e1850 4546 if (!create_worker(pool))
3ce63377 4547 return NOTIFY_BAD;
3af24433 4548 }
8db25e78 4549 break;
3af24433 4550
db7bccf4
TH
4551 case CPU_DOWN_FAILED:
4552 case CPU_ONLINE:
68e13a67 4553 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4554
4555 for_each_pool(pool, pi) {
92f9c5c4 4556 mutex_lock(&pool->attach_mutex);
94cf58bb 4557
f05b558d 4558 if (pool->cpu == cpu)
7dbc725e 4559 rebind_workers(pool);
f05b558d 4560 else if (pool->cpu < 0)
7dbc725e 4561 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4562
6ba94429
FW
4563 mutex_unlock(&pool->attach_mutex);
4564 }
4565
4566 /* update NUMA affinity of unbound workqueues */
4567 list_for_each_entry(wq, &workqueues, list)
4568 wq_update_unbound_numa(wq, cpu, true);
4569
4570 mutex_unlock(&wq_pool_mutex);
4571 break;
4572 }
4573 return NOTIFY_OK;
4574}
4575
4576/*
4577 * Workqueues should be brought down after normal priority CPU notifiers.
4578 * This will be registered as low priority CPU notifier.
4579 */
4580static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4581 unsigned long action,
4582 void *hcpu)
4583{
4584 int cpu = (unsigned long)hcpu;
4585 struct work_struct unbind_work;
4586 struct workqueue_struct *wq;
4587
4588 switch (action & ~CPU_TASKS_FROZEN) {
4589 case CPU_DOWN_PREPARE:
4590 /* unbinding per-cpu workers should happen on the local CPU */
4591 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4592 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4593
4594 /* update NUMA affinity of unbound workqueues */
4595 mutex_lock(&wq_pool_mutex);
4596 list_for_each_entry(wq, &workqueues, list)
4597 wq_update_unbound_numa(wq, cpu, false);
4598 mutex_unlock(&wq_pool_mutex);
4599
4600 /* wait for per-cpu unbinding to finish */
4601 flush_work(&unbind_work);
4602 destroy_work_on_stack(&unbind_work);
4603 break;
4604 }
4605 return NOTIFY_OK;
4606}
4607
4608#ifdef CONFIG_SMP
4609
4610struct work_for_cpu {
4611 struct work_struct work;
4612 long (*fn)(void *);
4613 void *arg;
4614 long ret;
4615};
4616
4617static void work_for_cpu_fn(struct work_struct *work)
4618{
4619 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4620
4621 wfc->ret = wfc->fn(wfc->arg);
4622}
4623
4624/**
4625 * work_on_cpu - run a function in user context on a particular cpu
4626 * @cpu: the cpu to run on
4627 * @fn: the function to run
4628 * @arg: the function arg
4629 *
4630 * It is up to the caller to ensure that the cpu doesn't go offline.
4631 * The caller must not hold any locks which would prevent @fn from completing.
4632 *
4633 * Return: The value @fn returns.
4634 */
4635long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4636{
4637 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4638
4639 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4640 schedule_work_on(cpu, &wfc.work);
4641 flush_work(&wfc.work);
4642 destroy_work_on_stack(&wfc.work);
4643 return wfc.ret;
4644}
4645EXPORT_SYMBOL_GPL(work_on_cpu);
4646#endif /* CONFIG_SMP */
4647
4648#ifdef CONFIG_FREEZER
4649
4650/**
4651 * freeze_workqueues_begin - begin freezing workqueues
4652 *
4653 * Start freezing workqueues. After this function returns, all freezable
4654 * workqueues will queue new works to their delayed_works list instead of
4655 * pool->worklist.
4656 *
4657 * CONTEXT:
4658 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4659 */
4660void freeze_workqueues_begin(void)
4661{
4662 struct workqueue_struct *wq;
4663 struct pool_workqueue *pwq;
4664
4665 mutex_lock(&wq_pool_mutex);
4666
4667 WARN_ON_ONCE(workqueue_freezing);
4668 workqueue_freezing = true;
4669
4670 list_for_each_entry(wq, &workqueues, list) {
4671 mutex_lock(&wq->mutex);
4672 for_each_pwq(pwq, wq)
4673 pwq_adjust_max_active(pwq);
4674 mutex_unlock(&wq->mutex);
4675 }
4676
4677 mutex_unlock(&wq_pool_mutex);
4678}
4679
4680/**
4681 * freeze_workqueues_busy - are freezable workqueues still busy?
