workqueue: alloc struct worker on its local node
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
60f5a4bc 164 struct completion *detach_completion; /* all workers detached */
e19e397a 165
7cda9aae 166 struct ida worker_ida; /* worker IDs for task name */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
822d8405
TH
367 * @pool: worker_pool to iterate workers of
368 *
92f9c5c4 369 * This must be called with @pool->attach_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
da028469
LJ
374#define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
762}
763
4d707b9f 764/*
e22bee78
TH
765 * Wake up functions.
766 */
767
1037de36
LJ
768/* Return the first idle worker. Safe with preemption disabled */
769static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
772 return NULL;
773
63d95a91 774 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
775}
776
777/**
778 * wake_up_worker - wake up an idle worker
63d95a91 779 * @pool: worker pool to wake worker from
7e11629d 780 *
63d95a91 781 * Wake up the first idle worker of @pool.
7e11629d
TH
782 *
783 * CONTEXT:
d565ed63 784 * spin_lock_irq(pool->lock).
7e11629d 785 */
63d95a91 786static void wake_up_worker(struct worker_pool *pool)
7e11629d 787{
1037de36 788 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792}
793
d302f017 794/**
e22bee78
TH
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
d84ff051 805void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
806{
807 struct worker *worker = kthread_data(task);
808
36576000 809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 810 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 811 atomic_inc(&worker->pool->nr_running);
36576000 812 }
e22bee78
TH
813}
814
815/**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
d185af30 827 * Return:
e22bee78
TH
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
d84ff051 830struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 833 struct worker_pool *pool;
e22bee78 834
111c225a
TH
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
2d64672e 840 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
841 return NULL;
842
111c225a 843 pool = worker->pool;
111c225a 844
e22bee78 845 /* this can only happen on the local cpu */
92b69f50 846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 847 return NULL;
e22bee78
TH
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
628c78e7
TH
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
d565ed63 857 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 858 * lock is safe.
e22bee78 859 */
e19e397a
TH
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
1037de36 862 to_wakeup = first_idle_worker(pool);
e22bee78
TH
863 return to_wakeup ? to_wakeup->task : NULL;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 868 * @worker: self
d302f017
TH
869 * @flags: flags to set
870 * @wakeup: wakeup an idle worker if necessary
871 *
e22bee78
TH
872 * Set @flags in @worker->flags and adjust nr_running accordingly. If
873 * nr_running becomes zero and @wakeup is %true, an idle worker is
874 * woken up.
d302f017 875 *
cb444766 876 * CONTEXT:
d565ed63 877 * spin_lock_irq(pool->lock)
d302f017
TH
878 */
879static inline void worker_set_flags(struct worker *worker, unsigned int flags,
880 bool wakeup)
881{
bd7bdd43 882 struct worker_pool *pool = worker->pool;
e22bee78 883
cb444766
TH
884 WARN_ON_ONCE(worker->task != current);
885
e22bee78
TH
886 /*
887 * If transitioning into NOT_RUNNING, adjust nr_running and
888 * wake up an idle worker as necessary if requested by
889 * @wakeup.
890 */
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 893 if (wakeup) {
e19e397a 894 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 895 !list_empty(&pool->worklist))
63d95a91 896 wake_up_worker(pool);
e22bee78 897 } else
e19e397a 898 atomic_dec(&pool->nr_running);
e22bee78
TH
899 }
900
d302f017
TH
901 worker->flags |= flags;
902}
903
904/**
e22bee78 905 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 906 * @worker: self
d302f017
TH
907 * @flags: flags to clear
908 *
e22bee78 909 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 910 *
cb444766 911 * CONTEXT:
d565ed63 912 * spin_lock_irq(pool->lock)
d302f017
TH
913 */
914static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
915{
63d95a91 916 struct worker_pool *pool = worker->pool;
e22bee78
TH
917 unsigned int oflags = worker->flags;
918
cb444766
TH
919 WARN_ON_ONCE(worker->task != current);
920
d302f017 921 worker->flags &= ~flags;
e22bee78 922
42c025f3
TH
923 /*
924 * If transitioning out of NOT_RUNNING, increment nr_running. Note
925 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
926 * of multiple flags, not a single flag.
927 */
e22bee78
TH
928 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
929 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 930 atomic_inc(&pool->nr_running);
d302f017
TH
931}
932
8cca0eea
TH
933/**
934 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 935 * @pool: pool of interest
8cca0eea
TH
936 * @work: work to find worker for
937 *
c9e7cf27
TH
938 * Find a worker which is executing @work on @pool by searching
939 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
940 * to match, its current execution should match the address of @work and
941 * its work function. This is to avoid unwanted dependency between
942 * unrelated work executions through a work item being recycled while still
943 * being executed.
944 *
945 * This is a bit tricky. A work item may be freed once its execution
946 * starts and nothing prevents the freed area from being recycled for
947 * another work item. If the same work item address ends up being reused
948 * before the original execution finishes, workqueue will identify the
949 * recycled work item as currently executing and make it wait until the
950 * current execution finishes, introducing an unwanted dependency.
951 *
c5aa87bb
TH
952 * This function checks the work item address and work function to avoid
953 * false positives. Note that this isn't complete as one may construct a
954 * work function which can introduce dependency onto itself through a
955 * recycled work item. Well, if somebody wants to shoot oneself in the
956 * foot that badly, there's only so much we can do, and if such deadlock
957 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
958 *
959 * CONTEXT:
d565ed63 960 * spin_lock_irq(pool->lock).
8cca0eea 961 *
d185af30
YB
962 * Return:
963 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 964 * otherwise.
4d707b9f 965 */
c9e7cf27 966static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 967 struct work_struct *work)
4d707b9f 968{
42f8570f 969 struct worker *worker;
42f8570f 970
b67bfe0d 971 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
972 (unsigned long)work)
973 if (worker->current_work == work &&
974 worker->current_func == work->func)
42f8570f
SL
975 return worker;
976
977 return NULL;
4d707b9f
ON
978}
979
bf4ede01
TH
980/**
981 * move_linked_works - move linked works to a list
982 * @work: start of series of works to be scheduled
983 * @head: target list to append @work to
984 * @nextp: out paramter for nested worklist walking
985 *
986 * Schedule linked works starting from @work to @head. Work series to
987 * be scheduled starts at @work and includes any consecutive work with
988 * WORK_STRUCT_LINKED set in its predecessor.
989 *
990 * If @nextp is not NULL, it's updated to point to the next work of
991 * the last scheduled work. This allows move_linked_works() to be
992 * nested inside outer list_for_each_entry_safe().
993 *
994 * CONTEXT:
d565ed63 995 * spin_lock_irq(pool->lock).
bf4ede01
TH
996 */
997static void move_linked_works(struct work_struct *work, struct list_head *head,
998 struct work_struct **nextp)
999{
1000 struct work_struct *n;
1001
1002 /*
1003 * Linked worklist will always end before the end of the list,
1004 * use NULL for list head.
1005 */
1006 list_for_each_entry_safe_from(work, n, NULL, entry) {
1007 list_move_tail(&work->entry, head);
1008 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1009 break;
1010 }
1011
1012 /*
1013 * If we're already inside safe list traversal and have moved
1014 * multiple works to the scheduled queue, the next position
1015 * needs to be updated.
1016 */
1017 if (nextp)
1018 *nextp = n;
1019}
1020
8864b4e5
TH
1021/**
1022 * get_pwq - get an extra reference on the specified pool_workqueue
1023 * @pwq: pool_workqueue to get
1024 *
1025 * Obtain an extra reference on @pwq. The caller should guarantee that
1026 * @pwq has positive refcnt and be holding the matching pool->lock.
1027 */
1028static void get_pwq(struct pool_workqueue *pwq)
1029{
1030 lockdep_assert_held(&pwq->pool->lock);
1031 WARN_ON_ONCE(pwq->refcnt <= 0);
1032 pwq->refcnt++;
1033}
1034
1035/**
1036 * put_pwq - put a pool_workqueue reference
1037 * @pwq: pool_workqueue to put
1038 *
1039 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1040 * destruction. The caller should be holding the matching pool->lock.
1041 */
1042static void put_pwq(struct pool_workqueue *pwq)
1043{
1044 lockdep_assert_held(&pwq->pool->lock);
1045 if (likely(--pwq->refcnt))
1046 return;
1047 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1048 return;
1049 /*
1050 * @pwq can't be released under pool->lock, bounce to
1051 * pwq_unbound_release_workfn(). This never recurses on the same
1052 * pool->lock as this path is taken only for unbound workqueues and
1053 * the release work item is scheduled on a per-cpu workqueue. To
1054 * avoid lockdep warning, unbound pool->locks are given lockdep
1055 * subclass of 1 in get_unbound_pool().
1056 */
1057 schedule_work(&pwq->unbound_release_work);
1058}
1059
dce90d47
TH
1060/**
1061 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1062 * @pwq: pool_workqueue to put (can be %NULL)
1063 *
1064 * put_pwq() with locking. This function also allows %NULL @pwq.
1065 */
1066static void put_pwq_unlocked(struct pool_workqueue *pwq)
1067{
1068 if (pwq) {
1069 /*
1070 * As both pwqs and pools are sched-RCU protected, the
1071 * following lock operations are safe.
1072 */
1073 spin_lock_irq(&pwq->pool->lock);
1074 put_pwq(pwq);
1075 spin_unlock_irq(&pwq->pool->lock);
1076 }
1077}
1078
112202d9 1079static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1080{
112202d9 1081 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1082
1083 trace_workqueue_activate_work(work);
112202d9 1084 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1085 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1086 pwq->nr_active++;
bf4ede01
TH
1087}
1088
112202d9 1089static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1090{
112202d9 1091 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1092 struct work_struct, entry);
1093
112202d9 1094 pwq_activate_delayed_work(work);
3aa62497
LJ
1095}
1096
bf4ede01 1097/**
112202d9
TH
1098 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1099 * @pwq: pwq of interest
bf4ede01 1100 * @color: color of work which left the queue
bf4ede01
TH
1101 *
1102 * A work either has completed or is removed from pending queue,
112202d9 1103 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1104 *
1105 * CONTEXT:
d565ed63 1106 * spin_lock_irq(pool->lock).
bf4ede01 1107 */
112202d9 1108static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1109{
8864b4e5 1110 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1111 if (color == WORK_NO_COLOR)
8864b4e5 1112 goto out_put;
bf4ede01 1113
112202d9 1114 pwq->nr_in_flight[color]--;
bf4ede01 1115
112202d9
TH
1116 pwq->nr_active--;
1117 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1118 /* one down, submit a delayed one */
112202d9
TH
1119 if (pwq->nr_active < pwq->max_active)
1120 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1121 }
1122
1123 /* is flush in progress and are we at the flushing tip? */
112202d9 1124 if (likely(pwq->flush_color != color))
8864b4e5 1125 goto out_put;
bf4ede01
TH
1126
1127 /* are there still in-flight works? */
112202d9 1128 if (pwq->nr_in_flight[color])
8864b4e5 1129 goto out_put;
bf4ede01 1130
112202d9
TH
1131 /* this pwq is done, clear flush_color */
1132 pwq->flush_color = -1;
bf4ede01
TH
1133
1134 /*
112202d9 1135 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1136 * will handle the rest.
1137 */
112202d9
TH
1138 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1139 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1140out_put:
1141 put_pwq(pwq);
bf4ede01
TH
1142}
1143
36e227d2 1144/**
bbb68dfa 1145 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1146 * @work: work item to steal
1147 * @is_dwork: @work is a delayed_work
bbb68dfa 1148 * @flags: place to store irq state
36e227d2
TH
1149 *
1150 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1151 * stable state - idle, on timer or on worklist.
36e227d2 1152 *
d185af30 1153 * Return:
36e227d2
TH
1154 * 1 if @work was pending and we successfully stole PENDING
1155 * 0 if @work was idle and we claimed PENDING
1156 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1157 * -ENOENT if someone else is canceling @work, this state may persist
1158 * for arbitrarily long
36e227d2 1159 *
d185af30 1160 * Note:
bbb68dfa 1161 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1162 * interrupted while holding PENDING and @work off queue, irq must be
1163 * disabled on entry. This, combined with delayed_work->timer being
1164 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1165 *
1166 * On successful return, >= 0, irq is disabled and the caller is
1167 * responsible for releasing it using local_irq_restore(*@flags).
1168 *
e0aecdd8 1169 * This function is safe to call from any context including IRQ handler.
bf4ede01 1170 */
bbb68dfa
TH
1171static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1172 unsigned long *flags)
bf4ede01 1173{
d565ed63 1174 struct worker_pool *pool;
112202d9 1175 struct pool_workqueue *pwq;
bf4ede01 1176
bbb68dfa
TH
1177 local_irq_save(*flags);
1178
36e227d2
TH
1179 /* try to steal the timer if it exists */
1180 if (is_dwork) {
1181 struct delayed_work *dwork = to_delayed_work(work);
1182
e0aecdd8
TH
1183 /*
1184 * dwork->timer is irqsafe. If del_timer() fails, it's
1185 * guaranteed that the timer is not queued anywhere and not
1186 * running on the local CPU.
1187 */
36e227d2
TH
1188 if (likely(del_timer(&dwork->timer)))
1189 return 1;
1190 }
1191
1192 /* try to claim PENDING the normal way */
bf4ede01
TH
1193 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1194 return 0;
1195
1196 /*
1197 * The queueing is in progress, or it is already queued. Try to
1198 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1199 */
d565ed63
TH
1200 pool = get_work_pool(work);
1201 if (!pool)
bbb68dfa 1202 goto fail;
bf4ede01 1203
d565ed63 1204 spin_lock(&pool->lock);
0b3dae68 1205 /*
112202d9
TH
1206 * work->data is guaranteed to point to pwq only while the work
1207 * item is queued on pwq->wq, and both updating work->data to point
1208 * to pwq on queueing and to pool on dequeueing are done under
1209 * pwq->pool->lock. This in turn guarantees that, if work->data
1210 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1211 * item is currently queued on that pool.
1212 */
112202d9
TH
1213 pwq = get_work_pwq(work);
1214 if (pwq && pwq->pool == pool) {
16062836
TH
1215 debug_work_deactivate(work);
1216
1217 /*
1218 * A delayed work item cannot be grabbed directly because
1219 * it might have linked NO_COLOR work items which, if left
112202d9 1220 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1221 * management later on and cause stall. Make sure the work
1222 * item is activated before grabbing.
1223 */
1224 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1225 pwq_activate_delayed_work(work);
16062836
TH
1226
1227 list_del_init(&work->entry);
9c34a704 1228 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1229
112202d9 1230 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1231 set_work_pool_and_keep_pending(work, pool->id);
1232
1233 spin_unlock(&pool->lock);
1234 return 1;
bf4ede01 1235 }
d565ed63 1236 spin_unlock(&pool->lock);
bbb68dfa
TH
1237fail:
1238 local_irq_restore(*flags);
1239 if (work_is_canceling(work))
1240 return -ENOENT;
1241 cpu_relax();
36e227d2 1242 return -EAGAIN;
bf4ede01
TH
1243}
1244
4690c4ab 1245/**
706026c2 1246 * insert_work - insert a work into a pool
112202d9 1247 * @pwq: pwq @work belongs to
4690c4ab
TH
1248 * @work: work to insert
1249 * @head: insertion point
1250 * @extra_flags: extra WORK_STRUCT_* flags to set
1251 *
112202d9 1252 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1253 * work_struct flags.
4690c4ab
TH
1254 *
1255 * CONTEXT:
d565ed63 1256 * spin_lock_irq(pool->lock).
4690c4ab 1257 */
112202d9
TH
1258static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1259 struct list_head *head, unsigned int extra_flags)
b89deed3 1260{
112202d9 1261 struct worker_pool *pool = pwq->pool;
e22bee78 1262
4690c4ab 1263 /* we own @work, set data and link */
112202d9 1264 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1265 list_add_tail(&work->entry, head);
8864b4e5 1266 get_pwq(pwq);
e22bee78
TH
1267
1268 /*
c5aa87bb
TH
1269 * Ensure either wq_worker_sleeping() sees the above
1270 * list_add_tail() or we see zero nr_running to avoid workers lying
1271 * around lazily while there are works to be processed.
e22bee78
TH
1272 */
1273 smp_mb();
1274
63d95a91
TH
1275 if (__need_more_worker(pool))
1276 wake_up_worker(pool);
b89deed3
ON
1277}
1278
c8efcc25
TH
1279/*
1280 * Test whether @work is being queued from another work executing on the
8d03ecfe 1281 * same workqueue.
c8efcc25
TH
1282 */
1283static bool is_chained_work(struct workqueue_struct *wq)
1284{
8d03ecfe
TH
1285 struct worker *worker;
1286
1287 worker = current_wq_worker();
1288 /*
1289 * Return %true iff I'm a worker execuing a work item on @wq. If
1290 * I'm @worker, it's safe to dereference it without locking.
1291 */
112202d9 1292 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1293}
1294
d84ff051 1295static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1296 struct work_struct *work)
1297{
112202d9 1298 struct pool_workqueue *pwq;
c9178087 1299 struct worker_pool *last_pool;
1e19ffc6 1300 struct list_head *worklist;
8a2e8e5d 1301 unsigned int work_flags;
b75cac93 1302 unsigned int req_cpu = cpu;
8930caba
TH
1303
1304 /*
1305 * While a work item is PENDING && off queue, a task trying to
1306 * steal the PENDING will busy-loop waiting for it to either get
1307 * queued or lose PENDING. Grabbing PENDING and queueing should
1308 * happen with IRQ disabled.
