workqueue: change value of lcpu in __queue_delayed_work_on()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038
TH
271struct workqueue_struct *system_wq __read_mostly;
272struct workqueue_struct *system_long_wq __read_mostly;
273struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 274struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 275struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 276struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
277EXPORT_SYMBOL_GPL(system_wq);
278EXPORT_SYMBOL_GPL(system_long_wq);
279EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 280EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 281EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 282EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 283
97bd2347
TH
284#define CREATE_TRACE_POINTS
285#include <trace/events/workqueue.h>
286
4ce62e9e 287#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 290
db7bccf4
TH
291#define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294
f3421797
TH
295static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 unsigned int sw)
297{
298 if (cpu < nr_cpu_ids) {
299 if (sw & 1) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
302 return cpu;
303 }
304 if (sw & 2)
305 return WORK_CPU_UNBOUND;
306 }
307 return WORK_CPU_NONE;
308}
309
310static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
312{
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314}
315
09884951
TH
316/*
317 * CPU iterators
318 *
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
323 *
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
328 */
f3421797
TH
329#define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333
334#define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338
339#define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343
dc186ad7
TG
344#ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346static struct debug_obj_descr work_debug_descr;
347
99777288
SG
348static void *work_debug_hint(void *addr)
349{
350 return ((struct work_struct *) addr)->func;
351}
352
dc186ad7
TG
353/*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357static int work_fixup_init(void *addr, enum debug_obj_state state)
358{
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369}
370
371/*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376static int work_fixup_activate(void *addr, enum debug_obj_state state)
377{
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
22df02bb 388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int work_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
99777288 424 .debug_hint = work_debug_hint,
dc186ad7
TG
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428};
429
430static inline void debug_work_activate(struct work_struct *work)
431{
432 debug_object_activate(work, &work_debug_descr);
433}
434
435static inline void debug_work_deactivate(struct work_struct *work)
436{
437 debug_object_deactivate(work, &work_debug_descr);
438}
439
440void __init_work(struct work_struct *work, int onstack)
441{
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446}
447EXPORT_SYMBOL_GPL(__init_work);
448
449void destroy_work_on_stack(struct work_struct *work)
450{
451 debug_object_free(work, &work_debug_descr);
452}
453EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455#else
456static inline void debug_work_activate(struct work_struct *work) { }
457static inline void debug_work_deactivate(struct work_struct *work) { }
458#endif
459
95402b38
GS
460/* Serializes the accesses to the list of workqueues. */
461static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 462static LIST_HEAD(workqueues);
a0a1a5fd 463static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 464
e22bee78
TH
465/*
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
469 */
8b03ae3c 470static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 471static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 472
f3421797
TH
473/*
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
477 */
478static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
479static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
481};
f3421797 482
c34056a3 483static int worker_thread(void *__worker);
1da177e4 484
3270476a
TH
485static int worker_pool_pri(struct worker_pool *pool)
486{
487 return pool - pool->gcwq->pools;
488}
489
8b03ae3c
TH
490static struct global_cwq *get_gcwq(unsigned int cpu)
491{
f3421797
TH
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
494 else
495 return &unbound_global_cwq;
8b03ae3c
TH
496}
497
63d95a91 498static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 499{
63d95a91 500 int cpu = pool->gcwq->cpu;
3270476a 501 int idx = worker_pool_pri(pool);
63d95a91 502
f3421797 503 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 504 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 505 else
4ce62e9e 506 return &unbound_pool_nr_running[idx];
e22bee78
TH
507}
508
1537663f
TH
509static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
b1f4ec17 511{
f3421797 512 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 513 if (likely(cpu < nr_cpu_ids))
f3421797 514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
517 return NULL;
b1f4ec17
ON
518}
519
73f53c4a
TH
520static unsigned int work_color_to_flags(int color)
521{
522 return color << WORK_STRUCT_COLOR_SHIFT;
523}
524
525static int get_work_color(struct work_struct *work)
526{
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529}
530
531static int work_next_color(int color)
532{
533 return (color + 1) % WORK_NR_COLORS;
534}
1da177e4 535
14441960 536/*
b5490077
TH
537 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
538 * contain the pointer to the queued cwq. Once execution starts, the flag
539 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 540 *
bbb68dfa
TH
541 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
542 * and clear_work_data() can be used to set the cwq, cpu or clear
543 * work->data. These functions should only be called while the work is
544 * owned - ie. while the PENDING bit is set.
545 *
546 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
547 * a work. gcwq is available once the work has been queued anywhere after
548 * initialization until it is sync canceled. cwq is available only while
549 * the work item is queued.
550 *
551 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
552 * canceled. While being canceled, a work item may have its PENDING set
553 * but stay off timer and worklist for arbitrarily long and nobody should
554 * try to steal the PENDING bit.
14441960 555 */
7a22ad75
TH
556static inline void set_work_data(struct work_struct *work, unsigned long data,
557 unsigned long flags)
365970a1 558{
4594bf15 559 BUG_ON(!work_pending(work));
7a22ad75
TH
560 atomic_long_set(&work->data, data | flags | work_static(work));
561}
365970a1 562
7a22ad75
TH
563static void set_work_cwq(struct work_struct *work,
564 struct cpu_workqueue_struct *cwq,
565 unsigned long extra_flags)
566{
567 set_work_data(work, (unsigned long)cwq,
e120153d 568 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
569}
570
8930caba
TH
571static void set_work_cpu_and_clear_pending(struct work_struct *work,
572 unsigned int cpu)
7a22ad75 573{
23657bb1
TH
574 /*
575 * The following wmb is paired with the implied mb in
576 * test_and_set_bit(PENDING) and ensures all updates to @work made
577 * here are visible to and precede any updates by the next PENDING
578 * owner.
579 */
580 smp_wmb();
b5490077 581 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 582}
f756d5e2 583
7a22ad75 584static void clear_work_data(struct work_struct *work)
1da177e4 585{
23657bb1 586 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 587 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
588}
589
7a22ad75 590static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 591{
e120153d 592 unsigned long data = atomic_long_read(&work->data);
7a22ad75 593
e120153d
TH
594 if (data & WORK_STRUCT_CWQ)
595 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
596 else
597 return NULL;
4d707b9f
ON
598}
599
7a22ad75 600static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 601{
e120153d 602 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
603 unsigned int cpu;
604
e120153d
TH
605 if (data & WORK_STRUCT_CWQ)
606 return ((struct cpu_workqueue_struct *)
bd7bdd43 607 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 608
b5490077 609 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 610 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
611 return NULL;
612
f3421797 613 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 614 return get_gcwq(cpu);
b1f4ec17
ON
615}
616
bbb68dfa
TH
617static void mark_work_canceling(struct work_struct *work)
618{
619 struct global_cwq *gcwq = get_work_gcwq(work);
620 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
621
622 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
623 WORK_STRUCT_PENDING);
624}
625
626static bool work_is_canceling(struct work_struct *work)
627{
628 unsigned long data = atomic_long_read(&work->data);
629
630 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
631}
632
e22bee78 633/*
3270476a
TH
634 * Policy functions. These define the policies on how the global worker
635 * pools are managed. Unless noted otherwise, these functions assume that
636 * they're being called with gcwq->lock held.
e22bee78
TH
637 */
638
63d95a91 639static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 640{
3270476a 641 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
642}
643
4594bf15 644/*
e22bee78
TH
645 * Need to wake up a worker? Called from anything but currently
646 * running workers.
974271c4
TH
647 *
648 * Note that, because unbound workers never contribute to nr_running, this
649 * function will always return %true for unbound gcwq as long as the
650 * worklist isn't empty.
4594bf15 651 */
63d95a91 652static bool need_more_worker(struct worker_pool *pool)
365970a1 653{
63d95a91 654 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 655}
4594bf15 656
e22bee78 657/* Can I start working? Called from busy but !running workers. */
63d95a91 658static bool may_start_working(struct worker_pool *pool)
e22bee78 659{
63d95a91 660 return pool->nr_idle;
e22bee78
TH
661}
662
663/* Do I need to keep working? Called from currently running workers. */
63d95a91 664static bool keep_working(struct worker_pool *pool)
e22bee78 665{
63d95a91 666 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 667
3270476a 668 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
669}
670
671/* Do we need a new worker? Called from manager. */
63d95a91 672static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 673{
63d95a91 674 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 675}
365970a1 676
e22bee78 677/* Do I need to be the manager? */
63d95a91 678static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 679{
63d95a91 680 return need_to_create_worker(pool) ||
11ebea50 681 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
682}
683
684/* Do we have too many workers and should some go away? */
63d95a91 685static bool too_many_workers(struct worker_pool *pool)
e22bee78 686{
60373152 687 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
688 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
689 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
690
691 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
692}
693
4d707b9f 694/*
e22bee78
TH
695 * Wake up functions.
696 */
697
7e11629d 698/* Return the first worker. Safe with preemption disabled */
63d95a91 699static struct worker *first_worker(struct worker_pool *pool)
7e11629d 700{
63d95a91 701 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
702 return NULL;
703
63d95a91 704 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
705}
706
707/**
708 * wake_up_worker - wake up an idle worker
63d95a91 709 * @pool: worker pool to wake worker from
7e11629d 710 *
63d95a91 711 * Wake up the first idle worker of @pool.
7e11629d
TH
712 *
713 * CONTEXT:
714 * spin_lock_irq(gcwq->lock).
715 */
63d95a91 716static void wake_up_worker(struct worker_pool *pool)
7e11629d 717{
63d95a91 718 struct worker *worker = first_worker(pool);
7e11629d
TH
719
720 if (likely(worker))
721 wake_up_process(worker->task);
722}
723
d302f017 724/**
e22bee78
TH
725 * wq_worker_waking_up - a worker is waking up
726 * @task: task waking up
727 * @cpu: CPU @task is waking up to
728 *
729 * This function is called during try_to_wake_up() when a worker is
730 * being awoken.
731 *
732 * CONTEXT:
733 * spin_lock_irq(rq->lock)
734 */
735void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
736{
737 struct worker *worker = kthread_data(task);
738
2d64672e 739 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 740 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
741}
742
743/**
744 * wq_worker_sleeping - a worker is going to sleep
745 * @task: task going to sleep
746 * @cpu: CPU in question, must be the current CPU number
747 *
748 * This function is called during schedule() when a busy worker is
749 * going to sleep. Worker on the same cpu can be woken up by
750 * returning pointer to its task.
751 *
752 * CONTEXT:
753 * spin_lock_irq(rq->lock)
754 *
755 * RETURNS:
756 * Worker task on @cpu to wake up, %NULL if none.
757 */
758struct task_struct *wq_worker_sleeping(struct task_struct *task,
759 unsigned int cpu)
760{
761 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 762 struct worker_pool *pool = worker->pool;
63d95a91 763 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 764
2d64672e 765 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
766 return NULL;
767
768 /* this can only happen on the local cpu */
769 BUG_ON(cpu != raw_smp_processor_id());
770
771 /*
772 * The counterpart of the following dec_and_test, implied mb,
773 * worklist not empty test sequence is in insert_work().
774 * Please read comment there.
775 *
628c78e7
TH
776 * NOT_RUNNING is clear. This means that we're bound to and
777 * running on the local cpu w/ rq lock held and preemption
778 * disabled, which in turn means that none else could be
779 * manipulating idle_list, so dereferencing idle_list without gcwq
780 * lock is safe.
e22bee78 781 */
bd7bdd43 782 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 783 to_wakeup = first_worker(pool);
e22bee78
TH
784 return to_wakeup ? to_wakeup->task : NULL;
785}
786
787/**
788 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 789 * @worker: self
d302f017
TH
790 * @flags: flags to set
791 * @wakeup: wakeup an idle worker if necessary
792 *
e22bee78
TH
793 * Set @flags in @worker->flags and adjust nr_running accordingly. If
794 * nr_running becomes zero and @wakeup is %true, an idle worker is
795 * woken up.
d302f017 796 *
cb444766
TH
797 * CONTEXT:
798 * spin_lock_irq(gcwq->lock)
d302f017
TH
799 */
800static inline void worker_set_flags(struct worker *worker, unsigned int flags,
801 bool wakeup)
802{
bd7bdd43 803 struct worker_pool *pool = worker->pool;
e22bee78 804
cb444766
TH
805 WARN_ON_ONCE(worker->task != current);
806
e22bee78
TH
807 /*
808 * If transitioning into NOT_RUNNING, adjust nr_running and
809 * wake up an idle worker as necessary if requested by
810 * @wakeup.
811 */
812 if ((flags & WORKER_NOT_RUNNING) &&
813 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 814 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
815
816 if (wakeup) {
817 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 818 !list_empty(&pool->worklist))
63d95a91 819 wake_up_worker(pool);
e22bee78
TH
820 } else
821 atomic_dec(nr_running);
822 }
823
d302f017
TH
824 worker->flags |= flags;
825}
826
827/**
e22bee78 828 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 829 * @worker: self
d302f017
TH
830 * @flags: flags to clear
831 *
e22bee78 832 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 833 *
cb444766
TH
834 * CONTEXT:
835 * spin_lock_irq(gcwq->lock)
d302f017
TH
836 */
837static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
838{
63d95a91 839 struct worker_pool *pool = worker->pool;
e22bee78
TH
840 unsigned int oflags = worker->flags;
841
cb444766
TH
842 WARN_ON_ONCE(worker->task != current);
843
d302f017 844 worker->flags &= ~flags;
e22bee78 845
42c025f3
TH
846 /*
847 * If transitioning out of NOT_RUNNING, increment nr_running. Note
848 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
849 * of multiple flags, not a single flag.
850 */
e22bee78
TH
851 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
852 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 853 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
854}
855
c8e55f36
TH
856/**
857 * busy_worker_head - return the busy hash head for a work
858 * @gcwq: gcwq of interest
859 * @work: work to be hashed
860 *
861 * Return hash head of @gcwq for @work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to the hash head.
868 */
869static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
870 struct work_struct *work)
871{
872 const int base_shift = ilog2(sizeof(struct work_struct));
873 unsigned long v = (unsigned long)work;
874
875 /* simple shift and fold hash, do we need something better? */
876 v >>= base_shift;
877 v += v >> BUSY_WORKER_HASH_ORDER;
878 v &= BUSY_WORKER_HASH_MASK;
879
880 return &gcwq->busy_hash[v];
881}
882
8cca0eea
TH
883/**
884 * __find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @bwh: hash head as returned by busy_worker_head()
887 * @work: work to find worker for
888 *
889 * Find a worker which is executing @work on @gcwq. @bwh should be
890 * the hash head obtained by calling busy_worker_head() with the same
891 * work.
