workqueue: schedule WORK_CPU_UNBOUND work on wq_unbound_cpumask CPUs
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
7d19c5ce
TH
310/* the per-cpu worker pools */
311static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
312 cpu_worker_pools);
313
68e13a67 314static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 315
68e13a67 316/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
317static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
318
c5aa87bb 319/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
320static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
321
8a2b7538
TH
322/* I: attributes used when instantiating ordered pools on demand */
323static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
324
d320c038 325struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 326EXPORT_SYMBOL(system_wq);
044c782c 327struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 328EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 329struct workqueue_struct *system_long_wq __read_mostly;
d320c038 330EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 331struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 332EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 333struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 334EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
335struct workqueue_struct *system_power_efficient_wq __read_mostly;
336EXPORT_SYMBOL_GPL(system_power_efficient_wq);
337struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
338EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 339
7d19c5ce 340static int worker_thread(void *__worker);
6ba94429 341static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 342
97bd2347
TH
343#define CREATE_TRACE_POINTS
344#include <trace/events/workqueue.h>
345
68e13a67 346#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
347 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
348 !lockdep_is_held(&wq_pool_mutex), \
349 "sched RCU or wq_pool_mutex should be held")
5bcab335 350
b09f4fd3 351#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
352 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
353 !lockdep_is_held(&wq->mutex), \
354 "sched RCU or wq->mutex should be held")
76af4d93 355
5b95e1af 356#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
357 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
358 !lockdep_is_held(&wq->mutex) && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 361
f02ae73a
TH
362#define for_each_cpu_worker_pool(pool, cpu) \
363 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
364 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 365 (pool)++)
4ce62e9e 366
17116969
TH
367/**
368 * for_each_pool - iterate through all worker_pools in the system
369 * @pool: iteration cursor
611c92a0 370 * @pi: integer used for iteration
fa1b54e6 371 *
68e13a67
LJ
372 * This must be called either with wq_pool_mutex held or sched RCU read
373 * locked. If the pool needs to be used beyond the locking in effect, the
374 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
375 *
376 * The if/else clause exists only for the lockdep assertion and can be
377 * ignored.
17116969 378 */
611c92a0
TH
379#define for_each_pool(pool, pi) \
380 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 381 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 382 else
17116969 383
822d8405
TH
384/**
385 * for_each_pool_worker - iterate through all workers of a worker_pool
386 * @worker: iteration cursor
822d8405
TH
387 * @pool: worker_pool to iterate workers of
388 *
92f9c5c4 389 * This must be called with @pool->attach_mutex.
822d8405
TH
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
da028469
LJ
394#define for_each_pool_worker(worker, pool) \
395 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 396 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
397 else
398
49e3cf44
TH
399/**
400 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
401 * @pwq: iteration cursor
402 * @wq: the target workqueue
76af4d93 403 *
b09f4fd3 404 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
405 * If the pwq needs to be used beyond the locking in effect, the caller is
406 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
49e3cf44
TH
410 */
411#define for_each_pwq(pwq, wq) \
76af4d93 412 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 413 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 414 else
f3421797 415
dc186ad7
TG
416#ifdef CONFIG_DEBUG_OBJECTS_WORK
417
418static struct debug_obj_descr work_debug_descr;
419
99777288
SG
420static void *work_debug_hint(void *addr)
421{
422 return ((struct work_struct *) addr)->func;
423}
424
dc186ad7
TG
425/*
426 * fixup_init is called when:
427 * - an active object is initialized
428 */
429static int work_fixup_init(void *addr, enum debug_obj_state state)
430{
431 struct work_struct *work = addr;
432
433 switch (state) {
434 case ODEBUG_STATE_ACTIVE:
435 cancel_work_sync(work);
436 debug_object_init(work, &work_debug_descr);
437 return 1;
438 default:
439 return 0;
440 }
441}
442
443/*
444 * fixup_activate is called when:
445 * - an active object is activated
446 * - an unknown object is activated (might be a statically initialized object)
447 */
448static int work_fixup_activate(void *addr, enum debug_obj_state state)
449{
450 struct work_struct *work = addr;
451
452 switch (state) {
453
454 case ODEBUG_STATE_NOTAVAILABLE:
455 /*
456 * This is not really a fixup. The work struct was
457 * statically initialized. We just make sure that it
458 * is tracked in the object tracker.
459 */
22df02bb 460 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
461 debug_object_init(work, &work_debug_descr);
462 debug_object_activate(work, &work_debug_descr);
463 return 0;
464 }
465 WARN_ON_ONCE(1);
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474}
475
476/*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
480static int work_fixup_free(void *addr, enum debug_obj_state state)
481{
482 struct work_struct *work = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 cancel_work_sync(work);
487 debug_object_free(work, &work_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492}
493
494static struct debug_obj_descr work_debug_descr = {
495 .name = "work_struct",
99777288 496 .debug_hint = work_debug_hint,
dc186ad7
TG
497 .fixup_init = work_fixup_init,
498 .fixup_activate = work_fixup_activate,
499 .fixup_free = work_fixup_free,
500};
501
502static inline void debug_work_activate(struct work_struct *work)
503{
504 debug_object_activate(work, &work_debug_descr);
505}
506
507static inline void debug_work_deactivate(struct work_struct *work)
508{
509 debug_object_deactivate(work, &work_debug_descr);
510}
511
512void __init_work(struct work_struct *work, int onstack)
513{
514 if (onstack)
515 debug_object_init_on_stack(work, &work_debug_descr);
516 else
517 debug_object_init(work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(__init_work);
520
521void destroy_work_on_stack(struct work_struct *work)
522{
523 debug_object_free(work, &work_debug_descr);
524}
525EXPORT_SYMBOL_GPL(destroy_work_on_stack);
526
ea2e64f2
TG
527void destroy_delayed_work_on_stack(struct delayed_work *work)
528{
529 destroy_timer_on_stack(&work->timer);
530 debug_object_free(&work->work, &work_debug_descr);
531}
532EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
533
dc186ad7
TG
534#else
535static inline void debug_work_activate(struct work_struct *work) { }
536static inline void debug_work_deactivate(struct work_struct *work) { }
537#endif
538
4e8b22bd
LB
539/**
540 * worker_pool_assign_id - allocate ID and assing it to @pool
541 * @pool: the pool pointer of interest
542 *
543 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
544 * successfully, -errno on failure.
545 */
9daf9e67
TH
546static int worker_pool_assign_id(struct worker_pool *pool)
547{
548 int ret;
549
68e13a67 550 lockdep_assert_held(&wq_pool_mutex);
5bcab335 551
4e8b22bd
LB
552 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
553 GFP_KERNEL);
229641a6 554 if (ret >= 0) {
e68035fb 555 pool->id = ret;
229641a6
TH
556 return 0;
557 }
fa1b54e6 558 return ret;
7c3eed5c
TH
559}
560
df2d5ae4
TH
561/**
562 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
563 * @wq: the target workqueue
564 * @node: the node ID
565 *
5b95e1af
LJ
566 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
567 * read locked.
df2d5ae4
TH
568 * If the pwq needs to be used beyond the locking in effect, the caller is
569 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
570 *
571 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
572 */
573static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
574 int node)
575{
5b95e1af 576 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
df2d5ae4
TH
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578}
579
73f53c4a
TH
580static unsigned int work_color_to_flags(int color)
581{
582 return color << WORK_STRUCT_COLOR_SHIFT;
583}
584
585static int get_work_color(struct work_struct *work)
586{
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589}
590
591static int work_next_color(int color)
592{
593 return (color + 1) % WORK_NR_COLORS;
594}
1da177e4 595
14441960 596/*
112202d9
TH
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 599 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 600 *
112202d9
TH
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
7a22ad75 605 *
112202d9 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 607 * corresponding to a work. Pool is available once the work has been
112202d9 608 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 609 * available only while the work item is queued.
7a22ad75 610 *
bbb68dfa
TH
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
14441960 615 */
7a22ad75
TH
616static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
365970a1 618{
6183c009 619 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
620 atomic_long_set(&work->data, data | flags | work_static(work));
621}
365970a1 622
112202d9 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
624 unsigned long extra_flags)
625{
112202d9
TH
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
628}
629
4468a00f
LJ
630static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632{
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635}
636
7c3eed5c
TH
637static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
7a22ad75 639{
23657bb1
TH
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
7c3eed5c 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 648}
f756d5e2 649
7a22ad75 650static void clear_work_data(struct work_struct *work)
1da177e4 651{
7c3eed5c
TH
652 smp_wmb(); /* see set_work_pool_and_clear_pending() */
653 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
654}
655
112202d9 656static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 657{
e120153d 658 unsigned long data = atomic_long_read(&work->data);
7a22ad75 659
112202d9 660 if (data & WORK_STRUCT_PWQ)
e120153d
TH
661 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
662 else
663 return NULL;
4d707b9f
ON
664}
665
7c3eed5c
TH
666/**
667 * get_work_pool - return the worker_pool a given work was associated with
668 * @work: the work item of interest
669 *
68e13a67
LJ
670 * Pools are created and destroyed under wq_pool_mutex, and allows read
671 * access under sched-RCU read lock. As such, this function should be
672 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
673 *
674 * All fields of the returned pool are accessible as long as the above
675 * mentioned locking is in effect. If the returned pool needs to be used
676 * beyond the critical section, the caller is responsible for ensuring the
677 * returned pool is and stays online.
d185af30
YB
678 *
679 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
680 */
681static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 682{
e120153d 683 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 684 int pool_id;
7a22ad75 685
68e13a67 686 assert_rcu_or_pool_mutex();
fa1b54e6 687
112202d9
TH
688 if (data & WORK_STRUCT_PWQ)
689 return ((struct pool_workqueue *)
7c3eed5c 690 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 691
7c3eed5c
TH
692 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
693 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
694 return NULL;
695
fa1b54e6 696 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
697}
698
699/**
700 * get_work_pool_id - return the worker pool ID a given work is associated with
701 * @work: the work item of interest
702 *
d185af30 703 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
704 * %WORK_OFFQ_POOL_NONE if none.
705 */
706static int get_work_pool_id(struct work_struct *work)
707{
54d5b7d0
LJ
708 unsigned long data = atomic_long_read(&work->data);
709
112202d9
TH
710 if (data & WORK_STRUCT_PWQ)
711 return ((struct pool_workqueue *)
54d5b7d0 712 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 713
54d5b7d0 714 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
715}
716
bbb68dfa
TH
717static void mark_work_canceling(struct work_struct *work)
718{
7c3eed5c 719 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 720
7c3eed5c
TH
721 pool_id <<= WORK_OFFQ_POOL_SHIFT;
722 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
723}
724
725static bool work_is_canceling(struct work_struct *work)
726{
727 unsigned long data = atomic_long_read(&work->data);
728
112202d9 729 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
730}
731
e22bee78 732/*
3270476a
TH
733 * Policy functions. These define the policies on how the global worker
734 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 735 * they're being called with pool->lock held.
e22bee78
TH
736 */
737
63d95a91 738static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 739{
e19e397a 740 return !atomic_read(&pool->nr_running);
a848e3b6
ON
741}
742
4594bf15 743/*
e22bee78
TH
744 * Need to wake up a worker? Called from anything but currently
745 * running workers.
974271c4
TH
746 *
747 * Note that, because unbound workers never contribute to nr_running, this
706026c2 748 * function will always return %true for unbound pools as long as the
974271c4 749 * worklist isn't empty.
4594bf15 750 */
63d95a91 751static bool need_more_worker(struct worker_pool *pool)
365970a1 752{
63d95a91 753 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 754}
4594bf15 755
e22bee78 756/* Can I start working? Called from busy but !running workers. */
63d95a91 757static bool may_start_working(struct worker_pool *pool)
e22bee78 758{
63d95a91 759 return pool->nr_idle;
e22bee78
TH
760}
761
762/* Do I need to keep working? Called from currently running workers. */
63d95a91 763static bool keep_working(struct worker_pool *pool)
e22bee78 764{
e19e397a
TH
765 return !list_empty(&pool->worklist) &&
766 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
767}
768
769/* Do we need a new worker? Called from manager. */
63d95a91 770static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 771{
63d95a91 772 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 773}
365970a1 774
e22bee78 775/* Do we have too many workers and should some go away? */
63d95a91 776static bool too_many_workers(struct worker_pool *pool)
e22bee78 777{
34a06bd6 778 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
779 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
780 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
781
782 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
783}
784
4d707b9f 785/*
e22bee78
TH
786 * Wake up functions.
787 */
788
1037de36
LJ
789/* Return the first idle worker. Safe with preemption disabled */
790static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 791{
63d95a91 792 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
793 return NULL;
794
63d95a91 795 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
796}
797
798/**
799 * wake_up_worker - wake up an idle worker
63d95a91 800 * @pool: worker pool to wake worker from
7e11629d 801 *
63d95a91 802 * Wake up the first idle worker of @pool.
7e11629d
TH
803 *
804 * CONTEXT:
d565ed63 805 * spin_lock_irq(pool->lock).
7e11629d 806 */
63d95a91 807static void wake_up_worker(struct worker_pool *pool)
7e11629d 808{
1037de36 809 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
810
811 if (likely(worker))
812 wake_up_process(worker->task);
813}
814
d302f017 815/**
e22bee78
TH
816 * wq_worker_waking_up - a worker is waking up
817 * @task: task waking up
818 * @cpu: CPU @task is waking up to
819 *
820 * This function is called during try_to_wake_up() when a worker is
821 * being awoken.
822 *
823 * CONTEXT:
824 * spin_lock_irq(rq->lock)
825 */
d84ff051 826void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
827{
828 struct worker *worker = kthread_data(task);
829
36576000 830 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 831 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 832 atomic_inc(&worker->pool->nr_running);
36576000 833 }
e22bee78
TH
834}
835
836/**
837 * wq_worker_sleeping - a worker is going to sleep
838 * @task: task going to sleep
839 * @cpu: CPU in question, must be the current CPU number
840 *
841 * This function is called during schedule() when a busy worker is
842 * going to sleep. Worker on the same cpu can be woken up by
843 * returning pointer to its task.
844 *
845 * CONTEXT:
846 * spin_lock_irq(rq->lock)
847 *
d185af30 848 * Return:
e22bee78
TH
849 * Worker task on @cpu to wake up, %NULL if none.
850 */
d84ff051 851struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
852{
853 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 854 struct worker_pool *pool;
e22bee78 855
111c225a
TH
856 /*
857 * Rescuers, which may not have all the fields set up like normal
858 * workers, also reach here, let's not access anything before
859 * checking NOT_RUNNING.
860 */
2d64672e 861 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
862 return NULL;
863
111c225a 864 pool = worker->pool;
111c225a 865
e22bee78 866 /* this can only happen on the local cpu */
92b69f50 867 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 868 return NULL;
e22bee78
TH
869
870 /*
871 * The counterpart of the following dec_and_test, implied mb,
872 * worklist not empty test sequence is in insert_work().
873 * Please read comment there.
874 *
628c78e7
TH
875 * NOT_RUNNING is clear. This means that we're bound to and
876 * running on the local cpu w/ rq lock held and preemption
877 * disabled, which in turn means that none else could be
d565ed63 878 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 879 * lock is safe.
e22bee78 880 */
e19e397a
TH
881 if (atomic_dec_and_test(&pool->nr_running) &&
882 !list_empty(&pool->worklist))
1037de36 883 to_wakeup = first_idle_worker(pool);
e22bee78
TH
884 return to_wakeup ? to_wakeup->task : NULL;
885}
886
887/**
888 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 889 * @worker: self
d302f017 890 * @flags: flags to set
d302f017 891 *
228f1d00 892 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 893 *
cb444766 894 * CONTEXT:
d565ed63 895 * spin_lock_irq(pool->lock)
d302f017 896 */
228f1d00 897static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 898{
bd7bdd43 899 struct worker_pool *pool = worker->pool;
e22bee78 900
cb444766
TH
901 WARN_ON_ONCE(worker->task != current);
902
228f1d00 903 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
904 if ((flags & WORKER_NOT_RUNNING) &&
905 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 906 atomic_dec(&pool->nr_running);
e22bee78
TH
907 }
908
d302f017
TH
909 worker->flags |= flags;
910}
911
912/**
e22bee78 913 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017
TH
915 * @flags: flags to clear
916 *
e22bee78 917 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017
TH
921 */
922static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
923{
63d95a91 924 struct worker_pool *pool = worker->pool;
e22bee78
TH
925 unsigned int oflags = worker->flags;
926
cb444766
TH
927 WARN_ON_ONCE(worker->task != current);
928
d302f017 929 worker->flags &= ~flags;
e22bee78 930
42c025f3
TH
931 /*
932 * If transitioning out of NOT_RUNNING, increment nr_running. Note
933 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
934 * of multiple flags, not a single flag.
935 */
e22bee78
TH
936 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
937 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 938 atomic_inc(&pool->nr_running);
d302f017
TH
939}
940
8cca0eea
TH
941/**
942 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 943 * @pool: pool of interest
8cca0eea
TH
944 * @work: work to find worker for
945 *
c9e7cf27
TH
946 * Find a worker which is executing @work on @pool by searching
947 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
948 * to match, its current execution should match the address of @work and
949 * its work function. This is to avoid unwanted dependency between
950 * unrelated work executions through a work item being recycled while still
951 * being executed.
952 *
953 * This is a bit tricky. A work item may be freed once its execution
954 * starts and nothing prevents the freed area from being recycled for
955 * another work item. If the same work item address ends up being reused
956 * before the original execution finishes, workqueue will identify the
957 * recycled work item as currently executing and make it wait until the
958 * current execution finishes, introducing an unwanted dependency.
959 *
c5aa87bb
TH
960 * This function checks the work item address and work function to avoid
961 * false positives. Note that this isn't complete as one may construct a
962 * work function which can introduce dependency onto itself through a
963 * recycled work item. Well, if somebody wants to shoot oneself in the
964 * foot that badly, there's only so much we can do, and if such deadlock
965 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
966 *
967 * CONTEXT:
d565ed63 968 * spin_lock_irq(pool->lock).
8cca0eea 969 *
d185af30
YB
970 * Return:
971 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 972 * otherwise.
4d707b9f 973 */
c9e7cf27 974static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 975 struct work_struct *work)
4d707b9f 976{
42f8570f 977 struct worker *worker;
42f8570f 978
b67bfe0d 979 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
980 (unsigned long)work)
981 if (worker->current_work == work &&
982 worker->current_func == work->func)
42f8570f
SL
983 return worker;
984
985 return NULL;
4d707b9f
ON
986}
987
bf4ede01
TH
988/**
989 * move_linked_works - move linked works to a list
990 * @work: start of series of works to be scheduled
991 * @head: target list to append @work to
402dd89d 992 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
993 *
994 * Schedule linked works starting from @work to @head. Work series to
995 * be scheduled starts at @work and includes any consecutive work with
996 * WORK_STRUCT_LINKED set in its predecessor.
997 *
998 * If @nextp is not NULL, it's updated to point to the next work of
999 * the last scheduled work. This allows move_linked_works() to be
1000 * nested inside outer list_for_each_entry_safe().
1001 *
1002 * CONTEXT:
d565ed63 1003 * spin_lock_irq(pool->lock).
bf4ede01
TH
1004 */
1005static void move_linked_works(struct work_struct *work, struct list_head *head,
1006 struct work_struct **nextp)
1007{
1008 struct work_struct *n;
1009
1010 /*
1011 * Linked worklist will always end before the end of the list,
1012 * use NULL for list head.
1013 */
1014 list_for_each_entry_safe_from(work, n, NULL, entry) {
1015 list_move_tail(&work->entry, head);
1016 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1017 break;
1018 }
1019
1020 /*
1021 * If we're already inside safe list traversal and have moved
1022 * multiple works to the scheduled queue, the next position
1023 * needs to be updated.
1024 */
1025 if (nextp)
1026 *nextp = n;
1027}
1028
8864b4e5
TH
1029/**
1030 * get_pwq - get an extra reference on the specified pool_workqueue
1031 * @pwq: pool_workqueue to get
1032 *
1033 * Obtain an extra reference on @pwq. The caller should guarantee that
1034 * @pwq has positive refcnt and be holding the matching pool->lock.
1035 */
1036static void get_pwq(struct pool_workqueue *pwq)
1037{
1038 lockdep_assert_held(&pwq->pool->lock);
1039 WARN_ON_ONCE(pwq->refcnt <= 0);
1040 pwq->refcnt++;
1041}
1042
1043/**
1044 * put_pwq - put a pool_workqueue reference
1045 * @pwq: pool_workqueue to put
1046 *
1047 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1048 * destruction. The caller should be holding the matching pool->lock.
1049 */
1050static void put_pwq(struct pool_workqueue *pwq)
1051{
1052 lockdep_assert_held(&pwq->pool->lock);
1053 if (likely(--pwq->refcnt))
1054 return;
1055 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1056 return;
1057 /*
1058 * @pwq can't be released under pool->lock, bounce to
1059 * pwq_unbound_release_workfn(). This never recurses on the same
1060 * pool->lock as this path is taken only for unbound workqueues and
1061 * the release work item is scheduled on a per-cpu workqueue. To
1062 * avoid lockdep warning, unbound pool->locks are given lockdep
1063 * subclass of 1 in get_unbound_pool().
