workqueue: use std_ prefix for the standard per-cpu pools
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
bc2ae0f5
TH
49 /*
50 * global_cwq flags
51 *
52 * A bound gcwq is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The gcwq behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
b2eb83d1 62 * assoc_mutex of all pools on the gcwq to avoid changing binding
bc2ae0f5
TH
63 * state while create_worker() is in progress.
64 */
11ebea50
TH
65 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
66 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
67
68 /* pool flags */
69 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 70 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 71
c8e55f36
TH
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 79
5f7dabfd 80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 81 WORKER_CPU_INTENSIVE,
db7bccf4 82
e34cdddb 83 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 84
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
8b03ae3c 113 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 114 *
e22bee78
TH
115 * X: During normal operation, modification requires gcwq->lock and
116 * should be done only from local cpu. Either disabling preemption
117 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 118 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
1da177e4 123 */
1da177e4 124
2eaebdb3 125/* struct worker is defined in workqueue_internal.h */
c34056a3 126
bd7bdd43
TH
127struct worker_pool {
128 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
b2eb83d1 141 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
bd7bdd43 142 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
143};
144
8b03ae3c 145/*
e22bee78
TH
146 * Global per-cpu workqueue. There's one and only one for each cpu
147 * and all works are queued and processed here regardless of their
148 * target workqueues.
8b03ae3c
TH
149 */
150struct global_cwq {
151 spinlock_t lock; /* the gcwq lock */
152 unsigned int cpu; /* I: the associated cpu */
db7bccf4 153 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 154
bd7bdd43 155 /* workers are chained either in busy_hash or pool idle_list */
42f8570f 156 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
c8e55f36
TH
157 /* L: hash of busy workers */
158
e34cdddb 159 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 160 /* normal and highpri pools */
8b03ae3c
TH
161} ____cacheline_aligned_in_smp;
162
1da177e4 163/*
502ca9d8 164 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
165 * work_struct->data are used for flags and thus cwqs need to be
166 * aligned at two's power of the number of flag bits.
1da177e4
LT
167 */
168struct cpu_workqueue_struct {
bd7bdd43 169 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 170 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
171 int work_color; /* L: current color */
172 int flush_color; /* L: flushing color */
173 int nr_in_flight[WORK_NR_COLORS];
174 /* L: nr of in_flight works */
1e19ffc6 175 int nr_active; /* L: nr of active works */
a0a1a5fd 176 int max_active; /* L: max active works */
1e19ffc6 177 struct list_head delayed_works; /* L: delayed works */
0f900049 178};
1da177e4 179
73f53c4a
TH
180/*
181 * Structure used to wait for workqueue flush.
182 */
183struct wq_flusher {
184 struct list_head list; /* F: list of flushers */
185 int flush_color; /* F: flush color waiting for */
186 struct completion done; /* flush completion */
187};
188
f2e005aa
TH
189/*
190 * All cpumasks are assumed to be always set on UP and thus can't be
191 * used to determine whether there's something to be done.
192 */
193#ifdef CONFIG_SMP
194typedef cpumask_var_t mayday_mask_t;
195#define mayday_test_and_set_cpu(cpu, mask) \
196 cpumask_test_and_set_cpu((cpu), (mask))
197#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
198#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 199#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
200#define free_mayday_mask(mask) free_cpumask_var((mask))
201#else
202typedef unsigned long mayday_mask_t;
203#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
204#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
205#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
206#define alloc_mayday_mask(maskp, gfp) true
207#define free_mayday_mask(mask) do { } while (0)
208#endif
1da177e4
LT
209
210/*
211 * The externally visible workqueue abstraction is an array of
212 * per-CPU workqueues:
213 */
214struct workqueue_struct {
9c5a2ba7 215 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
216 union {
217 struct cpu_workqueue_struct __percpu *pcpu;
218 struct cpu_workqueue_struct *single;