892 *
893 * CONTEXT:
894 * spin_lock_irq(gcwq->lock).
895 *
896 * RETURNS:
897 * Pointer to worker which is executing @work if found, NULL
898 * otherwise.
899 */
900static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
901 struct hlist_head *bwh,
902 struct work_struct *work)
903{
904 struct worker *worker;
905 struct hlist_node *tmp;
906
907 hlist_for_each_entry(worker, tmp, bwh, hentry)
908 if (worker->current_work == work)
909 return worker;
910 return NULL;
911}
912
913/**
914 * find_worker_executing_work - find worker which is executing a work
915 * @gcwq: gcwq of interest
916 * @work: work to find worker for
917 *
918 * Find a worker which is executing @work on @gcwq. This function is
919 * identical to __find_worker_executing_work() except that this
920 * function calculates @bwh itself.
921 *
922 * CONTEXT:
923 * spin_lock_irq(gcwq->lock).
924 *
925 * RETURNS:
926 * Pointer to worker which is executing @work if found, NULL
927 * otherwise.
4d707b9f 928 */
8cca0eea
TH
929static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
930 struct work_struct *work)
4d707b9f 931{
8cca0eea
TH
932 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
933 work);
4d707b9f
ON
934}
935
bf4ede01
TH
936/**
937 * move_linked_works - move linked works to a list
938 * @work: start of series of works to be scheduled
939 * @head: target list to append @work to
940 * @nextp: out paramter for nested worklist walking
941 *
942 * Schedule linked works starting from @work to @head. Work series to
943 * be scheduled starts at @work and includes any consecutive work with
944 * WORK_STRUCT_LINKED set in its predecessor.
945 *
946 * If @nextp is not NULL, it's updated to point to the next work of
947 * the last scheduled work. This allows move_linked_works() to be
948 * nested inside outer list_for_each_entry_safe().
949 *
950 * CONTEXT:
951 * spin_lock_irq(gcwq->lock).
952 */
953static void move_linked_works(struct work_struct *work, struct list_head *head,
954 struct work_struct **nextp)
955{
956 struct work_struct *n;
957
958 /*
959 * Linked worklist will always end before the end of the list,
960 * use NULL for list head.
961 */
962 list_for_each_entry_safe_from(work, n, NULL, entry) {
963 list_move_tail(&work->entry, head);
964 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
965 break;
966 }
967
968 /*
969 * If we're already inside safe list traversal and have moved
970 * multiple works to the scheduled queue, the next position
971 * needs to be updated.
972 */
973 if (nextp)
974 *nextp = n;
975}
976
977static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
978{
979 struct work_struct *work = list_first_entry(&cwq->delayed_works,
980 struct work_struct, entry);
981
982 trace_workqueue_activate_work(work);
983 move_linked_works(work, &cwq->pool->worklist, NULL);
984 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
985 cwq->nr_active++;
986}
987
988/**
989 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
990 * @cwq: cwq of interest
991 * @color: color of work which left the queue
992 * @delayed: for a delayed work
993 *
994 * A work either has completed or is removed from pending queue,
995 * decrement nr_in_flight of its cwq and handle workqueue flushing.
996 *
997 * CONTEXT:
998 * spin_lock_irq(gcwq->lock).
999 */
1000static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1001 bool delayed)
1002{
1003 /* ignore uncolored works */
1004 if (color == WORK_NO_COLOR)
1005 return;
1006
1007 cwq->nr_in_flight[color]--;
1008
1009 if (!delayed) {
1010 cwq->nr_active--;
1011 if (!list_empty(&cwq->delayed_works)) {
1012 /* one down, submit a delayed one */
1013 if (cwq->nr_active < cwq->max_active)
1014 cwq_activate_first_delayed(cwq);
1015 }
1016 }
1017
1018 /* is flush in progress and are we at the flushing tip? */
1019 if (likely(cwq->flush_color != color))
1020 return;
1021
1022 /* are there still in-flight works? */
1023 if (cwq->nr_in_flight[color])
1024 return;
1025
1026 /* this cwq is done, clear flush_color */
1027 cwq->flush_color = -1;
1028
1029 /*
1030 * If this was the last cwq, wake up the first flusher. It
1031 * will handle the rest.
1032 */
1033 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1034 complete(&cwq->wq->first_flusher->done);
1035}
1036
36e227d2 1037/**
bbb68dfa 1038 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1039 * @work: work item to steal
1040 * @is_dwork: @work is a delayed_work
bbb68dfa 1041 * @flags: place to store irq state
36e227d2
TH
1042 *
1043 * Try to grab PENDING bit of @work. This function can handle @work in any
1044 * stable state - idle, on timer or on worklist. Return values are
1045 *
1046 * 1 if @work was pending and we successfully stole PENDING
1047 * 0 if @work was idle and we claimed PENDING
1048 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1049 * -ENOENT if someone else is canceling @work, this state may persist
1050 * for arbitrarily long
36e227d2 1051 *
bbb68dfa
TH
1052 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1053 * preempted while holding PENDING and @work off queue, preemption must be
1054 * disabled on entry. This ensures that we don't return -EAGAIN while
1055 * another task is preempted in this function.
1056 *
1057 * On successful return, >= 0, irq is disabled and the caller is
1058 * responsible for releasing it using local_irq_restore(*@flags).
1059 *
1060 * This function is safe to call from any context other than IRQ handler.
1061 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1062 * this function return -EAGAIN perpetually.
bf4ede01 1063 */
bbb68dfa
TH
1064static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1065 unsigned long *flags)
bf4ede01
TH
1066{
1067 struct global_cwq *gcwq;
bf4ede01 1068
bbb68dfa
TH
1069 WARN_ON_ONCE(in_irq());
1070
1071 local_irq_save(*flags);
1072
36e227d2
TH
1073 /* try to steal the timer if it exists */
1074 if (is_dwork) {
1075 struct delayed_work *dwork = to_delayed_work(work);
1076
1077 if (likely(del_timer(&dwork->timer)))
1078 return 1;
1079 }
1080
1081 /* try to claim PENDING the normal way */
bf4ede01
TH
1082 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1083 return 0;
1084
1085 /*
1086 * The queueing is in progress, or it is already queued. Try to
1087 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1088 */
1089 gcwq = get_work_gcwq(work);
1090 if (!gcwq)
bbb68dfa 1091 goto fail;
bf4ede01 1092
bbb68dfa 1093 spin_lock(&gcwq->lock);
bf4ede01
TH
1094 if (!list_empty(&work->entry)) {
1095 /*
1096 * This work is queued, but perhaps we locked the wrong gcwq.
1097 * In that case we must see the new value after rmb(), see
1098 * insert_work()->wmb().
1099 */
1100 smp_rmb();
1101 if (gcwq == get_work_gcwq(work)) {
1102 debug_work_deactivate(work);
1103 list_del_init(&work->entry);
1104 cwq_dec_nr_in_flight(get_work_cwq(work),
1105 get_work_color(work),
1106 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1107
bbb68dfa 1108 spin_unlock(&gcwq->lock);
36e227d2 1109 return 1;
bf4ede01
TH
1110 }
1111 }
bbb68dfa
TH
1112 spin_unlock(&gcwq->lock);
1113fail:
1114 local_irq_restore(*flags);
1115 if (work_is_canceling(work))
1116 return -ENOENT;
1117 cpu_relax();
36e227d2 1118 return -EAGAIN;
bf4ede01
TH
1119}
1120
4690c4ab 1121/**
7e11629d 1122 * insert_work - insert a work into gcwq
4690c4ab
TH
1123 * @cwq: cwq @work belongs to
1124 * @work: work to insert
1125 * @head: insertion point
1126 * @extra_flags: extra WORK_STRUCT_* flags to set
1127 *
7e11629d
TH
1128 * Insert @work which belongs to @cwq into @gcwq after @head.
1129 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1130 *
1131 * CONTEXT:
8b03ae3c 1132 * spin_lock_irq(gcwq->lock).
4690c4ab 1133 */
b89deed3 1134static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1135 struct work_struct *work, struct list_head *head,
1136 unsigned int extra_flags)
b89deed3 1137{
63d95a91 1138 struct worker_pool *pool = cwq->pool;
e22bee78 1139
4690c4ab 1140 /* we own @work, set data and link */
7a22ad75 1141 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1142
6e84d644
ON
1143 /*
1144 * Ensure that we get the right work->data if we see the
1145 * result of list_add() below, see try_to_grab_pending().
1146 */
1147 smp_wmb();
4690c4ab 1148
1a4d9b0a 1149 list_add_tail(&work->entry, head);
e22bee78
TH
1150
1151 /*
1152 * Ensure either worker_sched_deactivated() sees the above
1153 * list_add_tail() or we see zero nr_running to avoid workers
1154 * lying around lazily while there are works to be processed.
1155 */
1156 smp_mb();
1157
63d95a91
TH
1158 if (__need_more_worker(pool))
1159 wake_up_worker(pool);
b89deed3
ON
1160}
1161
c8efcc25
TH
1162/*
1163 * Test whether @work is being queued from another work executing on the
1164 * same workqueue. This is rather expensive and should only be used from
1165 * cold paths.
1166 */
1167static bool is_chained_work(struct workqueue_struct *wq)
1168{
1169 unsigned long flags;
1170 unsigned int cpu;
1171
1172 for_each_gcwq_cpu(cpu) {
1173 struct global_cwq *gcwq = get_gcwq(cpu);
1174 struct worker *worker;
1175 struct hlist_node *pos;
1176 int i;
1177
1178 spin_lock_irqsave(&gcwq->lock, flags);
1179 for_each_busy_worker(worker, i, pos, gcwq) {
1180 if (worker->task != current)
1181 continue;
1182 spin_unlock_irqrestore(&gcwq->lock, flags);
1183 /*
1184 * I'm @worker, no locking necessary. See if @work
1185 * is headed to the same workqueue.
1186 */
1187 return worker->current_cwq->wq == wq;
1188 }
1189 spin_unlock_irqrestore(&gcwq->lock, flags);
1190 }
1191 return false;
1192}
1193
4690c4ab 1194static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1195 struct work_struct *work)
1196{
502ca9d8
TH
1197 struct global_cwq *gcwq;
1198 struct cpu_workqueue_struct *cwq;
1e19ffc6 1199 struct list_head *worklist;
8a2e8e5d 1200 unsigned int work_flags;
b75cac93 1201 unsigned int req_cpu = cpu;
8930caba
TH
1202
1203 /*
1204 * While a work item is PENDING && off queue, a task trying to
1205 * steal the PENDING will busy-loop waiting for it to either get
1206 * queued or lose PENDING. Grabbing PENDING and queueing should
1207 * happen with IRQ disabled.
1208 */
1209 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1210
dc186ad7 1211 debug_work_activate(work);
1e19ffc6 1212
c8efcc25 1213 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1214 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1215 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1216 return;
1217
c7fc77f7
TH
1218 /* determine gcwq to use */
1219 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1220 struct global_cwq *last_gcwq;
1221
57469821 1222 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1223 cpu = raw_smp_processor_id();
1224
18aa9eff
TH
1225 /*
1226 * It's multi cpu. If @wq is non-reentrant and @work
1227 * was previously on a different cpu, it might still
1228 * be running there, in which case the work needs to
1229 * be queued on that cpu to guarantee non-reentrance.
1230 */
502ca9d8 1231 gcwq = get_gcwq(cpu);
18aa9eff
TH
1232 if (wq->flags & WQ_NON_REENTRANT &&
1233 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1234 struct worker *worker;
1235
8930caba 1236 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1237
1238 worker = find_worker_executing_work(last_gcwq, work);
1239
1240 if (worker && worker->current_cwq->wq == wq)
1241 gcwq = last_gcwq;
1242 else {
1243 /* meh... not running there, queue here */
8930caba
TH
1244 spin_unlock(&last_gcwq->lock);
1245 spin_lock(&gcwq->lock);
18aa9eff 1246 }
8930caba
TH
1247 } else {
1248 spin_lock(&gcwq->lock);
1249 }
f3421797
TH
1250 } else {
1251 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1252 spin_lock(&gcwq->lock);
502ca9d8
TH
1253 }
1254
1255 /* gcwq determined, get cwq and queue */
1256 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1257 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1258
f5b2552b 1259 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1260 spin_unlock(&gcwq->lock);
f5b2552b
DC
1261 return;
1262 }
1e19ffc6 1263
73f53c4a 1264 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1265 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1266
1267 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1268 trace_workqueue_activate_work(work);
1e19ffc6 1269 cwq->nr_active++;
3270476a 1270 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1271 } else {
1272 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1273 worklist = &cwq->delayed_works;
8a2e8e5d 1274 }
1e19ffc6 1275
8a2e8e5d 1276 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1277
8930caba 1278 spin_unlock(&gcwq->lock);
1da177e4
LT
1279}
1280
c1a220e7
ZR
1281/**
1282 * queue_work_on - queue work on specific cpu
1283 * @cpu: CPU number to execute work on
1284 * @wq: workqueue to use
1285 * @work: work to queue
1286 *
d4283e93 1287 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1288 *
1289 * We queue the work to a specific CPU, the caller must ensure it
1290 * can't go away.
1291 */
d4283e93
TH
1292bool queue_work_on(int cpu, struct workqueue_struct *wq,
1293 struct work_struct *work)
c1a220e7 1294{
d4283e93 1295 bool ret = false;
8930caba
TH
1296 unsigned long flags;
1297
1298 local_irq_save(flags);
c1a220e7 1299
22df02bb 1300 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1301 __queue_work(cpu, wq, work);
d4283e93 1302 ret = true;
c1a220e7 1303 }
8930caba
TH
1304
1305 local_irq_restore(flags);
c1a220e7
ZR
1306 return ret;
1307}
1308EXPORT_SYMBOL_GPL(queue_work_on);
1309
0fcb78c2 1310/**
0a13c00e 1311 * queue_work - queue work on a workqueue
0fcb78c2 1312 * @wq: workqueue to use
0a13c00e 1313 * @work: work to queue
0fcb78c2 1314 *
d4283e93 1315 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1316 *
1317 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1318 * it can be processed by another CPU.
