workqueue: factor out initial worker creation into create_and_start_worker()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 62 *
bc3a1afc
TH
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
24647570 65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c5aa87bb 148 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
bc3a1afc 152 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 153 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 154 struct mutex manager_mutex; /* manager exclusion */
bd7bdd43 155 struct ida worker_ida; /* L: for worker IDs */
e19e397a 156
7a4e344c 157 struct workqueue_attrs *attrs; /* I: worker attributes */
c5aa87bb
TH
158 struct hlist_node hash_node; /* W: unbound_pool_hash node */
159 int refcnt; /* W: refcnt for unbound pools */
7a4e344c 160
e19e397a
TH
161 /*
162 * The current concurrency level. As it's likely to be accessed
163 * from other CPUs during try_to_wake_up(), put it in a separate
164 * cacheline.
165 */
166 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
167
168 /*
169 * Destruction of pool is sched-RCU protected to allow dereferences
170 * from get_work_pool().
171 */
172 struct rcu_head rcu;
8b03ae3c
TH
173} ____cacheline_aligned_in_smp;
174
1da177e4 175/*
112202d9
TH
176 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
177 * of work_struct->data are used for flags and the remaining high bits
178 * point to the pwq; thus, pwqs need to be aligned at two's power of the
179 * number of flag bits.
1da177e4 180 */
112202d9 181struct pool_workqueue {
bd7bdd43 182 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 183 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
184 int work_color; /* L: current color */
185 int flush_color; /* L: flushing color */
8864b4e5 186 int refcnt; /* L: reference count */
73f53c4a
TH
187 int nr_in_flight[WORK_NR_COLORS];
188 /* L: nr of in_flight works */
1e19ffc6 189 int nr_active; /* L: nr of active works */
a0a1a5fd 190 int max_active; /* L: max active works */
1e19ffc6 191 struct list_head delayed_works; /* L: delayed works */
75ccf595 192 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 193 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
194
195 /*
196 * Release of unbound pwq is punted to system_wq. See put_pwq()
197 * and pwq_unbound_release_workfn() for details. pool_workqueue
198 * itself is also sched-RCU protected so that the first pwq can be
199 * determined without grabbing workqueue_lock.
200 */
201 struct work_struct unbound_release_work;
202 struct rcu_head rcu;
e904e6c2 203} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 204
73f53c4a
TH
205/*
206 * Structure used to wait for workqueue flush.
207 */
208struct wq_flusher {
209 struct list_head list; /* F: list of flushers */
210 int flush_color; /* F: flush color waiting for */
211 struct completion done; /* flush completion */
212};
213
226223ab
TH
214struct wq_device;
215
1da177e4 216/*
c5aa87bb
TH
217 * The externally visible workqueue. It relays the issued work items to
218 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
219 */
220struct workqueue_struct {
9c5a2ba7 221 unsigned int flags; /* W: WQ_* flags */
420c0ddb 222 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 223 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 224 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
225
226 struct mutex flush_mutex; /* protects wq flushing */
227 int work_color; /* F: current work color */
228 int flush_color; /* F: current flush color */
112202d9 229 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
230 struct wq_flusher *first_flusher; /* F: first flusher */
231 struct list_head flusher_queue; /* F: flush waiters */
232 struct list_head flusher_overflow; /* F: flush overflow list */
233
493a1724 234 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
235 struct worker *rescuer; /* I: rescue worker */
236
9c5a2ba7 237 int nr_drainers; /* W: drain in progress */
112202d9 238 int saved_max_active; /* W: saved pwq max_active */
226223ab
TH
239
240#ifdef CONFIG_SYSFS
241 struct wq_device *wq_dev; /* I: for sysfs interface */
242#endif
4e6045f1 243#ifdef CONFIG_LOCKDEP
4690c4ab 244 struct lockdep_map lockdep_map;
4e6045f1 245#endif
b196be89 246 char name[]; /* I: workqueue name */
1da177e4
LT
247};
248
e904e6c2
TH
249static struct kmem_cache *pwq_cache;
250
c5aa87bb 251/* W: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
252static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
253
c5aa87bb 254/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
255static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
256
d320c038 257struct workqueue_struct *system_wq __read_mostly;
d320c038 258EXPORT_SYMBOL_GPL(system_wq);
044c782c 259struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 260EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 261struct workqueue_struct *system_long_wq __read_mostly;
d320c038 262EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 263struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 264EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 265struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 266EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 267
97bd2347
TH
268#define CREATE_TRACE_POINTS
269#include <trace/events/workqueue.h>
270
76af4d93
TH
271#define assert_rcu_or_wq_lock() \
272 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
273 lockdep_is_held(&workqueue_lock), \
274 "sched RCU or workqueue lock should be held")
275
f02ae73a
TH
276#define for_each_cpu_worker_pool(pool, cpu) \
277 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
278 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 279 (pool)++)
4ce62e9e 280
b67bfe0d
SL
281#define for_each_busy_worker(worker, i, pool) \
282 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 283
17116969
TH
284/**
285 * for_each_pool - iterate through all worker_pools in the system
286 * @pool: iteration cursor
611c92a0 287 * @pi: integer used for iteration
fa1b54e6
TH
288 *
289 * This must be called either with workqueue_lock held or sched RCU read
290 * locked. If the pool needs to be used beyond the locking in effect, the
291 * caller is responsible for guaranteeing that the pool stays online.
292 *
293 * The if/else clause exists only for the lockdep assertion and can be
294 * ignored.
17116969 295 */
611c92a0
TH
296#define for_each_pool(pool, pi) \
297 idr_for_each_entry(&worker_pool_idr, pool, pi) \
fa1b54e6
TH
298 if (({ assert_rcu_or_wq_lock(); false; })) { } \
299 else
17116969 300
49e3cf44
TH
301/**
302 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
303 * @pwq: iteration cursor
304 * @wq: the target workqueue
76af4d93
TH
305 *
306 * This must be called either with workqueue_lock held or sched RCU read
307 * locked. If the pwq needs to be used beyond the locking in effect, the
308 * caller is responsible for guaranteeing that the pwq stays online.
309 *
310 * The if/else clause exists only for the lockdep assertion and can be
311 * ignored.
49e3cf44
TH
312 */
313#define for_each_pwq(pwq, wq) \
76af4d93
TH
314 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
315 if (({ assert_rcu_or_wq_lock(); false; })) { } \
316 else
f3421797 317
dc186ad7
TG
318#ifdef CONFIG_DEBUG_OBJECTS_WORK
319
320static struct debug_obj_descr work_debug_descr;
321
99777288
SG
322static void *work_debug_hint(void *addr)
323{
324 return ((struct work_struct *) addr)->func;
325}
326
dc186ad7
TG
327/*
328 * fixup_init is called when:
329 * - an active object is initialized
330 */
331static int work_fixup_init(void *addr, enum debug_obj_state state)
332{
333 struct work_struct *work = addr;
334
335 switch (state) {
336 case ODEBUG_STATE_ACTIVE:
337 cancel_work_sync(work);
338 debug_object_init(work, &work_debug_descr);
339 return 1;
340 default:
341 return 0;
342 }
343}
344
345/*
346 * fixup_activate is called when:
347 * - an active object is activated
348 * - an unknown object is activated (might be a statically initialized object)
349 */
350static int work_fixup_activate(void *addr, enum debug_obj_state state)
351{
352 struct work_struct *work = addr;
353
354 switch (state) {
355
356 case ODEBUG_STATE_NOTAVAILABLE:
357 /*
358 * This is not really a fixup. The work struct was
359 * statically initialized. We just make sure that it
360 * is tracked in the object tracker.
361 */
22df02bb 362 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
363 debug_object_init(work, &work_debug_descr);
364 debug_object_activate(work, &work_debug_descr);
365 return 0;
366 }
367 WARN_ON_ONCE(1);
368 return 0;
369
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
372
373 default:
374 return 0;
375 }
376}
377
378/*
379 * fixup_free is called when:
380 * - an active object is freed
381 */
382static int work_fixup_free(void *addr, enum debug_obj_state state)
383{
384 struct work_struct *work = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 cancel_work_sync(work);
389 debug_object_free(work, &work_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394}
395
396static struct debug_obj_descr work_debug_descr = {
397 .name = "work_struct",
99777288 398 .debug_hint = work_debug_hint,
dc186ad7
TG
399 .fixup_init = work_fixup_init,
400 .fixup_activate = work_fixup_activate,
401 .fixup_free = work_fixup_free,
402};
403
404static inline void debug_work_activate(struct work_struct *work)
405{
406 debug_object_activate(work, &work_debug_descr);
407}
408
409static inline void debug_work_deactivate(struct work_struct *work)
410{
411 debug_object_deactivate(work, &work_debug_descr);
412}
413
414void __init_work(struct work_struct *work, int onstack)
415{
416 if (onstack)
417 debug_object_init_on_stack(work, &work_debug_descr);
418 else
419 debug_object_init(work, &work_debug_descr);
420}
421EXPORT_SYMBOL_GPL(__init_work);
422
423void destroy_work_on_stack(struct work_struct *work)
424{
425 debug_object_free(work, &work_debug_descr);
426}
427EXPORT_SYMBOL_GPL(destroy_work_on_stack);
428
429#else
430static inline void debug_work_activate(struct work_struct *work) { }
431static inline void debug_work_deactivate(struct work_struct *work) { }
432#endif
433
95402b38
GS
434/* Serializes the accesses to the list of workqueues. */
435static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 436static LIST_HEAD(workqueues);
a0a1a5fd 437static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 438
c5aa87bb 439/* the per-cpu worker pools */
e19e397a 440static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 441 cpu_worker_pools);
f3421797 442
fa1b54e6 443/*
c5aa87bb
TH
444 * R: idr of all pools. Modifications are protected by workqueue_lock.
445 * Read accesses are protected by sched-RCU protected.
fa1b54e6 446 */
9daf9e67
TH
447static DEFINE_IDR(worker_pool_idr);
448
c34056a3 449static int worker_thread(void *__worker);
226223ab
TH
450static void copy_workqueue_attrs(struct workqueue_attrs *to,
451 const struct workqueue_attrs *from);
1da177e4 452
9daf9e67
TH
453/* allocate ID and assign it to @pool */
454static int worker_pool_assign_id(struct worker_pool *pool)
455{
456 int ret;
457
fa1b54e6
TH
458 do {
459 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
460 return -ENOMEM;
9daf9e67 461
fa1b54e6
TH
462 spin_lock_irq(&workqueue_lock);
463 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
464 spin_unlock_irq(&workqueue_lock);
465 } while (ret == -EAGAIN);
9daf9e67 466
fa1b54e6 467 return ret;
7c3eed5c
TH
468}
469
76af4d93
TH
470/**
471 * first_pwq - return the first pool_workqueue of the specified workqueue
472 * @wq: the target workqueue
473 *
474 * This must be called either with workqueue_lock held or sched RCU read
475 * locked. If the pwq needs to be used beyond the locking in effect, the
476 * caller is responsible for guaranteeing that the pwq stays online.
477 */
7fb98ea7 478static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 479{
76af4d93
TH
480 assert_rcu_or_wq_lock();
481 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
482 pwqs_node);
b1f4ec17
ON
483}
484
73f53c4a
TH
485static unsigned int work_color_to_flags(int color)
486{
487 return color << WORK_STRUCT_COLOR_SHIFT;
488}
489
490static int get_work_color(struct work_struct *work)
491{
492 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
493 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
494}
495
496static int work_next_color(int color)
497{
498 return (color + 1) % WORK_NR_COLORS;
499}
1da177e4 500
14441960 501/*
112202d9
TH
502 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
503 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 504 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 505 *
112202d9
TH
506 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
507 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
508 * work->data. These functions should only be called while the work is
509 * owned - ie. while the PENDING bit is set.
7a22ad75 510 *
112202d9 511 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 512 * corresponding to a work. Pool is available once the work has been
112202d9 513 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 514 * available only while the work item is queued.
7a22ad75 515 *
bbb68dfa
TH
516 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
517 * canceled. While being canceled, a work item may have its PENDING set
518 * but stay off timer and worklist for arbitrarily long and nobody should
519 * try to steal the PENDING bit.
14441960 520 */
7a22ad75
TH
521static inline void set_work_data(struct work_struct *work, unsigned long data,
522 unsigned long flags)
365970a1 523{
6183c009 524 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
525 atomic_long_set(&work->data, data | flags | work_static(work));
526}
365970a1 527
112202d9 528static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
529 unsigned long extra_flags)
530{
112202d9
TH
531 set_work_data(work, (unsigned long)pwq,
532 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
533}
534
4468a00f
LJ
535static void set_work_pool_and_keep_pending(struct work_struct *work,
536 int pool_id)
537{
538 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
539 WORK_STRUCT_PENDING);
540}
541
7c3eed5c
TH
542static void set_work_pool_and_clear_pending(struct work_struct *work,
543 int pool_id)
7a22ad75 544{
23657bb1
TH
545 /*
546 * The following wmb is paired with the implied mb in
547 * test_and_set_bit(PENDING) and ensures all updates to @work made
548 * here are visible to and precede any updates by the next PENDING
549 * owner.
550 */
551 smp_wmb();
7c3eed5c 552 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 553}
f756d5e2 554
7a22ad75 555static void clear_work_data(struct work_struct *work)
1da177e4 556{
7c3eed5c
TH
557 smp_wmb(); /* see set_work_pool_and_clear_pending() */
558 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
559}
560
112202d9 561static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 562{
e120153d 563 unsigned long data = atomic_long_read(&work->data);
7a22ad75 564
112202d9 565 if (data & WORK_STRUCT_PWQ)
e120153d
TH
566 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
567 else
568 return NULL;
4d707b9f
ON
569}
570
7c3eed5c
TH
571/**
572 * get_work_pool - return the worker_pool a given work was associated with
573 * @work: the work item of interest
574 *
575 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
576 *
577 * Pools are created and destroyed under workqueue_lock, and allows read
578 * access under sched-RCU read lock. As such, this function should be
579 * called under workqueue_lock or with preemption disabled.
580 *
581 * All fields of the returned pool are accessible as long as the above
582 * mentioned locking is in effect. If the returned pool needs to be used
583 * beyond the critical section, the caller is responsible for ensuring the
584 * returned pool is and stays online.
7c3eed5c
TH
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 589 int pool_id;
7a22ad75 590
fa1b54e6
TH
591 assert_rcu_or_wq_lock();
592
112202d9
TH
593 if (data & WORK_STRUCT_PWQ)
594 return ((struct pool_workqueue *)
7c3eed5c 595 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 596
7c3eed5c
TH
597 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
598 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
599 return NULL;
600
fa1b54e6 601 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
602}
603
604/**
605 * get_work_pool_id - return the worker pool ID a given work is associated with
606 * @work: the work item of interest
607 *
608 * Return the worker_pool ID @work was last associated with.
609 * %WORK_OFFQ_POOL_NONE if none.
610 */
611static int get_work_pool_id(struct work_struct *work)
612{
54d5b7d0
LJ
613 unsigned long data = atomic_long_read(&work->data);
614
112202d9
TH
615 if (data & WORK_STRUCT_PWQ)
616 return ((struct pool_workqueue *)
54d5b7d0 617 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 618
54d5b7d0 619 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
620}
621
bbb68dfa
TH
622static void mark_work_canceling(struct work_struct *work)
623{
7c3eed5c 624 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 625
7c3eed5c
TH
626 pool_id <<= WORK_OFFQ_POOL_SHIFT;
627 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
628}
629
630static bool work_is_canceling(struct work_struct *work)
631{
632 unsigned long data = atomic_long_read(&work->data);
633
112202d9 634 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
635}
636
e22bee78 637/*
3270476a
TH
638 * Policy functions. These define the policies on how the global worker
639 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 640 * they're being called with pool->lock held.
e22bee78
TH
641 */
642
63d95a91 643static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 644{
e19e397a 645 return !atomic_read(&pool->nr_running);
a848e3b6
ON
646}
647
4594bf15 648/*
e22bee78
TH
649 * Need to wake up a worker? Called from anything but currently
650 * running workers.
974271c4
TH
651 *
652 * Note that, because unbound workers never contribute to nr_running, this
706026c2 653 * function will always return %true for unbound pools as long as the
974271c4 654 * worklist isn't empty.
4594bf15 655 */
63d95a91 656static bool need_more_worker(struct worker_pool *pool)
365970a1 657{
63d95a91 658 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 659}
4594bf15 660
e22bee78 661/* Can I start working? Called from busy but !running workers. */
63d95a91 662static bool may_start_working(struct worker_pool *pool)
e22bee78 663{
63d95a91 664 return pool->nr_idle;
e22bee78
TH
665}
666
667/* Do I need to keep working? Called from currently running workers. */
63d95a91 668static bool keep_working(struct worker_pool *pool)
e22bee78 669{
e19e397a
TH
670 return !list_empty(&pool->worklist) &&
671 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
672}
673
674/* Do we need a new worker? Called from manager. */
63d95a91 675static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 676{
63d95a91 677 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 678}
365970a1 679
e22bee78 680/* Do I need to be the manager? */
63d95a91 681static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return need_to_create_worker(pool) ||
11ebea50 684 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
685}
686
687/* Do we have too many workers and should some go away? */
63d95a91 688static bool too_many_workers(struct worker_pool *pool)
e22bee78 689{
34a06bd6 690 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
691 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
692 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 693
ea1abd61
LJ
694 /*
695 * nr_idle and idle_list may disagree if idle rebinding is in
696 * progress. Never return %true if idle_list is empty.
697 */
698 if (list_empty(&pool->idle_list))
699 return false;
700
e22bee78 701 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
702}
703
4d707b9f 704/*
e22bee78
TH
705 * Wake up functions.
