workqueue: implement "workqueue.debug_force_rr_cpu" debug feature
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce
TH
322/* the per-cpu worker pools */
323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
324 cpu_worker_pools);
325
68e13a67 326static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 327
68e13a67 328/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
329static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
330
c5aa87bb 331/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
332static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
333
8a2b7538
TH
334/* I: attributes used when instantiating ordered pools on demand */
335static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
336
d320c038 337struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 338EXPORT_SYMBOL(system_wq);
044c782c 339struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 340EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 341struct workqueue_struct *system_long_wq __read_mostly;
d320c038 342EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 343struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 344EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 345struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 346EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
347struct workqueue_struct *system_power_efficient_wq __read_mostly;
348EXPORT_SYMBOL_GPL(system_power_efficient_wq);
349struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
350EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 351
7d19c5ce 352static int worker_thread(void *__worker);
6ba94429 353static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 354
97bd2347
TH
355#define CREATE_TRACE_POINTS
356#include <trace/events/workqueue.h>
357
68e13a67 358#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
359 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
360 !lockdep_is_held(&wq_pool_mutex), \
361 "sched RCU or wq_pool_mutex should be held")
5bcab335 362
b09f4fd3 363#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
364 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
365 !lockdep_is_held(&wq->mutex), \
366 "sched RCU or wq->mutex should be held")
76af4d93 367
5b95e1af 368#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
369 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 373
f02ae73a
TH
374#define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 377 (pool)++)
4ce62e9e 378
17116969
TH
379/**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
611c92a0 382 * @pi: integer used for iteration
fa1b54e6 383 *
68e13a67
LJ
384 * This must be called either with wq_pool_mutex held or sched RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
17116969 390 */
611c92a0
TH
391#define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 394 else
17116969 395
822d8405
TH
396/**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
822d8405
TH
399 * @pool: worker_pool to iterate workers of
400 *
92f9c5c4 401 * This must be called with @pool->attach_mutex.
822d8405
TH
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
da028469
LJ
406#define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 408 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
409 else
410
49e3cf44
TH
411/**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
76af4d93 415 *
b09f4fd3 416 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
49e3cf44
TH
422 */
423#define for_each_pwq(pwq, wq) \
76af4d93 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 425 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 426 else
f3421797 427
dc186ad7
TG
428#ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430static struct debug_obj_descr work_debug_descr;
431
99777288
SG
432static void *work_debug_hint(void *addr)
433{
434 return ((struct work_struct *) addr)->func;
435}
436
dc186ad7
TG
437/*
438 * fixup_init is called when:
439 * - an active object is initialized
440 */
441static int work_fixup_init(void *addr, enum debug_obj_state state)
442{
443 struct work_struct *work = addr;
444
445 switch (state) {
446 case ODEBUG_STATE_ACTIVE:
447 cancel_work_sync(work);
448 debug_object_init(work, &work_debug_descr);
449 return 1;
450 default:
451 return 0;
452 }
453}
454
455/*
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
459 */
460static int work_fixup_activate(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465
466 case ODEBUG_STATE_NOTAVAILABLE:
467 /*
468 * This is not really a fixup. The work struct was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
471 */
22df02bb 472 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
473 debug_object_init(work, &work_debug_descr);
474 debug_object_activate(work, &work_debug_descr);
475 return 0;
476 }
477 WARN_ON_ONCE(1);
478 return 0;
479
480 case ODEBUG_STATE_ACTIVE:
481 WARN_ON(1);
482
483 default:
484 return 0;
485 }
486}
487
488/*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
492static int work_fixup_free(void *addr, enum debug_obj_state state)
493{
494 struct work_struct *work = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 cancel_work_sync(work);
499 debug_object_free(work, &work_debug_descr);
500 return 1;
501 default:
502 return 0;
503 }
504}
505
506static struct debug_obj_descr work_debug_descr = {
507 .name = "work_struct",
99777288 508 .debug_hint = work_debug_hint,
dc186ad7
TG
509 .fixup_init = work_fixup_init,
510 .fixup_activate = work_fixup_activate,
511 .fixup_free = work_fixup_free,
512};
513
514static inline void debug_work_activate(struct work_struct *work)
515{
516 debug_object_activate(work, &work_debug_descr);
517}
518
519static inline void debug_work_deactivate(struct work_struct *work)
520{
521 debug_object_deactivate(work, &work_debug_descr);
522}
523
524void __init_work(struct work_struct *work, int onstack)
525{
526 if (onstack)
527 debug_object_init_on_stack(work, &work_debug_descr);
528 else
529 debug_object_init(work, &work_debug_descr);
530}
531EXPORT_SYMBOL_GPL(__init_work);
532
533void destroy_work_on_stack(struct work_struct *work)
534{
535 debug_object_free(work, &work_debug_descr);
536}
537EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538
ea2e64f2
TG
539void destroy_delayed_work_on_stack(struct delayed_work *work)
540{
541 destroy_timer_on_stack(&work->timer);
542 debug_object_free(&work->work, &work_debug_descr);
543}
544EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545
dc186ad7
TG
546#else
547static inline void debug_work_activate(struct work_struct *work) { }
548static inline void debug_work_deactivate(struct work_struct *work) { }
549#endif
550
4e8b22bd
LB
551/**
552 * worker_pool_assign_id - allocate ID and assing it to @pool
553 * @pool: the pool pointer of interest
554 *
555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556 * successfully, -errno on failure.
557 */
9daf9e67
TH
558static int worker_pool_assign_id(struct worker_pool *pool)
559{
560 int ret;
561
68e13a67 562 lockdep_assert_held(&wq_pool_mutex);
5bcab335 563
4e8b22bd
LB
564 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 GFP_KERNEL);
229641a6 566 if (ret >= 0) {
e68035fb 567 pool->id = ret;
229641a6
TH
568 return 0;
569 }
fa1b54e6 570 return ret;
7c3eed5c
TH
571}
572
df2d5ae4
TH
573/**
574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575 * @wq: the target workqueue
576 * @node: the node ID
577 *
5b95e1af
LJ
578 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
579 * read locked.
df2d5ae4
TH
580 * If the pwq needs to be used beyond the locking in effect, the caller is
581 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
582 *
583 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
584 */
585static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 int node)
587{
5b95e1af 588 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
df2d5ae4
TH
589 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
590}
591
73f53c4a
TH
592static unsigned int work_color_to_flags(int color)
593{
594 return color << WORK_STRUCT_COLOR_SHIFT;
595}
596
597static int get_work_color(struct work_struct *work)
598{
599 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
600 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
601}
602
603static int work_next_color(int color)
604{
605 return (color + 1) % WORK_NR_COLORS;
606}
1da177e4 607
14441960 608/*
112202d9
TH
609 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
610 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 611 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 612 *
112202d9
TH
613 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
614 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
615 * work->data. These functions should only be called while the work is
616 * owned - ie. while the PENDING bit is set.
7a22ad75 617 *
112202d9 618 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 619 * corresponding to a work. Pool is available once the work has been
112202d9 620 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 621 * available only while the work item is queued.
7a22ad75 622 *
bbb68dfa
TH
623 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
624 * canceled. While being canceled, a work item may have its PENDING set
625 * but stay off timer and worklist for arbitrarily long and nobody should
626 * try to steal the PENDING bit.
14441960 627 */
7a22ad75
TH
628static inline void set_work_data(struct work_struct *work, unsigned long data,
629 unsigned long flags)
365970a1 630{
6183c009 631 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
632 atomic_long_set(&work->data, data | flags | work_static(work));
633}
365970a1 634
112202d9 635static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
636 unsigned long extra_flags)
637{
112202d9
TH
638 set_work_data(work, (unsigned long)pwq,
639 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
640}
641
4468a00f
LJ
642static void set_work_pool_and_keep_pending(struct work_struct *work,
643 int pool_id)
644{
645 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
646 WORK_STRUCT_PENDING);
647}
648
7c3eed5c
TH
649static void set_work_pool_and_clear_pending(struct work_struct *work,
650 int pool_id)
7a22ad75 651{
23657bb1
TH
652 /*
653 * The following wmb is paired with the implied mb in
654 * test_and_set_bit(PENDING) and ensures all updates to @work made
655 * here are visible to and precede any updates by the next PENDING
656 * owner.
657 */
658 smp_wmb();
7c3eed5c 659 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 660}
f756d5e2 661
7a22ad75 662static void clear_work_data(struct work_struct *work)
1da177e4 663{
7c3eed5c
TH
664 smp_wmb(); /* see set_work_pool_and_clear_pending() */
665 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
666}
667
112202d9 668static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 669{
e120153d 670 unsigned long data = atomic_long_read(&work->data);
7a22ad75 671
112202d9 672 if (data & WORK_STRUCT_PWQ)
e120153d
TH
673 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
674 else
675 return NULL;
4d707b9f
ON
676}
677
7c3eed5c
TH
678/**
679 * get_work_pool - return the worker_pool a given work was associated with
680 * @work: the work item of interest
681 *
68e13a67
LJ
682 * Pools are created and destroyed under wq_pool_mutex, and allows read
683 * access under sched-RCU read lock. As such, this function should be
684 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
685 *
686 * All fields of the returned pool are accessible as long as the above
687 * mentioned locking is in effect. If the returned pool needs to be used
688 * beyond the critical section, the caller is responsible for ensuring the
689 * returned pool is and stays online.
d185af30
YB
690 *
691 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
692 */
693static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 694{
e120153d 695 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 696 int pool_id;
7a22ad75 697
68e13a67 698 assert_rcu_or_pool_mutex();
fa1b54e6 699
112202d9
TH
700 if (data & WORK_STRUCT_PWQ)
701 return ((struct pool_workqueue *)
7c3eed5c 702 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 703
7c3eed5c
TH
704 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
705 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
706 return NULL;
707
fa1b54e6 708 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
709}
710
711/**
712 * get_work_pool_id - return the worker pool ID a given work is associated with
713 * @work: the work item of interest
714 *
d185af30 715 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
716 * %WORK_OFFQ_POOL_NONE if none.
717 */
718static int get_work_pool_id(struct work_struct *work)
719{
54d5b7d0
LJ
720 unsigned long data = atomic_long_read(&work->data);
721
112202d9
TH
722 if (data & WORK_STRUCT_PWQ)
723 return ((struct pool_workqueue *)
54d5b7d0 724 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 725
54d5b7d0 726 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
727}
728
bbb68dfa
TH
729static void mark_work_canceling(struct work_struct *work)
730{
7c3eed5c 731 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 732
7c3eed5c
TH
733 pool_id <<= WORK_OFFQ_POOL_SHIFT;
734 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
735}
736
737static bool work_is_canceling(struct work_struct *work)
738{
739 unsigned long data = atomic_long_read(&work->data);
740
112202d9 741 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
742}
743
e22bee78 744/*
3270476a
TH
745 * Policy functions. These define the policies on how the global worker
746 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 747 * they're being called with pool->lock held.
e22bee78
TH
748 */
749
63d95a91 750static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 751{
e19e397a 752 return !atomic_read(&pool->nr_running);
a848e3b6
ON
753}
754
4594bf15 755/*
e22bee78
TH
756 * Need to wake up a worker? Called from anything but currently
757 * running workers.
974271c4
TH
758 *
759 * Note that, because unbound workers never contribute to nr_running, this
706026c2 760 * function will always return %true for unbound pools as long as the
974271c4 761 * worklist isn't empty.
4594bf15 762 */
63d95a91 763static bool need_more_worker(struct worker_pool *pool)
365970a1 764{
63d95a91 765 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 766}
4594bf15 767
e22bee78 768/* Can I start working? Called from busy but !running workers. */
63d95a91 769static bool may_start_working(struct worker_pool *pool)
e22bee78 770{
63d95a91 771 return pool->nr_idle;
e22bee78
TH
772}
773
774/* Do I need to keep working? Called from currently running workers. */
63d95a91 775static bool keep_working(struct worker_pool *pool)
e22bee78 776{
e19e397a
TH
777 return !list_empty(&pool->worklist) &&
778 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
779}
780
781/* Do we need a new worker? Called from manager. */
63d95a91 782static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 783{
63d95a91 784 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 785}
365970a1 786
e22bee78 787/* Do we have too many workers and should some go away? */
63d95a91 788static bool too_many_workers(struct worker_pool *pool)
e22bee78 789{
34a06bd6 790 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
791 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
792 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
793
794 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
795}
796
4d707b9f 797/*
e22bee78
TH
798 * Wake up functions.
799 */
800
1037de36
LJ
801/* Return the first idle worker. Safe with preemption disabled */
802static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 803{
63d95a91 804 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
805 return NULL;
806
63d95a91 807 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
808}
809
810/**
811 * wake_up_worker - wake up an idle worker
63d95a91 812 * @pool: worker pool to wake worker from
7e11629d 813 *
63d95a91 814 * Wake up the first idle worker of @pool.
7e11629d
TH
815 *
816 * CONTEXT:
d565ed63 817 * spin_lock_irq(pool->lock).
7e11629d 818 */
63d95a91 819static void wake_up_worker(struct worker_pool *pool)
7e11629d 820{
1037de36 821 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
822
823 if (likely(worker))
824 wake_up_process(worker->task);
825}
826
d302f017 827/**
e22bee78
TH
828 * wq_worker_waking_up - a worker is waking up
829 * @task: task waking up
830 * @cpu: CPU @task is waking up to
831 *
832 * This function is called during try_to_wake_up() when a worker is
833 * being awoken.
834 *
835 * CONTEXT:
836 * spin_lock_irq(rq->lock)
837 */
d84ff051 838void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
839{
840 struct worker *worker = kthread_data(task);
841
36576000 842 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 843 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 844 atomic_inc(&worker->pool->nr_running);
36576000 845 }
e22bee78
TH
846}
847
848/**
849 * wq_worker_sleeping - a worker is going to sleep
850 * @task: task going to sleep
851 * @cpu: CPU in question, must be the current CPU number
852 *
853 * This function is called during schedule() when a busy worker is
854 * going to sleep. Worker on the same cpu can be woken up by
855 * returning pointer to its task.
856 *
857 * CONTEXT:
858 * spin_lock_irq(rq->lock)
859 *
d185af30 860 * Return:
e22bee78
TH
861 * Worker task on @cpu to wake up, %NULL if none.
862 */
d84ff051 863struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
864{
865 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 866 struct worker_pool *pool;
e22bee78 867
111c225a
TH
868 /*
869 * Rescuers, which may not have all the fields set up like normal
870 * workers, also reach here, let's not access anything before
871 * checking NOT_RUNNING.
872 */
2d64672e 873 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
874 return NULL;
875
111c225a 876 pool = worker->pool;
111c225a 877
e22bee78 878 /* this can only happen on the local cpu */
92b69f50 879 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 880 return NULL;
e22bee78
TH
881
882 /*
883 * The counterpart of the following dec_and_test, implied mb,
884 * worklist not empty test sequence is in insert_work().
885 * Please read comment there.
886 *
628c78e7
TH
887 * NOT_RUNNING is clear. This means that we're bound to and
888 * running on the local cpu w/ rq lock held and preemption
889 * disabled, which in turn means that none else could be
d565ed63 890 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 891 * lock is safe.
e22bee78 892 */
e19e397a
TH
893 if (atomic_dec_and_test(&pool->nr_running) &&
894 !list_empty(&pool->worklist))
1037de36 895 to_wakeup = first_idle_worker(pool);
e22bee78
TH
896 return to_wakeup ? to_wakeup->task : NULL;
897}
898
899/**
900 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 901 * @worker: self
d302f017 902 * @flags: flags to set
d302f017 903 *
228f1d00 904 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 905 *
cb444766 906 * CONTEXT:
d565ed63 907 * spin_lock_irq(pool->lock)
d302f017 908 */
228f1d00 909static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 910{
bd7bdd43 911 struct worker_pool *pool = worker->pool;
e22bee78 912
cb444766
TH
913 WARN_ON_ONCE(worker->task != current);
914
228f1d00 915 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
916 if ((flags & WORKER_NOT_RUNNING) &&
917 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 918 atomic_dec(&pool->nr_running);
e22bee78
TH
919 }
920
d302f017
TH
921 worker->flags |= flags;
922}
923
924/**
e22bee78 925 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 926 * @worker: self
d302f017
TH
927 * @flags: flags to clear
928 *
e22bee78 929 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 930 *
cb444766 931 * CONTEXT:
d565ed63 932 * spin_lock_irq(pool->lock)
d302f017
TH
933 */
934static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
935{
63d95a91 936 struct worker_pool *pool = worker->pool;
e22bee78
TH
937 unsigned int oflags = worker->flags;
938
cb444766
TH
939 WARN_ON_ONCE(worker->task != current);
940
d302f017 941 worker->flags &= ~flags;
e22bee78 942
42c025f3
TH
943 /*
944 * If transitioning out of NOT_RUNNING, increment nr_running. Note
945 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
946 * of multiple flags, not a single flag.
947 */
e22bee78
TH
948 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
949 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 950 atomic_inc(&pool->nr_running);
d302f017
TH
951}
952
8cca0eea
TH
953/**
954 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 955 * @pool: pool of interest
8cca0eea
TH
956 * @work: work to find worker for
957 *
c9e7cf27
TH
958 * Find a worker which is executing @work on @pool by searching
959 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
960 * to match, its current execution should match the address of @work and
961 * its work function. This is to avoid unwanted dependency between
962 * unrelated work executions through a work item being recycled while still
963 * being executed.
964 *
965 * This is a bit tricky. A work item may be freed once its execution
966 * starts and nothing prevents the freed area from being recycled for
967 * another work item. If the same work item address ends up being reused
968 * before the original execution finishes, workqueue will identify the
969 * recycled work item as currently executing and make it wait until the
970 * current execution finishes, introducing an unwanted dependency.
971 *
c5aa87bb
TH
972 * This function checks the work item address and work function to avoid
973 * false positives. Note that this isn't complete as one may construct a
974 * work function which can introduce dependency onto itself through a
975 * recycled work item. Well, if somebody wants to shoot oneself in the
976 * foot that badly, there's only so much we can do, and if such deadlock
977 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
978 *
979 * CONTEXT:
d565ed63 980 * spin_lock_irq(pool->lock).
8cca0eea 981 *
d185af30
YB
982 * Return:
983 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 984 * otherwise.
4d707b9f 985 */
c9e7cf27 986static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 987 struct work_struct *work)
4d707b9f 988{
42f8570f 989 struct worker *worker;
42f8570f 990
b67bfe0d 991 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
992 (unsigned long)work)
993 if (worker->current_work == work &&
994 worker->current_func == work->func)
42f8570f
SL
995 return worker;
996
997 return NULL;
4d707b9f
ON
998}
999
bf4ede01
TH
1000/**
1001 * move_linked_works - move linked works to a list
1002 * @work: start of series of works to be scheduled
1003 * @head: target list to append @work to
402dd89d 1004 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1005 *
1006 * Schedule linked works starting from @work to @head. Work series to
1007 * be scheduled starts at @work and includes any consecutive work with
1008 * WORK_STRUCT_LINKED set in its predecessor.
1009 *
1010 * If @nextp is not NULL, it's updated to point to the next work of
1011 * the last scheduled work. This allows move_linked_works() to be
1012 * nested inside outer list_for_each_entry_safe().
1013 *
1014 * CONTEXT:
d565ed63 1015 * spin_lock_irq(pool->lock).
bf4ede01
TH
1016 */
1017static void move_linked_works(struct work_struct *work, struct list_head *head,
1018 struct work_struct **nextp)
1019{
1020 struct work_struct *n;
1021
1022 /*
1023 * Linked worklist will always end before the end of the list,
1024 * use NULL for list head.
1025 */
1026 list_for_each_entry_safe_from(work, n, NULL, entry) {
1027 list_move_tail(&work->entry, head);
1028 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1029 break;
1030 }
1031
1032 /*
1033 * If we're already inside safe list traversal and have moved
1034 * multiple works to the scheduled queue, the next position
1035 * needs to be updated.
1036 */
1037 if (nextp)
1038 *nextp = n;
1039}
1040
8864b4e5
TH
1041/**
1042 * get_pwq - get an extra reference on the specified pool_workqueue
1043 * @pwq: pool_workqueue to get
1044 *
1045 * Obtain an extra reference on @pwq. The caller should guarantee that
1046 * @pwq has positive refcnt and be holding the matching pool->lock.
1047 */
1048static void get_pwq(struct pool_workqueue *pwq)
1049{
1050 lockdep_assert_held(&pwq->pool->lock);
1051 WARN_ON_ONCE(pwq->refcnt <= 0);
1052 pwq->refcnt++;
1053}
1054
1055/**
1056 * put_pwq - put a pool_workqueue reference
1057 * @pwq: pool_workqueue to put
1058 *
1059 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1060 * destruction. The caller should be holding the matching pool->lock.
1061 */
1062static void put_pwq(struct pool_workqueue *pwq)
1063{
1064 lockdep_assert_held(&pwq->pool->lock);
1065 if (likely(--pwq->refcnt))
1066 return;
1067 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1068 return;
1069 /*
1070 * @pwq can't be released under pool->lock, bounce to
1071 * pwq_unbound_release_workfn(). This never recurses on the same
1072 * pool->lock as this path is taken only for unbound workqueues and
1073 * the release work item is scheduled on a per-cpu workqueue. To
1074 * avoid lockdep warning, unbound pool->locks are given lockdep
1075 * subclass of 1 in get_unbound_pool().