1064 */
1065 schedule_work(&pwq->unbound_release_work);
1066}
1067
dce90d47
TH
1068/**
1069 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1070 * @pwq: pool_workqueue to put (can be %NULL)
1071 *
1072 * put_pwq() with locking. This function also allows %NULL @pwq.
1073 */
1074static void put_pwq_unlocked(struct pool_workqueue *pwq)
1075{
1076 if (pwq) {
1077 /*
1078 * As both pwqs and pools are sched-RCU protected, the
1079 * following lock operations are safe.
1080 */
1081 spin_lock_irq(&pwq->pool->lock);
1082 put_pwq(pwq);
1083 spin_unlock_irq(&pwq->pool->lock);
1084 }
1085}
1086
112202d9 1087static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1088{
112202d9 1089 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1090
1091 trace_workqueue_activate_work(work);
82607adc
TH
1092 if (list_empty(&pwq->pool->worklist))
1093 pwq->pool->watchdog_ts = jiffies;
112202d9 1094 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1095 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1096 pwq->nr_active++;
bf4ede01
TH
1097}
1098
112202d9 1099static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1100{
112202d9 1101 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1102 struct work_struct, entry);
1103
112202d9 1104 pwq_activate_delayed_work(work);
3aa62497
LJ
1105}
1106
bf4ede01 1107/**
112202d9
TH
1108 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1109 * @pwq: pwq of interest
bf4ede01 1110 * @color: color of work which left the queue
bf4ede01
TH
1111 *
1112 * A work either has completed or is removed from pending queue,
112202d9 1113 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1114 *
1115 * CONTEXT:
d565ed63 1116 * spin_lock_irq(pool->lock).
bf4ede01 1117 */
112202d9 1118static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1119{
8864b4e5 1120 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1121 if (color == WORK_NO_COLOR)
8864b4e5 1122 goto out_put;
bf4ede01 1123
112202d9 1124 pwq->nr_in_flight[color]--;
bf4ede01 1125
112202d9
TH
1126 pwq->nr_active--;
1127 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1128 /* one down, submit a delayed one */
112202d9
TH
1129 if (pwq->nr_active < pwq->max_active)
1130 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1131 }
1132
1133 /* is flush in progress and are we at the flushing tip? */
112202d9 1134 if (likely(pwq->flush_color != color))
8864b4e5 1135 goto out_put;
bf4ede01
TH
1136
1137 /* are there still in-flight works? */
112202d9 1138 if (pwq->nr_in_flight[color])
8864b4e5 1139 goto out_put;
bf4ede01 1140
112202d9
TH
1141 /* this pwq is done, clear flush_color */
1142 pwq->flush_color = -1;
bf4ede01
TH
1143
1144 /*
112202d9 1145 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1146 * will handle the rest.
1147 */
112202d9
TH
1148 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1149 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1150out_put:
1151 put_pwq(pwq);
bf4ede01
TH
1152}
1153
36e227d2 1154/**
bbb68dfa 1155 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1156 * @work: work item to steal
1157 * @is_dwork: @work is a delayed_work
bbb68dfa 1158 * @flags: place to store irq state
36e227d2
TH
1159 *
1160 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1161 * stable state - idle, on timer or on worklist.
36e227d2 1162 *
d185af30 1163 * Return:
36e227d2
TH
1164 * 1 if @work was pending and we successfully stole PENDING
1165 * 0 if @work was idle and we claimed PENDING
1166 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1167 * -ENOENT if someone else is canceling @work, this state may persist
1168 * for arbitrarily long
36e227d2 1169 *
d185af30 1170 * Note:
bbb68dfa 1171 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1172 * interrupted while holding PENDING and @work off queue, irq must be
1173 * disabled on entry. This, combined with delayed_work->timer being
1174 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1175 *
1176 * On successful return, >= 0, irq is disabled and the caller is
1177 * responsible for releasing it using local_irq_restore(*@flags).
1178 *
e0aecdd8 1179 * This function is safe to call from any context including IRQ handler.
bf4ede01 1180 */
bbb68dfa
TH
1181static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1182 unsigned long *flags)
bf4ede01 1183{
d565ed63 1184 struct worker_pool *pool;
112202d9 1185 struct pool_workqueue *pwq;
bf4ede01 1186
bbb68dfa
TH
1187 local_irq_save(*flags);
1188
36e227d2
TH
1189 /* try to steal the timer if it exists */
1190 if (is_dwork) {
1191 struct delayed_work *dwork = to_delayed_work(work);
1192
e0aecdd8
TH
1193 /*
1194 * dwork->timer is irqsafe. If del_timer() fails, it's
1195 * guaranteed that the timer is not queued anywhere and not
1196 * running on the local CPU.
1197 */
36e227d2
TH
1198 if (likely(del_timer(&dwork->timer)))
1199 return 1;
1200 }
1201
1202 /* try to claim PENDING the normal way */
bf4ede01
TH
1203 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1204 return 0;
1205
1206 /*
1207 * The queueing is in progress, or it is already queued. Try to
1208 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1209 */
d565ed63
TH
1210 pool = get_work_pool(work);
1211 if (!pool)
bbb68dfa 1212 goto fail;
bf4ede01 1213
d565ed63 1214 spin_lock(&pool->lock);
0b3dae68 1215 /*
112202d9
TH
1216 * work->data is guaranteed to point to pwq only while the work
1217 * item is queued on pwq->wq, and both updating work->data to point
1218 * to pwq on queueing and to pool on dequeueing are done under
1219 * pwq->pool->lock. This in turn guarantees that, if work->data
1220 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1221 * item is currently queued on that pool.
1222 */
112202d9
TH
1223 pwq = get_work_pwq(work);
1224 if (pwq && pwq->pool == pool) {
16062836
TH
1225 debug_work_deactivate(work);
1226
1227 /*
1228 * A delayed work item cannot be grabbed directly because
1229 * it might have linked NO_COLOR work items which, if left
112202d9 1230 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1231 * management later on and cause stall. Make sure the work
1232 * item is activated before grabbing.
1233 */
1234 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1235 pwq_activate_delayed_work(work);
16062836
TH
1236
1237 list_del_init(&work->entry);
9c34a704 1238 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1239
112202d9 1240 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1241 set_work_pool_and_keep_pending(work, pool->id);
1242
1243 spin_unlock(&pool->lock);
1244 return 1;
bf4ede01 1245 }
d565ed63 1246 spin_unlock(&pool->lock);
bbb68dfa
TH
1247fail:
1248 local_irq_restore(*flags);
1249 if (work_is_canceling(work))
1250 return -ENOENT;
1251 cpu_relax();
36e227d2 1252 return -EAGAIN;
bf4ede01
TH
1253}
1254
4690c4ab 1255/**
706026c2 1256 * insert_work - insert a work into a pool
112202d9 1257 * @pwq: pwq @work belongs to
4690c4ab
TH
1258 * @work: work to insert
1259 * @head: insertion point
1260 * @extra_flags: extra WORK_STRUCT_* flags to set
1261 *
112202d9 1262 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1263 * work_struct flags.
4690c4ab
TH
1264 *
1265 * CONTEXT:
d565ed63 1266 * spin_lock_irq(pool->lock).
4690c4ab 1267 */
112202d9
TH
1268static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1269 struct list_head *head, unsigned int extra_flags)
b89deed3 1270{
112202d9 1271 struct worker_pool *pool = pwq->pool;
e22bee78 1272
4690c4ab 1273 /* we own @work, set data and link */
112202d9 1274 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1275 list_add_tail(&work->entry, head);
8864b4e5 1276 get_pwq(pwq);
e22bee78
TH
1277
1278 /*
c5aa87bb
TH
1279 * Ensure either wq_worker_sleeping() sees the above
1280 * list_add_tail() or we see zero nr_running to avoid workers lying
1281 * around lazily while there are works to be processed.
e22bee78
TH
1282 */
1283 smp_mb();
1284
63d95a91
TH
1285 if (__need_more_worker(pool))
1286 wake_up_worker(pool);
b89deed3
ON
1287}
1288
c8efcc25
TH
1289/*
1290 * Test whether @work is being queued from another work executing on the
8d03ecfe 1291 * same workqueue.
c8efcc25
TH
1292 */
1293static bool is_chained_work(struct workqueue_struct *wq)
1294{
8d03ecfe
TH
1295 struct worker *worker;
1296
1297 worker = current_wq_worker();
1298 /*
1299 * Return %true iff I'm a worker execuing a work item on @wq. If
1300 * I'm @worker, it's safe to dereference it without locking.
1301 */
112202d9 1302 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1303}
1304
ef557180
MG
1305/*
1306 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1307 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1308 * avoid perturbing sensitive tasks.
1309 */
1310static int wq_select_unbound_cpu(int cpu)
1311{
1312 int new_cpu;
1313
1314 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1315 return cpu;
1316 if (cpumask_empty(wq_unbound_cpumask))
1317 return cpu;
1318
1319 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1320 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1321 if (unlikely(new_cpu >= nr_cpu_ids)) {
1322 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1323 if (unlikely(new_cpu >= nr_cpu_ids))
1324 return cpu;
1325 }
1326 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1327
1328 return new_cpu;
1329}
1330
d84ff051 1331static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1332 struct work_struct *work)
1333{
112202d9 1334 struct pool_workqueue *pwq;
c9178087 1335 struct worker_pool *last_pool;
1e19ffc6 1336 struct list_head *worklist;
8a2e8e5d 1337 unsigned int work_flags;
b75cac93 1338 unsigned int req_cpu = cpu;
8930caba
TH
1339
1340 /*
1341 * While a work item is PENDING && off queue, a task trying to
1342 * steal the PENDING will busy-loop waiting for it to either get
1343 * queued or lose PENDING. Grabbing PENDING and queueing should
1344 * happen with IRQ disabled.
1345 */
1346 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1347
dc186ad7 1348 debug_work_activate(work);
1e19ffc6 1349
9ef28a73 1350 /* if draining, only works from the same workqueue are allowed */
618b01eb 1351 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1352 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1353 return;
9e8cd2f5 1354retry:
df2d5ae4 1355 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1356 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1357
c9178087 1358 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1359 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1360 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1361 else
1362 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1363
c9178087
TH
1364 /*
1365 * If @work was previously on a different pool, it might still be
1366 * running there, in which case the work needs to be queued on that
1367 * pool to guarantee non-reentrancy.
1368 */
1369 last_pool = get_work_pool(work);
1370 if (last_pool && last_pool != pwq->pool) {
1371 struct worker *worker;
18aa9eff 1372
c9178087 1373 spin_lock(&last_pool->lock);
18aa9eff 1374
c9178087 1375 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1376
c9178087
TH
1377 if (worker && worker->current_pwq->wq == wq) {
1378 pwq = worker->current_pwq;
8930caba 1379 } else {
c9178087
TH
1380 /* meh... not running there, queue here */
1381 spin_unlock(&last_pool->lock);
112202d9 1382 spin_lock(&pwq->pool->lock);
8930caba 1383 }
f3421797 1384 } else {
112202d9 1385 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1386 }
1387
9e8cd2f5
TH
1388 /*
1389 * pwq is determined and locked. For unbound pools, we could have
1390 * raced with pwq release and it could already be dead. If its
1391 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1392 * without another pwq replacing it in the numa_pwq_tbl or while
1393 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1394 * make forward-progress.
1395 */
1396 if (unlikely(!pwq->refcnt)) {
1397 if (wq->flags & WQ_UNBOUND) {
1398 spin_unlock(&pwq->pool->lock);
1399 cpu_relax();
1400 goto retry;
1401 }
1402 /* oops */
1403 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1404 wq->name, cpu);
1405 }
1406
112202d9
TH
1407 /* pwq determined, queue */
1408 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1409
f5b2552b 1410 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1411 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1412 return;
1413 }
1e19ffc6 1414
112202d9
TH
1415 pwq->nr_in_flight[pwq->work_color]++;
1416 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1417
112202d9 1418 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1419 trace_workqueue_activate_work(work);
112202d9
TH
1420 pwq->nr_active++;
1421 worklist = &pwq->pool->worklist;
82607adc
TH
1422 if (list_empty(worklist))
1423 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1424 } else {
1425 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1426 worklist = &pwq->delayed_works;
8a2e8e5d 1427 }
1e19ffc6 1428
112202d9 1429 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1430
112202d9 1431 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1432}
1433
0fcb78c2 1434/**
c1a220e7
ZR
1435 * queue_work_on - queue work on specific cpu
1436 * @cpu: CPU number to execute work on
0fcb78c2
REB
1437 * @wq: workqueue to use
1438 * @work: work to queue
1439 *
c1a220e7
ZR
1440 * We queue the work to a specific CPU, the caller must ensure it
1441 * can't go away.
d185af30
YB
1442 *
1443 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1444 */
d4283e93
TH
1445bool queue_work_on(int cpu, struct workqueue_struct *wq,
1446 struct work_struct *work)
1da177e4 1447{
d4283e93 1448 bool ret = false;
8930caba 1449 unsigned long flags;
ef1ca236 1450
8930caba 1451 local_irq_save(flags);
c1a220e7 1452
22df02bb 1453 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1454 __queue_work(cpu, wq, work);
d4283e93 1455 ret = true;
c1a220e7 1456 }
ef1ca236 1457
8930caba 1458 local_irq_restore(flags);
1da177e4
LT
1459 return ret;
1460}
ad7b1f84 1461EXPORT_SYMBOL(queue_work_on);
1da177e4 1462
d8e794df 1463void delayed_work_timer_fn(unsigned long __data)
1da177e4 1464{
52bad64d 1465 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1466
e0aecdd8 1467 /* should have been called from irqsafe timer with irq already off */
60c057bc 1468 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1469}
1438ade5 1470EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1471
7beb2edf
TH
1472static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1473 struct delayed_work *dwork, unsigned long delay)
1da177e4 1474{
7beb2edf
TH
1475 struct timer_list *timer = &dwork->timer;
1476 struct work_struct *work = &dwork->work;
7beb2edf
TH
1477
1478 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1479 timer->data != (unsigned long)dwork);
fc4b514f
TH
1480 WARN_ON_ONCE(timer_pending(timer));
1481 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1482
8852aac2
TH
1483 /*
1484 * If @delay is 0, queue @dwork->work immediately. This is for
1485 * both optimization and correctness. The earliest @timer can
1486 * expire is on the closest next tick and delayed_work users depend
1487 * on that there's no such delay when @delay is 0.
1488 */
1489 if (!delay) {
1490 __queue_work(cpu, wq, &dwork->work);
1491 return;
1492 }
1493
7beb2edf 1494 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1495
60c057bc 1496 dwork->wq = wq;
1265057f 1497 dwork->cpu = cpu;
7beb2edf
TH
1498 timer->expires = jiffies + delay;
1499
041bd12e
TH
1500 if (unlikely(cpu != WORK_CPU_UNBOUND))
1501 add_timer_on(timer, cpu);
1502 else
1503 add_timer(timer);
1da177e4
LT
1504}
1505
0fcb78c2
REB
1506/**
1507 * queue_delayed_work_on - queue work on specific CPU after delay
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
af9997e4 1510 * @dwork: work to queue
0fcb78c2
REB
1511 * @delay: number of jiffies to wait before queueing
1512 *
d185af30 1513 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1514 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1515 * execution.
0fcb78c2 1516 */
d4283e93
TH
1517bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1519{
52bad64d 1520 struct work_struct *work = &dwork->work;
d4283e93 1521 bool ret = false;
8930caba 1522 unsigned long flags;
7a6bc1cd 1523
8930caba
TH
1524 /* read the comment in __queue_work() */
1525 local_irq_save(flags);
7a6bc1cd 1526
22df02bb 1527 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1528 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1529 ret = true;
7a6bc1cd 1530 }
8a3e77cc 1531
8930caba 1532 local_irq_restore(flags);
7a6bc1cd
VP
1533 return ret;
1534}
ad7b1f84 1535EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1536
8376fe22
TH
1537/**
1538 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1539 * @cpu: CPU number to execute work on
1540 * @wq: workqueue to use
1541 * @dwork: work to queue
1542 * @delay: number of jiffies to wait before queueing
1543 *
1544 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1545 * modify @dwork's timer so that it expires after @delay. If @delay is
1546 * zero, @work is guaranteed to be scheduled immediately regardless of its
1547 * current state.
1548 *
d185af30 1549 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1550 * pending and its timer was modified.
1551 *
e0aecdd8 1552 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1553 * See try_to_grab_pending() for details.
1554 */
1555bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1556 struct delayed_work *dwork, unsigned long delay)
1557{
1558 unsigned long flags;
1559 int ret;
c7fc77f7 1560
8376fe22
TH
1561 do {
1562 ret = try_to_grab_pending(&dwork->work, true, &flags);
1563 } while (unlikely(ret == -EAGAIN));
63bc0362 1564
8376fe22
TH
1565 if (likely(ret >= 0)) {
1566 __queue_delayed_work(cpu, wq, dwork, delay);
1567 local_irq_restore(flags);
7a6bc1cd 1568 }
8376fe22
TH
1569
1570 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1571 return ret;
1572}
8376fe22
TH
1573EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1574
c8e55f36
TH
1575/**
1576 * worker_enter_idle - enter idle state
1577 * @worker: worker which is entering idle state
1578 *
1579 * @worker is entering idle state. Update stats and idle timer if
1580 * necessary.
1581 *
1582 * LOCKING:
d565ed63 1583 * spin_lock_irq(pool->lock).
c8e55f36
TH
1584 */
1585static void worker_enter_idle(struct worker *worker)
1da177e4 1586{
bd7bdd43 1587 struct worker_pool *pool = worker->pool;
c8e55f36 1588
6183c009
TH
1589 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1590 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1591 (worker->hentry.next || worker->hentry.pprev)))
1592 return;
c8e55f36 1593
051e1850 1594 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1595 worker->flags |= WORKER_IDLE;
bd7bdd43 1596 pool->nr_idle++;
e22bee78 1597 worker->last_active = jiffies;
c8e55f36
TH
1598
1599 /* idle_list is LIFO */
bd7bdd43 1600 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1601
628c78e7
TH
1602 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1603 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1604
544ecf31 1605 /*
706026c2 1606 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1607 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1608 * nr_running, the warning may trigger spuriously. Check iff
1609 * unbind is not in progress.
544ecf31 1610 */
24647570 1611 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1612 pool->nr_workers == pool->nr_idle &&
e19e397a 1613 atomic_read(&pool->nr_running));
c8e55f36
TH
1614}
1615
1616/**
1617 * worker_leave_idle - leave idle state
1618 * @worker: worker which is leaving idle state
1619 *
1620 * @worker is leaving idle state. Update stats.
1621 *
1622 * LOCKING:
d565ed63 1623 * spin_lock_irq(pool->lock).
c8e55f36
TH
1624 */
1625static void worker_leave_idle(struct worker *worker)
1626{
bd7bdd43 1627 struct worker_pool *pool = worker->pool;
c8e55f36 1628
6183c009
TH
1629 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1630 return;
d302f017 1631 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1632 pool->nr_idle--;
c8e55f36
TH
1633 list_del_init(&worker->entry);
1634}
1635
f7537df5 1636static struct worker *alloc_worker(int node)
c34056a3
TH
1637{
1638 struct worker *worker;
1639
f7537df5 1640 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1641 if (worker) {
1642 INIT_LIST_HEAD(&worker->entry);
affee4b2 1643 INIT_LIST_HEAD(&worker->scheduled);
da028469 1644 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1645 /* on creation a worker is in !idle && prep state */
1646 worker->flags = WORKER_PREP;
c8e55f36 1647 }
c34056a3
TH
1648 return worker;
1649}
1650
4736cbf7
LJ
1651/**
1652 * worker_attach_to_pool() - attach a worker to a pool
1653 * @worker: worker to be attached
1654 * @pool: the target pool
1655 *
1656 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1657 * cpu-binding of @worker are kept coordinated with the pool across
1658 * cpu-[un]hotplugs.
1659 */
1660static void worker_attach_to_pool(struct worker *worker,
1661 struct worker_pool *pool)
1662{
1663 mutex_lock(&pool->attach_mutex);
1664
1665 /*
1666 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1667 * online CPUs. It'll be re-applied when any of the CPUs come up.
1668 */
1669 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1670
1671 /*
1672 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1673 * stable across this function. See the comments above the
1674 * flag definition for details.
1675 */
1676 if (pool->flags & POOL_DISASSOCIATED)
1677 worker->flags |= WORKER_UNBOUND;
1678
1679 list_add_tail(&worker->node, &pool->workers);
1680
1681 mutex_unlock(&pool->attach_mutex);
1682}
1683
60f5a4bc
LJ
1684/**
1685 * worker_detach_from_pool() - detach a worker from its pool
1686 * @worker: worker which is attached to its pool
1687 * @pool: the pool @worker is attached to
1688 *
4736cbf7
LJ
1689 * Undo the attaching which had been done in worker_attach_to_pool(). The
1690 * caller worker shouldn't access to the pool after detached except it has
1691 * other reference to the pool.