1309 */
1310 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1311
dc186ad7 1312 debug_work_activate(work);
1e19ffc6 1313
9ef28a73 1314 /* if draining, only works from the same workqueue are allowed */
618b01eb 1315 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1316 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1317 return;
9e8cd2f5 1318retry:
df2d5ae4
TH
1319 if (req_cpu == WORK_CPU_UNBOUND)
1320 cpu = raw_smp_processor_id();
1321
c9178087 1322 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1323 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1325 else
1326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1327
c9178087
TH
1328 /*
1329 * If @work was previously on a different pool, it might still be
1330 * running there, in which case the work needs to be queued on that
1331 * pool to guarantee non-reentrancy.
1332 */
1333 last_pool = get_work_pool(work);
1334 if (last_pool && last_pool != pwq->pool) {
1335 struct worker *worker;
18aa9eff 1336
c9178087 1337 spin_lock(&last_pool->lock);
18aa9eff 1338
c9178087 1339 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1340
c9178087
TH
1341 if (worker && worker->current_pwq->wq == wq) {
1342 pwq = worker->current_pwq;
8930caba 1343 } else {
c9178087
TH
1344 /* meh... not running there, queue here */
1345 spin_unlock(&last_pool->lock);
112202d9 1346 spin_lock(&pwq->pool->lock);
8930caba 1347 }
f3421797 1348 } else {
112202d9 1349 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1350 }
1351
9e8cd2f5
TH
1352 /*
1353 * pwq is determined and locked. For unbound pools, we could have
1354 * raced with pwq release and it could already be dead. If its
1355 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1356 * without another pwq replacing it in the numa_pwq_tbl or while
1357 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1358 * make forward-progress.
1359 */
1360 if (unlikely(!pwq->refcnt)) {
1361 if (wq->flags & WQ_UNBOUND) {
1362 spin_unlock(&pwq->pool->lock);
1363 cpu_relax();
1364 goto retry;
1365 }
1366 /* oops */
1367 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1368 wq->name, cpu);
1369 }
1370
112202d9
TH
1371 /* pwq determined, queue */
1372 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1373
f5b2552b 1374 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1375 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1376 return;
1377 }
1e19ffc6 1378
112202d9
TH
1379 pwq->nr_in_flight[pwq->work_color]++;
1380 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1381
112202d9 1382 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1383 trace_workqueue_activate_work(work);
112202d9
TH
1384 pwq->nr_active++;
1385 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1386 } else {
1387 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1388 worklist = &pwq->delayed_works;
8a2e8e5d 1389 }
1e19ffc6 1390
112202d9 1391 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1392
112202d9 1393 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1394}
1395
0fcb78c2 1396/**
c1a220e7
ZR
1397 * queue_work_on - queue work on specific cpu
1398 * @cpu: CPU number to execute work on
0fcb78c2
REB
1399 * @wq: workqueue to use
1400 * @work: work to queue
1401 *
c1a220e7
ZR
1402 * We queue the work to a specific CPU, the caller must ensure it
1403 * can't go away.
d185af30
YB
1404 *
1405 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1406 */
d4283e93
TH
1407bool queue_work_on(int cpu, struct workqueue_struct *wq,
1408 struct work_struct *work)
1da177e4 1409{
d4283e93 1410 bool ret = false;
8930caba 1411 unsigned long flags;
ef1ca236 1412
8930caba 1413 local_irq_save(flags);
c1a220e7 1414
22df02bb 1415 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1416 __queue_work(cpu, wq, work);
d4283e93 1417 ret = true;
c1a220e7 1418 }
ef1ca236 1419
8930caba 1420 local_irq_restore(flags);
1da177e4
LT
1421 return ret;
1422}
ad7b1f84 1423EXPORT_SYMBOL(queue_work_on);
1da177e4 1424
d8e794df 1425void delayed_work_timer_fn(unsigned long __data)
1da177e4 1426{
52bad64d 1427 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1428
e0aecdd8 1429 /* should have been called from irqsafe timer with irq already off */
60c057bc 1430 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1431}
1438ade5 1432EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1433
7beb2edf
TH
1434static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1435 struct delayed_work *dwork, unsigned long delay)
1da177e4 1436{
7beb2edf
TH
1437 struct timer_list *timer = &dwork->timer;
1438 struct work_struct *work = &dwork->work;
7beb2edf
TH
1439
1440 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1441 timer->data != (unsigned long)dwork);
fc4b514f
TH
1442 WARN_ON_ONCE(timer_pending(timer));
1443 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1444
8852aac2
TH
1445 /*
1446 * If @delay is 0, queue @dwork->work immediately. This is for
1447 * both optimization and correctness. The earliest @timer can
1448 * expire is on the closest next tick and delayed_work users depend
1449 * on that there's no such delay when @delay is 0.
1450 */
1451 if (!delay) {
1452 __queue_work(cpu, wq, &dwork->work);
1453 return;
1454 }
1455
7beb2edf 1456 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1457
60c057bc 1458 dwork->wq = wq;
1265057f 1459 dwork->cpu = cpu;
7beb2edf
TH
1460 timer->expires = jiffies + delay;
1461
1462 if (unlikely(cpu != WORK_CPU_UNBOUND))
1463 add_timer_on(timer, cpu);
1464 else
1465 add_timer(timer);
1da177e4
LT
1466}
1467
0fcb78c2
REB
1468/**
1469 * queue_delayed_work_on - queue work on specific CPU after delay
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
af9997e4 1472 * @dwork: work to queue
0fcb78c2
REB
1473 * @delay: number of jiffies to wait before queueing
1474 *
d185af30 1475 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1476 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1477 * execution.
0fcb78c2 1478 */
d4283e93
TH
1479bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1481{
52bad64d 1482 struct work_struct *work = &dwork->work;
d4283e93 1483 bool ret = false;
8930caba 1484 unsigned long flags;
7a6bc1cd 1485
8930caba
TH
1486 /* read the comment in __queue_work() */
1487 local_irq_save(flags);
7a6bc1cd 1488
22df02bb 1489 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1490 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1491 ret = true;
7a6bc1cd 1492 }
8a3e77cc 1493
8930caba 1494 local_irq_restore(flags);
7a6bc1cd
VP
1495 return ret;
1496}
ad7b1f84 1497EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1498
8376fe22
TH
1499/**
1500 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1501 * @cpu: CPU number to execute work on
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1507 * modify @dwork's timer so that it expires after @delay. If @delay is
1508 * zero, @work is guaranteed to be scheduled immediately regardless of its
1509 * current state.
1510 *
d185af30 1511 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1512 * pending and its timer was modified.
1513 *
e0aecdd8 1514 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1515 * See try_to_grab_pending() for details.
1516 */
1517bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
1519{
1520 unsigned long flags;
1521 int ret;
c7fc77f7 1522
8376fe22
TH
1523 do {
1524 ret = try_to_grab_pending(&dwork->work, true, &flags);
1525 } while (unlikely(ret == -EAGAIN));
63bc0362 1526
8376fe22
TH
1527 if (likely(ret >= 0)) {
1528 __queue_delayed_work(cpu, wq, dwork, delay);
1529 local_irq_restore(flags);
7a6bc1cd 1530 }
8376fe22
TH
1531
1532 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1533 return ret;
1534}
8376fe22
TH
1535EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1536
c8e55f36
TH
1537/**
1538 * worker_enter_idle - enter idle state
1539 * @worker: worker which is entering idle state
1540 *
1541 * @worker is entering idle state. Update stats and idle timer if
1542 * necessary.
1543 *
1544 * LOCKING:
d565ed63 1545 * spin_lock_irq(pool->lock).
c8e55f36
TH
1546 */
1547static void worker_enter_idle(struct worker *worker)
1da177e4 1548{
bd7bdd43 1549 struct worker_pool *pool = worker->pool;
c8e55f36 1550
6183c009
TH
1551 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1552 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1553 (worker->hentry.next || worker->hentry.pprev)))
1554 return;
c8e55f36 1555
cb444766
TH
1556 /* can't use worker_set_flags(), also called from start_worker() */
1557 worker->flags |= WORKER_IDLE;
bd7bdd43 1558 pool->nr_idle++;
e22bee78 1559 worker->last_active = jiffies;
c8e55f36
TH
1560
1561 /* idle_list is LIFO */
bd7bdd43 1562 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1563
628c78e7
TH
1564 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1565 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1566
544ecf31 1567 /*
706026c2 1568 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1569 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1570 * nr_running, the warning may trigger spuriously. Check iff
1571 * unbind is not in progress.
544ecf31 1572 */
24647570 1573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1574 pool->nr_workers == pool->nr_idle &&
e19e397a 1575 atomic_read(&pool->nr_running));
c8e55f36
TH
1576}
1577
1578/**
1579 * worker_leave_idle - leave idle state
1580 * @worker: worker which is leaving idle state
1581 *
1582 * @worker is leaving idle state. Update stats.
1583 *
1584 * LOCKING:
d565ed63 1585 * spin_lock_irq(pool->lock).
c8e55f36
TH
1586 */
1587static void worker_leave_idle(struct worker *worker)
1588{
bd7bdd43 1589 struct worker_pool *pool = worker->pool;
c8e55f36 1590
6183c009
TH
1591 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1592 return;
d302f017 1593 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1594 pool->nr_idle--;
c8e55f36
TH
1595 list_del_init(&worker->entry);
1596}
1597
f7537df5 1598static struct worker *alloc_worker(int node)
c34056a3
TH
1599{
1600 struct worker *worker;
1601
f7537df5 1602 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1603 if (worker) {
1604 INIT_LIST_HEAD(&worker->entry);
affee4b2 1605 INIT_LIST_HEAD(&worker->scheduled);
da028469 1606 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1607 /* on creation a worker is in !idle && prep state */
1608 worker->flags = WORKER_PREP;
c8e55f36 1609 }
c34056a3
TH
1610 return worker;
1611}
1612
4736cbf7
LJ
1613/**
1614 * worker_attach_to_pool() - attach a worker to a pool
1615 * @worker: worker to be attached
1616 * @pool: the target pool
1617 *
1618 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1619 * cpu-binding of @worker are kept coordinated with the pool across
1620 * cpu-[un]hotplugs.
1621 */
1622static void worker_attach_to_pool(struct worker *worker,
1623 struct worker_pool *pool)
1624{
1625 mutex_lock(&pool->attach_mutex);
1626
1627 /*
1628 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1629 * online CPUs. It'll be re-applied when any of the CPUs come up.
1630 */
1631 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1632
1633 /*
1634 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1635 * stable across this function. See the comments above the
1636 * flag definition for details.
1637 */
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 worker->flags |= WORKER_UNBOUND;
1640
1641 list_add_tail(&worker->node, &pool->workers);
1642
1643 mutex_unlock(&pool->attach_mutex);
1644}
1645
60f5a4bc
LJ
1646/**
1647 * worker_detach_from_pool() - detach a worker from its pool
1648 * @worker: worker which is attached to its pool
1649 * @pool: the pool @worker is attached to
1650 *
4736cbf7
LJ
1651 * Undo the attaching which had been done in worker_attach_to_pool(). The
1652 * caller worker shouldn't access to the pool after detached except it has
1653 * other reference to the pool.
60f5a4bc
LJ
1654 */
1655static void worker_detach_from_pool(struct worker *worker,
1656 struct worker_pool *pool)
1657{
1658 struct completion *detach_completion = NULL;
1659
92f9c5c4 1660 mutex_lock(&pool->attach_mutex);
da028469
LJ
1661 list_del(&worker->node);
1662 if (list_empty(&pool->workers))
60f5a4bc 1663 detach_completion = pool->detach_completion;
92f9c5c4 1664 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1665
b62c0751
LJ
1666 /* clear leftover flags without pool->lock after it is detached */
1667 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1668
60f5a4bc
LJ
1669 if (detach_completion)
1670 complete(detach_completion);
1671}
1672
c34056a3
TH
1673/**
1674 * create_worker - create a new workqueue worker
63d95a91 1675 * @pool: pool the new worker will belong to
c34056a3 1676 *
73eb7fe7
LJ
1677 * Create a new worker which is attached to @pool. The new worker must be
1678 * started by start_worker().
c34056a3
TH
1679 *
1680 * CONTEXT:
1681 * Might sleep. Does GFP_KERNEL allocations.
1682 *
d185af30 1683 * Return:
c34056a3
TH
1684 * Pointer to the newly created worker.
1685 */
bc2ae0f5 1686static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1687{
c34056a3 1688 struct worker *worker = NULL;
f3421797 1689 int id = -1;
e3c916a4 1690 char id_buf[16];
c34056a3 1691
7cda9aae
LJ
1692 /* ID is needed to determine kthread name */
1693 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1694 if (id < 0)
1695 goto fail;
c34056a3 1696
f7537df5 1697 worker = alloc_worker(pool->node);
c34056a3
TH
1698 if (!worker)
1699 goto fail;
1700
bd7bdd43 1701 worker->pool = pool;
c34056a3
TH
1702 worker->id = id;
1703
29c91e99 1704 if (pool->cpu >= 0)
e3c916a4
TH
1705 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1706 pool->attrs->nice < 0 ? "H" : "");
f3421797 1707 else
e3c916a4
TH
1708 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1709
f3f90ad4 1710 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1711 "kworker/%s", id_buf);
c34056a3
TH
1712 if (IS_ERR(worker->task))
1713 goto fail;
1714
91151228
ON
1715 set_user_nice(worker->task, pool->attrs->nice);
1716
1717 /* prevent userland from meddling with cpumask of workqueue workers */
1718 worker->task->flags |= PF_NO_SETAFFINITY;
1719
da028469 1720 /* successful, attach the worker to the pool */
4736cbf7 1721 worker_attach_to_pool(worker, pool);
822d8405 1722
c34056a3 1723 return worker;
822d8405 1724
c34056a3 1725fail:
9625ab17 1726 if (id >= 0)
7cda9aae 1727 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1728 kfree(worker);
1729 return NULL;
1730}
1731
1732/**
1733 * start_worker - start a newly created worker
1734 * @worker: worker to start
1735 *
706026c2 1736 * Make the pool aware of @worker and start it.
c34056a3
TH
1737 *
1738 * CONTEXT:
d565ed63 1739 * spin_lock_irq(pool->lock).
c34056a3
TH
1740 */
1741static void start_worker(struct worker *worker)
1742{
bd7bdd43 1743 worker->pool->nr_workers++;
c8e55f36 1744 worker_enter_idle(worker);
c34056a3
TH
1745 wake_up_process(worker->task);
1746}
1747
ebf44d16
TH
1748/**
1749 * create_and_start_worker - create and start a worker for a pool
1750 * @pool: the target pool
1751 *
cd549687 1752 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1753 *
1754 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1755 */
1756static int create_and_start_worker(struct worker_pool *pool)
1757{
1758 struct worker *worker;
1759
1760 worker = create_worker(pool);
1761 if (worker) {
1762 spin_lock_irq(&pool->lock);
1763 start_worker(worker);
1764 spin_unlock_irq(&pool->lock);
1765 }
1766
1767 return worker ? 0 : -ENOMEM;
1768}
1769
c34056a3
TH
1770/**
1771 * destroy_worker - destroy a workqueue worker
1772 * @worker: worker to be destroyed
1773 *
73eb7fe7
LJ
1774 * Destroy @worker and adjust @pool stats accordingly. The worker should
1775 * be idle.
c8e55f36
TH
1776 *
1777 * CONTEXT:
60f5a4bc 1778 * spin_lock_irq(pool->lock).
c34056a3
TH
1779 */
1780static void destroy_worker(struct worker *worker)
1781{
bd7bdd43 1782 struct worker_pool *pool = worker->pool;
c34056a3 1783
cd549687
TH
1784 lockdep_assert_held(&pool->lock);
1785
c34056a3 1786 /* sanity check frenzy */
6183c009 1787 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1788 WARN_ON(!list_empty(&worker->scheduled)) ||
1789 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1790 return;
c34056a3 1791
73eb7fe7
LJ
1792 pool->nr_workers--;
1793 pool->nr_idle--;
5bdfff96 1794
c8e55f36 1795 list_del_init(&worker->entry);
cb444766 1796 worker->flags |= WORKER_DIE;
60f5a4bc 1797 wake_up_process(worker->task);
c34056a3
TH
1798}
1799
63d95a91 1800static void idle_worker_timeout(unsigned long __pool)
e22bee78 1801{
63d95a91 1802 struct worker_pool *pool = (void *)__pool;
e22bee78 1803
d565ed63 1804 spin_lock_irq(&pool->lock);
e22bee78 1805
3347fc9f 1806 while (too_many_workers(pool)) {
e22bee78
TH
1807 struct worker *worker;
1808 unsigned long expires;
1809
1810 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1811 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1812 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1813
3347fc9f 1814 if (time_before(jiffies, expires)) {
63d95a91 1815 mod_timer(&pool->idle_timer, expires);
3347fc9f 1816 break;
d5abe669 1817 }
3347fc9f
LJ
1818
1819 destroy_worker(worker);
e22bee78
TH
1820 }
1821
d565ed63 1822 spin_unlock_irq(&pool->lock);
e22bee78 1823}
d5abe669 1824
493a1724 1825static void send_mayday(struct work_struct *work)
e22bee78 1826{
112202d9
TH
1827 struct pool_workqueue *pwq = get_work_pwq(work);
1828 struct workqueue_struct *wq = pwq->wq;
493a1724 1829
2e109a28 1830 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1831
493008a8 1832 if (!wq->rescuer)
493a1724 1833 return;
e22bee78
TH
1834
1835 /* mayday mayday mayday */
493a1724 1836 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1837 /*
1838 * If @pwq is for an unbound wq, its base ref may be put at
1839 * any time due to an attribute change. Pin @pwq until the
1840 * rescuer is done with it.