0fcb78c2 1319 */
d4283e93 1320bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1321{
57469821 1322 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1323}
1324EXPORT_SYMBOL_GPL(queue_work);
1325
d8e794df 1326void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1327{
1328 struct delayed_work *dwork = (struct delayed_work *)__data;
1329 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1330
8930caba 1331 local_irq_disable();
1265057f 1332 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1333 local_irq_enable();
1da177e4 1334}
d8e794df 1335EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1336
7beb2edf
TH
1337static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1338 struct delayed_work *dwork, unsigned long delay)
1339{
1340 struct timer_list *timer = &dwork->timer;
1341 struct work_struct *work = &dwork->work;
1342 unsigned int lcpu;
1343
1344 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1345 timer->data != (unsigned long)dwork);
1346 BUG_ON(timer_pending(timer));
1347 BUG_ON(!list_empty(&work->entry));
1348
1349 timer_stats_timer_set_start_info(&dwork->timer);
1350
1351 /*
1352 * This stores cwq for the moment, for the timer_fn. Note that the
1353 * work's gcwq is preserved to allow reentrance detection for
1354 * delayed works.
1355 */
1356 if (!(wq->flags & WQ_UNBOUND)) {
1357 struct global_cwq *gcwq = get_work_gcwq(work);
1358
e42986de
JK
1359 /*
1360 * If we cannot get the last gcwq from @work directly,
1361 * select the last CPU such that it avoids unnecessarily
1362 * triggering non-reentrancy check in __queue_work().
1363 */
1364 lcpu = cpu;
1365 if (gcwq)
7beb2edf 1366 lcpu = gcwq->cpu;
e42986de 1367 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1368 lcpu = raw_smp_processor_id();
1369 } else {
1370 lcpu = WORK_CPU_UNBOUND;
1371 }
1372
1373 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1374
1265057f 1375 dwork->cpu = cpu;
7beb2edf
TH
1376 timer->expires = jiffies + delay;
1377
1378 if (unlikely(cpu != WORK_CPU_UNBOUND))
1379 add_timer_on(timer, cpu);
1380 else
1381 add_timer(timer);
1382}
1383
0fcb78c2
REB
1384/**
1385 * queue_delayed_work_on - queue work on specific CPU after delay
1386 * @cpu: CPU number to execute work on
1387 * @wq: workqueue to use
af9997e4 1388 * @dwork: work to queue
0fcb78c2
REB
1389 * @delay: number of jiffies to wait before queueing
1390 *
715f1300
TH
1391 * Returns %false if @work was already on a queue, %true otherwise. If
1392 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1393 * execution.
0fcb78c2 1394 */
d4283e93
TH
1395bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1396 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1397{
52bad64d 1398 struct work_struct *work = &dwork->work;
d4283e93 1399 bool ret = false;
8930caba
TH
1400 unsigned long flags;
1401
715f1300
TH
1402 if (!delay)
1403 return queue_work_on(cpu, wq, &dwork->work);
1404
8930caba
TH
1405 /* read the comment in __queue_work() */
1406 local_irq_save(flags);
7a6bc1cd 1407
22df02bb 1408 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1409 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1410 ret = true;
7a6bc1cd 1411 }
8930caba
TH
1412
1413 local_irq_restore(flags);
7a6bc1cd
VP
1414 return ret;
1415}
ae90dd5d 1416EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1417
0a13c00e
TH
1418/**
1419 * queue_delayed_work - queue work on a workqueue after delay
1420 * @wq: workqueue to use
1421 * @dwork: delayable work to queue
1422 * @delay: number of jiffies to wait before queueing
1423 *
715f1300 1424 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1425 */
d4283e93 1426bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1427 struct delayed_work *dwork, unsigned long delay)
1428{
57469821 1429 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1430}
1431EXPORT_SYMBOL_GPL(queue_delayed_work);
1432
8376fe22
TH
1433/**
1434 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1435 * @cpu: CPU number to execute work on
1436 * @wq: workqueue to use
1437 * @dwork: work to queue
1438 * @delay: number of jiffies to wait before queueing
1439 *
1440 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1441 * modify @dwork's timer so that it expires after @delay. If @delay is
1442 * zero, @work is guaranteed to be scheduled immediately regardless of its
1443 * current state.
1444 *
1445 * Returns %false if @dwork was idle and queued, %true if @dwork was
1446 * pending and its timer was modified.
1447 *
1448 * This function is safe to call from any context other than IRQ handler.
1449 * See try_to_grab_pending() for details.
1450 */
1451bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1452 struct delayed_work *dwork, unsigned long delay)
1453{
1454 unsigned long flags;
1455 int ret;
1456
1457 do {
1458 ret = try_to_grab_pending(&dwork->work, true, &flags);
1459 } while (unlikely(ret == -EAGAIN));
1460
1461 if (likely(ret >= 0)) {
1462 __queue_delayed_work(cpu, wq, dwork, delay);
1463 local_irq_restore(flags);
1464 }
1465
1466 /* -ENOENT from try_to_grab_pending() becomes %true */
1467 return ret;
1468}
1469EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1470
1471/**
1472 * mod_delayed_work - modify delay of or queue a delayed work
1473 * @wq: workqueue to use
1474 * @dwork: work to queue
1475 * @delay: number of jiffies to wait before queueing
1476 *
1477 * mod_delayed_work_on() on local CPU.
1478 */
1479bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1480 unsigned long delay)
1481{
1482 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1483}
1484EXPORT_SYMBOL_GPL(mod_delayed_work);
1485
c8e55f36
TH
1486/**
1487 * worker_enter_idle - enter idle state
1488 * @worker: worker which is entering idle state
1489 *
1490 * @worker is entering idle state. Update stats and idle timer if
1491 * necessary.
1492 *
1493 * LOCKING:
1494 * spin_lock_irq(gcwq->lock).
1495 */
1496static void worker_enter_idle(struct worker *worker)
1da177e4 1497{
bd7bdd43
TH
1498 struct worker_pool *pool = worker->pool;
1499 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1500
1501 BUG_ON(worker->flags & WORKER_IDLE);
1502 BUG_ON(!list_empty(&worker->entry) &&
1503 (worker->hentry.next || worker->hentry.pprev));
1504
cb444766
TH
1505 /* can't use worker_set_flags(), also called from start_worker() */
1506 worker->flags |= WORKER_IDLE;
bd7bdd43 1507 pool->nr_idle++;
e22bee78 1508 worker->last_active = jiffies;
c8e55f36
TH
1509
1510 /* idle_list is LIFO */
bd7bdd43 1511 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1512
628c78e7
TH
1513 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1514 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1515
544ecf31 1516 /*
628c78e7
TH
1517 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1518 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1519 * nr_running, the warning may trigger spuriously. Check iff
1520 * unbind is not in progress.
544ecf31 1521 */
628c78e7 1522 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1523 pool->nr_workers == pool->nr_idle &&
63d95a91 1524 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1525}
1526
1527/**
1528 * worker_leave_idle - leave idle state
1529 * @worker: worker which is leaving idle state
1530 *
1531 * @worker is leaving idle state. Update stats.
1532 *
1533 * LOCKING:
1534 * spin_lock_irq(gcwq->lock).
1535 */
1536static void worker_leave_idle(struct worker *worker)
1537{
bd7bdd43 1538 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1539
1540 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1541 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1542 pool->nr_idle--;
c8e55f36
TH
1543 list_del_init(&worker->entry);
1544}
1545
e22bee78
TH
1546/**
1547 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1548 * @worker: self
1549 *
1550 * Works which are scheduled while the cpu is online must at least be
1551 * scheduled to a worker which is bound to the cpu so that if they are
1552 * flushed from cpu callbacks while cpu is going down, they are
1553 * guaranteed to execute on the cpu.
1554 *
1555 * This function is to be used by rogue workers and rescuers to bind
1556 * themselves to the target cpu and may race with cpu going down or
1557 * coming online. kthread_bind() can't be used because it may put the
1558 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1559 * verbatim as it's best effort and blocking and gcwq may be
1560 * [dis]associated in the meantime.
1561 *
f2d5a0ee
TH
1562 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1563 * binding against %GCWQ_DISASSOCIATED which is set during
1564 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1565 * enters idle state or fetches works without dropping lock, it can
1566 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1567 *
1568 * CONTEXT:
1569 * Might sleep. Called without any lock but returns with gcwq->lock
1570 * held.
1571 *
1572 * RETURNS:
1573 * %true if the associated gcwq is online (@worker is successfully
1574 * bound), %false if offline.
1575 */
1576static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1577__acquires(&gcwq->lock)
e22bee78 1578{
bd7bdd43 1579 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1580 struct task_struct *task = worker->task;
1581
1582 while (true) {
4e6045f1 1583 /*
e22bee78
TH
1584 * The following call may fail, succeed or succeed
1585 * without actually migrating the task to the cpu if
1586 * it races with cpu hotunplug operation. Verify
1587 * against GCWQ_DISASSOCIATED.
4e6045f1 1588 */
f3421797
TH
1589 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1590 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1591
1592 spin_lock_irq(&gcwq->lock);
1593 if (gcwq->flags & GCWQ_DISASSOCIATED)
1594 return false;
1595 if (task_cpu(task) == gcwq->cpu &&
1596 cpumask_equal(&current->cpus_allowed,
1597 get_cpu_mask(gcwq->cpu)))
1598 return true;
1599 spin_unlock_irq(&gcwq->lock);
1600
5035b20f
TH
1601 /*
1602 * We've raced with CPU hot[un]plug. Give it a breather
1603 * and retry migration. cond_resched() is required here;
1604 * otherwise, we might deadlock against cpu_stop trying to
1605 * bring down the CPU on non-preemptive kernel.
1606 */
e22bee78 1607 cpu_relax();
5035b20f 1608 cond_resched();
e22bee78
TH
1609 }
1610}
1611
25511a47
TH
1612struct idle_rebind {
1613 int cnt; /* # workers to be rebound */
1614 struct completion done; /* all workers rebound */
1615};
1616
1617/*
1618 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1619 * happen synchronously for idle workers. worker_thread() will test
1620 * %WORKER_REBIND before leaving idle and call this function.
1621 */
1622static void idle_worker_rebind(struct worker *worker)
1623{
1624 struct global_cwq *gcwq = worker->pool->gcwq;
1625
1626 /* CPU must be online at this point */
1627 WARN_ON(!worker_maybe_bind_and_lock(worker));
1628 if (!--worker->idle_rebind->cnt)
1629 complete(&worker->idle_rebind->done);
1630 spin_unlock_irq(&worker->pool->gcwq->lock);
1631
1632 /* we did our part, wait for rebind_workers() to finish up */
1633 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1634}
1635
e22bee78 1636/*
25511a47 1637 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1638 * the associated cpu which is coming back online. This is scheduled by
1639 * cpu up but can race with other cpu hotplug operations and may be
1640 * executed twice without intervening cpu down.
e22bee78 1641 */
25511a47 1642static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1643{
1644 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1645 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1646
1647 if (worker_maybe_bind_and_lock(worker))
1648 worker_clr_flags(worker, WORKER_REBIND);
1649
1650 spin_unlock_irq(&gcwq->lock);
1651}
1652
25511a47
TH
1653/**
1654 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1655 * @gcwq: gcwq of interest
1656 *
1657 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1658 * is different for idle and busy ones.
1659 *
1660 * The idle ones should be rebound synchronously and idle rebinding should
1661 * be complete before any worker starts executing work items with
1662 * concurrency management enabled; otherwise, scheduler may oops trying to
1663 * wake up non-local idle worker from wq_worker_sleeping().
1664 *
1665 * This is achieved by repeatedly requesting rebinding until all idle
1666 * workers are known to have been rebound under @gcwq->lock and holding all
1667 * idle workers from becoming busy until idle rebinding is complete.
1668 *
1669 * Once idle workers are rebound, busy workers can be rebound as they
1670 * finish executing their current work items. Queueing the rebind work at
1671 * the head of their scheduled lists is enough. Note that nr_running will
1672 * be properbly bumped as busy workers rebind.
1673 *
1674 * On return, all workers are guaranteed to either be bound or have rebind
1675 * work item scheduled.
1676 */
1677static void rebind_workers(struct global_cwq *gcwq)
1678 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1679{
1680 struct idle_rebind idle_rebind;
1681 struct worker_pool *pool;
1682 struct worker *worker;
1683 struct hlist_node *pos;
1684 int i;
1685
1686 lockdep_assert_held(&gcwq->lock);
1687
1688 for_each_worker_pool(pool, gcwq)
1689 lockdep_assert_held(&pool->manager_mutex);
1690
1691 /*
1692 * Rebind idle workers. Interlocked both ways. We wait for
1693 * workers to rebind via @idle_rebind.done. Workers will wait for
1694 * us to finish up by watching %WORKER_REBIND.
1695 */
1696 init_completion(&idle_rebind.done);
1697retry:
1698 idle_rebind.cnt = 1;
1699 INIT_COMPLETION(idle_rebind.done);
1700
1701 /* set REBIND and kick idle ones, we'll wait for these later */
1702 for_each_worker_pool(pool, gcwq) {
1703 list_for_each_entry(worker, &pool->idle_list, entry) {
1704 if (worker->flags & WORKER_REBIND)
1705 continue;
1706
1707 /* morph UNBOUND to REBIND */
1708 worker->flags &= ~WORKER_UNBOUND;
1709 worker->flags |= WORKER_REBIND;
1710
1711 idle_rebind.cnt++;
1712 worker->idle_rebind = &idle_rebind;
1713
1714 /* worker_thread() will call idle_worker_rebind() */
1715 wake_up_process(worker->task);
1716 }
1717 }
1718
1719 if (--idle_rebind.cnt) {
1720 spin_unlock_irq(&gcwq->lock);
1721 wait_for_completion(&idle_rebind.done);
1722 spin_lock_irq(&gcwq->lock);
1723 /* busy ones might have become idle while waiting, retry */
1724 goto retry;
1725 }
1726
1727 /*
1728 * All idle workers are rebound and waiting for %WORKER_REBIND to
1729 * be cleared inside idle_worker_rebind(). Clear and release.
1730 * Clearing %WORKER_REBIND from this foreign context is safe
1731 * because these workers are still guaranteed to be idle.
1732 */
1733 for_each_worker_pool(pool, gcwq)
1734 list_for_each_entry(worker, &pool->idle_list, entry)
1735 worker->flags &= ~WORKER_REBIND;
1736
1737 wake_up_all(&gcwq->rebind_hold);
1738
1739 /* rebind busy workers */
1740 for_each_busy_worker(worker, i, pos, gcwq) {
1741 struct work_struct *rebind_work = &worker->rebind_work;
1742
1743 /* morph UNBOUND to REBIND */
1744 worker->flags &= ~WORKER_UNBOUND;
1745 worker->flags |= WORKER_REBIND;
1746
1747 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1748 work_data_bits(rebind_work)))
1749 continue;
1750
1751 /* wq doesn't matter, use the default one */
1752 debug_work_activate(rebind_work);
1753 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1754 worker->scheduled.next,
1755 work_color_to_flags(WORK_NO_COLOR));
1756 }
1757}
1758
c34056a3
TH
1759static struct worker *alloc_worker(void)
1760{
1761 struct worker *worker;
1762
1763 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1764 if (worker) {
1765 INIT_LIST_HEAD(&worker->entry);
affee4b2 1766 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1767 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1768 /* on creation a worker is in !idle && prep state */
1769 worker->flags = WORKER_PREP;
c8e55f36 1770 }
c34056a3
TH
1771 return worker;
1772}
1773
1774/**
1775 * create_worker - create a new workqueue worker
63d95a91 1776 * @pool: pool the new worker will belong to
c34056a3 1777 *
63d95a91 1778 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1779 * can be started by calling start_worker() or destroyed using
1780 * destroy_worker().