60f5a4bc
LJ
1692 */
1693static void worker_detach_from_pool(struct worker *worker,
1694 struct worker_pool *pool)
1695{
1696 struct completion *detach_completion = NULL;
1697
92f9c5c4 1698 mutex_lock(&pool->attach_mutex);
da028469
LJ
1699 list_del(&worker->node);
1700 if (list_empty(&pool->workers))
60f5a4bc 1701 detach_completion = pool->detach_completion;
92f9c5c4 1702 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1703
b62c0751
LJ
1704 /* clear leftover flags without pool->lock after it is detached */
1705 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1706
60f5a4bc
LJ
1707 if (detach_completion)
1708 complete(detach_completion);
1709}
1710
c34056a3
TH
1711/**
1712 * create_worker - create a new workqueue worker
63d95a91 1713 * @pool: pool the new worker will belong to
c34056a3 1714 *
051e1850 1715 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1716 *
1717 * CONTEXT:
1718 * Might sleep. Does GFP_KERNEL allocations.
1719 *
d185af30 1720 * Return:
c34056a3
TH
1721 * Pointer to the newly created worker.
1722 */
bc2ae0f5 1723static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1724{
c34056a3 1725 struct worker *worker = NULL;
f3421797 1726 int id = -1;
e3c916a4 1727 char id_buf[16];
c34056a3 1728
7cda9aae
LJ
1729 /* ID is needed to determine kthread name */
1730 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1731 if (id < 0)
1732 goto fail;
c34056a3 1733
f7537df5 1734 worker = alloc_worker(pool->node);
c34056a3
TH
1735 if (!worker)
1736 goto fail;
1737
bd7bdd43 1738 worker->pool = pool;
c34056a3
TH
1739 worker->id = id;
1740
29c91e99 1741 if (pool->cpu >= 0)
e3c916a4
TH
1742 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1743 pool->attrs->nice < 0 ? "H" : "");
f3421797 1744 else
e3c916a4
TH
1745 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1746
f3f90ad4 1747 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1748 "kworker/%s", id_buf);
c34056a3
TH
1749 if (IS_ERR(worker->task))
1750 goto fail;
1751
91151228 1752 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1753 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1754
da028469 1755 /* successful, attach the worker to the pool */
4736cbf7 1756 worker_attach_to_pool(worker, pool);
822d8405 1757
051e1850
LJ
1758 /* start the newly created worker */
1759 spin_lock_irq(&pool->lock);
1760 worker->pool->nr_workers++;
1761 worker_enter_idle(worker);
1762 wake_up_process(worker->task);
1763 spin_unlock_irq(&pool->lock);
1764
c34056a3 1765 return worker;
822d8405 1766
c34056a3 1767fail:
9625ab17 1768 if (id >= 0)
7cda9aae 1769 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1770 kfree(worker);
1771 return NULL;
1772}
1773
c34056a3
TH
1774/**
1775 * destroy_worker - destroy a workqueue worker
1776 * @worker: worker to be destroyed
1777 *
73eb7fe7
LJ
1778 * Destroy @worker and adjust @pool stats accordingly. The worker should
1779 * be idle.
c8e55f36
TH
1780 *
1781 * CONTEXT:
60f5a4bc 1782 * spin_lock_irq(pool->lock).
c34056a3
TH
1783 */
1784static void destroy_worker(struct worker *worker)
1785{
bd7bdd43 1786 struct worker_pool *pool = worker->pool;
c34056a3 1787
cd549687
TH
1788 lockdep_assert_held(&pool->lock);
1789
c34056a3 1790 /* sanity check frenzy */
6183c009 1791 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1792 WARN_ON(!list_empty(&worker->scheduled)) ||
1793 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1794 return;
c34056a3 1795
73eb7fe7
LJ
1796 pool->nr_workers--;
1797 pool->nr_idle--;
5bdfff96 1798
c8e55f36 1799 list_del_init(&worker->entry);
cb444766 1800 worker->flags |= WORKER_DIE;
60f5a4bc 1801 wake_up_process(worker->task);
c34056a3
TH
1802}
1803
63d95a91 1804static void idle_worker_timeout(unsigned long __pool)
e22bee78 1805{
63d95a91 1806 struct worker_pool *pool = (void *)__pool;
e22bee78 1807
d565ed63 1808 spin_lock_irq(&pool->lock);
e22bee78 1809
3347fc9f 1810 while (too_many_workers(pool)) {
e22bee78
TH
1811 struct worker *worker;
1812 unsigned long expires;
1813
1814 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1815 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1816 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1817
3347fc9f 1818 if (time_before(jiffies, expires)) {
63d95a91 1819 mod_timer(&pool->idle_timer, expires);
3347fc9f 1820 break;
d5abe669 1821 }
3347fc9f
LJ
1822
1823 destroy_worker(worker);
e22bee78
TH
1824 }
1825
d565ed63 1826 spin_unlock_irq(&pool->lock);
e22bee78 1827}
d5abe669 1828
493a1724 1829static void send_mayday(struct work_struct *work)
e22bee78 1830{
112202d9
TH
1831 struct pool_workqueue *pwq = get_work_pwq(work);
1832 struct workqueue_struct *wq = pwq->wq;
493a1724 1833
2e109a28 1834 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1835
493008a8 1836 if (!wq->rescuer)
493a1724 1837 return;
e22bee78
TH
1838
1839 /* mayday mayday mayday */
493a1724 1840 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1841 /*
1842 * If @pwq is for an unbound wq, its base ref may be put at
1843 * any time due to an attribute change. Pin @pwq until the
1844 * rescuer is done with it.
1845 */
1846 get_pwq(pwq);
493a1724 1847 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1848 wake_up_process(wq->rescuer->task);
493a1724 1849 }
e22bee78
TH
1850}
1851
706026c2 1852static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1853{
63d95a91 1854 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1855 struct work_struct *work;
1856
b2d82909
TH
1857 spin_lock_irq(&pool->lock);
1858 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1859
63d95a91 1860 if (need_to_create_worker(pool)) {
e22bee78
TH
1861 /*
1862 * We've been trying to create a new worker but
1863 * haven't been successful. We might be hitting an
1864 * allocation deadlock. Send distress signals to
1865 * rescuers.
1866 */
63d95a91 1867 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1868 send_mayday(work);
1da177e4 1869 }
e22bee78 1870
b2d82909
TH
1871 spin_unlock(&wq_mayday_lock);
1872 spin_unlock_irq(&pool->lock);
e22bee78 1873
63d95a91 1874 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1875}
1876
e22bee78
TH
1877/**
1878 * maybe_create_worker - create a new worker if necessary
63d95a91 1879 * @pool: pool to create a new worker for
e22bee78 1880 *
63d95a91 1881 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1882 * have at least one idle worker on return from this function. If
1883 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1884 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1885 * possible allocation deadlock.
1886 *
c5aa87bb
TH
1887 * On return, need_to_create_worker() is guaranteed to be %false and
1888 * may_start_working() %true.
e22bee78
TH
1889 *
1890 * LOCKING:
d565ed63 1891 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1892 * multiple times. Does GFP_KERNEL allocations. Called only from
1893 * manager.
e22bee78 1894 */
29187a9e 1895static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1896__releases(&pool->lock)
1897__acquires(&pool->lock)
1da177e4 1898{
e22bee78 1899restart:
d565ed63 1900 spin_unlock_irq(&pool->lock);
9f9c2364 1901
e22bee78 1902 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1903 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1904
1905 while (true) {
051e1850 1906 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1907 break;
1da177e4 1908
e212f361 1909 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1910
63d95a91 1911 if (!need_to_create_worker(pool))
e22bee78
TH
1912 break;
1913 }
1914
63d95a91 1915 del_timer_sync(&pool->mayday_timer);
d565ed63 1916 spin_lock_irq(&pool->lock);
051e1850
LJ
1917 /*
1918 * This is necessary even after a new worker was just successfully
1919 * created as @pool->lock was dropped and the new worker might have
1920 * already become busy.
1921 */
63d95a91 1922 if (need_to_create_worker(pool))
e22bee78 1923 goto restart;
e22bee78
TH
1924}
1925
73f53c4a 1926/**
e22bee78
TH
1927 * manage_workers - manage worker pool
1928 * @worker: self
73f53c4a 1929 *
706026c2 1930 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1931 * to. At any given time, there can be only zero or one manager per
706026c2 1932 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1933 *
1934 * The caller can safely start processing works on false return. On
1935 * true return, it's guaranteed that need_to_create_worker() is false
1936 * and may_start_working() is true.
73f53c4a
TH
1937 *
1938 * CONTEXT:
d565ed63 1939 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1940 * multiple times. Does GFP_KERNEL allocations.
1941 *
d185af30 1942 * Return:
29187a9e
TH
1943 * %false if the pool doesn't need management and the caller can safely
1944 * start processing works, %true if management function was performed and
1945 * the conditions that the caller verified before calling the function may
1946 * no longer be true.
73f53c4a 1947 */
e22bee78 1948static bool manage_workers(struct worker *worker)
73f53c4a 1949{
63d95a91 1950 struct worker_pool *pool = worker->pool;
73f53c4a 1951
bc3a1afc 1952 /*
bc3a1afc
TH
1953 * Anyone who successfully grabs manager_arb wins the arbitration
1954 * and becomes the manager. mutex_trylock() on pool->manager_arb
1955 * failure while holding pool->lock reliably indicates that someone
1956 * else is managing the pool and the worker which failed trylock
1957 * can proceed to executing work items. This means that anyone
1958 * grabbing manager_arb is responsible for actually performing
1959 * manager duties. If manager_arb is grabbed and released without
1960 * actual management, the pool may stall indefinitely.
bc3a1afc 1961 */
34a06bd6 1962 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1963 return false;
2607d7a6 1964 pool->manager = worker;
1e19ffc6 1965
29187a9e 1966 maybe_create_worker(pool);
e22bee78 1967
2607d7a6 1968 pool->manager = NULL;
34a06bd6 1969 mutex_unlock(&pool->manager_arb);
29187a9e 1970 return true;
73f53c4a
TH
1971}
1972
a62428c0
TH
1973/**
1974 * process_one_work - process single work
c34056a3 1975 * @worker: self
a62428c0
TH
1976 * @work: work to process
1977 *
1978 * Process @work. This function contains all the logics necessary to
1979 * process a single work including synchronization against and
1980 * interaction with other workers on the same cpu, queueing and
1981 * flushing. As long as context requirement is met, any worker can
1982 * call this function to process a work.
1983 *
1984 * CONTEXT:
d565ed63 1985 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1986 */
c34056a3 1987static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1988__releases(&pool->lock)
1989__acquires(&pool->lock)
a62428c0 1990{
112202d9 1991 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1992 struct worker_pool *pool = worker->pool;
112202d9 1993 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1994 int work_color;
7e11629d 1995 struct worker *collision;
a62428c0
TH
1996#ifdef CONFIG_LOCKDEP
1997 /*
1998 * It is permissible to free the struct work_struct from
1999 * inside the function that is called from it, this we need to
2000 * take into account for lockdep too. To avoid bogus "held
2001 * lock freed" warnings as well as problems when looking into
2002 * work->lockdep_map, make a copy and use that here.
2003 */
4d82a1de
PZ
2004 struct lockdep_map lockdep_map;
2005
2006 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2007#endif
807407c0 2008 /* ensure we're on the correct CPU */
85327af6 2009 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2010 raw_smp_processor_id() != pool->cpu);
25511a47 2011
7e11629d
TH
2012 /*
2013 * A single work shouldn't be executed concurrently by
2014 * multiple workers on a single cpu. Check whether anyone is
2015 * already processing the work. If so, defer the work to the
2016 * currently executing one.
2017 */
c9e7cf27 2018 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2019 if (unlikely(collision)) {
2020 move_linked_works(work, &collision->scheduled, NULL);
2021 return;
2022 }
2023
8930caba 2024 /* claim and dequeue */
a62428c0 2025 debug_work_deactivate(work);
c9e7cf27 2026 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2027 worker->current_work = work;
a2c1c57b 2028 worker->current_func = work->func;
112202d9 2029 worker->current_pwq = pwq;
73f53c4a 2030 work_color = get_work_color(work);
7a22ad75 2031
a62428c0
TH
2032 list_del_init(&work->entry);
2033
fb0e7beb 2034 /*
228f1d00
LJ
2035 * CPU intensive works don't participate in concurrency management.
2036 * They're the scheduler's responsibility. This takes @worker out
2037 * of concurrency management and the next code block will chain
2038 * execution of the pending work items.
fb0e7beb
TH
2039 */
2040 if (unlikely(cpu_intensive))
228f1d00 2041 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2042
974271c4 2043 /*
a489a03e
LJ
2044 * Wake up another worker if necessary. The condition is always
2045 * false for normal per-cpu workers since nr_running would always
2046 * be >= 1 at this point. This is used to chain execution of the
2047 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2048 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2049 */
a489a03e 2050 if (need_more_worker(pool))
63d95a91 2051 wake_up_worker(pool);
974271c4 2052
8930caba 2053 /*
7c3eed5c 2054 * Record the last pool and clear PENDING which should be the last
d565ed63 2055 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2056 * PENDING and queued state changes happen together while IRQ is
2057 * disabled.
8930caba 2058 */
7c3eed5c 2059 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2060
d565ed63 2061 spin_unlock_irq(&pool->lock);
a62428c0 2062
112202d9 2063 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2064 lock_map_acquire(&lockdep_map);
e36c886a 2065 trace_workqueue_execute_start(work);
a2c1c57b 2066 worker->current_func(work);
e36c886a
AV
2067 /*
2068 * While we must be careful to not use "work" after this, the trace
2069 * point will only record its address.
2070 */
2071 trace_workqueue_execute_end(work);
a62428c0 2072 lock_map_release(&lockdep_map);
112202d9 2073 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2074
2075 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2076 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2077 " last function: %pf\n",
a2c1c57b
TH
2078 current->comm, preempt_count(), task_pid_nr(current),
2079 worker->current_func);
a62428c0
TH
2080 debug_show_held_locks(current);
2081 dump_stack();
2082 }
2083
b22ce278
TH
2084 /*
2085 * The following prevents a kworker from hogging CPU on !PREEMPT
2086 * kernels, where a requeueing work item waiting for something to
2087 * happen could deadlock with stop_machine as such work item could
2088 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2089 * stop_machine. At the same time, report a quiescent RCU state so
2090 * the same condition doesn't freeze RCU.
b22ce278 2091 */
3e28e377 2092 cond_resched_rcu_qs();
b22ce278 2093
d565ed63 2094 spin_lock_irq(&pool->lock);
a62428c0 2095
fb0e7beb
TH
2096 /* clear cpu intensive status */
2097 if (unlikely(cpu_intensive))
2098 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2099
a62428c0 2100 /* we're done with it, release */
42f8570f 2101 hash_del(&worker->hentry);
c34056a3 2102 worker->current_work = NULL;
a2c1c57b 2103 worker->current_func = NULL;
112202d9 2104 worker->current_pwq = NULL;
3d1cb205 2105 worker->desc_valid = false;
112202d9 2106 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2107}
2108
affee4b2
TH
2109/**
2110 * process_scheduled_works - process scheduled works
2111 * @worker: self
2112 *
2113 * Process all scheduled works. Please note that the scheduled list
2114 * may change while processing a work, so this function repeatedly
2115 * fetches a work from the top and executes it.
2116 *
2117 * CONTEXT:
d565ed63 2118 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2119 * multiple times.
2120 */
2121static void process_scheduled_works(struct worker *worker)
1da177e4 2122{
affee4b2
TH
2123 while (!list_empty(&worker->scheduled)) {
2124 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2125 struct work_struct, entry);
c34056a3 2126 process_one_work(worker, work);
1da177e4 2127 }
1da177e4
LT
2128}
2129
4690c4ab
TH
2130/**
2131 * worker_thread - the worker thread function
c34056a3 2132 * @__worker: self
4690c4ab 2133 *
c5aa87bb
TH
2134 * The worker thread function. All workers belong to a worker_pool -
2135 * either a per-cpu one or dynamic unbound one. These workers process all
2136 * work items regardless of their specific target workqueue. The only
2137 * exception is work items which belong to workqueues with a rescuer which
2138 * will be explained in rescuer_thread().
d185af30
YB
2139 *
2140 * Return: 0
4690c4ab 2141 */
c34056a3 2142static int worker_thread(void *__worker)
1da177e4 2143{
c34056a3 2144 struct worker *worker = __worker;
bd7bdd43 2145 struct worker_pool *pool = worker->pool;
1da177e4 2146
e22bee78
TH
2147 /* tell the scheduler that this is a workqueue worker */
2148 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2149woke_up:
d565ed63 2150 spin_lock_irq(&pool->lock);
1da177e4 2151
a9ab775b
TH
2152 /* am I supposed to die? */
2153 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2154 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2155 WARN_ON_ONCE(!list_empty(&worker->entry));
2156 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2157
2158 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2159 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2160 worker_detach_from_pool(worker, pool);
2161 kfree(worker);
a9ab775b 2162 return 0;
c8e55f36 2163 }
affee4b2 2164
c8e55f36 2165 worker_leave_idle(worker);
db7bccf4 2166recheck:
e22bee78 2167 /* no more worker necessary? */
63d95a91 2168 if (!need_more_worker(pool))
e22bee78
TH
2169 goto sleep;
2170
2171 /* do we need to manage? */
63d95a91 2172 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2173 goto recheck;
2174
c8e55f36
TH
2175 /*
2176 * ->scheduled list can only be filled while a worker is
2177 * preparing to process a work or actually processing it.
2178 * Make sure nobody diddled with it while I was sleeping.
2179 */
6183c009 2180 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2181
e22bee78 2182 /*
a9ab775b
TH
2183 * Finish PREP stage. We're guaranteed to have at least one idle
2184 * worker or that someone else has already assumed the manager
2185 * role. This is where @worker starts participating in concurrency
2186 * management if applicable and concurrency management is restored
2187 * after being rebound. See rebind_workers() for details.
e22bee78 2188 */
a9ab775b 2189 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2190
2191 do {
c8e55f36 2192 struct work_struct *work =
bd7bdd43 2193 list_first_entry(&pool->worklist,
c8e55f36
TH
2194 struct work_struct, entry);
2195
82607adc
TH
2196 pool->watchdog_ts = jiffies;
2197
c8e55f36
TH
2198 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2199 /* optimization path, not strictly necessary */
2200 process_one_work(worker, work);
2201 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2202 process_scheduled_works(worker);
c8e55f36
TH
2203 } else {
2204 move_linked_works(work, &worker->scheduled, NULL);
2205 process_scheduled_works(worker);
affee4b2 2206 }
63d95a91 2207 } while (keep_working(pool));
e22bee78 2208
228f1d00 2209 worker_set_flags(worker, WORKER_PREP);
d313dd85 2210sleep:
c8e55f36 2211 /*
d565ed63
TH
2212 * pool->lock is held and there's no work to process and no need to
2213 * manage, sleep. Workers are woken up only while holding
2214 * pool->lock or from local cpu, so setting the current state
2215 * before releasing pool->lock is enough to prevent losing any
2216 * event.
c8e55f36
TH
2217 */
2218 worker_enter_idle(worker);
2219 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2220 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2221 schedule();
2222 goto woke_up;
1da177e4
LT
2223}
2224
e22bee78
TH
2225/**
2226 * rescuer_thread - the rescuer thread function
111c225a 2227 * @__rescuer: self
e22bee78
TH
2228 *
2229 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2230 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2231 *
706026c2 2232 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2233 * worker which uses GFP_KERNEL allocation which has slight chance of
2234 * developing into deadlock if some works currently on the same queue
2235 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2236 * the problem rescuer solves.
2237 *
706026c2
TH
2238 * When such condition is possible, the pool summons rescuers of all
2239 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2240 * those works so that forward progress can be guaranteed.
2241 *
2242 * This should happen rarely.
d185af30
YB
2243 *
2244 * Return: 0
e22bee78 2245 */
111c225a 2246static int rescuer_thread(void *__rescuer)
e22bee78 2247{
111c225a
TH
2248 struct worker *rescuer = __rescuer;
2249 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2250 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2251 bool should_stop;
e22bee78
TH
2252
2253 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2254
2255 /*
2256 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2257 * doesn't participate in concurrency management.
2258 */
2259 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2260repeat:
2261 set_current_state(TASK_INTERRUPTIBLE);
2262
4d595b86
LJ
2263 /*
2264 * By the time the rescuer is requested to stop, the workqueue
2265 * shouldn't have any work pending, but @wq->maydays may still have
2266 * pwq(s) queued. This can happen by non-rescuer workers consuming
2267 * all the work items before the rescuer got to them. Go through
2268 * @wq->maydays processing before acting on should_stop so that the
2269 * list is always empty on exit.
2270 */
2271 should_stop = kthread_should_stop();
e22bee78 2272
493a1724 2273 /* see whether any pwq is asking for help */
2e109a28 2274 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2275
2276 while (!list_empty(&wq->maydays)) {
2277 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2278 struct pool_workqueue, mayday_node);
112202d9 2279 struct worker_pool *pool = pwq->pool;
e22bee78 2280 struct work_struct *work, *n;
82607adc 2281 bool first = true;
e22bee78
TH
2282
2283 __set_current_state(TASK_RUNNING);
493a1724
TH
2284 list_del_init(&pwq->mayday_node);
2285
2e109a28 2286 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2287
51697d39
LJ
2288 worker_attach_to_pool(rescuer, pool);
2289
2290 spin_lock_irq(&pool->lock);
b3104104 2291 rescuer->pool = pool;
e22bee78
TH
2292
2293 /*
2294 * Slurp in all works issued via this workqueue and
2295 * process'em.