4682 *
4683 * Check whether freezing is complete. This function must be called
4684 * between freeze_workqueues_begin() and thaw_workqueues().
4685 *
4686 * CONTEXT:
4687 * Grabs and releases wq_pool_mutex.
4688 *
4689 * Return:
4690 * %true if some freezable workqueues are still busy. %false if freezing
4691 * is complete.
4692 */
4693bool freeze_workqueues_busy(void)
4694{
4695 bool busy = false;
4696 struct workqueue_struct *wq;
4697 struct pool_workqueue *pwq;
4698
4699 mutex_lock(&wq_pool_mutex);
4700
4701 WARN_ON_ONCE(!workqueue_freezing);
4702
4703 list_for_each_entry(wq, &workqueues, list) {
4704 if (!(wq->flags & WQ_FREEZABLE))
4705 continue;
4706 /*
4707 * nr_active is monotonically decreasing. It's safe
4708 * to peek without lock.
4709 */
4710 rcu_read_lock_sched();
4711 for_each_pwq(pwq, wq) {
4712 WARN_ON_ONCE(pwq->nr_active < 0);
4713 if (pwq->nr_active) {
4714 busy = true;
4715 rcu_read_unlock_sched();
4716 goto out_unlock;
4717 }
4718 }
4719 rcu_read_unlock_sched();
4720 }
4721out_unlock:
4722 mutex_unlock(&wq_pool_mutex);
4723 return busy;
4724}
4725
4726/**
4727 * thaw_workqueues - thaw workqueues
4728 *
4729 * Thaw workqueues. Normal queueing is restored and all collected
4730 * frozen works are transferred to their respective pool worklists.
4731 *
4732 * CONTEXT:
4733 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4734 */
4735void thaw_workqueues(void)
4736{
4737 struct workqueue_struct *wq;
4738 struct pool_workqueue *pwq;
4739
4740 mutex_lock(&wq_pool_mutex);
4741
4742 if (!workqueue_freezing)
4743 goto out_unlock;
4744
4745 workqueue_freezing = false;
4746
4747 /* restore max_active and repopulate worklist */
4748 list_for_each_entry(wq, &workqueues, list) {
4749 mutex_lock(&wq->mutex);
4750 for_each_pwq(pwq, wq)
4751 pwq_adjust_max_active(pwq);
4752 mutex_unlock(&wq->mutex);
4753 }
4754
4755out_unlock:
4756 mutex_unlock(&wq_pool_mutex);
4757}
4758#endif /* CONFIG_FREEZER */
4759
042f7df1
LJ
4760static int workqueue_apply_unbound_cpumask(void)
4761{
4762 LIST_HEAD(ctxs);
4763 int ret = 0;
4764 struct workqueue_struct *wq;
4765 struct apply_wqattrs_ctx *ctx, *n;
4766
4767 lockdep_assert_held(&wq_pool_mutex);
4768
4769 list_for_each_entry(wq, &workqueues, list) {
4770 if (!(wq->flags & WQ_UNBOUND))
4771 continue;
4772 /* creating multiple pwqs breaks ordering guarantee */
4773 if (wq->flags & __WQ_ORDERED)
4774 continue;
4775
4776 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4777 if (!ctx) {
4778 ret = -ENOMEM;
4779 break;
4780 }
4781
4782 list_add_tail(&ctx->list, &ctxs);
4783 }
4784
4785 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4786 if (!ret)
4787 apply_wqattrs_commit(ctx);
4788 apply_wqattrs_cleanup(ctx);
4789 }
4790
4791 return ret;
4792}
4793
4794/**
4795 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4796 * @cpumask: the cpumask to set
4797 *
4798 * The low-level workqueues cpumask is a global cpumask that limits
4799 * the affinity of all unbound workqueues. This function check the @cpumask
4800 * and apply it to all unbound workqueues and updates all pwqs of them.