1781 *
1782 * CONTEXT:
1783 * Might sleep. Does GFP_KERNEL allocations.
1784 *
1785 * RETURNS:
1786 * Pointer to the newly created worker.
1787 */
bc2ae0f5 1788static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1789{
63d95a91 1790 struct global_cwq *gcwq = pool->gcwq;
3270476a 1791 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1792 struct worker *worker = NULL;
f3421797 1793 int id = -1;
c34056a3 1794
8b03ae3c 1795 spin_lock_irq(&gcwq->lock);
bd7bdd43 1796 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1797 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1798 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1799 goto fail;
8b03ae3c 1800 spin_lock_irq(&gcwq->lock);
c34056a3 1801 }
8b03ae3c 1802 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1803
1804 worker = alloc_worker();
1805 if (!worker)
1806 goto fail;
1807
bd7bdd43 1808 worker->pool = pool;
c34056a3
TH
1809 worker->id = id;
1810
bc2ae0f5 1811 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1812 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1813 worker, cpu_to_node(gcwq->cpu),
1814 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1815 else
1816 worker->task = kthread_create(worker_thread, worker,
3270476a 1817 "kworker/u:%d%s", id, pri);
c34056a3
TH
1818 if (IS_ERR(worker->task))
1819 goto fail;
1820
3270476a
TH
1821 if (worker_pool_pri(pool))
1822 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1823
db7bccf4 1824 /*
bc2ae0f5
TH
1825 * Determine CPU binding of the new worker depending on
1826 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1827 * flag remains stable across this function. See the comments
1828 * above the flag definition for details.
1829 *
1830 * As an unbound worker may later become a regular one if CPU comes
1831 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1832 */
bc2ae0f5 1833 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1834 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1835 } else {
db7bccf4 1836 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1837 worker->flags |= WORKER_UNBOUND;
f3421797 1838 }
c34056a3
TH
1839
1840 return worker;
1841fail:
1842 if (id >= 0) {
8b03ae3c 1843 spin_lock_irq(&gcwq->lock);
bd7bdd43 1844 ida_remove(&pool->worker_ida, id);
8b03ae3c 1845 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1846 }
1847 kfree(worker);
1848 return NULL;
1849}
1850
1851/**
1852 * start_worker - start a newly created worker
1853 * @worker: worker to start
1854 *
c8e55f36 1855 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1856 *
1857 * CONTEXT:
8b03ae3c 1858 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1859 */
1860static void start_worker(struct worker *worker)
1861{
cb444766 1862 worker->flags |= WORKER_STARTED;
bd7bdd43 1863 worker->pool->nr_workers++;
c8e55f36 1864 worker_enter_idle(worker);
c34056a3
TH
1865 wake_up_process(worker->task);
1866}
1867
1868/**
1869 * destroy_worker - destroy a workqueue worker
1870 * @worker: worker to be destroyed
1871 *
c8e55f36
TH
1872 * Destroy @worker and adjust @gcwq stats accordingly.
1873 *
1874 * CONTEXT:
1875 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1876 */
1877static void destroy_worker(struct worker *worker)
1878{
bd7bdd43
TH
1879 struct worker_pool *pool = worker->pool;
1880 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1881 int id = worker->id;
1882
1883 /* sanity check frenzy */
1884 BUG_ON(worker->current_work);
affee4b2 1885 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1886
c8e55f36 1887 if (worker->flags & WORKER_STARTED)
bd7bdd43 1888 pool->nr_workers--;
c8e55f36 1889 if (worker->flags & WORKER_IDLE)
bd7bdd43 1890 pool->nr_idle--;
c8e55f36
TH
1891
1892 list_del_init(&worker->entry);
cb444766 1893 worker->flags |= WORKER_DIE;
c8e55f36
TH
1894
1895 spin_unlock_irq(&gcwq->lock);
1896
c34056a3
TH
1897 kthread_stop(worker->task);
1898 kfree(worker);
1899
8b03ae3c 1900 spin_lock_irq(&gcwq->lock);
bd7bdd43 1901 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1902}
1903
63d95a91 1904static void idle_worker_timeout(unsigned long __pool)
e22bee78 1905{
63d95a91
TH
1906 struct worker_pool *pool = (void *)__pool;
1907 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1908
1909 spin_lock_irq(&gcwq->lock);
1910
63d95a91 1911 if (too_many_workers(pool)) {
e22bee78
TH
1912 struct worker *worker;
1913 unsigned long expires;
1914
1915 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1916 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1917 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1918
1919 if (time_before(jiffies, expires))
63d95a91 1920 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1921 else {
1922 /* it's been idle for too long, wake up manager */
11ebea50 1923 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1924 wake_up_worker(pool);
d5abe669 1925 }
e22bee78
TH
1926 }
1927
1928 spin_unlock_irq(&gcwq->lock);
1929}
d5abe669 1930
e22bee78
TH
1931static bool send_mayday(struct work_struct *work)
1932{
1933 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1934 struct workqueue_struct *wq = cwq->wq;
f3421797 1935 unsigned int cpu;
e22bee78
TH
1936
1937 if (!(wq->flags & WQ_RESCUER))
1938 return false;
1939
1940 /* mayday mayday mayday */
bd7bdd43 1941 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1942 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1943 if (cpu == WORK_CPU_UNBOUND)
1944 cpu = 0;
f2e005aa 1945 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1946 wake_up_process(wq->rescuer->task);
1947 return true;
1948}
1949
63d95a91 1950static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1951{
63d95a91
TH
1952 struct worker_pool *pool = (void *)__pool;
1953 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1954 struct work_struct *work;
1955
1956 spin_lock_irq(&gcwq->lock);
1957
63d95a91 1958 if (need_to_create_worker(pool)) {
e22bee78
TH
1959 /*
1960 * We've been trying to create a new worker but
1961 * haven't been successful. We might be hitting an
1962 * allocation deadlock. Send distress signals to
1963 * rescuers.
1964 */
63d95a91 1965 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1966 send_mayday(work);
1da177e4 1967 }
e22bee78
TH
1968
1969 spin_unlock_irq(&gcwq->lock);
1970
63d95a91 1971 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1972}
1973
e22bee78
TH
1974/**
1975 * maybe_create_worker - create a new worker if necessary
63d95a91 1976 * @pool: pool to create a new worker for
e22bee78 1977 *
63d95a91 1978 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1979 * have at least one idle worker on return from this function. If
1980 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1981 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1982 * possible allocation deadlock.
1983 *
1984 * On return, need_to_create_worker() is guaranteed to be false and
1985 * may_start_working() true.
1986 *
1987 * LOCKING:
1988 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1989 * multiple times. Does GFP_KERNEL allocations. Called only from
1990 * manager.
1991 *
1992 * RETURNS:
1993 * false if no action was taken and gcwq->lock stayed locked, true
1994 * otherwise.
1995 */
63d95a91 1996static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1997__releases(&gcwq->lock)
1998__acquires(&gcwq->lock)
1da177e4 1999{
63d95a91
TH
2000 struct global_cwq *gcwq = pool->gcwq;
2001
2002 if (!need_to_create_worker(pool))
e22bee78
TH
2003 return false;
2004restart:
9f9c2364
TH
2005 spin_unlock_irq(&gcwq->lock);
2006
e22bee78 2007 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2008 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2009
2010 while (true) {
2011 struct worker *worker;
2012
bc2ae0f5 2013 worker = create_worker(pool);
e22bee78 2014 if (worker) {
63d95a91 2015 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2016 spin_lock_irq(&gcwq->lock);
2017 start_worker(worker);
63d95a91 2018 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2019 return true;
2020 }
2021
63d95a91 2022 if (!need_to_create_worker(pool))
e22bee78 2023 break;
1da177e4 2024
e22bee78
TH
2025 __set_current_state(TASK_INTERRUPTIBLE);
2026 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2027
63d95a91 2028 if (!need_to_create_worker(pool))
e22bee78
TH
2029 break;
2030 }
2031
63d95a91 2032 del_timer_sync(&pool->mayday_timer);
e22bee78 2033 spin_lock_irq(&gcwq->lock);
63d95a91 2034 if (need_to_create_worker(pool))
e22bee78
TH
2035 goto restart;
2036 return true;
2037}
2038
2039/**
2040 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2041 * @pool: pool to destroy workers for
e22bee78 2042 *
63d95a91 2043 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2044 * IDLE_WORKER_TIMEOUT.
2045 *
2046 * LOCKING:
2047 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2048 * multiple times. Called only from manager.
2049 *
2050 * RETURNS:
2051 * false if no action was taken and gcwq->lock stayed locked, true
2052 * otherwise.
2053 */
63d95a91 2054static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2055{
2056 bool ret = false;
1da177e4 2057
63d95a91 2058 while (too_many_workers(pool)) {
e22bee78
TH
2059 struct worker *worker;
2060 unsigned long expires;
3af24433 2061
63d95a91 2062 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2063 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2064
e22bee78 2065 if (time_before(jiffies, expires)) {
63d95a91 2066 mod_timer(&pool->idle_timer, expires);
3af24433 2067 break;
e22bee78 2068 }
1da177e4 2069
e22bee78
TH
2070 destroy_worker(worker);
2071 ret = true;
1da177e4 2072 }
3af24433 2073
e22bee78
TH
2074 return ret;
2075}
2076
2077/**
2078 * manage_workers - manage worker pool
2079 * @worker: self
2080 *
2081 * Assume the manager role and manage gcwq worker pool @worker belongs
2082 * to. At any given time, there can be only zero or one manager per
2083 * gcwq. The exclusion is handled automatically by this function.
2084 *
2085 * The caller can safely start processing works on false return. On
2086 * true return, it's guaranteed that need_to_create_worker() is false
2087 * and may_start_working() is true.
2088 *
2089 * CONTEXT:
2090 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2091 * multiple times. Does GFP_KERNEL allocations.
2092 *
2093 * RETURNS:
2094 * false if no action was taken and gcwq->lock stayed locked, true if
2095 * some action was taken.
2096 */
2097static bool manage_workers(struct worker *worker)
2098{
63d95a91 2099 struct worker_pool *pool = worker->pool;
e22bee78
TH
2100 bool ret = false;
2101
60373152 2102 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2103 return ret;
2104
11ebea50 2105 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2106
2107 /*
2108 * Destroy and then create so that may_start_working() is true
2109 * on return.
2110 */
63d95a91
TH
2111 ret |= maybe_destroy_workers(pool);
2112 ret |= maybe_create_worker(pool);
e22bee78 2113
60373152 2114 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2115 return ret;
2116}
2117
a62428c0
TH
2118/**
2119 * process_one_work - process single work
c34056a3 2120 * @worker: self
a62428c0
TH
2121 * @work: work to process
2122 *
2123 * Process @work. This function contains all the logics necessary to
2124 * process a single work including synchronization against and
2125 * interaction with other workers on the same cpu, queueing and
2126 * flushing. As long as context requirement is met, any worker can
2127 * call this function to process a work.
2128 *
2129 * CONTEXT:
8b03ae3c 2130 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2131 */
c34056a3 2132static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2133__releases(&gcwq->lock)
2134__acquires(&gcwq->lock)
a62428c0 2135{
7e11629d 2136 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2137 struct worker_pool *pool = worker->pool;
2138 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2139 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2140 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2141 work_func_t f = work->func;
73f53c4a 2142 int work_color;
7e11629d 2143 struct worker *collision;
a62428c0
TH
2144#ifdef CONFIG_LOCKDEP
2145 /*
2146 * It is permissible to free the struct work_struct from
2147 * inside the function that is called from it, this we need to
2148 * take into account for lockdep too. To avoid bogus "held
2149 * lock freed" warnings as well as problems when looking into
2150 * work->lockdep_map, make a copy and use that here.
2151 */
4d82a1de
PZ
2152 struct lockdep_map lockdep_map;
2153
2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2155#endif
6fec10a1
TH
2156 /*
2157 * Ensure we're on the correct CPU. DISASSOCIATED test is
2158 * necessary to avoid spurious warnings from rescuers servicing the
2159 * unbound or a disassociated gcwq.
2160 */
25511a47 2161 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2162 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2163 raw_smp_processor_id() != gcwq->cpu);
2164
7e11629d
TH
2165 /*
2166 * A single work shouldn't be executed concurrently by
2167 * multiple workers on a single cpu. Check whether anyone is
2168 * already processing the work. If so, defer the work to the
2169 * currently executing one.
2170 */
2171 collision = __find_worker_executing_work(gcwq, bwh, work);
2172 if (unlikely(collision)) {
2173 move_linked_works(work, &collision->scheduled, NULL);
2174 return;
2175 }
2176
8930caba 2177 /* claim and dequeue */
a62428c0 2178 debug_work_deactivate(work);
c8e55f36 2179 hlist_add_head(&worker->hentry, bwh);
c34056a3 2180 worker->current_work = work;
8cca0eea 2181 worker->current_cwq = cwq;
73f53c4a 2182 work_color = get_work_color(work);
7a22ad75 2183
a62428c0
TH
2184 list_del_init(&work->entry);
2185
fb0e7beb
TH
2186 /*
2187 * CPU intensive works don't participate in concurrency
2188 * management. They're the scheduler's responsibility.
2189 */
2190 if (unlikely(cpu_intensive))
2191 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2192
974271c4
TH
2193 /*
2194 * Unbound gcwq isn't concurrency managed and work items should be
2195 * executed ASAP. Wake up another worker if necessary.
2196 */
63d95a91
TH
2197 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2198 wake_up_worker(pool);
974271c4 2199
8930caba 2200 /*
23657bb1
TH
2201 * Record the last CPU and clear PENDING which should be the last
2202 * update to @work. Also, do this inside @gcwq->lock so that
2203 * PENDING and queued state changes happen together while IRQ is
2204 * disabled.