1076 */
1077 schedule_work(&pwq->unbound_release_work);
1078}
1079
dce90d47
TH
1080/**
1081 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1082 * @pwq: pool_workqueue to put (can be %NULL)
1083 *
1084 * put_pwq() with locking. This function also allows %NULL @pwq.
1085 */
1086static void put_pwq_unlocked(struct pool_workqueue *pwq)
1087{
1088 if (pwq) {
1089 /*
1090 * As both pwqs and pools are sched-RCU protected, the
1091 * following lock operations are safe.
1092 */
1093 spin_lock_irq(&pwq->pool->lock);
1094 put_pwq(pwq);
1095 spin_unlock_irq(&pwq->pool->lock);
1096 }
1097}
1098
112202d9 1099static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1100{
112202d9 1101 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1102
1103 trace_workqueue_activate_work(work);
82607adc
TH
1104 if (list_empty(&pwq->pool->worklist))
1105 pwq->pool->watchdog_ts = jiffies;
112202d9 1106 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1107 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1108 pwq->nr_active++;
bf4ede01
TH
1109}
1110
112202d9 1111static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1112{
112202d9 1113 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1114 struct work_struct, entry);
1115
112202d9 1116 pwq_activate_delayed_work(work);
3aa62497
LJ
1117}
1118
bf4ede01 1119/**
112202d9
TH
1120 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1121 * @pwq: pwq of interest
bf4ede01 1122 * @color: color of work which left the queue
bf4ede01
TH
1123 *
1124 * A work either has completed or is removed from pending queue,
112202d9 1125 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1126 *
1127 * CONTEXT:
d565ed63 1128 * spin_lock_irq(pool->lock).
bf4ede01 1129 */
112202d9 1130static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1131{
8864b4e5 1132 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1133 if (color == WORK_NO_COLOR)
8864b4e5 1134 goto out_put;
bf4ede01 1135
112202d9 1136 pwq->nr_in_flight[color]--;
bf4ede01 1137
112202d9
TH
1138 pwq->nr_active--;
1139 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1140 /* one down, submit a delayed one */
112202d9
TH
1141 if (pwq->nr_active < pwq->max_active)
1142 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1143 }
1144
1145 /* is flush in progress and are we at the flushing tip? */
112202d9 1146 if (likely(pwq->flush_color != color))
8864b4e5 1147 goto out_put;
bf4ede01
TH
1148
1149 /* are there still in-flight works? */
112202d9 1150 if (pwq->nr_in_flight[color])
8864b4e5 1151 goto out_put;
bf4ede01 1152
112202d9
TH
1153 /* this pwq is done, clear flush_color */
1154 pwq->flush_color = -1;
bf4ede01
TH
1155
1156 /*
112202d9 1157 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1158 * will handle the rest.
1159 */
112202d9
TH
1160 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1161 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1162out_put:
1163 put_pwq(pwq);
bf4ede01
TH
1164}
1165
36e227d2 1166/**
bbb68dfa 1167 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1168 * @work: work item to steal
1169 * @is_dwork: @work is a delayed_work
bbb68dfa 1170 * @flags: place to store irq state
36e227d2
TH
1171 *
1172 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1173 * stable state - idle, on timer or on worklist.
36e227d2 1174 *
d185af30 1175 * Return:
36e227d2
TH
1176 * 1 if @work was pending and we successfully stole PENDING
1177 * 0 if @work was idle and we claimed PENDING
1178 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1179 * -ENOENT if someone else is canceling @work, this state may persist
1180 * for arbitrarily long
36e227d2 1181 *
d185af30 1182 * Note:
bbb68dfa 1183 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1184 * interrupted while holding PENDING and @work off queue, irq must be
1185 * disabled on entry. This, combined with delayed_work->timer being
1186 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1187 *
1188 * On successful return, >= 0, irq is disabled and the caller is
1189 * responsible for releasing it using local_irq_restore(*@flags).
1190 *
e0aecdd8 1191 * This function is safe to call from any context including IRQ handler.
bf4ede01 1192 */
bbb68dfa
TH
1193static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1194 unsigned long *flags)
bf4ede01 1195{
d565ed63 1196 struct worker_pool *pool;
112202d9 1197 struct pool_workqueue *pwq;
bf4ede01 1198
bbb68dfa
TH
1199 local_irq_save(*flags);
1200
36e227d2
TH
1201 /* try to steal the timer if it exists */
1202 if (is_dwork) {
1203 struct delayed_work *dwork = to_delayed_work(work);
1204
e0aecdd8
TH
1205 /*
1206 * dwork->timer is irqsafe. If del_timer() fails, it's
1207 * guaranteed that the timer is not queued anywhere and not
1208 * running on the local CPU.
1209 */
36e227d2
TH
1210 if (likely(del_timer(&dwork->timer)))
1211 return 1;
1212 }
1213
1214 /* try to claim PENDING the normal way */
bf4ede01
TH
1215 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1216 return 0;
1217
1218 /*
1219 * The queueing is in progress, or it is already queued. Try to
1220 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1221 */
d565ed63
TH
1222 pool = get_work_pool(work);
1223 if (!pool)
bbb68dfa 1224 goto fail;
bf4ede01 1225
d565ed63 1226 spin_lock(&pool->lock);
0b3dae68 1227 /*
112202d9
TH
1228 * work->data is guaranteed to point to pwq only while the work
1229 * item is queued on pwq->wq, and both updating work->data to point
1230 * to pwq on queueing and to pool on dequeueing are done under
1231 * pwq->pool->lock. This in turn guarantees that, if work->data
1232 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1233 * item is currently queued on that pool.
1234 */
112202d9
TH
1235 pwq = get_work_pwq(work);
1236 if (pwq && pwq->pool == pool) {
16062836
TH
1237 debug_work_deactivate(work);
1238
1239 /*
1240 * A delayed work item cannot be grabbed directly because
1241 * it might have linked NO_COLOR work items which, if left
112202d9 1242 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1243 * management later on and cause stall. Make sure the work
1244 * item is activated before grabbing.
1245 */
1246 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1247 pwq_activate_delayed_work(work);
16062836
TH
1248
1249 list_del_init(&work->entry);
9c34a704 1250 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1251
112202d9 1252 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1253 set_work_pool_and_keep_pending(work, pool->id);
1254
1255 spin_unlock(&pool->lock);
1256 return 1;
bf4ede01 1257 }
d565ed63 1258 spin_unlock(&pool->lock);
bbb68dfa
TH
1259fail:
1260 local_irq_restore(*flags);
1261 if (work_is_canceling(work))
1262 return -ENOENT;
1263 cpu_relax();
36e227d2 1264 return -EAGAIN;
bf4ede01
TH
1265}
1266
4690c4ab 1267/**
706026c2 1268 * insert_work - insert a work into a pool
112202d9 1269 * @pwq: pwq @work belongs to
4690c4ab
TH
1270 * @work: work to insert
1271 * @head: insertion point
1272 * @extra_flags: extra WORK_STRUCT_* flags to set
1273 *
112202d9 1274 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1275 * work_struct flags.
4690c4ab
TH
1276 *
1277 * CONTEXT:
d565ed63 1278 * spin_lock_irq(pool->lock).
4690c4ab 1279 */
112202d9
TH
1280static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1281 struct list_head *head, unsigned int extra_flags)
b89deed3 1282{
112202d9 1283 struct worker_pool *pool = pwq->pool;
e22bee78 1284
4690c4ab 1285 /* we own @work, set data and link */
112202d9 1286 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1287 list_add_tail(&work->entry, head);
8864b4e5 1288 get_pwq(pwq);
e22bee78
TH
1289
1290 /*
c5aa87bb
TH
1291 * Ensure either wq_worker_sleeping() sees the above
1292 * list_add_tail() or we see zero nr_running to avoid workers lying
1293 * around lazily while there are works to be processed.
e22bee78
TH
1294 */
1295 smp_mb();
1296
63d95a91
TH
1297 if (__need_more_worker(pool))
1298 wake_up_worker(pool);
b89deed3
ON
1299}
1300
c8efcc25
TH
1301/*
1302 * Test whether @work is being queued from another work executing on the
8d03ecfe 1303 * same workqueue.
c8efcc25
TH
1304 */
1305static bool is_chained_work(struct workqueue_struct *wq)
1306{
8d03ecfe
TH
1307 struct worker *worker;
1308
1309 worker = current_wq_worker();
1310 /*
1311 * Return %true iff I'm a worker execuing a work item on @wq. If
1312 * I'm @worker, it's safe to dereference it without locking.
1313 */
112202d9 1314 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1315}
1316
ef557180
MG
1317/*
1318 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1319 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1320 * avoid perturbing sensitive tasks.
1321 */
1322static int wq_select_unbound_cpu(int cpu)
1323{
f303fccb 1324 static bool printed_dbg_warning;
ef557180
MG
1325 int new_cpu;
1326
f303fccb
TH
1327 if (likely(!wq_debug_force_rr_cpu)) {
1328 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1329 return cpu;
1330 } else if (!printed_dbg_warning) {
1331 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1332 printed_dbg_warning = true;
1333 }
1334
ef557180
MG
1335 if (cpumask_empty(wq_unbound_cpumask))
1336 return cpu;
1337
1338 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1339 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1340 if (unlikely(new_cpu >= nr_cpu_ids)) {
1341 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1342 if (unlikely(new_cpu >= nr_cpu_ids))
1343 return cpu;
1344 }
1345 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1346
1347 return new_cpu;
1348}
1349
d84ff051 1350static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1351 struct work_struct *work)
1352{
112202d9 1353 struct pool_workqueue *pwq;
c9178087 1354 struct worker_pool *last_pool;
1e19ffc6 1355 struct list_head *worklist;
8a2e8e5d 1356 unsigned int work_flags;
b75cac93 1357 unsigned int req_cpu = cpu;
8930caba
TH
1358
1359 /*
1360 * While a work item is PENDING && off queue, a task trying to
1361 * steal the PENDING will busy-loop waiting for it to either get
1362 * queued or lose PENDING. Grabbing PENDING and queueing should
1363 * happen with IRQ disabled.
1364 */
1365 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1366
dc186ad7 1367 debug_work_activate(work);
1e19ffc6 1368
9ef28a73 1369 /* if draining, only works from the same workqueue are allowed */
618b01eb 1370 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1371 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1372 return;
9e8cd2f5 1373retry:
df2d5ae4 1374 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1375 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1376
c9178087 1377 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1378 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1379 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1380 else
1381 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1382
c9178087
TH
1383 /*
1384 * If @work was previously on a different pool, it might still be
1385 * running there, in which case the work needs to be queued on that
1386 * pool to guarantee non-reentrancy.
1387 */
1388 last_pool = get_work_pool(work);
1389 if (last_pool && last_pool != pwq->pool) {
1390 struct worker *worker;
18aa9eff 1391
c9178087 1392 spin_lock(&last_pool->lock);
18aa9eff 1393
c9178087 1394 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1395
c9178087
TH
1396 if (worker && worker->current_pwq->wq == wq) {
1397 pwq = worker->current_pwq;
8930caba 1398 } else {
c9178087
TH
1399 /* meh... not running there, queue here */
1400 spin_unlock(&last_pool->lock);
112202d9 1401 spin_lock(&pwq->pool->lock);
8930caba 1402 }
f3421797 1403 } else {
112202d9 1404 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1405 }
1406
9e8cd2f5
TH
1407 /*
1408 * pwq is determined and locked. For unbound pools, we could have
1409 * raced with pwq release and it could already be dead. If its
1410 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1411 * without another pwq replacing it in the numa_pwq_tbl or while
1412 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1413 * make forward-progress.
1414 */
1415 if (unlikely(!pwq->refcnt)) {
1416 if (wq->flags & WQ_UNBOUND) {
1417 spin_unlock(&pwq->pool->lock);
1418 cpu_relax();
1419 goto retry;
1420 }
1421 /* oops */
1422 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1423 wq->name, cpu);
1424 }
1425
112202d9
TH
1426 /* pwq determined, queue */
1427 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1428
f5b2552b 1429 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1430 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1431 return;
1432 }
1e19ffc6 1433
112202d9
TH
1434 pwq->nr_in_flight[pwq->work_color]++;
1435 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1436
112202d9 1437 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1438 trace_workqueue_activate_work(work);
112202d9
TH
1439 pwq->nr_active++;
1440 worklist = &pwq->pool->worklist;
82607adc
TH
1441 if (list_empty(worklist))
1442 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1443 } else {
1444 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1445 worklist = &pwq->delayed_works;
8a2e8e5d 1446 }
1e19ffc6 1447
112202d9 1448 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1449
112202d9 1450 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1451}
1452
0fcb78c2 1453/**
c1a220e7
ZR
1454 * queue_work_on - queue work on specific cpu
1455 * @cpu: CPU number to execute work on
0fcb78c2
REB
1456 * @wq: workqueue to use
1457 * @work: work to queue
1458 *
c1a220e7
ZR
1459 * We queue the work to a specific CPU, the caller must ensure it
1460 * can't go away.
d185af30
YB
1461 *
1462 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1463 */
d4283e93
TH
1464bool queue_work_on(int cpu, struct workqueue_struct *wq,
1465 struct work_struct *work)
1da177e4 1466{
d4283e93 1467 bool ret = false;
8930caba 1468 unsigned long flags;
ef1ca236 1469
8930caba 1470 local_irq_save(flags);
c1a220e7 1471
22df02bb 1472 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1473 __queue_work(cpu, wq, work);
d4283e93 1474 ret = true;
c1a220e7 1475 }
ef1ca236 1476
8930caba 1477 local_irq_restore(flags);
1da177e4
LT
1478 return ret;
1479}
ad7b1f84 1480EXPORT_SYMBOL(queue_work_on);
1da177e4 1481
d8e794df 1482void delayed_work_timer_fn(unsigned long __data)
1da177e4 1483{
52bad64d 1484 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1485
e0aecdd8 1486 /* should have been called from irqsafe timer with irq already off */
60c057bc 1487 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1488}
1438ade5 1489EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1490
7beb2edf
TH
1491static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1492 struct delayed_work *dwork, unsigned long delay)
1da177e4 1493{
7beb2edf
TH
1494 struct timer_list *timer = &dwork->timer;
1495 struct work_struct *work = &dwork->work;
7beb2edf
TH
1496
1497 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1498 timer->data != (unsigned long)dwork);
fc4b514f
TH
1499 WARN_ON_ONCE(timer_pending(timer));
1500 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1501
8852aac2
TH
1502 /*
1503 * If @delay is 0, queue @dwork->work immediately. This is for
1504 * both optimization and correctness. The earliest @timer can
1505 * expire is on the closest next tick and delayed_work users depend
1506 * on that there's no such delay when @delay is 0.
1507 */
1508 if (!delay) {
1509 __queue_work(cpu, wq, &dwork->work);
1510 return;
1511 }
1512
7beb2edf 1513 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1514
60c057bc 1515 dwork->wq = wq;
1265057f 1516 dwork->cpu = cpu;
7beb2edf
TH
1517 timer->expires = jiffies + delay;
1518
041bd12e
TH
1519 if (unlikely(cpu != WORK_CPU_UNBOUND))
1520 add_timer_on(timer, cpu);
1521 else
1522 add_timer(timer);
1da177e4
LT
1523}
1524
0fcb78c2
REB
1525/**
1526 * queue_delayed_work_on - queue work on specific CPU after delay
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
af9997e4 1529 * @dwork: work to queue
0fcb78c2
REB
1530 * @delay: number of jiffies to wait before queueing
1531 *
d185af30 1532 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1533 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1534 * execution.
0fcb78c2 1535 */
d4283e93
TH
1536bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1538{
52bad64d 1539 struct work_struct *work = &dwork->work;
d4283e93 1540 bool ret = false;
8930caba 1541 unsigned long flags;
7a6bc1cd 1542
8930caba
TH
1543 /* read the comment in __queue_work() */
1544 local_irq_save(flags);
7a6bc1cd 1545
22df02bb 1546 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1547 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1548 ret = true;
7a6bc1cd 1549 }
8a3e77cc 1550
8930caba 1551 local_irq_restore(flags);
7a6bc1cd
VP
1552 return ret;
1553}
ad7b1f84 1554EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1555
8376fe22
TH
1556/**
1557 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1558 * @cpu: CPU number to execute work on
1559 * @wq: workqueue to use
1560 * @dwork: work to queue
1561 * @delay: number of jiffies to wait before queueing
1562 *
1563 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1564 * modify @dwork's timer so that it expires after @delay. If @delay is
1565 * zero, @work is guaranteed to be scheduled immediately regardless of its
1566 * current state.
1567 *
d185af30 1568 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1569 * pending and its timer was modified.
1570 *
e0aecdd8 1571 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1572 * See try_to_grab_pending() for details.
1573 */
1574bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1575 struct delayed_work *dwork, unsigned long delay)
1576{
1577 unsigned long flags;
1578 int ret;
c7fc77f7 1579
8376fe22
TH
1580 do {
1581 ret = try_to_grab_pending(&dwork->work, true, &flags);
1582 } while (unlikely(ret == -EAGAIN));
63bc0362 1583
8376fe22
TH
1584 if (likely(ret >= 0)) {
1585 __queue_delayed_work(cpu, wq, dwork, delay);
1586 local_irq_restore(flags);
7a6bc1cd 1587 }
8376fe22
TH
1588
1589 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1590 return ret;
1591}
8376fe22
TH
1592EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1593
c8e55f36
TH
1594/**
1595 * worker_enter_idle - enter idle state
1596 * @worker: worker which is entering idle state
1597 *
1598 * @worker is entering idle state. Update stats and idle timer if
1599 * necessary.
1600 *
1601 * LOCKING:
d565ed63 1602 * spin_lock_irq(pool->lock).
c8e55f36
TH
1603 */
1604static void worker_enter_idle(struct worker *worker)
1da177e4 1605{
bd7bdd43 1606 struct worker_pool *pool = worker->pool;
c8e55f36 1607
6183c009
TH
1608 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1609 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1610 (worker->hentry.next || worker->hentry.pprev)))
1611 return;
c8e55f36 1612
051e1850 1613 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1614 worker->flags |= WORKER_IDLE;
bd7bdd43 1615 pool->nr_idle++;
e22bee78 1616 worker->last_active = jiffies;
c8e55f36
TH
1617
1618 /* idle_list is LIFO */
bd7bdd43 1619 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1620
628c78e7
TH
1621 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1622 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1623
544ecf31 1624 /*
706026c2 1625 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1626 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1627 * nr_running, the warning may trigger spuriously. Check iff
1628 * unbind is not in progress.
544ecf31 1629 */
24647570 1630 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1631 pool->nr_workers == pool->nr_idle &&
e19e397a 1632 atomic_read(&pool->nr_running));
c8e55f36
TH
1633}
1634
1635/**
1636 * worker_leave_idle - leave idle state
1637 * @worker: worker which is leaving idle state
1638 *
1639 * @worker is leaving idle state. Update stats.
1640 *
1641 * LOCKING:
d565ed63 1642 * spin_lock_irq(pool->lock).
c8e55f36
TH
1643 */
1644static void worker_leave_idle(struct worker *worker)
1645{
bd7bdd43 1646 struct worker_pool *pool = worker->pool;
c8e55f36 1647
6183c009
TH
1648 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1649 return;
d302f017 1650 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1651 pool->nr_idle--;
c8e55f36
TH
1652 list_del_init(&worker->entry);
1653}
1654
f7537df5 1655static struct worker *alloc_worker(int node)
c34056a3
TH
1656{
1657 struct worker *worker;
1658
f7537df5 1659 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1660 if (worker) {
1661 INIT_LIST_HEAD(&worker->entry);
affee4b2 1662 INIT_LIST_HEAD(&worker->scheduled);
da028469 1663 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1664 /* on creation a worker is in !idle && prep state */
1665 worker->flags = WORKER_PREP;
c8e55f36 1666 }
c34056a3
TH
1667 return worker;
1668}
1669
4736cbf7
LJ
1670/**
1671 * worker_attach_to_pool() - attach a worker to a pool
1672 * @worker: worker to be attached
1673 * @pool: the target pool
1674 *
1675 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1676 * cpu-binding of @worker are kept coordinated with the pool across
1677 * cpu-[un]hotplugs.
1678 */
1679static void worker_attach_to_pool(struct worker *worker,
1680 struct worker_pool *pool)
1681{
1682 mutex_lock(&pool->attach_mutex);
1683
1684 /*
1685 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1686 * online CPUs. It'll be re-applied when any of the CPUs come up.
1687 */
1688 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1689
1690 /*
1691 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1692 * stable across this function. See the comments above the
1693 * flag definition for details.
1694 */
1695 if (pool->flags & POOL_DISASSOCIATED)
1696 worker->flags |= WORKER_UNBOUND;
1697
1698 list_add_tail(&worker->node, &pool->workers);
1699
1700 mutex_unlock(&pool->attach_mutex);
1701}
1702
60f5a4bc
LJ
1703/**
1704 * worker_detach_from_pool() - detach a worker from its pool
1705 * @worker: worker which is attached to its pool
1706 * @pool: the pool @worker is attached to
1707 *
4736cbf7
LJ
1708 * Undo the attaching which had been done in worker_attach_to_pool(). The
1709 * caller worker shouldn't access to the pool after detached except it has
1710 * other reference to the pool.