706 */
707
7e11629d 708/* Return the first worker. Safe with preemption disabled */
63d95a91 709static struct worker *first_worker(struct worker_pool *pool)
7e11629d 710{
63d95a91 711 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
712 return NULL;
713
63d95a91 714 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
715}
716
717/**
718 * wake_up_worker - wake up an idle worker
63d95a91 719 * @pool: worker pool to wake worker from
7e11629d 720 *
63d95a91 721 * Wake up the first idle worker of @pool.
7e11629d
TH
722 *
723 * CONTEXT:
d565ed63 724 * spin_lock_irq(pool->lock).
7e11629d 725 */
63d95a91 726static void wake_up_worker(struct worker_pool *pool)
7e11629d 727{
63d95a91 728 struct worker *worker = first_worker(pool);
7e11629d
TH
729
730 if (likely(worker))
731 wake_up_process(worker->task);
732}
733
d302f017 734/**
e22bee78
TH
735 * wq_worker_waking_up - a worker is waking up
736 * @task: task waking up
737 * @cpu: CPU @task is waking up to
738 *
739 * This function is called during try_to_wake_up() when a worker is
740 * being awoken.
741 *
742 * CONTEXT:
743 * spin_lock_irq(rq->lock)
744 */
d84ff051 745void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
746{
747 struct worker *worker = kthread_data(task);
748
36576000 749 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 750 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 751 atomic_inc(&worker->pool->nr_running);
36576000 752 }
e22bee78
TH
753}
754
755/**
756 * wq_worker_sleeping - a worker is going to sleep
757 * @task: task going to sleep
758 * @cpu: CPU in question, must be the current CPU number
759 *
760 * This function is called during schedule() when a busy worker is
761 * going to sleep. Worker on the same cpu can be woken up by
762 * returning pointer to its task.
763 *
764 * CONTEXT:
765 * spin_lock_irq(rq->lock)
766 *
767 * RETURNS:
768 * Worker task on @cpu to wake up, %NULL if none.
769 */
d84ff051 770struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
771{
772 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 773 struct worker_pool *pool;
e22bee78 774
111c225a
TH
775 /*
776 * Rescuers, which may not have all the fields set up like normal
777 * workers, also reach here, let's not access anything before
778 * checking NOT_RUNNING.
779 */
2d64672e 780 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
781 return NULL;
782
111c225a 783 pool = worker->pool;
111c225a 784
e22bee78 785 /* this can only happen on the local cpu */
6183c009
TH
786 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
787 return NULL;
e22bee78
TH
788
789 /*
790 * The counterpart of the following dec_and_test, implied mb,
791 * worklist not empty test sequence is in insert_work().
792 * Please read comment there.
793 *
628c78e7
TH
794 * NOT_RUNNING is clear. This means that we're bound to and
795 * running on the local cpu w/ rq lock held and preemption
796 * disabled, which in turn means that none else could be
d565ed63 797 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 798 * lock is safe.
e22bee78 799 */
e19e397a
TH
800 if (atomic_dec_and_test(&pool->nr_running) &&
801 !list_empty(&pool->worklist))
63d95a91 802 to_wakeup = first_worker(pool);
e22bee78
TH
803 return to_wakeup ? to_wakeup->task : NULL;
804}
805
806/**
807 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 808 * @worker: self
d302f017
TH
809 * @flags: flags to set
810 * @wakeup: wakeup an idle worker if necessary
811 *
e22bee78
TH
812 * Set @flags in @worker->flags and adjust nr_running accordingly. If
813 * nr_running becomes zero and @wakeup is %true, an idle worker is
814 * woken up.
d302f017 815 *
cb444766 816 * CONTEXT:
d565ed63 817 * spin_lock_irq(pool->lock)
d302f017
TH
818 */
819static inline void worker_set_flags(struct worker *worker, unsigned int flags,
820 bool wakeup)
821{
bd7bdd43 822 struct worker_pool *pool = worker->pool;
e22bee78 823
cb444766
TH
824 WARN_ON_ONCE(worker->task != current);
825
e22bee78
TH
826 /*
827 * If transitioning into NOT_RUNNING, adjust nr_running and
828 * wake up an idle worker as necessary if requested by
829 * @wakeup.
830 */
831 if ((flags & WORKER_NOT_RUNNING) &&
832 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 833 if (wakeup) {
e19e397a 834 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 835 !list_empty(&pool->worklist))
63d95a91 836 wake_up_worker(pool);
e22bee78 837 } else
e19e397a 838 atomic_dec(&pool->nr_running);
e22bee78
TH
839 }
840
d302f017
TH
841 worker->flags |= flags;
842}
843
844/**
e22bee78 845 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 846 * @worker: self
d302f017
TH
847 * @flags: flags to clear
848 *
e22bee78 849 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 850 *
cb444766 851 * CONTEXT:
d565ed63 852 * spin_lock_irq(pool->lock)
d302f017
TH
853 */
854static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
855{
63d95a91 856 struct worker_pool *pool = worker->pool;
e22bee78
TH
857 unsigned int oflags = worker->flags;
858
cb444766
TH
859 WARN_ON_ONCE(worker->task != current);
860
d302f017 861 worker->flags &= ~flags;
e22bee78 862
42c025f3
TH
863 /*
864 * If transitioning out of NOT_RUNNING, increment nr_running. Note
865 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
866 * of multiple flags, not a single flag.
867 */
e22bee78
TH
868 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
869 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 870 atomic_inc(&pool->nr_running);
d302f017
TH
871}
872
8cca0eea
TH
873/**
874 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 875 * @pool: pool of interest
8cca0eea
TH
876 * @work: work to find worker for
877 *
c9e7cf27
TH
878 * Find a worker which is executing @work on @pool by searching
879 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
880 * to match, its current execution should match the address of @work and
881 * its work function. This is to avoid unwanted dependency between
882 * unrelated work executions through a work item being recycled while still
883 * being executed.
884 *
885 * This is a bit tricky. A work item may be freed once its execution
886 * starts and nothing prevents the freed area from being recycled for
887 * another work item. If the same work item address ends up being reused
888 * before the original execution finishes, workqueue will identify the
889 * recycled work item as currently executing and make it wait until the
890 * current execution finishes, introducing an unwanted dependency.
891 *
c5aa87bb
TH
892 * This function checks the work item address and work function to avoid
893 * false positives. Note that this isn't complete as one may construct a
894 * work function which can introduce dependency onto itself through a
895 * recycled work item. Well, if somebody wants to shoot oneself in the
896 * foot that badly, there's only so much we can do, and if such deadlock
897 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
898 *
899 * CONTEXT:
d565ed63 900 * spin_lock_irq(pool->lock).
8cca0eea
TH
901 *
902 * RETURNS:
903 * Pointer to worker which is executing @work if found, NULL
904 * otherwise.
4d707b9f 905 */
c9e7cf27 906static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 907 struct work_struct *work)
4d707b9f 908{
42f8570f 909 struct worker *worker;
42f8570f 910
b67bfe0d 911 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
912 (unsigned long)work)
913 if (worker->current_work == work &&
914 worker->current_func == work->func)
42f8570f
SL
915 return worker;
916
917 return NULL;
4d707b9f
ON
918}
919
bf4ede01
TH
920/**
921 * move_linked_works - move linked works to a list
922 * @work: start of series of works to be scheduled
923 * @head: target list to append @work to
924 * @nextp: out paramter for nested worklist walking
925 *
926 * Schedule linked works starting from @work to @head. Work series to
927 * be scheduled starts at @work and includes any consecutive work with
928 * WORK_STRUCT_LINKED set in its predecessor.
929 *
930 * If @nextp is not NULL, it's updated to point to the next work of
931 * the last scheduled work. This allows move_linked_works() to be
932 * nested inside outer list_for_each_entry_safe().
933 *
934 * CONTEXT:
d565ed63 935 * spin_lock_irq(pool->lock).
bf4ede01
TH
936 */
937static void move_linked_works(struct work_struct *work, struct list_head *head,
938 struct work_struct **nextp)
939{
940 struct work_struct *n;
941
942 /*
943 * Linked worklist will always end before the end of the list,
944 * use NULL for list head.
945 */
946 list_for_each_entry_safe_from(work, n, NULL, entry) {
947 list_move_tail(&work->entry, head);
948 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
949 break;
950 }
951
952 /*
953 * If we're already inside safe list traversal and have moved
954 * multiple works to the scheduled queue, the next position
955 * needs to be updated.
956 */
957 if (nextp)
958 *nextp = n;
959}
960
8864b4e5
TH
961/**
962 * get_pwq - get an extra reference on the specified pool_workqueue
963 * @pwq: pool_workqueue to get
964 *
965 * Obtain an extra reference on @pwq. The caller should guarantee that
966 * @pwq has positive refcnt and be holding the matching pool->lock.
967 */
968static void get_pwq(struct pool_workqueue *pwq)
969{
970 lockdep_assert_held(&pwq->pool->lock);
971 WARN_ON_ONCE(pwq->refcnt <= 0);
972 pwq->refcnt++;
973}
974
975/**
976 * put_pwq - put a pool_workqueue reference
977 * @pwq: pool_workqueue to put
978 *
979 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
980 * destruction. The caller should be holding the matching pool->lock.
981 */
982static void put_pwq(struct pool_workqueue *pwq)
983{
984 lockdep_assert_held(&pwq->pool->lock);
985 if (likely(--pwq->refcnt))
986 return;
987 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
988 return;
989 /*
990 * @pwq can't be released under pool->lock, bounce to
991 * pwq_unbound_release_workfn(). This never recurses on the same
992 * pool->lock as this path is taken only for unbound workqueues and
993 * the release work item is scheduled on a per-cpu workqueue. To
994 * avoid lockdep warning, unbound pool->locks are given lockdep
995 * subclass of 1 in get_unbound_pool().
996 */
997 schedule_work(&pwq->unbound_release_work);
998}
999
112202d9 1000static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1001{
112202d9 1002 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1003
1004 trace_workqueue_activate_work(work);
112202d9 1005 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1006 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1007 pwq->nr_active++;
bf4ede01
TH
1008}
1009
112202d9 1010static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1011{
112202d9 1012 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1013 struct work_struct, entry);
1014
112202d9 1015 pwq_activate_delayed_work(work);
3aa62497
LJ
1016}
1017
bf4ede01 1018/**
112202d9
TH
1019 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1020 * @pwq: pwq of interest
bf4ede01 1021 * @color: color of work which left the queue
bf4ede01
TH
1022 *
1023 * A work either has completed or is removed from pending queue,
112202d9 1024 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1025 *
1026 * CONTEXT:
d565ed63 1027 * spin_lock_irq(pool->lock).
bf4ede01 1028 */
112202d9 1029static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1030{
8864b4e5 1031 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1032 if (color == WORK_NO_COLOR)
8864b4e5 1033 goto out_put;
bf4ede01 1034
112202d9 1035 pwq->nr_in_flight[color]--;
bf4ede01 1036
112202d9
TH
1037 pwq->nr_active--;
1038 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1039 /* one down, submit a delayed one */
112202d9
TH
1040 if (pwq->nr_active < pwq->max_active)
1041 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1042 }
1043
1044 /* is flush in progress and are we at the flushing tip? */
112202d9 1045 if (likely(pwq->flush_color != color))
8864b4e5 1046 goto out_put;
bf4ede01
TH
1047
1048 /* are there still in-flight works? */
112202d9 1049 if (pwq->nr_in_flight[color])
8864b4e5 1050 goto out_put;
bf4ede01 1051
112202d9
TH
1052 /* this pwq is done, clear flush_color */
1053 pwq->flush_color = -1;
bf4ede01
TH
1054
1055 /*
112202d9 1056 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1057 * will handle the rest.
1058 */
112202d9
TH
1059 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1060 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1061out_put:
1062 put_pwq(pwq);
bf4ede01
TH
1063}
1064
36e227d2 1065/**
bbb68dfa 1066 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1067 * @work: work item to steal
1068 * @is_dwork: @work is a delayed_work
bbb68dfa 1069 * @flags: place to store irq state
36e227d2
TH
1070 *
1071 * Try to grab PENDING bit of @work. This function can handle @work in any
1072 * stable state - idle, on timer or on worklist. Return values are
1073 *
1074 * 1 if @work was pending and we successfully stole PENDING
1075 * 0 if @work was idle and we claimed PENDING
1076 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1077 * -ENOENT if someone else is canceling @work, this state may persist
1078 * for arbitrarily long
36e227d2 1079 *
bbb68dfa 1080 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1081 * interrupted while holding PENDING and @work off queue, irq must be
1082 * disabled on entry. This, combined with delayed_work->timer being
1083 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1084 *
1085 * On successful return, >= 0, irq is disabled and the caller is
1086 * responsible for releasing it using local_irq_restore(*@flags).
1087 *
e0aecdd8 1088 * This function is safe to call from any context including IRQ handler.
bf4ede01 1089 */
bbb68dfa
TH
1090static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1091 unsigned long *flags)
bf4ede01 1092{
d565ed63 1093 struct worker_pool *pool;
112202d9 1094 struct pool_workqueue *pwq;
bf4ede01 1095
bbb68dfa
TH
1096 local_irq_save(*flags);
1097
36e227d2
TH
1098 /* try to steal the timer if it exists */
1099 if (is_dwork) {
1100 struct delayed_work *dwork = to_delayed_work(work);
1101
e0aecdd8
TH
1102 /*
1103 * dwork->timer is irqsafe. If del_timer() fails, it's
1104 * guaranteed that the timer is not queued anywhere and not
1105 * running on the local CPU.
1106 */
36e227d2
TH
1107 if (likely(del_timer(&dwork->timer)))
1108 return 1;
1109 }
1110
1111 /* try to claim PENDING the normal way */
bf4ede01
TH
1112 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1113 return 0;
1114
1115 /*
1116 * The queueing is in progress, or it is already queued. Try to
1117 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1118 */
d565ed63
TH
1119 pool = get_work_pool(work);
1120 if (!pool)
bbb68dfa 1121 goto fail;
bf4ede01 1122
d565ed63 1123 spin_lock(&pool->lock);
0b3dae68 1124 /*
112202d9
TH
1125 * work->data is guaranteed to point to pwq only while the work
1126 * item is queued on pwq->wq, and both updating work->data to point
1127 * to pwq on queueing and to pool on dequeueing are done under
1128 * pwq->pool->lock. This in turn guarantees that, if work->data
1129 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1130 * item is currently queued on that pool.
1131 */
112202d9
TH
1132 pwq = get_work_pwq(work);
1133 if (pwq && pwq->pool == pool) {
16062836
TH
1134 debug_work_deactivate(work);
1135
1136 /*
1137 * A delayed work item cannot be grabbed directly because
1138 * it might have linked NO_COLOR work items which, if left
112202d9 1139 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1140 * management later on and cause stall. Make sure the work
1141 * item is activated before grabbing.
1142 */
1143 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1144 pwq_activate_delayed_work(work);
16062836
TH
1145
1146 list_del_init(&work->entry);
112202d9 1147 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1148
112202d9 1149 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1150 set_work_pool_and_keep_pending(work, pool->id);
1151
1152 spin_unlock(&pool->lock);
1153 return 1;
bf4ede01 1154 }
d565ed63 1155 spin_unlock(&pool->lock);
bbb68dfa
TH
1156fail:
1157 local_irq_restore(*flags);
1158 if (work_is_canceling(work))
1159 return -ENOENT;
1160 cpu_relax();
36e227d2 1161 return -EAGAIN;
bf4ede01
TH
1162}
1163
4690c4ab 1164/**
706026c2 1165 * insert_work - insert a work into a pool
112202d9 1166 * @pwq: pwq @work belongs to
4690c4ab
TH
1167 * @work: work to insert
1168 * @head: insertion point
1169 * @extra_flags: extra WORK_STRUCT_* flags to set
1170 *
112202d9 1171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1172 * work_struct flags.
4690c4ab
TH
1173 *
1174 * CONTEXT:
d565ed63 1175 * spin_lock_irq(pool->lock).
4690c4ab 1176 */
112202d9
TH
1177static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1178 struct list_head *head, unsigned int extra_flags)
b89deed3 1179{
112202d9 1180 struct worker_pool *pool = pwq->pool;
e22bee78 1181
4690c4ab 1182 /* we own @work, set data and link */
112202d9 1183 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1184 list_add_tail(&work->entry, head);
8864b4e5 1185 get_pwq(pwq);
e22bee78
TH
1186
1187 /*
c5aa87bb
TH
1188 * Ensure either wq_worker_sleeping() sees the above
1189 * list_add_tail() or we see zero nr_running to avoid workers lying
1190 * around lazily while there are works to be processed.
e22bee78
TH
1191 */
1192 smp_mb();
1193
63d95a91
TH
1194 if (__need_more_worker(pool))
1195 wake_up_worker(pool);
b89deed3
ON
1196}
1197
c8efcc25
TH
1198/*
1199 * Test whether @work is being queued from another work executing on the
8d03ecfe 1200 * same workqueue.
c8efcc25
TH
1201 */
1202static bool is_chained_work(struct workqueue_struct *wq)
1203{
8d03ecfe
TH
1204 struct worker *worker;
1205
1206 worker = current_wq_worker();
1207 /*
1208 * Return %true iff I'm a worker execuing a work item on @wq. If
1209 * I'm @worker, it's safe to dereference it without locking.
1210 */
112202d9 1211 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1212}
1213
d84ff051 1214static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1215 struct work_struct *work)
1216{
112202d9 1217 struct pool_workqueue *pwq;
c9178087 1218 struct worker_pool *last_pool;
1e19ffc6 1219 struct list_head *worklist;
8a2e8e5d 1220 unsigned int work_flags;
b75cac93 1221 unsigned int req_cpu = cpu;
8930caba
TH
1222
1223 /*
1224 * While a work item is PENDING && off queue, a task trying to
1225 * steal the PENDING will busy-loop waiting for it to either get
1226 * queued or lose PENDING. Grabbing PENDING and queueing should
1227 * happen with IRQ disabled.