219 unsigned long v;
220 } cpu_wq; /* I: cwq's */
4690c4ab 221 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
222
223 struct mutex flush_mutex; /* protects wq flushing */
224 int work_color; /* F: current work color */
225 int flush_color; /* F: current flush color */
226 atomic_t nr_cwqs_to_flush; /* flush in progress */
227 struct wq_flusher *first_flusher; /* F: first flusher */
228 struct list_head flusher_queue; /* F: flush waiters */
229 struct list_head flusher_overflow; /* F: flush overflow list */
230
f2e005aa 231 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
232 struct worker *rescuer; /* I: rescue worker */
233
9c5a2ba7 234 int nr_drainers; /* W: drain in progress */
dcd989cb 235 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 236#ifdef CONFIG_LOCKDEP
4690c4ab 237 struct lockdep_map lockdep_map;
4e6045f1 238#endif
b196be89 239 char name[]; /* I: workqueue name */
1da177e4
LT
240};
241
d320c038 242struct workqueue_struct *system_wq __read_mostly;
d320c038 243EXPORT_SYMBOL_GPL(system_wq);
044c782c 244struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 245EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 246struct workqueue_struct *system_long_wq __read_mostly;
d320c038 247EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 248struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 249EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 250struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 251EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 252
97bd2347
TH
253#define CREATE_TRACE_POINTS
254#include <trace/events/workqueue.h>
255
4ce62e9e 256#define for_each_worker_pool(pool, gcwq) \
3270476a 257 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 258 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 259
db7bccf4 260#define for_each_busy_worker(worker, i, pos, gcwq) \
42f8570f 261 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
db7bccf4 262
f3421797
TH
263static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
264 unsigned int sw)
265{
266 if (cpu < nr_cpu_ids) {
267 if (sw & 1) {
268 cpu = cpumask_next(cpu, mask);
269 if (cpu < nr_cpu_ids)
270 return cpu;
271 }
272 if (sw & 2)
273 return WORK_CPU_UNBOUND;
274 }
275 return WORK_CPU_NONE;
276}
277
278static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
279 struct workqueue_struct *wq)
280{
281 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
282}
283
09884951
TH
284/*
285 * CPU iterators
286 *
287 * An extra gcwq is defined for an invalid cpu number
288 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
289 * specific CPU. The following iterators are similar to
290 * for_each_*_cpu() iterators but also considers the unbound gcwq.
291 *
292 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
293 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
294 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
295 * WORK_CPU_UNBOUND for unbound workqueues
296 */
f3421797
TH
297#define for_each_gcwq_cpu(cpu) \
298 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
299 (cpu) < WORK_CPU_NONE; \
300 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
301
302#define for_each_online_gcwq_cpu(cpu) \
303 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
304 (cpu) < WORK_CPU_NONE; \
305 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
306
307#define for_each_cwq_cpu(cpu, wq) \
308 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
309 (cpu) < WORK_CPU_NONE; \
310 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
311
dc186ad7
TG
312#ifdef CONFIG_DEBUG_OBJECTS_WORK
313
314static struct debug_obj_descr work_debug_descr;
315
99777288
SG
316static void *work_debug_hint(void *addr)
317{
318 return ((struct work_struct *) addr)->func;
319}
320
dc186ad7
TG
321/*
322 * fixup_init is called when:
323 * - an active object is initialized
324 */
325static int work_fixup_init(void *addr, enum debug_obj_state state)
326{
327 struct work_struct *work = addr;
328
329 switch (state) {
330 case ODEBUG_STATE_ACTIVE:
331 cancel_work_sync(work);
332 debug_object_init(work, &work_debug_descr);
333 return 1;
334 default:
335 return 0;
336 }
337}
338
339/*
340 * fixup_activate is called when:
341 * - an active object is activated
342 * - an unknown object is activated (might be a statically initialized object)
343 */
344static int work_fixup_activate(void *addr, enum debug_obj_state state)
345{
346 struct work_struct *work = addr;
347
348 switch (state) {
349
350 case ODEBUG_STATE_NOTAVAILABLE:
351 /*
352 * This is not really a fixup. The work struct was
353 * statically initialized. We just make sure that it
354 * is tracked in the object tracker.