60f5a4bc
LJ
1711 */
1712static void worker_detach_from_pool(struct worker *worker,
1713 struct worker_pool *pool)
1714{
1715 struct completion *detach_completion = NULL;
1716
92f9c5c4 1717 mutex_lock(&pool->attach_mutex);
da028469
LJ
1718 list_del(&worker->node);
1719 if (list_empty(&pool->workers))
60f5a4bc 1720 detach_completion = pool->detach_completion;
92f9c5c4 1721 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1722
b62c0751
LJ
1723 /* clear leftover flags without pool->lock after it is detached */
1724 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1725
60f5a4bc
LJ
1726 if (detach_completion)
1727 complete(detach_completion);
1728}
1729
c34056a3
TH
1730/**
1731 * create_worker - create a new workqueue worker
63d95a91 1732 * @pool: pool the new worker will belong to
c34056a3 1733 *
051e1850 1734 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1735 *
1736 * CONTEXT:
1737 * Might sleep. Does GFP_KERNEL allocations.
1738 *
d185af30 1739 * Return:
c34056a3
TH
1740 * Pointer to the newly created worker.
1741 */
bc2ae0f5 1742static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1743{
c34056a3 1744 struct worker *worker = NULL;
f3421797 1745 int id = -1;
e3c916a4 1746 char id_buf[16];
c34056a3 1747
7cda9aae
LJ
1748 /* ID is needed to determine kthread name */
1749 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1750 if (id < 0)
1751 goto fail;
c34056a3 1752
f7537df5 1753 worker = alloc_worker(pool->node);
c34056a3
TH
1754 if (!worker)
1755 goto fail;
1756
bd7bdd43 1757 worker->pool = pool;
c34056a3
TH
1758 worker->id = id;
1759
29c91e99 1760 if (pool->cpu >= 0)
e3c916a4
TH
1761 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1762 pool->attrs->nice < 0 ? "H" : "");
f3421797 1763 else
e3c916a4
TH
1764 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1765
f3f90ad4 1766 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1767 "kworker/%s", id_buf);
c34056a3
TH
1768 if (IS_ERR(worker->task))
1769 goto fail;
1770
91151228 1771 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1772 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1773
da028469 1774 /* successful, attach the worker to the pool */
4736cbf7 1775 worker_attach_to_pool(worker, pool);
822d8405 1776
051e1850
LJ
1777 /* start the newly created worker */
1778 spin_lock_irq(&pool->lock);
1779 worker->pool->nr_workers++;
1780 worker_enter_idle(worker);
1781 wake_up_process(worker->task);
1782 spin_unlock_irq(&pool->lock);
1783
c34056a3 1784 return worker;
822d8405 1785
c34056a3 1786fail:
9625ab17 1787 if (id >= 0)
7cda9aae 1788 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1789 kfree(worker);
1790 return NULL;
1791}
1792
c34056a3
TH
1793/**
1794 * destroy_worker - destroy a workqueue worker
1795 * @worker: worker to be destroyed
1796 *
73eb7fe7
LJ
1797 * Destroy @worker and adjust @pool stats accordingly. The worker should
1798 * be idle.
c8e55f36
TH
1799 *
1800 * CONTEXT:
60f5a4bc 1801 * spin_lock_irq(pool->lock).
c34056a3
TH
1802 */
1803static void destroy_worker(struct worker *worker)
1804{
bd7bdd43 1805 struct worker_pool *pool = worker->pool;
c34056a3 1806
cd549687
TH
1807 lockdep_assert_held(&pool->lock);
1808
c34056a3 1809 /* sanity check frenzy */
6183c009 1810 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1811 WARN_ON(!list_empty(&worker->scheduled)) ||
1812 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1813 return;
c34056a3 1814
73eb7fe7
LJ
1815 pool->nr_workers--;
1816 pool->nr_idle--;
5bdfff96 1817
c8e55f36 1818 list_del_init(&worker->entry);
cb444766 1819 worker->flags |= WORKER_DIE;
60f5a4bc 1820 wake_up_process(worker->task);
c34056a3
TH
1821}
1822
63d95a91 1823static void idle_worker_timeout(unsigned long __pool)
e22bee78 1824{
63d95a91 1825 struct worker_pool *pool = (void *)__pool;
e22bee78 1826
d565ed63 1827 spin_lock_irq(&pool->lock);
e22bee78 1828
3347fc9f 1829 while (too_many_workers(pool)) {
e22bee78
TH
1830 struct worker *worker;
1831 unsigned long expires;
1832
1833 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1834 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1835 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1836
3347fc9f 1837 if (time_before(jiffies, expires)) {
63d95a91 1838 mod_timer(&pool->idle_timer, expires);
3347fc9f 1839 break;
d5abe669 1840 }
3347fc9f
LJ
1841
1842 destroy_worker(worker);
e22bee78
TH
1843 }
1844
d565ed63 1845 spin_unlock_irq(&pool->lock);
e22bee78 1846}
d5abe669 1847
493a1724 1848static void send_mayday(struct work_struct *work)
e22bee78 1849{
112202d9
TH
1850 struct pool_workqueue *pwq = get_work_pwq(work);
1851 struct workqueue_struct *wq = pwq->wq;
493a1724 1852
2e109a28 1853 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1854
493008a8 1855 if (!wq->rescuer)
493a1724 1856 return;
e22bee78
TH
1857
1858 /* mayday mayday mayday */
493a1724 1859 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1860 /*
1861 * If @pwq is for an unbound wq, its base ref may be put at
1862 * any time due to an attribute change. Pin @pwq until the
1863 * rescuer is done with it.
1864 */
1865 get_pwq(pwq);
493a1724 1866 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1867 wake_up_process(wq->rescuer->task);
493a1724 1868 }
e22bee78
TH
1869}
1870
706026c2 1871static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1872{
63d95a91 1873 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1874 struct work_struct *work;
1875
b2d82909
TH
1876 spin_lock_irq(&pool->lock);
1877 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1878
63d95a91 1879 if (need_to_create_worker(pool)) {
e22bee78
TH
1880 /*
1881 * We've been trying to create a new worker but
1882 * haven't been successful. We might be hitting an
1883 * allocation deadlock. Send distress signals to
1884 * rescuers.
1885 */
63d95a91 1886 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1887 send_mayday(work);
1da177e4 1888 }
e22bee78 1889
b2d82909
TH
1890 spin_unlock(&wq_mayday_lock);
1891 spin_unlock_irq(&pool->lock);
e22bee78 1892
63d95a91 1893 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1894}
1895
e22bee78
TH
1896/**
1897 * maybe_create_worker - create a new worker if necessary
63d95a91 1898 * @pool: pool to create a new worker for
e22bee78 1899 *
63d95a91 1900 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1901 * have at least one idle worker on return from this function. If
1902 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1903 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1904 * possible allocation deadlock.
1905 *
c5aa87bb
TH
1906 * On return, need_to_create_worker() is guaranteed to be %false and
1907 * may_start_working() %true.
e22bee78
TH
1908 *
1909 * LOCKING:
d565ed63 1910 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1911 * multiple times. Does GFP_KERNEL allocations. Called only from
1912 * manager.
e22bee78 1913 */
29187a9e 1914static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1915__releases(&pool->lock)
1916__acquires(&pool->lock)
1da177e4 1917{
e22bee78 1918restart:
d565ed63 1919 spin_unlock_irq(&pool->lock);
9f9c2364 1920
e22bee78 1921 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1922 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1923
1924 while (true) {
051e1850 1925 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1926 break;
1da177e4 1927
e212f361 1928 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1929
63d95a91 1930 if (!need_to_create_worker(pool))
e22bee78
TH
1931 break;
1932 }
1933
63d95a91 1934 del_timer_sync(&pool->mayday_timer);
d565ed63 1935 spin_lock_irq(&pool->lock);
051e1850
LJ
1936 /*
1937 * This is necessary even after a new worker was just successfully
1938 * created as @pool->lock was dropped and the new worker might have
1939 * already become busy.
1940 */
63d95a91 1941 if (need_to_create_worker(pool))
e22bee78 1942 goto restart;
e22bee78
TH
1943}
1944
73f53c4a 1945/**
e22bee78
TH
1946 * manage_workers - manage worker pool
1947 * @worker: self
73f53c4a 1948 *
706026c2 1949 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1950 * to. At any given time, there can be only zero or one manager per
706026c2 1951 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1952 *
1953 * The caller can safely start processing works on false return. On
1954 * true return, it's guaranteed that need_to_create_worker() is false
1955 * and may_start_working() is true.
73f53c4a
TH
1956 *
1957 * CONTEXT:
d565ed63 1958 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1959 * multiple times. Does GFP_KERNEL allocations.
1960 *
d185af30 1961 * Return:
29187a9e
TH
1962 * %false if the pool doesn't need management and the caller can safely
1963 * start processing works, %true if management function was performed and
1964 * the conditions that the caller verified before calling the function may
1965 * no longer be true.
73f53c4a 1966 */
e22bee78 1967static bool manage_workers(struct worker *worker)
73f53c4a 1968{
63d95a91 1969 struct worker_pool *pool = worker->pool;
73f53c4a 1970
bc3a1afc 1971 /*
bc3a1afc
TH
1972 * Anyone who successfully grabs manager_arb wins the arbitration
1973 * and becomes the manager. mutex_trylock() on pool->manager_arb
1974 * failure while holding pool->lock reliably indicates that someone
1975 * else is managing the pool and the worker which failed trylock
1976 * can proceed to executing work items. This means that anyone
1977 * grabbing manager_arb is responsible for actually performing
1978 * manager duties. If manager_arb is grabbed and released without
1979 * actual management, the pool may stall indefinitely.
bc3a1afc 1980 */
34a06bd6 1981 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1982 return false;
2607d7a6 1983 pool->manager = worker;
1e19ffc6 1984
29187a9e 1985 maybe_create_worker(pool);
e22bee78 1986
2607d7a6 1987 pool->manager = NULL;
34a06bd6 1988 mutex_unlock(&pool->manager_arb);
29187a9e 1989 return true;
73f53c4a
TH
1990}
1991
a62428c0
TH
1992/**
1993 * process_one_work - process single work
c34056a3 1994 * @worker: self
a62428c0
TH
1995 * @work: work to process
1996 *
1997 * Process @work. This function contains all the logics necessary to
1998 * process a single work including synchronization against and
1999 * interaction with other workers on the same cpu, queueing and
2000 * flushing. As long as context requirement is met, any worker can
2001 * call this function to process a work.
2002 *
2003 * CONTEXT:
d565ed63 2004 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2005 */
c34056a3 2006static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2007__releases(&pool->lock)
2008__acquires(&pool->lock)
a62428c0 2009{
112202d9 2010 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2011 struct worker_pool *pool = worker->pool;
112202d9 2012 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2013 int work_color;
7e11629d 2014 struct worker *collision;
a62428c0
TH
2015#ifdef CONFIG_LOCKDEP
2016 /*
2017 * It is permissible to free the struct work_struct from
2018 * inside the function that is called from it, this we need to
2019 * take into account for lockdep too. To avoid bogus "held
2020 * lock freed" warnings as well as problems when looking into
2021 * work->lockdep_map, make a copy and use that here.
2022 */
4d82a1de
PZ
2023 struct lockdep_map lockdep_map;
2024
2025 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2026#endif
807407c0 2027 /* ensure we're on the correct CPU */
85327af6 2028 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2029 raw_smp_processor_id() != pool->cpu);
25511a47 2030
7e11629d
TH
2031 /*
2032 * A single work shouldn't be executed concurrently by
2033 * multiple workers on a single cpu. Check whether anyone is
2034 * already processing the work. If so, defer the work to the
2035 * currently executing one.
2036 */
c9e7cf27 2037 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2038 if (unlikely(collision)) {
2039 move_linked_works(work, &collision->scheduled, NULL);
2040 return;
2041 }
2042
8930caba 2043 /* claim and dequeue */
a62428c0 2044 debug_work_deactivate(work);
c9e7cf27 2045 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2046 worker->current_work = work;
a2c1c57b 2047 worker->current_func = work->func;
112202d9 2048 worker->current_pwq = pwq;
73f53c4a 2049 work_color = get_work_color(work);
7a22ad75 2050
a62428c0
TH
2051 list_del_init(&work->entry);
2052
fb0e7beb 2053 /*
228f1d00
LJ
2054 * CPU intensive works don't participate in concurrency management.
2055 * They're the scheduler's responsibility. This takes @worker out
2056 * of concurrency management and the next code block will chain
2057 * execution of the pending work items.
fb0e7beb
TH
2058 */
2059 if (unlikely(cpu_intensive))
228f1d00 2060 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2061
974271c4 2062 /*
a489a03e
LJ
2063 * Wake up another worker if necessary. The condition is always
2064 * false for normal per-cpu workers since nr_running would always
2065 * be >= 1 at this point. This is used to chain execution of the
2066 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2067 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2068 */
a489a03e 2069 if (need_more_worker(pool))
63d95a91 2070 wake_up_worker(pool);
974271c4 2071
8930caba 2072 /*
7c3eed5c 2073 * Record the last pool and clear PENDING which should be the last
d565ed63 2074 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2075 * PENDING and queued state changes happen together while IRQ is
2076 * disabled.
8930caba 2077 */
7c3eed5c 2078 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2079
d565ed63 2080 spin_unlock_irq(&pool->lock);
a62428c0 2081
112202d9 2082 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2083 lock_map_acquire(&lockdep_map);
e36c886a 2084 trace_workqueue_execute_start(work);
a2c1c57b 2085 worker->current_func(work);
e36c886a
AV
2086 /*
2087 * While we must be careful to not use "work" after this, the trace
2088 * point will only record its address.
2089 */
2090 trace_workqueue_execute_end(work);
a62428c0 2091 lock_map_release(&lockdep_map);
112202d9 2092 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2093
2094 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2095 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2096 " last function: %pf\n",
a2c1c57b
TH
2097 current->comm, preempt_count(), task_pid_nr(current),
2098 worker->current_func);
a62428c0
TH
2099 debug_show_held_locks(current);
2100 dump_stack();
2101 }
2102
b22ce278
TH
2103 /*
2104 * The following prevents a kworker from hogging CPU on !PREEMPT
2105 * kernels, where a requeueing work item waiting for something to
2106 * happen could deadlock with stop_machine as such work item could
2107 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2108 * stop_machine. At the same time, report a quiescent RCU state so
2109 * the same condition doesn't freeze RCU.
b22ce278 2110 */
3e28e377 2111 cond_resched_rcu_qs();
b22ce278 2112
d565ed63 2113 spin_lock_irq(&pool->lock);
a62428c0 2114
fb0e7beb
TH
2115 /* clear cpu intensive status */
2116 if (unlikely(cpu_intensive))
2117 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2118
a62428c0 2119 /* we're done with it, release */
42f8570f 2120 hash_del(&worker->hentry);
c34056a3 2121 worker->current_work = NULL;
a2c1c57b 2122 worker->current_func = NULL;
112202d9 2123 worker->current_pwq = NULL;
3d1cb205 2124 worker->desc_valid = false;
112202d9 2125 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2126}
2127
affee4b2
TH
2128/**
2129 * process_scheduled_works - process scheduled works
2130 * @worker: self
2131 *
2132 * Process all scheduled works. Please note that the scheduled list
2133 * may change while processing a work, so this function repeatedly
2134 * fetches a work from the top and executes it.
2135 *
2136 * CONTEXT:
d565ed63 2137 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2138 * multiple times.
2139 */
2140static void process_scheduled_works(struct worker *worker)
1da177e4 2141{
affee4b2
TH
2142 while (!list_empty(&worker->scheduled)) {
2143 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2144 struct work_struct, entry);
c34056a3 2145 process_one_work(worker, work);
1da177e4 2146 }
1da177e4
LT
2147}
2148
4690c4ab
TH
2149/**
2150 * worker_thread - the worker thread function
c34056a3 2151 * @__worker: self
4690c4ab 2152 *
c5aa87bb
TH
2153 * The worker thread function. All workers belong to a worker_pool -
2154 * either a per-cpu one or dynamic unbound one. These workers process all
2155 * work items regardless of their specific target workqueue. The only
2156 * exception is work items which belong to workqueues with a rescuer which
2157 * will be explained in rescuer_thread().
d185af30
YB
2158 *
2159 * Return: 0
4690c4ab 2160 */
c34056a3 2161static int worker_thread(void *__worker)
1da177e4 2162{
c34056a3 2163 struct worker *worker = __worker;
bd7bdd43 2164 struct worker_pool *pool = worker->pool;
1da177e4 2165
e22bee78
TH
2166 /* tell the scheduler that this is a workqueue worker */
2167 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2168woke_up:
d565ed63 2169 spin_lock_irq(&pool->lock);
1da177e4 2170
a9ab775b
TH
2171 /* am I supposed to die? */
2172 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2173 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2174 WARN_ON_ONCE(!list_empty(&worker->entry));
2175 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2176
2177 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2178 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2179 worker_detach_from_pool(worker, pool);
2180 kfree(worker);
a9ab775b 2181 return 0;
c8e55f36 2182 }
affee4b2 2183
c8e55f36 2184 worker_leave_idle(worker);
db7bccf4 2185recheck:
e22bee78 2186 /* no more worker necessary? */
63d95a91 2187 if (!need_more_worker(pool))
e22bee78
TH
2188 goto sleep;
2189
2190 /* do we need to manage? */
63d95a91 2191 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2192 goto recheck;
2193
c8e55f36
TH
2194 /*
2195 * ->scheduled list can only be filled while a worker is
2196 * preparing to process a work or actually processing it.
2197 * Make sure nobody diddled with it while I was sleeping.
2198 */
6183c009 2199 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2200
e22bee78 2201 /*
a9ab775b
TH
2202 * Finish PREP stage. We're guaranteed to have at least one idle
2203 * worker or that someone else has already assumed the manager
2204 * role. This is where @worker starts participating in concurrency
2205 * management if applicable and concurrency management is restored
2206 * after being rebound. See rebind_workers() for details.
e22bee78 2207 */
a9ab775b 2208 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2209
2210 do {
c8e55f36 2211 struct work_struct *work =
bd7bdd43 2212 list_first_entry(&pool->worklist,
c8e55f36
TH
2213 struct work_struct, entry);
2214
82607adc
TH
2215 pool->watchdog_ts = jiffies;
2216
c8e55f36
TH
2217 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2218 /* optimization path, not strictly necessary */
2219 process_one_work(worker, work);
2220 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2221 process_scheduled_works(worker);
c8e55f36
TH
2222 } else {
2223 move_linked_works(work, &worker->scheduled, NULL);
2224 process_scheduled_works(worker);
affee4b2 2225 }
63d95a91 2226 } while (keep_working(pool));
e22bee78 2227
228f1d00 2228 worker_set_flags(worker, WORKER_PREP);
d313dd85 2229sleep:
c8e55f36 2230 /*
d565ed63
TH
2231 * pool->lock is held and there's no work to process and no need to
2232 * manage, sleep. Workers are woken up only while holding
2233 * pool->lock or from local cpu, so setting the current state
2234 * before releasing pool->lock is enough to prevent losing any
2235 * event.
c8e55f36
TH
2236 */
2237 worker_enter_idle(worker);
2238 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2239 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2240 schedule();
2241 goto woke_up;
1da177e4
LT
2242}
2243
e22bee78
TH
2244/**
2245 * rescuer_thread - the rescuer thread function
111c225a 2246 * @__rescuer: self
e22bee78
TH
2247 *
2248 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2249 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2250 *
706026c2 2251 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2252 * worker which uses GFP_KERNEL allocation which has slight chance of
2253 * developing into deadlock if some works currently on the same queue
2254 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2255 * the problem rescuer solves.
2256 *
706026c2
TH
2257 * When such condition is possible, the pool summons rescuers of all
2258 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2259 * those works so that forward progress can be guaranteed.
2260 *
2261 * This should happen rarely.
d185af30
YB
2262 *
2263 * Return: 0
e22bee78 2264 */
111c225a 2265static int rescuer_thread(void *__rescuer)
e22bee78 2266{
111c225a
TH
2267 struct worker *rescuer = __rescuer;
2268 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2269 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2270 bool should_stop;
e22bee78
TH
2271
2272 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2273
2274 /*
2275 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2276 * doesn't participate in concurrency management.
2277 */
2278 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2279repeat:
2280 set_current_state(TASK_INTERRUPTIBLE);
2281
4d595b86
LJ
2282 /*
2283 * By the time the rescuer is requested to stop, the workqueue
2284 * shouldn't have any work pending, but @wq->maydays may still have
2285 * pwq(s) queued. This can happen by non-rescuer workers consuming
2286 * all the work items before the rescuer got to them. Go through
2287 * @wq->maydays processing before acting on should_stop so that the
2288 * list is always empty on exit.