8930caba 2205 */
8930caba 2206 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2207
8930caba 2208 spin_unlock_irq(&gcwq->lock);
959d1af8 2209
e159489b 2210 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2211 lock_map_acquire(&lockdep_map);
e36c886a 2212 trace_workqueue_execute_start(work);
a62428c0 2213 f(work);
e36c886a
AV
2214 /*
2215 * While we must be careful to not use "work" after this, the trace
2216 * point will only record its address.
2217 */
2218 trace_workqueue_execute_end(work);
a62428c0
TH
2219 lock_map_release(&lockdep_map);
2220 lock_map_release(&cwq->wq->lockdep_map);
2221
2222 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2223 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2224 "%s/0x%08x/%d\n",
2225 current->comm, preempt_count(), task_pid_nr(current));
2226 printk(KERN_ERR " last function: ");
2227 print_symbol("%s\n", (unsigned long)f);
2228 debug_show_held_locks(current);
2229 dump_stack();
2230 }
2231
8b03ae3c 2232 spin_lock_irq(&gcwq->lock);
a62428c0 2233
fb0e7beb
TH
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
a62428c0 2238 /* we're done with it, release */
c8e55f36 2239 hlist_del_init(&worker->hentry);
c34056a3 2240 worker->current_work = NULL;
8cca0eea 2241 worker->current_cwq = NULL;
8a2e8e5d 2242 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2243}
2244
affee4b2
TH
2245/**
2246 * process_scheduled_works - process scheduled works
2247 * @worker: self
2248 *
2249 * Process all scheduled works. Please note that the scheduled list
2250 * may change while processing a work, so this function repeatedly
2251 * fetches a work from the top and executes it.
2252 *
2253 * CONTEXT:
8b03ae3c 2254 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2255 * multiple times.
2256 */
2257static void process_scheduled_works(struct worker *worker)
1da177e4 2258{
affee4b2
TH
2259 while (!list_empty(&worker->scheduled)) {
2260 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2261 struct work_struct, entry);
c34056a3 2262 process_one_work(worker, work);
1da177e4 2263 }
1da177e4
LT
2264}
2265
4690c4ab
TH
2266/**
2267 * worker_thread - the worker thread function
c34056a3 2268 * @__worker: self
4690c4ab 2269 *
e22bee78
TH
2270 * The gcwq worker thread function. There's a single dynamic pool of
2271 * these per each cpu. These workers process all works regardless of
2272 * their specific target workqueue. The only exception is works which
2273 * belong to workqueues with a rescuer which will be explained in
2274 * rescuer_thread().
4690c4ab 2275 */
c34056a3 2276static int worker_thread(void *__worker)
1da177e4 2277{
c34056a3 2278 struct worker *worker = __worker;
bd7bdd43
TH
2279 struct worker_pool *pool = worker->pool;
2280 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2281
e22bee78
TH
2282 /* tell the scheduler that this is a workqueue worker */
2283 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2284woke_up:
c8e55f36 2285 spin_lock_irq(&gcwq->lock);
1da177e4 2286
25511a47
TH
2287 /*
2288 * DIE can be set only while idle and REBIND set while busy has
2289 * @worker->rebind_work scheduled. Checking here is enough.
2290 */
2291 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2292 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2293
2294 if (worker->flags & WORKER_DIE) {
2295 worker->task->flags &= ~PF_WQ_WORKER;
2296 return 0;
2297 }
2298
2299 idle_worker_rebind(worker);
2300 goto woke_up;
c8e55f36 2301 }
affee4b2 2302
c8e55f36 2303 worker_leave_idle(worker);
db7bccf4 2304recheck:
e22bee78 2305 /* no more worker necessary? */
63d95a91 2306 if (!need_more_worker(pool))
e22bee78
TH
2307 goto sleep;
2308
2309 /* do we need to manage? */
63d95a91 2310 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2311 goto recheck;
2312
c8e55f36
TH
2313 /*
2314 * ->scheduled list can only be filled while a worker is
2315 * preparing to process a work or actually processing it.
2316 * Make sure nobody diddled with it while I was sleeping.
2317 */
2318 BUG_ON(!list_empty(&worker->scheduled));
2319
e22bee78
TH
2320 /*
2321 * When control reaches this point, we're guaranteed to have
2322 * at least one idle worker or that someone else has already
2323 * assumed the manager role.
2324 */
2325 worker_clr_flags(worker, WORKER_PREP);
2326
2327 do {
c8e55f36 2328 struct work_struct *work =
bd7bdd43 2329 list_first_entry(&pool->worklist,
c8e55f36
TH
2330 struct work_struct, entry);
2331
2332 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2333 /* optimization path, not strictly necessary */
2334 process_one_work(worker, work);
2335 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2336 process_scheduled_works(worker);
c8e55f36
TH
2337 } else {
2338 move_linked_works(work, &worker->scheduled, NULL);
2339 process_scheduled_works(worker);
affee4b2 2340 }
63d95a91 2341 } while (keep_working(pool));
e22bee78
TH
2342
2343 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2344sleep:
63d95a91 2345 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2346 goto recheck;
d313dd85 2347
c8e55f36 2348 /*
e22bee78
TH
2349 * gcwq->lock is held and there's no work to process and no
2350 * need to manage, sleep. Workers are woken up only while
2351 * holding gcwq->lock or from local cpu, so setting the
2352 * current state before releasing gcwq->lock is enough to
2353 * prevent losing any event.
c8e55f36
TH
2354 */
2355 worker_enter_idle(worker);
2356 __set_current_state(TASK_INTERRUPTIBLE);
2357 spin_unlock_irq(&gcwq->lock);
2358 schedule();
2359 goto woke_up;
1da177e4
LT
2360}
2361
e22bee78
TH
2362/**
2363 * rescuer_thread - the rescuer thread function
2364 * @__wq: the associated workqueue
2365 *
2366 * Workqueue rescuer thread function. There's one rescuer for each
2367 * workqueue which has WQ_RESCUER set.
2368 *
2369 * Regular work processing on a gcwq may block trying to create a new
2370 * worker which uses GFP_KERNEL allocation which has slight chance of
2371 * developing into deadlock if some works currently on the same queue
2372 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2373 * the problem rescuer solves.
2374 *
2375 * When such condition is possible, the gcwq summons rescuers of all
2376 * workqueues which have works queued on the gcwq and let them process
2377 * those works so that forward progress can be guaranteed.
2378 *
2379 * This should happen rarely.
2380 */
2381static int rescuer_thread(void *__wq)
2382{
2383 struct workqueue_struct *wq = __wq;
2384 struct worker *rescuer = wq->rescuer;
2385 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2386 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2387 unsigned int cpu;
2388
2389 set_user_nice(current, RESCUER_NICE_LEVEL);
2390repeat:
2391 set_current_state(TASK_INTERRUPTIBLE);
2392
2393 if (kthread_should_stop())
2394 return 0;
2395
f3421797
TH
2396 /*
2397 * See whether any cpu is asking for help. Unbounded
2398 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2399 */
f2e005aa 2400 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2401 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2402 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2403 struct worker_pool *pool = cwq->pool;
2404 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2405 struct work_struct *work, *n;
2406
2407 __set_current_state(TASK_RUNNING);
f2e005aa 2408 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2409
2410 /* migrate to the target cpu if possible */
bd7bdd43 2411 rescuer->pool = pool;
e22bee78
TH
2412 worker_maybe_bind_and_lock(rescuer);
2413
2414 /*
2415 * Slurp in all works issued via this workqueue and
2416 * process'em.
2417 */
2418 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2419 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2420 if (get_work_cwq(work) == cwq)
2421 move_linked_works(work, scheduled, &n);
2422
2423 process_scheduled_works(rescuer);
7576958a
TH
2424
2425 /*
2426 * Leave this gcwq. If keep_working() is %true, notify a
2427 * regular worker; otherwise, we end up with 0 concurrency
2428 * and stalling the execution.
2429 */
63d95a91
TH
2430 if (keep_working(pool))
2431 wake_up_worker(pool);
7576958a 2432
e22bee78
TH
2433 spin_unlock_irq(&gcwq->lock);
2434 }
2435
2436 schedule();
2437 goto repeat;
1da177e4
LT
2438}
2439
fc2e4d70
ON
2440struct wq_barrier {
2441 struct work_struct work;
2442 struct completion done;
2443};
2444
2445static void wq_barrier_func(struct work_struct *work)
2446{
2447 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2448 complete(&barr->done);
2449}
2450
4690c4ab
TH
2451/**
2452 * insert_wq_barrier - insert a barrier work
2453 * @cwq: cwq to insert barrier into
2454 * @barr: wq_barrier to insert
affee4b2
TH
2455 * @target: target work to attach @barr to
2456 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2457 *
affee4b2
TH
2458 * @barr is linked to @target such that @barr is completed only after
2459 * @target finishes execution. Please note that the ordering
2460 * guarantee is observed only with respect to @target and on the local
2461 * cpu.
2462 *
2463 * Currently, a queued barrier can't be canceled. This is because
2464 * try_to_grab_pending() can't determine whether the work to be
2465 * grabbed is at the head of the queue and thus can't clear LINKED
2466 * flag of the previous work while there must be a valid next work
2467 * after a work with LINKED flag set.
2468 *
2469 * Note that when @worker is non-NULL, @target may be modified
2470 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2471 *
2472 * CONTEXT:
8b03ae3c 2473 * spin_lock_irq(gcwq->lock).
4690c4ab 2474 */
83c22520 2475static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2476 struct wq_barrier *barr,
2477 struct work_struct *target, struct worker *worker)
fc2e4d70 2478{
affee4b2
TH
2479 struct list_head *head;
2480 unsigned int linked = 0;
2481
dc186ad7 2482 /*
8b03ae3c 2483 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2484 * as we know for sure that this will not trigger any of the
2485 * checks and call back into the fixup functions where we
2486 * might deadlock.
2487 */
ca1cab37 2488 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2489 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2490 init_completion(&barr->done);
83c22520 2491
affee4b2
TH
2492 /*
2493 * If @target is currently being executed, schedule the
2494 * barrier to the worker; otherwise, put it after @target.
2495 */
2496 if (worker)
2497 head = worker->scheduled.next;
2498 else {
2499 unsigned long *bits = work_data_bits(target);
2500
2501 head = target->entry.next;
2502 /* there can already be other linked works, inherit and set */
2503 linked = *bits & WORK_STRUCT_LINKED;
2504 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2505 }
2506
dc186ad7 2507 debug_work_activate(&barr->work);
affee4b2
TH
2508 insert_work(cwq, &barr->work, head,
2509 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2510}
2511
73f53c4a
TH
2512/**
2513 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2514 * @wq: workqueue being flushed
2515 * @flush_color: new flush color, < 0 for no-op
2516 * @work_color: new work color, < 0 for no-op
2517 *
2518 * Prepare cwqs for workqueue flushing.
2519 *
2520 * If @flush_color is non-negative, flush_color on all cwqs should be
2521 * -1. If no cwq has in-flight commands at the specified color, all
2522 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2523 * has in flight commands, its cwq->flush_color is set to
2524 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2525 * wakeup logic is armed and %true is returned.
2526 *
2527 * The caller should have initialized @wq->first_flusher prior to
2528 * calling this function with non-negative @flush_color. If
2529 * @flush_color is negative, no flush color update is done and %false
2530 * is returned.
2531 *
2532 * If @work_color is non-negative, all cwqs should have the same
2533 * work_color which is previous to @work_color and all will be
2534 * advanced to @work_color.
2535 *
2536 * CONTEXT:
2537 * mutex_lock(wq->flush_mutex).
2538 *
2539 * RETURNS:
2540 * %true if @flush_color >= 0 and there's something to flush. %false
2541 * otherwise.
2542 */
2543static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2544 int flush_color, int work_color)
1da177e4 2545{
73f53c4a
TH
2546 bool wait = false;
2547 unsigned int cpu;
1da177e4 2548
73f53c4a
TH
2549 if (flush_color >= 0) {
2550 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2551 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2552 }
2355b70f 2553
f3421797 2554 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2555 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2556 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2557
8b03ae3c 2558 spin_lock_irq(&gcwq->lock);
83c22520 2559
73f53c4a
TH
2560 if (flush_color >= 0) {
2561 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2562
73f53c4a
TH
2563 if (cwq->nr_in_flight[flush_color]) {
2564 cwq->flush_color = flush_color;
2565 atomic_inc(&wq->nr_cwqs_to_flush);
2566 wait = true;
2567 }
2568 }
1da177e4 2569
73f53c4a
TH
2570 if (work_color >= 0) {
2571 BUG_ON(work_color != work_next_color(cwq->work_color));
2572 cwq->work_color = work_color;
2573 }
1da177e4 2574
8b03ae3c 2575 spin_unlock_irq(&gcwq->lock);
1da177e4 2576 }
2355b70f 2577
73f53c4a
TH
2578 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2579 complete(&wq->first_flusher->done);
14441960 2580
73f53c4a 2581 return wait;
1da177e4
LT
2582}
2583
0fcb78c2 2584/**
1da177e4 2585 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2586 * @wq: workqueue to flush
1da177e4
LT
2587 *
2588 * Forces execution of the workqueue and blocks until its completion.
2589 * This is typically used in driver shutdown handlers.
2590 *
fc2e4d70
ON
2591 * We sleep until all works which were queued on entry have been handled,
2592 * but we are not livelocked by new incoming ones.
1da177e4 2593 */
7ad5b3a5 2594void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2595{
73f53c4a
TH
2596 struct wq_flusher this_flusher = {
2597 .list = LIST_HEAD_INIT(this_flusher.list),
2598 .flush_color = -1,
2599 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2600 };
2601 int next_color;
1da177e4 2602
3295f0ef
IM
2603 lock_map_acquire(&wq->lockdep_map);
2604 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2605
2606 mutex_lock(&wq->flush_mutex);
2607
2608 /*
2609 * Start-to-wait phase
2610 */
2611 next_color = work_next_color(wq->work_color);
2612
2613 if (next_color != wq->flush_color) {
2614 /*
2615 * Color space is not full. The current work_color
2616 * becomes our flush_color and work_color is advanced
2617 * by one.
2618 */
2619 BUG_ON(!list_empty(&wq->flusher_overflow));
2620 this_flusher.flush_color = wq->work_color;
2621 wq->work_color = next_color;
2622
2623 if (!wq->first_flusher) {
2624 /* no flush in progress, become the first flusher */
2625 BUG_ON(wq->flush_color != this_flusher.flush_color);
2626
2627 wq->first_flusher = &this_flusher;
2628
2629 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2630 wq->work_color)) {
2631 /* nothing to flush, done */
2632 wq->flush_color = next_color;
2633 wq->first_flusher = NULL;
2634 goto out_unlock;
2635 }
2636 } else {
2637 /* wait in queue */
2638 BUG_ON(wq->flush_color == this_flusher.flush_color);
2639 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2640 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2641 }
2642 } else {
2643 /*
2644 * Oops, color space is full, wait on overflow queue.