1841 */
1842 get_pwq(pwq);
493a1724 1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1844 wake_up_process(wq->rescuer->task);
493a1724 1845 }
e22bee78
TH
1846}
1847
706026c2 1848static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1849{
63d95a91 1850 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1851 struct work_struct *work;
1852
2e109a28 1853 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1854 spin_lock(&pool->lock);
e22bee78 1855
63d95a91 1856 if (need_to_create_worker(pool)) {
e22bee78
TH
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
63d95a91 1863 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1864 send_mayday(work);
1da177e4 1865 }
e22bee78 1866
493a1724 1867 spin_unlock(&pool->lock);
2e109a28 1868 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1869
63d95a91 1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1871}
1872
e22bee78
TH
1873/**
1874 * maybe_create_worker - create a new worker if necessary
63d95a91 1875 * @pool: pool to create a new worker for
e22bee78 1876 *
63d95a91 1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1880 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1881 * possible allocation deadlock.
1882 *
c5aa87bb
TH
1883 * On return, need_to_create_worker() is guaranteed to be %false and
1884 * may_start_working() %true.
e22bee78
TH
1885 *
1886 * LOCKING:
d565ed63 1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
d185af30 1891 * Return:
c5aa87bb 1892 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1893 * otherwise.
1894 */
63d95a91 1895static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1896__releases(&pool->lock)
1897__acquires(&pool->lock)
1da177e4 1898{
63d95a91 1899 if (!need_to_create_worker(pool))
e22bee78
TH
1900 return false;
1901restart:
d565ed63 1902 spin_unlock_irq(&pool->lock);
9f9c2364 1903
e22bee78 1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1906
1907 while (true) {
1908 struct worker *worker;
1909
bc2ae0f5 1910 worker = create_worker(pool);
e22bee78 1911 if (worker) {
63d95a91 1912 del_timer_sync(&pool->mayday_timer);
d565ed63 1913 spin_lock_irq(&pool->lock);
e22bee78 1914 start_worker(worker);
6183c009
TH
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
e22bee78
TH
1917 return true;
1918 }
1919
63d95a91 1920 if (!need_to_create_worker(pool))
e22bee78 1921 break;
1da177e4 1922
e212f361 1923 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1924
63d95a91 1925 if (!need_to_create_worker(pool))
e22bee78
TH
1926 break;
1927 }
1928
63d95a91 1929 del_timer_sync(&pool->mayday_timer);
d565ed63 1930 spin_lock_irq(&pool->lock);
63d95a91 1931 if (need_to_create_worker(pool))
e22bee78
TH
1932 goto restart;
1933 return true;
1934}
1935
73f53c4a 1936/**
e22bee78
TH
1937 * manage_workers - manage worker pool
1938 * @worker: self
73f53c4a 1939 *
706026c2 1940 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1941 * to. At any given time, there can be only zero or one manager per
706026c2 1942 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1943 *
1944 * The caller can safely start processing works on false return. On
1945 * true return, it's guaranteed that need_to_create_worker() is false
1946 * and may_start_working() is true.
73f53c4a
TH
1947 *
1948 * CONTEXT:
d565ed63 1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1950 * multiple times. Does GFP_KERNEL allocations.
1951 *
d185af30 1952 * Return:
2d498db9
L
1953 * %false if the pool don't need management and the caller can safely start
1954 * processing works, %true indicates that the function released pool->lock
1955 * and reacquired it to perform some management function and that the
1956 * conditions that the caller verified while holding the lock before
1957 * calling the function might no longer be true.
73f53c4a 1958 */
e22bee78 1959static bool manage_workers(struct worker *worker)
73f53c4a 1960{
63d95a91 1961 struct worker_pool *pool = worker->pool;
e22bee78 1962 bool ret = false;
73f53c4a 1963
bc3a1afc 1964 /*
bc3a1afc
TH
1965 * Anyone who successfully grabs manager_arb wins the arbitration
1966 * and becomes the manager. mutex_trylock() on pool->manager_arb
1967 * failure while holding pool->lock reliably indicates that someone
1968 * else is managing the pool and the worker which failed trylock
1969 * can proceed to executing work items. This means that anyone
1970 * grabbing manager_arb is responsible for actually performing
1971 * manager duties. If manager_arb is grabbed and released without
1972 * actual management, the pool may stall indefinitely.
bc3a1afc 1973 */
34a06bd6 1974 if (!mutex_trylock(&pool->manager_arb))
e22bee78 1975 return ret;
1e19ffc6 1976
63d95a91 1977 ret |= maybe_create_worker(pool);
e22bee78 1978
34a06bd6 1979 mutex_unlock(&pool->manager_arb);
e22bee78 1980 return ret;
73f53c4a
TH
1981}
1982
a62428c0
TH
1983/**
1984 * process_one_work - process single work
c34056a3 1985 * @worker: self
a62428c0
TH
1986 * @work: work to process
1987 *
1988 * Process @work. This function contains all the logics necessary to
1989 * process a single work including synchronization against and
1990 * interaction with other workers on the same cpu, queueing and
1991 * flushing. As long as context requirement is met, any worker can
1992 * call this function to process a work.
1993 *
1994 * CONTEXT:
d565ed63 1995 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1996 */
c34056a3 1997static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1998__releases(&pool->lock)
1999__acquires(&pool->lock)
a62428c0 2000{
112202d9 2001 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2002 struct worker_pool *pool = worker->pool;
112202d9 2003 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2004 int work_color;
7e11629d 2005 struct worker *collision;
a62428c0
TH
2006#ifdef CONFIG_LOCKDEP
2007 /*
2008 * It is permissible to free the struct work_struct from
2009 * inside the function that is called from it, this we need to
2010 * take into account for lockdep too. To avoid bogus "held
2011 * lock freed" warnings as well as problems when looking into
2012 * work->lockdep_map, make a copy and use that here.
2013 */
4d82a1de
PZ
2014 struct lockdep_map lockdep_map;
2015
2016 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2017#endif
85327af6 2018 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2019 raw_smp_processor_id() != pool->cpu);
25511a47 2020
7e11629d
TH
2021 /*
2022 * A single work shouldn't be executed concurrently by
2023 * multiple workers on a single cpu. Check whether anyone is
2024 * already processing the work. If so, defer the work to the
2025 * currently executing one.
2026 */
c9e7cf27 2027 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2028 if (unlikely(collision)) {
2029 move_linked_works(work, &collision->scheduled, NULL);
2030 return;
2031 }
2032
8930caba 2033 /* claim and dequeue */
a62428c0 2034 debug_work_deactivate(work);
c9e7cf27 2035 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2036 worker->current_work = work;
a2c1c57b 2037 worker->current_func = work->func;
112202d9 2038 worker->current_pwq = pwq;
73f53c4a 2039 work_color = get_work_color(work);
7a22ad75 2040
a62428c0
TH
2041 list_del_init(&work->entry);
2042
fb0e7beb
TH
2043 /*
2044 * CPU intensive works don't participate in concurrency
2045 * management. They're the scheduler's responsibility.
2046 */
2047 if (unlikely(cpu_intensive))
2048 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2049
974271c4 2050 /*
d565ed63 2051 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2052 * executed ASAP. Wake up another worker if necessary.
2053 */
63d95a91
TH
2054 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2055 wake_up_worker(pool);
974271c4 2056
8930caba 2057 /*
7c3eed5c 2058 * Record the last pool and clear PENDING which should be the last
d565ed63 2059 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2060 * PENDING and queued state changes happen together while IRQ is
2061 * disabled.
8930caba 2062 */
7c3eed5c 2063 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2064
d565ed63 2065 spin_unlock_irq(&pool->lock);
a62428c0 2066
112202d9 2067 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2068 lock_map_acquire(&lockdep_map);
e36c886a 2069 trace_workqueue_execute_start(work);
a2c1c57b 2070 worker->current_func(work);
e36c886a
AV
2071 /*
2072 * While we must be careful to not use "work" after this, the trace
2073 * point will only record its address.
2074 */
2075 trace_workqueue_execute_end(work);
a62428c0 2076 lock_map_release(&lockdep_map);
112202d9 2077 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2078
2079 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2080 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2081 " last function: %pf\n",
a2c1c57b
TH
2082 current->comm, preempt_count(), task_pid_nr(current),
2083 worker->current_func);
a62428c0
TH
2084 debug_show_held_locks(current);
2085 dump_stack();
2086 }
2087
b22ce278
TH
2088 /*
2089 * The following prevents a kworker from hogging CPU on !PREEMPT
2090 * kernels, where a requeueing work item waiting for something to
2091 * happen could deadlock with stop_machine as such work item could
2092 * indefinitely requeue itself while all other CPUs are trapped in
2093 * stop_machine.
2094 */
2095 cond_resched();
2096
d565ed63 2097 spin_lock_irq(&pool->lock);
a62428c0 2098
fb0e7beb
TH
2099 /* clear cpu intensive status */
2100 if (unlikely(cpu_intensive))
2101 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2102
a62428c0 2103 /* we're done with it, release */
42f8570f 2104 hash_del(&worker->hentry);
c34056a3 2105 worker->current_work = NULL;
a2c1c57b 2106 worker->current_func = NULL;
112202d9 2107 worker->current_pwq = NULL;
3d1cb205 2108 worker->desc_valid = false;
112202d9 2109 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2110}
2111
affee4b2
TH
2112/**
2113 * process_scheduled_works - process scheduled works
2114 * @worker: self
2115 *
2116 * Process all scheduled works. Please note that the scheduled list
2117 * may change while processing a work, so this function repeatedly
2118 * fetches a work from the top and executes it.
2119 *
2120 * CONTEXT:
d565ed63 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2122 * multiple times.
2123 */
2124static void process_scheduled_works(struct worker *worker)
1da177e4 2125{
affee4b2
TH
2126 while (!list_empty(&worker->scheduled)) {
2127 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2128 struct work_struct, entry);
c34056a3 2129 process_one_work(worker, work);
1da177e4 2130 }
1da177e4
LT
2131}
2132
4690c4ab
TH
2133/**
2134 * worker_thread - the worker thread function
c34056a3 2135 * @__worker: self
4690c4ab 2136 *
c5aa87bb
TH
2137 * The worker thread function. All workers belong to a worker_pool -
2138 * either a per-cpu one or dynamic unbound one. These workers process all
2139 * work items regardless of their specific target workqueue. The only
2140 * exception is work items which belong to workqueues with a rescuer which
2141 * will be explained in rescuer_thread().
d185af30
YB
2142 *
2143 * Return: 0
4690c4ab 2144 */
c34056a3 2145static int worker_thread(void *__worker)
1da177e4 2146{
c34056a3 2147 struct worker *worker = __worker;
bd7bdd43 2148 struct worker_pool *pool = worker->pool;
1da177e4 2149
e22bee78
TH
2150 /* tell the scheduler that this is a workqueue worker */
2151 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2152woke_up:
d565ed63 2153 spin_lock_irq(&pool->lock);
1da177e4 2154
a9ab775b
TH
2155 /* am I supposed to die? */
2156 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2157 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2158 WARN_ON_ONCE(!list_empty(&worker->entry));
2159 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2160
2161 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2162 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2163 worker_detach_from_pool(worker, pool);
2164 kfree(worker);
a9ab775b 2165 return 0;
c8e55f36 2166 }
affee4b2 2167
c8e55f36 2168 worker_leave_idle(worker);
db7bccf4 2169recheck:
e22bee78 2170 /* no more worker necessary? */
63d95a91 2171 if (!need_more_worker(pool))
e22bee78
TH
2172 goto sleep;
2173
2174 /* do we need to manage? */
63d95a91 2175 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2176 goto recheck;
2177
c8e55f36
TH
2178 /*
2179 * ->scheduled list can only be filled while a worker is
2180 * preparing to process a work or actually processing it.
2181 * Make sure nobody diddled with it while I was sleeping.
2182 */
6183c009 2183 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2184
e22bee78 2185 /*
a9ab775b
TH
2186 * Finish PREP stage. We're guaranteed to have at least one idle
2187 * worker or that someone else has already assumed the manager
2188 * role. This is where @worker starts participating in concurrency
2189 * management if applicable and concurrency management is restored
2190 * after being rebound. See rebind_workers() for details.
e22bee78 2191 */
a9ab775b 2192 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2193
2194 do {
c8e55f36 2195 struct work_struct *work =
bd7bdd43 2196 list_first_entry(&pool->worklist,
c8e55f36
TH
2197 struct work_struct, entry);
2198
2199 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 /* optimization path, not strictly necessary */
2201 process_one_work(worker, work);
2202 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2203 process_scheduled_works(worker);
c8e55f36
TH
2204 } else {
2205 move_linked_works(work, &worker->scheduled, NULL);
2206 process_scheduled_works(worker);
affee4b2 2207 }
63d95a91 2208 } while (keep_working(pool));
e22bee78
TH
2209
2210 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2211sleep:
c8e55f36 2212 /*
d565ed63
TH
2213 * pool->lock is held and there's no work to process and no need to
2214 * manage, sleep. Workers are woken up only while holding
2215 * pool->lock or from local cpu, so setting the current state
2216 * before releasing pool->lock is enough to prevent losing any
2217 * event.
c8e55f36
TH
2218 */
2219 worker_enter_idle(worker);
2220 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2221 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2222 schedule();
2223 goto woke_up;
1da177e4
LT
2224}
2225
e22bee78
TH
2226/**
2227 * rescuer_thread - the rescuer thread function
111c225a 2228 * @__rescuer: self
e22bee78
TH
2229 *
2230 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2231 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2232 *
706026c2 2233 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2234 * worker which uses GFP_KERNEL allocation which has slight chance of
2235 * developing into deadlock if some works currently on the same queue
2236 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2237 * the problem rescuer solves.
2238 *
706026c2
TH
2239 * When such condition is possible, the pool summons rescuers of all
2240 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2241 * those works so that forward progress can be guaranteed.
2242 *
2243 * This should happen rarely.
d185af30
YB
2244 *
2245 * Return: 0
e22bee78 2246 */
111c225a 2247static int rescuer_thread(void *__rescuer)
e22bee78 2248{
111c225a
TH
2249 struct worker *rescuer = __rescuer;
2250 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2251 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2252 bool should_stop;
e22bee78
TH
2253
2254 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2255
2256 /*
2257 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2258 * doesn't participate in concurrency management.
2259 */
2260 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2261repeat:
2262 set_current_state(TASK_INTERRUPTIBLE);
2263
4d595b86
LJ
2264 /*
2265 * By the time the rescuer is requested to stop, the workqueue
2266 * shouldn't have any work pending, but @wq->maydays may still have
2267 * pwq(s) queued. This can happen by non-rescuer workers consuming
2268 * all the work items before the rescuer got to them. Go through
2269 * @wq->maydays processing before acting on should_stop so that the
2270 * list is always empty on exit.
2271 */
2272 should_stop = kthread_should_stop();
e22bee78 2273
493a1724 2274 /* see whether any pwq is asking for help */
2e109a28 2275 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2276
2277 while (!list_empty(&wq->maydays)) {
2278 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2279 struct pool_workqueue, mayday_node);
112202d9 2280 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2281 struct work_struct *work, *n;
2282
2283 __set_current_state(TASK_RUNNING);
493a1724
TH
2284 list_del_init(&pwq->mayday_node);
2285
2e109a28 2286 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2287
51697d39
LJ
2288 worker_attach_to_pool(rescuer, pool);
2289
2290 spin_lock_irq(&pool->lock);
b3104104 2291 rescuer->pool = pool;
e22bee78
TH
2292
2293 /*
2294 * Slurp in all works issued via this workqueue and
2295 * process'em.
2296 */
6183c009 2297 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2298 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2299 if (get_work_pwq(work) == pwq)
e22bee78
TH
2300 move_linked_works(work, scheduled, &n);
2301
2302 process_scheduled_works(rescuer);
51697d39
LJ
2303 spin_unlock_irq(&pool->lock);
2304
2305 worker_detach_from_pool(rescuer, pool);
2306
2307 spin_lock_irq(&pool->lock);
7576958a 2308
77668c8b
LJ
2309 /*
2310 * Put the reference grabbed by send_mayday(). @pool won't
2311 * go away while we're holding its lock.
2312 */
2313 put_pwq(pwq);
2314
7576958a 2315 /*
d565ed63 2316 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2317 * regular worker; otherwise, we end up with 0 concurrency
2318 * and stalling the execution.