4801 *
4802 * Retun: 0 - Success
4803 * -EINVAL - Invalid @cpumask
4804 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4805 */
4806int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4807{
4808 int ret = -EINVAL;
4809 cpumask_var_t saved_cpumask;
4810
4811 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4812 return -ENOMEM;
4813
042f7df1
LJ
4814 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4815 if (!cpumask_empty(cpumask)) {
a0111cf6 4816 apply_wqattrs_lock();
042f7df1
LJ
4817
4818 /* save the old wq_unbound_cpumask. */
4819 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4820
4821 /* update wq_unbound_cpumask at first and apply it to wqs. */
4822 cpumask_copy(wq_unbound_cpumask, cpumask);
4823 ret = workqueue_apply_unbound_cpumask();
4824
4825 /* restore the wq_unbound_cpumask when failed. */
4826 if (ret < 0)
4827 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4828
a0111cf6 4829 apply_wqattrs_unlock();
042f7df1 4830 }
042f7df1
LJ
4831
4832 free_cpumask_var(saved_cpumask);
4833 return ret;
4834}
4835
6ba94429
FW
4836#ifdef CONFIG_SYSFS
4837/*
4838 * Workqueues with WQ_SYSFS flag set is visible to userland via
4839 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4840 * following attributes.
4841 *
4842 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4843 * max_active RW int : maximum number of in-flight work items
4844 *
4845 * Unbound workqueues have the following extra attributes.
4846 *
4847 * id RO int : the associated pool ID
4848 * nice RW int : nice value of the workers
4849 * cpumask RW mask : bitmask of allowed CPUs for the workers
4850 */
4851struct wq_device {
4852 struct workqueue_struct *wq;
4853 struct device dev;
4854};
4855
4856static struct workqueue_struct *dev_to_wq(struct device *dev)
4857{
4858 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4859
4860 return wq_dev->wq;
4861}
4862
4863static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4864 char *buf)
4865{
4866 struct workqueue_struct *wq = dev_to_wq(dev);
4867
4868 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4869}
4870static DEVICE_ATTR_RO(per_cpu);
4871
4872static ssize_t max_active_show(struct device *dev,
4873 struct device_attribute *attr, char *buf)
4874{
4875 struct workqueue_struct *wq = dev_to_wq(dev);
4876
4877 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4878}
4879
4880static ssize_t max_active_store(struct device *dev,
4881 struct device_attribute *attr, const char *buf,
4882 size_t count)
4883{
4884 struct workqueue_struct *wq = dev_to_wq(dev);
4885 int val;
4886
4887 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4888 return -EINVAL;
4889
4890 workqueue_set_max_active(wq, val);
4891 return count;
4892}
4893static DEVICE_ATTR_RW(max_active);
4894
4895static struct attribute *wq_sysfs_attrs[] = {
4896 &dev_attr_per_cpu.attr,
4897 &dev_attr_max_active.attr,
4898 NULL,
4899};
4900ATTRIBUTE_GROUPS(wq_sysfs);
4901
4902static ssize_t wq_pool_ids_show(struct device *dev,
4903 struct device_attribute *attr, char *buf)
4904{
4905 struct workqueue_struct *wq = dev_to_wq(dev);
4906 const char *delim = "";
4907 int node, written = 0;
4908
4909 rcu_read_lock_sched();
4910 for_each_node(node) {
4911 written += scnprintf(buf + written, PAGE_SIZE - written,
4912 "%s%d:%d", delim, node,
4913 unbound_pwq_by_node(wq, node)->pool->id);
4914 delim = " ";
4915 }
4916 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4917 rcu_read_unlock_sched();
4918
4919 return written;
4920}
4921
4922static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4923 char *buf)
4924{
4925 struct workqueue_struct *wq = dev_to_wq(dev);
4926 int written;
4927
4928 mutex_lock(&wq->mutex);
4929 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4930 mutex_unlock(&wq->mutex);
4931
4932 return written;
4933}
4934
4935/* prepare workqueue_attrs for sysfs store operations */
4936static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4937{
4938 struct workqueue_attrs *attrs;
4939
899a94fe
LJ
4940 lockdep_assert_held(&wq_pool_mutex);
4941
6ba94429
FW
4942 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4943 if (!attrs)
4944 return NULL;
4945
6ba94429 4946 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
4947 return attrs;
4948}
4949