2645 * The next flush completion will assign us
2646 * flush_color and transfer to flusher_queue.
2647 */
2648 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2649 }
2650
2651 mutex_unlock(&wq->flush_mutex);
2652
2653 wait_for_completion(&this_flusher.done);
2654
2655 /*
2656 * Wake-up-and-cascade phase
2657 *
2658 * First flushers are responsible for cascading flushes and
2659 * handling overflow. Non-first flushers can simply return.
2660 */
2661 if (wq->first_flusher != &this_flusher)
2662 return;
2663
2664 mutex_lock(&wq->flush_mutex);
2665
4ce48b37
TH
2666 /* we might have raced, check again with mutex held */
2667 if (wq->first_flusher != &this_flusher)
2668 goto out_unlock;
2669
73f53c4a
TH
2670 wq->first_flusher = NULL;
2671
2672 BUG_ON(!list_empty(&this_flusher.list));
2673 BUG_ON(wq->flush_color != this_flusher.flush_color);
2674
2675 while (true) {
2676 struct wq_flusher *next, *tmp;
2677
2678 /* complete all the flushers sharing the current flush color */
2679 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2680 if (next->flush_color != wq->flush_color)
2681 break;
2682 list_del_init(&next->list);
2683 complete(&next->done);
2684 }
2685
2686 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2687 wq->flush_color != work_next_color(wq->work_color));
2688
2689 /* this flush_color is finished, advance by one */
2690 wq->flush_color = work_next_color(wq->flush_color);
2691
2692 /* one color has been freed, handle overflow queue */
2693 if (!list_empty(&wq->flusher_overflow)) {
2694 /*
2695 * Assign the same color to all overflowed
2696 * flushers, advance work_color and append to
2697 * flusher_queue. This is the start-to-wait
2698 * phase for these overflowed flushers.
2699 */
2700 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2701 tmp->flush_color = wq->work_color;
2702
2703 wq->work_color = work_next_color(wq->work_color);
2704
2705 list_splice_tail_init(&wq->flusher_overflow,
2706 &wq->flusher_queue);
2707 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2708 }
2709
2710 if (list_empty(&wq->flusher_queue)) {
2711 BUG_ON(wq->flush_color != wq->work_color);
2712 break;
2713 }
2714
2715 /*
2716 * Need to flush more colors. Make the next flusher
2717 * the new first flusher and arm cwqs.
2718 */
2719 BUG_ON(wq->flush_color == wq->work_color);
2720 BUG_ON(wq->flush_color != next->flush_color);
2721
2722 list_del_init(&next->list);
2723 wq->first_flusher = next;
2724
2725 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2726 break;
2727
2728 /*
2729 * Meh... this color is already done, clear first
2730 * flusher and repeat cascading.
2731 */
2732 wq->first_flusher = NULL;
2733 }
2734
2735out_unlock:
2736 mutex_unlock(&wq->flush_mutex);
1da177e4 2737}
ae90dd5d 2738EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2739
9c5a2ba7
TH
2740/**
2741 * drain_workqueue - drain a workqueue
2742 * @wq: workqueue to drain
2743 *
2744 * Wait until the workqueue becomes empty. While draining is in progress,
2745 * only chain queueing is allowed. IOW, only currently pending or running
2746 * work items on @wq can queue further work items on it. @wq is flushed
2747 * repeatedly until it becomes empty. The number of flushing is detemined
2748 * by the depth of chaining and should be relatively short. Whine if it
2749 * takes too long.
2750 */
2751void drain_workqueue(struct workqueue_struct *wq)
2752{
2753 unsigned int flush_cnt = 0;
2754 unsigned int cpu;
2755
2756 /*
2757 * __queue_work() needs to test whether there are drainers, is much
2758 * hotter than drain_workqueue() and already looks at @wq->flags.
2759 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2760 */
2761 spin_lock(&workqueue_lock);
2762 if (!wq->nr_drainers++)
2763 wq->flags |= WQ_DRAINING;
2764 spin_unlock(&workqueue_lock);
2765reflush:
2766 flush_workqueue(wq);
2767
2768 for_each_cwq_cpu(cpu, wq) {
2769 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2770 bool drained;
9c5a2ba7 2771
bd7bdd43 2772 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2773 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2774 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2775
2776 if (drained)
9c5a2ba7
TH
2777 continue;
2778
2779 if (++flush_cnt == 10 ||
2780 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2781 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2782 wq->name, flush_cnt);
2783 goto reflush;
2784 }
2785
2786 spin_lock(&workqueue_lock);
2787 if (!--wq->nr_drainers)
2788 wq->flags &= ~WQ_DRAINING;
2789 spin_unlock(&workqueue_lock);
2790}
2791EXPORT_SYMBOL_GPL(drain_workqueue);
2792
baf59022
TH
2793static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2794 bool wait_executing)
db700897 2795{
affee4b2 2796 struct worker *worker = NULL;
8b03ae3c 2797 struct global_cwq *gcwq;
db700897 2798 struct cpu_workqueue_struct *cwq;
db700897
ON
2799
2800 might_sleep();
7a22ad75
TH
2801 gcwq = get_work_gcwq(work);
2802 if (!gcwq)
baf59022 2803 return false;
db700897 2804
8b03ae3c 2805 spin_lock_irq(&gcwq->lock);
db700897
ON
2806 if (!list_empty(&work->entry)) {
2807 /*
2808 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2809 * If it was re-queued to a different gcwq under us, we
2810 * are not going to wait.
db700897
ON
2811 */
2812 smp_rmb();
7a22ad75 2813 cwq = get_work_cwq(work);
bd7bdd43 2814 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2815 goto already_gone;
baf59022 2816 } else if (wait_executing) {
7a22ad75 2817 worker = find_worker_executing_work(gcwq, work);
affee4b2 2818 if (!worker)
4690c4ab 2819 goto already_gone;
7a22ad75 2820 cwq = worker->current_cwq;
baf59022
TH
2821 } else
2822 goto already_gone;
db700897 2823
baf59022 2824 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2825 spin_unlock_irq(&gcwq->lock);
7a22ad75 2826
e159489b
TH
2827 /*
2828 * If @max_active is 1 or rescuer is in use, flushing another work
2829 * item on the same workqueue may lead to deadlock. Make sure the
2830 * flusher is not running on the same workqueue by verifying write
2831 * access.
2832 */
2833 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2834 lock_map_acquire(&cwq->wq->lockdep_map);
2835 else
2836 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2837 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2838
401a8d04 2839 return true;
4690c4ab 2840already_gone:
8b03ae3c 2841 spin_unlock_irq(&gcwq->lock);
401a8d04 2842 return false;
db700897 2843}
baf59022
TH
2844
2845/**
2846 * flush_work - wait for a work to finish executing the last queueing instance
2847 * @work: the work to flush
2848 *
2849 * Wait until @work has finished execution. This function considers
2850 * only the last queueing instance of @work. If @work has been
2851 * enqueued across different CPUs on a non-reentrant workqueue or on
2852 * multiple workqueues, @work might still be executing on return on
2853 * some of the CPUs from earlier queueing.
2854 *
2855 * If @work was queued only on a non-reentrant, ordered or unbound
2856 * workqueue, @work is guaranteed to be idle on return if it hasn't
2857 * been requeued since flush started.
2858 *
2859 * RETURNS:
2860 * %true if flush_work() waited for the work to finish execution,
2861 * %false if it was already idle.
2862 */
2863bool flush_work(struct work_struct *work)
2864{
2865 struct wq_barrier barr;
2866
0976dfc1
SB
2867 lock_map_acquire(&work->lockdep_map);
2868 lock_map_release(&work->lockdep_map);
2869
baf59022
TH
2870 if (start_flush_work(work, &barr, true)) {
2871 wait_for_completion(&barr.done);
2872 destroy_work_on_stack(&barr.work);
2873 return true;
2874 } else
2875 return false;
2876}
db700897
ON
2877EXPORT_SYMBOL_GPL(flush_work);
2878
401a8d04
TH
2879static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2880{
2881 struct wq_barrier barr;
2882 struct worker *worker;
2883
2884 spin_lock_irq(&gcwq->lock);
2885
2886 worker = find_worker_executing_work(gcwq, work);
2887 if (unlikely(worker))
2888 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2889
2890 spin_unlock_irq(&gcwq->lock);
2891
2892 if (unlikely(worker)) {
2893 wait_for_completion(&barr.done);
2894 destroy_work_on_stack(&barr.work);
2895 return true;
2896 } else
2897 return false;
2898}
2899
2900static bool wait_on_work(struct work_struct *work)
2901{
2902 bool ret = false;
2903 int cpu;
2904
2905 might_sleep();
2906
2907 lock_map_acquire(&work->lockdep_map);
2908 lock_map_release(&work->lockdep_map);
2909
2910 for_each_gcwq_cpu(cpu)
2911 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2912 return ret;
2913}
2914
09383498
TH
2915/**
2916 * flush_work_sync - wait until a work has finished execution
2917 * @work: the work to flush
2918 *
2919 * Wait until @work has finished execution. On return, it's
2920 * guaranteed that all queueing instances of @work which happened
2921 * before this function is called are finished. In other words, if
2922 * @work hasn't been requeued since this function was called, @work is
2923 * guaranteed to be idle on return.
2924 *
2925 * RETURNS:
2926 * %true if flush_work_sync() waited for the work to finish execution,
2927 * %false if it was already idle.
2928 */
2929bool flush_work_sync(struct work_struct *work)
2930{
2931 struct wq_barrier barr;
2932 bool pending, waited;
2933
2934 /* we'll wait for executions separately, queue barr only if pending */
2935 pending = start_flush_work(work, &barr, false);
2936
2937 /* wait for executions to finish */
2938 waited = wait_on_work(work);
2939
2940 /* wait for the pending one */
2941 if (pending) {
2942 wait_for_completion(&barr.done);
2943 destroy_work_on_stack(&barr.work);
2944 }
2945
2946 return pending || waited;
2947}
2948EXPORT_SYMBOL_GPL(flush_work_sync);
2949
36e227d2 2950static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2951{
bbb68dfa 2952 unsigned long flags;
1f1f642e
ON
2953 int ret;
2954
2955 do {
bbb68dfa
TH
2956 ret = try_to_grab_pending(work, is_dwork, &flags);
2957 /*
2958 * If someone else is canceling, wait for the same event it
2959 * would be waiting for before retrying.
2960 */
2961 if (unlikely(ret == -ENOENT))
2962 wait_on_work(work);
1f1f642e
ON
2963 } while (unlikely(ret < 0));
2964
bbb68dfa
TH
2965 /* tell other tasks trying to grab @work to back off */
2966 mark_work_canceling(work);
2967 local_irq_restore(flags);
2968
2969 wait_on_work(work);
7a22ad75 2970 clear_work_data(work);
1f1f642e
ON
2971 return ret;
2972}
2973
6e84d644 2974/**
401a8d04
TH
2975 * cancel_work_sync - cancel a work and wait for it to finish
2976 * @work: the work to cancel
6e84d644 2977 *
401a8d04
TH
2978 * Cancel @work and wait for its execution to finish. This function
2979 * can be used even if the work re-queues itself or migrates to
2980 * another workqueue. On return from this function, @work is
2981 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2982 *
401a8d04
TH
2983 * cancel_work_sync(&delayed_work->work) must not be used for
2984 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2985 *
401a8d04 2986 * The caller must ensure that the workqueue on which @work was last
6e84d644 2987 * queued can't be destroyed before this function returns.
401a8d04
TH
2988 *
2989 * RETURNS:
2990 * %true if @work was pending, %false otherwise.
6e84d644 2991 */
401a8d04 2992bool cancel_work_sync(struct work_struct *work)
6e84d644 2993{
36e227d2 2994 return __cancel_work_timer(work, false);
b89deed3 2995}
28e53bdd 2996EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2997
6e84d644 2998/**
401a8d04
TH
2999 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3000 * @dwork: the delayed work to flush
6e84d644 3001 *
401a8d04
TH
3002 * Delayed timer is cancelled and the pending work is queued for
3003 * immediate execution. Like flush_work(), this function only
3004 * considers the last queueing instance of @dwork.
1f1f642e 3005 *
401a8d04
TH
3006 * RETURNS:
3007 * %true if flush_work() waited for the work to finish execution,
3008 * %false if it was already idle.
6e84d644 3009 */
401a8d04
TH
3010bool flush_delayed_work(struct delayed_work *dwork)
3011{
8930caba 3012 local_irq_disable();
401a8d04 3013 if (del_timer_sync(&dwork->timer))
1265057f 3014 __queue_work(dwork->cpu,
401a8d04 3015 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3016 local_irq_enable();
401a8d04
TH
3017 return flush_work(&dwork->work);
3018}
3019EXPORT_SYMBOL(flush_delayed_work);
3020
09383498
TH
3021/**
3022 * flush_delayed_work_sync - wait for a dwork to finish
3023 * @dwork: the delayed work to flush
3024 *
3025 * Delayed timer is cancelled and the pending work is queued for
3026 * execution immediately. Other than timer handling, its behavior
3027 * is identical to flush_work_sync().
3028 *
3029 * RETURNS:
3030 * %true if flush_work_sync() waited for the work to finish execution,
3031 * %false if it was already idle.
3032 */
3033bool flush_delayed_work_sync(struct delayed_work *dwork)
3034{
8930caba 3035 local_irq_disable();
09383498 3036 if (del_timer_sync(&dwork->timer))
1265057f 3037 __queue_work(dwork->cpu,
09383498 3038 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3039 local_irq_enable();
09383498
TH
3040 return flush_work_sync(&dwork->work);
3041}
3042EXPORT_SYMBOL(flush_delayed_work_sync);
3043
401a8d04
TH
3044/**
3045 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3046 * @dwork: the delayed work cancel
3047 *
3048 * This is cancel_work_sync() for delayed works.
3049 *
3050 * RETURNS:
3051 * %true if @dwork was pending, %false otherwise.