2289 */
2290 should_stop = kthread_should_stop();
e22bee78 2291
493a1724 2292 /* see whether any pwq is asking for help */
2e109a28 2293 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2294
2295 while (!list_empty(&wq->maydays)) {
2296 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2297 struct pool_workqueue, mayday_node);
112202d9 2298 struct worker_pool *pool = pwq->pool;
e22bee78 2299 struct work_struct *work, *n;
82607adc 2300 bool first = true;
e22bee78
TH
2301
2302 __set_current_state(TASK_RUNNING);
493a1724
TH
2303 list_del_init(&pwq->mayday_node);
2304
2e109a28 2305 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2306
51697d39
LJ
2307 worker_attach_to_pool(rescuer, pool);
2308
2309 spin_lock_irq(&pool->lock);
b3104104 2310 rescuer->pool = pool;
e22bee78
TH
2311
2312 /*
2313 * Slurp in all works issued via this workqueue and
2314 * process'em.
2315 */
0479c8c5 2316 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2317 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2318 if (get_work_pwq(work) == pwq) {
2319 if (first)
2320 pool->watchdog_ts = jiffies;
e22bee78 2321 move_linked_works(work, scheduled, &n);
82607adc
TH
2322 }
2323 first = false;
2324 }
e22bee78 2325
008847f6
N
2326 if (!list_empty(scheduled)) {
2327 process_scheduled_works(rescuer);
2328
2329 /*
2330 * The above execution of rescued work items could
2331 * have created more to rescue through
2332 * pwq_activate_first_delayed() or chained
2333 * queueing. Let's put @pwq back on mayday list so
2334 * that such back-to-back work items, which may be
2335 * being used to relieve memory pressure, don't
2336 * incur MAYDAY_INTERVAL delay inbetween.
2337 */
2338 if (need_to_create_worker(pool)) {
2339 spin_lock(&wq_mayday_lock);
2340 get_pwq(pwq);
2341 list_move_tail(&pwq->mayday_node, &wq->maydays);
2342 spin_unlock(&wq_mayday_lock);
2343 }
2344 }
7576958a 2345
77668c8b
LJ
2346 /*
2347 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2348 * go away while we're still attached to it.
77668c8b
LJ
2349 */
2350 put_pwq(pwq);
2351
7576958a 2352 /*
d8ca83e6 2353 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2354 * regular worker; otherwise, we end up with 0 concurrency
2355 * and stalling the execution.
2356 */
d8ca83e6 2357 if (need_more_worker(pool))
63d95a91 2358 wake_up_worker(pool);
7576958a 2359
b3104104 2360 rescuer->pool = NULL;
13b1d625
LJ
2361 spin_unlock_irq(&pool->lock);
2362
2363 worker_detach_from_pool(rescuer, pool);
2364
2365 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2366 }
2367
2e109a28 2368 spin_unlock_irq(&wq_mayday_lock);
493a1724 2369
4d595b86
LJ
2370 if (should_stop) {
2371 __set_current_state(TASK_RUNNING);
2372 rescuer->task->flags &= ~PF_WQ_WORKER;
2373 return 0;
2374 }
2375
111c225a
TH
2376 /* rescuers should never participate in concurrency management */
2377 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2378 schedule();
2379 goto repeat;
1da177e4
LT
2380}
2381
fca839c0
TH
2382/**
2383 * check_flush_dependency - check for flush dependency sanity
2384 * @target_wq: workqueue being flushed
2385 * @target_work: work item being flushed (NULL for workqueue flushes)
2386 *
2387 * %current is trying to flush the whole @target_wq or @target_work on it.
2388 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2389 * reclaiming memory or running on a workqueue which doesn't have
2390 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2391 * a deadlock.
2392 */
2393static void check_flush_dependency(struct workqueue_struct *target_wq,
2394 struct work_struct *target_work)
2395{
2396 work_func_t target_func = target_work ? target_work->func : NULL;
2397 struct worker *worker;
2398
2399 if (target_wq->flags & WQ_MEM_RECLAIM)
2400 return;
2401
2402 worker = current_wq_worker();
2403
2404 WARN_ONCE(current->flags & PF_MEMALLOC,
2405 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2406 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2407 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2408 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2409 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2410 worker->current_pwq->wq->name, worker->current_func,
2411 target_wq->name, target_func);
2412}
2413
fc2e4d70
ON
2414struct wq_barrier {
2415 struct work_struct work;
2416 struct completion done;
2607d7a6 2417 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2418};
2419
2420static void wq_barrier_func(struct work_struct *work)
2421{
2422 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2423 complete(&barr->done);
2424}
2425
4690c4ab
TH
2426/**
2427 * insert_wq_barrier - insert a barrier work
112202d9 2428 * @pwq: pwq to insert barrier into
4690c4ab 2429 * @barr: wq_barrier to insert
affee4b2
TH
2430 * @target: target work to attach @barr to
2431 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2432 *
affee4b2
TH
2433 * @barr is linked to @target such that @barr is completed only after
2434 * @target finishes execution. Please note that the ordering
2435 * guarantee is observed only with respect to @target and on the local
2436 * cpu.
2437 *
2438 * Currently, a queued barrier can't be canceled. This is because
2439 * try_to_grab_pending() can't determine whether the work to be
2440 * grabbed is at the head of the queue and thus can't clear LINKED
2441 * flag of the previous work while there must be a valid next work
2442 * after a work with LINKED flag set.
2443 *
2444 * Note that when @worker is non-NULL, @target may be modified
112202d9 2445 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2446 *
2447 * CONTEXT:
d565ed63 2448 * spin_lock_irq(pool->lock).
4690c4ab 2449 */
112202d9 2450static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2451 struct wq_barrier *barr,
2452 struct work_struct *target, struct worker *worker)
fc2e4d70 2453{
affee4b2
TH
2454 struct list_head *head;
2455 unsigned int linked = 0;
2456
dc186ad7 2457 /*
d565ed63 2458 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2459 * as we know for sure that this will not trigger any of the
2460 * checks and call back into the fixup functions where we
2461 * might deadlock.
2462 */
ca1cab37 2463 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2464 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2465 init_completion(&barr->done);
2607d7a6 2466 barr->task = current;
83c22520 2467
affee4b2
TH
2468 /*
2469 * If @target is currently being executed, schedule the
2470 * barrier to the worker; otherwise, put it after @target.
2471 */
2472 if (worker)
2473 head = worker->scheduled.next;
2474 else {
2475 unsigned long *bits = work_data_bits(target);
2476
2477 head = target->entry.next;
2478 /* there can already be other linked works, inherit and set */
2479 linked = *bits & WORK_STRUCT_LINKED;
2480 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2481 }
2482
dc186ad7 2483 debug_work_activate(&barr->work);
112202d9 2484 insert_work(pwq, &barr->work, head,
affee4b2 2485 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2486}
2487
73f53c4a 2488/**
112202d9 2489 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2490 * @wq: workqueue being flushed
2491 * @flush_color: new flush color, < 0 for no-op
2492 * @work_color: new work color, < 0 for no-op
2493 *
112202d9 2494 * Prepare pwqs for workqueue flushing.
73f53c4a 2495 *
112202d9
TH
2496 * If @flush_color is non-negative, flush_color on all pwqs should be
2497 * -1. If no pwq has in-flight commands at the specified color, all
2498 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2499 * has in flight commands, its pwq->flush_color is set to
2500 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2501 * wakeup logic is armed and %true is returned.
2502 *
2503 * The caller should have initialized @wq->first_flusher prior to
2504 * calling this function with non-negative @flush_color. If
2505 * @flush_color is negative, no flush color update is done and %false
2506 * is returned.
2507 *
112202d9 2508 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2509 * work_color which is previous to @work_color and all will be
2510 * advanced to @work_color.
2511 *
2512 * CONTEXT:
3c25a55d 2513 * mutex_lock(wq->mutex).
73f53c4a 2514 *
d185af30 2515 * Return:
73f53c4a
TH
2516 * %true if @flush_color >= 0 and there's something to flush. %false
2517 * otherwise.
2518 */
112202d9 2519static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2520 int flush_color, int work_color)
1da177e4 2521{
73f53c4a 2522 bool wait = false;
49e3cf44 2523 struct pool_workqueue *pwq;
1da177e4 2524
73f53c4a 2525 if (flush_color >= 0) {
6183c009 2526 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2527 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2528 }
2355b70f 2529
49e3cf44 2530 for_each_pwq(pwq, wq) {
112202d9 2531 struct worker_pool *pool = pwq->pool;
fc2e4d70 2532
b09f4fd3 2533 spin_lock_irq(&pool->lock);
83c22520 2534
73f53c4a 2535 if (flush_color >= 0) {
6183c009 2536 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2537
112202d9
TH
2538 if (pwq->nr_in_flight[flush_color]) {
2539 pwq->flush_color = flush_color;
2540 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2541 wait = true;
2542 }
2543 }
1da177e4 2544
73f53c4a 2545 if (work_color >= 0) {
6183c009 2546 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2547 pwq->work_color = work_color;
73f53c4a 2548 }
1da177e4 2549
b09f4fd3 2550 spin_unlock_irq(&pool->lock);
1da177e4 2551 }
2355b70f 2552
112202d9 2553 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2554 complete(&wq->first_flusher->done);
14441960 2555
73f53c4a 2556 return wait;
1da177e4
LT
2557}
2558
0fcb78c2 2559/**
1da177e4 2560 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2561 * @wq: workqueue to flush
1da177e4 2562 *
c5aa87bb
TH
2563 * This function sleeps until all work items which were queued on entry
2564 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2565 */
7ad5b3a5 2566void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2567{
73f53c4a
TH
2568 struct wq_flusher this_flusher = {
2569 .list = LIST_HEAD_INIT(this_flusher.list),
2570 .flush_color = -1,
2571 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2572 };
2573 int next_color;
1da177e4 2574
3295f0ef
IM
2575 lock_map_acquire(&wq->lockdep_map);
2576 lock_map_release(&wq->lockdep_map);
73f53c4a 2577
3c25a55d 2578 mutex_lock(&wq->mutex);
73f53c4a
TH
2579
2580 /*
2581 * Start-to-wait phase
2582 */
2583 next_color = work_next_color(wq->work_color);
2584
2585 if (next_color != wq->flush_color) {
2586 /*
2587 * Color space is not full. The current work_color
2588 * becomes our flush_color and work_color is advanced
2589 * by one.
2590 */
6183c009 2591 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2592 this_flusher.flush_color = wq->work_color;
2593 wq->work_color = next_color;
2594
2595 if (!wq->first_flusher) {
2596 /* no flush in progress, become the first flusher */
6183c009 2597 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2598
2599 wq->first_flusher = &this_flusher;
2600
112202d9 2601 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2602 wq->work_color)) {
2603 /* nothing to flush, done */
2604 wq->flush_color = next_color;
2605 wq->first_flusher = NULL;
2606 goto out_unlock;
2607 }
2608 } else {
2609 /* wait in queue */
6183c009 2610 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2611 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2612 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2613 }
2614 } else {
2615 /*
2616 * Oops, color space is full, wait on overflow queue.
2617 * The next flush completion will assign us
2618 * flush_color and transfer to flusher_queue.
2619 */
2620 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2621 }
2622
fca839c0
TH
2623 check_flush_dependency(wq, NULL);
2624
3c25a55d 2625 mutex_unlock(&wq->mutex);
73f53c4a
TH
2626
2627 wait_for_completion(&this_flusher.done);
2628
2629 /*
2630 * Wake-up-and-cascade phase
2631 *
2632 * First flushers are responsible for cascading flushes and
2633 * handling overflow. Non-first flushers can simply return.
2634 */
2635 if (wq->first_flusher != &this_flusher)
2636 return;
2637
3c25a55d 2638 mutex_lock(&wq->mutex);
73f53c4a 2639
4ce48b37
TH
2640 /* we might have raced, check again with mutex held */
2641 if (wq->first_flusher != &this_flusher)
2642 goto out_unlock;
2643
73f53c4a
TH
2644 wq->first_flusher = NULL;
2645
6183c009
TH
2646 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2647 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2648
2649 while (true) {
2650 struct wq_flusher *next, *tmp;
2651
2652 /* complete all the flushers sharing the current flush color */
2653 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2654 if (next->flush_color != wq->flush_color)
2655 break;
2656 list_del_init(&next->list);
2657 complete(&next->done);
2658 }
2659
6183c009
TH
2660 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2661 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2662
2663 /* this flush_color is finished, advance by one */
2664 wq->flush_color = work_next_color(wq->flush_color);
2665
2666 /* one color has been freed, handle overflow queue */
2667 if (!list_empty(&wq->flusher_overflow)) {
2668 /*
2669 * Assign the same color to all overflowed
2670 * flushers, advance work_color and append to
2671 * flusher_queue. This is the start-to-wait
2672 * phase for these overflowed flushers.
2673 */
2674 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2675 tmp->flush_color = wq->work_color;
2676
2677 wq->work_color = work_next_color(wq->work_color);
2678
2679 list_splice_tail_init(&wq->flusher_overflow,
2680 &wq->flusher_queue);
112202d9 2681 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2682 }
2683
2684 if (list_empty(&wq->flusher_queue)) {
6183c009 2685 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2686 break;
2687 }
2688
2689 /*
2690 * Need to flush more colors. Make the next flusher
112202d9 2691 * the new first flusher and arm pwqs.
73f53c4a 2692 */
6183c009
TH
2693 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2694 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2695
2696 list_del_init(&next->list);
2697 wq->first_flusher = next;
2698
112202d9 2699 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2700 break;
2701
2702 /*
2703 * Meh... this color is already done, clear first
2704 * flusher and repeat cascading.
2705 */
2706 wq->first_flusher = NULL;
2707 }
2708
2709out_unlock:
3c25a55d 2710 mutex_unlock(&wq->mutex);
1da177e4 2711}
1dadafa8 2712EXPORT_SYMBOL(flush_workqueue);
1da177e4 2713
9c5a2ba7
TH
2714/**
2715 * drain_workqueue - drain a workqueue
2716 * @wq: workqueue to drain
2717 *
2718 * Wait until the workqueue becomes empty. While draining is in progress,
2719 * only chain queueing is allowed. IOW, only currently pending or running
2720 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2721 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2722 * by the depth of chaining and should be relatively short. Whine if it
2723 * takes too long.
2724 */
2725void drain_workqueue(struct workqueue_struct *wq)
2726{
2727 unsigned int flush_cnt = 0;
49e3cf44 2728 struct pool_workqueue *pwq;
9c5a2ba7
TH
2729
2730 /*
2731 * __queue_work() needs to test whether there are drainers, is much
2732 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2733 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2734 */
87fc741e 2735 mutex_lock(&wq->mutex);
9c5a2ba7 2736 if (!wq->nr_drainers++)
618b01eb 2737 wq->flags |= __WQ_DRAINING;
87fc741e 2738 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2739reflush:
2740 flush_workqueue(wq);
2741
b09f4fd3 2742 mutex_lock(&wq->mutex);
76af4d93 2743
49e3cf44 2744 for_each_pwq(pwq, wq) {
fa2563e4 2745 bool drained;
9c5a2ba7 2746
b09f4fd3 2747 spin_lock_irq(&pwq->pool->lock);
112202d9 2748 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2749 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2750
2751 if (drained)
9c5a2ba7
TH
2752 continue;
2753
2754 if (++flush_cnt == 10 ||
2755 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2756 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2757 wq->name, flush_cnt);
76af4d93 2758
b09f4fd3 2759 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2760 goto reflush;
2761 }
2762
9c5a2ba7 2763 if (!--wq->nr_drainers)
618b01eb 2764 wq->flags &= ~__WQ_DRAINING;
87fc741e 2765 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2766}
2767EXPORT_SYMBOL_GPL(drain_workqueue);
2768
606a5020 2769static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2770{
affee4b2 2771 struct worker *worker = NULL;
c9e7cf27 2772 struct worker_pool *pool;
112202d9 2773 struct pool_workqueue *pwq;
db700897
ON
2774
2775 might_sleep();
fa1b54e6
TH
2776
2777 local_irq_disable();
c9e7cf27 2778 pool = get_work_pool(work);
fa1b54e6
TH
2779 if (!pool) {
2780 local_irq_enable();
baf59022 2781 return false;
fa1b54e6 2782 }
db700897 2783
fa1b54e6 2784 spin_lock(&pool->lock);
0b3dae68 2785 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2786 pwq = get_work_pwq(work);
2787 if (pwq) {
2788 if (unlikely(pwq->pool != pool))
4690c4ab 2789 goto already_gone;
606a5020 2790 } else {
c9e7cf27 2791 worker = find_worker_executing_work(pool, work);
affee4b2 2792 if (!worker)
4690c4ab 2793 goto already_gone;
112202d9 2794 pwq = worker->current_pwq;
606a5020 2795 }
db700897 2796
fca839c0
TH
2797 check_flush_dependency(pwq->wq, work);
2798
112202d9 2799 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2800 spin_unlock_irq(&pool->lock);
7a22ad75 2801
e159489b
TH
2802 /*
2803 * If @max_active is 1 or rescuer is in use, flushing another work
2804 * item on the same workqueue may lead to deadlock. Make sure the
2805 * flusher is not running on the same workqueue by verifying write
2806 * access.
2807 */
493008a8 2808 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2809 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2810 else
112202d9
TH
2811 lock_map_acquire_read(&pwq->wq->lockdep_map);
2812 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2813
401a8d04 2814 return true;
4690c4ab 2815already_gone:
d565ed63 2816 spin_unlock_irq(&pool->lock);
401a8d04 2817 return false;
db700897 2818}
baf59022
TH
2819
2820/**
2821 * flush_work - wait for a work to finish executing the last queueing instance
2822 * @work: the work to flush
2823 *
606a5020
TH
2824 * Wait until @work has finished execution. @work is guaranteed to be idle
2825 * on return if it hasn't been requeued since flush started.
baf59022 2826 *
d185af30 2827 * Return:
baf59022
TH
2828 * %true if flush_work() waited for the work to finish execution,
2829 * %false if it was already idle.
2830 */
2831bool flush_work(struct work_struct *work)
2832{
12997d1a
BH
2833 struct wq_barrier barr;
2834
0976dfc1
SB
2835 lock_map_acquire(&work->lockdep_map);
2836 lock_map_release(&work->lockdep_map);
2837
12997d1a
BH
2838 if (start_flush_work(work, &barr)) {
2839 wait_for_completion(&barr.done);
2840 destroy_work_on_stack(&barr.work);
2841 return true;
2842 } else {
2843 return false;
2844 }
6e84d644 2845}
606a5020 2846EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2847
8603e1b3
TH
2848struct cwt_wait {
2849 wait_queue_t wait;
2850 struct work_struct *work;
2851};
2852
2853static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2854{
2855 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2856
2857 if (cwait->work != key)
2858 return 0;
2859 return autoremove_wake_function(wait, mode, sync, key);
2860}
2861
36e227d2 2862static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2863{
8603e1b3 2864 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2865 unsigned long flags;
1f1f642e
ON
2866 int ret;
2867
2868 do {
bbb68dfa
TH
2869 ret = try_to_grab_pending(work, is_dwork, &flags);
2870 /*
8603e1b3
TH
2871 * If someone else is already canceling, wait for it to
2872 * finish. flush_work() doesn't work for PREEMPT_NONE
2873 * because we may get scheduled between @work's completion
2874 * and the other canceling task resuming and clearing
2875 * CANCELING - flush_work() will return false immediately
2876 * as @work is no longer busy, try_to_grab_pending() will
2877 * return -ENOENT as @work is still being canceled and the
2878 * other canceling task won't be able to clear CANCELING as
2879 * we're hogging the CPU.
2880 *
2881 * Let's wait for completion using a waitqueue. As this
2882 * may lead to the thundering herd problem, use a custom
2883 * wake function which matches @work along with exclusive
2884 * wait and wakeup.
bbb68dfa 2885 */
8603e1b3
TH
2886 if (unlikely(ret == -ENOENT)) {
2887 struct cwt_wait cwait;
2888
2889 init_wait(&cwait.wait);
2890 cwait.wait.func = cwt_wakefn;
2891 cwait.work = work;
2892
2893 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2894 TASK_UNINTERRUPTIBLE);
2895 if (work_is_canceling(work))
2896 schedule();
2897 finish_wait(&cancel_waitq, &cwait.wait);
2898 }
1f1f642e
ON
2899 } while (unlikely(ret < 0));
2900
bbb68dfa
TH
2901 /* tell other tasks trying to grab @work to back off */
2902 mark_work_canceling(work);
2903 local_irq_restore(flags);
2904
606a5020 2905 flush_work(work);
7a22ad75 2906 clear_work_data(work);
8603e1b3
TH
2907
2908 /*
2909 * Paired with prepare_to_wait() above so that either
2910 * waitqueue_active() is visible here or !work_is_canceling() is
2911 * visible there.
2912 */
2913 smp_mb();
2914 if (waitqueue_active(&cancel_waitq))
2915 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2916
1f1f642e
ON
2917 return ret;
2918}
2919
6e84d644 2920/**
401a8d04
TH
2921 * cancel_work_sync - cancel a work and wait for it to finish
2922 * @work: the work to cancel
6e84d644 2923 *
401a8d04
TH
2924 * Cancel @work and wait for its execution to finish. This function
2925 * can be used even if the work re-queues itself or migrates to
2926 * another workqueue. On return from this function, @work is
2927 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2928 *
401a8d04
TH
2929 * cancel_work_sync(&delayed_work->work) must not be used for
2930 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2931 *
401a8d04 2932 * The caller must ensure that the workqueue on which @work was last
6e84d644 2933 * queued can't be destroyed before this function returns.