2296 */
0479c8c5 2297 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2298 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2299 if (get_work_pwq(work) == pwq) {
2300 if (first)
2301 pool->watchdog_ts = jiffies;
e22bee78 2302 move_linked_works(work, scheduled, &n);
82607adc
TH
2303 }
2304 first = false;
2305 }
e22bee78 2306
008847f6
N
2307 if (!list_empty(scheduled)) {
2308 process_scheduled_works(rescuer);
2309
2310 /*
2311 * The above execution of rescued work items could
2312 * have created more to rescue through
2313 * pwq_activate_first_delayed() or chained
2314 * queueing. Let's put @pwq back on mayday list so
2315 * that such back-to-back work items, which may be
2316 * being used to relieve memory pressure, don't
2317 * incur MAYDAY_INTERVAL delay inbetween.
2318 */
2319 if (need_to_create_worker(pool)) {
2320 spin_lock(&wq_mayday_lock);
2321 get_pwq(pwq);
2322 list_move_tail(&pwq->mayday_node, &wq->maydays);
2323 spin_unlock(&wq_mayday_lock);
2324 }
2325 }
7576958a 2326
77668c8b
LJ
2327 /*
2328 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2329 * go away while we're still attached to it.
77668c8b
LJ
2330 */
2331 put_pwq(pwq);
2332
7576958a 2333 /*
d8ca83e6 2334 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2335 * regular worker; otherwise, we end up with 0 concurrency
2336 * and stalling the execution.
2337 */
d8ca83e6 2338 if (need_more_worker(pool))
63d95a91 2339 wake_up_worker(pool);
7576958a 2340
b3104104 2341 rescuer->pool = NULL;
13b1d625
LJ
2342 spin_unlock_irq(&pool->lock);
2343
2344 worker_detach_from_pool(rescuer, pool);
2345
2346 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2347 }
2348
2e109a28 2349 spin_unlock_irq(&wq_mayday_lock);
493a1724 2350
4d595b86
LJ
2351 if (should_stop) {
2352 __set_current_state(TASK_RUNNING);
2353 rescuer->task->flags &= ~PF_WQ_WORKER;
2354 return 0;
2355 }
2356
111c225a
TH
2357 /* rescuers should never participate in concurrency management */
2358 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2359 schedule();
2360 goto repeat;
1da177e4
LT
2361}
2362
fca839c0
TH
2363/**
2364 * check_flush_dependency - check for flush dependency sanity
2365 * @target_wq: workqueue being flushed
2366 * @target_work: work item being flushed (NULL for workqueue flushes)
2367 *
2368 * %current is trying to flush the whole @target_wq or @target_work on it.
2369 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2370 * reclaiming memory or running on a workqueue which doesn't have
2371 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2372 * a deadlock.
2373 */
2374static void check_flush_dependency(struct workqueue_struct *target_wq,
2375 struct work_struct *target_work)
2376{
2377 work_func_t target_func = target_work ? target_work->func : NULL;
2378 struct worker *worker;
2379
2380 if (target_wq->flags & WQ_MEM_RECLAIM)
2381 return;
2382
2383 worker = current_wq_worker();
2384
2385 WARN_ONCE(current->flags & PF_MEMALLOC,
2386 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2387 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2388 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2389 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2390 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2391 worker->current_pwq->wq->name, worker->current_func,
2392 target_wq->name, target_func);
2393}
2394
fc2e4d70
ON
2395struct wq_barrier {
2396 struct work_struct work;
2397 struct completion done;
2607d7a6 2398 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2399};
2400
2401static void wq_barrier_func(struct work_struct *work)
2402{
2403 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2404 complete(&barr->done);
2405}
2406
4690c4ab
TH
2407/**
2408 * insert_wq_barrier - insert a barrier work
112202d9 2409 * @pwq: pwq to insert barrier into
4690c4ab 2410 * @barr: wq_barrier to insert
affee4b2
TH
2411 * @target: target work to attach @barr to
2412 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2413 *
affee4b2
TH
2414 * @barr is linked to @target such that @barr is completed only after
2415 * @target finishes execution. Please note that the ordering
2416 * guarantee is observed only with respect to @target and on the local
2417 * cpu.
2418 *
2419 * Currently, a queued barrier can't be canceled. This is because
2420 * try_to_grab_pending() can't determine whether the work to be
2421 * grabbed is at the head of the queue and thus can't clear LINKED
2422 * flag of the previous work while there must be a valid next work
2423 * after a work with LINKED flag set.
2424 *
2425 * Note that when @worker is non-NULL, @target may be modified
112202d9 2426 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2427 *
2428 * CONTEXT:
d565ed63 2429 * spin_lock_irq(pool->lock).
4690c4ab 2430 */
112202d9 2431static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2432 struct wq_barrier *barr,
2433 struct work_struct *target, struct worker *worker)
fc2e4d70 2434{
affee4b2
TH
2435 struct list_head *head;
2436 unsigned int linked = 0;
2437
dc186ad7 2438 /*
d565ed63 2439 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2440 * as we know for sure that this will not trigger any of the
2441 * checks and call back into the fixup functions where we
2442 * might deadlock.
2443 */
ca1cab37 2444 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2445 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2446 init_completion(&barr->done);
2607d7a6 2447 barr->task = current;
83c22520 2448
affee4b2
TH
2449 /*
2450 * If @target is currently being executed, schedule the
2451 * barrier to the worker; otherwise, put it after @target.
2452 */
2453 if (worker)
2454 head = worker->scheduled.next;
2455 else {
2456 unsigned long *bits = work_data_bits(target);
2457
2458 head = target->entry.next;
2459 /* there can already be other linked works, inherit and set */
2460 linked = *bits & WORK_STRUCT_LINKED;
2461 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2462 }
2463
dc186ad7 2464 debug_work_activate(&barr->work);
112202d9 2465 insert_work(pwq, &barr->work, head,
affee4b2 2466 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2467}
2468
73f53c4a 2469/**
112202d9 2470 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2471 * @wq: workqueue being flushed
2472 * @flush_color: new flush color, < 0 for no-op
2473 * @work_color: new work color, < 0 for no-op
2474 *
112202d9 2475 * Prepare pwqs for workqueue flushing.
73f53c4a 2476 *
112202d9
TH
2477 * If @flush_color is non-negative, flush_color on all pwqs should be
2478 * -1. If no pwq has in-flight commands at the specified color, all
2479 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2480 * has in flight commands, its pwq->flush_color is set to
2481 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2482 * wakeup logic is armed and %true is returned.
2483 *
2484 * The caller should have initialized @wq->first_flusher prior to
2485 * calling this function with non-negative @flush_color. If
2486 * @flush_color is negative, no flush color update is done and %false
2487 * is returned.
2488 *
112202d9 2489 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2490 * work_color which is previous to @work_color and all will be
2491 * advanced to @work_color.
2492 *
2493 * CONTEXT:
3c25a55d 2494 * mutex_lock(wq->mutex).
73f53c4a 2495 *
d185af30 2496 * Return:
73f53c4a
TH
2497 * %true if @flush_color >= 0 and there's something to flush. %false
2498 * otherwise.
2499 */
112202d9 2500static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2501 int flush_color, int work_color)
1da177e4 2502{
73f53c4a 2503 bool wait = false;
49e3cf44 2504 struct pool_workqueue *pwq;
1da177e4 2505
73f53c4a 2506 if (flush_color >= 0) {
6183c009 2507 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2508 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2509 }
2355b70f 2510
49e3cf44 2511 for_each_pwq(pwq, wq) {
112202d9 2512 struct worker_pool *pool = pwq->pool;
fc2e4d70 2513
b09f4fd3 2514 spin_lock_irq(&pool->lock);
83c22520 2515
73f53c4a 2516 if (flush_color >= 0) {
6183c009 2517 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2518
112202d9
TH
2519 if (pwq->nr_in_flight[flush_color]) {
2520 pwq->flush_color = flush_color;
2521 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2522 wait = true;
2523 }
2524 }
1da177e4 2525
73f53c4a 2526 if (work_color >= 0) {
6183c009 2527 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2528 pwq->work_color = work_color;
73f53c4a 2529 }
1da177e4 2530
b09f4fd3 2531 spin_unlock_irq(&pool->lock);
1da177e4 2532 }
2355b70f 2533
112202d9 2534 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2535 complete(&wq->first_flusher->done);
14441960 2536
73f53c4a 2537 return wait;
1da177e4
LT
2538}
2539
0fcb78c2 2540/**
1da177e4 2541 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2542 * @wq: workqueue to flush
1da177e4 2543 *
c5aa87bb
TH
2544 * This function sleeps until all work items which were queued on entry
2545 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2546 */
7ad5b3a5 2547void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2548{
73f53c4a
TH
2549 struct wq_flusher this_flusher = {
2550 .list = LIST_HEAD_INIT(this_flusher.list),
2551 .flush_color = -1,
2552 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2553 };
2554 int next_color;
1da177e4 2555
3295f0ef
IM
2556 lock_map_acquire(&wq->lockdep_map);
2557 lock_map_release(&wq->lockdep_map);
73f53c4a 2558
3c25a55d 2559 mutex_lock(&wq->mutex);
73f53c4a
TH
2560
2561 /*
2562 * Start-to-wait phase
2563 */
2564 next_color = work_next_color(wq->work_color);
2565
2566 if (next_color != wq->flush_color) {
2567 /*
2568 * Color space is not full. The current work_color
2569 * becomes our flush_color and work_color is advanced
2570 * by one.
2571 */
6183c009 2572 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2573 this_flusher.flush_color = wq->work_color;
2574 wq->work_color = next_color;
2575
2576 if (!wq->first_flusher) {
2577 /* no flush in progress, become the first flusher */
6183c009 2578 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2579
2580 wq->first_flusher = &this_flusher;
2581
112202d9 2582 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2583 wq->work_color)) {
2584 /* nothing to flush, done */
2585 wq->flush_color = next_color;
2586 wq->first_flusher = NULL;
2587 goto out_unlock;
2588 }
2589 } else {
2590 /* wait in queue */
6183c009 2591 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2592 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2593 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2594 }
2595 } else {
2596 /*
2597 * Oops, color space is full, wait on overflow queue.
2598 * The next flush completion will assign us
2599 * flush_color and transfer to flusher_queue.
2600 */
2601 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2602 }
2603
fca839c0
TH
2604 check_flush_dependency(wq, NULL);
2605
3c25a55d 2606 mutex_unlock(&wq->mutex);
73f53c4a
TH
2607
2608 wait_for_completion(&this_flusher.done);
2609
2610 /*
2611 * Wake-up-and-cascade phase
2612 *
2613 * First flushers are responsible for cascading flushes and
2614 * handling overflow. Non-first flushers can simply return.
2615 */
2616 if (wq->first_flusher != &this_flusher)
2617 return;
2618
3c25a55d 2619 mutex_lock(&wq->mutex);
73f53c4a 2620
4ce48b37
TH
2621 /* we might have raced, check again with mutex held */
2622 if (wq->first_flusher != &this_flusher)
2623 goto out_unlock;
2624
73f53c4a
TH
2625 wq->first_flusher = NULL;
2626
6183c009
TH
2627 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2628 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2629
2630 while (true) {
2631 struct wq_flusher *next, *tmp;
2632
2633 /* complete all the flushers sharing the current flush color */
2634 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2635 if (next->flush_color != wq->flush_color)
2636 break;
2637 list_del_init(&next->list);
2638 complete(&next->done);
2639 }
2640
6183c009
TH
2641 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2642 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2643
2644 /* this flush_color is finished, advance by one */
2645 wq->flush_color = work_next_color(wq->flush_color);
2646
2647 /* one color has been freed, handle overflow queue */
2648 if (!list_empty(&wq->flusher_overflow)) {
2649 /*
2650 * Assign the same color to all overflowed
2651 * flushers, advance work_color and append to
2652 * flusher_queue. This is the start-to-wait
2653 * phase for these overflowed flushers.
2654 */
2655 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2656 tmp->flush_color = wq->work_color;
2657
2658 wq->work_color = work_next_color(wq->work_color);
2659
2660 list_splice_tail_init(&wq->flusher_overflow,
2661 &wq->flusher_queue);
112202d9 2662 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2663 }
2664
2665 if (list_empty(&wq->flusher_queue)) {
6183c009 2666 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2667 break;
2668 }
2669
2670 /*
2671 * Need to flush more colors. Make the next flusher
112202d9 2672 * the new first flusher and arm pwqs.
73f53c4a 2673 */
6183c009
TH
2674 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2675 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2676
2677 list_del_init(&next->list);
2678 wq->first_flusher = next;
2679
112202d9 2680 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2681 break;
2682
2683 /*
2684 * Meh... this color is already done, clear first
2685 * flusher and repeat cascading.
2686 */
2687 wq->first_flusher = NULL;
2688 }
2689
2690out_unlock:
3c25a55d 2691 mutex_unlock(&wq->mutex);
1da177e4 2692}
1dadafa8 2693EXPORT_SYMBOL(flush_workqueue);
1da177e4 2694
9c5a2ba7
TH
2695/**
2696 * drain_workqueue - drain a workqueue
2697 * @wq: workqueue to drain
2698 *
2699 * Wait until the workqueue becomes empty. While draining is in progress,
2700 * only chain queueing is allowed. IOW, only currently pending or running
2701 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2702 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2703 * by the depth of chaining and should be relatively short. Whine if it
2704 * takes too long.
2705 */
2706void drain_workqueue(struct workqueue_struct *wq)
2707{
2708 unsigned int flush_cnt = 0;
49e3cf44 2709 struct pool_workqueue *pwq;
9c5a2ba7
TH
2710
2711 /*
2712 * __queue_work() needs to test whether there are drainers, is much
2713 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2714 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2715 */
87fc741e 2716 mutex_lock(&wq->mutex);
9c5a2ba7 2717 if (!wq->nr_drainers++)
618b01eb 2718 wq->flags |= __WQ_DRAINING;
87fc741e 2719 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2720reflush:
2721 flush_workqueue(wq);
2722
b09f4fd3 2723 mutex_lock(&wq->mutex);
76af4d93 2724
49e3cf44 2725 for_each_pwq(pwq, wq) {
fa2563e4 2726 bool drained;
9c5a2ba7 2727
b09f4fd3 2728 spin_lock_irq(&pwq->pool->lock);
112202d9 2729 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2730 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2731
2732 if (drained)
9c5a2ba7
TH
2733 continue;
2734
2735 if (++flush_cnt == 10 ||
2736 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2737 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2738 wq->name, flush_cnt);
76af4d93 2739
b09f4fd3 2740 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2741 goto reflush;
2742 }
2743
9c5a2ba7 2744 if (!--wq->nr_drainers)
618b01eb 2745 wq->flags &= ~__WQ_DRAINING;
87fc741e 2746 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2747}
2748EXPORT_SYMBOL_GPL(drain_workqueue);
2749
606a5020 2750static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2751{
affee4b2 2752 struct worker *worker = NULL;
c9e7cf27 2753 struct worker_pool *pool;
112202d9 2754 struct pool_workqueue *pwq;
db700897
ON
2755
2756 might_sleep();
fa1b54e6
TH
2757
2758 local_irq_disable();
c9e7cf27 2759 pool = get_work_pool(work);
fa1b54e6
TH
2760 if (!pool) {
2761 local_irq_enable();
baf59022 2762 return false;
fa1b54e6 2763 }
db700897 2764
fa1b54e6 2765 spin_lock(&pool->lock);
0b3dae68 2766 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2767 pwq = get_work_pwq(work);
2768 if (pwq) {
2769 if (unlikely(pwq->pool != pool))
4690c4ab 2770 goto already_gone;
606a5020 2771 } else {
c9e7cf27 2772 worker = find_worker_executing_work(pool, work);
affee4b2 2773 if (!worker)
4690c4ab 2774 goto already_gone;
112202d9 2775 pwq = worker->current_pwq;
606a5020 2776 }
db700897 2777
fca839c0
TH
2778 check_flush_dependency(pwq->wq, work);
2779
112202d9 2780 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2781 spin_unlock_irq(&pool->lock);
7a22ad75 2782
e159489b
TH
2783 /*
2784 * If @max_active is 1 or rescuer is in use, flushing another work
2785 * item on the same workqueue may lead to deadlock. Make sure the
2786 * flusher is not running on the same workqueue by verifying write
2787 * access.
2788 */
493008a8 2789 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2790 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2791 else
112202d9
TH
2792 lock_map_acquire_read(&pwq->wq->lockdep_map);
2793 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2794
401a8d04 2795 return true;
4690c4ab 2796already_gone:
d565ed63 2797 spin_unlock_irq(&pool->lock);
401a8d04 2798 return false;
db700897 2799}
baf59022
TH
2800
2801/**
2802 * flush_work - wait for a work to finish executing the last queueing instance
2803 * @work: the work to flush
2804 *
606a5020
TH
2805 * Wait until @work has finished execution. @work is guaranteed to be idle
2806 * on return if it hasn't been requeued since flush started.
baf59022 2807 *
d185af30 2808 * Return:
baf59022
TH
2809 * %true if flush_work() waited for the work to finish execution,
2810 * %false if it was already idle.
2811 */
2812bool flush_work(struct work_struct *work)
2813{
12997d1a
BH
2814 struct wq_barrier barr;
2815
0976dfc1
SB
2816 lock_map_acquire(&work->lockdep_map);
2817 lock_map_release(&work->lockdep_map);
2818
12997d1a
BH
2819 if (start_flush_work(work, &barr)) {
2820 wait_for_completion(&barr.done);
2821 destroy_work_on_stack(&barr.work);
2822 return true;
2823 } else {
2824 return false;
2825 }
6e84d644 2826}
606a5020 2827EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2828
8603e1b3
TH
2829struct cwt_wait {
2830 wait_queue_t wait;
2831 struct work_struct *work;
2832};
2833
2834static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2835{
2836 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2837
2838 if (cwait->work != key)
2839 return 0;
2840 return autoremove_wake_function(wait, mode, sync, key);
2841}
2842
36e227d2 2843static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2844{
8603e1b3 2845 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2846 unsigned long flags;
1f1f642e
ON
2847 int ret;
2848
2849 do {
bbb68dfa
TH
2850 ret = try_to_grab_pending(work, is_dwork, &flags);
2851 /*
8603e1b3
TH
2852 * If someone else is already canceling, wait for it to
2853 * finish. flush_work() doesn't work for PREEMPT_NONE
2854 * because we may get scheduled between @work's completion
2855 * and the other canceling task resuming and clearing
2856 * CANCELING - flush_work() will return false immediately
2857 * as @work is no longer busy, try_to_grab_pending() will
2858 * return -ENOENT as @work is still being canceled and the
2859 * other canceling task won't be able to clear CANCELING as
2860 * we're hogging the CPU.
2861 *
2862 * Let's wait for completion using a waitqueue. As this
2863 * may lead to the thundering herd problem, use a custom
2864 * wake function which matches @work along with exclusive
2865 * wait and wakeup.
bbb68dfa 2866 */
8603e1b3
TH
2867 if (unlikely(ret == -ENOENT)) {
2868 struct cwt_wait cwait;
2869
2870 init_wait(&cwait.wait);
2871 cwait.wait.func = cwt_wakefn;
2872 cwait.work = work;
2873
2874 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2875 TASK_UNINTERRUPTIBLE);
2876 if (work_is_canceling(work))
2877 schedule();
2878 finish_wait(&cancel_waitq, &cwait.wait);
2879 }
1f1f642e
ON
2880 } while (unlikely(ret < 0));
2881
bbb68dfa
TH
2882 /* tell other tasks trying to grab @work to back off */
2883 mark_work_canceling(work);
2884 local_irq_restore(flags);
2885
606a5020 2886 flush_work(work);
7a22ad75 2887 clear_work_data(work);
8603e1b3
TH
2888
2889 /*
2890 * Paired with prepare_to_wait() above so that either
2891 * waitqueue_active() is visible here or !work_is_canceling() is
2892 * visible there.
2893 */
2894 smp_mb();
2895 if (waitqueue_active(&cancel_waitq))
2896 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2897
1f1f642e
ON
2898 return ret;
2899}
2900
6e84d644 2901/**
401a8d04
TH
2902 * cancel_work_sync - cancel a work and wait for it to finish
2903 * @work: the work to cancel
6e84d644 2904 *
401a8d04
TH
2905 * Cancel @work and wait for its execution to finish. This function
2906 * can be used even if the work re-queues itself or migrates to
2907 * another workqueue. On return from this function, @work is
2908 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2909 *
401a8d04
TH
2910 * cancel_work_sync(&delayed_work->work) must not be used for
2911 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2912 *
401a8d04 2913 * The caller must ensure that the workqueue on which @work was last
6e84d644 2914 * queued can't be destroyed before this function returns.
401a8d04 2915 *
d185af30 2916 * Return:
401a8d04 2917 * %true if @work was pending, %false otherwise.