2319 */
63d95a91
TH
2320 if (keep_working(pool))
2321 wake_up_worker(pool);
7576958a 2322
b3104104 2323 rescuer->pool = NULL;
493a1724 2324 spin_unlock(&pool->lock);
2e109a28 2325 spin_lock(&wq_mayday_lock);
e22bee78
TH
2326 }
2327
2e109a28 2328 spin_unlock_irq(&wq_mayday_lock);
493a1724 2329
4d595b86
LJ
2330 if (should_stop) {
2331 __set_current_state(TASK_RUNNING);
2332 rescuer->task->flags &= ~PF_WQ_WORKER;
2333 return 0;
2334 }
2335
111c225a
TH
2336 /* rescuers should never participate in concurrency management */
2337 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2338 schedule();
2339 goto repeat;
1da177e4
LT
2340}
2341
fc2e4d70
ON
2342struct wq_barrier {
2343 struct work_struct work;
2344 struct completion done;
2345};
2346
2347static void wq_barrier_func(struct work_struct *work)
2348{
2349 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2350 complete(&barr->done);
2351}
2352
4690c4ab
TH
2353/**
2354 * insert_wq_barrier - insert a barrier work
112202d9 2355 * @pwq: pwq to insert barrier into
4690c4ab 2356 * @barr: wq_barrier to insert
affee4b2
TH
2357 * @target: target work to attach @barr to
2358 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2359 *
affee4b2
TH
2360 * @barr is linked to @target such that @barr is completed only after
2361 * @target finishes execution. Please note that the ordering
2362 * guarantee is observed only with respect to @target and on the local
2363 * cpu.
2364 *
2365 * Currently, a queued barrier can't be canceled. This is because
2366 * try_to_grab_pending() can't determine whether the work to be
2367 * grabbed is at the head of the queue and thus can't clear LINKED
2368 * flag of the previous work while there must be a valid next work
2369 * after a work with LINKED flag set.
2370 *
2371 * Note that when @worker is non-NULL, @target may be modified
112202d9 2372 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2373 *
2374 * CONTEXT:
d565ed63 2375 * spin_lock_irq(pool->lock).
4690c4ab 2376 */
112202d9 2377static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2378 struct wq_barrier *barr,
2379 struct work_struct *target, struct worker *worker)
fc2e4d70 2380{
affee4b2
TH
2381 struct list_head *head;
2382 unsigned int linked = 0;
2383
dc186ad7 2384 /*
d565ed63 2385 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2386 * as we know for sure that this will not trigger any of the
2387 * checks and call back into the fixup functions where we
2388 * might deadlock.
2389 */
ca1cab37 2390 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2391 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2392 init_completion(&barr->done);
83c22520 2393
affee4b2
TH
2394 /*
2395 * If @target is currently being executed, schedule the
2396 * barrier to the worker; otherwise, put it after @target.
2397 */
2398 if (worker)
2399 head = worker->scheduled.next;
2400 else {
2401 unsigned long *bits = work_data_bits(target);
2402
2403 head = target->entry.next;
2404 /* there can already be other linked works, inherit and set */
2405 linked = *bits & WORK_STRUCT_LINKED;
2406 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2407 }
2408
dc186ad7 2409 debug_work_activate(&barr->work);
112202d9 2410 insert_work(pwq, &barr->work, head,
affee4b2 2411 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2412}
2413
73f53c4a 2414/**
112202d9 2415 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2416 * @wq: workqueue being flushed
2417 * @flush_color: new flush color, < 0 for no-op
2418 * @work_color: new work color, < 0 for no-op
2419 *
112202d9 2420 * Prepare pwqs for workqueue flushing.
73f53c4a 2421 *
112202d9
TH
2422 * If @flush_color is non-negative, flush_color on all pwqs should be
2423 * -1. If no pwq has in-flight commands at the specified color, all
2424 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2425 * has in flight commands, its pwq->flush_color is set to
2426 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2427 * wakeup logic is armed and %true is returned.
2428 *
2429 * The caller should have initialized @wq->first_flusher prior to
2430 * calling this function with non-negative @flush_color. If
2431 * @flush_color is negative, no flush color update is done and %false
2432 * is returned.
2433 *
112202d9 2434 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2435 * work_color which is previous to @work_color and all will be
2436 * advanced to @work_color.
2437 *
2438 * CONTEXT:
3c25a55d 2439 * mutex_lock(wq->mutex).
73f53c4a 2440 *
d185af30 2441 * Return:
73f53c4a
TH
2442 * %true if @flush_color >= 0 and there's something to flush. %false
2443 * otherwise.
2444 */
112202d9 2445static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2446 int flush_color, int work_color)
1da177e4 2447{
73f53c4a 2448 bool wait = false;
49e3cf44 2449 struct pool_workqueue *pwq;
1da177e4 2450
73f53c4a 2451 if (flush_color >= 0) {
6183c009 2452 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2453 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2454 }
2355b70f 2455
49e3cf44 2456 for_each_pwq(pwq, wq) {
112202d9 2457 struct worker_pool *pool = pwq->pool;
fc2e4d70 2458
b09f4fd3 2459 spin_lock_irq(&pool->lock);
83c22520 2460
73f53c4a 2461 if (flush_color >= 0) {
6183c009 2462 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2463
112202d9
TH
2464 if (pwq->nr_in_flight[flush_color]) {
2465 pwq->flush_color = flush_color;
2466 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2467 wait = true;
2468 }
2469 }
1da177e4 2470
73f53c4a 2471 if (work_color >= 0) {
6183c009 2472 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2473 pwq->work_color = work_color;
73f53c4a 2474 }
1da177e4 2475
b09f4fd3 2476 spin_unlock_irq(&pool->lock);
1da177e4 2477 }
2355b70f 2478
112202d9 2479 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2480 complete(&wq->first_flusher->done);
14441960 2481
73f53c4a 2482 return wait;
1da177e4
LT
2483}
2484
0fcb78c2 2485/**
1da177e4 2486 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2487 * @wq: workqueue to flush
1da177e4 2488 *
c5aa87bb
TH
2489 * This function sleeps until all work items which were queued on entry
2490 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2491 */
7ad5b3a5 2492void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2493{
73f53c4a
TH
2494 struct wq_flusher this_flusher = {
2495 .list = LIST_HEAD_INIT(this_flusher.list),
2496 .flush_color = -1,
2497 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2498 };
2499 int next_color;
1da177e4 2500
3295f0ef
IM
2501 lock_map_acquire(&wq->lockdep_map);
2502 lock_map_release(&wq->lockdep_map);
73f53c4a 2503
3c25a55d 2504 mutex_lock(&wq->mutex);
73f53c4a
TH
2505
2506 /*
2507 * Start-to-wait phase
2508 */
2509 next_color = work_next_color(wq->work_color);
2510
2511 if (next_color != wq->flush_color) {
2512 /*
2513 * Color space is not full. The current work_color
2514 * becomes our flush_color and work_color is advanced
2515 * by one.
2516 */
6183c009 2517 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2518 this_flusher.flush_color = wq->work_color;
2519 wq->work_color = next_color;
2520
2521 if (!wq->first_flusher) {
2522 /* no flush in progress, become the first flusher */
6183c009 2523 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2524
2525 wq->first_flusher = &this_flusher;
2526
112202d9 2527 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2528 wq->work_color)) {
2529 /* nothing to flush, done */
2530 wq->flush_color = next_color;
2531 wq->first_flusher = NULL;
2532 goto out_unlock;
2533 }
2534 } else {
2535 /* wait in queue */
6183c009 2536 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2537 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2538 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2539 }
2540 } else {
2541 /*
2542 * Oops, color space is full, wait on overflow queue.
2543 * The next flush completion will assign us
2544 * flush_color and transfer to flusher_queue.
2545 */
2546 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2547 }
2548
3c25a55d 2549 mutex_unlock(&wq->mutex);
73f53c4a
TH
2550
2551 wait_for_completion(&this_flusher.done);
2552
2553 /*
2554 * Wake-up-and-cascade phase
2555 *
2556 * First flushers are responsible for cascading flushes and
2557 * handling overflow. Non-first flushers can simply return.
2558 */
2559 if (wq->first_flusher != &this_flusher)
2560 return;
2561
3c25a55d 2562 mutex_lock(&wq->mutex);
73f53c4a 2563
4ce48b37
TH
2564 /* we might have raced, check again with mutex held */
2565 if (wq->first_flusher != &this_flusher)
2566 goto out_unlock;
2567
73f53c4a
TH
2568 wq->first_flusher = NULL;
2569
6183c009
TH
2570 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2571 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2572
2573 while (true) {
2574 struct wq_flusher *next, *tmp;
2575
2576 /* complete all the flushers sharing the current flush color */
2577 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2578 if (next->flush_color != wq->flush_color)
2579 break;
2580 list_del_init(&next->list);
2581 complete(&next->done);
2582 }
2583
6183c009
TH
2584 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2585 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2586
2587 /* this flush_color is finished, advance by one */
2588 wq->flush_color = work_next_color(wq->flush_color);
2589
2590 /* one color has been freed, handle overflow queue */
2591 if (!list_empty(&wq->flusher_overflow)) {
2592 /*
2593 * Assign the same color to all overflowed
2594 * flushers, advance work_color and append to
2595 * flusher_queue. This is the start-to-wait
2596 * phase for these overflowed flushers.
2597 */
2598 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2599 tmp->flush_color = wq->work_color;
2600
2601 wq->work_color = work_next_color(wq->work_color);
2602
2603 list_splice_tail_init(&wq->flusher_overflow,
2604 &wq->flusher_queue);
112202d9 2605 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2606 }
2607
2608 if (list_empty(&wq->flusher_queue)) {
6183c009 2609 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2610 break;
2611 }
2612
2613 /*
2614 * Need to flush more colors. Make the next flusher
112202d9 2615 * the new first flusher and arm pwqs.
73f53c4a 2616 */
6183c009
TH
2617 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2618 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2619
2620 list_del_init(&next->list);
2621 wq->first_flusher = next;
2622
112202d9 2623 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2624 break;
2625
2626 /*
2627 * Meh... this color is already done, clear first
2628 * flusher and repeat cascading.
2629 */
2630 wq->first_flusher = NULL;
2631 }
2632
2633out_unlock:
3c25a55d 2634 mutex_unlock(&wq->mutex);
1da177e4 2635}
ae90dd5d 2636EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2637
9c5a2ba7
TH
2638/**
2639 * drain_workqueue - drain a workqueue
2640 * @wq: workqueue to drain
2641 *
2642 * Wait until the workqueue becomes empty. While draining is in progress,
2643 * only chain queueing is allowed. IOW, only currently pending or running
2644 * work items on @wq can queue further work items on it. @wq is flushed
2645 * repeatedly until it becomes empty. The number of flushing is detemined
2646 * by the depth of chaining and should be relatively short. Whine if it
2647 * takes too long.
2648 */
2649void drain_workqueue(struct workqueue_struct *wq)
2650{
2651 unsigned int flush_cnt = 0;
49e3cf44 2652 struct pool_workqueue *pwq;
9c5a2ba7
TH
2653
2654 /*
2655 * __queue_work() needs to test whether there are drainers, is much
2656 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2657 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2658 */
87fc741e 2659 mutex_lock(&wq->mutex);
9c5a2ba7 2660 if (!wq->nr_drainers++)
618b01eb 2661 wq->flags |= __WQ_DRAINING;
87fc741e 2662 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2663reflush:
2664 flush_workqueue(wq);
2665
b09f4fd3 2666 mutex_lock(&wq->mutex);
76af4d93 2667
49e3cf44 2668 for_each_pwq(pwq, wq) {
fa2563e4 2669 bool drained;
9c5a2ba7 2670
b09f4fd3 2671 spin_lock_irq(&pwq->pool->lock);
112202d9 2672 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2673 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2674
2675 if (drained)
9c5a2ba7
TH
2676 continue;
2677
2678 if (++flush_cnt == 10 ||
2679 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2680 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2681 wq->name, flush_cnt);
76af4d93 2682
b09f4fd3 2683 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2684 goto reflush;
2685 }
2686
9c5a2ba7 2687 if (!--wq->nr_drainers)
618b01eb 2688 wq->flags &= ~__WQ_DRAINING;
87fc741e 2689 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2690}
2691EXPORT_SYMBOL_GPL(drain_workqueue);
2692
606a5020 2693static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2694{
affee4b2 2695 struct worker *worker = NULL;
c9e7cf27 2696 struct worker_pool *pool;
112202d9 2697 struct pool_workqueue *pwq;
db700897
ON
2698
2699 might_sleep();
fa1b54e6
TH
2700
2701 local_irq_disable();
c9e7cf27 2702 pool = get_work_pool(work);
fa1b54e6
TH
2703 if (!pool) {
2704 local_irq_enable();
baf59022 2705 return false;
fa1b54e6 2706 }
db700897 2707
fa1b54e6 2708 spin_lock(&pool->lock);
0b3dae68 2709 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2710 pwq = get_work_pwq(work);
2711 if (pwq) {
2712 if (unlikely(pwq->pool != pool))
4690c4ab 2713 goto already_gone;
606a5020 2714 } else {
c9e7cf27 2715 worker = find_worker_executing_work(pool, work);
affee4b2 2716 if (!worker)
4690c4ab 2717 goto already_gone;
112202d9 2718 pwq = worker->current_pwq;
606a5020 2719 }
db700897 2720
112202d9 2721 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2722 spin_unlock_irq(&pool->lock);
7a22ad75 2723
e159489b
TH
2724 /*
2725 * If @max_active is 1 or rescuer is in use, flushing another work
2726 * item on the same workqueue may lead to deadlock. Make sure the
2727 * flusher is not running on the same workqueue by verifying write
2728 * access.
2729 */
493008a8 2730 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2731 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2732 else
112202d9
TH
2733 lock_map_acquire_read(&pwq->wq->lockdep_map);
2734 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2735
401a8d04 2736 return true;
4690c4ab 2737already_gone:
d565ed63 2738 spin_unlock_irq(&pool->lock);
401a8d04 2739 return false;
db700897 2740}
baf59022
TH
2741
2742/**
2743 * flush_work - wait for a work to finish executing the last queueing instance
2744 * @work: the work to flush
2745 *
606a5020
TH
2746 * Wait until @work has finished execution. @work is guaranteed to be idle
2747 * on return if it hasn't been requeued since flush started.
baf59022 2748 *
d185af30 2749 * Return:
baf59022
TH
2750 * %true if flush_work() waited for the work to finish execution,
2751 * %false if it was already idle.
2752 */
2753bool flush_work(struct work_struct *work)
2754{
12997d1a
BH
2755 struct wq_barrier barr;
2756
0976dfc1
SB
2757 lock_map_acquire(&work->lockdep_map);
2758 lock_map_release(&work->lockdep_map);
2759
12997d1a
BH
2760 if (start_flush_work(work, &barr)) {
2761 wait_for_completion(&barr.done);
2762 destroy_work_on_stack(&barr.work);
2763 return true;
2764 } else {
2765 return false;
2766 }
6e84d644 2767}
606a5020 2768EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2769
36e227d2 2770static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2771{
bbb68dfa 2772 unsigned long flags;
1f1f642e
ON
2773 int ret;
2774
2775 do {
bbb68dfa
TH
2776 ret = try_to_grab_pending(work, is_dwork, &flags);
2777 /*
2778 * If someone else is canceling, wait for the same event it
2779 * would be waiting for before retrying.
2780 */
2781 if (unlikely(ret == -ENOENT))
606a5020 2782 flush_work(work);
1f1f642e
ON
2783 } while (unlikely(ret < 0));
2784
bbb68dfa
TH
2785 /* tell other tasks trying to grab @work to back off */
2786 mark_work_canceling(work);
2787 local_irq_restore(flags);
2788
606a5020 2789 flush_work(work);
7a22ad75 2790 clear_work_data(work);
1f1f642e
ON
2791 return ret;
2792}
2793
6e84d644 2794/**
401a8d04
TH
2795 * cancel_work_sync - cancel a work and wait for it to finish
2796 * @work: the work to cancel
6e84d644 2797 *
401a8d04
TH
2798 * Cancel @work and wait for its execution to finish. This function
2799 * can be used even if the work re-queues itself or migrates to
2800 * another workqueue. On return from this function, @work is
2801 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2802 *
401a8d04
TH
2803 * cancel_work_sync(&delayed_work->work) must not be used for
2804 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2805 *
401a8d04 2806 * The caller must ensure that the workqueue on which @work was last
6e84d644 2807 * queued can't be destroyed before this function returns.
401a8d04 2808 *
d185af30 2809 * Return:
401a8d04 2810 * %true if @work was pending, %false otherwise.
6e84d644 2811 */
401a8d04 2812bool cancel_work_sync(struct work_struct *work)
6e84d644 2813{
36e227d2 2814 return __cancel_work_timer(work, false);
b89deed3 2815}
28e53bdd 2816EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2817
6e84d644 2818/**
401a8d04
TH
2819 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2820 * @dwork: the delayed work to flush
6e84d644 2821 *
401a8d04
TH
2822 * Delayed timer is cancelled and the pending work is queued for
2823 * immediate execution. Like flush_work(), this function only
2824 * considers the last queueing instance of @dwork.
1f1f642e 2825 *
d185af30 2826 * Return:
401a8d04
TH
2827 * %true if flush_work() waited for the work to finish execution,
2828 * %false if it was already idle.