4950static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4951 const char *buf, size_t count)
4952{
4953 struct workqueue_struct *wq = dev_to_wq(dev);
4954 struct workqueue_attrs *attrs;
d4d3e257
LJ
4955 int ret = -ENOMEM;
4956
4957 apply_wqattrs_lock();
6ba94429
FW
4958
4959 attrs = wq_sysfs_prep_attrs(wq);
4960 if (!attrs)
d4d3e257 4961 goto out_unlock;
6ba94429
FW
4962
4963 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4964 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 4965 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
4966 else
4967 ret = -EINVAL;
4968
d4d3e257
LJ
4969out_unlock:
4970 apply_wqattrs_unlock();
6ba94429
FW
4971 free_workqueue_attrs(attrs);
4972 return ret ?: count;
4973}
4974
4975static ssize_t wq_cpumask_show(struct device *dev,
4976 struct device_attribute *attr, char *buf)
4977{
4978 struct workqueue_struct *wq = dev_to_wq(dev);
4979 int written;
4980
4981 mutex_lock(&wq->mutex);
4982 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4983 cpumask_pr_args(wq->unbound_attrs->cpumask));
4984 mutex_unlock(&wq->mutex);
4985 return written;
4986}
4987
4988static ssize_t wq_cpumask_store(struct device *dev,
4989 struct device_attribute *attr,
4990 const char *buf, size_t count)
4991{
4992 struct workqueue_struct *wq = dev_to_wq(dev);
4993 struct workqueue_attrs *attrs;
d4d3e257
LJ
4994 int ret = -ENOMEM;
4995
4996 apply_wqattrs_lock();
6ba94429
FW
4997
4998 attrs = wq_sysfs_prep_attrs(wq);
4999 if (!attrs)
d4d3e257 5000 goto out_unlock;
6ba94429
FW
5001
5002 ret = cpumask_parse(buf, attrs->cpumask);
5003 if (!ret)
d4d3e257 5004 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5005
d4d3e257
LJ
5006out_unlock:
5007 apply_wqattrs_unlock();
6ba94429
FW
5008 free_workqueue_attrs(attrs);
5009 return ret ?: count;
5010}
5011
5012static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5013 char *buf)
5014{
5015 struct workqueue_struct *wq = dev_to_wq(dev);
5016 int written;
7dbc725e 5017
6ba94429
FW
5018 mutex_lock(&wq->mutex);
5019 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5020 !wq->unbound_attrs->no_numa);
5021 mutex_unlock(&wq->mutex);
4c16bd32 5022
6ba94429 5023 return written;
65758202
TH
5024}
5025
6ba94429
FW
5026static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5027 const char *buf, size_t count)
65758202 5028{
6ba94429
FW
5029 struct workqueue_struct *wq = dev_to_wq(dev);
5030 struct workqueue_attrs *attrs;
d4d3e257
LJ
5031 int v, ret = -ENOMEM;
5032
5033 apply_wqattrs_lock();
4c16bd32 5034
6ba94429
FW
5035 attrs = wq_sysfs_prep_attrs(wq);
5036 if (!attrs)
d4d3e257 5037 goto out_unlock;
4c16bd32 5038
6ba94429
FW
5039 ret = -EINVAL;
5040 if (sscanf(buf, "%d", &v) == 1) {
5041 attrs->no_numa = !v;
d4d3e257 5042 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5043 }
6ba94429 5044
d4d3e257
LJ
5045out_unlock:
5046 apply_wqattrs_unlock();
6ba94429
FW
5047 free_workqueue_attrs(attrs);
5048 return ret ?: count;
65758202
TH
5049}
5050
6ba94429
FW
5051static struct device_attribute wq_sysfs_unbound_attrs[] = {
5052 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5053 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5054 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5055 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5056 __ATTR_NULL,
5057};
8ccad40d 5058
6ba94429
FW
5059static struct bus_type wq_subsys = {
5060 .name = "workqueue",
5061 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5062};
5063
b05a7928
FW
5064static ssize_t wq_unbound_cpumask_show(struct device *dev,
5065 struct device_attribute *attr, char *buf)
5066{
5067 int written;
5068
042f7df1 5069 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5070 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5071 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5072 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5073
5074 return written;
5075}
5076
042f7df1
LJ
5077static ssize_t wq_unbound_cpumask_store(struct device *dev,
5078 struct device_attribute *attr, const char *buf, size_t count)
5079{
5080 cpumask_var_t cpumask;
5081 int ret;
5082
5083 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5084 return -ENOMEM;
5085
5086 ret = cpumask_parse(buf, cpumask);
5087 if (!ret)
5088 ret = workqueue_set_unbound_cpumask(cpumask);