1228 */
1229 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1230
dc186ad7 1231 debug_work_activate(work);
1e19ffc6 1232
c8efcc25 1233 /* if dying, only works from the same workqueue are allowed */
618b01eb 1234 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1235 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1236 return;
9e8cd2f5 1237retry:
c9178087 1238 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1239 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1240 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1241 cpu = raw_smp_processor_id();
7fb98ea7 1242 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1243 } else {
1244 pwq = first_pwq(wq);
1245 }
dbf2576e 1246
c9178087
TH
1247 /*
1248 * If @work was previously on a different pool, it might still be
1249 * running there, in which case the work needs to be queued on that
1250 * pool to guarantee non-reentrancy.
1251 */
1252 last_pool = get_work_pool(work);
1253 if (last_pool && last_pool != pwq->pool) {
1254 struct worker *worker;
18aa9eff 1255
c9178087 1256 spin_lock(&last_pool->lock);
18aa9eff 1257
c9178087 1258 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1259
c9178087
TH
1260 if (worker && worker->current_pwq->wq == wq) {
1261 pwq = worker->current_pwq;
8930caba 1262 } else {
c9178087
TH
1263 /* meh... not running there, queue here */
1264 spin_unlock(&last_pool->lock);
112202d9 1265 spin_lock(&pwq->pool->lock);
8930caba 1266 }
f3421797 1267 } else {
112202d9 1268 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1269 }
1270
9e8cd2f5
TH
1271 /*
1272 * pwq is determined and locked. For unbound pools, we could have
1273 * raced with pwq release and it could already be dead. If its
1274 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1275 * without another pwq replacing it as the first pwq or while a
1276 * work item is executing on it, so the retying is guaranteed to
1277 * make forward-progress.
1278 */
1279 if (unlikely(!pwq->refcnt)) {
1280 if (wq->flags & WQ_UNBOUND) {
1281 spin_unlock(&pwq->pool->lock);
1282 cpu_relax();
1283 goto retry;
1284 }
1285 /* oops */
1286 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1287 wq->name, cpu);
1288 }
1289
112202d9
TH
1290 /* pwq determined, queue */
1291 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1292
f5b2552b 1293 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1294 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1295 return;
1296 }
1e19ffc6 1297
112202d9
TH
1298 pwq->nr_in_flight[pwq->work_color]++;
1299 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1300
112202d9 1301 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1302 trace_workqueue_activate_work(work);
112202d9
TH
1303 pwq->nr_active++;
1304 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1305 } else {
1306 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1307 worklist = &pwq->delayed_works;
8a2e8e5d 1308 }
1e19ffc6 1309
112202d9 1310 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1311
112202d9 1312 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1313}
1314
0fcb78c2 1315/**
c1a220e7
ZR
1316 * queue_work_on - queue work on specific cpu
1317 * @cpu: CPU number to execute work on
0fcb78c2
REB
1318 * @wq: workqueue to use
1319 * @work: work to queue
1320 *
d4283e93 1321 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1322 *
c1a220e7
ZR
1323 * We queue the work to a specific CPU, the caller must ensure it
1324 * can't go away.
1da177e4 1325 */
d4283e93
TH
1326bool queue_work_on(int cpu, struct workqueue_struct *wq,
1327 struct work_struct *work)
1da177e4 1328{
d4283e93 1329 bool ret = false;
8930caba 1330 unsigned long flags;
ef1ca236 1331
8930caba 1332 local_irq_save(flags);
c1a220e7 1333
22df02bb 1334 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1335 __queue_work(cpu, wq, work);
d4283e93 1336 ret = true;
c1a220e7 1337 }
ef1ca236 1338
8930caba 1339 local_irq_restore(flags);
1da177e4
LT
1340 return ret;
1341}
c1a220e7 1342EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1343
d8e794df 1344void delayed_work_timer_fn(unsigned long __data)
1da177e4 1345{
52bad64d 1346 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1347
e0aecdd8 1348 /* should have been called from irqsafe timer with irq already off */
60c057bc 1349 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1350}
1438ade5 1351EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1352
7beb2edf
TH
1353static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1354 struct delayed_work *dwork, unsigned long delay)
1da177e4 1355{
7beb2edf
TH
1356 struct timer_list *timer = &dwork->timer;
1357 struct work_struct *work = &dwork->work;
7beb2edf
TH
1358
1359 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1360 timer->data != (unsigned long)dwork);
fc4b514f
TH
1361 WARN_ON_ONCE(timer_pending(timer));
1362 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1363
8852aac2
TH
1364 /*
1365 * If @delay is 0, queue @dwork->work immediately. This is for
1366 * both optimization and correctness. The earliest @timer can
1367 * expire is on the closest next tick and delayed_work users depend
1368 * on that there's no such delay when @delay is 0.
1369 */
1370 if (!delay) {
1371 __queue_work(cpu, wq, &dwork->work);
1372 return;
1373 }
1374
7beb2edf 1375 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1376
60c057bc 1377 dwork->wq = wq;
1265057f 1378 dwork->cpu = cpu;
7beb2edf
TH
1379 timer->expires = jiffies + delay;
1380
1381 if (unlikely(cpu != WORK_CPU_UNBOUND))
1382 add_timer_on(timer, cpu);
1383 else
1384 add_timer(timer);
1da177e4
LT
1385}
1386
0fcb78c2
REB
1387/**
1388 * queue_delayed_work_on - queue work on specific CPU after delay
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
af9997e4 1391 * @dwork: work to queue
0fcb78c2
REB
1392 * @delay: number of jiffies to wait before queueing
1393 *
715f1300
TH
1394 * Returns %false if @work was already on a queue, %true otherwise. If
1395 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1396 * execution.
0fcb78c2 1397 */
d4283e93
TH
1398bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1399 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1400{
52bad64d 1401 struct work_struct *work = &dwork->work;
d4283e93 1402 bool ret = false;
8930caba 1403 unsigned long flags;
7a6bc1cd 1404
8930caba
TH
1405 /* read the comment in __queue_work() */
1406 local_irq_save(flags);
7a6bc1cd 1407
22df02bb 1408 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1409 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1410 ret = true;
7a6bc1cd 1411 }
8a3e77cc 1412
8930caba 1413 local_irq_restore(flags);
7a6bc1cd
VP
1414 return ret;
1415}
ae90dd5d 1416EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1417
8376fe22
TH
1418/**
1419 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1420 * @cpu: CPU number to execute work on
1421 * @wq: workqueue to use
1422 * @dwork: work to queue
1423 * @delay: number of jiffies to wait before queueing
1424 *
1425 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1426 * modify @dwork's timer so that it expires after @delay. If @delay is
1427 * zero, @work is guaranteed to be scheduled immediately regardless of its
1428 * current state.
1429 *
1430 * Returns %false if @dwork was idle and queued, %true if @dwork was
1431 * pending and its timer was modified.
1432 *
e0aecdd8 1433 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1434 * See try_to_grab_pending() for details.
1435 */
1436bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1437 struct delayed_work *dwork, unsigned long delay)
1438{
1439 unsigned long flags;
1440 int ret;
c7fc77f7 1441
8376fe22
TH
1442 do {
1443 ret = try_to_grab_pending(&dwork->work, true, &flags);
1444 } while (unlikely(ret == -EAGAIN));
63bc0362 1445
8376fe22
TH
1446 if (likely(ret >= 0)) {
1447 __queue_delayed_work(cpu, wq, dwork, delay);
1448 local_irq_restore(flags);
7a6bc1cd 1449 }
8376fe22
TH
1450
1451 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1452 return ret;
1453}
8376fe22
TH
1454EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1455
c8e55f36
TH
1456/**
1457 * worker_enter_idle - enter idle state
1458 * @worker: worker which is entering idle state
1459 *
1460 * @worker is entering idle state. Update stats and idle timer if
1461 * necessary.
1462 *
1463 * LOCKING:
d565ed63 1464 * spin_lock_irq(pool->lock).
c8e55f36
TH
1465 */
1466static void worker_enter_idle(struct worker *worker)
1da177e4 1467{
bd7bdd43 1468 struct worker_pool *pool = worker->pool;
c8e55f36 1469
6183c009
TH
1470 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1471 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1472 (worker->hentry.next || worker->hentry.pprev)))
1473 return;
c8e55f36 1474
cb444766
TH
1475 /* can't use worker_set_flags(), also called from start_worker() */
1476 worker->flags |= WORKER_IDLE;
bd7bdd43 1477 pool->nr_idle++;
e22bee78 1478 worker->last_active = jiffies;
c8e55f36
TH
1479
1480 /* idle_list is LIFO */
bd7bdd43 1481 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1482
628c78e7
TH
1483 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1484 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1485
544ecf31 1486 /*
706026c2 1487 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1488 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1489 * nr_running, the warning may trigger spuriously. Check iff
1490 * unbind is not in progress.
544ecf31 1491 */
24647570 1492 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1493 pool->nr_workers == pool->nr_idle &&
e19e397a 1494 atomic_read(&pool->nr_running));
c8e55f36
TH
1495}
1496
1497/**
1498 * worker_leave_idle - leave idle state
1499 * @worker: worker which is leaving idle state
1500 *
1501 * @worker is leaving idle state. Update stats.
1502 *
1503 * LOCKING:
d565ed63 1504 * spin_lock_irq(pool->lock).
c8e55f36
TH
1505 */
1506static void worker_leave_idle(struct worker *worker)
1507{
bd7bdd43 1508 struct worker_pool *pool = worker->pool;
c8e55f36 1509
6183c009
TH
1510 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1511 return;
d302f017 1512 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1513 pool->nr_idle--;
c8e55f36
TH
1514 list_del_init(&worker->entry);
1515}
1516
e22bee78 1517/**
f36dc67b
LJ
1518 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1519 * @pool: target worker_pool
1520 *
1521 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1522 *
1523 * Works which are scheduled while the cpu is online must at least be
1524 * scheduled to a worker which is bound to the cpu so that if they are
1525 * flushed from cpu callbacks while cpu is going down, they are
1526 * guaranteed to execute on the cpu.
1527 *
f5faa077 1528 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1529 * themselves to the target cpu and may race with cpu going down or
1530 * coming online. kthread_bind() can't be used because it may put the
1531 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1532 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1533 * [dis]associated in the meantime.
1534 *
706026c2 1535 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1536 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1537 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1538 * enters idle state or fetches works without dropping lock, it can
1539 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1540 *
1541 * CONTEXT:
d565ed63 1542 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1543 * held.
1544 *
1545 * RETURNS:
706026c2 1546 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1547 * bound), %false if offline.
1548 */
f36dc67b 1549static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1550__acquires(&pool->lock)
e22bee78 1551{
e22bee78 1552 while (true) {
4e6045f1 1553 /*
e22bee78
TH
1554 * The following call may fail, succeed or succeed
1555 * without actually migrating the task to the cpu if
1556 * it races with cpu hotunplug operation. Verify
24647570 1557 * against POOL_DISASSOCIATED.
4e6045f1 1558 */
24647570 1559 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1560 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1561
d565ed63 1562 spin_lock_irq(&pool->lock);
24647570 1563 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1564 return false;
f5faa077 1565 if (task_cpu(current) == pool->cpu &&
7a4e344c 1566 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1567 return true;
d565ed63 1568 spin_unlock_irq(&pool->lock);
e22bee78 1569
5035b20f
TH
1570 /*
1571 * We've raced with CPU hot[un]plug. Give it a breather
1572 * and retry migration. cond_resched() is required here;
1573 * otherwise, we might deadlock against cpu_stop trying to
1574 * bring down the CPU on non-preemptive kernel.
1575 */
e22bee78 1576 cpu_relax();
5035b20f 1577 cond_resched();
e22bee78
TH
1578 }
1579}
1580
25511a47 1581/*
ea1abd61 1582 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1583 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1584 */
1585static void idle_worker_rebind(struct worker *worker)
1586{
5f7dabfd 1587 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1588 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1589 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1590
ea1abd61
LJ
1591 /* rebind complete, become available again */
1592 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1593 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1594}
1595
e22bee78 1596/*
25511a47 1597 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1598 * the associated cpu which is coming back online. This is scheduled by
1599 * cpu up but can race with other cpu hotplug operations and may be
1600 * executed twice without intervening cpu down.
e22bee78 1601 */
25511a47 1602static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1603{
1604 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1605
f36dc67b 1606 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1607 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1608
d565ed63 1609 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1610}
1611
25511a47 1612/**
94cf58bb
TH
1613 * rebind_workers - rebind all workers of a pool to the associated CPU
1614 * @pool: pool of interest
25511a47 1615 *
94cf58bb 1616 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1617 * is different for idle and busy ones.
1618 *
ea1abd61
LJ
1619 * Idle ones will be removed from the idle_list and woken up. They will
1620 * add themselves back after completing rebind. This ensures that the
1621 * idle_list doesn't contain any unbound workers when re-bound busy workers
1622 * try to perform local wake-ups for concurrency management.
25511a47 1623 *
ea1abd61
LJ
1624 * Busy workers can rebind after they finish their current work items.
1625 * Queueing the rebind work item at the head of the scheduled list is
1626 * enough. Note that nr_running will be properly bumped as busy workers
1627 * rebind.
25511a47 1628 *
ea1abd61
LJ
1629 * On return, all non-manager workers are scheduled for rebind - see
1630 * manage_workers() for the manager special case. Any idle worker
1631 * including the manager will not appear on @idle_list until rebind is
1632 * complete, making local wake-ups safe.
25511a47 1633 */
94cf58bb 1634static void rebind_workers(struct worker_pool *pool)
25511a47 1635{
ea1abd61 1636 struct worker *worker, *n;
25511a47
TH
1637 int i;
1638
bc3a1afc 1639 lockdep_assert_held(&pool->manager_mutex);
94cf58bb 1640 lockdep_assert_held(&pool->lock);
25511a47 1641
5f7dabfd 1642 /* dequeue and kick idle ones */
94cf58bb
TH
1643 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1644 /*
1645 * idle workers should be off @pool->idle_list until rebind
1646 * is complete to avoid receiving premature local wake-ups.
1647 */
1648 list_del_init(&worker->entry);
25511a47 1649
94cf58bb
TH
1650 /*
1651 * worker_thread() will see the above dequeuing and call
1652 * idle_worker_rebind().
1653 */
1654 wake_up_process(worker->task);
1655 }
25511a47 1656
94cf58bb 1657 /* rebind busy workers */
b67bfe0d 1658 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1659 struct work_struct *rebind_work = &worker->rebind_work;
1660 struct workqueue_struct *wq;
25511a47 1661
94cf58bb
TH
1662 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1663 work_data_bits(rebind_work)))
1664 continue;
25511a47 1665
94cf58bb 1666 debug_work_activate(rebind_work);
90beca5d 1667
94cf58bb
TH
1668 /*
1669 * wq doesn't really matter but let's keep @worker->pool
112202d9 1670 * and @pwq->pool consistent for sanity.
94cf58bb 1671 */
7a4e344c 1672 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1673 wq = system_highpri_wq;
1674 else
1675 wq = system_wq;
1676
7fb98ea7 1677 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1678 worker->scheduled.next,
1679 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1680 }
25511a47
TH
1681}
1682
c34056a3
TH
1683static struct worker *alloc_worker(void)
1684{
1685 struct worker *worker;
1686
1687 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1688 if (worker) {
1689 INIT_LIST_HEAD(&worker->entry);
affee4b2 1690 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1691 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1692 /* on creation a worker is in !idle && prep state */
1693 worker->flags = WORKER_PREP;
c8e55f36 1694 }
c34056a3
TH
1695 return worker;
1696}
1697
1698/**
1699 * create_worker - create a new workqueue worker
63d95a91 1700 * @pool: pool the new worker will belong to
c34056a3 1701 *
63d95a91 1702 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1703 * can be started by calling start_worker() or destroyed using
1704 * destroy_worker().
1705 *
1706 * CONTEXT:
1707 * Might sleep. Does GFP_KERNEL allocations.
1708 *
1709 * RETURNS:
1710 * Pointer to the newly created worker.
1711 */
bc2ae0f5 1712static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1713{
7a4e344c 1714 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1715 struct worker *worker = NULL;
f3421797 1716 int id = -1;
c34056a3 1717
d565ed63 1718 spin_lock_irq(&pool->lock);
bd7bdd43 1719 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1720 spin_unlock_irq(&pool->lock);
bd7bdd43 1721 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1722 goto fail;
d565ed63 1723 spin_lock_irq(&pool->lock);
c34056a3 1724 }
d565ed63 1725 spin_unlock_irq(&pool->lock);
c34056a3
TH
1726
1727 worker = alloc_worker();
1728 if (!worker)
1729 goto fail;
1730
bd7bdd43 1731 worker->pool = pool;
c34056a3
TH
1732 worker->id = id;
1733
29c91e99 1734 if (pool->cpu >= 0)
94dcf29a 1735 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1736 worker, cpu_to_node(pool->cpu),
d84ff051 1737 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1738 else
1739 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1740 "kworker/u%d:%d%s",
1741 pool->id, id, pri);
c34056a3
TH
1742 if (IS_ERR(worker->task))
1743 goto fail;
1744
c5aa87bb
TH
1745 /*
1746 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1747 * online CPUs. It'll be re-applied when any of the CPUs come up.
1748 */
7a4e344c
TH
1749 set_user_nice(worker->task, pool->attrs->nice);
1750 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1751
db7bccf4 1752 /*
7a4e344c
TH
1753 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1754 * cpumask of workqueue workers. This is an abuse. We need
1755 * %PF_NO_SETAFFINITY.
db7bccf4 1756 */
7a4e344c
TH
1757 worker->task->flags |= PF_THREAD_BOUND;
1758
1759 /*
1760 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1761 * remains stable across this function. See the comments above the
1762 * flag definition for details.