6e84d644 2918 */
401a8d04 2919bool cancel_work_sync(struct work_struct *work)
6e84d644 2920{
36e227d2 2921 return __cancel_work_timer(work, false);
b89deed3 2922}
28e53bdd 2923EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2924
6e84d644 2925/**
401a8d04
TH
2926 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2927 * @dwork: the delayed work to flush
6e84d644 2928 *
401a8d04
TH
2929 * Delayed timer is cancelled and the pending work is queued for
2930 * immediate execution. Like flush_work(), this function only
2931 * considers the last queueing instance of @dwork.
1f1f642e 2932 *
d185af30 2933 * Return:
401a8d04
TH
2934 * %true if flush_work() waited for the work to finish execution,
2935 * %false if it was already idle.
6e84d644 2936 */
401a8d04
TH
2937bool flush_delayed_work(struct delayed_work *dwork)
2938{
8930caba 2939 local_irq_disable();
401a8d04 2940 if (del_timer_sync(&dwork->timer))
60c057bc 2941 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2942 local_irq_enable();
401a8d04
TH
2943 return flush_work(&dwork->work);
2944}
2945EXPORT_SYMBOL(flush_delayed_work);
2946
09383498 2947/**
57b30ae7
TH
2948 * cancel_delayed_work - cancel a delayed work
2949 * @dwork: delayed_work to cancel
09383498 2950 *
d185af30
YB
2951 * Kill off a pending delayed_work.
2952 *
2953 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2954 * pending.
2955 *
2956 * Note:
2957 * The work callback function may still be running on return, unless
2958 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2959 * use cancel_delayed_work_sync() to wait on it.
09383498 2960 *
57b30ae7 2961 * This function is safe to call from any context including IRQ handler.
09383498 2962 */
57b30ae7 2963bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2964{
57b30ae7
TH
2965 unsigned long flags;
2966 int ret;
2967
2968 do {
2969 ret = try_to_grab_pending(&dwork->work, true, &flags);
2970 } while (unlikely(ret == -EAGAIN));
2971
2972 if (unlikely(ret < 0))
2973 return false;
2974
7c3eed5c
TH
2975 set_work_pool_and_clear_pending(&dwork->work,
2976 get_work_pool_id(&dwork->work));
57b30ae7 2977 local_irq_restore(flags);
c0158ca6 2978 return ret;
09383498 2979}
57b30ae7 2980EXPORT_SYMBOL(cancel_delayed_work);
09383498 2981
401a8d04
TH
2982/**
2983 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2984 * @dwork: the delayed work cancel
2985 *
2986 * This is cancel_work_sync() for delayed works.
2987 *
d185af30 2988 * Return:
401a8d04
TH
2989 * %true if @dwork was pending, %false otherwise.
2990 */
2991bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2992{
36e227d2 2993 return __cancel_work_timer(&dwork->work, true);
6e84d644 2994}
f5a421a4 2995EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2996
b6136773 2997/**
31ddd871 2998 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2999 * @func: the function to call
b6136773 3000 *
31ddd871
TH
3001 * schedule_on_each_cpu() executes @func on each online CPU using the
3002 * system workqueue and blocks until all CPUs have completed.
b6136773 3003 * schedule_on_each_cpu() is very slow.
31ddd871 3004 *
d185af30 3005 * Return:
31ddd871 3006 * 0 on success, -errno on failure.
b6136773 3007 */
65f27f38 3008int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3009{
3010 int cpu;
38f51568 3011 struct work_struct __percpu *works;
15316ba8 3012
b6136773
AM
3013 works = alloc_percpu(struct work_struct);
3014 if (!works)
15316ba8 3015 return -ENOMEM;
b6136773 3016
93981800
TH
3017 get_online_cpus();
3018
15316ba8 3019 for_each_online_cpu(cpu) {
9bfb1839
IM
3020 struct work_struct *work = per_cpu_ptr(works, cpu);
3021
3022 INIT_WORK(work, func);
b71ab8c2 3023 schedule_work_on(cpu, work);
65a64464 3024 }
93981800
TH
3025
3026 for_each_online_cpu(cpu)
3027 flush_work(per_cpu_ptr(works, cpu));
3028
95402b38 3029 put_online_cpus();
b6136773 3030 free_percpu(works);
15316ba8
CL
3031 return 0;
3032}
3033
1fa44eca
JB
3034/**
3035 * execute_in_process_context - reliably execute the routine with user context
3036 * @fn: the function to execute
1fa44eca
JB
3037 * @ew: guaranteed storage for the execute work structure (must
3038 * be available when the work executes)
3039 *
3040 * Executes the function immediately if process context is available,
3041 * otherwise schedules the function for delayed execution.
3042 *
d185af30 3043 * Return: 0 - function was executed
1fa44eca
JB
3044 * 1 - function was scheduled for execution
3045 */
65f27f38 3046int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3047{
3048 if (!in_interrupt()) {
65f27f38 3049 fn(&ew->work);
1fa44eca
JB
3050 return 0;
3051 }
3052
65f27f38 3053 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3054 schedule_work(&ew->work);
3055
3056 return 1;
3057}
3058EXPORT_SYMBOL_GPL(execute_in_process_context);
3059
6ba94429
FW
3060/**
3061 * free_workqueue_attrs - free a workqueue_attrs
3062 * @attrs: workqueue_attrs to free
226223ab 3063 *
6ba94429 3064 * Undo alloc_workqueue_attrs().
226223ab 3065 */
6ba94429 3066void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3067{
6ba94429
FW
3068 if (attrs) {
3069 free_cpumask_var(attrs->cpumask);
3070 kfree(attrs);
3071 }
226223ab
TH
3072}
3073
6ba94429
FW
3074/**
3075 * alloc_workqueue_attrs - allocate a workqueue_attrs
3076 * @gfp_mask: allocation mask to use
3077 *
3078 * Allocate a new workqueue_attrs, initialize with default settings and
3079 * return it.
3080 *
3081 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3082 */
3083struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3084{
6ba94429 3085 struct workqueue_attrs *attrs;
226223ab 3086
6ba94429
FW
3087 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3088 if (!attrs)
3089 goto fail;
3090 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3091 goto fail;
3092
3093 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3094 return attrs;
3095fail:
3096 free_workqueue_attrs(attrs);
3097 return NULL;
226223ab
TH
3098}
3099
6ba94429
FW
3100static void copy_workqueue_attrs(struct workqueue_attrs *to,
3101 const struct workqueue_attrs *from)
226223ab 3102{
6ba94429
FW
3103 to->nice = from->nice;
3104 cpumask_copy(to->cpumask, from->cpumask);
3105 /*
3106 * Unlike hash and equality test, this function doesn't ignore
3107 * ->no_numa as it is used for both pool and wq attrs. Instead,
3108 * get_unbound_pool() explicitly clears ->no_numa after copying.
3109 */
3110 to->no_numa = from->no_numa;
226223ab
TH
3111}
3112
6ba94429
FW
3113/* hash value of the content of @attr */
3114static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3115{
6ba94429 3116 u32 hash = 0;
226223ab 3117
6ba94429
FW
3118 hash = jhash_1word(attrs->nice, hash);
3119 hash = jhash(cpumask_bits(attrs->cpumask),
3120 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3121 return hash;
226223ab 3122}
226223ab 3123
6ba94429
FW
3124/* content equality test */
3125static bool wqattrs_equal(const struct workqueue_attrs *a,
3126 const struct workqueue_attrs *b)
226223ab 3127{
6ba94429
FW
3128 if (a->nice != b->nice)
3129 return false;
3130 if (!cpumask_equal(a->cpumask, b->cpumask))
3131 return false;
3132 return true;
226223ab
TH
3133}
3134
6ba94429
FW
3135/**
3136 * init_worker_pool - initialize a newly zalloc'd worker_pool
3137 * @pool: worker_pool to initialize
3138 *
402dd89d 3139 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3140 *
3141 * Return: 0 on success, -errno on failure. Even on failure, all fields
3142 * inside @pool proper are initialized and put_unbound_pool() can be called
3143 * on @pool safely to release it.
3144 */
3145static int init_worker_pool(struct worker_pool *pool)
226223ab 3146{
6ba94429
FW
3147 spin_lock_init(&pool->lock);
3148 pool->id = -1;
3149 pool->cpu = -1;
3150 pool->node = NUMA_NO_NODE;
3151 pool->flags |= POOL_DISASSOCIATED;
82607adc 3152 pool->watchdog_ts = jiffies;
6ba94429
FW
3153 INIT_LIST_HEAD(&pool->worklist);
3154 INIT_LIST_HEAD(&pool->idle_list);
3155 hash_init(pool->busy_hash);
226223ab 3156
6ba94429
FW
3157 init_timer_deferrable(&pool->idle_timer);
3158 pool->idle_timer.function = idle_worker_timeout;
3159 pool->idle_timer.data = (unsigned long)pool;
226223ab 3160
6ba94429
FW
3161 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3162 (unsigned long)pool);
226223ab 3163
6ba94429
FW
3164 mutex_init(&pool->manager_arb);
3165 mutex_init(&pool->attach_mutex);
3166 INIT_LIST_HEAD(&pool->workers);
226223ab 3167
6ba94429
FW
3168 ida_init(&pool->worker_ida);
3169 INIT_HLIST_NODE(&pool->hash_node);
3170 pool->refcnt = 1;
226223ab 3171
6ba94429
FW
3172 /* shouldn't fail above this point */
3173 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3174 if (!pool->attrs)
3175 return -ENOMEM;
3176 return 0;
226223ab
TH
3177}
3178
6ba94429 3179static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3180{
6ba94429
FW
3181 struct workqueue_struct *wq =
3182 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3183
6ba94429
FW
3184 if (!(wq->flags & WQ_UNBOUND))
3185 free_percpu(wq->cpu_pwqs);
226223ab 3186 else
6ba94429 3187 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3188
6ba94429
FW
3189 kfree(wq->rescuer);
3190 kfree(wq);
226223ab
TH
3191}
3192
6ba94429 3193static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3194{
6ba94429 3195 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3196
6ba94429
FW
3197 ida_destroy(&pool->worker_ida);
3198 free_workqueue_attrs(pool->attrs);
3199 kfree(pool);
226223ab
TH
3200}
3201
6ba94429
FW
3202/**
3203 * put_unbound_pool - put a worker_pool
3204 * @pool: worker_pool to put
3205 *
3206 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3207 * safe manner. get_unbound_pool() calls this function on its failure path
3208 * and this function should be able to release pools which went through,
3209 * successfully or not, init_worker_pool().
3210 *
3211 * Should be called with wq_pool_mutex held.
3212 */
3213static void put_unbound_pool(struct worker_pool *pool)
226223ab 3214{
6ba94429
FW
3215 DECLARE_COMPLETION_ONSTACK(detach_completion);
3216 struct worker *worker;
226223ab 3217
6ba94429 3218 lockdep_assert_held(&wq_pool_mutex);
226223ab 3219
6ba94429
FW
3220 if (--pool->refcnt)
3221 return;
226223ab 3222
6ba94429
FW
3223 /* sanity checks */
3224 if (WARN_ON(!(pool->cpu < 0)) ||
3225 WARN_ON(!list_empty(&pool->worklist)))
3226 return;
226223ab 3227
6ba94429
FW
3228 /* release id and unhash */
3229 if (pool->id >= 0)
3230 idr_remove(&worker_pool_idr, pool->id);
3231 hash_del(&pool->hash_node);
d55262c4 3232
6ba94429
FW
3233 /*
3234 * Become the manager and destroy all workers. Grabbing
3235 * manager_arb prevents @pool's workers from blocking on
3236 * attach_mutex.
3237 */
3238 mutex_lock(&pool->manager_arb);
d55262c4 3239
6ba94429
FW
3240 spin_lock_irq(&pool->lock);
3241 while ((worker = first_idle_worker(pool)))
3242 destroy_worker(worker);
3243 WARN_ON(pool->nr_workers || pool->nr_idle);
3244 spin_unlock_irq(&pool->lock);
d55262c4 3245
6ba94429
FW
3246 mutex_lock(&pool->attach_mutex);
3247 if (!list_empty(&pool->workers))
3248 pool->detach_completion = &detach_completion;
3249 mutex_unlock(&pool->attach_mutex);
226223ab 3250
6ba94429
FW
3251 if (pool->detach_completion)
3252 wait_for_completion(pool->detach_completion);
226223ab 3253
6ba94429 3254 mutex_unlock(&pool->manager_arb);
226223ab 3255
6ba94429
FW
3256 /* shut down the timers */
3257 del_timer_sync(&pool->idle_timer);
3258 del_timer_sync(&pool->mayday_timer);
226223ab 3259
6ba94429
FW
3260 /* sched-RCU protected to allow dereferences from get_work_pool() */
3261 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3262}
3263
3264/**
6ba94429
FW
3265 * get_unbound_pool - get a worker_pool with the specified attributes
3266 * @attrs: the attributes of the worker_pool to get
226223ab 3267 *
6ba94429
FW
3268 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3269 * reference count and return it. If there already is a matching
3270 * worker_pool, it will be used; otherwise, this function attempts to
3271 * create a new one.
226223ab 3272 *
6ba94429 3273 * Should be called with wq_pool_mutex held.
226223ab 3274 *
6ba94429
FW
3275 * Return: On success, a worker_pool with the same attributes as @attrs.
3276 * On failure, %NULL.
226223ab 3277 */
6ba94429 3278static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3279{
6ba94429
FW
3280 u32 hash = wqattrs_hash(attrs);
3281 struct worker_pool *pool;
3282 int node;
e2273584 3283 int target_node = NUMA_NO_NODE;
226223ab 3284
6ba94429 3285 lockdep_assert_held(&wq_pool_mutex);
226223ab 3286
6ba94429
FW
3287 /* do we already have a matching pool? */
3288 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3289 if (wqattrs_equal(pool->attrs, attrs)) {
3290 pool->refcnt++;
3291 return pool;
3292 }
3293 }
226223ab 3294
e2273584
XP
3295 /* if cpumask is contained inside a NUMA node, we belong to that node */
3296 if (wq_numa_enabled) {
3297 for_each_node(node) {
3298 if (cpumask_subset(attrs->cpumask,
3299 wq_numa_possible_cpumask[node])) {
3300 target_node = node;
3301 break;
3302 }
3303 }
3304 }
3305
6ba94429 3306 /* nope, create a new one */
e2273584 3307 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3308 if (!pool || init_worker_pool(pool) < 0)
3309 goto fail;
3310
3311 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3312 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3313 pool->node = target_node;
226223ab
TH
3314
3315 /*
6ba94429
FW
3316 * no_numa isn't a worker_pool attribute, always clear it. See
3317 * 'struct workqueue_attrs' comments for detail.
226223ab 3318 */
6ba94429 3319 pool->attrs->no_numa = false;
226223ab 3320
6ba94429
FW
3321 if (worker_pool_assign_id(pool) < 0)
3322 goto fail;
226223ab 3323
6ba94429
FW
3324 /* create and start the initial worker */
3325 if (!create_worker(pool))
3326 goto fail;
226223ab 3327
6ba94429
FW
3328 /* install */
3329 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3330
6ba94429
FW
3331 return pool;
3332fail:
3333 if (pool)
3334 put_unbound_pool(pool);
3335 return NULL;
226223ab 3336}
226223ab 3337
6ba94429 3338static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3339{
6ba94429
FW
3340 kmem_cache_free(pwq_cache,
3341 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3342}
3343
6ba94429
FW
3344/*
3345 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3346 * and needs to be destroyed.
7a4e344c 3347 */
6ba94429 3348static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3349{
6ba94429
FW
3350 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3351 unbound_release_work);
3352 struct workqueue_struct *wq = pwq->wq;
3353 struct worker_pool *pool = pwq->pool;
3354 bool is_last;
7a4e344c 3355
6ba94429
FW
3356 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3357 return;
7a4e344c 3358
6ba94429
FW
3359 mutex_lock(&wq->mutex);
3360 list_del_rcu(&pwq->pwqs_node);
3361 is_last = list_empty(&wq->pwqs);
3362 mutex_unlock(&wq->mutex);
3363
3364 mutex_lock(&wq_pool_mutex);
3365 put_unbound_pool(pool);
3366 mutex_unlock(&wq_pool_mutex);
3367
3368 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3369
2865a8fb 3370 /*
6ba94429
FW
3371 * If we're the last pwq going away, @wq is already dead and no one
3372 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3373 */
6ba94429
FW
3374 if (is_last)
3375 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3376}
3377
7a4e344c 3378/**
6ba94429
FW
3379 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3380 * @pwq: target pool_workqueue
d185af30 3381 *
6ba94429
FW
3382 * If @pwq isn't freezing, set @pwq->max_active to the associated
3383 * workqueue's saved_max_active and activate delayed work items
3384 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3385 */
6ba94429 3386static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3387{
6ba94429
FW
3388 struct workqueue_struct *wq = pwq->wq;
3389 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3390
6ba94429
FW
3391 /* for @wq->saved_max_active */
3392 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3393
6ba94429
FW
3394 /* fast exit for non-freezable wqs */
3395 if (!freezable && pwq->max_active == wq->saved_max_active)
3396 return;
7a4e344c 3397
6ba94429 3398 spin_lock_irq(&pwq->pool->lock);
29c91e99 3399
6ba94429
FW
3400 /*
3401 * During [un]freezing, the caller is responsible for ensuring that
3402 * this function is called at least once after @workqueue_freezing
3403 * is updated and visible.
3404 */
3405 if (!freezable || !workqueue_freezing) {
3406 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3407
6ba94429
FW
3408 while (!list_empty(&pwq->delayed_works) &&
3409 pwq->nr_active < pwq->max_active)
3410 pwq_activate_first_delayed(pwq);
e2dca7ad 3411
6ba94429
FW
3412 /*
3413 * Need to kick a worker after thawed or an unbound wq's
3414 * max_active is bumped. It's a slow path. Do it always.
3415 */
3416 wake_up_worker(pwq->pool);
3417 } else {
3418 pwq->max_active = 0;
3419 }
e2dca7ad 3420
6ba94429 3421 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3422}
3423
6ba94429
FW
3424/* initialize newly alloced @pwq which is associated with @wq and @pool */
3425static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3426 struct worker_pool *pool)
29c91e99 3427{
6ba94429 3428 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3429
6ba94429
FW
3430 memset(pwq, 0, sizeof(*pwq));
3431
3432 pwq->pool = pool;
3433 pwq->wq = wq;
3434 pwq->flush_color = -1;
3435 pwq->refcnt = 1;
3436 INIT_LIST_HEAD(&pwq->delayed_works);
3437 INIT_LIST_HEAD(&pwq->pwqs_node);
3438 INIT_LIST_HEAD(&pwq->mayday_node);
3439 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3440}
3441
6ba94429
FW
3442/* sync @pwq with the current state of its associated wq and link it */
3443static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3444{
6ba94429 3445 struct workqueue_struct *wq = pwq->wq;
29c91e99 3446
6ba94429 3447 lockdep_assert_held(&wq->mutex);
a892cacc 3448
6ba94429
FW
3449 /* may be called multiple times, ignore if already linked */
3450 if (!list_empty(&pwq->pwqs_node))
29c91e99 3451 return;
29c91e99 3452
6ba94429
FW
3453 /* set the matching work_color */
3454 pwq->work_color = wq->work_color;
29c91e99 3455
6ba94429
FW
3456 /* sync max_active to the current setting */
3457 pwq_adjust_max_active(pwq);
29c91e99 3458
6ba94429
FW
3459 /* link in @pwq */
3460 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3461}
29c91e99 3462
6ba94429
FW
3463/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3464static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3465 const struct workqueue_attrs *attrs)
3466{
3467 struct worker_pool *pool;
3468 struct pool_workqueue *pwq;
60f5a4bc 3469
6ba94429 3470 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3471
6ba94429
FW
3472 pool = get_unbound_pool(attrs);
3473 if (!pool)
3474 return NULL;
60f5a4bc 3475
6ba94429
FW
3476 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3477 if (!pwq) {
3478 put_unbound_pool(pool);
3479 return NULL;
3480 }
29c91e99 3481
6ba94429
FW
3482 init_pwq(pwq, wq, pool);
3483 return pwq;
3484}
29c91e99 3485
29c91e99 3486/**
30186c6f 3487 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3488 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3489 * @node: the target NUMA node
3490 * @cpu_going_down: if >= 0, the CPU to consider as offline
3491 * @cpumask: outarg, the resulting cpumask
29c91e99 3492 *
6ba94429
FW
3493 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3494 * @cpu_going_down is >= 0, that cpu is considered offline during
3495 * calculation. The result is stored in @cpumask.
a892cacc 3496 *
6ba94429
FW
3497 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3498 * enabled and @node has online CPUs requested by @attrs, the returned
3499 * cpumask is the intersection of the possible CPUs of @node and
3500 * @attrs->cpumask.
d185af30 3501 *
6ba94429
FW
3502 * The caller is responsible for ensuring that the cpumask of @node stays
3503 * stable.
3504 *
3505 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3506 * %false if equal.