401a8d04 2934 *
d185af30 2935 * Return:
401a8d04 2936 * %true if @work was pending, %false otherwise.
6e84d644 2937 */
401a8d04 2938bool cancel_work_sync(struct work_struct *work)
6e84d644 2939{
36e227d2 2940 return __cancel_work_timer(work, false);
b89deed3 2941}
28e53bdd 2942EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2943
6e84d644 2944/**
401a8d04
TH
2945 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2946 * @dwork: the delayed work to flush
6e84d644 2947 *
401a8d04
TH
2948 * Delayed timer is cancelled and the pending work is queued for
2949 * immediate execution. Like flush_work(), this function only
2950 * considers the last queueing instance of @dwork.
1f1f642e 2951 *
d185af30 2952 * Return:
401a8d04
TH
2953 * %true if flush_work() waited for the work to finish execution,
2954 * %false if it was already idle.
6e84d644 2955 */
401a8d04
TH
2956bool flush_delayed_work(struct delayed_work *dwork)
2957{
8930caba 2958 local_irq_disable();
401a8d04 2959 if (del_timer_sync(&dwork->timer))
60c057bc 2960 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2961 local_irq_enable();
401a8d04
TH
2962 return flush_work(&dwork->work);
2963}
2964EXPORT_SYMBOL(flush_delayed_work);
2965
09383498 2966/**
57b30ae7
TH
2967 * cancel_delayed_work - cancel a delayed work
2968 * @dwork: delayed_work to cancel
09383498 2969 *
d185af30
YB
2970 * Kill off a pending delayed_work.
2971 *
2972 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2973 * pending.
2974 *
2975 * Note:
2976 * The work callback function may still be running on return, unless
2977 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2978 * use cancel_delayed_work_sync() to wait on it.
09383498 2979 *
57b30ae7 2980 * This function is safe to call from any context including IRQ handler.
09383498 2981 */
57b30ae7 2982bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2983{
57b30ae7
TH
2984 unsigned long flags;
2985 int ret;
2986
2987 do {
2988 ret = try_to_grab_pending(&dwork->work, true, &flags);
2989 } while (unlikely(ret == -EAGAIN));
2990
2991 if (unlikely(ret < 0))
2992 return false;
2993
7c3eed5c
TH
2994 set_work_pool_and_clear_pending(&dwork->work,
2995 get_work_pool_id(&dwork->work));
57b30ae7 2996 local_irq_restore(flags);
c0158ca6 2997 return ret;
09383498 2998}
57b30ae7 2999EXPORT_SYMBOL(cancel_delayed_work);
09383498 3000
401a8d04
TH
3001/**
3002 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003 * @dwork: the delayed work cancel
3004 *
3005 * This is cancel_work_sync() for delayed works.
3006 *
d185af30 3007 * Return:
401a8d04
TH
3008 * %true if @dwork was pending, %false otherwise.
3009 */
3010bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3011{
36e227d2 3012 return __cancel_work_timer(&dwork->work, true);
6e84d644 3013}
f5a421a4 3014EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3015
b6136773 3016/**
31ddd871 3017 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3018 * @func: the function to call
b6136773 3019 *
31ddd871
TH
3020 * schedule_on_each_cpu() executes @func on each online CPU using the
3021 * system workqueue and blocks until all CPUs have completed.
b6136773 3022 * schedule_on_each_cpu() is very slow.
31ddd871 3023 *
d185af30 3024 * Return:
31ddd871 3025 * 0 on success, -errno on failure.
b6136773 3026 */
65f27f38 3027int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3028{
3029 int cpu;
38f51568 3030 struct work_struct __percpu *works;
15316ba8 3031
b6136773
AM
3032 works = alloc_percpu(struct work_struct);
3033 if (!works)
15316ba8 3034 return -ENOMEM;
b6136773 3035
93981800
TH
3036 get_online_cpus();
3037
15316ba8 3038 for_each_online_cpu(cpu) {
9bfb1839
IM
3039 struct work_struct *work = per_cpu_ptr(works, cpu);
3040
3041 INIT_WORK(work, func);
b71ab8c2 3042 schedule_work_on(cpu, work);
65a64464 3043 }
93981800
TH
3044
3045 for_each_online_cpu(cpu)
3046 flush_work(per_cpu_ptr(works, cpu));
3047
95402b38 3048 put_online_cpus();
b6136773 3049 free_percpu(works);
15316ba8
CL
3050 return 0;
3051}
3052
1fa44eca
JB
3053/**
3054 * execute_in_process_context - reliably execute the routine with user context
3055 * @fn: the function to execute
1fa44eca
JB
3056 * @ew: guaranteed storage for the execute work structure (must
3057 * be available when the work executes)
3058 *
3059 * Executes the function immediately if process context is available,
3060 * otherwise schedules the function for delayed execution.
3061 *
d185af30 3062 * Return: 0 - function was executed
1fa44eca
JB
3063 * 1 - function was scheduled for execution
3064 */
65f27f38 3065int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3066{
3067 if (!in_interrupt()) {
65f27f38 3068 fn(&ew->work);
1fa44eca
JB
3069 return 0;
3070 }
3071
65f27f38 3072 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3073 schedule_work(&ew->work);
3074
3075 return 1;
3076}
3077EXPORT_SYMBOL_GPL(execute_in_process_context);
3078
6ba94429
FW
3079/**
3080 * free_workqueue_attrs - free a workqueue_attrs
3081 * @attrs: workqueue_attrs to free
226223ab 3082 *
6ba94429 3083 * Undo alloc_workqueue_attrs().
226223ab 3084 */
6ba94429 3085void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3086{
6ba94429
FW
3087 if (attrs) {
3088 free_cpumask_var(attrs->cpumask);
3089 kfree(attrs);
3090 }
226223ab
TH
3091}
3092
6ba94429
FW
3093/**
3094 * alloc_workqueue_attrs - allocate a workqueue_attrs
3095 * @gfp_mask: allocation mask to use
3096 *
3097 * Allocate a new workqueue_attrs, initialize with default settings and
3098 * return it.
3099 *
3100 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3101 */
3102struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3103{
6ba94429 3104 struct workqueue_attrs *attrs;
226223ab 3105
6ba94429
FW
3106 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3107 if (!attrs)
3108 goto fail;
3109 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3110 goto fail;
3111
3112 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3113 return attrs;
3114fail:
3115 free_workqueue_attrs(attrs);
3116 return NULL;
226223ab
TH
3117}
3118
6ba94429
FW
3119static void copy_workqueue_attrs(struct workqueue_attrs *to,
3120 const struct workqueue_attrs *from)
226223ab 3121{
6ba94429
FW
3122 to->nice = from->nice;
3123 cpumask_copy(to->cpumask, from->cpumask);
3124 /*
3125 * Unlike hash and equality test, this function doesn't ignore
3126 * ->no_numa as it is used for both pool and wq attrs. Instead,
3127 * get_unbound_pool() explicitly clears ->no_numa after copying.
3128 */
3129 to->no_numa = from->no_numa;
226223ab
TH
3130}
3131
6ba94429
FW
3132/* hash value of the content of @attr */
3133static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3134{
6ba94429 3135 u32 hash = 0;
226223ab 3136
6ba94429
FW
3137 hash = jhash_1word(attrs->nice, hash);
3138 hash = jhash(cpumask_bits(attrs->cpumask),
3139 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3140 return hash;
226223ab 3141}
226223ab 3142
6ba94429
FW
3143/* content equality test */
3144static bool wqattrs_equal(const struct workqueue_attrs *a,
3145 const struct workqueue_attrs *b)
226223ab 3146{
6ba94429
FW
3147 if (a->nice != b->nice)
3148 return false;
3149 if (!cpumask_equal(a->cpumask, b->cpumask))
3150 return false;
3151 return true;
226223ab
TH
3152}
3153
6ba94429
FW
3154/**
3155 * init_worker_pool - initialize a newly zalloc'd worker_pool
3156 * @pool: worker_pool to initialize
3157 *
402dd89d 3158 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3159 *
3160 * Return: 0 on success, -errno on failure. Even on failure, all fields
3161 * inside @pool proper are initialized and put_unbound_pool() can be called
3162 * on @pool safely to release it.
3163 */
3164static int init_worker_pool(struct worker_pool *pool)
226223ab 3165{
6ba94429
FW
3166 spin_lock_init(&pool->lock);
3167 pool->id = -1;
3168 pool->cpu = -1;
3169 pool->node = NUMA_NO_NODE;
3170 pool->flags |= POOL_DISASSOCIATED;
82607adc 3171 pool->watchdog_ts = jiffies;
6ba94429
FW
3172 INIT_LIST_HEAD(&pool->worklist);
3173 INIT_LIST_HEAD(&pool->idle_list);
3174 hash_init(pool->busy_hash);
226223ab 3175
6ba94429
FW
3176 init_timer_deferrable(&pool->idle_timer);
3177 pool->idle_timer.function = idle_worker_timeout;
3178 pool->idle_timer.data = (unsigned long)pool;
226223ab 3179
6ba94429
FW
3180 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3181 (unsigned long)pool);
226223ab 3182
6ba94429
FW
3183 mutex_init(&pool->manager_arb);
3184 mutex_init(&pool->attach_mutex);
3185 INIT_LIST_HEAD(&pool->workers);
226223ab 3186
6ba94429
FW
3187 ida_init(&pool->worker_ida);
3188 INIT_HLIST_NODE(&pool->hash_node);
3189 pool->refcnt = 1;
226223ab 3190
6ba94429
FW
3191 /* shouldn't fail above this point */
3192 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3193 if (!pool->attrs)
3194 return -ENOMEM;
3195 return 0;
226223ab
TH
3196}
3197
6ba94429 3198static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3199{
6ba94429
FW
3200 struct workqueue_struct *wq =
3201 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3202
6ba94429
FW
3203 if (!(wq->flags & WQ_UNBOUND))
3204 free_percpu(wq->cpu_pwqs);
226223ab 3205 else
6ba94429 3206 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3207
6ba94429
FW
3208 kfree(wq->rescuer);
3209 kfree(wq);
226223ab
TH
3210}
3211
6ba94429 3212static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3213{
6ba94429 3214 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3215
6ba94429
FW
3216 ida_destroy(&pool->worker_ida);
3217 free_workqueue_attrs(pool->attrs);
3218 kfree(pool);
226223ab
TH
3219}
3220
6ba94429
FW
3221/**
3222 * put_unbound_pool - put a worker_pool
3223 * @pool: worker_pool to put
3224 *
3225 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3226 * safe manner. get_unbound_pool() calls this function on its failure path
3227 * and this function should be able to release pools which went through,
3228 * successfully or not, init_worker_pool().
3229 *
3230 * Should be called with wq_pool_mutex held.
3231 */
3232static void put_unbound_pool(struct worker_pool *pool)
226223ab 3233{
6ba94429
FW
3234 DECLARE_COMPLETION_ONSTACK(detach_completion);
3235 struct worker *worker;
226223ab 3236
6ba94429 3237 lockdep_assert_held(&wq_pool_mutex);
226223ab 3238
6ba94429
FW
3239 if (--pool->refcnt)
3240 return;
226223ab 3241
6ba94429
FW
3242 /* sanity checks */
3243 if (WARN_ON(!(pool->cpu < 0)) ||
3244 WARN_ON(!list_empty(&pool->worklist)))
3245 return;
226223ab 3246
6ba94429
FW
3247 /* release id and unhash */
3248 if (pool->id >= 0)
3249 idr_remove(&worker_pool_idr, pool->id);
3250 hash_del(&pool->hash_node);
d55262c4 3251
6ba94429
FW
3252 /*
3253 * Become the manager and destroy all workers. Grabbing
3254 * manager_arb prevents @pool's workers from blocking on
3255 * attach_mutex.
3256 */
3257 mutex_lock(&pool->manager_arb);
d55262c4 3258
6ba94429
FW
3259 spin_lock_irq(&pool->lock);
3260 while ((worker = first_idle_worker(pool)))
3261 destroy_worker(worker);
3262 WARN_ON(pool->nr_workers || pool->nr_idle);
3263 spin_unlock_irq(&pool->lock);
d55262c4 3264
6ba94429
FW
3265 mutex_lock(&pool->attach_mutex);
3266 if (!list_empty(&pool->workers))
3267 pool->detach_completion = &detach_completion;
3268 mutex_unlock(&pool->attach_mutex);
226223ab 3269
6ba94429
FW
3270 if (pool->detach_completion)
3271 wait_for_completion(pool->detach_completion);
226223ab 3272
6ba94429 3273 mutex_unlock(&pool->manager_arb);
226223ab 3274
6ba94429
FW
3275 /* shut down the timers */
3276 del_timer_sync(&pool->idle_timer);
3277 del_timer_sync(&pool->mayday_timer);
226223ab 3278
6ba94429
FW
3279 /* sched-RCU protected to allow dereferences from get_work_pool() */
3280 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3281}
3282
3283/**
6ba94429
FW
3284 * get_unbound_pool - get a worker_pool with the specified attributes
3285 * @attrs: the attributes of the worker_pool to get
226223ab 3286 *
6ba94429
FW
3287 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3288 * reference count and return it. If there already is a matching
3289 * worker_pool, it will be used; otherwise, this function attempts to
3290 * create a new one.
226223ab 3291 *
6ba94429 3292 * Should be called with wq_pool_mutex held.
226223ab 3293 *
6ba94429
FW
3294 * Return: On success, a worker_pool with the same attributes as @attrs.
3295 * On failure, %NULL.
226223ab 3296 */
6ba94429 3297static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3298{
6ba94429
FW
3299 u32 hash = wqattrs_hash(attrs);
3300 struct worker_pool *pool;
3301 int node;
e2273584 3302 int target_node = NUMA_NO_NODE;
226223ab 3303
6ba94429 3304 lockdep_assert_held(&wq_pool_mutex);
226223ab 3305
6ba94429
FW
3306 /* do we already have a matching pool? */
3307 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3308 if (wqattrs_equal(pool->attrs, attrs)) {
3309 pool->refcnt++;
3310 return pool;
3311 }
3312 }
226223ab 3313
e2273584
XP
3314 /* if cpumask is contained inside a NUMA node, we belong to that node */
3315 if (wq_numa_enabled) {
3316 for_each_node(node) {
3317 if (cpumask_subset(attrs->cpumask,
3318 wq_numa_possible_cpumask[node])) {
3319 target_node = node;
3320 break;
3321 }
3322 }
3323 }
3324
6ba94429 3325 /* nope, create a new one */
e2273584 3326 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3327 if (!pool || init_worker_pool(pool) < 0)
3328 goto fail;
3329
3330 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3331 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3332 pool->node = target_node;
226223ab
TH
3333
3334 /*
6ba94429
FW
3335 * no_numa isn't a worker_pool attribute, always clear it. See
3336 * 'struct workqueue_attrs' comments for detail.
226223ab 3337 */
6ba94429 3338 pool->attrs->no_numa = false;
226223ab 3339
6ba94429
FW
3340 if (worker_pool_assign_id(pool) < 0)
3341 goto fail;
226223ab 3342
6ba94429
FW
3343 /* create and start the initial worker */
3344 if (!create_worker(pool))
3345 goto fail;
226223ab 3346
6ba94429
FW
3347 /* install */
3348 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3349
6ba94429
FW
3350 return pool;
3351fail:
3352 if (pool)
3353 put_unbound_pool(pool);
3354 return NULL;
226223ab 3355}
226223ab 3356
6ba94429 3357static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3358{
6ba94429
FW
3359 kmem_cache_free(pwq_cache,
3360 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3361}
3362
6ba94429
FW
3363/*
3364 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3365 * and needs to be destroyed.
7a4e344c 3366 */
6ba94429 3367static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3368{
6ba94429
FW
3369 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3370 unbound_release_work);
3371 struct workqueue_struct *wq = pwq->wq;
3372 struct worker_pool *pool = pwq->pool;
3373 bool is_last;
7a4e344c 3374
6ba94429
FW
3375 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3376 return;
7a4e344c 3377
6ba94429
FW
3378 mutex_lock(&wq->mutex);
3379 list_del_rcu(&pwq->pwqs_node);
3380 is_last = list_empty(&wq->pwqs);
3381 mutex_unlock(&wq->mutex);
3382
3383 mutex_lock(&wq_pool_mutex);
3384 put_unbound_pool(pool);
3385 mutex_unlock(&wq_pool_mutex);
3386
3387 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3388
2865a8fb 3389 /*
6ba94429
FW
3390 * If we're the last pwq going away, @wq is already dead and no one
3391 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3392 */
6ba94429
FW
3393 if (is_last)
3394 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3395}
3396
7a4e344c 3397/**
6ba94429
FW
3398 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3399 * @pwq: target pool_workqueue
d185af30 3400 *
6ba94429
FW
3401 * If @pwq isn't freezing, set @pwq->max_active to the associated
3402 * workqueue's saved_max_active and activate delayed work items
3403 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3404 */
6ba94429 3405static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3406{
6ba94429
FW
3407 struct workqueue_struct *wq = pwq->wq;
3408 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3409
6ba94429
FW
3410 /* for @wq->saved_max_active */
3411 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3412
6ba94429
FW
3413 /* fast exit for non-freezable wqs */
3414 if (!freezable && pwq->max_active == wq->saved_max_active)
3415 return;
7a4e344c 3416
6ba94429 3417 spin_lock_irq(&pwq->pool->lock);
29c91e99 3418
6ba94429
FW
3419 /*
3420 * During [un]freezing, the caller is responsible for ensuring that
3421 * this function is called at least once after @workqueue_freezing
3422 * is updated and visible.
3423 */
3424 if (!freezable || !workqueue_freezing) {
3425 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3426
6ba94429
FW
3427 while (!list_empty(&pwq->delayed_works) &&
3428 pwq->nr_active < pwq->max_active)
3429 pwq_activate_first_delayed(pwq);
e2dca7ad 3430
6ba94429
FW
3431 /*
3432 * Need to kick a worker after thawed or an unbound wq's
3433 * max_active is bumped. It's a slow path. Do it always.
3434 */
3435 wake_up_worker(pwq->pool);
3436 } else {
3437 pwq->max_active = 0;
3438 }
e2dca7ad 3439
6ba94429 3440 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3441}
3442
6ba94429
FW
3443/* initialize newly alloced @pwq which is associated with @wq and @pool */
3444static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3445 struct worker_pool *pool)
29c91e99 3446{
6ba94429 3447 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3448
6ba94429
FW
3449 memset(pwq, 0, sizeof(*pwq));
3450
3451 pwq->pool = pool;
3452 pwq->wq = wq;
3453 pwq->flush_color = -1;
3454 pwq->refcnt = 1;
3455 INIT_LIST_HEAD(&pwq->delayed_works);
3456 INIT_LIST_HEAD(&pwq->pwqs_node);
3457 INIT_LIST_HEAD(&pwq->mayday_node);
3458 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3459}
3460
6ba94429
FW
3461/* sync @pwq with the current state of its associated wq and link it */
3462static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3463{
6ba94429 3464 struct workqueue_struct *wq = pwq->wq;
29c91e99 3465
6ba94429 3466 lockdep_assert_held(&wq->mutex);
a892cacc 3467
6ba94429
FW
3468 /* may be called multiple times, ignore if already linked */
3469 if (!list_empty(&pwq->pwqs_node))
29c91e99 3470 return;
29c91e99 3471
6ba94429
FW
3472 /* set the matching work_color */
3473 pwq->work_color = wq->work_color;
29c91e99 3474
6ba94429
FW
3475 /* sync max_active to the current setting */
3476 pwq_adjust_max_active(pwq);
29c91e99 3477
6ba94429
FW
3478 /* link in @pwq */
3479 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3480}
29c91e99 3481
6ba94429
FW
3482/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3483static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3484 const struct workqueue_attrs *attrs)
3485{
3486 struct worker_pool *pool;
3487 struct pool_workqueue *pwq;
60f5a4bc 3488
6ba94429 3489 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3490
6ba94429
FW
3491 pool = get_unbound_pool(attrs);
3492 if (!pool)
3493 return NULL;
60f5a4bc 3494
6ba94429
FW
3495 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3496 if (!pwq) {
3497 put_unbound_pool(pool);
3498 return NULL;
3499 }
29c91e99 3500
6ba94429
FW
3501 init_pwq(pwq, wq, pool);
3502 return pwq;
3503}
29c91e99 3504
29c91e99 3505/**
30186c6f 3506 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3507 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3508 * @node: the target NUMA node
3509 * @cpu_going_down: if >= 0, the CPU to consider as offline
3510 * @cpumask: outarg, the resulting cpumask
29c91e99 3511 *
6ba94429
FW
3512 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3513 * @cpu_going_down is >= 0, that cpu is considered offline during
3514 * calculation. The result is stored in @cpumask.
a892cacc 3515 *
6ba94429
FW
3516 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3517 * enabled and @node has online CPUs requested by @attrs, the returned
3518 * cpumask is the intersection of the possible CPUs of @node and
3519 * @attrs->cpumask.
d185af30 3520 *
6ba94429
FW
3521 * The caller is responsible for ensuring that the cpumask of @node stays
3522 * stable.