1763 */
1764 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1765 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1766
1767 return worker;
1768fail:
1769 if (id >= 0) {
d565ed63 1770 spin_lock_irq(&pool->lock);
bd7bdd43 1771 ida_remove(&pool->worker_ida, id);
d565ed63 1772 spin_unlock_irq(&pool->lock);
c34056a3
TH
1773 }
1774 kfree(worker);
1775 return NULL;
1776}
1777
1778/**
1779 * start_worker - start a newly created worker
1780 * @worker: worker to start
1781 *
706026c2 1782 * Make the pool aware of @worker and start it.
c34056a3
TH
1783 *
1784 * CONTEXT:
d565ed63 1785 * spin_lock_irq(pool->lock).
c34056a3
TH
1786 */
1787static void start_worker(struct worker *worker)
1788{
cb444766 1789 worker->flags |= WORKER_STARTED;
bd7bdd43 1790 worker->pool->nr_workers++;
c8e55f36 1791 worker_enter_idle(worker);
c34056a3
TH
1792 wake_up_process(worker->task);
1793}
1794
ebf44d16
TH
1795/**
1796 * create_and_start_worker - create and start a worker for a pool
1797 * @pool: the target pool
1798 *
1799 * Create and start a new worker for @pool.
1800 */
1801static int create_and_start_worker(struct worker_pool *pool)
1802{
1803 struct worker *worker;
1804
1805 worker = create_worker(pool);
1806 if (worker) {
1807 spin_lock_irq(&pool->lock);
1808 start_worker(worker);
1809 spin_unlock_irq(&pool->lock);
1810 }
1811
1812 return worker ? 0 : -ENOMEM;
1813}
1814
c34056a3
TH
1815/**
1816 * destroy_worker - destroy a workqueue worker
1817 * @worker: worker to be destroyed
1818 *
706026c2 1819 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1820 *
1821 * CONTEXT:
d565ed63 1822 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1823 */
1824static void destroy_worker(struct worker *worker)
1825{
bd7bdd43 1826 struct worker_pool *pool = worker->pool;
c34056a3
TH
1827 int id = worker->id;
1828
1829 /* sanity check frenzy */
6183c009
TH
1830 if (WARN_ON(worker->current_work) ||
1831 WARN_ON(!list_empty(&worker->scheduled)))
1832 return;
c34056a3 1833
c8e55f36 1834 if (worker->flags & WORKER_STARTED)
bd7bdd43 1835 pool->nr_workers--;
c8e55f36 1836 if (worker->flags & WORKER_IDLE)
bd7bdd43 1837 pool->nr_idle--;
c8e55f36
TH
1838
1839 list_del_init(&worker->entry);
cb444766 1840 worker->flags |= WORKER_DIE;
c8e55f36 1841
d565ed63 1842 spin_unlock_irq(&pool->lock);
c8e55f36 1843
c34056a3
TH
1844 kthread_stop(worker->task);
1845 kfree(worker);
1846
d565ed63 1847 spin_lock_irq(&pool->lock);
bd7bdd43 1848 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1849}
1850
63d95a91 1851static void idle_worker_timeout(unsigned long __pool)
e22bee78 1852{
63d95a91 1853 struct worker_pool *pool = (void *)__pool;
e22bee78 1854
d565ed63 1855 spin_lock_irq(&pool->lock);
e22bee78 1856
63d95a91 1857 if (too_many_workers(pool)) {
e22bee78
TH
1858 struct worker *worker;
1859 unsigned long expires;
1860
1861 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1862 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1863 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1864
1865 if (time_before(jiffies, expires))
63d95a91 1866 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1867 else {
1868 /* it's been idle for too long, wake up manager */
11ebea50 1869 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1870 wake_up_worker(pool);
d5abe669 1871 }
e22bee78
TH
1872 }
1873
d565ed63 1874 spin_unlock_irq(&pool->lock);
e22bee78 1875}
d5abe669 1876
493a1724 1877static void send_mayday(struct work_struct *work)
e22bee78 1878{
112202d9
TH
1879 struct pool_workqueue *pwq = get_work_pwq(work);
1880 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1881
1882 lockdep_assert_held(&workqueue_lock);
e22bee78 1883
493008a8 1884 if (!wq->rescuer)
493a1724 1885 return;
e22bee78
TH
1886
1887 /* mayday mayday mayday */
493a1724
TH
1888 if (list_empty(&pwq->mayday_node)) {
1889 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1890 wake_up_process(wq->rescuer->task);
493a1724 1891 }
e22bee78
TH
1892}
1893
706026c2 1894static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1895{
63d95a91 1896 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1897 struct work_struct *work;
1898
493a1724
TH
1899 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1900 spin_lock(&pool->lock);
e22bee78 1901
63d95a91 1902 if (need_to_create_worker(pool)) {
e22bee78
TH
1903 /*
1904 * We've been trying to create a new worker but
1905 * haven't been successful. We might be hitting an
1906 * allocation deadlock. Send distress signals to
1907 * rescuers.
1908 */
63d95a91 1909 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1910 send_mayday(work);
1da177e4 1911 }
e22bee78 1912
493a1724
TH
1913 spin_unlock(&pool->lock);
1914 spin_unlock_irq(&workqueue_lock);
e22bee78 1915
63d95a91 1916 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1917}
1918
e22bee78
TH
1919/**
1920 * maybe_create_worker - create a new worker if necessary
63d95a91 1921 * @pool: pool to create a new worker for
e22bee78 1922 *
63d95a91 1923 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1924 * have at least one idle worker on return from this function. If
1925 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1926 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1927 * possible allocation deadlock.
1928 *
c5aa87bb
TH
1929 * On return, need_to_create_worker() is guaranteed to be %false and
1930 * may_start_working() %true.
e22bee78
TH
1931 *
1932 * LOCKING:
d565ed63 1933 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1934 * multiple times. Does GFP_KERNEL allocations. Called only from
1935 * manager.
1936 *
1937 * RETURNS:
c5aa87bb 1938 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1939 * otherwise.
1940 */
63d95a91 1941static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1942__releases(&pool->lock)
1943__acquires(&pool->lock)
1da177e4 1944{
63d95a91 1945 if (!need_to_create_worker(pool))
e22bee78
TH
1946 return false;
1947restart:
d565ed63 1948 spin_unlock_irq(&pool->lock);
9f9c2364 1949
e22bee78 1950 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1951 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1952
1953 while (true) {
1954 struct worker *worker;
1955
bc2ae0f5 1956 worker = create_worker(pool);
e22bee78 1957 if (worker) {
63d95a91 1958 del_timer_sync(&pool->mayday_timer);
d565ed63 1959 spin_lock_irq(&pool->lock);
e22bee78 1960 start_worker(worker);
6183c009
TH
1961 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1962 goto restart;
e22bee78
TH
1963 return true;
1964 }
1965
63d95a91 1966 if (!need_to_create_worker(pool))
e22bee78 1967 break;
1da177e4 1968
e22bee78
TH
1969 __set_current_state(TASK_INTERRUPTIBLE);
1970 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1971
63d95a91 1972 if (!need_to_create_worker(pool))
e22bee78
TH
1973 break;
1974 }
1975
63d95a91 1976 del_timer_sync(&pool->mayday_timer);
d565ed63 1977 spin_lock_irq(&pool->lock);
63d95a91 1978 if (need_to_create_worker(pool))
e22bee78
TH
1979 goto restart;
1980 return true;
1981}
1982
1983/**
1984 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1985 * @pool: pool to destroy workers for
e22bee78 1986 *
63d95a91 1987 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1988 * IDLE_WORKER_TIMEOUT.
1989 *
1990 * LOCKING:
d565ed63 1991 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1992 * multiple times. Called only from manager.
1993 *
1994 * RETURNS:
c5aa87bb 1995 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1996 * otherwise.
1997 */
63d95a91 1998static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1999{
2000 bool ret = false;
1da177e4 2001
63d95a91 2002 while (too_many_workers(pool)) {
e22bee78
TH
2003 struct worker *worker;
2004 unsigned long expires;
3af24433 2005
63d95a91 2006 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2007 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2008
e22bee78 2009 if (time_before(jiffies, expires)) {
63d95a91 2010 mod_timer(&pool->idle_timer, expires);
3af24433 2011 break;
e22bee78 2012 }
1da177e4 2013
e22bee78
TH
2014 destroy_worker(worker);
2015 ret = true;
1da177e4 2016 }
1e19ffc6 2017
e22bee78 2018 return ret;
1e19ffc6
TH
2019}
2020
73f53c4a 2021/**
e22bee78
TH
2022 * manage_workers - manage worker pool
2023 * @worker: self
73f53c4a 2024 *
706026c2 2025 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2026 * to. At any given time, there can be only zero or one manager per
706026c2 2027 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2028 *
2029 * The caller can safely start processing works on false return. On
2030 * true return, it's guaranteed that need_to_create_worker() is false
2031 * and may_start_working() is true.
73f53c4a
TH
2032 *
2033 * CONTEXT:
d565ed63 2034 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2035 * multiple times. Does GFP_KERNEL allocations.
2036 *
2037 * RETURNS:
d565ed63
TH
2038 * spin_lock_irq(pool->lock) which may be released and regrabbed
2039 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2040 */
e22bee78 2041static bool manage_workers(struct worker *worker)
73f53c4a 2042{
63d95a91 2043 struct worker_pool *pool = worker->pool;
e22bee78 2044 bool ret = false;
73f53c4a 2045
bc3a1afc
TH
2046 /*
2047 * Managership is governed by two mutexes - manager_arb and
2048 * manager_mutex. manager_arb handles arbitration of manager role.
2049 * Anyone who successfully grabs manager_arb wins the arbitration
2050 * and becomes the manager. mutex_trylock() on pool->manager_arb
2051 * failure while holding pool->lock reliably indicates that someone
2052 * else is managing the pool and the worker which failed trylock
2053 * can proceed to executing work items. This means that anyone
2054 * grabbing manager_arb is responsible for actually performing
2055 * manager duties. If manager_arb is grabbed and released without
2056 * actual management, the pool may stall indefinitely.
2057 *
2058 * manager_mutex is used for exclusion of actual management
2059 * operations. The holder of manager_mutex can be sure that none
2060 * of management operations, including creation and destruction of
2061 * workers, won't take place until the mutex is released. Because
2062 * manager_mutex doesn't interfere with manager role arbitration,
2063 * it is guaranteed that the pool's management, while may be
2064 * delayed, won't be disturbed by someone else grabbing
2065 * manager_mutex.
2066 */
34a06bd6 2067 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2068 return ret;
1e19ffc6 2069
ee378aa4 2070 /*
bc3a1afc
TH
2071 * With manager arbitration won, manager_mutex would be free in
2072 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2073 */
bc3a1afc 2074 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2075 spin_unlock_irq(&pool->lock);
bc3a1afc 2076 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2077 /*
2078 * CPU hotplug could have happened while we were waiting
b2eb83d1 2079 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2080 * because manager isn't either on idle or busy list, and
706026c2 2081 * @pool's state and ours could have deviated.
ee378aa4 2082 *
bc3a1afc 2083 * As hotplug is now excluded via manager_mutex, we can
ee378aa4 2084 * simply try to bind. It will succeed or fail depending
706026c2 2085 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2086 * %WORKER_UNBOUND accordingly.
2087 */
f36dc67b 2088 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2089 worker->flags &= ~WORKER_UNBOUND;
2090 else
2091 worker->flags |= WORKER_UNBOUND;
73f53c4a 2092
ee378aa4
LJ
2093 ret = true;
2094 }
73f53c4a 2095
11ebea50 2096 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2097
2098 /*
e22bee78
TH
2099 * Destroy and then create so that may_start_working() is true
2100 * on return.
73f53c4a 2101 */
63d95a91
TH
2102 ret |= maybe_destroy_workers(pool);
2103 ret |= maybe_create_worker(pool);
e22bee78 2104
bc3a1afc 2105 mutex_unlock(&pool->manager_mutex);
34a06bd6 2106 mutex_unlock(&pool->manager_arb);
e22bee78 2107 return ret;
73f53c4a
TH
2108}
2109
a62428c0
TH
2110/**
2111 * process_one_work - process single work
c34056a3 2112 * @worker: self
a62428c0
TH
2113 * @work: work to process
2114 *
2115 * Process @work. This function contains all the logics necessary to
2116 * process a single work including synchronization against and
2117 * interaction with other workers on the same cpu, queueing and
2118 * flushing. As long as context requirement is met, any worker can
2119 * call this function to process a work.
2120 *
2121 * CONTEXT:
d565ed63 2122 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2123 */
c34056a3 2124static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2125__releases(&pool->lock)
2126__acquires(&pool->lock)
a62428c0 2127{
112202d9 2128 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2129 struct worker_pool *pool = worker->pool;
112202d9 2130 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2131 int work_color;
7e11629d 2132 struct worker *collision;
a62428c0
TH
2133#ifdef CONFIG_LOCKDEP
2134 /*
2135 * It is permissible to free the struct work_struct from
2136 * inside the function that is called from it, this we need to
2137 * take into account for lockdep too. To avoid bogus "held
2138 * lock freed" warnings as well as problems when looking into
2139 * work->lockdep_map, make a copy and use that here.
2140 */
4d82a1de
PZ
2141 struct lockdep_map lockdep_map;
2142
2143 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2144#endif
6fec10a1
TH
2145 /*
2146 * Ensure we're on the correct CPU. DISASSOCIATED test is
2147 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2148 * unbound or a disassociated pool.
6fec10a1 2149 */
5f7dabfd 2150 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2151 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2152 raw_smp_processor_id() != pool->cpu);
25511a47 2153
7e11629d
TH
2154 /*
2155 * A single work shouldn't be executed concurrently by
2156 * multiple workers on a single cpu. Check whether anyone is
2157 * already processing the work. If so, defer the work to the
2158 * currently executing one.
2159 */
c9e7cf27 2160 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2161 if (unlikely(collision)) {
2162 move_linked_works(work, &collision->scheduled, NULL);
2163 return;
2164 }
2165
8930caba 2166 /* claim and dequeue */
a62428c0 2167 debug_work_deactivate(work);
c9e7cf27 2168 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2169 worker->current_work = work;
a2c1c57b 2170 worker->current_func = work->func;
112202d9 2171 worker->current_pwq = pwq;
73f53c4a 2172 work_color = get_work_color(work);
7a22ad75 2173
a62428c0
TH
2174 list_del_init(&work->entry);
2175
fb0e7beb
TH
2176 /*
2177 * CPU intensive works don't participate in concurrency
2178 * management. They're the scheduler's responsibility.
2179 */
2180 if (unlikely(cpu_intensive))
2181 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2182
974271c4 2183 /*
d565ed63 2184 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2185 * executed ASAP. Wake up another worker if necessary.
2186 */
63d95a91
TH
2187 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2188 wake_up_worker(pool);
974271c4 2189
8930caba 2190 /*
7c3eed5c 2191 * Record the last pool and clear PENDING which should be the last
d565ed63 2192 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2193 * PENDING and queued state changes happen together while IRQ is
2194 * disabled.
8930caba 2195 */
7c3eed5c 2196 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2197
d565ed63 2198 spin_unlock_irq(&pool->lock);
a62428c0 2199
112202d9 2200 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2201 lock_map_acquire(&lockdep_map);
e36c886a 2202 trace_workqueue_execute_start(work);
a2c1c57b 2203 worker->current_func(work);
e36c886a
AV
2204 /*
2205 * While we must be careful to not use "work" after this, the trace
2206 * point will only record its address.
2207 */
2208 trace_workqueue_execute_end(work);
a62428c0 2209 lock_map_release(&lockdep_map);
112202d9 2210 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2211
2212 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2213 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2214 " last function: %pf\n",
a2c1c57b
TH
2215 current->comm, preempt_count(), task_pid_nr(current),
2216 worker->current_func);
a62428c0
TH
2217 debug_show_held_locks(current);
2218 dump_stack();
2219 }
2220
d565ed63 2221 spin_lock_irq(&pool->lock);
a62428c0 2222
fb0e7beb
TH
2223 /* clear cpu intensive status */
2224 if (unlikely(cpu_intensive))
2225 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2226
a62428c0 2227 /* we're done with it, release */
42f8570f 2228 hash_del(&worker->hentry);
c34056a3 2229 worker->current_work = NULL;
a2c1c57b 2230 worker->current_func = NULL;
112202d9
TH
2231 worker->current_pwq = NULL;
2232 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2233}
2234
affee4b2
TH
2235/**
2236 * process_scheduled_works - process scheduled works
2237 * @worker: self
2238 *
2239 * Process all scheduled works. Please note that the scheduled list
2240 * may change while processing a work, so this function repeatedly
2241 * fetches a work from the top and executes it.
2242 *
2243 * CONTEXT:
d565ed63 2244 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2245 * multiple times.
2246 */
2247static void process_scheduled_works(struct worker *worker)
1da177e4 2248{
affee4b2
TH
2249 while (!list_empty(&worker->scheduled)) {
2250 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2251 struct work_struct, entry);
c34056a3 2252 process_one_work(worker, work);
1da177e4 2253 }
1da177e4
LT
2254}
2255
4690c4ab
TH
2256/**
2257 * worker_thread - the worker thread function
c34056a3 2258 * @__worker: self
4690c4ab 2259 *
c5aa87bb
TH
2260 * The worker thread function. All workers belong to a worker_pool -
2261 * either a per-cpu one or dynamic unbound one. These workers process all
2262 * work items regardless of their specific target workqueue. The only
2263 * exception is work items which belong to workqueues with a rescuer which
2264 * will be explained in rescuer_thread().