29c91e99 3507 */
6ba94429
FW
3508static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3509 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3510{
6ba94429
FW
3511 if (!wq_numa_enabled || attrs->no_numa)
3512 goto use_dfl;
29c91e99 3513
6ba94429
FW
3514 /* does @node have any online CPUs @attrs wants? */
3515 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3516 if (cpu_going_down >= 0)
3517 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3518
6ba94429
FW
3519 if (cpumask_empty(cpumask))
3520 goto use_dfl;
4c16bd32
TH
3521
3522 /* yeap, return possible CPUs in @node that @attrs wants */
3523 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3524 return !cpumask_equal(cpumask, attrs->cpumask);
3525
3526use_dfl:
3527 cpumask_copy(cpumask, attrs->cpumask);
3528 return false;
3529}
3530
1befcf30
TH
3531/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3532static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3533 int node,
3534 struct pool_workqueue *pwq)
3535{
3536 struct pool_workqueue *old_pwq;
3537
5b95e1af 3538 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3539 lockdep_assert_held(&wq->mutex);
3540
3541 /* link_pwq() can handle duplicate calls */
3542 link_pwq(pwq);
3543
3544 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3545 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3546 return old_pwq;
3547}
3548
2d5f0764
LJ
3549/* context to store the prepared attrs & pwqs before applying */
3550struct apply_wqattrs_ctx {
3551 struct workqueue_struct *wq; /* target workqueue */
3552 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3553 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3554 struct pool_workqueue *dfl_pwq;
3555 struct pool_workqueue *pwq_tbl[];
3556};
3557
3558/* free the resources after success or abort */
3559static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3560{
3561 if (ctx) {
3562 int node;
3563
3564 for_each_node(node)
3565 put_pwq_unlocked(ctx->pwq_tbl[node]);
3566 put_pwq_unlocked(ctx->dfl_pwq);
3567
3568 free_workqueue_attrs(ctx->attrs);
3569
3570 kfree(ctx);
3571 }
3572}
3573
3574/* allocate the attrs and pwqs for later installation */
3575static struct apply_wqattrs_ctx *
3576apply_wqattrs_prepare(struct workqueue_struct *wq,
3577 const struct workqueue_attrs *attrs)
9e8cd2f5 3578{
2d5f0764 3579 struct apply_wqattrs_ctx *ctx;
4c16bd32 3580 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3581 int node;
9e8cd2f5 3582
2d5f0764 3583 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3584
2d5f0764
LJ
3585 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3586 GFP_KERNEL);
8719dcea 3587
13e2e556 3588 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3589 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3590 if (!ctx || !new_attrs || !tmp_attrs)
3591 goto out_free;
13e2e556 3592
042f7df1
LJ
3593 /*
3594 * Calculate the attrs of the default pwq.
3595 * If the user configured cpumask doesn't overlap with the
3596 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3597 */
13e2e556 3598 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3599 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3600 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3601 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3602
4c16bd32
TH
3603 /*
3604 * We may create multiple pwqs with differing cpumasks. Make a
3605 * copy of @new_attrs which will be modified and used to obtain
3606 * pools.
3607 */
3608 copy_workqueue_attrs(tmp_attrs, new_attrs);
3609
4c16bd32
TH
3610 /*
3611 * If something goes wrong during CPU up/down, we'll fall back to
3612 * the default pwq covering whole @attrs->cpumask. Always create
3613 * it even if we don't use it immediately.
3614 */
2d5f0764
LJ
3615 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3616 if (!ctx->dfl_pwq)
3617 goto out_free;
4c16bd32
TH
3618
3619 for_each_node(node) {
042f7df1 3620 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3621 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3622 if (!ctx->pwq_tbl[node])
3623 goto out_free;
4c16bd32 3624 } else {
2d5f0764
LJ
3625 ctx->dfl_pwq->refcnt++;
3626 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3627 }
3628 }
3629
042f7df1
LJ
3630 /* save the user configured attrs and sanitize it. */
3631 copy_workqueue_attrs(new_attrs, attrs);
3632 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3633 ctx->attrs = new_attrs;
042f7df1 3634
2d5f0764
LJ
3635 ctx->wq = wq;
3636 free_workqueue_attrs(tmp_attrs);
3637 return ctx;
3638
3639out_free:
3640 free_workqueue_attrs(tmp_attrs);
3641 free_workqueue_attrs(new_attrs);
3642 apply_wqattrs_cleanup(ctx);
3643 return NULL;
3644}
3645
3646/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3647static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3648{
3649 int node;
9e8cd2f5 3650
4c16bd32 3651 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3652 mutex_lock(&ctx->wq->mutex);
a892cacc 3653
2d5f0764 3654 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3655
3656 /* save the previous pwq and install the new one */
f147f29e 3657 for_each_node(node)
2d5f0764
LJ
3658 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3659 ctx->pwq_tbl[node]);
4c16bd32
TH
3660
3661 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3662 link_pwq(ctx->dfl_pwq);
3663 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3664
2d5f0764
LJ
3665 mutex_unlock(&ctx->wq->mutex);
3666}
9e8cd2f5 3667
a0111cf6
LJ
3668static void apply_wqattrs_lock(void)
3669{
3670 /* CPUs should stay stable across pwq creations and installations */
3671 get_online_cpus();
3672 mutex_lock(&wq_pool_mutex);
3673}
3674
3675static void apply_wqattrs_unlock(void)
3676{
3677 mutex_unlock(&wq_pool_mutex);
3678 put_online_cpus();
3679}
3680
3681static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3682 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3683{
3684 struct apply_wqattrs_ctx *ctx;
4c16bd32 3685
2d5f0764
LJ
3686 /* only unbound workqueues can change attributes */
3687 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3688 return -EINVAL;
13e2e556 3689
2d5f0764
LJ
3690 /* creating multiple pwqs breaks ordering guarantee */
3691 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3692 return -EINVAL;
3693
2d5f0764 3694 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3695 if (!ctx)
3696 return -ENOMEM;
2d5f0764
LJ
3697
3698 /* the ctx has been prepared successfully, let's commit it */
6201171e 3699 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3700 apply_wqattrs_cleanup(ctx);
3701
6201171e 3702 return 0;
9e8cd2f5
TH
3703}
3704
a0111cf6
LJ
3705/**
3706 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3707 * @wq: the target workqueue
3708 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3709 *
3710 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3711 * machines, this function maps a separate pwq to each NUMA node with
3712 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3713 * NUMA node it was issued on. Older pwqs are released as in-flight work
3714 * items finish. Note that a work item which repeatedly requeues itself
3715 * back-to-back will stay on its current pwq.
3716 *
3717 * Performs GFP_KERNEL allocations.
3718 *
3719 * Return: 0 on success and -errno on failure.
3720 */
3721int apply_workqueue_attrs(struct workqueue_struct *wq,
3722 const struct workqueue_attrs *attrs)
3723{
3724 int ret;
3725
3726 apply_wqattrs_lock();
3727 ret = apply_workqueue_attrs_locked(wq, attrs);
3728 apply_wqattrs_unlock();
3729
3730 return ret;
3731}
3732
4c16bd32
TH
3733/**
3734 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3735 * @wq: the target workqueue
3736 * @cpu: the CPU coming up or going down
3737 * @online: whether @cpu is coming up or going down
3738 *
3739 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3740 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3741 * @wq accordingly.
3742 *
3743 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3744 * falls back to @wq->dfl_pwq which may not be optimal but is always
3745 * correct.
3746 *
3747 * Note that when the last allowed CPU of a NUMA node goes offline for a
3748 * workqueue with a cpumask spanning multiple nodes, the workers which were
3749 * already executing the work items for the workqueue will lose their CPU
3750 * affinity and may execute on any CPU. This is similar to how per-cpu
3751 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3752 * affinity, it's the user's responsibility to flush the work item from
3753 * CPU_DOWN_PREPARE.
3754 */
3755static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3756 bool online)
3757{
3758 int node = cpu_to_node(cpu);
3759 int cpu_off = online ? -1 : cpu;
3760 struct pool_workqueue *old_pwq = NULL, *pwq;
3761 struct workqueue_attrs *target_attrs;
3762 cpumask_t *cpumask;
3763
3764 lockdep_assert_held(&wq_pool_mutex);
3765
f7142ed4
LJ
3766 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3767 wq->unbound_attrs->no_numa)
4c16bd32
TH
3768 return;
3769
3770 /*
3771 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3772 * Let's use a preallocated one. The following buf is protected by
3773 * CPU hotplug exclusion.
3774 */
3775 target_attrs = wq_update_unbound_numa_attrs_buf;
3776 cpumask = target_attrs->cpumask;
3777
4c16bd32
TH
3778 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3779 pwq = unbound_pwq_by_node(wq, node);
3780
3781 /*
3782 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3783 * different from the default pwq's, we need to compare it to @pwq's
3784 * and create a new one if they don't match. If the target cpumask
3785 * equals the default pwq's, the default pwq should be used.
4c16bd32 3786 */
042f7df1 3787 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3788 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3789 return;
4c16bd32 3790 } else {
534a3fbb 3791 goto use_dfl_pwq;
4c16bd32
TH
3792 }
3793
4c16bd32
TH
3794 /* create a new pwq */
3795 pwq = alloc_unbound_pwq(wq, target_attrs);
3796 if (!pwq) {
2d916033
FF
3797 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3798 wq->name);
77f300b1 3799 goto use_dfl_pwq;
4c16bd32
TH
3800 }
3801
f7142ed4 3802 /* Install the new pwq. */
4c16bd32
TH
3803 mutex_lock(&wq->mutex);
3804 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3805 goto out_unlock;
3806
3807use_dfl_pwq:
f7142ed4 3808 mutex_lock(&wq->mutex);
4c16bd32
TH
3809 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3810 get_pwq(wq->dfl_pwq);
3811 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3812 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3813out_unlock:
3814 mutex_unlock(&wq->mutex);
3815 put_pwq_unlocked(old_pwq);
3816}
3817
30cdf249 3818static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3819{
49e3cf44 3820 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3821 int cpu, ret;
30cdf249
TH
3822
3823 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3824 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3825 if (!wq->cpu_pwqs)
30cdf249
TH
3826 return -ENOMEM;
3827
3828 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3829 struct pool_workqueue *pwq =
3830 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3831 struct worker_pool *cpu_pools =
f02ae73a 3832 per_cpu(cpu_worker_pools, cpu);
f3421797 3833
f147f29e
TH
3834 init_pwq(pwq, wq, &cpu_pools[highpri]);
3835
3836 mutex_lock(&wq->mutex);
1befcf30 3837 link_pwq(pwq);
f147f29e 3838 mutex_unlock(&wq->mutex);
30cdf249 3839 }
9e8cd2f5 3840 return 0;
8a2b7538
TH
3841 } else if (wq->flags & __WQ_ORDERED) {
3842 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3843 /* there should only be single pwq for ordering guarantee */
3844 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3845 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3846 "ordering guarantee broken for workqueue %s\n", wq->name);
3847 return ret;
30cdf249 3848 } else {
9e8cd2f5 3849 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3850 }
0f900049
TH
3851}
3852
f3421797
TH
3853static int wq_clamp_max_active(int max_active, unsigned int flags,
3854 const char *name)
b71ab8c2 3855{
f3421797
TH
3856 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3857
3858 if (max_active < 1 || max_active > lim)
044c782c
VI
3859 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3860 max_active, name, 1, lim);
b71ab8c2 3861
f3421797 3862 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3863}
3864
b196be89 3865struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3866 unsigned int flags,
3867 int max_active,
3868 struct lock_class_key *key,
b196be89 3869 const char *lock_name, ...)
1da177e4 3870{
df2d5ae4 3871 size_t tbl_size = 0;
ecf6881f 3872 va_list args;
1da177e4 3873 struct workqueue_struct *wq;
49e3cf44 3874 struct pool_workqueue *pwq;
b196be89 3875
cee22a15
VK
3876 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3877 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3878 flags |= WQ_UNBOUND;
3879
ecf6881f 3880 /* allocate wq and format name */
df2d5ae4 3881 if (flags & WQ_UNBOUND)
ddcb57e2 3882 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3883
3884 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3885 if (!wq)
d2c1d404 3886 return NULL;
b196be89 3887
6029a918
TH
3888 if (flags & WQ_UNBOUND) {
3889 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3890 if (!wq->unbound_attrs)
3891 goto err_free_wq;
3892 }
3893
ecf6881f
TH
3894 va_start(args, lock_name);
3895 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3896 va_end(args);
1da177e4 3897
d320c038 3898 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3899 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3900
b196be89 3901 /* init wq */
97e37d7b 3902 wq->flags = flags;
a0a1a5fd 3903 wq->saved_max_active = max_active;
3c25a55d 3904 mutex_init(&wq->mutex);
112202d9 3905 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3906 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3907 INIT_LIST_HEAD(&wq->flusher_queue);
3908 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3909 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3910
eb13ba87 3911 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3912 INIT_LIST_HEAD(&wq->list);
3af24433 3913
30cdf249 3914 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3915 goto err_free_wq;
1537663f 3916
493008a8
TH
3917 /*
3918 * Workqueues which may be used during memory reclaim should
3919 * have a rescuer to guarantee forward progress.
3920 */
3921 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3922 struct worker *rescuer;
3923
f7537df5 3924 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3925 if (!rescuer)
d2c1d404 3926 goto err_destroy;
e22bee78 3927
111c225a
TH
3928 rescuer->rescue_wq = wq;
3929 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3930 wq->name);
d2c1d404
TH
3931 if (IS_ERR(rescuer->task)) {
3932 kfree(rescuer);
3933 goto err_destroy;
3934 }
e22bee78 3935
d2c1d404 3936 wq->rescuer = rescuer;
25834c73 3937 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3938 wake_up_process(rescuer->task);
3af24433
ON
3939 }
3940
226223ab
TH
3941 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3942 goto err_destroy;
3943
a0a1a5fd 3944 /*
68e13a67
LJ
3945 * wq_pool_mutex protects global freeze state and workqueues list.
3946 * Grab it, adjust max_active and add the new @wq to workqueues
3947 * list.
a0a1a5fd 3948 */
68e13a67 3949 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3950
a357fc03 3951 mutex_lock(&wq->mutex);
699ce097
TH
3952 for_each_pwq(pwq, wq)
3953 pwq_adjust_max_active(pwq);
a357fc03 3954 mutex_unlock(&wq->mutex);
a0a1a5fd 3955
e2dca7ad 3956 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3957
68e13a67 3958 mutex_unlock(&wq_pool_mutex);
1537663f 3959
3af24433 3960 return wq;
d2c1d404
TH
3961
3962err_free_wq:
6029a918 3963 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3964 kfree(wq);
3965 return NULL;
3966err_destroy:
3967 destroy_workqueue(wq);
4690c4ab 3968 return NULL;
3af24433 3969}
d320c038 3970EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3971
3af24433
ON
3972/**
3973 * destroy_workqueue - safely terminate a workqueue
3974 * @wq: target workqueue
3975 *
3976 * Safely destroy a workqueue. All work currently pending will be done first.
3977 */
3978void destroy_workqueue(struct workqueue_struct *wq)
3979{
49e3cf44 3980 struct pool_workqueue *pwq;
4c16bd32 3981 int node;
3af24433 3982
9c5a2ba7
TH
3983 /* drain it before proceeding with destruction */
3984 drain_workqueue(wq);
c8efcc25 3985
6183c009 3986 /* sanity checks */
b09f4fd3 3987 mutex_lock(&wq->mutex);
49e3cf44 3988 for_each_pwq(pwq, wq) {
6183c009
TH
3989 int i;
3990
76af4d93
TH
3991 for (i = 0; i < WORK_NR_COLORS; i++) {
3992 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3993 mutex_unlock(&wq->mutex);
6183c009 3994 return;
76af4d93
TH
3995 }
3996 }
3997
5c529597 3998 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 3999 WARN_ON(pwq->nr_active) ||
76af4d93 4000 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4001 mutex_unlock(&wq->mutex);
6183c009 4002 return;
76af4d93 4003 }
6183c009 4004 }
b09f4fd3 4005 mutex_unlock(&wq->mutex);
6183c009 4006
a0a1a5fd
TH
4007 /*
4008 * wq list is used to freeze wq, remove from list after
4009 * flushing is complete in case freeze races us.
4010 */
68e13a67 4011 mutex_lock(&wq_pool_mutex);
e2dca7ad 4012 list_del_rcu(&wq->list);
68e13a67 4013 mutex_unlock(&wq_pool_mutex);
3af24433 4014
226223ab
TH
4015 workqueue_sysfs_unregister(wq);
4016
e2dca7ad 4017 if (wq->rescuer)
e22bee78 4018 kthread_stop(wq->rescuer->task);
e22bee78 4019
8864b4e5
TH
4020 if (!(wq->flags & WQ_UNBOUND)) {
4021 /*
4022 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4023 * schedule RCU free.
8864b4e5 4024 */
e2dca7ad 4025 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4026 } else {
4027 /*
4028 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4029 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4030 * @wq will be freed when the last pwq is released.
8864b4e5 4031 */
4c16bd32
TH
4032 for_each_node(node) {
4033 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4034 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4035 put_pwq_unlocked(pwq);
4036 }
4037
4038 /*
4039 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4040 * put. Don't access it afterwards.
4041 */
4042 pwq = wq->dfl_pwq;
4043 wq->dfl_pwq = NULL;
dce90d47 4044 put_pwq_unlocked(pwq);
29c91e99 4045 }
3af24433
ON
4046}
4047EXPORT_SYMBOL_GPL(destroy_workqueue);
4048
dcd989cb
TH
4049/**
4050 * workqueue_set_max_active - adjust max_active of a workqueue
4051 * @wq: target workqueue
4052 * @max_active: new max_active value.
4053 *
4054 * Set max_active of @wq to @max_active.
4055 *
4056 * CONTEXT:
4057 * Don't call from IRQ context.
4058 */
4059void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4060{
49e3cf44 4061 struct pool_workqueue *pwq;
dcd989cb 4062
8719dcea
TH
4063 /* disallow meddling with max_active for ordered workqueues */
4064 if (WARN_ON(wq->flags & __WQ_ORDERED))
4065 return;
4066
f3421797 4067 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4068
a357fc03 4069 mutex_lock(&wq->mutex);
dcd989cb
TH
4070
4071 wq->saved_max_active = max_active;
4072
699ce097
TH
4073 for_each_pwq(pwq, wq)
4074 pwq_adjust_max_active(pwq);
93981800 4075
a357fc03 4076 mutex_unlock(&wq->mutex);
15316ba8 4077}
dcd989cb 4078EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4079
e6267616
TH
4080/**
4081 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4082 *
4083 * Determine whether %current is a workqueue rescuer. Can be used from
4084 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4085 *
4086 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4087 */
4088bool current_is_workqueue_rescuer(void)
4089{
4090 struct worker *worker = current_wq_worker();
4091
6a092dfd 4092 return worker && worker->rescue_wq;
e6267616
TH
4093}
4094
eef6a7d5 4095/**
dcd989cb
TH
4096 * workqueue_congested - test whether a workqueue is congested
4097 * @cpu: CPU in question
4098 * @wq: target workqueue
eef6a7d5 4099 *
dcd989cb
TH
4100 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4101 * no synchronization around this function and the test result is
4102 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4103 *
d3251859
TH
4104 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4105 * Note that both per-cpu and unbound workqueues may be associated with
4106 * multiple pool_workqueues which have separate congested states. A
4107 * workqueue being congested on one CPU doesn't mean the workqueue is also
4108 * contested on other CPUs / NUMA nodes.
4109 *
d185af30 4110 * Return:
dcd989cb 4111 * %true if congested, %false otherwise.
eef6a7d5 4112 */
d84ff051 4113bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4114{
7fb98ea7 4115 struct pool_workqueue *pwq;
76af4d93
TH
4116 bool ret;
4117
88109453 4118 rcu_read_lock_sched();
7fb98ea7 4119
d3251859
TH
4120 if (cpu == WORK_CPU_UNBOUND)
4121 cpu = smp_processor_id();
4122
7fb98ea7
TH
4123 if (!(wq->flags & WQ_UNBOUND))
4124 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4125 else
df2d5ae4 4126 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4127
76af4d93 4128 ret = !list_empty(&pwq->delayed_works);
88109453 4129 rcu_read_unlock_sched();
76af4d93
TH
4130
4131 return ret;
1da177e4 4132}
dcd989cb 4133EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4134
dcd989cb
TH
4135/**
4136 * work_busy - test whether a work is currently pending or running
4137 * @work: the work to be tested
4138 *
4139 * Test whether @work is currently pending or running. There is no
4140 * synchronization around this function and the test result is
4141 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4142 *
d185af30 4143 * Return:
dcd989cb
TH
4144 * OR'd bitmask of WORK_BUSY_* bits.