5089
5090 free_cpumask_var(cpumask);
5091 return ret ? ret : count;
5092}
5093
b05a7928 5094static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5095 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5096 wq_unbound_cpumask_store);
b05a7928 5097
6ba94429 5098static int __init wq_sysfs_init(void)
2d3854a3 5099{
b05a7928
FW
5100 int err;
5101
5102 err = subsys_virtual_register(&wq_subsys, NULL);
5103 if (err)
5104 return err;
5105
5106 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5107}
6ba94429 5108core_initcall(wq_sysfs_init);
2d3854a3 5109
6ba94429 5110static void wq_device_release(struct device *dev)
2d3854a3 5111{
6ba94429 5112 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5113
6ba94429 5114 kfree(wq_dev);
2d3854a3 5115}
a0a1a5fd
TH
5116
5117/**
6ba94429
FW
5118 * workqueue_sysfs_register - make a workqueue visible in sysfs
5119 * @wq: the workqueue to register
a0a1a5fd 5120 *
6ba94429
FW
5121 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5122 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5123 * which is the preferred method.
a0a1a5fd 5124 *
6ba94429
FW
5125 * Workqueue user should use this function directly iff it wants to apply
5126 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5127 * apply_workqueue_attrs() may race against userland updating the
5128 * attributes.
5129 *
5130 * Return: 0 on success, -errno on failure.
a0a1a5fd 5131 */
6ba94429 5132int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5133{
6ba94429
FW
5134 struct wq_device *wq_dev;
5135 int ret;
a0a1a5fd 5136
6ba94429 5137 /*
402dd89d 5138 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5139 * attributes breaks ordering guarantee. Disallow exposing ordered
5140 * workqueues.
5141 */
5142 if (WARN_ON(wq->flags & __WQ_ORDERED))
5143 return -EINVAL;
a0a1a5fd 5144
6ba94429
FW
5145 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5146 if (!wq_dev)
5147 return -ENOMEM;
5bcab335 5148
6ba94429
FW
5149 wq_dev->wq = wq;
5150 wq_dev->dev.bus = &wq_subsys;
5151 wq_dev->dev.init_name = wq->name;
5152 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5153
6ba94429
FW
5154 /*
5155 * unbound_attrs are created separately. Suppress uevent until
5156 * everything is ready.
5157 */
5158 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5159
6ba94429
FW
5160 ret = device_register(&wq_dev->dev);
5161 if (ret) {
5162 kfree(wq_dev);
5163 wq->wq_dev = NULL;
5164 return ret;
5165 }
a0a1a5fd 5166
6ba94429
FW
5167 if (wq->flags & WQ_UNBOUND) {
5168 struct device_attribute *attr;
a0a1a5fd 5169
6ba94429
FW
5170 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5171 ret = device_create_file(&wq_dev->dev, attr);
5172 if (ret) {
5173 device_unregister(&wq_dev->dev);
5174 wq->wq_dev = NULL;
5175 return ret;
a0a1a5fd
TH
5176 }
5177 }
5178 }
6ba94429
FW
5179
5180 dev_set_uevent_suppress(&wq_dev->dev, false);
5181 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5182 return 0;
a0a1a5fd
TH
5183}
5184
5185/**
6ba94429
FW
5186 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5187 * @wq: the workqueue to unregister
a0a1a5fd 5188 *
6ba94429 5189 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5190 */
6ba94429 5191static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5192{
6ba94429 5193 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5194
6ba94429
FW
5195 if (!wq->wq_dev)
5196 return;
a0a1a5fd 5197
6ba94429
FW
5198 wq->wq_dev = NULL;
5199 device_unregister(&wq_dev->dev);
a0a1a5fd 5200}
6ba94429
FW
5201#else /* CONFIG_SYSFS */
5202static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5203#endif /* CONFIG_SYSFS */
a0a1a5fd 5204
bce90380
TH
5205static void __init wq_numa_init(void)
5206{
5207 cpumask_var_t *tbl;
5208 int node, cpu;
5209
bce90380
TH
5210 if (num_possible_nodes() <= 1)
5211 return;
5212
d55262c4
TH
5213 if (wq_disable_numa) {
5214 pr_info("workqueue: NUMA affinity support disabled\n");
5215 return;
5216 }
5217
4c16bd32
TH
5218 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5219 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5220
bce90380
TH
5221 /*
5222 * We want masks of possible CPUs of each node which isn't readily
5223 * available. Build one from cpu_to_node() which should have been
5224 * fully initialized by now.