355 */
22df02bb 356 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
357 debug_object_init(work, &work_debug_descr);
358 debug_object_activate(work, &work_debug_descr);
359 return 0;
360 }
361 WARN_ON_ONCE(1);
362 return 0;
363
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
368 return 0;
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376static int work_fixup_free(void *addr, enum debug_obj_state state)
377{
378 struct work_struct *work = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 cancel_work_sync(work);
383 debug_object_free(work, &work_debug_descr);
384 return 1;
385 default:
386 return 0;
387 }
388}
389
390static struct debug_obj_descr work_debug_descr = {
391 .name = "work_struct",
99777288 392 .debug_hint = work_debug_hint,
dc186ad7
TG
393 .fixup_init = work_fixup_init,
394 .fixup_activate = work_fixup_activate,
395 .fixup_free = work_fixup_free,
396};
397
398static inline void debug_work_activate(struct work_struct *work)
399{
400 debug_object_activate(work, &work_debug_descr);
401}
402
403static inline void debug_work_deactivate(struct work_struct *work)
404{
405 debug_object_deactivate(work, &work_debug_descr);
406}
407
408void __init_work(struct work_struct *work, int onstack)
409{
410 if (onstack)
411 debug_object_init_on_stack(work, &work_debug_descr);
412 else
413 debug_object_init(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(__init_work);
416
417void destroy_work_on_stack(struct work_struct *work)
418{
419 debug_object_free(work, &work_debug_descr);
420}
421EXPORT_SYMBOL_GPL(destroy_work_on_stack);
422
423#else
424static inline void debug_work_activate(struct work_struct *work) { }
425static inline void debug_work_deactivate(struct work_struct *work) { }
426#endif
427
95402b38
GS
428/* Serializes the accesses to the list of workqueues. */
429static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 430static LIST_HEAD(workqueues);
a0a1a5fd 431static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 432
e22bee78
TH
433/*
434 * The almighty global cpu workqueues. nr_running is the only field
435 * which is expected to be used frequently by other cpus via
436 * try_to_wake_up(). Put it in a separate cacheline.
437 */
8b03ae3c 438static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 439static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 440
f3421797
TH
441/*
442 * Global cpu workqueue and nr_running counter for unbound gcwq. The
443 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
444 * workers have WORKER_UNBOUND set.
445 */
446static struct global_cwq unbound_global_cwq;
e34cdddb
TH
447static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
448 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 449};
f3421797 450
c34056a3 451static int worker_thread(void *__worker);
e2905b29 452static unsigned int work_cpu(struct work_struct *work);
1da177e4 453
e34cdddb 454static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
455{
456 return pool - pool->gcwq->pools;
457}
458
8b03ae3c
TH
459static struct global_cwq *get_gcwq(unsigned int cpu)
460{
f3421797
TH
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
8b03ae3c
TH
465}
466
63d95a91 467static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 468{
63d95a91 469 int cpu = pool->gcwq->cpu;
e34cdddb 470 int idx = std_worker_pool_pri(pool);
63d95a91 471
f3421797 472 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 473 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 474 else
4ce62e9e 475 return &unbound_pool_nr_running[idx];
e22bee78
TH
476}
477
1537663f
TH
478static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
479 struct workqueue_struct *wq)
b1f4ec17 480{
f3421797 481 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 482 if (likely(cpu < nr_cpu_ids))
f3421797 483 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
484 } else if (likely(cpu == WORK_CPU_UNBOUND))
485 return wq->cpu_wq.single;
486 return NULL;
b1f4ec17
ON
487}
488
73f53c4a
TH
489static unsigned int work_color_to_flags(int color)
490{
491 return color << WORK_STRUCT_COLOR_SHIFT;
492}
493
494static int get_work_color(struct work_struct *work)
495{
496 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
497 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
498}
499
500static int work_next_color(int color)
501{
502 return (color + 1) % WORK_NR_COLORS;
503}
1da177e4 504
14441960 505/*
b5490077
TH
506 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
507 * contain the pointer to the queued cwq. Once execution starts, the flag
508 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 509 *
bbb68dfa
TH
510 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
511 * and clear_work_data() can be used to set the cwq, cpu or clear
512 * work->data. These functions should only be called while the work is
513 * owned - ie. while the PENDING bit is set.
7a22ad75 514 *
bbb68dfa
TH
515 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
516 * a work. gcwq is available once the work has been queued anywhere after
517 * initialization until it is sync canceled. cwq is available only while
518 * the work item is queued.
7a22ad75 519 *
bbb68dfa
TH
520 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
521 * canceled. While being canceled, a work item may have its PENDING set
522 * but stay off timer and worklist for arbitrarily long and nobody should
523 * try to steal the PENDING bit.
14441960 524 */
7a22ad75
TH
525static inline void set_work_data(struct work_struct *work, unsigned long data,
526 unsigned long flags)
365970a1 527{
4594bf15 528 BUG_ON(!work_pending(work));
7a22ad75
TH
529 atomic_long_set(&work->data, data | flags | work_static(work));
530}
365970a1 531
7a22ad75
TH
532static void set_work_cwq(struct work_struct *work,
533 struct cpu_workqueue_struct *cwq,
534 unsigned long extra_flags)
535{
536 set_work_data(work, (unsigned long)cwq,
e120153d 537 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
538}
539
8930caba
TH
540static void set_work_cpu_and_clear_pending(struct work_struct *work,
541 unsigned int cpu)
7a22ad75 542{
23657bb1
TH
543 /*
544 * The following wmb is paired with the implied mb in
545 * test_and_set_bit(PENDING) and ensures all updates to @work made
546 * here are visible to and precede any updates by the next PENDING
547 * owner.