6e84d644 2829 */
401a8d04
TH
2830bool flush_delayed_work(struct delayed_work *dwork)
2831{
8930caba 2832 local_irq_disable();
401a8d04 2833 if (del_timer_sync(&dwork->timer))
60c057bc 2834 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2835 local_irq_enable();
401a8d04
TH
2836 return flush_work(&dwork->work);
2837}
2838EXPORT_SYMBOL(flush_delayed_work);
2839
09383498 2840/**
57b30ae7
TH
2841 * cancel_delayed_work - cancel a delayed work
2842 * @dwork: delayed_work to cancel
09383498 2843 *
d185af30
YB
2844 * Kill off a pending delayed_work.
2845 *
2846 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2847 * pending.
2848 *
2849 * Note:
2850 * The work callback function may still be running on return, unless
2851 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2852 * use cancel_delayed_work_sync() to wait on it.
09383498 2853 *
57b30ae7 2854 * This function is safe to call from any context including IRQ handler.
09383498 2855 */
57b30ae7 2856bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2857{
57b30ae7
TH
2858 unsigned long flags;
2859 int ret;
2860
2861 do {
2862 ret = try_to_grab_pending(&dwork->work, true, &flags);
2863 } while (unlikely(ret == -EAGAIN));
2864
2865 if (unlikely(ret < 0))
2866 return false;
2867
7c3eed5c
TH
2868 set_work_pool_and_clear_pending(&dwork->work,
2869 get_work_pool_id(&dwork->work));
57b30ae7 2870 local_irq_restore(flags);
c0158ca6 2871 return ret;
09383498 2872}
57b30ae7 2873EXPORT_SYMBOL(cancel_delayed_work);
09383498 2874
401a8d04
TH
2875/**
2876 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2877 * @dwork: the delayed work cancel
2878 *
2879 * This is cancel_work_sync() for delayed works.
2880 *
d185af30 2881 * Return:
401a8d04
TH
2882 * %true if @dwork was pending, %false otherwise.
2883 */
2884bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2885{
36e227d2 2886 return __cancel_work_timer(&dwork->work, true);
6e84d644 2887}
f5a421a4 2888EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2889
b6136773 2890/**
31ddd871 2891 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2892 * @func: the function to call
b6136773 2893 *
31ddd871
TH
2894 * schedule_on_each_cpu() executes @func on each online CPU using the
2895 * system workqueue and blocks until all CPUs have completed.
b6136773 2896 * schedule_on_each_cpu() is very slow.
31ddd871 2897 *
d185af30 2898 * Return:
31ddd871 2899 * 0 on success, -errno on failure.
b6136773 2900 */
65f27f38 2901int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2902{
2903 int cpu;
38f51568 2904 struct work_struct __percpu *works;
15316ba8 2905
b6136773
AM
2906 works = alloc_percpu(struct work_struct);
2907 if (!works)
15316ba8 2908 return -ENOMEM;
b6136773 2909
93981800
TH
2910 get_online_cpus();
2911
15316ba8 2912 for_each_online_cpu(cpu) {
9bfb1839
IM
2913 struct work_struct *work = per_cpu_ptr(works, cpu);
2914
2915 INIT_WORK(work, func);
b71ab8c2 2916 schedule_work_on(cpu, work);
65a64464 2917 }
93981800
TH
2918
2919 for_each_online_cpu(cpu)
2920 flush_work(per_cpu_ptr(works, cpu));
2921
95402b38 2922 put_online_cpus();
b6136773 2923 free_percpu(works);
15316ba8
CL
2924 return 0;
2925}
2926
eef6a7d5
AS
2927/**
2928 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2929 *
2930 * Forces execution of the kernel-global workqueue and blocks until its
2931 * completion.
2932 *
2933 * Think twice before calling this function! It's very easy to get into
2934 * trouble if you don't take great care. Either of the following situations
2935 * will lead to deadlock:
2936 *
2937 * One of the work items currently on the workqueue needs to acquire
2938 * a lock held by your code or its caller.
2939 *
2940 * Your code is running in the context of a work routine.
2941 *
2942 * They will be detected by lockdep when they occur, but the first might not
2943 * occur very often. It depends on what work items are on the workqueue and
2944 * what locks they need, which you have no control over.
2945 *
2946 * In most situations flushing the entire workqueue is overkill; you merely
2947 * need to know that a particular work item isn't queued and isn't running.
2948 * In such cases you should use cancel_delayed_work_sync() or
2949 * cancel_work_sync() instead.
2950 */
1da177e4
LT
2951void flush_scheduled_work(void)
2952{
d320c038 2953 flush_workqueue(system_wq);
1da177e4 2954}
ae90dd5d 2955EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2956
1fa44eca
JB
2957/**
2958 * execute_in_process_context - reliably execute the routine with user context
2959 * @fn: the function to execute
1fa44eca
JB
2960 * @ew: guaranteed storage for the execute work structure (must
2961 * be available when the work executes)
2962 *
2963 * Executes the function immediately if process context is available,
2964 * otherwise schedules the function for delayed execution.
2965 *
d185af30 2966 * Return: 0 - function was executed
1fa44eca
JB
2967 * 1 - function was scheduled for execution
2968 */
65f27f38 2969int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2970{
2971 if (!in_interrupt()) {
65f27f38 2972 fn(&ew->work);
1fa44eca
JB
2973 return 0;
2974 }
2975
65f27f38 2976 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2977 schedule_work(&ew->work);
2978
2979 return 1;
2980}
2981EXPORT_SYMBOL_GPL(execute_in_process_context);
2982
226223ab
TH
2983#ifdef CONFIG_SYSFS
2984/*
2985 * Workqueues with WQ_SYSFS flag set is visible to userland via
2986 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2987 * following attributes.
2988 *
2989 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2990 * max_active RW int : maximum number of in-flight work items
2991 *
2992 * Unbound workqueues have the following extra attributes.
2993 *
2994 * id RO int : the associated pool ID
2995 * nice RW int : nice value of the workers
2996 * cpumask RW mask : bitmask of allowed CPUs for the workers
2997 */
2998struct wq_device {
2999 struct workqueue_struct *wq;
3000 struct device dev;
3001};
3002
3003static struct workqueue_struct *dev_to_wq(struct device *dev)
3004{
3005 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3006
3007 return wq_dev->wq;
3008}
3009
1a6661da
GKH
3010static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3011 char *buf)
226223ab
TH
3012{
3013 struct workqueue_struct *wq = dev_to_wq(dev);
3014
3015 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3016}
1a6661da 3017static DEVICE_ATTR_RO(per_cpu);
226223ab 3018
1a6661da
GKH
3019static ssize_t max_active_show(struct device *dev,
3020 struct device_attribute *attr, char *buf)
226223ab
TH
3021{
3022 struct workqueue_struct *wq = dev_to_wq(dev);
3023
3024 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3025}
3026
1a6661da
GKH
3027static ssize_t max_active_store(struct device *dev,
3028 struct device_attribute *attr, const char *buf,
3029 size_t count)
226223ab
TH
3030{
3031 struct workqueue_struct *wq = dev_to_wq(dev);
3032 int val;
3033
3034 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3035 return -EINVAL;
3036
3037 workqueue_set_max_active(wq, val);
3038 return count;
3039}
1a6661da 3040static DEVICE_ATTR_RW(max_active);
226223ab 3041
1a6661da
GKH
3042static struct attribute *wq_sysfs_attrs[] = {
3043 &dev_attr_per_cpu.attr,
3044 &dev_attr_max_active.attr,
3045 NULL,
226223ab 3046};
1a6661da 3047ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3048
d55262c4
TH
3049static ssize_t wq_pool_ids_show(struct device *dev,
3050 struct device_attribute *attr, char *buf)
226223ab
TH
3051{
3052 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3053 const char *delim = "";
3054 int node, written = 0;
226223ab
TH
3055
3056 rcu_read_lock_sched();
d55262c4
TH
3057 for_each_node(node) {
3058 written += scnprintf(buf + written, PAGE_SIZE - written,
3059 "%s%d:%d", delim, node,
3060 unbound_pwq_by_node(wq, node)->pool->id);
3061 delim = " ";
3062 }
3063 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3064 rcu_read_unlock_sched();
3065
3066 return written;
3067}
3068
3069static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3070 char *buf)
3071{
3072 struct workqueue_struct *wq = dev_to_wq(dev);
3073 int written;
3074
6029a918
TH
3075 mutex_lock(&wq->mutex);
3076 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3077 mutex_unlock(&wq->mutex);
226223ab
TH
3078
3079 return written;
3080}
3081
3082/* prepare workqueue_attrs for sysfs store operations */
3083static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3084{
3085 struct workqueue_attrs *attrs;
3086
3087 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3088 if (!attrs)
3089 return NULL;
3090
6029a918
TH
3091 mutex_lock(&wq->mutex);
3092 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3093 mutex_unlock(&wq->mutex);
226223ab
TH
3094 return attrs;
3095}
3096
3097static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3098 const char *buf, size_t count)
3099{
3100 struct workqueue_struct *wq = dev_to_wq(dev);
3101 struct workqueue_attrs *attrs;
3102 int ret;
3103
3104 attrs = wq_sysfs_prep_attrs(wq);
3105 if (!attrs)
3106 return -ENOMEM;
3107
3108 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3109 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3110 ret = apply_workqueue_attrs(wq, attrs);
3111 else
3112 ret = -EINVAL;
3113
3114 free_workqueue_attrs(attrs);
3115 return ret ?: count;
3116}
3117
3118static ssize_t wq_cpumask_show(struct device *dev,
3119 struct device_attribute *attr, char *buf)
3120{
3121 struct workqueue_struct *wq = dev_to_wq(dev);
3122 int written;
3123
6029a918
TH
3124 mutex_lock(&wq->mutex);
3125 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3126 mutex_unlock(&wq->mutex);
226223ab
TH
3127
3128 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3129 return written;
3130}
3131
3132static ssize_t wq_cpumask_store(struct device *dev,
3133 struct device_attribute *attr,
3134 const char *buf, size_t count)
3135{
3136 struct workqueue_struct *wq = dev_to_wq(dev);
3137 struct workqueue_attrs *attrs;
3138 int ret;
3139
3140 attrs = wq_sysfs_prep_attrs(wq);
3141 if (!attrs)
3142 return -ENOMEM;
3143
3144 ret = cpumask_parse(buf, attrs->cpumask);
3145 if (!ret)
3146 ret = apply_workqueue_attrs(wq, attrs);
3147
3148 free_workqueue_attrs(attrs);
3149 return ret ?: count;
3150}
3151
d55262c4
TH
3152static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3153 char *buf)
3154{
3155 struct workqueue_struct *wq = dev_to_wq(dev);
3156 int written;
3157
3158 mutex_lock(&wq->mutex);
3159 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3160 !wq->unbound_attrs->no_numa);
3161 mutex_unlock(&wq->mutex);
3162
3163 return written;
3164}
3165
3166static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3167 const char *buf, size_t count)
3168{
3169 struct workqueue_struct *wq = dev_to_wq(dev);
3170 struct workqueue_attrs *attrs;
3171 int v, ret;
3172
3173 attrs = wq_sysfs_prep_attrs(wq);
3174 if (!attrs)
3175 return -ENOMEM;
3176
3177 ret = -EINVAL;
3178 if (sscanf(buf, "%d", &v) == 1) {
3179 attrs->no_numa = !v;
3180 ret = apply_workqueue_attrs(wq, attrs);
3181 }
3182
3183 free_workqueue_attrs(attrs);
3184 return ret ?: count;
3185}
3186
226223ab 3187static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3188 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3189 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3190 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3191 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3192 __ATTR_NULL,
3193};
3194
3195static struct bus_type wq_subsys = {
3196 .name = "workqueue",
1a6661da 3197 .dev_groups = wq_sysfs_groups,
226223ab
TH
3198};
3199
3200static int __init wq_sysfs_init(void)
3201{
3202 return subsys_virtual_register(&wq_subsys, NULL);
3203}
3204core_initcall(wq_sysfs_init);
3205
3206static void wq_device_release(struct device *dev)
3207{
3208 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3209
3210 kfree(wq_dev);
3211}
3212
3213/**
3214 * workqueue_sysfs_register - make a workqueue visible in sysfs
3215 * @wq: the workqueue to register
3216 *
3217 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3218 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3219 * which is the preferred method.
3220 *
3221 * Workqueue user should use this function directly iff it wants to apply
3222 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3223 * apply_workqueue_attrs() may race against userland updating the
3224 * attributes.
3225 *
d185af30 3226 * Return: 0 on success, -errno on failure.
226223ab
TH
3227 */
3228int workqueue_sysfs_register(struct workqueue_struct *wq)
3229{
3230 struct wq_device *wq_dev;
3231 int ret;
3232
3233 /*
3234 * Adjusting max_active or creating new pwqs by applyting
3235 * attributes breaks ordering guarantee. Disallow exposing ordered
3236 * workqueues.
3237 */
3238 if (WARN_ON(wq->flags & __WQ_ORDERED))
3239 return -EINVAL;
3240
3241 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3242 if (!wq_dev)
3243 return -ENOMEM;
3244
3245 wq_dev->wq = wq;
3246 wq_dev->dev.bus = &wq_subsys;
3247 wq_dev->dev.init_name = wq->name;
3248 wq_dev->dev.release = wq_device_release;
3249
3250 /*
3251 * unbound_attrs are created separately. Suppress uevent until
3252 * everything is ready.
3253 */
3254 dev_set_uevent_suppress(&wq_dev->dev, true);
3255
3256 ret = device_register(&wq_dev->dev);
3257 if (ret) {
3258 kfree(wq_dev);
3259 wq->wq_dev = NULL;
3260 return ret;
3261 }
3262
3263 if (wq->flags & WQ_UNBOUND) {
3264 struct device_attribute *attr;
3265
3266 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3267 ret = device_create_file(&wq_dev->dev, attr);
3268 if (ret) {
3269 device_unregister(&wq_dev->dev);
3270 wq->wq_dev = NULL;
3271 return ret;
3272 }
3273 }
3274 }
3275
3276 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3277 return 0;
3278}
3279
3280/**
3281 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3282 * @wq: the workqueue to unregister
3283 *
3284 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3285 */
3286static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3287{
3288 struct wq_device *wq_dev = wq->wq_dev;
3289
3290 if (!wq->wq_dev)
3291 return;
3292
3293 wq->wq_dev = NULL;
3294 device_unregister(&wq_dev->dev);
3295}
3296#else /* CONFIG_SYSFS */
3297static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3298#endif /* CONFIG_SYSFS */
3299
7a4e344c
TH
3300/**
3301 * free_workqueue_attrs - free a workqueue_attrs
3302 * @attrs: workqueue_attrs to free
3303 *
3304 * Undo alloc_workqueue_attrs().
3305 */
3306void free_workqueue_attrs(struct workqueue_attrs *attrs)
3307{
3308 if (attrs) {
3309 free_cpumask_var(attrs->cpumask);
3310 kfree(attrs);
3311 }
3312}
3313
3314/**
3315 * alloc_workqueue_attrs - allocate a workqueue_attrs
3316 * @gfp_mask: allocation mask to use
3317 *
3318 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3319 * return it.
3320 *
3321 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3322 */
3323struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3324{
3325 struct workqueue_attrs *attrs;
3326
3327 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3328 if (!attrs)
3329 goto fail;
3330 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3331 goto fail;
3332
13e2e556 3333 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3334 return attrs;
3335fail:
3336 free_workqueue_attrs(attrs);
3337 return NULL;
3338}
3339
29c91e99
TH
3340static void copy_workqueue_attrs(struct workqueue_attrs *to,
3341 const struct workqueue_attrs *from)
3342{
3343 to->nice = from->nice;
3344 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3345 /*
3346 * Unlike hash and equality test, this function doesn't ignore
3347 * ->no_numa as it is used for both pool and wq attrs. Instead,
3348 * get_unbound_pool() explicitly clears ->no_numa after copying.
3349 */
3350 to->no_numa = from->no_numa;
29c91e99
TH
3351}
3352
29c91e99
TH
3353/* hash value of the content of @attr */
3354static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3355{
3356 u32 hash = 0;
3357
3358 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3359 hash = jhash(cpumask_bits(attrs->cpumask),
3360 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3361 return hash;
3362}
3363
3364/* content equality test */
3365static bool wqattrs_equal(const struct workqueue_attrs *a,
3366 const struct workqueue_attrs *b)
3367{
3368 if (a->nice != b->nice)
3369 return false;
3370 if (!cpumask_equal(a->cpumask, b->cpumask))
3371 return false;
3372 return true;
3373}
3374
7a4e344c
TH
3375/**
3376 * init_worker_pool - initialize a newly zalloc'd worker_pool
3377 * @pool: worker_pool to initialize
3378 *
3379 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3380 *
3381 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3382 * inside @pool proper are initialized and put_unbound_pool() can be called
3383 * on @pool safely to release it.