4690c4ab 2265 */
c34056a3 2266static int worker_thread(void *__worker)
1da177e4 2267{
c34056a3 2268 struct worker *worker = __worker;
bd7bdd43 2269 struct worker_pool *pool = worker->pool;
1da177e4 2270
e22bee78
TH
2271 /* tell the scheduler that this is a workqueue worker */
2272 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2273woke_up:
d565ed63 2274 spin_lock_irq(&pool->lock);
1da177e4 2275
5f7dabfd
LJ
2276 /* we are off idle list if destruction or rebind is requested */
2277 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2278 spin_unlock_irq(&pool->lock);
25511a47 2279
5f7dabfd 2280 /* if DIE is set, destruction is requested */
25511a47
TH
2281 if (worker->flags & WORKER_DIE) {
2282 worker->task->flags &= ~PF_WQ_WORKER;
2283 return 0;
2284 }
2285
5f7dabfd 2286 /* otherwise, rebind */
25511a47
TH
2287 idle_worker_rebind(worker);
2288 goto woke_up;
c8e55f36 2289 }
affee4b2 2290
c8e55f36 2291 worker_leave_idle(worker);
db7bccf4 2292recheck:
e22bee78 2293 /* no more worker necessary? */
63d95a91 2294 if (!need_more_worker(pool))
e22bee78
TH
2295 goto sleep;
2296
2297 /* do we need to manage? */
63d95a91 2298 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2299 goto recheck;
2300
c8e55f36
TH
2301 /*
2302 * ->scheduled list can only be filled while a worker is
2303 * preparing to process a work or actually processing it.
2304 * Make sure nobody diddled with it while I was sleeping.
2305 */
6183c009 2306 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2307
e22bee78
TH
2308 /*
2309 * When control reaches this point, we're guaranteed to have
2310 * at least one idle worker or that someone else has already
2311 * assumed the manager role.
2312 */
2313 worker_clr_flags(worker, WORKER_PREP);
2314
2315 do {
c8e55f36 2316 struct work_struct *work =
bd7bdd43 2317 list_first_entry(&pool->worklist,
c8e55f36
TH
2318 struct work_struct, entry);
2319
2320 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2321 /* optimization path, not strictly necessary */
2322 process_one_work(worker, work);
2323 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2324 process_scheduled_works(worker);
c8e55f36
TH
2325 } else {
2326 move_linked_works(work, &worker->scheduled, NULL);
2327 process_scheduled_works(worker);
affee4b2 2328 }
63d95a91 2329 } while (keep_working(pool));
e22bee78
TH
2330
2331 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2332sleep:
63d95a91 2333 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2334 goto recheck;
d313dd85 2335
c8e55f36 2336 /*
d565ed63
TH
2337 * pool->lock is held and there's no work to process and no need to
2338 * manage, sleep. Workers are woken up only while holding
2339 * pool->lock or from local cpu, so setting the current state
2340 * before releasing pool->lock is enough to prevent losing any
2341 * event.
c8e55f36
TH
2342 */
2343 worker_enter_idle(worker);
2344 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2345 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2346 schedule();
2347 goto woke_up;
1da177e4
LT
2348}
2349
e22bee78
TH
2350/**
2351 * rescuer_thread - the rescuer thread function
111c225a 2352 * @__rescuer: self
e22bee78
TH
2353 *
2354 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2355 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2356 *
706026c2 2357 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2358 * worker which uses GFP_KERNEL allocation which has slight chance of
2359 * developing into deadlock if some works currently on the same queue
2360 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2361 * the problem rescuer solves.
2362 *
706026c2
TH
2363 * When such condition is possible, the pool summons rescuers of all
2364 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2365 * those works so that forward progress can be guaranteed.
2366 *
2367 * This should happen rarely.
2368 */
111c225a 2369static int rescuer_thread(void *__rescuer)
e22bee78 2370{
111c225a
TH
2371 struct worker *rescuer = __rescuer;
2372 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2373 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2374
2375 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2376
2377 /*
2378 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2379 * doesn't participate in concurrency management.
2380 */
2381 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2382repeat:
2383 set_current_state(TASK_INTERRUPTIBLE);
2384
412d32e6
MG
2385 if (kthread_should_stop()) {
2386 __set_current_state(TASK_RUNNING);
111c225a 2387 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2388 return 0;
412d32e6 2389 }
e22bee78 2390
493a1724
TH
2391 /* see whether any pwq is asking for help */
2392 spin_lock_irq(&workqueue_lock);
2393
2394 while (!list_empty(&wq->maydays)) {
2395 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2396 struct pool_workqueue, mayday_node);
112202d9 2397 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2398 struct work_struct *work, *n;
2399
2400 __set_current_state(TASK_RUNNING);
493a1724
TH
2401 list_del_init(&pwq->mayday_node);
2402
2403 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2404
2405 /* migrate to the target cpu if possible */
f36dc67b 2406 worker_maybe_bind_and_lock(pool);
b3104104 2407 rescuer->pool = pool;
e22bee78
TH
2408
2409 /*
2410 * Slurp in all works issued via this workqueue and
2411 * process'em.
2412 */
6183c009 2413 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2414 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2415 if (get_work_pwq(work) == pwq)
e22bee78
TH
2416 move_linked_works(work, scheduled, &n);
2417
2418 process_scheduled_works(rescuer);
7576958a
TH
2419
2420 /*
d565ed63 2421 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2422 * regular worker; otherwise, we end up with 0 concurrency
2423 * and stalling the execution.
2424 */
63d95a91
TH
2425 if (keep_working(pool))
2426 wake_up_worker(pool);
7576958a 2427
b3104104 2428 rescuer->pool = NULL;
493a1724
TH
2429 spin_unlock(&pool->lock);
2430 spin_lock(&workqueue_lock);
e22bee78
TH
2431 }
2432
493a1724
TH
2433 spin_unlock_irq(&workqueue_lock);
2434
111c225a
TH
2435 /* rescuers should never participate in concurrency management */
2436 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2437 schedule();
2438 goto repeat;
1da177e4
LT
2439}
2440
fc2e4d70
ON
2441struct wq_barrier {
2442 struct work_struct work;
2443 struct completion done;
2444};
2445
2446static void wq_barrier_func(struct work_struct *work)
2447{
2448 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2449 complete(&barr->done);
2450}
2451
4690c4ab
TH
2452/**
2453 * insert_wq_barrier - insert a barrier work
112202d9 2454 * @pwq: pwq to insert barrier into
4690c4ab 2455 * @barr: wq_barrier to insert
affee4b2
TH
2456 * @target: target work to attach @barr to
2457 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2458 *
affee4b2
TH
2459 * @barr is linked to @target such that @barr is completed only after
2460 * @target finishes execution. Please note that the ordering
2461 * guarantee is observed only with respect to @target and on the local
2462 * cpu.
2463 *
2464 * Currently, a queued barrier can't be canceled. This is because
2465 * try_to_grab_pending() can't determine whether the work to be
2466 * grabbed is at the head of the queue and thus can't clear LINKED
2467 * flag of the previous work while there must be a valid next work
2468 * after a work with LINKED flag set.
2469 *
2470 * Note that when @worker is non-NULL, @target may be modified
112202d9 2471 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2472 *
2473 * CONTEXT:
d565ed63 2474 * spin_lock_irq(pool->lock).
4690c4ab 2475 */
112202d9 2476static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2477 struct wq_barrier *barr,
2478 struct work_struct *target, struct worker *worker)
fc2e4d70 2479{
affee4b2
TH
2480 struct list_head *head;
2481 unsigned int linked = 0;
2482
dc186ad7 2483 /*
d565ed63 2484 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2485 * as we know for sure that this will not trigger any of the
2486 * checks and call back into the fixup functions where we
2487 * might deadlock.
2488 */
ca1cab37 2489 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2490 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2491 init_completion(&barr->done);
83c22520 2492
affee4b2
TH
2493 /*
2494 * If @target is currently being executed, schedule the
2495 * barrier to the worker; otherwise, put it after @target.
2496 */
2497 if (worker)
2498 head = worker->scheduled.next;
2499 else {
2500 unsigned long *bits = work_data_bits(target);
2501
2502 head = target->entry.next;
2503 /* there can already be other linked works, inherit and set */
2504 linked = *bits & WORK_STRUCT_LINKED;
2505 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2506 }
2507
dc186ad7 2508 debug_work_activate(&barr->work);
112202d9 2509 insert_work(pwq, &barr->work, head,
affee4b2 2510 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2511}
2512
73f53c4a 2513/**
112202d9 2514 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2515 * @wq: workqueue being flushed
2516 * @flush_color: new flush color, < 0 for no-op
2517 * @work_color: new work color, < 0 for no-op
2518 *
112202d9 2519 * Prepare pwqs for workqueue flushing.
73f53c4a 2520 *
112202d9
TH
2521 * If @flush_color is non-negative, flush_color on all pwqs should be
2522 * -1. If no pwq has in-flight commands at the specified color, all
2523 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2524 * has in flight commands, its pwq->flush_color is set to
2525 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2526 * wakeup logic is armed and %true is returned.
2527 *
2528 * The caller should have initialized @wq->first_flusher prior to
2529 * calling this function with non-negative @flush_color. If
2530 * @flush_color is negative, no flush color update is done and %false
2531 * is returned.
2532 *
112202d9 2533 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2534 * work_color which is previous to @work_color and all will be
2535 * advanced to @work_color.
2536 *
2537 * CONTEXT:
2538 * mutex_lock(wq->flush_mutex).
2539 *
2540 * RETURNS:
2541 * %true if @flush_color >= 0 and there's something to flush. %false
2542 * otherwise.
2543 */
112202d9 2544static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2545 int flush_color, int work_color)
1da177e4 2546{
73f53c4a 2547 bool wait = false;
49e3cf44 2548 struct pool_workqueue *pwq;
1da177e4 2549
73f53c4a 2550 if (flush_color >= 0) {
6183c009 2551 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2552 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2553 }
2355b70f 2554
76af4d93
TH
2555 local_irq_disable();
2556
49e3cf44 2557 for_each_pwq(pwq, wq) {
112202d9 2558 struct worker_pool *pool = pwq->pool;
fc2e4d70 2559
76af4d93 2560 spin_lock(&pool->lock);
83c22520 2561
73f53c4a 2562 if (flush_color >= 0) {
6183c009 2563 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2564
112202d9
TH
2565 if (pwq->nr_in_flight[flush_color]) {
2566 pwq->flush_color = flush_color;
2567 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2568 wait = true;
2569 }
2570 }
1da177e4 2571
73f53c4a 2572 if (work_color >= 0) {
6183c009 2573 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2574 pwq->work_color = work_color;
73f53c4a 2575 }
1da177e4 2576
76af4d93 2577 spin_unlock(&pool->lock);
1da177e4 2578 }
2355b70f 2579
76af4d93
TH
2580 local_irq_enable();
2581
112202d9 2582 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2583 complete(&wq->first_flusher->done);
14441960 2584
73f53c4a 2585 return wait;
1da177e4
LT
2586}
2587
0fcb78c2 2588/**
1da177e4 2589 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2590 * @wq: workqueue to flush
1da177e4 2591 *
c5aa87bb
TH
2592 * This function sleeps until all work items which were queued on entry
2593 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2594 */
7ad5b3a5 2595void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2596{
73f53c4a
TH
2597 struct wq_flusher this_flusher = {
2598 .list = LIST_HEAD_INIT(this_flusher.list),
2599 .flush_color = -1,
2600 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2601 };
2602 int next_color;
1da177e4 2603
3295f0ef
IM
2604 lock_map_acquire(&wq->lockdep_map);
2605 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2606
2607 mutex_lock(&wq->flush_mutex);
2608
2609 /*
2610 * Start-to-wait phase
2611 */
2612 next_color = work_next_color(wq->work_color);
2613
2614 if (next_color != wq->flush_color) {
2615 /*
2616 * Color space is not full. The current work_color
2617 * becomes our flush_color and work_color is advanced
2618 * by one.
2619 */
6183c009 2620 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2621 this_flusher.flush_color = wq->work_color;
2622 wq->work_color = next_color;
2623
2624 if (!wq->first_flusher) {
2625 /* no flush in progress, become the first flusher */
6183c009 2626 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2627
2628 wq->first_flusher = &this_flusher;
2629
112202d9 2630 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2631 wq->work_color)) {
2632 /* nothing to flush, done */
2633 wq->flush_color = next_color;
2634 wq->first_flusher = NULL;
2635 goto out_unlock;
2636 }
2637 } else {
2638 /* wait in queue */
6183c009 2639 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2640 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2641 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2642 }
2643 } else {
2644 /*
2645 * Oops, color space is full, wait on overflow queue.
2646 * The next flush completion will assign us
2647 * flush_color and transfer to flusher_queue.
2648 */
2649 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2650 }
2651
2652 mutex_unlock(&wq->flush_mutex);
2653
2654 wait_for_completion(&this_flusher.done);
2655
2656 /*
2657 * Wake-up-and-cascade phase
2658 *
2659 * First flushers are responsible for cascading flushes and
2660 * handling overflow. Non-first flushers can simply return.
2661 */
2662 if (wq->first_flusher != &this_flusher)
2663 return;
2664
2665 mutex_lock(&wq->flush_mutex);
2666
4ce48b37
TH
2667 /* we might have raced, check again with mutex held */
2668 if (wq->first_flusher != &this_flusher)
2669 goto out_unlock;
2670
73f53c4a
TH
2671 wq->first_flusher = NULL;
2672
6183c009
TH
2673 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2674 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2675
2676 while (true) {
2677 struct wq_flusher *next, *tmp;
2678
2679 /* complete all the flushers sharing the current flush color */
2680 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2681 if (next->flush_color != wq->flush_color)
2682 break;
2683 list_del_init(&next->list);
2684 complete(&next->done);
2685 }
2686
6183c009
TH
2687 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2688 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2689
2690 /* this flush_color is finished, advance by one */
2691 wq->flush_color = work_next_color(wq->flush_color);
2692
2693 /* one color has been freed, handle overflow queue */
2694 if (!list_empty(&wq->flusher_overflow)) {
2695 /*
2696 * Assign the same color to all overflowed
2697 * flushers, advance work_color and append to
2698 * flusher_queue. This is the start-to-wait
2699 * phase for these overflowed flushers.
2700 */
2701 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2702 tmp->flush_color = wq->work_color;
2703
2704 wq->work_color = work_next_color(wq->work_color);
2705
2706 list_splice_tail_init(&wq->flusher_overflow,
2707 &wq->flusher_queue);
112202d9 2708 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2709 }
2710
2711 if (list_empty(&wq->flusher_queue)) {
6183c009 2712 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2713 break;
2714 }
2715
2716 /*
2717 * Need to flush more colors. Make the next flusher
112202d9 2718 * the new first flusher and arm pwqs.
73f53c4a 2719 */
6183c009
TH
2720 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2721 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2722
2723 list_del_init(&next->list);
2724 wq->first_flusher = next;
2725
112202d9 2726 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2727 break;
2728
2729 /*
2730 * Meh... this color is already done, clear first
2731 * flusher and repeat cascading.
2732 */
2733 wq->first_flusher = NULL;
2734 }
2735
2736out_unlock:
2737 mutex_unlock(&wq->flush_mutex);
1da177e4 2738}
ae90dd5d 2739EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2740
9c5a2ba7
TH
2741/**
2742 * drain_workqueue - drain a workqueue
2743 * @wq: workqueue to drain
2744 *
2745 * Wait until the workqueue becomes empty. While draining is in progress,
2746 * only chain queueing is allowed. IOW, only currently pending or running
2747 * work items on @wq can queue further work items on it. @wq is flushed
2748 * repeatedly until it becomes empty. The number of flushing is detemined
2749 * by the depth of chaining and should be relatively short. Whine if it
2750 * takes too long.
2751 */
2752void drain_workqueue(struct workqueue_struct *wq)
2753{
2754 unsigned int flush_cnt = 0;
49e3cf44 2755 struct pool_workqueue *pwq;
9c5a2ba7
TH
2756
2757 /*
2758 * __queue_work() needs to test whether there are drainers, is much
2759 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2760 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2761 */
e98d5b16 2762 spin_lock_irq(&workqueue_lock);
9c5a2ba7 2763 if (!wq->nr_drainers++)
618b01eb 2764 wq->flags |= __WQ_DRAINING;
e98d5b16 2765 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2766reflush:
2767 flush_workqueue(wq);
2768
76af4d93
TH
2769 local_irq_disable();
2770
49e3cf44 2771 for_each_pwq(pwq, wq) {
fa2563e4 2772 bool drained;
9c5a2ba7 2773
76af4d93 2774 spin_lock(&pwq->pool->lock);
112202d9 2775 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2776 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2777
2778 if (drained)
9c5a2ba7
TH
2779 continue;
2780
2781 if (++flush_cnt == 10 ||
2782 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2783 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2784 wq->name, flush_cnt);
76af4d93
TH
2785
2786 local_irq_enable();
9c5a2ba7
TH
2787 goto reflush;
2788 }
2789
76af4d93 2790 spin_lock(&workqueue_lock);
9c5a2ba7 2791 if (!--wq->nr_drainers)
618b01eb 2792 wq->flags &= ~__WQ_DRAINING;
76af4d93
TH
2793 spin_unlock(&workqueue_lock);
2794
2795 local_irq_enable();
9c5a2ba7
TH
2796}
2797EXPORT_SYMBOL_GPL(drain_workqueue);
2798
606a5020 2799static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2800{
affee4b2 2801 struct worker *worker = NULL;
c9e7cf27 2802 struct worker_pool *pool;
112202d9 2803 struct pool_workqueue *pwq;
db700897
ON
2804
2805 might_sleep();
fa1b54e6
TH
2806
2807 local_irq_disable();
c9e7cf27 2808 pool = get_work_pool(work);
fa1b54e6
TH
2809 if (!pool) {
2810 local_irq_enable();
baf59022 2811 return false;
fa1b54e6 2812 }
db700897 2813
fa1b54e6 2814 spin_lock(&pool->lock);
0b3dae68 2815 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2816 pwq = get_work_pwq(work);
2817 if (pwq) {
2818 if (unlikely(pwq->pool != pool))
4690c4ab 2819 goto already_gone;
606a5020 2820 } else {
c9e7cf27 2821 worker = find_worker_executing_work(pool, work);
affee4b2 2822 if (!worker)
4690c4ab 2823 goto already_gone;
112202d9 2824 pwq = worker->current_pwq;
606a5020 2825 }
db700897 2826
112202d9 2827 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2828 spin_unlock_irq(&pool->lock);
7a22ad75 2829
e159489b
TH
2830 /*
2831 * If @max_active is 1 or rescuer is in use, flushing another work
2832 * item on the same workqueue may lead to deadlock. Make sure the
2833 * flusher is not running on the same workqueue by verifying write
2834 * access.