3523 *
3524 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3525 * %false if equal.
29c91e99 3526 */
6ba94429
FW
3527static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3528 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3529{
6ba94429
FW
3530 if (!wq_numa_enabled || attrs->no_numa)
3531 goto use_dfl;
29c91e99 3532
6ba94429
FW
3533 /* does @node have any online CPUs @attrs wants? */
3534 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3535 if (cpu_going_down >= 0)
3536 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3537
6ba94429
FW
3538 if (cpumask_empty(cpumask))
3539 goto use_dfl;
4c16bd32
TH
3540
3541 /* yeap, return possible CPUs in @node that @attrs wants */
3542 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3543 return !cpumask_equal(cpumask, attrs->cpumask);
3544
3545use_dfl:
3546 cpumask_copy(cpumask, attrs->cpumask);
3547 return false;
3548}
3549
1befcf30
TH
3550/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3551static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3552 int node,
3553 struct pool_workqueue *pwq)
3554{
3555 struct pool_workqueue *old_pwq;
3556
5b95e1af 3557 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3558 lockdep_assert_held(&wq->mutex);
3559
3560 /* link_pwq() can handle duplicate calls */
3561 link_pwq(pwq);
3562
3563 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3564 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3565 return old_pwq;
3566}
3567
2d5f0764
LJ
3568/* context to store the prepared attrs & pwqs before applying */
3569struct apply_wqattrs_ctx {
3570 struct workqueue_struct *wq; /* target workqueue */
3571 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3572 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3573 struct pool_workqueue *dfl_pwq;
3574 struct pool_workqueue *pwq_tbl[];
3575};
3576
3577/* free the resources after success or abort */
3578static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3579{
3580 if (ctx) {
3581 int node;
3582
3583 for_each_node(node)
3584 put_pwq_unlocked(ctx->pwq_tbl[node]);
3585 put_pwq_unlocked(ctx->dfl_pwq);
3586
3587 free_workqueue_attrs(ctx->attrs);
3588
3589 kfree(ctx);
3590 }
3591}
3592
3593/* allocate the attrs and pwqs for later installation */
3594static struct apply_wqattrs_ctx *
3595apply_wqattrs_prepare(struct workqueue_struct *wq,
3596 const struct workqueue_attrs *attrs)
9e8cd2f5 3597{
2d5f0764 3598 struct apply_wqattrs_ctx *ctx;
4c16bd32 3599 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3600 int node;
9e8cd2f5 3601
2d5f0764 3602 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3603
2d5f0764
LJ
3604 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3605 GFP_KERNEL);
8719dcea 3606
13e2e556 3607 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3608 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3609 if (!ctx || !new_attrs || !tmp_attrs)
3610 goto out_free;
13e2e556 3611
042f7df1
LJ
3612 /*
3613 * Calculate the attrs of the default pwq.
3614 * If the user configured cpumask doesn't overlap with the
3615 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3616 */
13e2e556 3617 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3618 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3619 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3620 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3621
4c16bd32
TH
3622 /*
3623 * We may create multiple pwqs with differing cpumasks. Make a
3624 * copy of @new_attrs which will be modified and used to obtain
3625 * pools.
3626 */
3627 copy_workqueue_attrs(tmp_attrs, new_attrs);
3628
4c16bd32
TH
3629 /*
3630 * If something goes wrong during CPU up/down, we'll fall back to
3631 * the default pwq covering whole @attrs->cpumask. Always create
3632 * it even if we don't use it immediately.
3633 */
2d5f0764
LJ
3634 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3635 if (!ctx->dfl_pwq)
3636 goto out_free;
4c16bd32
TH
3637
3638 for_each_node(node) {
042f7df1 3639 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3640 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3641 if (!ctx->pwq_tbl[node])
3642 goto out_free;
4c16bd32 3643 } else {
2d5f0764
LJ
3644 ctx->dfl_pwq->refcnt++;
3645 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3646 }
3647 }
3648
042f7df1
LJ
3649 /* save the user configured attrs and sanitize it. */
3650 copy_workqueue_attrs(new_attrs, attrs);
3651 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3652 ctx->attrs = new_attrs;
042f7df1 3653
2d5f0764
LJ
3654 ctx->wq = wq;
3655 free_workqueue_attrs(tmp_attrs);
3656 return ctx;
3657
3658out_free:
3659 free_workqueue_attrs(tmp_attrs);
3660 free_workqueue_attrs(new_attrs);
3661 apply_wqattrs_cleanup(ctx);
3662 return NULL;
3663}
3664
3665/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3666static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3667{
3668 int node;
9e8cd2f5 3669
4c16bd32 3670 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3671 mutex_lock(&ctx->wq->mutex);
a892cacc 3672
2d5f0764 3673 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3674
3675 /* save the previous pwq and install the new one */
f147f29e 3676 for_each_node(node)
2d5f0764
LJ
3677 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3678 ctx->pwq_tbl[node]);
4c16bd32
TH
3679
3680 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3681 link_pwq(ctx->dfl_pwq);
3682 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3683
2d5f0764
LJ
3684 mutex_unlock(&ctx->wq->mutex);
3685}
9e8cd2f5 3686
a0111cf6
LJ
3687static void apply_wqattrs_lock(void)
3688{
3689 /* CPUs should stay stable across pwq creations and installations */
3690 get_online_cpus();
3691 mutex_lock(&wq_pool_mutex);
3692}
3693
3694static void apply_wqattrs_unlock(void)
3695{
3696 mutex_unlock(&wq_pool_mutex);
3697 put_online_cpus();
3698}
3699
3700static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3701 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3702{
3703 struct apply_wqattrs_ctx *ctx;
4c16bd32 3704
2d5f0764
LJ
3705 /* only unbound workqueues can change attributes */
3706 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3707 return -EINVAL;
13e2e556 3708
2d5f0764
LJ
3709 /* creating multiple pwqs breaks ordering guarantee */
3710 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3711 return -EINVAL;
3712
2d5f0764 3713 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3714 if (!ctx)
3715 return -ENOMEM;
2d5f0764
LJ
3716
3717 /* the ctx has been prepared successfully, let's commit it */
6201171e 3718 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3719 apply_wqattrs_cleanup(ctx);
3720
6201171e 3721 return 0;
9e8cd2f5
TH
3722}
3723
a0111cf6
LJ
3724/**
3725 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3726 * @wq: the target workqueue
3727 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3728 *
3729 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3730 * machines, this function maps a separate pwq to each NUMA node with
3731 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3732 * NUMA node it was issued on. Older pwqs are released as in-flight work
3733 * items finish. Note that a work item which repeatedly requeues itself
3734 * back-to-back will stay on its current pwq.
3735 *
3736 * Performs GFP_KERNEL allocations.
3737 *
3738 * Return: 0 on success and -errno on failure.
3739 */
3740int apply_workqueue_attrs(struct workqueue_struct *wq,
3741 const struct workqueue_attrs *attrs)
3742{
3743 int ret;
3744
3745 apply_wqattrs_lock();
3746 ret = apply_workqueue_attrs_locked(wq, attrs);
3747 apply_wqattrs_unlock();
3748
3749 return ret;
3750}
3751
4c16bd32
TH
3752/**
3753 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3754 * @wq: the target workqueue
3755 * @cpu: the CPU coming up or going down
3756 * @online: whether @cpu is coming up or going down
3757 *
3758 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3759 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3760 * @wq accordingly.
3761 *
3762 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3763 * falls back to @wq->dfl_pwq which may not be optimal but is always
3764 * correct.
3765 *
3766 * Note that when the last allowed CPU of a NUMA node goes offline for a
3767 * workqueue with a cpumask spanning multiple nodes, the workers which were
3768 * already executing the work items for the workqueue will lose their CPU
3769 * affinity and may execute on any CPU. This is similar to how per-cpu
3770 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3771 * affinity, it's the user's responsibility to flush the work item from
3772 * CPU_DOWN_PREPARE.
3773 */
3774static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3775 bool online)
3776{
3777 int node = cpu_to_node(cpu);
3778 int cpu_off = online ? -1 : cpu;
3779 struct pool_workqueue *old_pwq = NULL, *pwq;
3780 struct workqueue_attrs *target_attrs;
3781 cpumask_t *cpumask;
3782
3783 lockdep_assert_held(&wq_pool_mutex);
3784
f7142ed4
LJ
3785 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3786 wq->unbound_attrs->no_numa)
4c16bd32
TH
3787 return;
3788
3789 /*
3790 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3791 * Let's use a preallocated one. The following buf is protected by
3792 * CPU hotplug exclusion.
3793 */
3794 target_attrs = wq_update_unbound_numa_attrs_buf;
3795 cpumask = target_attrs->cpumask;
3796
4c16bd32
TH
3797 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3798 pwq = unbound_pwq_by_node(wq, node);
3799
3800 /*
3801 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3802 * different from the default pwq's, we need to compare it to @pwq's
3803 * and create a new one if they don't match. If the target cpumask
3804 * equals the default pwq's, the default pwq should be used.
4c16bd32 3805 */
042f7df1 3806 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3807 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3808 return;
4c16bd32 3809 } else {
534a3fbb 3810 goto use_dfl_pwq;
4c16bd32
TH
3811 }
3812
4c16bd32
TH
3813 /* create a new pwq */
3814 pwq = alloc_unbound_pwq(wq, target_attrs);
3815 if (!pwq) {
2d916033
FF
3816 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3817 wq->name);
77f300b1 3818 goto use_dfl_pwq;
4c16bd32
TH
3819 }
3820
f7142ed4 3821 /* Install the new pwq. */
4c16bd32
TH
3822 mutex_lock(&wq->mutex);
3823 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3824 goto out_unlock;
3825
3826use_dfl_pwq:
f7142ed4 3827 mutex_lock(&wq->mutex);
4c16bd32
TH
3828 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3829 get_pwq(wq->dfl_pwq);
3830 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3831 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3832out_unlock:
3833 mutex_unlock(&wq->mutex);
3834 put_pwq_unlocked(old_pwq);
3835}
3836
30cdf249 3837static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3838{
49e3cf44 3839 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3840 int cpu, ret;
30cdf249
TH
3841
3842 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3843 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3844 if (!wq->cpu_pwqs)
30cdf249
TH
3845 return -ENOMEM;
3846
3847 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3848 struct pool_workqueue *pwq =
3849 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3850 struct worker_pool *cpu_pools =
f02ae73a 3851 per_cpu(cpu_worker_pools, cpu);
f3421797 3852
f147f29e
TH
3853 init_pwq(pwq, wq, &cpu_pools[highpri]);
3854
3855 mutex_lock(&wq->mutex);
1befcf30 3856 link_pwq(pwq);
f147f29e 3857 mutex_unlock(&wq->mutex);
30cdf249 3858 }
9e8cd2f5 3859 return 0;
8a2b7538
TH
3860 } else if (wq->flags & __WQ_ORDERED) {
3861 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3862 /* there should only be single pwq for ordering guarantee */
3863 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3864 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3865 "ordering guarantee broken for workqueue %s\n", wq->name);
3866 return ret;
30cdf249 3867 } else {
9e8cd2f5 3868 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3869 }
0f900049
TH
3870}
3871
f3421797
TH
3872static int wq_clamp_max_active(int max_active, unsigned int flags,
3873 const char *name)
b71ab8c2 3874{
f3421797
TH
3875 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3876
3877 if (max_active < 1 || max_active > lim)
044c782c
VI
3878 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3879 max_active, name, 1, lim);
b71ab8c2 3880
f3421797 3881 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3882}
3883
b196be89 3884struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3885 unsigned int flags,
3886 int max_active,
3887 struct lock_class_key *key,
b196be89 3888 const char *lock_name, ...)
1da177e4 3889{
df2d5ae4 3890 size_t tbl_size = 0;
ecf6881f 3891 va_list args;
1da177e4 3892 struct workqueue_struct *wq;
49e3cf44 3893 struct pool_workqueue *pwq;
b196be89 3894
cee22a15
VK
3895 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3896 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3897 flags |= WQ_UNBOUND;
3898
ecf6881f 3899 /* allocate wq and format name */
df2d5ae4 3900 if (flags & WQ_UNBOUND)
ddcb57e2 3901 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3902
3903 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3904 if (!wq)
d2c1d404 3905 return NULL;
b196be89 3906
6029a918
TH
3907 if (flags & WQ_UNBOUND) {
3908 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3909 if (!wq->unbound_attrs)
3910 goto err_free_wq;
3911 }
3912
ecf6881f
TH
3913 va_start(args, lock_name);
3914 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3915 va_end(args);
1da177e4 3916
d320c038 3917 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3918 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3919
b196be89 3920 /* init wq */
97e37d7b 3921 wq->flags = flags;
a0a1a5fd 3922 wq->saved_max_active = max_active;
3c25a55d 3923 mutex_init(&wq->mutex);
112202d9 3924 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3925 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3926 INIT_LIST_HEAD(&wq->flusher_queue);
3927 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3928 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3929
eb13ba87 3930 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3931 INIT_LIST_HEAD(&wq->list);
3af24433 3932
30cdf249 3933 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3934 goto err_free_wq;
1537663f 3935
493008a8
TH
3936 /*
3937 * Workqueues which may be used during memory reclaim should
3938 * have a rescuer to guarantee forward progress.
3939 */
3940 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3941 struct worker *rescuer;
3942
f7537df5 3943 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3944 if (!rescuer)
d2c1d404 3945 goto err_destroy;
e22bee78 3946
111c225a
TH
3947 rescuer->rescue_wq = wq;
3948 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3949 wq->name);
d2c1d404
TH
3950 if (IS_ERR(rescuer->task)) {
3951 kfree(rescuer);
3952 goto err_destroy;
3953 }
e22bee78 3954
d2c1d404 3955 wq->rescuer = rescuer;
25834c73 3956 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3957 wake_up_process(rescuer->task);
3af24433
ON
3958 }
3959
226223ab
TH
3960 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3961 goto err_destroy;
3962
a0a1a5fd 3963 /*
68e13a67
LJ
3964 * wq_pool_mutex protects global freeze state and workqueues list.
3965 * Grab it, adjust max_active and add the new @wq to workqueues
3966 * list.
a0a1a5fd 3967 */
68e13a67 3968 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3969
a357fc03 3970 mutex_lock(&wq->mutex);
699ce097
TH
3971 for_each_pwq(pwq, wq)
3972 pwq_adjust_max_active(pwq);
a357fc03 3973 mutex_unlock(&wq->mutex);
a0a1a5fd 3974
e2dca7ad 3975 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3976
68e13a67 3977 mutex_unlock(&wq_pool_mutex);
1537663f 3978
3af24433 3979 return wq;
d2c1d404
TH
3980
3981err_free_wq:
6029a918 3982 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3983 kfree(wq);
3984 return NULL;
3985err_destroy:
3986 destroy_workqueue(wq);
4690c4ab 3987 return NULL;
3af24433 3988}
d320c038 3989EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3990
3af24433
ON
3991/**
3992 * destroy_workqueue - safely terminate a workqueue
3993 * @wq: target workqueue
3994 *
3995 * Safely destroy a workqueue. All work currently pending will be done first.
3996 */
3997void destroy_workqueue(struct workqueue_struct *wq)
3998{
49e3cf44 3999 struct pool_workqueue *pwq;
4c16bd32 4000 int node;
3af24433 4001
9c5a2ba7
TH
4002 /* drain it before proceeding with destruction */
4003 drain_workqueue(wq);
c8efcc25 4004
6183c009 4005 /* sanity checks */
b09f4fd3 4006 mutex_lock(&wq->mutex);
49e3cf44 4007 for_each_pwq(pwq, wq) {
6183c009
TH
4008 int i;
4009
76af4d93
TH
4010 for (i = 0; i < WORK_NR_COLORS; i++) {
4011 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4012 mutex_unlock(&wq->mutex);
6183c009 4013 return;
76af4d93
TH
4014 }
4015 }
4016
5c529597 4017 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4018 WARN_ON(pwq->nr_active) ||
76af4d93 4019 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4020 mutex_unlock(&wq->mutex);
6183c009 4021 return;
76af4d93 4022 }
6183c009 4023 }
b09f4fd3 4024 mutex_unlock(&wq->mutex);
6183c009 4025
a0a1a5fd
TH
4026 /*
4027 * wq list is used to freeze wq, remove from list after
4028 * flushing is complete in case freeze races us.
4029 */
68e13a67 4030 mutex_lock(&wq_pool_mutex);
e2dca7ad 4031 list_del_rcu(&wq->list);
68e13a67 4032 mutex_unlock(&wq_pool_mutex);
3af24433 4033
226223ab
TH
4034 workqueue_sysfs_unregister(wq);
4035
e2dca7ad 4036 if (wq->rescuer)
e22bee78 4037 kthread_stop(wq->rescuer->task);
e22bee78 4038
8864b4e5
TH
4039 if (!(wq->flags & WQ_UNBOUND)) {
4040 /*
4041 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4042 * schedule RCU free.
8864b4e5 4043 */
e2dca7ad 4044 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4045 } else {
4046 /*
4047 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4048 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4049 * @wq will be freed when the last pwq is released.
8864b4e5 4050 */
4c16bd32
TH
4051 for_each_node(node) {
4052 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4053 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4054 put_pwq_unlocked(pwq);
4055 }
4056
4057 /*
4058 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4059 * put. Don't access it afterwards.
4060 */
4061 pwq = wq->dfl_pwq;
4062 wq->dfl_pwq = NULL;
dce90d47 4063 put_pwq_unlocked(pwq);
29c91e99 4064 }
3af24433
ON
4065}
4066EXPORT_SYMBOL_GPL(destroy_workqueue);
4067
dcd989cb
TH
4068/**
4069 * workqueue_set_max_active - adjust max_active of a workqueue
4070 * @wq: target workqueue
4071 * @max_active: new max_active value.
4072 *
4073 * Set max_active of @wq to @max_active.
4074 *
4075 * CONTEXT:
4076 * Don't call from IRQ context.
4077 */
4078void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4079{
49e3cf44 4080 struct pool_workqueue *pwq;
dcd989cb 4081
8719dcea
TH
4082 /* disallow meddling with max_active for ordered workqueues */
4083 if (WARN_ON(wq->flags & __WQ_ORDERED))
4084 return;
4085
f3421797 4086 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4087
a357fc03 4088 mutex_lock(&wq->mutex);
dcd989cb
TH
4089
4090 wq->saved_max_active = max_active;
4091
699ce097
TH
4092 for_each_pwq(pwq, wq)
4093 pwq_adjust_max_active(pwq);
93981800 4094
a357fc03 4095 mutex_unlock(&wq->mutex);
15316ba8 4096}
dcd989cb 4097EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4098
e6267616
TH
4099/**
4100 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4101 *
4102 * Determine whether %current is a workqueue rescuer. Can be used from
4103 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4104 *
4105 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4106 */
4107bool current_is_workqueue_rescuer(void)
4108{
4109 struct worker *worker = current_wq_worker();
4110
6a092dfd 4111 return worker && worker->rescue_wq;
e6267616
TH
4112}
4113
eef6a7d5 4114/**
dcd989cb
TH
4115 * workqueue_congested - test whether a workqueue is congested
4116 * @cpu: CPU in question
4117 * @wq: target workqueue
eef6a7d5 4118 *
dcd989cb
TH
4119 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4120 * no synchronization around this function and the test result is
4121 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4122 *
d3251859
TH
4123 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4124 * Note that both per-cpu and unbound workqueues may be associated with
4125 * multiple pool_workqueues which have separate congested states. A
4126 * workqueue being congested on one CPU doesn't mean the workqueue is also
4127 * contested on other CPUs / NUMA nodes.
4128 *
d185af30 4129 * Return:
dcd989cb 4130 * %true if congested, %false otherwise.
eef6a7d5 4131 */
d84ff051 4132bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4133{
7fb98ea7 4134 struct pool_workqueue *pwq;
76af4d93
TH
4135 bool ret;
4136
88109453 4137 rcu_read_lock_sched();
7fb98ea7 4138
d3251859
TH
4139 if (cpu == WORK_CPU_UNBOUND)
4140 cpu = smp_processor_id();
4141
7fb98ea7
TH
4142 if (!(wq->flags & WQ_UNBOUND))
4143 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4144 else
df2d5ae4 4145 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4146
76af4d93 4147 ret = !list_empty(&pwq->delayed_works);
88109453 4148 rcu_read_unlock_sched();
76af4d93
TH
4149
4150 return ret;
1da177e4 4151}
dcd989cb 4152EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4153
dcd989cb
TH
4154/**
4155 * work_busy - test whether a work is currently pending or running
4156 * @work: the work to be tested
4157 *
4158 * Test whether @work is currently pending or running. There is no
4159 * synchronization around this function and the test result is
4160 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4161 *
d185af30 4162 * Return:
dcd989cb
TH
4163 * OR'd bitmask of WORK_BUSY_* bits.