5225 */
ddcb57e2 5226 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5227 BUG_ON(!tbl);
5228
5229 for_each_node(node)
5a6024f1 5230 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5231 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5232
5233 for_each_possible_cpu(cpu) {
5234 node = cpu_to_node(cpu);
5235 if (WARN_ON(node == NUMA_NO_NODE)) {
5236 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5237 /* happens iff arch is bonkers, let's just proceed */
5238 return;
5239 }
5240 cpumask_set_cpu(cpu, tbl[node]);
5241 }
5242
5243 wq_numa_possible_cpumask = tbl;
5244 wq_numa_enabled = true;
5245}
5246
6ee0578b 5247static int __init init_workqueues(void)
1da177e4 5248{
7a4e344c
TH
5249 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5250 int i, cpu;
c34056a3 5251
e904e6c2
TH
5252 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5253
b05a7928
FW
5254 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5255 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5256
e904e6c2
TH
5257 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5258
65758202 5259 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5260 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5261
bce90380
TH
5262 wq_numa_init();
5263
706026c2 5264 /* initialize CPU pools */
29c91e99 5265 for_each_possible_cpu(cpu) {
4ce62e9e 5266 struct worker_pool *pool;
8b03ae3c 5267
7a4e344c 5268 i = 0;
f02ae73a 5269 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5270 BUG_ON(init_worker_pool(pool));
ec22ca5e 5271 pool->cpu = cpu;
29c91e99 5272 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5273 pool->attrs->nice = std_nice[i++];
f3f90ad4 5274 pool->node = cpu_to_node(cpu);
7a4e344c 5275
9daf9e67 5276 /* alloc pool ID */
68e13a67 5277 mutex_lock(&wq_pool_mutex);
9daf9e67 5278 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5279 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5280 }
8b03ae3c
TH
5281 }
5282
e22bee78 5283 /* create the initial worker */
29c91e99 5284 for_each_online_cpu(cpu) {
4ce62e9e 5285 struct worker_pool *pool;
e22bee78 5286
f02ae73a 5287 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5288 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5289 BUG_ON(!create_worker(pool));
4ce62e9e 5290 }
e22bee78
TH
5291 }
5292
8a2b7538 5293 /* create default unbound and ordered wq attrs */
29c91e99
TH
5294 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5295 struct workqueue_attrs *attrs;
5296
5297 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5298 attrs->nice = std_nice[i];
29c91e99 5299 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5300
5301 /*
5302 * An ordered wq should have only one pwq as ordering is
5303 * guaranteed by max_active which is enforced by pwqs.
5304 * Turn off NUMA so that dfl_pwq is used for all nodes.
5305 */
5306 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5307 attrs->nice = std_nice[i];
5308 attrs->no_numa = true;
5309 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5310 }
5311
d320c038 5312 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5313 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5314 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5315 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5316 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5317 system_freezable_wq = alloc_workqueue("events_freezable",
5318 WQ_FREEZABLE, 0);
0668106c
VK
5319 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5320 WQ_POWER_EFFICIENT, 0);
5321 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5322 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5323 0);
1aabe902 5324 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5325 !system_unbound_wq || !system_freezable_wq ||
5326 !system_power_efficient_wq ||
5327 !system_freezable_power_efficient_wq);
6ee0578b 5328 return 0;
1da177e4 5329}
6ee0578b 5330early_initcall(init_workqueues);