7a4e344c
TH
3384 */
3385static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3386{
3387 spin_lock_init(&pool->lock);
29c91e99
TH
3388 pool->id = -1;
3389 pool->cpu = -1;
f3f90ad4 3390 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3391 pool->flags |= POOL_DISASSOCIATED;
3392 INIT_LIST_HEAD(&pool->worklist);
3393 INIT_LIST_HEAD(&pool->idle_list);
3394 hash_init(pool->busy_hash);
3395
3396 init_timer_deferrable(&pool->idle_timer);
3397 pool->idle_timer.function = idle_worker_timeout;
3398 pool->idle_timer.data = (unsigned long)pool;
3399
3400 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3401 (unsigned long)pool);
3402
3403 mutex_init(&pool->manager_arb);
92f9c5c4 3404 mutex_init(&pool->attach_mutex);
da028469 3405 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3406
7cda9aae 3407 ida_init(&pool->worker_ida);
29c91e99
TH
3408 INIT_HLIST_NODE(&pool->hash_node);
3409 pool->refcnt = 1;
3410
3411 /* shouldn't fail above this point */
7a4e344c
TH
3412 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3413 if (!pool->attrs)
3414 return -ENOMEM;
3415 return 0;
4e1a1f9a
TH
3416}
3417
29c91e99
TH
3418static void rcu_free_pool(struct rcu_head *rcu)
3419{
3420 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3421
7cda9aae 3422 ida_destroy(&pool->worker_ida);
29c91e99
TH
3423 free_workqueue_attrs(pool->attrs);
3424 kfree(pool);
3425}
3426
3427/**
3428 * put_unbound_pool - put a worker_pool
3429 * @pool: worker_pool to put
3430 *
3431 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3432 * safe manner. get_unbound_pool() calls this function on its failure path
3433 * and this function should be able to release pools which went through,
3434 * successfully or not, init_worker_pool().
a892cacc
TH
3435 *
3436 * Should be called with wq_pool_mutex held.
29c91e99
TH
3437 */
3438static void put_unbound_pool(struct worker_pool *pool)
3439{
60f5a4bc 3440 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3441 struct worker *worker;
3442
a892cacc
TH
3443 lockdep_assert_held(&wq_pool_mutex);
3444
3445 if (--pool->refcnt)
29c91e99 3446 return;
29c91e99
TH
3447
3448 /* sanity checks */
61d0fbb4 3449 if (WARN_ON(!(pool->cpu < 0)) ||
a892cacc 3450 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3451 return;
29c91e99
TH
3452
3453 /* release id and unhash */
3454 if (pool->id >= 0)
3455 idr_remove(&worker_pool_idr, pool->id);
3456 hash_del(&pool->hash_node);
3457
c5aa87bb
TH
3458 /*
3459 * Become the manager and destroy all workers. Grabbing
3460 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3461 * attach_mutex.
c5aa87bb 3462 */
29c91e99 3463 mutex_lock(&pool->manager_arb);
29c91e99 3464
60f5a4bc 3465 spin_lock_irq(&pool->lock);
1037de36 3466 while ((worker = first_idle_worker(pool)))
29c91e99
TH
3467 destroy_worker(worker);
3468 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3469 spin_unlock_irq(&pool->lock);
60f5a4bc 3470
92f9c5c4 3471 mutex_lock(&pool->attach_mutex);
da028469 3472 if (!list_empty(&pool->workers))
60f5a4bc 3473 pool->detach_completion = &detach_completion;
92f9c5c4 3474 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3475
3476 if (pool->detach_completion)
3477 wait_for_completion(pool->detach_completion);
3478
29c91e99
TH
3479 mutex_unlock(&pool->manager_arb);
3480
3481 /* shut down the timers */
3482 del_timer_sync(&pool->idle_timer);
3483 del_timer_sync(&pool->mayday_timer);
3484
3485 /* sched-RCU protected to allow dereferences from get_work_pool() */
3486 call_rcu_sched(&pool->rcu, rcu_free_pool);
3487}
3488
3489/**
3490 * get_unbound_pool - get a worker_pool with the specified attributes
3491 * @attrs: the attributes of the worker_pool to get
3492 *
3493 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3494 * reference count and return it. If there already is a matching
3495 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3496 * create a new one.
a892cacc
TH
3497 *
3498 * Should be called with wq_pool_mutex held.
d185af30
YB
3499 *
3500 * Return: On success, a worker_pool with the same attributes as @attrs.
3501 * On failure, %NULL.
29c91e99
TH
3502 */
3503static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3504{
29c91e99
TH
3505 u32 hash = wqattrs_hash(attrs);
3506 struct worker_pool *pool;
f3f90ad4 3507 int node;
29c91e99 3508
a892cacc 3509 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3510
3511 /* do we already have a matching pool? */
29c91e99
TH
3512 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3513 if (wqattrs_equal(pool->attrs, attrs)) {
3514 pool->refcnt++;
3515 goto out_unlock;
3516 }
3517 }
29c91e99
TH
3518
3519 /* nope, create a new one */
3520 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3521 if (!pool || init_worker_pool(pool) < 0)
3522 goto fail;
3523
8864b4e5 3524 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3525 copy_workqueue_attrs(pool->attrs, attrs);
3526
2865a8fb
SL
3527 /*
3528 * no_numa isn't a worker_pool attribute, always clear it. See
3529 * 'struct workqueue_attrs' comments for detail.
3530 */
3531 pool->attrs->no_numa = false;
3532
f3f90ad4
TH
3533 /* if cpumask is contained inside a NUMA node, we belong to that node */
3534 if (wq_numa_enabled) {
3535 for_each_node(node) {
3536 if (cpumask_subset(pool->attrs->cpumask,
3537 wq_numa_possible_cpumask[node])) {
3538 pool->node = node;
3539 break;
3540 }
3541 }
3542 }
3543
29c91e99
TH
3544 if (worker_pool_assign_id(pool) < 0)
3545 goto fail;
3546
3547 /* create and start the initial worker */
ebf44d16 3548 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3549 goto fail;
3550
29c91e99 3551 /* install */
29c91e99
TH
3552 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3553out_unlock:
29c91e99
TH
3554 return pool;
3555fail:
29c91e99
TH
3556 if (pool)
3557 put_unbound_pool(pool);
3558 return NULL;
3559}
3560
8864b4e5
TH
3561static void rcu_free_pwq(struct rcu_head *rcu)
3562{
3563 kmem_cache_free(pwq_cache,
3564 container_of(rcu, struct pool_workqueue, rcu));
3565}
3566
3567/*
3568 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3569 * and needs to be destroyed.
3570 */
3571static void pwq_unbound_release_workfn(struct work_struct *work)
3572{
3573 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3574 unbound_release_work);
3575 struct workqueue_struct *wq = pwq->wq;
3576 struct worker_pool *pool = pwq->pool;
bc0caf09 3577 bool is_last;
8864b4e5
TH
3578
3579 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3580 return;
3581
75ccf595 3582 /*
3c25a55d 3583 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3584 * necessary on release but do it anyway. It's easier to verify
3585 * and consistent with the linking path.
3586 */
3c25a55d 3587 mutex_lock(&wq->mutex);
8864b4e5 3588 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3589 is_last = list_empty(&wq->pwqs);
3c25a55d 3590 mutex_unlock(&wq->mutex);
8864b4e5 3591
a892cacc 3592 mutex_lock(&wq_pool_mutex);
8864b4e5 3593 put_unbound_pool(pool);
a892cacc
TH
3594 mutex_unlock(&wq_pool_mutex);
3595
8864b4e5
TH
3596 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3597
3598 /*
3599 * If we're the last pwq going away, @wq is already dead and no one
3600 * is gonna access it anymore. Free it.
3601 */
6029a918
TH
3602 if (is_last) {
3603 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3604 kfree(wq);
6029a918 3605 }
8864b4e5
TH
3606}
3607
0fbd95aa 3608/**
699ce097 3609 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3610 * @pwq: target pool_workqueue
0fbd95aa 3611 *
699ce097
TH
3612 * If @pwq isn't freezing, set @pwq->max_active to the associated
3613 * workqueue's saved_max_active and activate delayed work items
3614 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3615 */
699ce097 3616static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3617{
699ce097
TH
3618 struct workqueue_struct *wq = pwq->wq;
3619 bool freezable = wq->flags & WQ_FREEZABLE;
3620
3621 /* for @wq->saved_max_active */
a357fc03 3622 lockdep_assert_held(&wq->mutex);
699ce097
TH
3623
3624 /* fast exit for non-freezable wqs */
3625 if (!freezable && pwq->max_active == wq->saved_max_active)
3626 return;
3627
a357fc03 3628 spin_lock_irq(&pwq->pool->lock);
699ce097 3629
74b414ea
LJ
3630 /*
3631 * During [un]freezing, the caller is responsible for ensuring that
3632 * this function is called at least once after @workqueue_freezing
3633 * is updated and visible.
3634 */
3635 if (!freezable || !workqueue_freezing) {
699ce097 3636 pwq->max_active = wq->saved_max_active;
0fbd95aa 3637
699ce097
TH
3638 while (!list_empty(&pwq->delayed_works) &&
3639 pwq->nr_active < pwq->max_active)
3640 pwq_activate_first_delayed(pwq);
951a078a
LJ
3641
3642 /*
3643 * Need to kick a worker after thawed or an unbound wq's
3644 * max_active is bumped. It's a slow path. Do it always.
3645 */
3646 wake_up_worker(pwq->pool);
699ce097
TH
3647 } else {
3648 pwq->max_active = 0;
3649 }
3650
a357fc03 3651 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3652}
3653
e50aba9a 3654/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3655static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3656 struct worker_pool *pool)
d2c1d404
TH
3657{
3658 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3659
e50aba9a
TH
3660 memset(pwq, 0, sizeof(*pwq));
3661
d2c1d404
TH
3662 pwq->pool = pool;
3663 pwq->wq = wq;
3664 pwq->flush_color = -1;
8864b4e5 3665 pwq->refcnt = 1;
d2c1d404 3666 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3667 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3668 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3669 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3670}
d2c1d404 3671
f147f29e 3672/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3673static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3674{
3675 struct workqueue_struct *wq = pwq->wq;
3676
3677 lockdep_assert_held(&wq->mutex);
75ccf595 3678
1befcf30
TH
3679 /* may be called multiple times, ignore if already linked */
3680 if (!list_empty(&pwq->pwqs_node))
3681 return;
3682
983ca25e
TH
3683 /*
3684 * Set the matching work_color. This is synchronized with
3c25a55d 3685 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3686 */
75ccf595 3687 pwq->work_color = wq->work_color;
983ca25e
TH
3688
3689 /* sync max_active to the current setting */
3690 pwq_adjust_max_active(pwq);
3691
3692 /* link in @pwq */
9e8cd2f5 3693 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3694}
a357fc03 3695
f147f29e
TH
3696/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3697static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3698 const struct workqueue_attrs *attrs)
3699{
3700 struct worker_pool *pool;
3701 struct pool_workqueue *pwq;
3702
3703 lockdep_assert_held(&wq_pool_mutex);
3704
3705 pool = get_unbound_pool(attrs);
3706 if (!pool)
3707 return NULL;
3708
e50aba9a 3709 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3710 if (!pwq) {
3711 put_unbound_pool(pool);
3712 return NULL;
df2d5ae4 3713 }
6029a918 3714
f147f29e
TH
3715 init_pwq(pwq, wq, pool);
3716 return pwq;
d2c1d404
TH
3717}
3718
4c16bd32
TH
3719/* undo alloc_unbound_pwq(), used only in the error path */
3720static void free_unbound_pwq(struct pool_workqueue *pwq)
3721{
3722 lockdep_assert_held(&wq_pool_mutex);
3723
3724 if (pwq) {
3725 put_unbound_pool(pwq->pool);
cece95df 3726 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3727 }
3728}
3729
3730/**
3731 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3732 * @attrs: the wq_attrs of interest
3733 * @node: the target NUMA node
3734 * @cpu_going_down: if >= 0, the CPU to consider as offline
3735 * @cpumask: outarg, the resulting cpumask
3736 *
3737 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3738 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3739 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3740 *
3741 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3742 * enabled and @node has online CPUs requested by @attrs, the returned
3743 * cpumask is the intersection of the possible CPUs of @node and
3744 * @attrs->cpumask.
3745 *
3746 * The caller is responsible for ensuring that the cpumask of @node stays
3747 * stable.
d185af30
YB
3748 *
3749 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3750 * %false if equal.
4c16bd32
TH
3751 */
3752static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3753 int cpu_going_down, cpumask_t *cpumask)
3754{
d55262c4 3755 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3756 goto use_dfl;
3757
3758 /* does @node have any online CPUs @attrs wants? */
3759 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3760 if (cpu_going_down >= 0)
3761 cpumask_clear_cpu(cpu_going_down, cpumask);
3762
3763 if (cpumask_empty(cpumask))
3764 goto use_dfl;
3765
3766 /* yeap, return possible CPUs in @node that @attrs wants */
3767 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3768 return !cpumask_equal(cpumask, attrs->cpumask);
3769
3770use_dfl:
3771 cpumask_copy(cpumask, attrs->cpumask);
3772 return false;
3773}
3774
1befcf30
TH
3775/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3776static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3777 int node,
3778 struct pool_workqueue *pwq)
3779{
3780 struct pool_workqueue *old_pwq;
3781
3782 lockdep_assert_held(&wq->mutex);
3783
3784 /* link_pwq() can handle duplicate calls */
3785 link_pwq(pwq);
3786
3787 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3788 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3789 return old_pwq;
3790}
3791
9e8cd2f5
TH
3792/**
3793 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3794 * @wq: the target workqueue
3795 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3796 *
4c16bd32
TH
3797 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3798 * machines, this function maps a separate pwq to each NUMA node with
3799 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3800 * NUMA node it was issued on. Older pwqs are released as in-flight work
3801 * items finish. Note that a work item which repeatedly requeues itself
3802 * back-to-back will stay on its current pwq.
9e8cd2f5 3803 *
d185af30
YB
3804 * Performs GFP_KERNEL allocations.
3805 *
3806 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3807 */
3808int apply_workqueue_attrs(struct workqueue_struct *wq,
3809 const struct workqueue_attrs *attrs)
3810{
4c16bd32
TH
3811 struct workqueue_attrs *new_attrs, *tmp_attrs;
3812 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3813 int node, ret;
9e8cd2f5 3814
8719dcea 3815 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3816 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3817 return -EINVAL;
3818
8719dcea
TH
3819 /* creating multiple pwqs breaks ordering guarantee */
3820 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3821 return -EINVAL;
3822
4c16bd32 3823 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3824 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3825 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3826 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3827 goto enomem;
3828
4c16bd32 3829 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3830 copy_workqueue_attrs(new_attrs, attrs);
3831 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3832
4c16bd32
TH
3833 /*
3834 * We may create multiple pwqs with differing cpumasks. Make a
3835 * copy of @new_attrs which will be modified and used to obtain
3836 * pools.
3837 */
3838 copy_workqueue_attrs(tmp_attrs, new_attrs);
3839
3840 /*
3841 * CPUs should stay stable across pwq creations and installations.
3842 * Pin CPUs, determine the target cpumask for each node and create
3843 * pwqs accordingly.
3844 */
3845 get_online_cpus();
3846
a892cacc 3847 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3848
3849 /*
3850 * If something goes wrong during CPU up/down, we'll fall back to
3851 * the default pwq covering whole @attrs->cpumask. Always create
3852 * it even if we don't use it immediately.
3853 */
3854 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3855 if (!dfl_pwq)
3856 goto enomem_pwq;
3857
3858 for_each_node(node) {
3859 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3860 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3861 if (!pwq_tbl[node])
3862 goto enomem_pwq;
3863 } else {
3864 dfl_pwq->refcnt++;
3865 pwq_tbl[node] = dfl_pwq;
3866 }
3867 }
3868
f147f29e 3869 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3870
4c16bd32 3871 /* all pwqs have been created successfully, let's install'em */
f147f29e 3872 mutex_lock(&wq->mutex);
a892cacc 3873
f147f29e 3874 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3875
3876 /* save the previous pwq and install the new one */
f147f29e 3877 for_each_node(node)
4c16bd32
TH
3878 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3879
3880 /* @dfl_pwq might not have been used, ensure it's linked */
3881 link_pwq(dfl_pwq);
3882 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3883
3884 mutex_unlock(&wq->mutex);
9e8cd2f5 3885
4c16bd32
TH
3886 /* put the old pwqs */
3887 for_each_node(node)
3888 put_pwq_unlocked(pwq_tbl[node]);
3889 put_pwq_unlocked(dfl_pwq);
3890
3891 put_online_cpus();
4862125b
TH
3892 ret = 0;
3893 /* fall through */
3894out_free:
4c16bd32 3895 free_workqueue_attrs(tmp_attrs);
4862125b 3896 free_workqueue_attrs(new_attrs);
4c16bd32 3897 kfree(pwq_tbl);
4862125b 3898 return ret;
13e2e556 3899
4c16bd32
TH
3900enomem_pwq:
3901 free_unbound_pwq(dfl_pwq);
3902 for_each_node(node)
3903 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3904 free_unbound_pwq(pwq_tbl[node]);
3905 mutex_unlock(&wq_pool_mutex);
3906 put_online_cpus();
13e2e556 3907enomem:
4862125b
TH
3908 ret = -ENOMEM;
3909 goto out_free;
9e8cd2f5
TH
3910}
3911
4c16bd32
TH
3912/**
3913 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3914 * @wq: the target workqueue
3915 * @cpu: the CPU coming up or going down
3916 * @online: whether @cpu is coming up or going down
3917 *
3918 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3919 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3920 * @wq accordingly.
3921 *
3922 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3923 * falls back to @wq->dfl_pwq which may not be optimal but is always
3924 * correct.