4164 */
4165unsigned int work_busy(struct work_struct *work)
1da177e4 4166{
fa1b54e6 4167 struct worker_pool *pool;
dcd989cb
TH
4168 unsigned long flags;
4169 unsigned int ret = 0;
1da177e4 4170
dcd989cb
TH
4171 if (work_pending(work))
4172 ret |= WORK_BUSY_PENDING;
1da177e4 4173
fa1b54e6
TH
4174 local_irq_save(flags);
4175 pool = get_work_pool(work);
038366c5 4176 if (pool) {
fa1b54e6 4177 spin_lock(&pool->lock);
038366c5
LJ
4178 if (find_worker_executing_work(pool, work))
4179 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4180 spin_unlock(&pool->lock);
038366c5 4181 }
fa1b54e6 4182 local_irq_restore(flags);
1da177e4 4183
dcd989cb 4184 return ret;
1da177e4 4185}
dcd989cb 4186EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4187
3d1cb205
TH
4188/**
4189 * set_worker_desc - set description for the current work item
4190 * @fmt: printf-style format string
4191 * @...: arguments for the format string
4192 *
4193 * This function can be called by a running work function to describe what
4194 * the work item is about. If the worker task gets dumped, this
4195 * information will be printed out together to help debugging. The
4196 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4197 */
4198void set_worker_desc(const char *fmt, ...)
4199{
4200 struct worker *worker = current_wq_worker();
4201 va_list args;
4202
4203 if (worker) {
4204 va_start(args, fmt);
4205 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4206 va_end(args);
4207 worker->desc_valid = true;
4208 }
4209}
4210
4211/**
4212 * print_worker_info - print out worker information and description
4213 * @log_lvl: the log level to use when printing
4214 * @task: target task
4215 *
4216 * If @task is a worker and currently executing a work item, print out the
4217 * name of the workqueue being serviced and worker description set with
4218 * set_worker_desc() by the currently executing work item.
4219 *
4220 * This function can be safely called on any task as long as the
4221 * task_struct itself is accessible. While safe, this function isn't
4222 * synchronized and may print out mixups or garbages of limited length.
4223 */
4224void print_worker_info(const char *log_lvl, struct task_struct *task)
4225{
4226 work_func_t *fn = NULL;
4227 char name[WQ_NAME_LEN] = { };
4228 char desc[WORKER_DESC_LEN] = { };
4229 struct pool_workqueue *pwq = NULL;
4230 struct workqueue_struct *wq = NULL;
4231 bool desc_valid = false;
4232 struct worker *worker;
4233
4234 if (!(task->flags & PF_WQ_WORKER))
4235 return;
4236
4237 /*
4238 * This function is called without any synchronization and @task
4239 * could be in any state. Be careful with dereferences.
4240 */
4241 worker = probe_kthread_data(task);
4242
4243 /*
4244 * Carefully copy the associated workqueue's workfn and name. Keep
4245 * the original last '\0' in case the original contains garbage.
4246 */
4247 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4248 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4249 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4250 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4251
4252 /* copy worker description */
4253 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4254 if (desc_valid)
4255 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4256
4257 if (fn || name[0] || desc[0]) {
4258 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4259 if (desc[0])
4260 pr_cont(" (%s)", desc);
4261 pr_cont("\n");
4262 }
4263}
4264
3494fc30
TH
4265static void pr_cont_pool_info(struct worker_pool *pool)
4266{
4267 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4268 if (pool->node != NUMA_NO_NODE)
4269 pr_cont(" node=%d", pool->node);
4270 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4271}
4272
4273static void pr_cont_work(bool comma, struct work_struct *work)
4274{
4275 if (work->func == wq_barrier_func) {
4276 struct wq_barrier *barr;
4277
4278 barr = container_of(work, struct wq_barrier, work);
4279
4280 pr_cont("%s BAR(%d)", comma ? "," : "",
4281 task_pid_nr(barr->task));
4282 } else {
4283 pr_cont("%s %pf", comma ? "," : "", work->func);
4284 }
4285}
4286
4287static void show_pwq(struct pool_workqueue *pwq)
4288{
4289 struct worker_pool *pool = pwq->pool;
4290 struct work_struct *work;
4291 struct worker *worker;
4292 bool has_in_flight = false, has_pending = false;
4293 int bkt;
4294
4295 pr_info(" pwq %d:", pool->id);
4296 pr_cont_pool_info(pool);
4297
4298 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4299 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4300
4301 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4302 if (worker->current_pwq == pwq) {
4303 has_in_flight = true;
4304 break;
4305 }
4306 }
4307 if (has_in_flight) {
4308 bool comma = false;
4309
4310 pr_info(" in-flight:");
4311 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4312 if (worker->current_pwq != pwq)
4313 continue;
4314
4315 pr_cont("%s %d%s:%pf", comma ? "," : "",
4316 task_pid_nr(worker->task),
4317 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4318 worker->current_func);
4319 list_for_each_entry(work, &worker->scheduled, entry)
4320 pr_cont_work(false, work);
4321 comma = true;
4322 }
4323 pr_cont("\n");
4324 }
4325
4326 list_for_each_entry(work, &pool->worklist, entry) {
4327 if (get_work_pwq(work) == pwq) {
4328 has_pending = true;
4329 break;
4330 }
4331 }
4332 if (has_pending) {
4333 bool comma = false;
4334
4335 pr_info(" pending:");
4336 list_for_each_entry(work, &pool->worklist, entry) {
4337 if (get_work_pwq(work) != pwq)
4338 continue;
4339
4340 pr_cont_work(comma, work);
4341 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4342 }
4343 pr_cont("\n");
4344 }
4345
4346 if (!list_empty(&pwq->delayed_works)) {
4347 bool comma = false;
4348
4349 pr_info(" delayed:");
4350 list_for_each_entry(work, &pwq->delayed_works, entry) {
4351 pr_cont_work(comma, work);
4352 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4353 }
4354 pr_cont("\n");
4355 }
4356}
4357
4358/**
4359 * show_workqueue_state - dump workqueue state
4360 *
4361 * Called from a sysrq handler and prints out all busy workqueues and
4362 * pools.
4363 */
4364void show_workqueue_state(void)
4365{
4366 struct workqueue_struct *wq;
4367 struct worker_pool *pool;
4368 unsigned long flags;
4369 int pi;
4370
4371 rcu_read_lock_sched();
4372
4373 pr_info("Showing busy workqueues and worker pools:\n");
4374
4375 list_for_each_entry_rcu(wq, &workqueues, list) {
4376 struct pool_workqueue *pwq;
4377 bool idle = true;
4378
4379 for_each_pwq(pwq, wq) {
4380 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4381 idle = false;
4382 break;
4383 }
4384 }
4385 if (idle)
4386 continue;
4387
4388 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4389
4390 for_each_pwq(pwq, wq) {
4391 spin_lock_irqsave(&pwq->pool->lock, flags);
4392 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4393 show_pwq(pwq);
4394 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4395 }
4396 }
4397
4398 for_each_pool(pool, pi) {
4399 struct worker *worker;
4400 bool first = true;
4401
4402 spin_lock_irqsave(&pool->lock, flags);
4403 if (pool->nr_workers == pool->nr_idle)
4404 goto next_pool;
4405
4406 pr_info("pool %d:", pool->id);
4407 pr_cont_pool_info(pool);
82607adc
TH
4408 pr_cont(" hung=%us workers=%d",
4409 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4410 pool->nr_workers);
3494fc30
TH
4411 if (pool->manager)
4412 pr_cont(" manager: %d",
4413 task_pid_nr(pool->manager->task));
4414 list_for_each_entry(worker, &pool->idle_list, entry) {
4415 pr_cont(" %s%d", first ? "idle: " : "",
4416 task_pid_nr(worker->task));
4417 first = false;
4418 }
4419 pr_cont("\n");
4420 next_pool:
4421 spin_unlock_irqrestore(&pool->lock, flags);
4422 }
4423
4424 rcu_read_unlock_sched();
4425}
4426
db7bccf4
TH
4427/*
4428 * CPU hotplug.
4429 *
e22bee78 4430 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4431 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4432 * pool which make migrating pending and scheduled works very
e22bee78 4433 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4434 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4435 * blocked draining impractical.
4436 *
24647570 4437 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4438 * running as an unbound one and allowing it to be reattached later if the
4439 * cpu comes back online.
db7bccf4 4440 */
1da177e4 4441
706026c2 4442static void wq_unbind_fn(struct work_struct *work)
3af24433 4443{
38db41d9 4444 int cpu = smp_processor_id();
4ce62e9e 4445 struct worker_pool *pool;
db7bccf4 4446 struct worker *worker;
3af24433 4447
f02ae73a 4448 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4449 mutex_lock(&pool->attach_mutex);
94cf58bb 4450 spin_lock_irq(&pool->lock);
3af24433 4451
94cf58bb 4452 /*
92f9c5c4 4453 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4454 * unbound and set DISASSOCIATED. Before this, all workers
4455 * except for the ones which are still executing works from
4456 * before the last CPU down must be on the cpu. After
4457 * this, they may become diasporas.
4458 */
da028469 4459 for_each_pool_worker(worker, pool)
c9e7cf27 4460 worker->flags |= WORKER_UNBOUND;
06ba38a9 4461
24647570 4462 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4463
94cf58bb 4464 spin_unlock_irq(&pool->lock);
92f9c5c4 4465 mutex_unlock(&pool->attach_mutex);
628c78e7 4466
eb283428
LJ
4467 /*
4468 * Call schedule() so that we cross rq->lock and thus can
4469 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4470 * This is necessary as scheduler callbacks may be invoked
4471 * from other cpus.
4472 */
4473 schedule();
06ba38a9 4474
eb283428
LJ
4475 /*
4476 * Sched callbacks are disabled now. Zap nr_running.
4477 * After this, nr_running stays zero and need_more_worker()
4478 * and keep_working() are always true as long as the
4479 * worklist is not empty. This pool now behaves as an
4480 * unbound (in terms of concurrency management) pool which
4481 * are served by workers tied to the pool.
4482 */
e19e397a 4483 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4484
4485 /*
4486 * With concurrency management just turned off, a busy
4487 * worker blocking could lead to lengthy stalls. Kick off
4488 * unbound chain execution of currently pending work items.
4489 */
4490 spin_lock_irq(&pool->lock);
4491 wake_up_worker(pool);
4492 spin_unlock_irq(&pool->lock);
4493 }
3af24433 4494}
3af24433 4495
bd7c089e
TH
4496/**
4497 * rebind_workers - rebind all workers of a pool to the associated CPU
4498 * @pool: pool of interest
4499 *
a9ab775b 4500 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4501 */
4502static void rebind_workers(struct worker_pool *pool)
4503{
a9ab775b 4504 struct worker *worker;
bd7c089e 4505
92f9c5c4 4506 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4507
a9ab775b
TH
4508 /*
4509 * Restore CPU affinity of all workers. As all idle workers should
4510 * be on the run-queue of the associated CPU before any local
402dd89d 4511 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4512 * of all workers first and then clear UNBOUND. As we're called
4513 * from CPU_ONLINE, the following shouldn't fail.
4514 */
da028469 4515 for_each_pool_worker(worker, pool)
a9ab775b
TH
4516 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4517 pool->attrs->cpumask) < 0);
bd7c089e 4518
a9ab775b 4519 spin_lock_irq(&pool->lock);
3de5e884 4520 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4521
da028469 4522 for_each_pool_worker(worker, pool) {
a9ab775b 4523 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4524
4525 /*
a9ab775b
TH
4526 * A bound idle worker should actually be on the runqueue
4527 * of the associated CPU for local wake-ups targeting it to
4528 * work. Kick all idle workers so that they migrate to the
4529 * associated CPU. Doing this in the same loop as
4530 * replacing UNBOUND with REBOUND is safe as no worker will
4531 * be bound before @pool->lock is released.
bd7c089e 4532 */
a9ab775b
TH
4533 if (worker_flags & WORKER_IDLE)
4534 wake_up_process(worker->task);
bd7c089e 4535
a9ab775b
TH
4536 /*
4537 * We want to clear UNBOUND but can't directly call
4538 * worker_clr_flags() or adjust nr_running. Atomically
4539 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4540 * @worker will clear REBOUND using worker_clr_flags() when
4541 * it initiates the next execution cycle thus restoring
4542 * concurrency management. Note that when or whether
4543 * @worker clears REBOUND doesn't affect correctness.
4544 *
4545 * ACCESS_ONCE() is necessary because @worker->flags may be
4546 * tested without holding any lock in
4547 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4548 * fail incorrectly leading to premature concurrency
4549 * management operations.
4550 */
4551 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4552 worker_flags |= WORKER_REBOUND;
4553 worker_flags &= ~WORKER_UNBOUND;
4554 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4555 }
a9ab775b
TH
4556
4557 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4558}
4559
7dbc725e
TH
4560/**
4561 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4562 * @pool: unbound pool of interest
4563 * @cpu: the CPU which is coming up
4564 *
4565 * An unbound pool may end up with a cpumask which doesn't have any online
4566 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4567 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4568 * online CPU before, cpus_allowed of all its workers should be restored.
4569 */
4570static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4571{
4572 static cpumask_t cpumask;
4573 struct worker *worker;
7dbc725e 4574
92f9c5c4 4575 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4576
4577 /* is @cpu allowed for @pool? */
4578 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4579 return;
4580
4581 /* is @cpu the only online CPU? */
4582 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4583 if (cpumask_weight(&cpumask) != 1)
4584 return;
4585
4586 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4587 for_each_pool_worker(worker, pool)
7dbc725e
TH
4588 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4589 pool->attrs->cpumask) < 0);
4590}
4591
8db25e78
TH
4592/*
4593 * Workqueues should be brought up before normal priority CPU notifiers.
4594 * This will be registered high priority CPU notifier.
4595 */
0db0628d 4596static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4597 unsigned long action,
4598 void *hcpu)
3af24433 4599{
d84ff051 4600 int cpu = (unsigned long)hcpu;
4ce62e9e 4601 struct worker_pool *pool;
4c16bd32 4602 struct workqueue_struct *wq;
7dbc725e 4603 int pi;
3ce63377 4604
8db25e78 4605 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4606 case CPU_UP_PREPARE:
f02ae73a 4607 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4608 if (pool->nr_workers)
4609 continue;
051e1850 4610 if (!create_worker(pool))
3ce63377 4611 return NOTIFY_BAD;
3af24433 4612 }
8db25e78 4613 break;
3af24433 4614
db7bccf4
TH
4615 case CPU_DOWN_FAILED:
4616 case CPU_ONLINE:
68e13a67 4617 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4618
4619 for_each_pool(pool, pi) {
92f9c5c4 4620 mutex_lock(&pool->attach_mutex);
94cf58bb 4621
f05b558d 4622 if (pool->cpu == cpu)
7dbc725e 4623 rebind_workers(pool);
f05b558d 4624 else if (pool->cpu < 0)
7dbc725e 4625 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4626
6ba94429
FW
4627 mutex_unlock(&pool->attach_mutex);
4628 }
4629
4630 /* update NUMA affinity of unbound workqueues */
4631 list_for_each_entry(wq, &workqueues, list)
4632 wq_update_unbound_numa(wq, cpu, true);
4633
4634 mutex_unlock(&wq_pool_mutex);
4635 break;
4636 }
4637 return NOTIFY_OK;
4638}
4639
4640/*
4641 * Workqueues should be brought down after normal priority CPU notifiers.
4642 * This will be registered as low priority CPU notifier.
4643 */
4644static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4645 unsigned long action,
4646 void *hcpu)
4647{
4648 int cpu = (unsigned long)hcpu;
4649 struct work_struct unbind_work;
4650 struct workqueue_struct *wq;
4651
4652 switch (action & ~CPU_TASKS_FROZEN) {
4653 case CPU_DOWN_PREPARE:
4654 /* unbinding per-cpu workers should happen on the local CPU */
4655 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4656 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4657
4658 /* update NUMA affinity of unbound workqueues */
4659 mutex_lock(&wq_pool_mutex);
4660 list_for_each_entry(wq, &workqueues, list)
4661 wq_update_unbound_numa(wq, cpu, false);
4662 mutex_unlock(&wq_pool_mutex);
4663
4664 /* wait for per-cpu unbinding to finish */
4665 flush_work(&unbind_work);
4666 destroy_work_on_stack(&unbind_work);
4667 break;
4668 }
4669 return NOTIFY_OK;
4670}
4671
4672#ifdef CONFIG_SMP
4673
4674struct work_for_cpu {
4675 struct work_struct work;
4676 long (*fn)(void *);
4677 void *arg;
4678 long ret;
4679};
4680
4681static void work_for_cpu_fn(struct work_struct *work)
4682{
4683 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4684
4685 wfc->ret = wfc->fn(wfc->arg);
4686}
4687
4688/**
4689 * work_on_cpu - run a function in user context on a particular cpu
4690 * @cpu: the cpu to run on
4691 * @fn: the function to run
4692 * @arg: the function arg
4693 *
4694 * It is up to the caller to ensure that the cpu doesn't go offline.
4695 * The caller must not hold any locks which would prevent @fn from completing.
4696 *
4697 * Return: The value @fn returns.
4698 */
4699long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4700{
4701 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4702
4703 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4704 schedule_work_on(cpu, &wfc.work);
4705 flush_work(&wfc.work);
4706 destroy_work_on_stack(&wfc.work);
4707 return wfc.ret;
4708}
4709EXPORT_SYMBOL_GPL(work_on_cpu);
4710#endif /* CONFIG_SMP */
4711
4712#ifdef CONFIG_FREEZER
4713
4714/**
4715 * freeze_workqueues_begin - begin freezing workqueues
4716 *
4717 * Start freezing workqueues. After this function returns, all freezable
4718 * workqueues will queue new works to their delayed_works list instead of
4719 * pool->worklist.
4720 *
4721 * CONTEXT:
4722 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4723 */
4724void freeze_workqueues_begin(void)
4725{
4726 struct workqueue_struct *wq;
4727 struct pool_workqueue *pwq;
4728
4729 mutex_lock(&wq_pool_mutex);
4730
4731 WARN_ON_ONCE(workqueue_freezing);
4732 workqueue_freezing = true;
4733
4734 list_for_each_entry(wq, &workqueues, list) {
4735 mutex_lock(&wq->mutex);
4736 for_each_pwq(pwq, wq)
4737 pwq_adjust_max_active(pwq);
4738 mutex_unlock(&wq->mutex);
4739 }
4740
4741 mutex_unlock(&wq_pool_mutex);
4742}
4743
4744/**
4745 * freeze_workqueues_busy - are freezable workqueues still busy?
4746 *
4747 * Check whether freezing is complete. This function must be called
4748 * between freeze_workqueues_begin() and thaw_workqueues().
4749 *
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex.
4752 *
4753 * Return:
4754 * %true if some freezable workqueues are still busy. %false if freezing
4755 * is complete.
4756 */
4757bool freeze_workqueues_busy(void)
4758{
4759 bool busy = false;
4760 struct workqueue_struct *wq;
4761 struct pool_workqueue *pwq;
4762
4763 mutex_lock(&wq_pool_mutex);
4764
4765 WARN_ON_ONCE(!workqueue_freezing);
4766
4767 list_for_each_entry(wq, &workqueues, list) {
4768 if (!(wq->flags & WQ_FREEZABLE))
4769 continue;
4770 /*
4771 * nr_active is monotonically decreasing. It's safe
4772 * to peek without lock.
4773 */
4774 rcu_read_lock_sched();
4775 for_each_pwq(pwq, wq) {
4776 WARN_ON_ONCE(pwq->nr_active < 0);
4777 if (pwq->nr_active) {
4778 busy = true;
4779 rcu_read_unlock_sched();
4780 goto out_unlock;
4781 }
4782 }
4783 rcu_read_unlock_sched();
4784 }
4785out_unlock:
4786 mutex_unlock(&wq_pool_mutex);
4787 return busy;
4788}
4789
4790/**
4791 * thaw_workqueues - thaw workqueues
4792 *
4793 * Thaw workqueues. Normal queueing is restored and all collected
4794 * frozen works are transferred to their respective pool worklists.
4795 *
4796 * CONTEXT:
4797 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4798 */
4799void thaw_workqueues(void)
4800{
4801 struct workqueue_struct *wq;
4802 struct pool_workqueue *pwq;
4803
4804 mutex_lock(&wq_pool_mutex);
4805
4806 if (!workqueue_freezing)
4807 goto out_unlock;
4808
4809 workqueue_freezing = false;
4810
4811 /* restore max_active and repopulate worklist */
4812 list_for_each_entry(wq, &workqueues, list) {
4813 mutex_lock(&wq->mutex);
4814 for_each_pwq(pwq, wq)
4815 pwq_adjust_max_active(pwq);
4816 mutex_unlock(&wq->mutex);
4817 }
4818
4819out_unlock:
4820 mutex_unlock(&wq_pool_mutex);
4821}
4822#endif /* CONFIG_FREEZER */
4823
042f7df1
LJ
4824static int workqueue_apply_unbound_cpumask(void)
4825{
4826 LIST_HEAD(ctxs);
4827 int ret = 0;
4828 struct workqueue_struct *wq;
4829 struct apply_wqattrs_ctx *ctx, *n;
4830
4831 lockdep_assert_held(&wq_pool_mutex);
4832
4833 list_for_each_entry(wq, &workqueues, list) {
4834 if (!(wq->flags & WQ_UNBOUND))
4835 continue;
4836 /* creating multiple pwqs breaks ordering guarantee */
4837 if (wq->flags & __WQ_ORDERED)
4838 continue;
4839
4840 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4841 if (!ctx) {
4842 ret = -ENOMEM;
4843 break;
4844 }
4845
4846 list_add_tail(&ctx->list, &ctxs);
4847 }
4848
4849 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4850 if (!ret)
4851 apply_wqattrs_commit(ctx);
4852 apply_wqattrs_cleanup(ctx);
4853 }
4854
4855 return ret;
4856}
4857
4858/**
4859 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4860 * @cpumask: the cpumask to set
4861 *
4862 * The low-level workqueues cpumask is a global cpumask that limits
4863 * the affinity of all unbound workqueues. This function check the @cpumask
4864 * and apply it to all unbound workqueues and updates all pwqs of them.