2835 */
493008a8 2836 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2837 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2838 else
112202d9
TH
2839 lock_map_acquire_read(&pwq->wq->lockdep_map);
2840 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2841
401a8d04 2842 return true;
4690c4ab 2843already_gone:
d565ed63 2844 spin_unlock_irq(&pool->lock);
401a8d04 2845 return false;
db700897 2846}
baf59022
TH
2847
2848/**
2849 * flush_work - wait for a work to finish executing the last queueing instance
2850 * @work: the work to flush
2851 *
606a5020
TH
2852 * Wait until @work has finished execution. @work is guaranteed to be idle
2853 * on return if it hasn't been requeued since flush started.
baf59022
TH
2854 *
2855 * RETURNS:
2856 * %true if flush_work() waited for the work to finish execution,
2857 * %false if it was already idle.
2858 */
2859bool flush_work(struct work_struct *work)
2860{
2861 struct wq_barrier barr;
2862
0976dfc1
SB
2863 lock_map_acquire(&work->lockdep_map);
2864 lock_map_release(&work->lockdep_map);
2865
606a5020 2866 if (start_flush_work(work, &barr)) {
401a8d04
TH
2867 wait_for_completion(&barr.done);
2868 destroy_work_on_stack(&barr.work);
2869 return true;
606a5020 2870 } else {
401a8d04 2871 return false;
6e84d644 2872 }
6e84d644 2873}
606a5020 2874EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2875
36e227d2 2876static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2877{
bbb68dfa 2878 unsigned long flags;
1f1f642e
ON
2879 int ret;
2880
2881 do {
bbb68dfa
TH
2882 ret = try_to_grab_pending(work, is_dwork, &flags);
2883 /*
2884 * If someone else is canceling, wait for the same event it
2885 * would be waiting for before retrying.
2886 */
2887 if (unlikely(ret == -ENOENT))
606a5020 2888 flush_work(work);
1f1f642e
ON
2889 } while (unlikely(ret < 0));
2890
bbb68dfa
TH
2891 /* tell other tasks trying to grab @work to back off */
2892 mark_work_canceling(work);
2893 local_irq_restore(flags);
2894
606a5020 2895 flush_work(work);
7a22ad75 2896 clear_work_data(work);
1f1f642e
ON
2897 return ret;
2898}
2899
6e84d644 2900/**
401a8d04
TH
2901 * cancel_work_sync - cancel a work and wait for it to finish
2902 * @work: the work to cancel
6e84d644 2903 *
401a8d04
TH
2904 * Cancel @work and wait for its execution to finish. This function
2905 * can be used even if the work re-queues itself or migrates to
2906 * another workqueue. On return from this function, @work is
2907 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2908 *
401a8d04
TH
2909 * cancel_work_sync(&delayed_work->work) must not be used for
2910 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2911 *
401a8d04 2912 * The caller must ensure that the workqueue on which @work was last
6e84d644 2913 * queued can't be destroyed before this function returns.
401a8d04
TH
2914 *
2915 * RETURNS:
2916 * %true if @work was pending, %false otherwise.
6e84d644 2917 */
401a8d04 2918bool cancel_work_sync(struct work_struct *work)
6e84d644 2919{
36e227d2 2920 return __cancel_work_timer(work, false);
b89deed3 2921}
28e53bdd 2922EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2923
6e84d644 2924/**
401a8d04
TH
2925 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2926 * @dwork: the delayed work to flush
6e84d644 2927 *
401a8d04
TH
2928 * Delayed timer is cancelled and the pending work is queued for
2929 * immediate execution. Like flush_work(), this function only
2930 * considers the last queueing instance of @dwork.
1f1f642e 2931 *
401a8d04
TH
2932 * RETURNS:
2933 * %true if flush_work() waited for the work to finish execution,
2934 * %false if it was already idle.
6e84d644 2935 */
401a8d04
TH
2936bool flush_delayed_work(struct delayed_work *dwork)
2937{
8930caba 2938 local_irq_disable();
401a8d04 2939 if (del_timer_sync(&dwork->timer))
60c057bc 2940 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2941 local_irq_enable();
401a8d04
TH
2942 return flush_work(&dwork->work);
2943}
2944EXPORT_SYMBOL(flush_delayed_work);
2945
09383498 2946/**
57b30ae7
TH
2947 * cancel_delayed_work - cancel a delayed work
2948 * @dwork: delayed_work to cancel
09383498 2949 *
57b30ae7
TH
2950 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2951 * and canceled; %false if wasn't pending. Note that the work callback
2952 * function may still be running on return, unless it returns %true and the
2953 * work doesn't re-arm itself. Explicitly flush or use
2954 * cancel_delayed_work_sync() to wait on it.
09383498 2955 *
57b30ae7 2956 * This function is safe to call from any context including IRQ handler.
09383498 2957 */
57b30ae7 2958bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2959{
57b30ae7
TH
2960 unsigned long flags;
2961 int ret;
2962
2963 do {
2964 ret = try_to_grab_pending(&dwork->work, true, &flags);
2965 } while (unlikely(ret == -EAGAIN));
2966
2967 if (unlikely(ret < 0))
2968 return false;
2969
7c3eed5c
TH
2970 set_work_pool_and_clear_pending(&dwork->work,
2971 get_work_pool_id(&dwork->work));
57b30ae7 2972 local_irq_restore(flags);
c0158ca6 2973 return ret;
09383498 2974}
57b30ae7 2975EXPORT_SYMBOL(cancel_delayed_work);
09383498 2976
401a8d04
TH
2977/**
2978 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2979 * @dwork: the delayed work cancel
2980 *
2981 * This is cancel_work_sync() for delayed works.
2982 *
2983 * RETURNS:
2984 * %true if @dwork was pending, %false otherwise.
2985 */
2986bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2987{
36e227d2 2988 return __cancel_work_timer(&dwork->work, true);
6e84d644 2989}
f5a421a4 2990EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2991
b6136773 2992/**
31ddd871 2993 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2994 * @func: the function to call
b6136773 2995 *
31ddd871
TH
2996 * schedule_on_each_cpu() executes @func on each online CPU using the
2997 * system workqueue and blocks until all CPUs have completed.
b6136773 2998 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2999 *
3000 * RETURNS:
3001 * 0 on success, -errno on failure.
b6136773 3002 */
65f27f38 3003int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3004{
3005 int cpu;
38f51568 3006 struct work_struct __percpu *works;
15316ba8 3007
b6136773
AM
3008 works = alloc_percpu(struct work_struct);
3009 if (!works)
15316ba8 3010 return -ENOMEM;
b6136773 3011
93981800
TH
3012 get_online_cpus();
3013
15316ba8 3014 for_each_online_cpu(cpu) {
9bfb1839
IM
3015 struct work_struct *work = per_cpu_ptr(works, cpu);
3016
3017 INIT_WORK(work, func);
b71ab8c2 3018 schedule_work_on(cpu, work);
65a64464 3019 }
93981800
TH
3020
3021 for_each_online_cpu(cpu)
3022 flush_work(per_cpu_ptr(works, cpu));
3023
95402b38 3024 put_online_cpus();
b6136773 3025 free_percpu(works);
15316ba8
CL
3026 return 0;
3027}
3028
eef6a7d5
AS
3029/**
3030 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3031 *
3032 * Forces execution of the kernel-global workqueue and blocks until its
3033 * completion.
3034 *
3035 * Think twice before calling this function! It's very easy to get into
3036 * trouble if you don't take great care. Either of the following situations
3037 * will lead to deadlock:
3038 *
3039 * One of the work items currently on the workqueue needs to acquire
3040 * a lock held by your code or its caller.
3041 *
3042 * Your code is running in the context of a work routine.
3043 *
3044 * They will be detected by lockdep when they occur, but the first might not
3045 * occur very often. It depends on what work items are on the workqueue and
3046 * what locks they need, which you have no control over.
3047 *
3048 * In most situations flushing the entire workqueue is overkill; you merely
3049 * need to know that a particular work item isn't queued and isn't running.
3050 * In such cases you should use cancel_delayed_work_sync() or
3051 * cancel_work_sync() instead.
3052 */
1da177e4
LT
3053void flush_scheduled_work(void)
3054{
d320c038 3055 flush_workqueue(system_wq);
1da177e4 3056}
ae90dd5d 3057EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3058
1fa44eca
JB
3059/**
3060 * execute_in_process_context - reliably execute the routine with user context
3061 * @fn: the function to execute
1fa44eca
JB
3062 * @ew: guaranteed storage for the execute work structure (must
3063 * be available when the work executes)
3064 *
3065 * Executes the function immediately if process context is available,
3066 * otherwise schedules the function for delayed execution.
3067 *
3068 * Returns: 0 - function was executed
3069 * 1 - function was scheduled for execution
3070 */
65f27f38 3071int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3072{
3073 if (!in_interrupt()) {
65f27f38 3074 fn(&ew->work);
1fa44eca
JB
3075 return 0;
3076 }
3077
65f27f38 3078 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3079 schedule_work(&ew->work);
3080
3081 return 1;
3082}
3083EXPORT_SYMBOL_GPL(execute_in_process_context);
3084
226223ab
TH
3085#ifdef CONFIG_SYSFS
3086/*
3087 * Workqueues with WQ_SYSFS flag set is visible to userland via
3088 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3089 * following attributes.
3090 *
3091 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3092 * max_active RW int : maximum number of in-flight work items
3093 *
3094 * Unbound workqueues have the following extra attributes.
3095 *
3096 * id RO int : the associated pool ID
3097 * nice RW int : nice value of the workers
3098 * cpumask RW mask : bitmask of allowed CPUs for the workers
3099 */
3100struct wq_device {
3101 struct workqueue_struct *wq;
3102 struct device dev;
3103};
3104
3105static struct workqueue_struct *dev_to_wq(struct device *dev)
3106{
3107 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3108
3109 return wq_dev->wq;
3110}
3111
3112static ssize_t wq_per_cpu_show(struct device *dev,
3113 struct device_attribute *attr, char *buf)
3114{
3115 struct workqueue_struct *wq = dev_to_wq(dev);
3116
3117 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3118}
3119
3120static ssize_t wq_max_active_show(struct device *dev,
3121 struct device_attribute *attr, char *buf)
3122{
3123 struct workqueue_struct *wq = dev_to_wq(dev);
3124
3125 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3126}
3127
3128static ssize_t wq_max_active_store(struct device *dev,
3129 struct device_attribute *attr,
3130 const char *buf, size_t count)
3131{
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133 int val;
3134
3135 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3136 return -EINVAL;
3137
3138 workqueue_set_max_active(wq, val);
3139 return count;
3140}
3141
3142static struct device_attribute wq_sysfs_attrs[] = {
3143 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3144 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3145 __ATTR_NULL,
3146};
3147
3148static ssize_t wq_pool_id_show(struct device *dev,
3149 struct device_attribute *attr, char *buf)
3150{
3151 struct workqueue_struct *wq = dev_to_wq(dev);
3152 struct worker_pool *pool;
3153 int written;
3154
3155 rcu_read_lock_sched();
3156 pool = first_pwq(wq)->pool;
3157 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3158 rcu_read_unlock_sched();
3159
3160 return written;
3161}
3162
3163static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3164 char *buf)
3165{
3166 struct workqueue_struct *wq = dev_to_wq(dev);
3167 int written;
3168
3169 rcu_read_lock_sched();
3170 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3171 first_pwq(wq)->pool->attrs->nice);
3172 rcu_read_unlock_sched();
3173
3174 return written;
3175}
3176
3177/* prepare workqueue_attrs for sysfs store operations */
3178static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3179{
3180 struct workqueue_attrs *attrs;
3181
3182 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3183 if (!attrs)
3184 return NULL;
3185
3186 rcu_read_lock_sched();
3187 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3188 rcu_read_unlock_sched();
3189 return attrs;
3190}
3191
3192static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3193 const char *buf, size_t count)
3194{
3195 struct workqueue_struct *wq = dev_to_wq(dev);
3196 struct workqueue_attrs *attrs;
3197 int ret;
3198
3199 attrs = wq_sysfs_prep_attrs(wq);
3200 if (!attrs)
3201 return -ENOMEM;
3202
3203 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3204 attrs->nice >= -20 && attrs->nice <= 19)
3205 ret = apply_workqueue_attrs(wq, attrs);
3206 else
3207 ret = -EINVAL;
3208
3209 free_workqueue_attrs(attrs);
3210 return ret ?: count;
3211}
3212
3213static ssize_t wq_cpumask_show(struct device *dev,
3214 struct device_attribute *attr, char *buf)
3215{
3216 struct workqueue_struct *wq = dev_to_wq(dev);
3217 int written;
3218
3219 rcu_read_lock_sched();
3220 written = cpumask_scnprintf(buf, PAGE_SIZE,
3221 first_pwq(wq)->pool->attrs->cpumask);
3222 rcu_read_unlock_sched();
3223
3224 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3225 return written;
3226}
3227
3228static ssize_t wq_cpumask_store(struct device *dev,
3229 struct device_attribute *attr,
3230 const char *buf, size_t count)
3231{
3232 struct workqueue_struct *wq = dev_to_wq(dev);
3233 struct workqueue_attrs *attrs;
3234 int ret;
3235
3236 attrs = wq_sysfs_prep_attrs(wq);
3237 if (!attrs)
3238 return -ENOMEM;
3239
3240 ret = cpumask_parse(buf, attrs->cpumask);
3241 if (!ret)
3242 ret = apply_workqueue_attrs(wq, attrs);
3243
3244 free_workqueue_attrs(attrs);
3245 return ret ?: count;
3246}
3247
3248static struct device_attribute wq_sysfs_unbound_attrs[] = {
3249 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3250 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3251 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3252 __ATTR_NULL,
3253};
3254
3255static struct bus_type wq_subsys = {
3256 .name = "workqueue",
3257 .dev_attrs = wq_sysfs_attrs,
3258};
3259
3260static int __init wq_sysfs_init(void)
3261{
3262 return subsys_virtual_register(&wq_subsys, NULL);
3263}
3264core_initcall(wq_sysfs_init);
3265
3266static void wq_device_release(struct device *dev)
3267{
3268 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3269
3270 kfree(wq_dev);
3271}
3272
3273/**
3274 * workqueue_sysfs_register - make a workqueue visible in sysfs
3275 * @wq: the workqueue to register
3276 *
3277 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3278 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3279 * which is the preferred method.
3280 *
3281 * Workqueue user should use this function directly iff it wants to apply
3282 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3283 * apply_workqueue_attrs() may race against userland updating the
3284 * attributes.
3285 *
3286 * Returns 0 on success, -errno on failure.
3287 */
3288int workqueue_sysfs_register(struct workqueue_struct *wq)
3289{
3290 struct wq_device *wq_dev;
3291 int ret;
3292
3293 /*
3294 * Adjusting max_active or creating new pwqs by applyting
3295 * attributes breaks ordering guarantee. Disallow exposing ordered
3296 * workqueues.
3297 */
3298 if (WARN_ON(wq->flags & __WQ_ORDERED))
3299 return -EINVAL;
3300
3301 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3302 if (!wq_dev)
3303 return -ENOMEM;
3304
3305 wq_dev->wq = wq;
3306 wq_dev->dev.bus = &wq_subsys;
3307 wq_dev->dev.init_name = wq->name;
3308 wq_dev->dev.release = wq_device_release;
3309
3310 /*
3311 * unbound_attrs are created separately. Suppress uevent until
3312 * everything is ready.
3313 */
3314 dev_set_uevent_suppress(&wq_dev->dev, true);
3315
3316 ret = device_register(&wq_dev->dev);
3317 if (ret) {
3318 kfree(wq_dev);
3319 wq->wq_dev = NULL;
3320 return ret;
3321 }
3322
3323 if (wq->flags & WQ_UNBOUND) {
3324 struct device_attribute *attr;
3325
3326 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3327 ret = device_create_file(&wq_dev->dev, attr);
3328 if (ret) {
3329 device_unregister(&wq_dev->dev);
3330 wq->wq_dev = NULL;
3331 return ret;
3332 }
3333 }
3334 }
3335
3336 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3337 return 0;
3338}
3339
3340/**
3341 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3342 * @wq: the workqueue to unregister
3343 *
3344 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3345 */
3346static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3347{
3348 struct wq_device *wq_dev = wq->wq_dev;
3349
3350 if (!wq->wq_dev)
3351 return;
3352
3353 wq->wq_dev = NULL;
3354 device_unregister(&wq_dev->dev);
3355}
3356#else /* CONFIG_SYSFS */
3357static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3358#endif /* CONFIG_SYSFS */
3359
7a4e344c
TH
3360/**
3361 * free_workqueue_attrs - free a workqueue_attrs
3362 * @attrs: workqueue_attrs to free
3363 *
3364 * Undo alloc_workqueue_attrs().