4145 */
4146unsigned int work_busy(struct work_struct *work)
1da177e4 4147{
fa1b54e6 4148 struct worker_pool *pool;
dcd989cb
TH
4149 unsigned long flags;
4150 unsigned int ret = 0;
1da177e4 4151
dcd989cb
TH
4152 if (work_pending(work))
4153 ret |= WORK_BUSY_PENDING;
1da177e4 4154
fa1b54e6
TH
4155 local_irq_save(flags);
4156 pool = get_work_pool(work);
038366c5 4157 if (pool) {
fa1b54e6 4158 spin_lock(&pool->lock);
038366c5
LJ
4159 if (find_worker_executing_work(pool, work))
4160 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4161 spin_unlock(&pool->lock);
038366c5 4162 }
fa1b54e6 4163 local_irq_restore(flags);
1da177e4 4164
dcd989cb 4165 return ret;
1da177e4 4166}
dcd989cb 4167EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4168
3d1cb205
TH
4169/**
4170 * set_worker_desc - set description for the current work item
4171 * @fmt: printf-style format string
4172 * @...: arguments for the format string
4173 *
4174 * This function can be called by a running work function to describe what
4175 * the work item is about. If the worker task gets dumped, this
4176 * information will be printed out together to help debugging. The
4177 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4178 */
4179void set_worker_desc(const char *fmt, ...)
4180{
4181 struct worker *worker = current_wq_worker();
4182 va_list args;
4183
4184 if (worker) {
4185 va_start(args, fmt);
4186 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4187 va_end(args);
4188 worker->desc_valid = true;
4189 }
4190}
4191
4192/**
4193 * print_worker_info - print out worker information and description
4194 * @log_lvl: the log level to use when printing
4195 * @task: target task
4196 *
4197 * If @task is a worker and currently executing a work item, print out the
4198 * name of the workqueue being serviced and worker description set with
4199 * set_worker_desc() by the currently executing work item.
4200 *
4201 * This function can be safely called on any task as long as the
4202 * task_struct itself is accessible. While safe, this function isn't
4203 * synchronized and may print out mixups or garbages of limited length.
4204 */
4205void print_worker_info(const char *log_lvl, struct task_struct *task)
4206{
4207 work_func_t *fn = NULL;
4208 char name[WQ_NAME_LEN] = { };
4209 char desc[WORKER_DESC_LEN] = { };
4210 struct pool_workqueue *pwq = NULL;
4211 struct workqueue_struct *wq = NULL;
4212 bool desc_valid = false;
4213 struct worker *worker;
4214
4215 if (!(task->flags & PF_WQ_WORKER))
4216 return;
4217
4218 /*
4219 * This function is called without any synchronization and @task
4220 * could be in any state. Be careful with dereferences.
4221 */
4222 worker = probe_kthread_data(task);
4223
4224 /*
4225 * Carefully copy the associated workqueue's workfn and name. Keep
4226 * the original last '\0' in case the original contains garbage.
4227 */
4228 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4229 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4230 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4231 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4232
4233 /* copy worker description */
4234 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4235 if (desc_valid)
4236 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4237
4238 if (fn || name[0] || desc[0]) {
4239 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4240 if (desc[0])
4241 pr_cont(" (%s)", desc);
4242 pr_cont("\n");
4243 }
4244}
4245
3494fc30
TH
4246static void pr_cont_pool_info(struct worker_pool *pool)
4247{
4248 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4249 if (pool->node != NUMA_NO_NODE)
4250 pr_cont(" node=%d", pool->node);
4251 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4252}
4253
4254static void pr_cont_work(bool comma, struct work_struct *work)
4255{
4256 if (work->func == wq_barrier_func) {
4257 struct wq_barrier *barr;
4258
4259 barr = container_of(work, struct wq_barrier, work);
4260
4261 pr_cont("%s BAR(%d)", comma ? "," : "",
4262 task_pid_nr(barr->task));
4263 } else {
4264 pr_cont("%s %pf", comma ? "," : "", work->func);
4265 }
4266}
4267
4268static void show_pwq(struct pool_workqueue *pwq)
4269{
4270 struct worker_pool *pool = pwq->pool;
4271 struct work_struct *work;
4272 struct worker *worker;
4273 bool has_in_flight = false, has_pending = false;
4274 int bkt;
4275
4276 pr_info(" pwq %d:", pool->id);
4277 pr_cont_pool_info(pool);
4278
4279 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4280 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4281
4282 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4283 if (worker->current_pwq == pwq) {
4284 has_in_flight = true;
4285 break;
4286 }
4287 }
4288 if (has_in_flight) {
4289 bool comma = false;
4290
4291 pr_info(" in-flight:");
4292 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4293 if (worker->current_pwq != pwq)
4294 continue;
4295
4296 pr_cont("%s %d%s:%pf", comma ? "," : "",
4297 task_pid_nr(worker->task),
4298 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4299 worker->current_func);
4300 list_for_each_entry(work, &worker->scheduled, entry)
4301 pr_cont_work(false, work);
4302 comma = true;
4303 }
4304 pr_cont("\n");
4305 }
4306
4307 list_for_each_entry(work, &pool->worklist, entry) {
4308 if (get_work_pwq(work) == pwq) {
4309 has_pending = true;
4310 break;
4311 }
4312 }
4313 if (has_pending) {
4314 bool comma = false;
4315
4316 pr_info(" pending:");
4317 list_for_each_entry(work, &pool->worklist, entry) {
4318 if (get_work_pwq(work) != pwq)
4319 continue;
4320
4321 pr_cont_work(comma, work);
4322 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4323 }
4324 pr_cont("\n");
4325 }
4326
4327 if (!list_empty(&pwq->delayed_works)) {
4328 bool comma = false;
4329
4330 pr_info(" delayed:");
4331 list_for_each_entry(work, &pwq->delayed_works, entry) {
4332 pr_cont_work(comma, work);
4333 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4334 }
4335 pr_cont("\n");
4336 }
4337}
4338
4339/**
4340 * show_workqueue_state - dump workqueue state
4341 *
4342 * Called from a sysrq handler and prints out all busy workqueues and
4343 * pools.
4344 */
4345void show_workqueue_state(void)
4346{
4347 struct workqueue_struct *wq;
4348 struct worker_pool *pool;
4349 unsigned long flags;
4350 int pi;
4351
4352 rcu_read_lock_sched();
4353
4354 pr_info("Showing busy workqueues and worker pools:\n");
4355
4356 list_for_each_entry_rcu(wq, &workqueues, list) {
4357 struct pool_workqueue *pwq;
4358 bool idle = true;
4359
4360 for_each_pwq(pwq, wq) {
4361 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4362 idle = false;
4363 break;
4364 }
4365 }
4366 if (idle)
4367 continue;
4368
4369 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4370
4371 for_each_pwq(pwq, wq) {
4372 spin_lock_irqsave(&pwq->pool->lock, flags);
4373 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4374 show_pwq(pwq);
4375 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4376 }
4377 }
4378
4379 for_each_pool(pool, pi) {
4380 struct worker *worker;
4381 bool first = true;
4382
4383 spin_lock_irqsave(&pool->lock, flags);
4384 if (pool->nr_workers == pool->nr_idle)
4385 goto next_pool;
4386
4387 pr_info("pool %d:", pool->id);
4388 pr_cont_pool_info(pool);
82607adc
TH
4389 pr_cont(" hung=%us workers=%d",
4390 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4391 pool->nr_workers);
3494fc30
TH
4392 if (pool->manager)
4393 pr_cont(" manager: %d",
4394 task_pid_nr(pool->manager->task));
4395 list_for_each_entry(worker, &pool->idle_list, entry) {
4396 pr_cont(" %s%d", first ? "idle: " : "",
4397 task_pid_nr(worker->task));
4398 first = false;
4399 }
4400 pr_cont("\n");
4401 next_pool:
4402 spin_unlock_irqrestore(&pool->lock, flags);
4403 }
4404
4405 rcu_read_unlock_sched();
4406}
4407
db7bccf4
TH
4408/*
4409 * CPU hotplug.
4410 *
e22bee78 4411 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4412 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4413 * pool which make migrating pending and scheduled works very
e22bee78 4414 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4415 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4416 * blocked draining impractical.
4417 *
24647570 4418 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4419 * running as an unbound one and allowing it to be reattached later if the
4420 * cpu comes back online.
db7bccf4 4421 */
1da177e4 4422
706026c2 4423static void wq_unbind_fn(struct work_struct *work)
3af24433 4424{
38db41d9 4425 int cpu = smp_processor_id();
4ce62e9e 4426 struct worker_pool *pool;
db7bccf4 4427 struct worker *worker;
3af24433 4428
f02ae73a 4429 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4430 mutex_lock(&pool->attach_mutex);
94cf58bb 4431 spin_lock_irq(&pool->lock);
3af24433 4432
94cf58bb 4433 /*
92f9c5c4 4434 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4435 * unbound and set DISASSOCIATED. Before this, all workers
4436 * except for the ones which are still executing works from
4437 * before the last CPU down must be on the cpu. After
4438 * this, they may become diasporas.
4439 */
da028469 4440 for_each_pool_worker(worker, pool)
c9e7cf27 4441 worker->flags |= WORKER_UNBOUND;
06ba38a9 4442
24647570 4443 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4444
94cf58bb 4445 spin_unlock_irq(&pool->lock);
92f9c5c4 4446 mutex_unlock(&pool->attach_mutex);
628c78e7 4447
eb283428
LJ
4448 /*
4449 * Call schedule() so that we cross rq->lock and thus can
4450 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4451 * This is necessary as scheduler callbacks may be invoked
4452 * from other cpus.
4453 */
4454 schedule();
06ba38a9 4455
eb283428
LJ
4456 /*
4457 * Sched callbacks are disabled now. Zap nr_running.
4458 * After this, nr_running stays zero and need_more_worker()
4459 * and keep_working() are always true as long as the
4460 * worklist is not empty. This pool now behaves as an
4461 * unbound (in terms of concurrency management) pool which
4462 * are served by workers tied to the pool.
4463 */
e19e397a 4464 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4465
4466 /*
4467 * With concurrency management just turned off, a busy
4468 * worker blocking could lead to lengthy stalls. Kick off
4469 * unbound chain execution of currently pending work items.
4470 */
4471 spin_lock_irq(&pool->lock);
4472 wake_up_worker(pool);
4473 spin_unlock_irq(&pool->lock);
4474 }
3af24433 4475}
3af24433 4476
bd7c089e
TH
4477/**
4478 * rebind_workers - rebind all workers of a pool to the associated CPU
4479 * @pool: pool of interest
4480 *
a9ab775b 4481 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4482 */
4483static void rebind_workers(struct worker_pool *pool)
4484{
a9ab775b 4485 struct worker *worker;
bd7c089e 4486
92f9c5c4 4487 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4488
a9ab775b
TH
4489 /*
4490 * Restore CPU affinity of all workers. As all idle workers should
4491 * be on the run-queue of the associated CPU before any local
402dd89d 4492 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4493 * of all workers first and then clear UNBOUND. As we're called
4494 * from CPU_ONLINE, the following shouldn't fail.
4495 */
da028469 4496 for_each_pool_worker(worker, pool)
a9ab775b
TH
4497 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4498 pool->attrs->cpumask) < 0);
bd7c089e 4499
a9ab775b 4500 spin_lock_irq(&pool->lock);
3de5e884 4501 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4502
da028469 4503 for_each_pool_worker(worker, pool) {
a9ab775b 4504 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4505
4506 /*
a9ab775b
TH
4507 * A bound idle worker should actually be on the runqueue
4508 * of the associated CPU for local wake-ups targeting it to
4509 * work. Kick all idle workers so that they migrate to the
4510 * associated CPU. Doing this in the same loop as
4511 * replacing UNBOUND with REBOUND is safe as no worker will
4512 * be bound before @pool->lock is released.
bd7c089e 4513 */
a9ab775b
TH
4514 if (worker_flags & WORKER_IDLE)
4515 wake_up_process(worker->task);
bd7c089e 4516
a9ab775b
TH
4517 /*
4518 * We want to clear UNBOUND but can't directly call
4519 * worker_clr_flags() or adjust nr_running. Atomically
4520 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4521 * @worker will clear REBOUND using worker_clr_flags() when
4522 * it initiates the next execution cycle thus restoring
4523 * concurrency management. Note that when or whether
4524 * @worker clears REBOUND doesn't affect correctness.
4525 *
4526 * ACCESS_ONCE() is necessary because @worker->flags may be
4527 * tested without holding any lock in
4528 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4529 * fail incorrectly leading to premature concurrency
4530 * management operations.
4531 */
4532 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4533 worker_flags |= WORKER_REBOUND;
4534 worker_flags &= ~WORKER_UNBOUND;
4535 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4536 }
a9ab775b
TH
4537
4538 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4539}
4540
7dbc725e
TH
4541/**
4542 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4543 * @pool: unbound pool of interest
4544 * @cpu: the CPU which is coming up
4545 *
4546 * An unbound pool may end up with a cpumask which doesn't have any online
4547 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4548 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4549 * online CPU before, cpus_allowed of all its workers should be restored.
4550 */
4551static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4552{
4553 static cpumask_t cpumask;
4554 struct worker *worker;
7dbc725e 4555
92f9c5c4 4556 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4557
4558 /* is @cpu allowed for @pool? */
4559 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4560 return;
4561
4562 /* is @cpu the only online CPU? */
4563 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4564 if (cpumask_weight(&cpumask) != 1)
4565 return;
4566
4567 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4568 for_each_pool_worker(worker, pool)
7dbc725e
TH
4569 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4570 pool->attrs->cpumask) < 0);
4571}
4572
8db25e78
TH
4573/*
4574 * Workqueues should be brought up before normal priority CPU notifiers.
4575 * This will be registered high priority CPU notifier.
4576 */
0db0628d 4577static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4578 unsigned long action,
4579 void *hcpu)
3af24433 4580{
d84ff051 4581 int cpu = (unsigned long)hcpu;
4ce62e9e 4582 struct worker_pool *pool;
4c16bd32 4583 struct workqueue_struct *wq;
7dbc725e 4584 int pi;
3ce63377 4585
8db25e78 4586 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4587 case CPU_UP_PREPARE:
f02ae73a 4588 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4589 if (pool->nr_workers)
4590 continue;
051e1850 4591 if (!create_worker(pool))
3ce63377 4592 return NOTIFY_BAD;
3af24433 4593 }
8db25e78 4594 break;
3af24433 4595
db7bccf4
TH
4596 case CPU_DOWN_FAILED:
4597 case CPU_ONLINE:
68e13a67 4598 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4599
4600 for_each_pool(pool, pi) {
92f9c5c4 4601 mutex_lock(&pool->attach_mutex);
94cf58bb 4602
f05b558d 4603 if (pool->cpu == cpu)
7dbc725e 4604 rebind_workers(pool);
f05b558d 4605 else if (pool->cpu < 0)
7dbc725e 4606 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4607
6ba94429
FW
4608 mutex_unlock(&pool->attach_mutex);
4609 }
4610
4611 /* update NUMA affinity of unbound workqueues */
4612 list_for_each_entry(wq, &workqueues, list)
4613 wq_update_unbound_numa(wq, cpu, true);
4614
4615 mutex_unlock(&wq_pool_mutex);
4616 break;
4617 }
4618 return NOTIFY_OK;
4619}
4620
4621/*
4622 * Workqueues should be brought down after normal priority CPU notifiers.
4623 * This will be registered as low priority CPU notifier.
4624 */
4625static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4626 unsigned long action,
4627 void *hcpu)
4628{
4629 int cpu = (unsigned long)hcpu;
4630 struct work_struct unbind_work;
4631 struct workqueue_struct *wq;
4632
4633 switch (action & ~CPU_TASKS_FROZEN) {
4634 case CPU_DOWN_PREPARE:
4635 /* unbinding per-cpu workers should happen on the local CPU */
4636 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4637 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4638
4639 /* update NUMA affinity of unbound workqueues */
4640 mutex_lock(&wq_pool_mutex);
4641 list_for_each_entry(wq, &workqueues, list)
4642 wq_update_unbound_numa(wq, cpu, false);
4643 mutex_unlock(&wq_pool_mutex);
4644
4645 /* wait for per-cpu unbinding to finish */
4646 flush_work(&unbind_work);
4647 destroy_work_on_stack(&unbind_work);
4648 break;
4649 }
4650 return NOTIFY_OK;
4651}
4652
4653#ifdef CONFIG_SMP
4654
4655struct work_for_cpu {
4656 struct work_struct work;
4657 long (*fn)(void *);
4658 void *arg;
4659 long ret;
4660};
4661
4662static void work_for_cpu_fn(struct work_struct *work)
4663{
4664 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4665
4666 wfc->ret = wfc->fn(wfc->arg);
4667}
4668
4669/**
4670 * work_on_cpu - run a function in user context on a particular cpu
4671 * @cpu: the cpu to run on
4672 * @fn: the function to run
4673 * @arg: the function arg
4674 *
4675 * It is up to the caller to ensure that the cpu doesn't go offline.
4676 * The caller must not hold any locks which would prevent @fn from completing.
4677 *
4678 * Return: The value @fn returns.
4679 */
4680long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4681{
4682 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4683
4684 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4685 schedule_work_on(cpu, &wfc.work);
4686 flush_work(&wfc.work);
4687 destroy_work_on_stack(&wfc.work);
4688 return wfc.ret;
4689}
4690EXPORT_SYMBOL_GPL(work_on_cpu);
4691#endif /* CONFIG_SMP */
4692
4693#ifdef CONFIG_FREEZER
4694
4695/**
4696 * freeze_workqueues_begin - begin freezing workqueues
4697 *
4698 * Start freezing workqueues. After this function returns, all freezable
4699 * workqueues will queue new works to their delayed_works list instead of
4700 * pool->worklist.
4701 *
4702 * CONTEXT:
4703 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4704 */
4705void freeze_workqueues_begin(void)
4706{
4707 struct workqueue_struct *wq;
4708 struct pool_workqueue *pwq;
4709
4710 mutex_lock(&wq_pool_mutex);
4711
4712 WARN_ON_ONCE(workqueue_freezing);
4713 workqueue_freezing = true;
4714
4715 list_for_each_entry(wq, &workqueues, list) {
4716 mutex_lock(&wq->mutex);
4717 for_each_pwq(pwq, wq)
4718 pwq_adjust_max_active(pwq);
4719 mutex_unlock(&wq->mutex);
4720 }
4721
4722 mutex_unlock(&wq_pool_mutex);
4723}
4724
4725/**
4726 * freeze_workqueues_busy - are freezable workqueues still busy?
4727 *
4728 * Check whether freezing is complete. This function must be called
4729 * between freeze_workqueues_begin() and thaw_workqueues().
4730 *
4731 * CONTEXT:
4732 * Grabs and releases wq_pool_mutex.
4733 *
4734 * Return:
4735 * %true if some freezable workqueues are still busy. %false if freezing
4736 * is complete.
4737 */
4738bool freeze_workqueues_busy(void)
4739{
4740 bool busy = false;
4741 struct workqueue_struct *wq;
4742 struct pool_workqueue *pwq;
4743
4744 mutex_lock(&wq_pool_mutex);
4745
4746 WARN_ON_ONCE(!workqueue_freezing);
4747
4748 list_for_each_entry(wq, &workqueues, list) {
4749 if (!(wq->flags & WQ_FREEZABLE))
4750 continue;
4751 /*
4752 * nr_active is monotonically decreasing. It's safe
4753 * to peek without lock.
4754 */
4755 rcu_read_lock_sched();
4756 for_each_pwq(pwq, wq) {
4757 WARN_ON_ONCE(pwq->nr_active < 0);
4758 if (pwq->nr_active) {
4759 busy = true;
4760 rcu_read_unlock_sched();
4761 goto out_unlock;
4762 }
4763 }
4764 rcu_read_unlock_sched();
4765 }
4766out_unlock:
4767 mutex_unlock(&wq_pool_mutex);
4768 return busy;
4769}
4770
4771/**
4772 * thaw_workqueues - thaw workqueues
4773 *
4774 * Thaw workqueues. Normal queueing is restored and all collected
4775 * frozen works are transferred to their respective pool worklists.
4776 *
4777 * CONTEXT:
4778 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4779 */
4780void thaw_workqueues(void)
4781{
4782 struct workqueue_struct *wq;
4783 struct pool_workqueue *pwq;
4784
4785 mutex_lock(&wq_pool_mutex);
4786
4787 if (!workqueue_freezing)
4788 goto out_unlock;
4789
4790 workqueue_freezing = false;
4791
4792 /* restore max_active and repopulate worklist */
4793 list_for_each_entry(wq, &workqueues, list) {
4794 mutex_lock(&wq->mutex);
4795 for_each_pwq(pwq, wq)
4796 pwq_adjust_max_active(pwq);
4797 mutex_unlock(&wq->mutex);
4798 }
4799
4800out_unlock:
4801 mutex_unlock(&wq_pool_mutex);
4802}
4803#endif /* CONFIG_FREEZER */
4804
042f7df1
LJ
4805static int workqueue_apply_unbound_cpumask(void)
4806{
4807 LIST_HEAD(ctxs);
4808 int ret = 0;
4809 struct workqueue_struct *wq;
4810 struct apply_wqattrs_ctx *ctx, *n;
4811
4812 lockdep_assert_held(&wq_pool_mutex);
4813
4814 list_for_each_entry(wq, &workqueues, list) {
4815 if (!(wq->flags & WQ_UNBOUND))
4816 continue;
4817 /* creating multiple pwqs breaks ordering guarantee */
4818 if (wq->flags & __WQ_ORDERED)
4819 continue;
4820
4821 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4822 if (!ctx) {
4823 ret = -ENOMEM;
4824 break;
4825 }
4826
4827 list_add_tail(&ctx->list, &ctxs);
4828 }
4829
4830 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4831 if (!ret)
4832 apply_wqattrs_commit(ctx);
4833 apply_wqattrs_cleanup(ctx);
4834 }
4835
4836 return ret;
4837}
4838
4839/**
4840 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4841 * @cpumask: the cpumask to set
4842 *
4843 * The low-level workqueues cpumask is a global cpumask that limits
4844 * the affinity of all unbound workqueues. This function check the @cpumask
4845 * and apply it to all unbound workqueues and updates all pwqs of them.