4865 *
4866 * Retun: 0 - Success
4867 * -EINVAL - Invalid @cpumask
4868 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4869 */
4870int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4871{
4872 int ret = -EINVAL;
4873 cpumask_var_t saved_cpumask;
4874
4875 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4876 return -ENOMEM;
4877
042f7df1
LJ
4878 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4879 if (!cpumask_empty(cpumask)) {
a0111cf6 4880 apply_wqattrs_lock();
042f7df1
LJ
4881
4882 /* save the old wq_unbound_cpumask. */
4883 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4884
4885 /* update wq_unbound_cpumask at first and apply it to wqs. */
4886 cpumask_copy(wq_unbound_cpumask, cpumask);
4887 ret = workqueue_apply_unbound_cpumask();
4888
4889 /* restore the wq_unbound_cpumask when failed. */
4890 if (ret < 0)
4891 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4892
a0111cf6 4893 apply_wqattrs_unlock();
042f7df1 4894 }
042f7df1
LJ
4895
4896 free_cpumask_var(saved_cpumask);
4897 return ret;
4898}
4899
6ba94429
FW
4900#ifdef CONFIG_SYSFS
4901/*
4902 * Workqueues with WQ_SYSFS flag set is visible to userland via
4903 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4904 * following attributes.
4905 *
4906 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4907 * max_active RW int : maximum number of in-flight work items
4908 *
4909 * Unbound workqueues have the following extra attributes.
4910 *
4911 * id RO int : the associated pool ID
4912 * nice RW int : nice value of the workers
4913 * cpumask RW mask : bitmask of allowed CPUs for the workers
4914 */
4915struct wq_device {
4916 struct workqueue_struct *wq;
4917 struct device dev;
4918};
4919
4920static struct workqueue_struct *dev_to_wq(struct device *dev)
4921{
4922 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4923
4924 return wq_dev->wq;
4925}
4926
4927static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4928 char *buf)
4929{
4930 struct workqueue_struct *wq = dev_to_wq(dev);
4931
4932 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4933}
4934static DEVICE_ATTR_RO(per_cpu);
4935
4936static ssize_t max_active_show(struct device *dev,
4937 struct device_attribute *attr, char *buf)
4938{
4939 struct workqueue_struct *wq = dev_to_wq(dev);
4940
4941 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4942}
4943
4944static ssize_t max_active_store(struct device *dev,
4945 struct device_attribute *attr, const char *buf,
4946 size_t count)
4947{
4948 struct workqueue_struct *wq = dev_to_wq(dev);
4949 int val;
4950
4951 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4952 return -EINVAL;
4953
4954 workqueue_set_max_active(wq, val);
4955 return count;
4956}
4957static DEVICE_ATTR_RW(max_active);
4958
4959static struct attribute *wq_sysfs_attrs[] = {
4960 &dev_attr_per_cpu.attr,
4961 &dev_attr_max_active.attr,
4962 NULL,
4963};
4964ATTRIBUTE_GROUPS(wq_sysfs);
4965
4966static ssize_t wq_pool_ids_show(struct device *dev,
4967 struct device_attribute *attr, char *buf)
4968{
4969 struct workqueue_struct *wq = dev_to_wq(dev);
4970 const char *delim = "";
4971 int node, written = 0;
4972
4973 rcu_read_lock_sched();
4974 for_each_node(node) {
4975 written += scnprintf(buf + written, PAGE_SIZE - written,
4976 "%s%d:%d", delim, node,
4977 unbound_pwq_by_node(wq, node)->pool->id);
4978 delim = " ";
4979 }
4980 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4981 rcu_read_unlock_sched();
4982
4983 return written;
4984}
4985
4986static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4987 char *buf)
4988{
4989 struct workqueue_struct *wq = dev_to_wq(dev);
4990 int written;
4991
4992 mutex_lock(&wq->mutex);
4993 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4994 mutex_unlock(&wq->mutex);
4995
4996 return written;
4997}
4998
4999/* prepare workqueue_attrs for sysfs store operations */
5000static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5001{
5002 struct workqueue_attrs *attrs;
5003
899a94fe
LJ
5004 lockdep_assert_held(&wq_pool_mutex);
5005
6ba94429
FW
5006 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5007 if (!attrs)
5008 return NULL;
5009
6ba94429 5010 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5011 return attrs;
5012}
5013
5014static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5015 const char *buf, size_t count)
5016{
5017 struct workqueue_struct *wq = dev_to_wq(dev);
5018 struct workqueue_attrs *attrs;
d4d3e257
LJ
5019 int ret = -ENOMEM;
5020
5021 apply_wqattrs_lock();
6ba94429
FW
5022
5023 attrs = wq_sysfs_prep_attrs(wq);
5024 if (!attrs)
d4d3e257 5025 goto out_unlock;
6ba94429
FW
5026
5027 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5028 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5029 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5030 else
5031 ret = -EINVAL;
5032
d4d3e257
LJ
5033out_unlock:
5034 apply_wqattrs_unlock();
6ba94429
FW
5035 free_workqueue_attrs(attrs);
5036 return ret ?: count;
5037}
5038
5039static ssize_t wq_cpumask_show(struct device *dev,
5040 struct device_attribute *attr, char *buf)
5041{
5042 struct workqueue_struct *wq = dev_to_wq(dev);
5043 int written;
5044
5045 mutex_lock(&wq->mutex);
5046 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5047 cpumask_pr_args(wq->unbound_attrs->cpumask));
5048 mutex_unlock(&wq->mutex);
5049 return written;
5050}
5051
5052static ssize_t wq_cpumask_store(struct device *dev,
5053 struct device_attribute *attr,
5054 const char *buf, size_t count)
5055{
5056 struct workqueue_struct *wq = dev_to_wq(dev);
5057 struct workqueue_attrs *attrs;
d4d3e257
LJ
5058 int ret = -ENOMEM;
5059
5060 apply_wqattrs_lock();
6ba94429
FW
5061
5062 attrs = wq_sysfs_prep_attrs(wq);
5063 if (!attrs)
d4d3e257 5064 goto out_unlock;
6ba94429
FW
5065
5066 ret = cpumask_parse(buf, attrs->cpumask);
5067 if (!ret)
d4d3e257 5068 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5069
d4d3e257
LJ
5070out_unlock:
5071 apply_wqattrs_unlock();
6ba94429
FW
5072 free_workqueue_attrs(attrs);
5073 return ret ?: count;
5074}
5075
5076static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5077 char *buf)
5078{
5079 struct workqueue_struct *wq = dev_to_wq(dev);
5080 int written;
7dbc725e 5081
6ba94429
FW
5082 mutex_lock(&wq->mutex);
5083 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5084 !wq->unbound_attrs->no_numa);
5085 mutex_unlock(&wq->mutex);
4c16bd32 5086
6ba94429 5087 return written;
65758202
TH
5088}
5089
6ba94429
FW
5090static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5091 const char *buf, size_t count)
65758202 5092{
6ba94429
FW
5093 struct workqueue_struct *wq = dev_to_wq(dev);
5094 struct workqueue_attrs *attrs;
d4d3e257
LJ
5095 int v, ret = -ENOMEM;
5096
5097 apply_wqattrs_lock();
4c16bd32 5098
6ba94429
FW
5099 attrs = wq_sysfs_prep_attrs(wq);
5100 if (!attrs)
d4d3e257 5101 goto out_unlock;
4c16bd32 5102
6ba94429
FW
5103 ret = -EINVAL;
5104 if (sscanf(buf, "%d", &v) == 1) {
5105 attrs->no_numa = !v;
d4d3e257 5106 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5107 }
6ba94429 5108
d4d3e257
LJ
5109out_unlock:
5110 apply_wqattrs_unlock();
6ba94429
FW
5111 free_workqueue_attrs(attrs);
5112 return ret ?: count;
65758202
TH
5113}
5114
6ba94429
FW
5115static struct device_attribute wq_sysfs_unbound_attrs[] = {
5116 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5117 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5118 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5119 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5120 __ATTR_NULL,
5121};
8ccad40d 5122
6ba94429
FW
5123static struct bus_type wq_subsys = {
5124 .name = "workqueue",
5125 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5126};
5127
b05a7928
FW
5128static ssize_t wq_unbound_cpumask_show(struct device *dev,
5129 struct device_attribute *attr, char *buf)
5130{
5131 int written;
5132
042f7df1 5133 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5134 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5135 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5136 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5137
5138 return written;
5139}
5140
042f7df1
LJ
5141static ssize_t wq_unbound_cpumask_store(struct device *dev,
5142 struct device_attribute *attr, const char *buf, size_t count)
5143{
5144 cpumask_var_t cpumask;
5145 int ret;
5146
5147 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5148 return -ENOMEM;
5149
5150 ret = cpumask_parse(buf, cpumask);
5151 if (!ret)
5152 ret = workqueue_set_unbound_cpumask(cpumask);
5153
5154 free_cpumask_var(cpumask);
5155 return ret ? ret : count;
5156}
5157
b05a7928 5158static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5159 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5160 wq_unbound_cpumask_store);
b05a7928 5161
6ba94429 5162static int __init wq_sysfs_init(void)
2d3854a3 5163{
b05a7928
FW
5164 int err;
5165
5166 err = subsys_virtual_register(&wq_subsys, NULL);
5167 if (err)
5168 return err;
5169
5170 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5171}
6ba94429 5172core_initcall(wq_sysfs_init);
2d3854a3 5173
6ba94429 5174static void wq_device_release(struct device *dev)
2d3854a3 5175{
6ba94429 5176 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5177
6ba94429 5178 kfree(wq_dev);
2d3854a3 5179}
a0a1a5fd
TH
5180
5181/**
6ba94429
FW
5182 * workqueue_sysfs_register - make a workqueue visible in sysfs
5183 * @wq: the workqueue to register
a0a1a5fd 5184 *
6ba94429
FW
5185 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5186 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5187 * which is the preferred method.
a0a1a5fd 5188 *
6ba94429
FW
5189 * Workqueue user should use this function directly iff it wants to apply
5190 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5191 * apply_workqueue_attrs() may race against userland updating the
5192 * attributes.
5193 *
5194 * Return: 0 on success, -errno on failure.
a0a1a5fd 5195 */
6ba94429 5196int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5197{
6ba94429
FW
5198 struct wq_device *wq_dev;
5199 int ret;
a0a1a5fd 5200
6ba94429 5201 /*
402dd89d 5202 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5203 * attributes breaks ordering guarantee. Disallow exposing ordered
5204 * workqueues.
5205 */
5206 if (WARN_ON(wq->flags & __WQ_ORDERED))
5207 return -EINVAL;
a0a1a5fd 5208
6ba94429
FW
5209 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5210 if (!wq_dev)
5211 return -ENOMEM;
5bcab335 5212
6ba94429
FW
5213 wq_dev->wq = wq;
5214 wq_dev->dev.bus = &wq_subsys;
5215 wq_dev->dev.init_name = wq->name;
5216 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5217
6ba94429
FW
5218 /*
5219 * unbound_attrs are created separately. Suppress uevent until
5220 * everything is ready.
5221 */
5222 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5223
6ba94429
FW
5224 ret = device_register(&wq_dev->dev);
5225 if (ret) {
5226 kfree(wq_dev);
5227 wq->wq_dev = NULL;
5228 return ret;
5229 }
a0a1a5fd 5230
6ba94429
FW
5231 if (wq->flags & WQ_UNBOUND) {
5232 struct device_attribute *attr;
a0a1a5fd 5233
6ba94429
FW
5234 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5235 ret = device_create_file(&wq_dev->dev, attr);
5236 if (ret) {
5237 device_unregister(&wq_dev->dev);
5238 wq->wq_dev = NULL;
5239 return ret;
a0a1a5fd
TH
5240 }
5241 }
5242 }
6ba94429
FW
5243
5244 dev_set_uevent_suppress(&wq_dev->dev, false);
5245 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5246 return 0;
a0a1a5fd
TH
5247}
5248
5249/**
6ba94429
FW
5250 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5251 * @wq: the workqueue to unregister
a0a1a5fd 5252 *
6ba94429 5253 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5254 */
6ba94429 5255static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5256{
6ba94429 5257 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5258
6ba94429
FW
5259 if (!wq->wq_dev)
5260 return;
a0a1a5fd 5261
6ba94429
FW
5262 wq->wq_dev = NULL;
5263 device_unregister(&wq_dev->dev);
a0a1a5fd 5264}
6ba94429
FW
5265#else /* CONFIG_SYSFS */
5266static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5267#endif /* CONFIG_SYSFS */
a0a1a5fd 5268
82607adc
TH
5269/*
5270 * Workqueue watchdog.
5271 *
5272 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5273 * flush dependency, a concurrency managed work item which stays RUNNING
5274 * indefinitely. Workqueue stalls can be very difficult to debug as the
5275 * usual warning mechanisms don't trigger and internal workqueue state is
5276 * largely opaque.
5277 *
5278 * Workqueue watchdog monitors all worker pools periodically and dumps
5279 * state if some pools failed to make forward progress for a while where
5280 * forward progress is defined as the first item on ->worklist changing.
5281 *
5282 * This mechanism is controlled through the kernel parameter
5283 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5284 * corresponding sysfs parameter file.
5285 */
5286#ifdef CONFIG_WQ_WATCHDOG
5287
5288static void wq_watchdog_timer_fn(unsigned long data);
5289
5290static unsigned long wq_watchdog_thresh = 30;
5291static struct timer_list wq_watchdog_timer =
5292 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5293
5294static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5295static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5296
5297static void wq_watchdog_reset_touched(void)
5298{
5299 int cpu;
5300
5301 wq_watchdog_touched = jiffies;
5302 for_each_possible_cpu(cpu)
5303 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5304}
5305
5306static void wq_watchdog_timer_fn(unsigned long data)
5307{
5308 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5309 bool lockup_detected = false;
5310 struct worker_pool *pool;
5311 int pi;
5312
5313 if (!thresh)
5314 return;
5315
5316 rcu_read_lock();
5317
5318 for_each_pool(pool, pi) {
5319 unsigned long pool_ts, touched, ts;
5320
5321 if (list_empty(&pool->worklist))
5322 continue;
5323
5324 /* get the latest of pool and touched timestamps */
5325 pool_ts = READ_ONCE(pool->watchdog_ts);
5326 touched = READ_ONCE(wq_watchdog_touched);
5327
5328 if (time_after(pool_ts, touched))
5329 ts = pool_ts;
5330 else
5331 ts = touched;
5332
5333 if (pool->cpu >= 0) {
5334 unsigned long cpu_touched =
5335 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5336 pool->cpu));
5337 if (time_after(cpu_touched, ts))
5338 ts = cpu_touched;
5339 }
5340
5341 /* did we stall? */
5342 if (time_after(jiffies, ts + thresh)) {
5343 lockup_detected = true;
5344 pr_emerg("BUG: workqueue lockup - pool");
5345 pr_cont_pool_info(pool);
5346 pr_cont(" stuck for %us!\n",
5347 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5348 }
5349 }
5350
5351 rcu_read_unlock();
5352
5353 if (lockup_detected)
5354 show_workqueue_state();
5355
5356 wq_watchdog_reset_touched();
5357 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5358}
5359
5360void wq_watchdog_touch(int cpu)
5361{
5362 if (cpu >= 0)
5363 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5364 else
5365 wq_watchdog_touched = jiffies;
5366}
5367
5368static void wq_watchdog_set_thresh(unsigned long thresh)
5369{
5370 wq_watchdog_thresh = 0;
5371 del_timer_sync(&wq_watchdog_timer);
5372
5373 if (thresh) {
5374 wq_watchdog_thresh = thresh;
5375 wq_watchdog_reset_touched();
5376 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5377 }
5378}
5379
5380static int wq_watchdog_param_set_thresh(const char *val,
5381 const struct kernel_param *kp)
5382{
5383 unsigned long thresh;
5384 int ret;
5385
5386 ret = kstrtoul(val, 0, &thresh);
5387 if (ret)
5388 return ret;
5389
5390 if (system_wq)
5391 wq_watchdog_set_thresh(thresh);
5392 else
5393 wq_watchdog_thresh = thresh;
5394
5395 return 0;
5396}
5397
5398static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5399 .set = wq_watchdog_param_set_thresh,
5400 .get = param_get_ulong,
5401};
5402
5403module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5404 0644);
5405
5406static void wq_watchdog_init(void)
5407{
5408 wq_watchdog_set_thresh(wq_watchdog_thresh);
5409}
5410
5411#else /* CONFIG_WQ_WATCHDOG */
5412
5413static inline void wq_watchdog_init(void) { }
5414
5415#endif /* CONFIG_WQ_WATCHDOG */
5416
bce90380
TH
5417static void __init wq_numa_init(void)
5418{
5419 cpumask_var_t *tbl;
5420 int node, cpu;
5421
bce90380
TH
5422 if (num_possible_nodes() <= 1)
5423 return;
5424
d55262c4
TH
5425 if (wq_disable_numa) {
5426 pr_info("workqueue: NUMA affinity support disabled\n");
5427 return;
5428 }
5429
4c16bd32
TH
5430 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5431 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5432
bce90380
TH
5433 /*
5434 * We want masks of possible CPUs of each node which isn't readily
5435 * available. Build one from cpu_to_node() which should have been
5436 * fully initialized by now.
5437 */
ddcb57e2 5438 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5439 BUG_ON(!tbl);
5440
5441 for_each_node(node)
5a6024f1 5442 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5443 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5444
5445 for_each_possible_cpu(cpu) {
5446 node = cpu_to_node(cpu);
5447 if (WARN_ON(node == NUMA_NO_NODE)) {
5448 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5449 /* happens iff arch is bonkers, let's just proceed */
5450 return;
5451 }
5452 cpumask_set_cpu(cpu, tbl[node]);
5453 }
5454
5455 wq_numa_possible_cpumask = tbl;
5456 wq_numa_enabled = true;
5457}
5458
6ee0578b 5459static int __init init_workqueues(void)
1da177e4 5460{
7a4e344c
TH
5461 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5462 int i, cpu;
c34056a3 5463
e904e6c2
TH
5464 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5465
b05a7928
FW
5466 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5467 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5468
e904e6c2
TH
5469 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5470
65758202 5471 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5472 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5473
bce90380
TH
5474 wq_numa_init();
5475
706026c2 5476 /* initialize CPU pools */
29c91e99 5477 for_each_possible_cpu(cpu) {
4ce62e9e 5478 struct worker_pool *pool;
8b03ae3c 5479
7a4e344c 5480 i = 0;
f02ae73a 5481 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5482 BUG_ON(init_worker_pool(pool));
ec22ca5e 5483 pool->cpu = cpu;
29c91e99 5484 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5485 pool->attrs->nice = std_nice[i++];
f3f90ad4 5486 pool->node = cpu_to_node(cpu);
7a4e344c 5487
9daf9e67 5488 /* alloc pool ID */
68e13a67 5489 mutex_lock(&wq_pool_mutex);
9daf9e67 5490 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5491 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5492 }
8b03ae3c
TH
5493 }
5494
e22bee78 5495 /* create the initial worker */
29c91e99 5496 for_each_online_cpu(cpu) {
4ce62e9e 5497 struct worker_pool *pool;
e22bee78 5498
f02ae73a 5499 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5500 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5501 BUG_ON(!create_worker(pool));
4ce62e9e 5502 }
e22bee78
TH
5503 }
5504
8a2b7538 5505 /* create default unbound and ordered wq attrs */
29c91e99
TH
5506 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5507 struct workqueue_attrs *attrs;
5508
5509 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5510 attrs->nice = std_nice[i];
29c91e99 5511 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5512
5513 /*
5514 * An ordered wq should have only one pwq as ordering is
5515 * guaranteed by max_active which is enforced by pwqs.
5516 * Turn off NUMA so that dfl_pwq is used for all nodes.
5517 */
5518 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5519 attrs->nice = std_nice[i];
5520 attrs->no_numa = true;
5521 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5522 }
5523
d320c038 5524 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5525 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5526 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5527 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5528 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5529 system_freezable_wq = alloc_workqueue("events_freezable",
5530 WQ_FREEZABLE, 0);
0668106c
VK
5531 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5532 WQ_POWER_EFFICIENT, 0);
5533 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5534 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5535 0);
1aabe902 5536 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5537 !system_unbound_wq || !system_freezable_wq ||
5538 !system_power_efficient_wq ||
5539 !system_freezable_power_efficient_wq);
82607adc
TH
5540
5541 wq_watchdog_init();
5542
6ee0578b 5543 return 0;
1da177e4 5544}
6ee0578b 5545early_initcall(init_workqueues);