3925 *
3926 * Note that when the last allowed CPU of a NUMA node goes offline for a
3927 * workqueue with a cpumask spanning multiple nodes, the workers which were
3928 * already executing the work items for the workqueue will lose their CPU
3929 * affinity and may execute on any CPU. This is similar to how per-cpu
3930 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3931 * affinity, it's the user's responsibility to flush the work item from
3932 * CPU_DOWN_PREPARE.
3933 */
3934static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3935 bool online)
3936{
3937 int node = cpu_to_node(cpu);
3938 int cpu_off = online ? -1 : cpu;
3939 struct pool_workqueue *old_pwq = NULL, *pwq;
3940 struct workqueue_attrs *target_attrs;
3941 cpumask_t *cpumask;
3942
3943 lockdep_assert_held(&wq_pool_mutex);
3944
3945 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3946 return;
3947
3948 /*
3949 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3950 * Let's use a preallocated one. The following buf is protected by
3951 * CPU hotplug exclusion.
3952 */
3953 target_attrs = wq_update_unbound_numa_attrs_buf;
3954 cpumask = target_attrs->cpumask;
3955
3956 mutex_lock(&wq->mutex);
d55262c4
TH
3957 if (wq->unbound_attrs->no_numa)
3958 goto out_unlock;
4c16bd32
TH
3959
3960 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3961 pwq = unbound_pwq_by_node(wq, node);
3962
3963 /*
3964 * Let's determine what needs to be done. If the target cpumask is
3965 * different from wq's, we need to compare it to @pwq's and create
3966 * a new one if they don't match. If the target cpumask equals
534a3fbb 3967 * wq's, the default pwq should be used.
4c16bd32
TH
3968 */
3969 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3970 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3971 goto out_unlock;
3972 } else {
534a3fbb 3973 goto use_dfl_pwq;
4c16bd32
TH
3974 }
3975
3976 mutex_unlock(&wq->mutex);
3977
3978 /* create a new pwq */
3979 pwq = alloc_unbound_pwq(wq, target_attrs);
3980 if (!pwq) {
2d916033
FF
3981 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3982 wq->name);
77f300b1
DY
3983 mutex_lock(&wq->mutex);
3984 goto use_dfl_pwq;
4c16bd32
TH
3985 }
3986
3987 /*
3988 * Install the new pwq. As this function is called only from CPU
3989 * hotplug callbacks and applying a new attrs is wrapped with
3990 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3991 * inbetween.
3992 */
3993 mutex_lock(&wq->mutex);
3994 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3995 goto out_unlock;
3996
3997use_dfl_pwq:
3998 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3999 get_pwq(wq->dfl_pwq);
4000 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4001 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4002out_unlock:
4003 mutex_unlock(&wq->mutex);
4004 put_pwq_unlocked(old_pwq);
4005}
4006
30cdf249 4007static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4008{
49e3cf44 4009 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4010 int cpu, ret;
30cdf249
TH
4011
4012 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4013 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4014 if (!wq->cpu_pwqs)
30cdf249
TH
4015 return -ENOMEM;
4016
4017 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4018 struct pool_workqueue *pwq =
4019 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4020 struct worker_pool *cpu_pools =
f02ae73a 4021 per_cpu(cpu_worker_pools, cpu);
f3421797 4022
f147f29e
TH
4023 init_pwq(pwq, wq, &cpu_pools[highpri]);
4024
4025 mutex_lock(&wq->mutex);
1befcf30 4026 link_pwq(pwq);
f147f29e 4027 mutex_unlock(&wq->mutex);
30cdf249 4028 }
9e8cd2f5 4029 return 0;
8a2b7538
TH
4030 } else if (wq->flags & __WQ_ORDERED) {
4031 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4032 /* there should only be single pwq for ordering guarantee */
4033 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4034 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4035 "ordering guarantee broken for workqueue %s\n", wq->name);
4036 return ret;
30cdf249 4037 } else {
9e8cd2f5 4038 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4039 }
0f900049
TH
4040}
4041
f3421797
TH
4042static int wq_clamp_max_active(int max_active, unsigned int flags,
4043 const char *name)
b71ab8c2 4044{
f3421797
TH
4045 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4046
4047 if (max_active < 1 || max_active > lim)
044c782c
VI
4048 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4049 max_active, name, 1, lim);
b71ab8c2 4050
f3421797 4051 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4052}
4053
b196be89 4054struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4055 unsigned int flags,
4056 int max_active,
4057 struct lock_class_key *key,
b196be89 4058 const char *lock_name, ...)
1da177e4 4059{
df2d5ae4 4060 size_t tbl_size = 0;
ecf6881f 4061 va_list args;
1da177e4 4062 struct workqueue_struct *wq;
49e3cf44 4063 struct pool_workqueue *pwq;
b196be89 4064
cee22a15
VK
4065 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4066 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4067 flags |= WQ_UNBOUND;
4068
ecf6881f 4069 /* allocate wq and format name */
df2d5ae4
TH
4070 if (flags & WQ_UNBOUND)
4071 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4072
4073 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4074 if (!wq)
d2c1d404 4075 return NULL;
b196be89 4076
6029a918
TH
4077 if (flags & WQ_UNBOUND) {
4078 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4079 if (!wq->unbound_attrs)
4080 goto err_free_wq;
4081 }
4082
ecf6881f
TH
4083 va_start(args, lock_name);
4084 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4085 va_end(args);
1da177e4 4086
d320c038 4087 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4088 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4089
b196be89 4090 /* init wq */
97e37d7b 4091 wq->flags = flags;
a0a1a5fd 4092 wq->saved_max_active = max_active;
3c25a55d 4093 mutex_init(&wq->mutex);
112202d9 4094 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4095 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4096 INIT_LIST_HEAD(&wq->flusher_queue);
4097 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4098 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4099
eb13ba87 4100 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4101 INIT_LIST_HEAD(&wq->list);
3af24433 4102
30cdf249 4103 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4104 goto err_free_wq;
1537663f 4105
493008a8
TH
4106 /*
4107 * Workqueues which may be used during memory reclaim should
4108 * have a rescuer to guarantee forward progress.
4109 */
4110 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4111 struct worker *rescuer;
4112
f7537df5 4113 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4114 if (!rescuer)
d2c1d404 4115 goto err_destroy;
e22bee78 4116
111c225a
TH
4117 rescuer->rescue_wq = wq;
4118 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4119 wq->name);
d2c1d404
TH
4120 if (IS_ERR(rescuer->task)) {
4121 kfree(rescuer);
4122 goto err_destroy;
4123 }
e22bee78 4124
d2c1d404 4125 wq->rescuer = rescuer;
14a40ffc 4126 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4127 wake_up_process(rescuer->task);
3af24433
ON
4128 }
4129
226223ab
TH
4130 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4131 goto err_destroy;
4132
a0a1a5fd 4133 /*
68e13a67
LJ
4134 * wq_pool_mutex protects global freeze state and workqueues list.
4135 * Grab it, adjust max_active and add the new @wq to workqueues
4136 * list.
a0a1a5fd 4137 */
68e13a67 4138 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4139
a357fc03 4140 mutex_lock(&wq->mutex);
699ce097
TH
4141 for_each_pwq(pwq, wq)
4142 pwq_adjust_max_active(pwq);
a357fc03 4143 mutex_unlock(&wq->mutex);
a0a1a5fd 4144
1537663f 4145 list_add(&wq->list, &workqueues);
a0a1a5fd 4146
68e13a67 4147 mutex_unlock(&wq_pool_mutex);
1537663f 4148
3af24433 4149 return wq;
d2c1d404
TH
4150
4151err_free_wq:
6029a918 4152 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4153 kfree(wq);
4154 return NULL;
4155err_destroy:
4156 destroy_workqueue(wq);
4690c4ab 4157 return NULL;
3af24433 4158}
d320c038 4159EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4160
3af24433
ON
4161/**
4162 * destroy_workqueue - safely terminate a workqueue
4163 * @wq: target workqueue
4164 *
4165 * Safely destroy a workqueue. All work currently pending will be done first.
4166 */
4167void destroy_workqueue(struct workqueue_struct *wq)
4168{
49e3cf44 4169 struct pool_workqueue *pwq;
4c16bd32 4170 int node;
3af24433 4171
9c5a2ba7
TH
4172 /* drain it before proceeding with destruction */
4173 drain_workqueue(wq);
c8efcc25 4174
6183c009 4175 /* sanity checks */
b09f4fd3 4176 mutex_lock(&wq->mutex);
49e3cf44 4177 for_each_pwq(pwq, wq) {
6183c009
TH
4178 int i;
4179
76af4d93
TH
4180 for (i = 0; i < WORK_NR_COLORS; i++) {
4181 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4182 mutex_unlock(&wq->mutex);
6183c009 4183 return;
76af4d93
TH
4184 }
4185 }
4186
5c529597 4187 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4188 WARN_ON(pwq->nr_active) ||
76af4d93 4189 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4190 mutex_unlock(&wq->mutex);
6183c009 4191 return;
76af4d93 4192 }
6183c009 4193 }
b09f4fd3 4194 mutex_unlock(&wq->mutex);
6183c009 4195
a0a1a5fd
TH
4196 /*
4197 * wq list is used to freeze wq, remove from list after
4198 * flushing is complete in case freeze races us.
4199 */
68e13a67 4200 mutex_lock(&wq_pool_mutex);
d2c1d404 4201 list_del_init(&wq->list);
68e13a67 4202 mutex_unlock(&wq_pool_mutex);
3af24433 4203
226223ab
TH
4204 workqueue_sysfs_unregister(wq);
4205
493008a8 4206 if (wq->rescuer) {
e22bee78 4207 kthread_stop(wq->rescuer->task);
8d9df9f0 4208 kfree(wq->rescuer);
493008a8 4209 wq->rescuer = NULL;
e22bee78
TH
4210 }
4211
8864b4e5
TH
4212 if (!(wq->flags & WQ_UNBOUND)) {
4213 /*
4214 * The base ref is never dropped on per-cpu pwqs. Directly
4215 * free the pwqs and wq.
4216 */
4217 free_percpu(wq->cpu_pwqs);
4218 kfree(wq);
4219 } else {
4220 /*
4221 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4222 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4223 * @wq will be freed when the last pwq is released.
8864b4e5 4224 */
4c16bd32
TH
4225 for_each_node(node) {
4226 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4227 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4228 put_pwq_unlocked(pwq);
4229 }
4230
4231 /*
4232 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4233 * put. Don't access it afterwards.
4234 */
4235 pwq = wq->dfl_pwq;
4236 wq->dfl_pwq = NULL;
dce90d47 4237 put_pwq_unlocked(pwq);
29c91e99 4238 }
3af24433
ON
4239}
4240EXPORT_SYMBOL_GPL(destroy_workqueue);
4241
dcd989cb
TH
4242/**
4243 * workqueue_set_max_active - adjust max_active of a workqueue
4244 * @wq: target workqueue
4245 * @max_active: new max_active value.
4246 *
4247 * Set max_active of @wq to @max_active.
4248 *
4249 * CONTEXT:
4250 * Don't call from IRQ context.
4251 */
4252void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4253{
49e3cf44 4254 struct pool_workqueue *pwq;
dcd989cb 4255
8719dcea
TH
4256 /* disallow meddling with max_active for ordered workqueues */
4257 if (WARN_ON(wq->flags & __WQ_ORDERED))
4258 return;
4259
f3421797 4260 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4261
a357fc03 4262 mutex_lock(&wq->mutex);
dcd989cb
TH
4263
4264 wq->saved_max_active = max_active;
4265
699ce097
TH
4266 for_each_pwq(pwq, wq)
4267 pwq_adjust_max_active(pwq);
93981800 4268
a357fc03 4269 mutex_unlock(&wq->mutex);
15316ba8 4270}
dcd989cb 4271EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4272
e6267616
TH
4273/**
4274 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4275 *
4276 * Determine whether %current is a workqueue rescuer. Can be used from
4277 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4278 *
4279 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4280 */
4281bool current_is_workqueue_rescuer(void)
4282{
4283 struct worker *worker = current_wq_worker();
4284
6a092dfd 4285 return worker && worker->rescue_wq;
e6267616
TH
4286}
4287
eef6a7d5 4288/**
dcd989cb
TH
4289 * workqueue_congested - test whether a workqueue is congested
4290 * @cpu: CPU in question
4291 * @wq: target workqueue
eef6a7d5 4292 *
dcd989cb
TH
4293 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4294 * no synchronization around this function and the test result is
4295 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4296 *
d3251859
TH
4297 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4298 * Note that both per-cpu and unbound workqueues may be associated with
4299 * multiple pool_workqueues which have separate congested states. A
4300 * workqueue being congested on one CPU doesn't mean the workqueue is also
4301 * contested on other CPUs / NUMA nodes.
4302 *
d185af30 4303 * Return:
dcd989cb 4304 * %true if congested, %false otherwise.
eef6a7d5 4305 */
d84ff051 4306bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4307{
7fb98ea7 4308 struct pool_workqueue *pwq;
76af4d93
TH
4309 bool ret;
4310
88109453 4311 rcu_read_lock_sched();
7fb98ea7 4312
d3251859
TH
4313 if (cpu == WORK_CPU_UNBOUND)
4314 cpu = smp_processor_id();
4315
7fb98ea7
TH
4316 if (!(wq->flags & WQ_UNBOUND))
4317 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4318 else
df2d5ae4 4319 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4320
76af4d93 4321 ret = !list_empty(&pwq->delayed_works);
88109453 4322 rcu_read_unlock_sched();
76af4d93
TH
4323
4324 return ret;
1da177e4 4325}
dcd989cb 4326EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4327
dcd989cb
TH
4328/**
4329 * work_busy - test whether a work is currently pending or running
4330 * @work: the work to be tested
4331 *
4332 * Test whether @work is currently pending or running. There is no
4333 * synchronization around this function and the test result is
4334 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4335 *
d185af30 4336 * Return:
dcd989cb
TH
4337 * OR'd bitmask of WORK_BUSY_* bits.
4338 */
4339unsigned int work_busy(struct work_struct *work)
1da177e4 4340{
fa1b54e6 4341 struct worker_pool *pool;
dcd989cb
TH
4342 unsigned long flags;
4343 unsigned int ret = 0;
1da177e4 4344
dcd989cb
TH
4345 if (work_pending(work))
4346 ret |= WORK_BUSY_PENDING;
1da177e4 4347
fa1b54e6
TH
4348 local_irq_save(flags);
4349 pool = get_work_pool(work);
038366c5 4350 if (pool) {
fa1b54e6 4351 spin_lock(&pool->lock);
038366c5
LJ
4352 if (find_worker_executing_work(pool, work))
4353 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4354 spin_unlock(&pool->lock);
038366c5 4355 }
fa1b54e6 4356 local_irq_restore(flags);
1da177e4 4357
dcd989cb 4358 return ret;
1da177e4 4359}
dcd989cb 4360EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4361
3d1cb205
TH
4362/**
4363 * set_worker_desc - set description for the current work item
4364 * @fmt: printf-style format string
4365 * @...: arguments for the format string
4366 *
4367 * This function can be called by a running work function to describe what
4368 * the work item is about. If the worker task gets dumped, this
4369 * information will be printed out together to help debugging. The
4370 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4371 */
4372void set_worker_desc(const char *fmt, ...)
4373{
4374 struct worker *worker = current_wq_worker();
4375 va_list args;
4376
4377 if (worker) {
4378 va_start(args, fmt);
4379 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4380 va_end(args);
4381 worker->desc_valid = true;
4382 }
4383}
4384
4385/**
4386 * print_worker_info - print out worker information and description
4387 * @log_lvl: the log level to use when printing
4388 * @task: target task
4389 *
4390 * If @task is a worker and currently executing a work item, print out the
4391 * name of the workqueue being serviced and worker description set with
4392 * set_worker_desc() by the currently executing work item.
4393 *
4394 * This function can be safely called on any task as long as the
4395 * task_struct itself is accessible. While safe, this function isn't
4396 * synchronized and may print out mixups or garbages of limited length.
4397 */
4398void print_worker_info(const char *log_lvl, struct task_struct *task)
4399{
4400 work_func_t *fn = NULL;
4401 char name[WQ_NAME_LEN] = { };
4402 char desc[WORKER_DESC_LEN] = { };
4403 struct pool_workqueue *pwq = NULL;
4404 struct workqueue_struct *wq = NULL;
4405 bool desc_valid = false;
4406 struct worker *worker;
4407
4408 if (!(task->flags & PF_WQ_WORKER))
4409 return;
4410
4411 /*
4412 * This function is called without any synchronization and @task
4413 * could be in any state. Be careful with dereferences.
4414 */
4415 worker = probe_kthread_data(task);
4416
4417 /*
4418 * Carefully copy the associated workqueue's workfn and name. Keep
4419 * the original last '\0' in case the original contains garbage.
4420 */
4421 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4422 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4423 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4424 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4425
4426 /* copy worker description */
4427 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4428 if (desc_valid)
4429 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4430
4431 if (fn || name[0] || desc[0]) {
4432 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4433 if (desc[0])
4434 pr_cont(" (%s)", desc);
4435 pr_cont("\n");
4436 }
4437}
4438
db7bccf4
TH
4439/*
4440 * CPU hotplug.
4441 *
e22bee78 4442 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4443 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4444 * pool which make migrating pending and scheduled works very
e22bee78 4445 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4446 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4447 * blocked draining impractical.