3365 */
3366void free_workqueue_attrs(struct workqueue_attrs *attrs)
3367{
3368 if (attrs) {
3369 free_cpumask_var(attrs->cpumask);
3370 kfree(attrs);
3371 }
3372}
3373
3374/**
3375 * alloc_workqueue_attrs - allocate a workqueue_attrs
3376 * @gfp_mask: allocation mask to use
3377 *
3378 * Allocate a new workqueue_attrs, initialize with default settings and
3379 * return it. Returns NULL on failure.
3380 */
3381struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3382{
3383 struct workqueue_attrs *attrs;
3384
3385 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3386 if (!attrs)
3387 goto fail;
3388 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3389 goto fail;
3390
3391 cpumask_setall(attrs->cpumask);
3392 return attrs;
3393fail:
3394 free_workqueue_attrs(attrs);
3395 return NULL;
3396}
3397
29c91e99
TH
3398static void copy_workqueue_attrs(struct workqueue_attrs *to,
3399 const struct workqueue_attrs *from)
3400{
3401 to->nice = from->nice;
3402 cpumask_copy(to->cpumask, from->cpumask);
3403}
3404
3405/*
3406 * Hacky implementation of jhash of bitmaps which only considers the
3407 * specified number of bits. We probably want a proper implementation in
3408 * include/linux/jhash.h.
3409 */
3410static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3411{
3412 int nr_longs = bits / BITS_PER_LONG;
3413 int nr_leftover = bits % BITS_PER_LONG;
3414 unsigned long leftover = 0;
3415
3416 if (nr_longs)
3417 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3418 if (nr_leftover) {
3419 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3420 hash = jhash(&leftover, sizeof(long), hash);
3421 }
3422 return hash;
3423}
3424
3425/* hash value of the content of @attr */
3426static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3427{
3428 u32 hash = 0;
3429
3430 hash = jhash_1word(attrs->nice, hash);
3431 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3432 return hash;
3433}
3434
3435/* content equality test */
3436static bool wqattrs_equal(const struct workqueue_attrs *a,
3437 const struct workqueue_attrs *b)
3438{
3439 if (a->nice != b->nice)
3440 return false;
3441 if (!cpumask_equal(a->cpumask, b->cpumask))
3442 return false;
3443 return true;
3444}
3445
7a4e344c
TH
3446/**
3447 * init_worker_pool - initialize a newly zalloc'd worker_pool
3448 * @pool: worker_pool to initialize
3449 *
3450 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3451 * Returns 0 on success, -errno on failure. Even on failure, all fields
3452 * inside @pool proper are initialized and put_unbound_pool() can be called
3453 * on @pool safely to release it.
7a4e344c
TH
3454 */
3455static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3456{
3457 spin_lock_init(&pool->lock);
29c91e99
TH
3458 pool->id = -1;
3459 pool->cpu = -1;
4e1a1f9a
TH
3460 pool->flags |= POOL_DISASSOCIATED;
3461 INIT_LIST_HEAD(&pool->worklist);
3462 INIT_LIST_HEAD(&pool->idle_list);
3463 hash_init(pool->busy_hash);
3464
3465 init_timer_deferrable(&pool->idle_timer);
3466 pool->idle_timer.function = idle_worker_timeout;
3467 pool->idle_timer.data = (unsigned long)pool;
3468
3469 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3470 (unsigned long)pool);
3471
3472 mutex_init(&pool->manager_arb);
bc3a1afc 3473 mutex_init(&pool->manager_mutex);
4e1a1f9a 3474 ida_init(&pool->worker_ida);
7a4e344c 3475
29c91e99
TH
3476 INIT_HLIST_NODE(&pool->hash_node);
3477 pool->refcnt = 1;
3478
3479 /* shouldn't fail above this point */
7a4e344c
TH
3480 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3481 if (!pool->attrs)
3482 return -ENOMEM;
3483 return 0;
4e1a1f9a
TH
3484}
3485
29c91e99
TH
3486static void rcu_free_pool(struct rcu_head *rcu)
3487{
3488 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3489
3490 ida_destroy(&pool->worker_ida);
3491 free_workqueue_attrs(pool->attrs);
3492 kfree(pool);
3493}
3494
3495/**
3496 * put_unbound_pool - put a worker_pool
3497 * @pool: worker_pool to put
3498 *
3499 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3500 * safe manner. get_unbound_pool() calls this function on its failure path
3501 * and this function should be able to release pools which went through,
3502 * successfully or not, init_worker_pool().
29c91e99
TH
3503 */
3504static void put_unbound_pool(struct worker_pool *pool)
3505{
3506 struct worker *worker;
3507
3508 spin_lock_irq(&workqueue_lock);
3509 if (--pool->refcnt) {
3510 spin_unlock_irq(&workqueue_lock);
3511 return;
3512 }
3513
3514 /* sanity checks */
3515 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3516 WARN_ON(!list_empty(&pool->worklist))) {
3517 spin_unlock_irq(&workqueue_lock);
3518 return;
3519 }
3520
3521 /* release id and unhash */
3522 if (pool->id >= 0)
3523 idr_remove(&worker_pool_idr, pool->id);
3524 hash_del(&pool->hash_node);
3525
3526 spin_unlock_irq(&workqueue_lock);
3527
c5aa87bb
TH
3528 /*
3529 * Become the manager and destroy all workers. Grabbing
3530 * manager_arb prevents @pool's workers from blocking on
3531 * manager_mutex.
3532 */
29c91e99
TH
3533 mutex_lock(&pool->manager_arb);
3534 spin_lock_irq(&pool->lock);
3535
3536 while ((worker = first_worker(pool)))
3537 destroy_worker(worker);
3538 WARN_ON(pool->nr_workers || pool->nr_idle);
3539
3540 spin_unlock_irq(&pool->lock);
3541 mutex_unlock(&pool->manager_arb);
3542
3543 /* shut down the timers */
3544 del_timer_sync(&pool->idle_timer);
3545 del_timer_sync(&pool->mayday_timer);
3546
3547 /* sched-RCU protected to allow dereferences from get_work_pool() */
3548 call_rcu_sched(&pool->rcu, rcu_free_pool);
3549}
3550
3551/**
3552 * get_unbound_pool - get a worker_pool with the specified attributes
3553 * @attrs: the attributes of the worker_pool to get
3554 *
3555 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3556 * reference count and return it. If there already is a matching
3557 * worker_pool, it will be used; otherwise, this function attempts to
3558 * create a new one. On failure, returns NULL.
3559 */
3560static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3561{
3562 static DEFINE_MUTEX(create_mutex);
3563 u32 hash = wqattrs_hash(attrs);
3564 struct worker_pool *pool;
29c91e99
TH
3565
3566 mutex_lock(&create_mutex);
3567
3568 /* do we already have a matching pool? */
3569 spin_lock_irq(&workqueue_lock);
3570 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3571 if (wqattrs_equal(pool->attrs, attrs)) {
3572 pool->refcnt++;
3573 goto out_unlock;
3574 }
3575 }
3576 spin_unlock_irq(&workqueue_lock);
3577
3578 /* nope, create a new one */
3579 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3580 if (!pool || init_worker_pool(pool) < 0)
3581 goto fail;
3582
8864b4e5 3583 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3584 copy_workqueue_attrs(pool->attrs, attrs);
3585
3586 if (worker_pool_assign_id(pool) < 0)
3587 goto fail;
3588
3589 /* create and start the initial worker */
ebf44d16 3590 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3591 goto fail;
3592
29c91e99
TH
3593 /* install */
3594 spin_lock_irq(&workqueue_lock);
3595 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3596out_unlock:
3597 spin_unlock_irq(&workqueue_lock);
3598 mutex_unlock(&create_mutex);
3599 return pool;
3600fail:
3601 mutex_unlock(&create_mutex);
3602 if (pool)
3603 put_unbound_pool(pool);
3604 return NULL;
3605}
3606
8864b4e5
TH
3607static void rcu_free_pwq(struct rcu_head *rcu)
3608{
3609 kmem_cache_free(pwq_cache,
3610 container_of(rcu, struct pool_workqueue, rcu));
3611}
3612
3613/*
3614 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3615 * and needs to be destroyed.
3616 */
3617static void pwq_unbound_release_workfn(struct work_struct *work)
3618{
3619 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3620 unbound_release_work);
3621 struct workqueue_struct *wq = pwq->wq;
3622 struct worker_pool *pool = pwq->pool;
3623
3624 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3625 return;
3626
75ccf595
TH
3627 /*
3628 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3629 * necessary on release but do it anyway. It's easier to verify
3630 * and consistent with the linking path.
3631 */
3632 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3633 spin_lock_irq(&workqueue_lock);
3634 list_del_rcu(&pwq->pwqs_node);
3635 spin_unlock_irq(&workqueue_lock);
75ccf595 3636 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3637
3638 put_unbound_pool(pool);
3639 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3640
3641 /*
3642 * If we're the last pwq going away, @wq is already dead and no one
3643 * is gonna access it anymore. Free it.
3644 */
3645 if (list_empty(&wq->pwqs))
3646 kfree(wq);
3647}
3648
0fbd95aa 3649/**
699ce097 3650 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3651 * @pwq: target pool_workqueue
0fbd95aa 3652 *
699ce097
TH
3653 * If @pwq isn't freezing, set @pwq->max_active to the associated
3654 * workqueue's saved_max_active and activate delayed work items
3655 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3656 */
699ce097 3657static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3658{
699ce097
TH
3659 struct workqueue_struct *wq = pwq->wq;
3660 bool freezable = wq->flags & WQ_FREEZABLE;
3661
3662 /* for @wq->saved_max_active */
3663 lockdep_assert_held(&workqueue_lock);
3664
3665 /* fast exit for non-freezable wqs */
3666 if (!freezable && pwq->max_active == wq->saved_max_active)
3667 return;
3668
3669 spin_lock(&pwq->pool->lock);
3670
3671 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3672 pwq->max_active = wq->saved_max_active;
0fbd95aa 3673
699ce097
TH
3674 while (!list_empty(&pwq->delayed_works) &&
3675 pwq->nr_active < pwq->max_active)
3676 pwq_activate_first_delayed(pwq);
3677 } else {
3678 pwq->max_active = 0;
3679 }
3680
3681 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3682}
3683
d2c1d404
TH
3684static void init_and_link_pwq(struct pool_workqueue *pwq,
3685 struct workqueue_struct *wq,
9e8cd2f5
TH
3686 struct worker_pool *pool,
3687 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3688{
3689 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3690
3691 pwq->pool = pool;
3692 pwq->wq = wq;
3693 pwq->flush_color = -1;
8864b4e5 3694 pwq->refcnt = 1;
d2c1d404
TH
3695 INIT_LIST_HEAD(&pwq->delayed_works);
3696 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3697 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3698
75ccf595
TH
3699 mutex_lock(&wq->flush_mutex);
3700 spin_lock_irq(&workqueue_lock);
3701
983ca25e
TH
3702 /*
3703 * Set the matching work_color. This is synchronized with
3704 * flush_mutex to avoid confusing flush_workqueue().
3705 */
9e8cd2f5
TH
3706 if (p_last_pwq)
3707 *p_last_pwq = first_pwq(wq);
75ccf595 3708 pwq->work_color = wq->work_color;
983ca25e
TH
3709
3710 /* sync max_active to the current setting */
3711 pwq_adjust_max_active(pwq);
3712
3713 /* link in @pwq */
9e8cd2f5 3714 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3715
3716 spin_unlock_irq(&workqueue_lock);
3717 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3718}
3719
9e8cd2f5
TH
3720/**
3721 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3722 * @wq: the target workqueue
3723 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3724 *
3725 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3726 * current attributes, a new pwq is created and made the first pwq which
3727 * will serve all new work items. Older pwqs are released as in-flight
3728 * work items finish. Note that a work item which repeatedly requeues
3729 * itself back-to-back will stay on its current pwq.
3730 *
3731 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3732 * failure.
3733 */
3734int apply_workqueue_attrs(struct workqueue_struct *wq,
3735 const struct workqueue_attrs *attrs)
3736{
3737 struct pool_workqueue *pwq, *last_pwq;
3738 struct worker_pool *pool;
3739
8719dcea 3740 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3741 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3742 return -EINVAL;
3743
8719dcea
TH
3744 /* creating multiple pwqs breaks ordering guarantee */
3745 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3746 return -EINVAL;
3747
9e8cd2f5
TH
3748 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3749 if (!pwq)
3750 return -ENOMEM;
3751
3752 pool = get_unbound_pool(attrs);
3753 if (!pool) {
3754 kmem_cache_free(pwq_cache, pwq);
3755 return -ENOMEM;
3756 }
3757
3758 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3759 if (last_pwq) {
3760 spin_lock_irq(&last_pwq->pool->lock);
3761 put_pwq(last_pwq);
3762 spin_unlock_irq(&last_pwq->pool->lock);
3763 }
3764
3765 return 0;
3766}
3767
30cdf249 3768static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3769{
49e3cf44 3770 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3771 int cpu;
3772
3773 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3774 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3775 if (!wq->cpu_pwqs)
30cdf249
TH
3776 return -ENOMEM;
3777
3778 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3779 struct pool_workqueue *pwq =
3780 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3781 struct worker_pool *cpu_pools =
f02ae73a 3782 per_cpu(cpu_worker_pools, cpu);
f3421797 3783
9e8cd2f5 3784 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3785 }
9e8cd2f5 3786 return 0;
30cdf249 3787 } else {
9e8cd2f5 3788 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3789 }
0f900049
TH
3790}
3791
f3421797
TH
3792static int wq_clamp_max_active(int max_active, unsigned int flags,
3793 const char *name)
b71ab8c2 3794{
f3421797
TH
3795 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3796
3797 if (max_active < 1 || max_active > lim)
044c782c
VI
3798 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3799 max_active, name, 1, lim);
b71ab8c2 3800
f3421797 3801 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3802}
3803
b196be89 3804struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3805 unsigned int flags,
3806 int max_active,
3807 struct lock_class_key *key,
b196be89 3808 const char *lock_name, ...)
1da177e4 3809{
b196be89 3810 va_list args, args1;
1da177e4 3811 struct workqueue_struct *wq;
49e3cf44 3812 struct pool_workqueue *pwq;
b196be89
TH
3813 size_t namelen;
3814
3815 /* determine namelen, allocate wq and format name */
3816 va_start(args, lock_name);
3817 va_copy(args1, args);
3818 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3819
3820 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3821 if (!wq)
d2c1d404 3822 return NULL;
b196be89
TH
3823
3824 vsnprintf(wq->name, namelen, fmt, args1);
3825 va_end(args);
3826 va_end(args1);
1da177e4 3827
d320c038 3828 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3829 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3830
b196be89 3831 /* init wq */
97e37d7b 3832 wq->flags = flags;
a0a1a5fd 3833 wq->saved_max_active = max_active;
73f53c4a 3834 mutex_init(&wq->flush_mutex);
112202d9 3835 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3836 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3837 INIT_LIST_HEAD(&wq->flusher_queue);
3838 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3839 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3840
eb13ba87 3841 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3842 INIT_LIST_HEAD(&wq->list);
3af24433 3843
30cdf249 3844 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3845 goto err_free_wq;
1537663f 3846
493008a8
TH
3847 /*
3848 * Workqueues which may be used during memory reclaim should
3849 * have a rescuer to guarantee forward progress.
3850 */
3851 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3852 struct worker *rescuer;
3853
d2c1d404 3854 rescuer = alloc_worker();
e22bee78 3855 if (!rescuer)
d2c1d404 3856 goto err_destroy;
e22bee78 3857
111c225a
TH
3858 rescuer->rescue_wq = wq;
3859 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3860 wq->name);
d2c1d404
TH
3861 if (IS_ERR(rescuer->task)) {
3862 kfree(rescuer);
3863 goto err_destroy;
3864 }
e22bee78 3865
d2c1d404 3866 wq->rescuer = rescuer;
e22bee78
TH
3867 rescuer->task->flags |= PF_THREAD_BOUND;
3868 wake_up_process(rescuer->task);
3af24433
ON
3869 }
3870
226223ab
TH
3871 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3872 goto err_destroy;
3873
a0a1a5fd 3874 /*
699ce097
TH
3875 * workqueue_lock protects global freeze state and workqueues list.
3876 * Grab it, adjust max_active and add the new workqueue to
3877 * workqueues list.
a0a1a5fd 3878 */
e98d5b16 3879 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3880
699ce097
TH
3881 for_each_pwq(pwq, wq)
3882 pwq_adjust_max_active(pwq);
a0a1a5fd 3883
1537663f 3884 list_add(&wq->list, &workqueues);
a0a1a5fd 3885
e98d5b16 3886 spin_unlock_irq(&workqueue_lock);
1537663f 3887
3af24433 3888 return wq;
d2c1d404
TH
3889
3890err_free_wq:
3891 kfree(wq);
3892 return NULL;
3893err_destroy:
3894 destroy_workqueue(wq);
4690c4ab 3895 return NULL;
3af24433 3896}
d320c038 3897EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3898
3af24433
ON
3899/**
3900 * destroy_workqueue - safely terminate a workqueue
3901 * @wq: target workqueue
3902 *
3903 * Safely destroy a workqueue. All work currently pending will be done first.