3052 */
3053bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3054{
36e227d2 3055 return __cancel_work_timer(&dwork->work, true);
6e84d644 3056}
f5a421a4 3057EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3058
d4283e93 3059/**
0a13c00e
TH
3060 * schedule_work_on - put work task on a specific cpu
3061 * @cpu: cpu to put the work task on
3062 * @work: job to be done
3063 *
3064 * This puts a job on a specific cpu
3065 */
d4283e93 3066bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3067{
3068 return queue_work_on(cpu, system_wq, work);
3069}
3070EXPORT_SYMBOL(schedule_work_on);
3071
0fcb78c2
REB
3072/**
3073 * schedule_work - put work task in global workqueue
3074 * @work: job to be done
3075 *
d4283e93
TH
3076 * Returns %false if @work was already on the kernel-global workqueue and
3077 * %true otherwise.
5b0f437d
BVA
3078 *
3079 * This puts a job in the kernel-global workqueue if it was not already
3080 * queued and leaves it in the same position on the kernel-global
3081 * workqueue otherwise.
0fcb78c2 3082 */
d4283e93 3083bool schedule_work(struct work_struct *work)
1da177e4 3084{
d320c038 3085 return queue_work(system_wq, work);
1da177e4 3086}
ae90dd5d 3087EXPORT_SYMBOL(schedule_work);
1da177e4 3088
0a13c00e
TH
3089/**
3090 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3091 * @cpu: cpu to use
3092 * @dwork: job to be done
3093 * @delay: number of jiffies to wait
c1a220e7 3094 *
0a13c00e
TH
3095 * After waiting for a given time this puts a job in the kernel-global
3096 * workqueue on the specified CPU.
c1a220e7 3097 */
d4283e93
TH
3098bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3099 unsigned long delay)
c1a220e7 3100{
0a13c00e 3101 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3102}
0a13c00e 3103EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3104
0fcb78c2
REB
3105/**
3106 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3107 * @dwork: job to be done
3108 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3109 *
3110 * After waiting for a given time this puts a job in the kernel-global
3111 * workqueue.
3112 */
d4283e93 3113bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3114{
d320c038 3115 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3116}
ae90dd5d 3117EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3118
b6136773 3119/**
31ddd871 3120 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3121 * @func: the function to call
b6136773 3122 *
31ddd871
TH
3123 * schedule_on_each_cpu() executes @func on each online CPU using the
3124 * system workqueue and blocks until all CPUs have completed.
b6136773 3125 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3126 *
3127 * RETURNS:
3128 * 0 on success, -errno on failure.
b6136773 3129 */
65f27f38 3130int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3131{
3132 int cpu;
38f51568 3133 struct work_struct __percpu *works;
15316ba8 3134
b6136773
AM
3135 works = alloc_percpu(struct work_struct);
3136 if (!works)
15316ba8 3137 return -ENOMEM;
b6136773 3138
93981800
TH
3139 get_online_cpus();
3140
15316ba8 3141 for_each_online_cpu(cpu) {
9bfb1839
IM
3142 struct work_struct *work = per_cpu_ptr(works, cpu);
3143
3144 INIT_WORK(work, func);
b71ab8c2 3145 schedule_work_on(cpu, work);
65a64464 3146 }
93981800
TH
3147
3148 for_each_online_cpu(cpu)
3149 flush_work(per_cpu_ptr(works, cpu));
3150
95402b38 3151 put_online_cpus();
b6136773 3152 free_percpu(works);
15316ba8
CL
3153 return 0;
3154}
3155
eef6a7d5
AS
3156/**
3157 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3158 *
3159 * Forces execution of the kernel-global workqueue and blocks until its
3160 * completion.
3161 *
3162 * Think twice before calling this function! It's very easy to get into
3163 * trouble if you don't take great care. Either of the following situations
3164 * will lead to deadlock:
3165 *
3166 * One of the work items currently on the workqueue needs to acquire
3167 * a lock held by your code or its caller.
3168 *
3169 * Your code is running in the context of a work routine.
3170 *
3171 * They will be detected by lockdep when they occur, but the first might not
3172 * occur very often. It depends on what work items are on the workqueue and
3173 * what locks they need, which you have no control over.
3174 *
3175 * In most situations flushing the entire workqueue is overkill; you merely
3176 * need to know that a particular work item isn't queued and isn't running.
3177 * In such cases you should use cancel_delayed_work_sync() or
3178 * cancel_work_sync() instead.
3179 */
1da177e4
LT
3180void flush_scheduled_work(void)
3181{
d320c038 3182 flush_workqueue(system_wq);
1da177e4 3183}
ae90dd5d 3184EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3185
1fa44eca
JB
3186/**
3187 * execute_in_process_context - reliably execute the routine with user context
3188 * @fn: the function to execute
1fa44eca
JB
3189 * @ew: guaranteed storage for the execute work structure (must
3190 * be available when the work executes)
3191 *
3192 * Executes the function immediately if process context is available,
3193 * otherwise schedules the function for delayed execution.
3194 *
3195 * Returns: 0 - function was executed
3196 * 1 - function was scheduled for execution
3197 */
65f27f38 3198int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3199{
3200 if (!in_interrupt()) {
65f27f38 3201 fn(&ew->work);
1fa44eca
JB
3202 return 0;
3203 }
3204
65f27f38 3205 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3206 schedule_work(&ew->work);
3207
3208 return 1;
3209}
3210EXPORT_SYMBOL_GPL(execute_in_process_context);
3211
1da177e4
LT
3212int keventd_up(void)
3213{
d320c038 3214 return system_wq != NULL;
1da177e4
LT
3215}
3216
bdbc5dd7 3217static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3218{
65a64464 3219 /*
0f900049
TH
3220 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3221 * Make sure that the alignment isn't lower than that of
3222 * unsigned long long.
65a64464 3223 */
0f900049
TH
3224 const size_t size = sizeof(struct cpu_workqueue_struct);
3225 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3226 __alignof__(unsigned long long));
65a64464 3227
e06ffa1e 3228 if (!(wq->flags & WQ_UNBOUND))
f3421797 3229 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3230 else {
f3421797
TH
3231 void *ptr;
3232
3233 /*
3234 * Allocate enough room to align cwq and put an extra
3235 * pointer at the end pointing back to the originally
3236 * allocated pointer which will be used for free.
3237 */
3238 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3239 if (ptr) {
3240 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3241 *(void **)(wq->cpu_wq.single + 1) = ptr;
3242 }
bdbc5dd7 3243 }
f3421797 3244
0415b00d 3245 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3246 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3247 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3248}
3249
bdbc5dd7 3250static void free_cwqs(struct workqueue_struct *wq)
0f900049 3251{
e06ffa1e 3252 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3253 free_percpu(wq->cpu_wq.pcpu);
3254 else if (wq->cpu_wq.single) {
3255 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3256 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3257 }
0f900049
TH
3258}
3259
f3421797
TH
3260static int wq_clamp_max_active(int max_active, unsigned int flags,
3261 const char *name)
b71ab8c2 3262{
f3421797
TH
3263 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3264
3265 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3266 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3267 "is out of range, clamping between %d and %d\n",
f3421797 3268 max_active, name, 1, lim);
b71ab8c2 3269
f3421797 3270 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3271}
3272
b196be89 3273struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3274 unsigned int flags,
3275 int max_active,
3276 struct lock_class_key *key,
b196be89 3277 const char *lock_name, ...)
1da177e4 3278{
b196be89 3279 va_list args, args1;
1da177e4 3280 struct workqueue_struct *wq;
c34056a3 3281 unsigned int cpu;
b196be89
TH
3282 size_t namelen;
3283
3284 /* determine namelen, allocate wq and format name */
3285 va_start(args, lock_name);
3286 va_copy(args1, args);
3287 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3288
3289 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3290 if (!wq)
3291 goto err;
3292
3293 vsnprintf(wq->name, namelen, fmt, args1);
3294 va_end(args);
3295 va_end(args1);
1da177e4 3296
6370a6ad
TH
3297 /*
3298 * Workqueues which may be used during memory reclaim should
3299 * have a rescuer to guarantee forward progress.
3300 */
3301 if (flags & WQ_MEM_RECLAIM)
3302 flags |= WQ_RESCUER;
3303
d320c038 3304 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3305 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3306
b196be89 3307 /* init wq */
97e37d7b 3308 wq->flags = flags;
a0a1a5fd 3309 wq->saved_max_active = max_active;
73f53c4a
TH
3310 mutex_init(&wq->flush_mutex);
3311 atomic_set(&wq->nr_cwqs_to_flush, 0);
3312 INIT_LIST_HEAD(&wq->flusher_queue);
3313 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3314
eb13ba87 3315 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3316 INIT_LIST_HEAD(&wq->list);
3af24433 3317
bdbc5dd7
TH
3318 if (alloc_cwqs(wq) < 0)
3319 goto err;
3320
f3421797 3321 for_each_cwq_cpu(cpu, wq) {
1537663f 3322 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3323 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3324 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3325
0f900049 3326 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3327 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3328 cwq->wq = wq;
73f53c4a 3329 cwq->flush_color = -1;
1e19ffc6 3330 cwq->max_active = max_active;
1e19ffc6 3331 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3332 }
1537663f 3333
e22bee78
TH
3334 if (flags & WQ_RESCUER) {
3335 struct worker *rescuer;
3336
f2e005aa 3337 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3338 goto err;
3339
3340 wq->rescuer = rescuer = alloc_worker();
3341 if (!rescuer)
3342 goto err;
3343
b196be89
TH
3344 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3345 wq->name);
e22bee78
TH
3346 if (IS_ERR(rescuer->task))
3347 goto err;
3348
e22bee78
TH
3349 rescuer->task->flags |= PF_THREAD_BOUND;
3350 wake_up_process(rescuer->task);
3af24433
ON
3351 }
3352
a0a1a5fd
TH
3353 /*
3354 * workqueue_lock protects global freeze state and workqueues
3355 * list. Grab it, set max_active accordingly and add the new
3356 * workqueue to workqueues list.
3357 */
1537663f 3358 spin_lock(&workqueue_lock);
a0a1a5fd 3359
58a69cb4 3360 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3361 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3362 get_cwq(cpu, wq)->max_active = 0;
3363
1537663f 3364 list_add(&wq->list, &workqueues);
a0a1a5fd 3365
1537663f
TH
3366 spin_unlock(&workqueue_lock);
3367
3af24433 3368 return wq;
4690c4ab
TH
3369err:
3370 if (wq) {
bdbc5dd7 3371 free_cwqs(wq);
f2e005aa 3372 free_mayday_mask(wq->mayday_mask);
e22bee78 3373 kfree(wq->rescuer);
4690c4ab
TH
3374 kfree(wq);
3375 }
3376 return NULL;
3af24433 3377}
d320c038 3378EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3379
3af24433
ON
3380/**
3381 * destroy_workqueue - safely terminate a workqueue
3382 * @wq: target workqueue
3383 *
3384 * Safely destroy a workqueue. All work currently pending will be done first.
3385 */
3386void destroy_workqueue(struct workqueue_struct *wq)
3387{
c8e55f36 3388 unsigned int cpu;
3af24433 3389
9c5a2ba7
TH
3390 /* drain it before proceeding with destruction */
3391 drain_workqueue(wq);
c8efcc25 3392
a0a1a5fd
TH
3393 /*
3394 * wq list is used to freeze wq, remove from list after
3395 * flushing is complete in case freeze races us.
3396 */
95402b38 3397 spin_lock(&workqueue_lock);
b1f4ec17 3398 list_del(&wq->list);
95402b38 3399 spin_unlock(&workqueue_lock);
3af24433 3400
e22bee78 3401 /* sanity check */
f3421797 3402 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3403 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3404 int i;
3405
73f53c4a
TH
3406 for (i = 0; i < WORK_NR_COLORS; i++)
3407 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3408 BUG_ON(cwq->nr_active);
3409 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3410 }
9b41ea72 3411
e22bee78
TH
3412 if (wq->flags & WQ_RESCUER) {
3413 kthread_stop(wq->rescuer->task);
f2e005aa 3414 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3415 kfree(wq->rescuer);
e22bee78
TH
3416 }
3417
bdbc5dd7 3418 free_cwqs(wq);
3af24433
ON
3419 kfree(wq);
3420}
3421EXPORT_SYMBOL_GPL(destroy_workqueue);
3422
dcd989cb
TH
3423/**
3424 * workqueue_set_max_active - adjust max_active of a workqueue
3425 * @wq: target workqueue
3426 * @max_active: new max_active value.
3427 *
3428 * Set max_active of @wq to @max_active.
3429 *
3430 * CONTEXT:
3431 * Don't call from IRQ context.
3432 */
3433void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3434{
3435 unsigned int cpu;
3436
f3421797 3437 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3438
3439 spin_lock(&workqueue_lock);
3440
3441 wq->saved_max_active = max_active;
3442
f3421797 3443 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3444 struct global_cwq *gcwq = get_gcwq(cpu);
3445
3446 spin_lock_irq(&gcwq->lock);
3447
58a69cb4 3448 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3449 !(gcwq->flags & GCWQ_FREEZING))
3450 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3451
dcd989cb 3452 spin_unlock_irq(&gcwq->lock);
65a64464 3453 }
93981800 3454
dcd989cb 3455 spin_unlock(&workqueue_lock);
15316ba8 3456}
dcd989cb 3457EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3458
eef6a7d5 3459/**
dcd989cb
TH
3460 * workqueue_congested - test whether a workqueue is congested
3461 * @cpu: CPU in question
3462 * @wq: target workqueue
eef6a7d5 3463 *
dcd989cb
TH
3464 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3465 * no synchronization around this function and the test result is
3466 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3467 *
dcd989cb
TH
3468 * RETURNS:
3469 * %true if congested, %false otherwise.
eef6a7d5 3470 */
dcd989cb 3471bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3472{
dcd989cb
TH
3473 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3474
3475 return !list_empty(&cwq->delayed_works);
1da177e4 3476}
dcd989cb 3477EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3478
1fa44eca 3479/**
dcd989cb
TH
3480 * work_cpu - return the last known associated cpu for @work
3481 * @work: the work of interest
1fa44eca 3482 *
dcd989cb 3483 * RETURNS:
bdbc5dd7 3484 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3485 */
dcd989cb 3486unsigned int work_cpu(struct work_struct *work)
1fa44eca 3487{
dcd989cb 3488 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3489
bdbc5dd7 3490 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3491}
dcd989cb 3492EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3493
dcd989cb
TH
3494/**
3495 * work_busy - test whether a work is currently pending or running
3496 * @work: the work to be tested
3497 *
3498 * Test whether @work is currently pending or running. There is no
3499 * synchronization around this function and the test result is
3500 * unreliable and only useful as advisory hints or for debugging.
3501 * Especially for reentrant wqs, the pending state might hide the
3502 * running state.
3503 *
3504 * RETURNS:
3505 * OR'd bitmask of WORK_BUSY_* bits.