4448 *
24647570 4449 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4450 * running as an unbound one and allowing it to be reattached later if the
4451 * cpu comes back online.
db7bccf4 4452 */
1da177e4 4453
706026c2 4454static void wq_unbind_fn(struct work_struct *work)
3af24433 4455{
38db41d9 4456 int cpu = smp_processor_id();
4ce62e9e 4457 struct worker_pool *pool;
db7bccf4 4458 struct worker *worker;
3af24433 4459
f02ae73a 4460 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4461 mutex_lock(&pool->attach_mutex);
94cf58bb 4462 spin_lock_irq(&pool->lock);
3af24433 4463
94cf58bb 4464 /*
92f9c5c4 4465 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4466 * unbound and set DISASSOCIATED. Before this, all workers
4467 * except for the ones which are still executing works from
4468 * before the last CPU down must be on the cpu. After
4469 * this, they may become diasporas.
4470 */
da028469 4471 for_each_pool_worker(worker, pool)
c9e7cf27 4472 worker->flags |= WORKER_UNBOUND;
06ba38a9 4473
24647570 4474 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4475
94cf58bb 4476 spin_unlock_irq(&pool->lock);
92f9c5c4 4477 mutex_unlock(&pool->attach_mutex);
628c78e7 4478
eb283428
LJ
4479 /*
4480 * Call schedule() so that we cross rq->lock and thus can
4481 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4482 * This is necessary as scheduler callbacks may be invoked
4483 * from other cpus.
4484 */
4485 schedule();
06ba38a9 4486
eb283428
LJ
4487 /*
4488 * Sched callbacks are disabled now. Zap nr_running.
4489 * After this, nr_running stays zero and need_more_worker()
4490 * and keep_working() are always true as long as the
4491 * worklist is not empty. This pool now behaves as an
4492 * unbound (in terms of concurrency management) pool which
4493 * are served by workers tied to the pool.
4494 */
e19e397a 4495 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4496
4497 /*
4498 * With concurrency management just turned off, a busy
4499 * worker blocking could lead to lengthy stalls. Kick off
4500 * unbound chain execution of currently pending work items.
4501 */
4502 spin_lock_irq(&pool->lock);
4503 wake_up_worker(pool);
4504 spin_unlock_irq(&pool->lock);
4505 }
3af24433 4506}
3af24433 4507
bd7c089e
TH
4508/**
4509 * rebind_workers - rebind all workers of a pool to the associated CPU
4510 * @pool: pool of interest
4511 *
a9ab775b 4512 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4513 */
4514static void rebind_workers(struct worker_pool *pool)
4515{
a9ab775b 4516 struct worker *worker;
bd7c089e 4517
92f9c5c4 4518 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4519
a9ab775b
TH
4520 /*
4521 * Restore CPU affinity of all workers. As all idle workers should
4522 * be on the run-queue of the associated CPU before any local
4523 * wake-ups for concurrency management happen, restore CPU affinty
4524 * of all workers first and then clear UNBOUND. As we're called
4525 * from CPU_ONLINE, the following shouldn't fail.
4526 */
da028469 4527 for_each_pool_worker(worker, pool)
a9ab775b
TH
4528 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4529 pool->attrs->cpumask) < 0);
bd7c089e 4530
a9ab775b 4531 spin_lock_irq(&pool->lock);
3de5e884 4532 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4533
da028469 4534 for_each_pool_worker(worker, pool) {
a9ab775b 4535 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4536
4537 /*
a9ab775b
TH
4538 * A bound idle worker should actually be on the runqueue
4539 * of the associated CPU for local wake-ups targeting it to
4540 * work. Kick all idle workers so that they migrate to the
4541 * associated CPU. Doing this in the same loop as
4542 * replacing UNBOUND with REBOUND is safe as no worker will
4543 * be bound before @pool->lock is released.
bd7c089e 4544 */
a9ab775b
TH
4545 if (worker_flags & WORKER_IDLE)
4546 wake_up_process(worker->task);
bd7c089e 4547
a9ab775b
TH
4548 /*
4549 * We want to clear UNBOUND but can't directly call
4550 * worker_clr_flags() or adjust nr_running. Atomically
4551 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4552 * @worker will clear REBOUND using worker_clr_flags() when
4553 * it initiates the next execution cycle thus restoring
4554 * concurrency management. Note that when or whether
4555 * @worker clears REBOUND doesn't affect correctness.
4556 *
4557 * ACCESS_ONCE() is necessary because @worker->flags may be
4558 * tested without holding any lock in
4559 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4560 * fail incorrectly leading to premature concurrency
4561 * management operations.
4562 */
4563 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4564 worker_flags |= WORKER_REBOUND;
4565 worker_flags &= ~WORKER_UNBOUND;
4566 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4567 }
a9ab775b
TH
4568
4569 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4570}
4571
7dbc725e
TH
4572/**
4573 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4574 * @pool: unbound pool of interest
4575 * @cpu: the CPU which is coming up
4576 *
4577 * An unbound pool may end up with a cpumask which doesn't have any online
4578 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4579 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4580 * online CPU before, cpus_allowed of all its workers should be restored.
4581 */
4582static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4583{
4584 static cpumask_t cpumask;
4585 struct worker *worker;
7dbc725e 4586
92f9c5c4 4587 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4588
4589 /* is @cpu allowed for @pool? */
4590 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4591 return;
4592
4593 /* is @cpu the only online CPU? */
4594 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4595 if (cpumask_weight(&cpumask) != 1)
4596 return;
4597
4598 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4599 for_each_pool_worker(worker, pool)
7dbc725e
TH
4600 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4601 pool->attrs->cpumask) < 0);
4602}
4603
8db25e78
TH
4604/*
4605 * Workqueues should be brought up before normal priority CPU notifiers.
4606 * This will be registered high priority CPU notifier.
4607 */
0db0628d 4608static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4609 unsigned long action,
4610 void *hcpu)
3af24433 4611{
d84ff051 4612 int cpu = (unsigned long)hcpu;
4ce62e9e 4613 struct worker_pool *pool;
4c16bd32 4614 struct workqueue_struct *wq;
7dbc725e 4615 int pi;
3ce63377 4616
8db25e78 4617 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4618 case CPU_UP_PREPARE:
f02ae73a 4619 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4620 if (pool->nr_workers)
4621 continue;
ebf44d16 4622 if (create_and_start_worker(pool) < 0)
3ce63377 4623 return NOTIFY_BAD;
3af24433 4624 }
8db25e78 4625 break;
3af24433 4626
db7bccf4
TH
4627 case CPU_DOWN_FAILED:
4628 case CPU_ONLINE:
68e13a67 4629 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4630
4631 for_each_pool(pool, pi) {
92f9c5c4 4632 mutex_lock(&pool->attach_mutex);
94cf58bb 4633
7dbc725e 4634 if (pool->cpu == cpu) {
7dbc725e
TH
4635 rebind_workers(pool);
4636 } else if (pool->cpu < 0) {
4637 restore_unbound_workers_cpumask(pool, cpu);
4638 }
94cf58bb 4639
92f9c5c4 4640 mutex_unlock(&pool->attach_mutex);
94cf58bb 4641 }
7dbc725e 4642
4c16bd32
TH
4643 /* update NUMA affinity of unbound workqueues */
4644 list_for_each_entry(wq, &workqueues, list)
4645 wq_update_unbound_numa(wq, cpu, true);
4646
68e13a67 4647 mutex_unlock(&wq_pool_mutex);
db7bccf4 4648 break;
00dfcaf7 4649 }
65758202
TH
4650 return NOTIFY_OK;
4651}
4652
4653/*
4654 * Workqueues should be brought down after normal priority CPU notifiers.
4655 * This will be registered as low priority CPU notifier.
4656 */
0db0628d 4657static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4658 unsigned long action,
4659 void *hcpu)
4660{
d84ff051 4661 int cpu = (unsigned long)hcpu;
8db25e78 4662 struct work_struct unbind_work;
4c16bd32 4663 struct workqueue_struct *wq;
8db25e78 4664
65758202
TH
4665 switch (action & ~CPU_TASKS_FROZEN) {
4666 case CPU_DOWN_PREPARE:
4c16bd32 4667 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4668 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4669 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4670
4671 /* update NUMA affinity of unbound workqueues */
4672 mutex_lock(&wq_pool_mutex);
4673 list_for_each_entry(wq, &workqueues, list)
4674 wq_update_unbound_numa(wq, cpu, false);
4675 mutex_unlock(&wq_pool_mutex);
4676
4677 /* wait for per-cpu unbinding to finish */
8db25e78 4678 flush_work(&unbind_work);
440a1136 4679 destroy_work_on_stack(&unbind_work);
8db25e78 4680 break;
65758202
TH
4681 }
4682 return NOTIFY_OK;
4683}
4684
2d3854a3 4685#ifdef CONFIG_SMP
8ccad40d 4686
2d3854a3 4687struct work_for_cpu {
ed48ece2 4688 struct work_struct work;
2d3854a3
RR
4689 long (*fn)(void *);
4690 void *arg;
4691 long ret;
4692};
4693
ed48ece2 4694static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4695{
ed48ece2
TH
4696 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4697
2d3854a3
RR
4698 wfc->ret = wfc->fn(wfc->arg);
4699}
4700
4701/**
4702 * work_on_cpu - run a function in user context on a particular cpu
4703 * @cpu: the cpu to run on
4704 * @fn: the function to run
4705 * @arg: the function arg
4706 *
31ad9081 4707 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4708 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4709 *
4710 * Return: The value @fn returns.
2d3854a3 4711 */
d84ff051 4712long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4713{
ed48ece2 4714 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4715
ed48ece2
TH
4716 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4717 schedule_work_on(cpu, &wfc.work);
12997d1a 4718 flush_work(&wfc.work);
440a1136 4719 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4720 return wfc.ret;
4721}
4722EXPORT_SYMBOL_GPL(work_on_cpu);
4723#endif /* CONFIG_SMP */
4724
a0a1a5fd
TH
4725#ifdef CONFIG_FREEZER
4726
4727/**
4728 * freeze_workqueues_begin - begin freezing workqueues
4729 *
58a69cb4 4730 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4731 * workqueues will queue new works to their delayed_works list instead of
706026c2 4732 * pool->worklist.
a0a1a5fd
TH
4733 *
4734 * CONTEXT:
a357fc03 4735 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4736 */
4737void freeze_workqueues_begin(void)
4738{
24b8a847
TH
4739 struct workqueue_struct *wq;
4740 struct pool_workqueue *pwq;
a0a1a5fd 4741
68e13a67 4742 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4743
6183c009 4744 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4745 workqueue_freezing = true;
4746
24b8a847 4747 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4748 mutex_lock(&wq->mutex);
699ce097
TH
4749 for_each_pwq(pwq, wq)
4750 pwq_adjust_max_active(pwq);
a357fc03 4751 mutex_unlock(&wq->mutex);
a0a1a5fd 4752 }
5bcab335 4753
68e13a67 4754 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4755}
4756
4757/**
58a69cb4 4758 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4759 *
4760 * Check whether freezing is complete. This function must be called
4761 * between freeze_workqueues_begin() and thaw_workqueues().
4762 *
4763 * CONTEXT:
68e13a67 4764 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4765 *
d185af30 4766 * Return:
58a69cb4
TH
4767 * %true if some freezable workqueues are still busy. %false if freezing
4768 * is complete.
a0a1a5fd
TH
4769 */
4770bool freeze_workqueues_busy(void)
4771{
a0a1a5fd 4772 bool busy = false;
24b8a847
TH
4773 struct workqueue_struct *wq;
4774 struct pool_workqueue *pwq;
a0a1a5fd 4775
68e13a67 4776 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4777
6183c009 4778 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4779
24b8a847
TH
4780 list_for_each_entry(wq, &workqueues, list) {
4781 if (!(wq->flags & WQ_FREEZABLE))
4782 continue;
a0a1a5fd
TH
4783 /*
4784 * nr_active is monotonically decreasing. It's safe
4785 * to peek without lock.
4786 */
88109453 4787 rcu_read_lock_sched();
24b8a847 4788 for_each_pwq(pwq, wq) {
6183c009 4789 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4790 if (pwq->nr_active) {
a0a1a5fd 4791 busy = true;
88109453 4792 rcu_read_unlock_sched();
a0a1a5fd
TH
4793 goto out_unlock;
4794 }
4795 }
88109453 4796 rcu_read_unlock_sched();
a0a1a5fd
TH
4797 }
4798out_unlock:
68e13a67 4799 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4800 return busy;
4801}
4802
4803/**
4804 * thaw_workqueues - thaw workqueues
4805 *
4806 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4807 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4808 *
4809 * CONTEXT:
a357fc03 4810 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4811 */
4812void thaw_workqueues(void)
4813{
24b8a847
TH
4814 struct workqueue_struct *wq;
4815 struct pool_workqueue *pwq;
a0a1a5fd 4816
68e13a67 4817 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4818
4819 if (!workqueue_freezing)
4820 goto out_unlock;
4821
74b414ea 4822 workqueue_freezing = false;
8b03ae3c 4823
24b8a847
TH
4824 /* restore max_active and repopulate worklist */
4825 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4826 mutex_lock(&wq->mutex);
699ce097
TH
4827 for_each_pwq(pwq, wq)
4828 pwq_adjust_max_active(pwq);
a357fc03 4829 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4830 }
4831
a0a1a5fd 4832out_unlock:
68e13a67 4833 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4834}
4835#endif /* CONFIG_FREEZER */
4836
bce90380
TH
4837static void __init wq_numa_init(void)
4838{
4839 cpumask_var_t *tbl;
4840 int node, cpu;
4841
4842 /* determine NUMA pwq table len - highest node id + 1 */
4843 for_each_node(node)
4844 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4845
4846 if (num_possible_nodes() <= 1)
4847 return;
4848
d55262c4
TH
4849 if (wq_disable_numa) {
4850 pr_info("workqueue: NUMA affinity support disabled\n");
4851 return;
4852 }
4853
4c16bd32
TH
4854 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4855 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4856
bce90380
TH
4857 /*
4858 * We want masks of possible CPUs of each node which isn't readily
4859 * available. Build one from cpu_to_node() which should have been
4860 * fully initialized by now.
4861 */
4862 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4863 BUG_ON(!tbl);
4864
4865 for_each_node(node)
1be0c25d
TH
4866 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4867 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4868
4869 for_each_possible_cpu(cpu) {
4870 node = cpu_to_node(cpu);
4871 if (WARN_ON(node == NUMA_NO_NODE)) {
4872 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4873 /* happens iff arch is bonkers, let's just proceed */
4874 return;
4875 }
4876 cpumask_set_cpu(cpu, tbl[node]);
4877 }
4878
4879 wq_numa_possible_cpumask = tbl;
4880 wq_numa_enabled = true;
4881}
4882
6ee0578b 4883static int __init init_workqueues(void)
1da177e4 4884{
7a4e344c
TH
4885 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4886 int i, cpu;
c34056a3 4887
e904e6c2
TH
4888 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4889
4890 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4891
65758202 4892 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4893 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4894
bce90380
TH
4895 wq_numa_init();
4896
706026c2 4897 /* initialize CPU pools */
29c91e99 4898 for_each_possible_cpu(cpu) {
4ce62e9e 4899 struct worker_pool *pool;
8b03ae3c 4900
7a4e344c 4901 i = 0;
f02ae73a 4902 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4903 BUG_ON(init_worker_pool(pool));
ec22ca5e 4904 pool->cpu = cpu;
29c91e99 4905 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4906 pool->attrs->nice = std_nice[i++];
f3f90ad4 4907 pool->node = cpu_to_node(cpu);
7a4e344c 4908
9daf9e67 4909 /* alloc pool ID */
68e13a67 4910 mutex_lock(&wq_pool_mutex);
9daf9e67 4911 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4912 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4913 }
8b03ae3c
TH
4914 }
4915
e22bee78 4916 /* create the initial worker */
29c91e99 4917 for_each_online_cpu(cpu) {
4ce62e9e 4918 struct worker_pool *pool;
e22bee78 4919
f02ae73a 4920 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4921 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4922 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4923 }
e22bee78
TH
4924 }
4925
8a2b7538 4926 /* create default unbound and ordered wq attrs */
29c91e99
TH
4927 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4928 struct workqueue_attrs *attrs;
4929
4930 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4931 attrs->nice = std_nice[i];
29c91e99 4932 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
4933
4934 /*
4935 * An ordered wq should have only one pwq as ordering is
4936 * guaranteed by max_active which is enforced by pwqs.
4937 * Turn off NUMA so that dfl_pwq is used for all nodes.
4938 */
4939 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4940 attrs->nice = std_nice[i];
4941 attrs->no_numa = true;
4942 ordered_wq_attrs[i] = attrs;
29c91e99
TH
4943 }
4944
d320c038 4945 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4946 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4947 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4948 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4949 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4950 system_freezable_wq = alloc_workqueue("events_freezable",
4951 WQ_FREEZABLE, 0);
0668106c
VK
4952 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4953 WQ_POWER_EFFICIENT, 0);
4954 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4955 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4956 0);
1aabe902 4957 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
4958 !system_unbound_wq || !system_freezable_wq ||
4959 !system_power_efficient_wq ||
4960 !system_freezable_power_efficient_wq);
6ee0578b 4961 return 0;
1da177e4 4962}
6ee0578b 4963early_initcall(init_workqueues);