3904 */
3905void destroy_workqueue(struct workqueue_struct *wq)
3906{
49e3cf44 3907 struct pool_workqueue *pwq;
3af24433 3908
9c5a2ba7
TH
3909 /* drain it before proceeding with destruction */
3910 drain_workqueue(wq);
c8efcc25 3911
76af4d93
TH
3912 spin_lock_irq(&workqueue_lock);
3913
6183c009 3914 /* sanity checks */
49e3cf44 3915 for_each_pwq(pwq, wq) {
6183c009
TH
3916 int i;
3917
76af4d93
TH
3918 for (i = 0; i < WORK_NR_COLORS; i++) {
3919 if (WARN_ON(pwq->nr_in_flight[i])) {
3920 spin_unlock_irq(&workqueue_lock);
6183c009 3921 return;
76af4d93
TH
3922 }
3923 }
3924
8864b4e5
TH
3925 if (WARN_ON(pwq->refcnt > 1) ||
3926 WARN_ON(pwq->nr_active) ||
76af4d93
TH
3927 WARN_ON(!list_empty(&pwq->delayed_works))) {
3928 spin_unlock_irq(&workqueue_lock);
6183c009 3929 return;
76af4d93 3930 }
6183c009
TH
3931 }
3932
a0a1a5fd
TH
3933 /*
3934 * wq list is used to freeze wq, remove from list after
3935 * flushing is complete in case freeze races us.
3936 */
d2c1d404 3937 list_del_init(&wq->list);
76af4d93 3938
e98d5b16 3939 spin_unlock_irq(&workqueue_lock);
3af24433 3940
226223ab
TH
3941 workqueue_sysfs_unregister(wq);
3942
493008a8 3943 if (wq->rescuer) {
e22bee78 3944 kthread_stop(wq->rescuer->task);
8d9df9f0 3945 kfree(wq->rescuer);
493008a8 3946 wq->rescuer = NULL;
e22bee78
TH
3947 }
3948
8864b4e5
TH
3949 if (!(wq->flags & WQ_UNBOUND)) {
3950 /*
3951 * The base ref is never dropped on per-cpu pwqs. Directly
3952 * free the pwqs and wq.
3953 */
3954 free_percpu(wq->cpu_pwqs);
3955 kfree(wq);
3956 } else {
3957 /*
3958 * We're the sole accessor of @wq at this point. Directly
3959 * access the first pwq and put the base ref. As both pwqs
3960 * and pools are sched-RCU protected, the lock operations
3961 * are safe. @wq will be freed when the last pwq is
3962 * released.
3963 */
29c91e99
TH
3964 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3965 pwqs_node);
8864b4e5
TH
3966 spin_lock_irq(&pwq->pool->lock);
3967 put_pwq(pwq);
3968 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3969 }
3af24433
ON
3970}
3971EXPORT_SYMBOL_GPL(destroy_workqueue);
3972
dcd989cb
TH
3973/**
3974 * workqueue_set_max_active - adjust max_active of a workqueue
3975 * @wq: target workqueue
3976 * @max_active: new max_active value.
3977 *
3978 * Set max_active of @wq to @max_active.
3979 *
3980 * CONTEXT:
3981 * Don't call from IRQ context.
3982 */
3983void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3984{
49e3cf44 3985 struct pool_workqueue *pwq;
dcd989cb 3986
8719dcea
TH
3987 /* disallow meddling with max_active for ordered workqueues */
3988 if (WARN_ON(wq->flags & __WQ_ORDERED))
3989 return;
3990
f3421797 3991 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3992
e98d5b16 3993 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3994
3995 wq->saved_max_active = max_active;
3996
699ce097
TH
3997 for_each_pwq(pwq, wq)
3998 pwq_adjust_max_active(pwq);
93981800 3999
e98d5b16 4000 spin_unlock_irq(&workqueue_lock);
15316ba8 4001}
dcd989cb 4002EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4003
e6267616
TH
4004/**
4005 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4006 *
4007 * Determine whether %current is a workqueue rescuer. Can be used from
4008 * work functions to determine whether it's being run off the rescuer task.
4009 */
4010bool current_is_workqueue_rescuer(void)
4011{
4012 struct worker *worker = current_wq_worker();
4013
4014 return worker && worker == worker->current_pwq->wq->rescuer;
4015}
4016
eef6a7d5 4017/**
dcd989cb
TH
4018 * workqueue_congested - test whether a workqueue is congested
4019 * @cpu: CPU in question
4020 * @wq: target workqueue
eef6a7d5 4021 *
dcd989cb
TH
4022 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4023 * no synchronization around this function and the test result is
4024 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4025 *
dcd989cb
TH
4026 * RETURNS:
4027 * %true if congested, %false otherwise.
eef6a7d5 4028 */
d84ff051 4029bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4030{
7fb98ea7 4031 struct pool_workqueue *pwq;
76af4d93
TH
4032 bool ret;
4033
4034 preempt_disable();
7fb98ea7
TH
4035
4036 if (!(wq->flags & WQ_UNBOUND))
4037 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4038 else
4039 pwq = first_pwq(wq);
dcd989cb 4040
76af4d93
TH
4041 ret = !list_empty(&pwq->delayed_works);
4042 preempt_enable();
4043
4044 return ret;
1da177e4 4045}
dcd989cb 4046EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4047
dcd989cb
TH
4048/**
4049 * work_busy - test whether a work is currently pending or running
4050 * @work: the work to be tested
4051 *
4052 * Test whether @work is currently pending or running. There is no
4053 * synchronization around this function and the test result is
4054 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4055 *
4056 * RETURNS:
4057 * OR'd bitmask of WORK_BUSY_* bits.
4058 */
4059unsigned int work_busy(struct work_struct *work)
1da177e4 4060{
fa1b54e6 4061 struct worker_pool *pool;
dcd989cb
TH
4062 unsigned long flags;
4063 unsigned int ret = 0;
1da177e4 4064
dcd989cb
TH
4065 if (work_pending(work))
4066 ret |= WORK_BUSY_PENDING;
1da177e4 4067
fa1b54e6
TH
4068 local_irq_save(flags);
4069 pool = get_work_pool(work);
038366c5 4070 if (pool) {
fa1b54e6 4071 spin_lock(&pool->lock);
038366c5
LJ
4072 if (find_worker_executing_work(pool, work))
4073 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4074 spin_unlock(&pool->lock);
038366c5 4075 }
fa1b54e6 4076 local_irq_restore(flags);
1da177e4 4077
dcd989cb 4078 return ret;
1da177e4 4079}
dcd989cb 4080EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4081
db7bccf4
TH
4082/*
4083 * CPU hotplug.
4084 *
e22bee78 4085 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4086 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4087 * pool which make migrating pending and scheduled works very
e22bee78 4088 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4089 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4090 * blocked draining impractical.
4091 *
24647570 4092 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4093 * running as an unbound one and allowing it to be reattached later if the
4094 * cpu comes back online.
db7bccf4 4095 */
1da177e4 4096
706026c2 4097static void wq_unbind_fn(struct work_struct *work)
3af24433 4098{
38db41d9 4099 int cpu = smp_processor_id();
4ce62e9e 4100 struct worker_pool *pool;
db7bccf4 4101 struct worker *worker;
db7bccf4 4102 int i;
3af24433 4103
f02ae73a 4104 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4105 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4106
bc3a1afc 4107 mutex_lock(&pool->manager_mutex);
94cf58bb 4108 spin_lock_irq(&pool->lock);
3af24433 4109
94cf58bb 4110 /*
bc3a1afc 4111 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4112 * unbound and set DISASSOCIATED. Before this, all workers
4113 * except for the ones which are still executing works from
4114 * before the last CPU down must be on the cpu. After
4115 * this, they may become diasporas.
4116 */
4ce62e9e 4117 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 4118 worker->flags |= WORKER_UNBOUND;
3af24433 4119
b67bfe0d 4120 for_each_busy_worker(worker, i, pool)
c9e7cf27 4121 worker->flags |= WORKER_UNBOUND;
06ba38a9 4122
24647570 4123 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4124
94cf58bb 4125 spin_unlock_irq(&pool->lock);
bc3a1afc 4126 mutex_unlock(&pool->manager_mutex);
94cf58bb 4127 }
628c78e7 4128
e22bee78 4129 /*
403c821d 4130 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4131 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4132 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4133 */
e22bee78 4134 schedule();
06ba38a9 4135
e22bee78 4136 /*
628c78e7
TH
4137 * Sched callbacks are disabled now. Zap nr_running. After this,
4138 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4139 * are always true as long as the worklist is not empty. Pools on
4140 * @cpu now behave as unbound (in terms of concurrency management)
4141 * pools which are served by workers tied to the CPU.
628c78e7
TH
4142 *
4143 * On return from this function, the current worker would trigger
4144 * unbound chain execution of pending work items if other workers
4145 * didn't already.
e22bee78 4146 */
f02ae73a 4147 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4148 atomic_set(&pool->nr_running, 0);
3af24433 4149}
3af24433 4150
8db25e78
TH
4151/*
4152 * Workqueues should be brought up before normal priority CPU notifiers.
4153 * This will be registered high priority CPU notifier.
4154 */
9fdf9b73 4155static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4156 unsigned long action,
4157 void *hcpu)
3af24433 4158{
d84ff051 4159 int cpu = (unsigned long)hcpu;
4ce62e9e 4160 struct worker_pool *pool;
3ce63377 4161
8db25e78 4162 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4163 case CPU_UP_PREPARE:
f02ae73a 4164 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4165 if (pool->nr_workers)
4166 continue;
ebf44d16 4167 if (create_and_start_worker(pool) < 0)
3ce63377 4168 return NOTIFY_BAD;
3af24433 4169 }
8db25e78 4170 break;
3af24433 4171
db7bccf4
TH
4172 case CPU_DOWN_FAILED:
4173 case CPU_ONLINE:
f02ae73a 4174 for_each_cpu_worker_pool(pool, cpu) {
bc3a1afc 4175 mutex_lock(&pool->manager_mutex);
94cf58bb
TH
4176 spin_lock_irq(&pool->lock);
4177
24647570 4178 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
4179 rebind_workers(pool);
4180
4181 spin_unlock_irq(&pool->lock);
bc3a1afc 4182 mutex_unlock(&pool->manager_mutex);
94cf58bb 4183 }
db7bccf4 4184 break;
00dfcaf7 4185 }
65758202
TH
4186 return NOTIFY_OK;
4187}
4188
4189/*
4190 * Workqueues should be brought down after normal priority CPU notifiers.
4191 * This will be registered as low priority CPU notifier.
4192 */
9fdf9b73 4193static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4194 unsigned long action,
4195 void *hcpu)
4196{
d84ff051 4197 int cpu = (unsigned long)hcpu;
8db25e78
TH
4198 struct work_struct unbind_work;
4199
65758202
TH
4200 switch (action & ~CPU_TASKS_FROZEN) {
4201 case CPU_DOWN_PREPARE:
8db25e78 4202 /* unbinding should happen on the local CPU */
706026c2 4203 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4204 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4205 flush_work(&unbind_work);
4206 break;
65758202
TH
4207 }
4208 return NOTIFY_OK;
4209}
4210
2d3854a3 4211#ifdef CONFIG_SMP
8ccad40d 4212
2d3854a3 4213struct work_for_cpu {
ed48ece2 4214 struct work_struct work;
2d3854a3
RR
4215 long (*fn)(void *);
4216 void *arg;
4217 long ret;
4218};
4219
ed48ece2 4220static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4221{
ed48ece2
TH
4222 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4223
2d3854a3
RR
4224 wfc->ret = wfc->fn(wfc->arg);
4225}
4226
4227/**
4228 * work_on_cpu - run a function in user context on a particular cpu
4229 * @cpu: the cpu to run on
4230 * @fn: the function to run
4231 * @arg: the function arg
4232 *
31ad9081
RR
4233 * This will return the value @fn returns.
4234 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4235 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4236 */
d84ff051 4237long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4238{
ed48ece2 4239 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4240
ed48ece2
TH
4241 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4242 schedule_work_on(cpu, &wfc.work);
4243 flush_work(&wfc.work);
2d3854a3
RR
4244 return wfc.ret;
4245}
4246EXPORT_SYMBOL_GPL(work_on_cpu);
4247#endif /* CONFIG_SMP */
4248
a0a1a5fd
TH
4249#ifdef CONFIG_FREEZER
4250
4251/**
4252 * freeze_workqueues_begin - begin freezing workqueues
4253 *
58a69cb4 4254 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4255 * workqueues will queue new works to their delayed_works list instead of
706026c2 4256 * pool->worklist.
a0a1a5fd
TH
4257 *
4258 * CONTEXT:
d565ed63 4259 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4260 */
4261void freeze_workqueues_begin(void)
4262{
17116969 4263 struct worker_pool *pool;
24b8a847
TH
4264 struct workqueue_struct *wq;
4265 struct pool_workqueue *pwq;
611c92a0 4266 int pi;
a0a1a5fd 4267
e98d5b16 4268 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4269
6183c009 4270 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4271 workqueue_freezing = true;
4272
24b8a847 4273 /* set FREEZING */
611c92a0 4274 for_each_pool(pool, pi) {
17116969 4275 spin_lock(&pool->lock);
17116969
TH
4276 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4277 pool->flags |= POOL_FREEZING;
24b8a847
TH
4278 spin_unlock(&pool->lock);
4279 }
a0a1a5fd 4280
24b8a847
TH
4281 /* suppress further executions by setting max_active to zero */
4282 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4283 for_each_pwq(pwq, wq)
4284 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4285 }
4286
e98d5b16 4287 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4288}
4289
4290/**
58a69cb4 4291 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4292 *
4293 * Check whether freezing is complete. This function must be called
4294 * between freeze_workqueues_begin() and thaw_workqueues().
4295 *
4296 * CONTEXT:
4297 * Grabs and releases workqueue_lock.
4298 *
4299 * RETURNS:
58a69cb4
TH
4300 * %true if some freezable workqueues are still busy. %false if freezing
4301 * is complete.
a0a1a5fd
TH
4302 */
4303bool freeze_workqueues_busy(void)
4304{
a0a1a5fd 4305 bool busy = false;
24b8a847
TH
4306 struct workqueue_struct *wq;
4307 struct pool_workqueue *pwq;
a0a1a5fd 4308
e98d5b16 4309 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4310
6183c009 4311 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4312
24b8a847
TH
4313 list_for_each_entry(wq, &workqueues, list) {
4314 if (!(wq->flags & WQ_FREEZABLE))
4315 continue;
a0a1a5fd
TH
4316 /*
4317 * nr_active is monotonically decreasing. It's safe
4318 * to peek without lock.
4319 */
24b8a847 4320 for_each_pwq(pwq, wq) {
6183c009 4321 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4322 if (pwq->nr_active) {
a0a1a5fd
TH
4323 busy = true;
4324 goto out_unlock;
4325 }
4326 }
4327 }
4328out_unlock:
e98d5b16 4329 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4330 return busy;
4331}
4332
4333/**
4334 * thaw_workqueues - thaw workqueues
4335 *
4336 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4337 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4338 *
4339 * CONTEXT:
d565ed63 4340 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4341 */
4342void thaw_workqueues(void)
4343{
24b8a847
TH
4344 struct workqueue_struct *wq;
4345 struct pool_workqueue *pwq;
4346 struct worker_pool *pool;
611c92a0 4347 int pi;
a0a1a5fd 4348
e98d5b16 4349 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4350
4351 if (!workqueue_freezing)
4352 goto out_unlock;
4353
24b8a847 4354 /* clear FREEZING */
611c92a0 4355 for_each_pool(pool, pi) {
24b8a847
TH
4356 spin_lock(&pool->lock);
4357 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4358 pool->flags &= ~POOL_FREEZING;
4359 spin_unlock(&pool->lock);
4360 }
8b03ae3c 4361
24b8a847
TH
4362 /* restore max_active and repopulate worklist */
4363 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4364 for_each_pwq(pwq, wq)
4365 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4366 }
4367
24b8a847 4368 /* kick workers */
611c92a0 4369 for_each_pool(pool, pi) {
24b8a847
TH
4370 spin_lock(&pool->lock);
4371 wake_up_worker(pool);
4372 spin_unlock(&pool->lock);
4373 }
4374
a0a1a5fd
TH
4375 workqueue_freezing = false;
4376out_unlock:
e98d5b16 4377 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4378}
4379#endif /* CONFIG_FREEZER */
4380
6ee0578b 4381static int __init init_workqueues(void)
1da177e4 4382{
7a4e344c
TH
4383 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4384 int i, cpu;
c34056a3 4385
7c3eed5c
TH
4386 /* make sure we have enough bits for OFFQ pool ID */
4387 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4388 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4389
e904e6c2
TH
4390 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4391
4392 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4393
65758202 4394 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4395 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4396
706026c2 4397 /* initialize CPU pools */
29c91e99 4398 for_each_possible_cpu(cpu) {
4ce62e9e 4399 struct worker_pool *pool;
8b03ae3c 4400
7a4e344c 4401 i = 0;
f02ae73a 4402 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4403 BUG_ON(init_worker_pool(pool));
ec22ca5e 4404 pool->cpu = cpu;
29c91e99 4405 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4406 pool->attrs->nice = std_nice[i++];
4407
9daf9e67
TH
4408 /* alloc pool ID */
4409 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4410 }
8b03ae3c
TH
4411 }
4412
e22bee78 4413 /* create the initial worker */
29c91e99 4414 for_each_online_cpu(cpu) {
4ce62e9e 4415 struct worker_pool *pool;
e22bee78 4416
f02ae73a 4417 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4418 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4419 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4420 }
e22bee78
TH
4421 }
4422
29c91e99
TH
4423 /* create default unbound wq attrs */
4424 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4425 struct workqueue_attrs *attrs;
4426
4427 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4428
4429 attrs->nice = std_nice[i];
4430 cpumask_setall(attrs->cpumask);
4431
4432 unbound_std_wq_attrs[i] = attrs;
4433 }
4434
d320c038 4435 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4436 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4437 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4438 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4439 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4440 system_freezable_wq = alloc_workqueue("events_freezable",
4441 WQ_FREEZABLE, 0);
1aabe902 4442 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4443 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4444 return 0;
1da177e4 4445}
6ee0578b 4446early_initcall(init_workqueues);