3506 */
3507unsigned int work_busy(struct work_struct *work)
1da177e4 3508{
dcd989cb
TH
3509 struct global_cwq *gcwq = get_work_gcwq(work);
3510 unsigned long flags;
3511 unsigned int ret = 0;
1da177e4 3512
dcd989cb
TH
3513 if (!gcwq)
3514 return false;
1da177e4 3515
dcd989cb 3516 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3517
dcd989cb
TH
3518 if (work_pending(work))
3519 ret |= WORK_BUSY_PENDING;
3520 if (find_worker_executing_work(gcwq, work))
3521 ret |= WORK_BUSY_RUNNING;
1da177e4 3522
dcd989cb 3523 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3524
dcd989cb 3525 return ret;
1da177e4 3526}
dcd989cb 3527EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3528
db7bccf4
TH
3529/*
3530 * CPU hotplug.
3531 *
e22bee78
TH
3532 * There are two challenges in supporting CPU hotplug. Firstly, there
3533 * are a lot of assumptions on strong associations among work, cwq and
3534 * gcwq which make migrating pending and scheduled works very
3535 * difficult to implement without impacting hot paths. Secondly,
3536 * gcwqs serve mix of short, long and very long running works making
3537 * blocked draining impractical.
3538 *
628c78e7
TH
3539 * This is solved by allowing a gcwq to be disassociated from the CPU
3540 * running as an unbound one and allowing it to be reattached later if the
3541 * cpu comes back online.
db7bccf4 3542 */
1da177e4 3543
60373152 3544/* claim manager positions of all pools */
8db25e78 3545static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3546{
3547 struct worker_pool *pool;
3548
3549 for_each_worker_pool(pool, gcwq)
3550 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3551 spin_lock_irq(&gcwq->lock);
60373152
TH
3552}
3553
3554/* release manager positions */
8db25e78 3555static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3556{
3557 struct worker_pool *pool;
3558
8db25e78 3559 spin_unlock_irq(&gcwq->lock);
60373152
TH
3560 for_each_worker_pool(pool, gcwq)
3561 mutex_unlock(&pool->manager_mutex);
3562}
3563
628c78e7 3564static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3565{
628c78e7 3566 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3567 struct worker_pool *pool;
db7bccf4
TH
3568 struct worker *worker;
3569 struct hlist_node *pos;
3570 int i;
3af24433 3571
db7bccf4
TH
3572 BUG_ON(gcwq->cpu != smp_processor_id());
3573
8db25e78 3574 gcwq_claim_management_and_lock(gcwq);
3af24433 3575
f2d5a0ee
TH
3576 /*
3577 * We've claimed all manager positions. Make all workers unbound
3578 * and set DISASSOCIATED. Before this, all workers except for the
3579 * ones which are still executing works from before the last CPU
3580 * down must be on the cpu. After this, they may become diasporas.
3581 */
60373152 3582 for_each_worker_pool(pool, gcwq)
4ce62e9e 3583 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3584 worker->flags |= WORKER_UNBOUND;
3af24433 3585
db7bccf4 3586 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3587 worker->flags |= WORKER_UNBOUND;
06ba38a9 3588
f2d5a0ee
TH
3589 gcwq->flags |= GCWQ_DISASSOCIATED;
3590
8db25e78 3591 gcwq_release_management_and_unlock(gcwq);
628c78e7 3592
e22bee78 3593 /*
403c821d 3594 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3595 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3596 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3597 */
e22bee78 3598 schedule();
06ba38a9 3599
e22bee78 3600 /*
628c78e7
TH
3601 * Sched callbacks are disabled now. Zap nr_running. After this,
3602 * nr_running stays zero and need_more_worker() and keep_working()
3603 * are always true as long as the worklist is not empty. @gcwq now
3604 * behaves as unbound (in terms of concurrency management) gcwq
3605 * which is served by workers tied to the CPU.
3606 *
3607 * On return from this function, the current worker would trigger
3608 * unbound chain execution of pending work items if other workers
3609 * didn't already.
e22bee78 3610 */
4ce62e9e
TH
3611 for_each_worker_pool(pool, gcwq)
3612 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3613}
3af24433 3614
8db25e78
TH
3615/*
3616 * Workqueues should be brought up before normal priority CPU notifiers.
3617 * This will be registered high priority CPU notifier.
3618 */
3619static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3620 unsigned long action,
3621 void *hcpu)
3af24433
ON
3622{
3623 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3624 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3625 struct worker_pool *pool;
3ce63377 3626
8db25e78 3627 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3628 case CPU_UP_PREPARE:
4ce62e9e 3629 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3630 struct worker *worker;
3631
3632 if (pool->nr_workers)
3633 continue;
3634
3635 worker = create_worker(pool);
3636 if (!worker)
3637 return NOTIFY_BAD;
3638
3639 spin_lock_irq(&gcwq->lock);
3640 start_worker(worker);
3641 spin_unlock_irq(&gcwq->lock);
3af24433 3642 }
8db25e78 3643 break;
3af24433 3644
db7bccf4
TH
3645 case CPU_DOWN_FAILED:
3646 case CPU_ONLINE:
8db25e78 3647 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3648 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3649 rebind_workers(gcwq);
8db25e78 3650 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3651 break;
00dfcaf7 3652 }
65758202
TH
3653 return NOTIFY_OK;
3654}
3655
3656/*
3657 * Workqueues should be brought down after normal priority CPU notifiers.
3658 * This will be registered as low priority CPU notifier.
3659 */
3660static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3661 unsigned long action,
3662 void *hcpu)
3663{
8db25e78
TH
3664 unsigned int cpu = (unsigned long)hcpu;
3665 struct work_struct unbind_work;
3666
65758202
TH
3667 switch (action & ~CPU_TASKS_FROZEN) {
3668 case CPU_DOWN_PREPARE:
8db25e78
TH
3669 /* unbinding should happen on the local CPU */
3670 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3671 schedule_work_on(cpu, &unbind_work);
3672 flush_work(&unbind_work);
3673 break;
65758202
TH
3674 }
3675 return NOTIFY_OK;
3676}
3677
2d3854a3 3678#ifdef CONFIG_SMP
8ccad40d 3679
2d3854a3 3680struct work_for_cpu {
6b44003e 3681 struct completion completion;
2d3854a3
RR
3682 long (*fn)(void *);
3683 void *arg;
3684 long ret;
3685};
3686
6b44003e 3687static int do_work_for_cpu(void *_wfc)
2d3854a3 3688{
6b44003e 3689 struct work_for_cpu *wfc = _wfc;
2d3854a3 3690 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3691 complete(&wfc->completion);
3692 return 0;
2d3854a3
RR
3693}
3694
3695/**
3696 * work_on_cpu - run a function in user context on a particular cpu
3697 * @cpu: the cpu to run on
3698 * @fn: the function to run
3699 * @arg: the function arg
3700 *
31ad9081
RR
3701 * This will return the value @fn returns.
3702 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3703 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3704 */
3705long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3706{
6b44003e
AM
3707 struct task_struct *sub_thread;
3708 struct work_for_cpu wfc = {
3709 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3710 .fn = fn,
3711 .arg = arg,
3712 };
3713
3714 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3715 if (IS_ERR(sub_thread))
3716 return PTR_ERR(sub_thread);
3717 kthread_bind(sub_thread, cpu);
3718 wake_up_process(sub_thread);
3719 wait_for_completion(&wfc.completion);
2d3854a3
RR
3720 return wfc.ret;
3721}
3722EXPORT_SYMBOL_GPL(work_on_cpu);
3723#endif /* CONFIG_SMP */
3724
a0a1a5fd
TH
3725#ifdef CONFIG_FREEZER
3726
3727/**
3728 * freeze_workqueues_begin - begin freezing workqueues
3729 *
58a69cb4
TH
3730 * Start freezing workqueues. After this function returns, all freezable
3731 * workqueues will queue new works to their frozen_works list instead of
3732 * gcwq->worklist.
a0a1a5fd
TH
3733 *
3734 * CONTEXT:
8b03ae3c 3735 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3736 */
3737void freeze_workqueues_begin(void)
3738{
a0a1a5fd
TH
3739 unsigned int cpu;
3740
3741 spin_lock(&workqueue_lock);
3742
3743 BUG_ON(workqueue_freezing);
3744 workqueue_freezing = true;
3745
f3421797 3746 for_each_gcwq_cpu(cpu) {
8b03ae3c 3747 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3748 struct workqueue_struct *wq;
8b03ae3c
TH
3749
3750 spin_lock_irq(&gcwq->lock);
3751
db7bccf4
TH
3752 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3753 gcwq->flags |= GCWQ_FREEZING;
3754
a0a1a5fd
TH
3755 list_for_each_entry(wq, &workqueues, list) {
3756 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3757
58a69cb4 3758 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3759 cwq->max_active = 0;
a0a1a5fd 3760 }
8b03ae3c
TH
3761
3762 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3763 }
3764
3765 spin_unlock(&workqueue_lock);
3766}
3767
3768/**
58a69cb4 3769 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3770 *
3771 * Check whether freezing is complete. This function must be called
3772 * between freeze_workqueues_begin() and thaw_workqueues().
3773 *
3774 * CONTEXT:
3775 * Grabs and releases workqueue_lock.
3776 *
3777 * RETURNS:
58a69cb4
TH
3778 * %true if some freezable workqueues are still busy. %false if freezing
3779 * is complete.
a0a1a5fd
TH
3780 */
3781bool freeze_workqueues_busy(void)
3782{
a0a1a5fd
TH
3783 unsigned int cpu;
3784 bool busy = false;
3785
3786 spin_lock(&workqueue_lock);
3787
3788 BUG_ON(!workqueue_freezing);
3789
f3421797 3790 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3791 struct workqueue_struct *wq;
a0a1a5fd
TH
3792 /*
3793 * nr_active is monotonically decreasing. It's safe
3794 * to peek without lock.
3795 */
3796 list_for_each_entry(wq, &workqueues, list) {
3797 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3798
58a69cb4 3799 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3800 continue;
3801
3802 BUG_ON(cwq->nr_active < 0);
3803 if (cwq->nr_active) {
3804 busy = true;
3805 goto out_unlock;
3806 }
3807 }
3808 }
3809out_unlock:
3810 spin_unlock(&workqueue_lock);
3811 return busy;
3812}
3813
3814/**
3815 * thaw_workqueues - thaw workqueues
3816 *
3817 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3818 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3819 *
3820 * CONTEXT:
8b03ae3c 3821 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3822 */
3823void thaw_workqueues(void)
3824{
a0a1a5fd
TH
3825 unsigned int cpu;
3826
3827 spin_lock(&workqueue_lock);
3828
3829 if (!workqueue_freezing)
3830 goto out_unlock;
3831
f3421797 3832 for_each_gcwq_cpu(cpu) {
8b03ae3c 3833 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3834 struct worker_pool *pool;
bdbc5dd7 3835 struct workqueue_struct *wq;
8b03ae3c
TH
3836
3837 spin_lock_irq(&gcwq->lock);
3838
db7bccf4
TH
3839 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3840 gcwq->flags &= ~GCWQ_FREEZING;
3841
a0a1a5fd
TH
3842 list_for_each_entry(wq, &workqueues, list) {
3843 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3844
58a69cb4 3845 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3846 continue;
3847
a0a1a5fd
TH
3848 /* restore max_active and repopulate worklist */
3849 cwq->max_active = wq->saved_max_active;
3850
3851 while (!list_empty(&cwq->delayed_works) &&
3852 cwq->nr_active < cwq->max_active)
3853 cwq_activate_first_delayed(cwq);
a0a1a5fd 3854 }
8b03ae3c 3855
4ce62e9e
TH
3856 for_each_worker_pool(pool, gcwq)
3857 wake_up_worker(pool);
e22bee78 3858
8b03ae3c 3859 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3860 }
3861
3862 workqueue_freezing = false;
3863out_unlock:
3864 spin_unlock(&workqueue_lock);
3865}
3866#endif /* CONFIG_FREEZER */
3867
6ee0578b 3868static int __init init_workqueues(void)
1da177e4 3869{
c34056a3 3870 unsigned int cpu;
c8e55f36 3871 int i;
c34056a3 3872
b5490077
TH
3873 /* make sure we have enough bits for OFFQ CPU number */
3874 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3875 WORK_CPU_LAST);
3876
65758202
TH
3877 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3878 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3879
3880 /* initialize gcwqs */
f3421797 3881 for_each_gcwq_cpu(cpu) {
8b03ae3c 3882 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3883 struct worker_pool *pool;
8b03ae3c
TH
3884
3885 spin_lock_init(&gcwq->lock);
3886 gcwq->cpu = cpu;
477a3c33 3887 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3888
c8e55f36
TH
3889 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3890 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3891
4ce62e9e
TH
3892 for_each_worker_pool(pool, gcwq) {
3893 pool->gcwq = gcwq;
3894 INIT_LIST_HEAD(&pool->worklist);
3895 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3896
4ce62e9e
TH
3897 init_timer_deferrable(&pool->idle_timer);
3898 pool->idle_timer.function = idle_worker_timeout;
3899 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3900
4ce62e9e
TH
3901 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3902 (unsigned long)pool);
3903
60373152 3904 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3905 ida_init(&pool->worker_ida);
3906 }
db7bccf4 3907
25511a47 3908 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3909 }
3910
e22bee78 3911 /* create the initial worker */
f3421797 3912 for_each_online_gcwq_cpu(cpu) {
e22bee78 3913 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3914 struct worker_pool *pool;
e22bee78 3915
477a3c33
TH
3916 if (cpu != WORK_CPU_UNBOUND)
3917 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3918
3919 for_each_worker_pool(pool, gcwq) {
3920 struct worker *worker;
3921
bc2ae0f5 3922 worker = create_worker(pool);
4ce62e9e
TH
3923 BUG_ON(!worker);
3924 spin_lock_irq(&gcwq->lock);
3925 start_worker(worker);
3926 spin_unlock_irq(&gcwq->lock);
3927 }
e22bee78
TH
3928 }
3929
d320c038
TH
3930 system_wq = alloc_workqueue("events", 0, 0);
3931 system_long_wq = alloc_workqueue("events_long", 0, 0);
3932 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3933 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3934 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3935 system_freezable_wq = alloc_workqueue("events_freezable",
3936 WQ_FREEZABLE, 0);
62d3c543
AS
3937 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3938 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3939 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3940 !system_unbound_wq || !system_freezable_wq ||
3941 !system_nrt_freezable_wq);
6ee0578b 3942 return 0;
1da177e4 3943}
6ee0578b 3944early_initcall(init_workqueues);