4846 *
4847 * Retun: 0 - Success
4848 * -EINVAL - Invalid @cpumask
4849 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4850 */
4851int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4852{
4853 int ret = -EINVAL;
4854 cpumask_var_t saved_cpumask;
4855
4856 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4857 return -ENOMEM;
4858
042f7df1
LJ
4859 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4860 if (!cpumask_empty(cpumask)) {
a0111cf6 4861 apply_wqattrs_lock();
042f7df1
LJ
4862
4863 /* save the old wq_unbound_cpumask. */
4864 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4865
4866 /* update wq_unbound_cpumask at first and apply it to wqs. */
4867 cpumask_copy(wq_unbound_cpumask, cpumask);
4868 ret = workqueue_apply_unbound_cpumask();
4869
4870 /* restore the wq_unbound_cpumask when failed. */
4871 if (ret < 0)
4872 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4873
a0111cf6 4874 apply_wqattrs_unlock();
042f7df1 4875 }
042f7df1
LJ
4876
4877 free_cpumask_var(saved_cpumask);
4878 return ret;
4879}
4880
6ba94429
FW
4881#ifdef CONFIG_SYSFS
4882/*
4883 * Workqueues with WQ_SYSFS flag set is visible to userland via
4884 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4885 * following attributes.
4886 *
4887 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4888 * max_active RW int : maximum number of in-flight work items
4889 *
4890 * Unbound workqueues have the following extra attributes.
4891 *
4892 * id RO int : the associated pool ID
4893 * nice RW int : nice value of the workers
4894 * cpumask RW mask : bitmask of allowed CPUs for the workers
4895 */
4896struct wq_device {
4897 struct workqueue_struct *wq;
4898 struct device dev;
4899};
4900
4901static struct workqueue_struct *dev_to_wq(struct device *dev)
4902{
4903 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4904
4905 return wq_dev->wq;
4906}
4907
4908static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4909 char *buf)
4910{
4911 struct workqueue_struct *wq = dev_to_wq(dev);
4912
4913 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4914}
4915static DEVICE_ATTR_RO(per_cpu);
4916
4917static ssize_t max_active_show(struct device *dev,
4918 struct device_attribute *attr, char *buf)
4919{
4920 struct workqueue_struct *wq = dev_to_wq(dev);
4921
4922 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4923}
4924
4925static ssize_t max_active_store(struct device *dev,
4926 struct device_attribute *attr, const char *buf,
4927 size_t count)
4928{
4929 struct workqueue_struct *wq = dev_to_wq(dev);
4930 int val;
4931
4932 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4933 return -EINVAL;
4934
4935 workqueue_set_max_active(wq, val);
4936 return count;
4937}
4938static DEVICE_ATTR_RW(max_active);
4939
4940static struct attribute *wq_sysfs_attrs[] = {
4941 &dev_attr_per_cpu.attr,
4942 &dev_attr_max_active.attr,
4943 NULL,
4944};
4945ATTRIBUTE_GROUPS(wq_sysfs);
4946
4947static ssize_t wq_pool_ids_show(struct device *dev,
4948 struct device_attribute *attr, char *buf)
4949{
4950 struct workqueue_struct *wq = dev_to_wq(dev);
4951 const char *delim = "";
4952 int node, written = 0;
4953
4954 rcu_read_lock_sched();
4955 for_each_node(node) {
4956 written += scnprintf(buf + written, PAGE_SIZE - written,
4957 "%s%d:%d", delim, node,
4958 unbound_pwq_by_node(wq, node)->pool->id);
4959 delim = " ";
4960 }
4961 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4962 rcu_read_unlock_sched();
4963
4964 return written;
4965}
4966
4967static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4968 char *buf)
4969{
4970 struct workqueue_struct *wq = dev_to_wq(dev);
4971 int written;
4972
4973 mutex_lock(&wq->mutex);
4974 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4975 mutex_unlock(&wq->mutex);
4976
4977 return written;
4978}
4979
4980/* prepare workqueue_attrs for sysfs store operations */
4981static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4982{
4983 struct workqueue_attrs *attrs;
4984
899a94fe
LJ
4985 lockdep_assert_held(&wq_pool_mutex);
4986
6ba94429
FW
4987 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4988 if (!attrs)
4989 return NULL;
4990
6ba94429 4991 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
4992 return attrs;
4993}
4994
4995static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4996 const char *buf, size_t count)
4997{
4998 struct workqueue_struct *wq = dev_to_wq(dev);
4999 struct workqueue_attrs *attrs;
d4d3e257
LJ
5000 int ret = -ENOMEM;
5001
5002 apply_wqattrs_lock();
6ba94429
FW
5003
5004 attrs = wq_sysfs_prep_attrs(wq);
5005 if (!attrs)
d4d3e257 5006 goto out_unlock;
6ba94429
FW
5007
5008 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5009 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5010 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5011 else
5012 ret = -EINVAL;
5013
d4d3e257
LJ
5014out_unlock:
5015 apply_wqattrs_unlock();
6ba94429
FW
5016 free_workqueue_attrs(attrs);
5017 return ret ?: count;
5018}
5019
5020static ssize_t wq_cpumask_show(struct device *dev,
5021 struct device_attribute *attr, char *buf)
5022{
5023 struct workqueue_struct *wq = dev_to_wq(dev);
5024 int written;
5025
5026 mutex_lock(&wq->mutex);
5027 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5028 cpumask_pr_args(wq->unbound_attrs->cpumask));
5029 mutex_unlock(&wq->mutex);
5030 return written;
5031}
5032
5033static ssize_t wq_cpumask_store(struct device *dev,
5034 struct device_attribute *attr,
5035 const char *buf, size_t count)
5036{
5037 struct workqueue_struct *wq = dev_to_wq(dev);
5038 struct workqueue_attrs *attrs;
d4d3e257
LJ
5039 int ret = -ENOMEM;
5040
5041 apply_wqattrs_lock();
6ba94429
FW
5042
5043 attrs = wq_sysfs_prep_attrs(wq);
5044 if (!attrs)
d4d3e257 5045 goto out_unlock;
6ba94429
FW
5046
5047 ret = cpumask_parse(buf, attrs->cpumask);
5048 if (!ret)
d4d3e257 5049 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5050
d4d3e257
LJ
5051out_unlock:
5052 apply_wqattrs_unlock();
6ba94429
FW
5053 free_workqueue_attrs(attrs);
5054 return ret ?: count;
5055}
5056
5057static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5058 char *buf)
5059{
5060 struct workqueue_struct *wq = dev_to_wq(dev);
5061 int written;
7dbc725e 5062
6ba94429
FW
5063 mutex_lock(&wq->mutex);
5064 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5065 !wq->unbound_attrs->no_numa);
5066 mutex_unlock(&wq->mutex);
4c16bd32 5067
6ba94429 5068 return written;
65758202
TH
5069}
5070
6ba94429
FW
5071static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5072 const char *buf, size_t count)
65758202 5073{
6ba94429
FW
5074 struct workqueue_struct *wq = dev_to_wq(dev);
5075 struct workqueue_attrs *attrs;
d4d3e257
LJ
5076 int v, ret = -ENOMEM;
5077
5078 apply_wqattrs_lock();
4c16bd32 5079
6ba94429
FW
5080 attrs = wq_sysfs_prep_attrs(wq);
5081 if (!attrs)
d4d3e257 5082 goto out_unlock;
4c16bd32 5083
6ba94429
FW
5084 ret = -EINVAL;
5085 if (sscanf(buf, "%d", &v) == 1) {
5086 attrs->no_numa = !v;
d4d3e257 5087 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5088 }
6ba94429 5089
d4d3e257
LJ
5090out_unlock:
5091 apply_wqattrs_unlock();
6ba94429
FW
5092 free_workqueue_attrs(attrs);
5093 return ret ?: count;
65758202
TH
5094}
5095
6ba94429
FW
5096static struct device_attribute wq_sysfs_unbound_attrs[] = {
5097 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5098 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5099 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5100 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5101 __ATTR_NULL,
5102};
8ccad40d 5103
6ba94429
FW
5104static struct bus_type wq_subsys = {
5105 .name = "workqueue",
5106 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5107};
5108
b05a7928
FW
5109static ssize_t wq_unbound_cpumask_show(struct device *dev,
5110 struct device_attribute *attr, char *buf)
5111{
5112 int written;
5113
042f7df1 5114 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5115 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5116 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5117 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5118
5119 return written;
5120}
5121
042f7df1
LJ
5122static ssize_t wq_unbound_cpumask_store(struct device *dev,
5123 struct device_attribute *attr, const char *buf, size_t count)
5124{
5125 cpumask_var_t cpumask;
5126 int ret;
5127
5128 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5129 return -ENOMEM;
5130
5131 ret = cpumask_parse(buf, cpumask);
5132 if (!ret)
5133 ret = workqueue_set_unbound_cpumask(cpumask);
5134
5135 free_cpumask_var(cpumask);
5136 return ret ? ret : count;
5137}
5138
b05a7928 5139static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5140 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5141 wq_unbound_cpumask_store);
b05a7928 5142
6ba94429 5143static int __init wq_sysfs_init(void)
2d3854a3 5144{
b05a7928
FW
5145 int err;
5146
5147 err = subsys_virtual_register(&wq_subsys, NULL);
5148 if (err)
5149 return err;
5150
5151 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5152}
6ba94429 5153core_initcall(wq_sysfs_init);
2d3854a3 5154
6ba94429 5155static void wq_device_release(struct device *dev)
2d3854a3 5156{
6ba94429 5157 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5158
6ba94429 5159 kfree(wq_dev);
2d3854a3 5160}
a0a1a5fd
TH
5161
5162/**
6ba94429
FW
5163 * workqueue_sysfs_register - make a workqueue visible in sysfs
5164 * @wq: the workqueue to register
a0a1a5fd 5165 *
6ba94429
FW
5166 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5167 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5168 * which is the preferred method.
a0a1a5fd 5169 *
6ba94429
FW
5170 * Workqueue user should use this function directly iff it wants to apply
5171 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5172 * apply_workqueue_attrs() may race against userland updating the
5173 * attributes.
5174 *
5175 * Return: 0 on success, -errno on failure.
a0a1a5fd 5176 */
6ba94429 5177int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5178{
6ba94429
FW
5179 struct wq_device *wq_dev;
5180 int ret;
a0a1a5fd 5181
6ba94429 5182 /*
402dd89d 5183 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5184 * attributes breaks ordering guarantee. Disallow exposing ordered
5185 * workqueues.
5186 */
5187 if (WARN_ON(wq->flags & __WQ_ORDERED))
5188 return -EINVAL;
a0a1a5fd 5189
6ba94429
FW
5190 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5191 if (!wq_dev)
5192 return -ENOMEM;
5bcab335 5193
6ba94429
FW
5194 wq_dev->wq = wq;
5195 wq_dev->dev.bus = &wq_subsys;
5196 wq_dev->dev.init_name = wq->name;
5197 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5198
6ba94429
FW
5199 /*
5200 * unbound_attrs are created separately. Suppress uevent until
5201 * everything is ready.
5202 */
5203 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5204
6ba94429
FW
5205 ret = device_register(&wq_dev->dev);
5206 if (ret) {
5207 kfree(wq_dev);
5208 wq->wq_dev = NULL;
5209 return ret;
5210 }
a0a1a5fd 5211
6ba94429
FW
5212 if (wq->flags & WQ_UNBOUND) {
5213 struct device_attribute *attr;
a0a1a5fd 5214
6ba94429
FW
5215 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5216 ret = device_create_file(&wq_dev->dev, attr);
5217 if (ret) {
5218 device_unregister(&wq_dev->dev);
5219 wq->wq_dev = NULL;
5220 return ret;
a0a1a5fd
TH
5221 }
5222 }
5223 }
6ba94429
FW
5224
5225 dev_set_uevent_suppress(&wq_dev->dev, false);
5226 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5227 return 0;
a0a1a5fd
TH
5228}
5229
5230/**
6ba94429
FW
5231 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5232 * @wq: the workqueue to unregister
a0a1a5fd 5233 *
6ba94429 5234 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5235 */
6ba94429 5236static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5237{
6ba94429 5238 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5239
6ba94429
FW
5240 if (!wq->wq_dev)
5241 return;
a0a1a5fd 5242
6ba94429
FW
5243 wq->wq_dev = NULL;
5244 device_unregister(&wq_dev->dev);
a0a1a5fd 5245}
6ba94429
FW
5246#else /* CONFIG_SYSFS */
5247static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5248#endif /* CONFIG_SYSFS */
a0a1a5fd 5249
82607adc
TH
5250/*
5251 * Workqueue watchdog.
5252 *
5253 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5254 * flush dependency, a concurrency managed work item which stays RUNNING
5255 * indefinitely. Workqueue stalls can be very difficult to debug as the
5256 * usual warning mechanisms don't trigger and internal workqueue state is
5257 * largely opaque.
5258 *
5259 * Workqueue watchdog monitors all worker pools periodically and dumps
5260 * state if some pools failed to make forward progress for a while where
5261 * forward progress is defined as the first item on ->worklist changing.
5262 *
5263 * This mechanism is controlled through the kernel parameter
5264 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5265 * corresponding sysfs parameter file.
5266 */
5267#ifdef CONFIG_WQ_WATCHDOG
5268
5269static void wq_watchdog_timer_fn(unsigned long data);
5270
5271static unsigned long wq_watchdog_thresh = 30;
5272static struct timer_list wq_watchdog_timer =
5273 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5274
5275static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5276static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5277
5278static void wq_watchdog_reset_touched(void)
5279{
5280 int cpu;
5281
5282 wq_watchdog_touched = jiffies;
5283 for_each_possible_cpu(cpu)
5284 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5285}
5286
5287static void wq_watchdog_timer_fn(unsigned long data)
5288{
5289 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5290 bool lockup_detected = false;
5291 struct worker_pool *pool;
5292 int pi;
5293
5294 if (!thresh)
5295 return;
5296
5297 rcu_read_lock();
5298
5299 for_each_pool(pool, pi) {
5300 unsigned long pool_ts, touched, ts;
5301
5302 if (list_empty(&pool->worklist))
5303 continue;
5304
5305 /* get the latest of pool and touched timestamps */
5306 pool_ts = READ_ONCE(pool->watchdog_ts);
5307 touched = READ_ONCE(wq_watchdog_touched);
5308
5309 if (time_after(pool_ts, touched))
5310 ts = pool_ts;
5311 else
5312 ts = touched;
5313
5314 if (pool->cpu >= 0) {
5315 unsigned long cpu_touched =
5316 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5317 pool->cpu));
5318 if (time_after(cpu_touched, ts))
5319 ts = cpu_touched;
5320 }
5321
5322 /* did we stall? */
5323 if (time_after(jiffies, ts + thresh)) {
5324 lockup_detected = true;
5325 pr_emerg("BUG: workqueue lockup - pool");
5326 pr_cont_pool_info(pool);
5327 pr_cont(" stuck for %us!\n",
5328 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5329 }
5330 }
5331
5332 rcu_read_unlock();
5333
5334 if (lockup_detected)
5335 show_workqueue_state();
5336
5337 wq_watchdog_reset_touched();
5338 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5339}
5340
5341void wq_watchdog_touch(int cpu)
5342{
5343 if (cpu >= 0)
5344 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5345 else
5346 wq_watchdog_touched = jiffies;
5347}
5348
5349static void wq_watchdog_set_thresh(unsigned long thresh)
5350{
5351 wq_watchdog_thresh = 0;
5352 del_timer_sync(&wq_watchdog_timer);
5353
5354 if (thresh) {
5355 wq_watchdog_thresh = thresh;
5356 wq_watchdog_reset_touched();
5357 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5358 }
5359}
5360
5361static int wq_watchdog_param_set_thresh(const char *val,
5362 const struct kernel_param *kp)
5363{
5364 unsigned long thresh;
5365 int ret;
5366
5367 ret = kstrtoul(val, 0, &thresh);
5368 if (ret)
5369 return ret;
5370
5371 if (system_wq)
5372 wq_watchdog_set_thresh(thresh);
5373 else
5374 wq_watchdog_thresh = thresh;
5375
5376 return 0;
5377}
5378
5379static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5380 .set = wq_watchdog_param_set_thresh,
5381 .get = param_get_ulong,
5382};
5383
5384module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5385 0644);
5386
5387static void wq_watchdog_init(void)
5388{
5389 wq_watchdog_set_thresh(wq_watchdog_thresh);
5390}
5391
5392#else /* CONFIG_WQ_WATCHDOG */
5393
5394static inline void wq_watchdog_init(void) { }
5395
5396#endif /* CONFIG_WQ_WATCHDOG */
5397
bce90380
TH
5398static void __init wq_numa_init(void)
5399{
5400 cpumask_var_t *tbl;
5401 int node, cpu;
5402
bce90380
TH
5403 if (num_possible_nodes() <= 1)
5404 return;
5405
d55262c4
TH
5406 if (wq_disable_numa) {
5407 pr_info("workqueue: NUMA affinity support disabled\n");
5408 return;
5409 }
5410
4c16bd32
TH
5411 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5412 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5413
bce90380
TH
5414 /*
5415 * We want masks of possible CPUs of each node which isn't readily
5416 * available. Build one from cpu_to_node() which should have been
5417 * fully initialized by now.
5418 */
ddcb57e2 5419 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5420 BUG_ON(!tbl);
5421
5422 for_each_node(node)
5a6024f1 5423 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5424 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5425
5426 for_each_possible_cpu(cpu) {
5427 node = cpu_to_node(cpu);
5428 if (WARN_ON(node == NUMA_NO_NODE)) {
5429 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5430 /* happens iff arch is bonkers, let's just proceed */
5431 return;
5432 }
5433 cpumask_set_cpu(cpu, tbl[node]);
5434 }
5435
5436 wq_numa_possible_cpumask = tbl;
5437 wq_numa_enabled = true;
5438}
5439
6ee0578b 5440static int __init init_workqueues(void)
1da177e4 5441{
7a4e344c
TH
5442 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5443 int i, cpu;
c34056a3 5444
e904e6c2
TH
5445 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5446
b05a7928
FW
5447 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5448 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5449
e904e6c2
TH
5450 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5451
65758202 5452 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5453 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5454
bce90380
TH
5455 wq_numa_init();
5456
706026c2 5457 /* initialize CPU pools */
29c91e99 5458 for_each_possible_cpu(cpu) {
4ce62e9e 5459 struct worker_pool *pool;
8b03ae3c 5460
7a4e344c 5461 i = 0;
f02ae73a 5462 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5463 BUG_ON(init_worker_pool(pool));
ec22ca5e 5464 pool->cpu = cpu;
29c91e99 5465 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5466 pool->attrs->nice = std_nice[i++];
f3f90ad4 5467 pool->node = cpu_to_node(cpu);
7a4e344c 5468
9daf9e67 5469 /* alloc pool ID */
68e13a67 5470 mutex_lock(&wq_pool_mutex);
9daf9e67 5471 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5472 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5473 }
8b03ae3c
TH
5474 }
5475
e22bee78 5476 /* create the initial worker */
29c91e99 5477 for_each_online_cpu(cpu) {
4ce62e9e 5478 struct worker_pool *pool;
e22bee78 5479
f02ae73a 5480 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5481 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5482 BUG_ON(!create_worker(pool));
4ce62e9e 5483 }
e22bee78
TH
5484 }
5485
8a2b7538 5486 /* create default unbound and ordered wq attrs */
29c91e99
TH
5487 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5488 struct workqueue_attrs *attrs;
5489
5490 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5491 attrs->nice = std_nice[i];
29c91e99 5492 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5493
5494 /*
5495 * An ordered wq should have only one pwq as ordering is
5496 * guaranteed by max_active which is enforced by pwqs.
5497 * Turn off NUMA so that dfl_pwq is used for all nodes.
5498 */
5499 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5500 attrs->nice = std_nice[i];
5501 attrs->no_numa = true;
5502 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5503 }
5504
d320c038 5505 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5506 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5507 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5508 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5509 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5510 system_freezable_wq = alloc_workqueue("events_freezable",
5511 WQ_FREEZABLE, 0);
0668106c
VK
5512 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5513 WQ_POWER_EFFICIENT, 0);
5514 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5515 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5516 0);
1aabe902 5517 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5518 !system_unbound_wq || !system_freezable_wq ||
5519 !system_power_efficient_wq ||
5520 !system_freezable_power_efficient_wq);
82607adc
TH
5521
5522 wq_watchdog_init();
5523
6ee0578b 5524 return 0;
1da177e4 5525}
6ee0578b 5526early_initcall(init_workqueues);