548 */
549 smp_wmb();
b5490077 550 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 551}
f756d5e2 552
7a22ad75 553static void clear_work_data(struct work_struct *work)
1da177e4 554{
23657bb1 555 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 556 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
557}
558
7a22ad75 559static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 560{
e120153d 561 unsigned long data = atomic_long_read(&work->data);
7a22ad75 562
e120153d
TH
563 if (data & WORK_STRUCT_CWQ)
564 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
565 else
566 return NULL;
4d707b9f
ON
567}
568
7a22ad75 569static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 570{
e120153d 571 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
572 unsigned int cpu;
573
e120153d
TH
574 if (data & WORK_STRUCT_CWQ)
575 return ((struct cpu_workqueue_struct *)
bd7bdd43 576 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 577
b5490077 578 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 579 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
580 return NULL;
581
f3421797 582 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 583 return get_gcwq(cpu);
b1f4ec17
ON
584}
585
bbb68dfa
TH
586static void mark_work_canceling(struct work_struct *work)
587{
588 struct global_cwq *gcwq = get_work_gcwq(work);
589 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
590
591 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
592 WORK_STRUCT_PENDING);
593}
594
595static bool work_is_canceling(struct work_struct *work)
596{
597 unsigned long data = atomic_long_read(&work->data);
598
599 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
600}
601
e22bee78 602/*
3270476a
TH
603 * Policy functions. These define the policies on how the global worker
604 * pools are managed. Unless noted otherwise, these functions assume that
605 * they're being called with gcwq->lock held.
e22bee78
TH
606 */
607
63d95a91 608static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 609{
3270476a 610 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
611}
612
4594bf15 613/*
e22bee78
TH
614 * Need to wake up a worker? Called from anything but currently
615 * running workers.
974271c4
TH
616 *
617 * Note that, because unbound workers never contribute to nr_running, this
618 * function will always return %true for unbound gcwq as long as the
619 * worklist isn't empty.
4594bf15 620 */
63d95a91 621static bool need_more_worker(struct worker_pool *pool)
365970a1 622{
63d95a91 623 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 624}
4594bf15 625
e22bee78 626/* Can I start working? Called from busy but !running workers. */
63d95a91 627static bool may_start_working(struct worker_pool *pool)
e22bee78 628{
63d95a91 629 return pool->nr_idle;
e22bee78
TH
630}
631
632/* Do I need to keep working? Called from currently running workers. */
63d95a91 633static bool keep_working(struct worker_pool *pool)
e22bee78 634{
63d95a91 635 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 636
3270476a 637 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
638}
639
640/* Do we need a new worker? Called from manager. */
63d95a91 641static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 642{
63d95a91 643 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 644}
365970a1 645
e22bee78 646/* Do I need to be the manager? */
63d95a91 647static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 648{
63d95a91 649 return need_to_create_worker(pool) ||
11ebea50 650 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
651}
652
653/* Do we have too many workers and should some go away? */
63d95a91 654static bool too_many_workers(struct worker_pool *pool)
e22bee78 655{
552a37e9 656 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
657 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 659
ea1abd61
LJ
660 /*
661 * nr_idle and idle_list may disagree if idle rebinding is in
662 * progress. Never return %true if idle_list is empty.
663 */
664 if (list_empty(&pool->idle_list))
665 return false;
666
e22bee78 667 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
668}
669
4d707b9f 670/*
e22bee78
TH
671 * Wake up functions.
672 */
673
7e11629d 674/* Return the first worker. Safe with preemption disabled */
63d95a91 675static struct worker *first_worker(struct worker_pool *pool)
7e11629d 676{
63d95a91 677 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
678 return NULL;
679
63d95a91 680 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
681}
682
683/**
684 * wake_up_worker - wake up an idle worker
63d95a91 685 * @pool: worker pool to wake worker from
7e11629d 686 *
63d95a91 687 * Wake up the first idle worker of @pool.
7e11629d
TH
688 *
689 * CONTEXT:
690 * spin_lock_irq(gcwq->lock).
691 */
63d95a91 692static void wake_up_worker(struct worker_pool *pool)
7e11629d 693{
63d95a91 694 struct worker *worker = first_worker(pool);
7e11629d
TH
695
696 if (likely(worker))
697 wake_up_process(worker->task);
698}
699
d302f017 700/**
e22bee78
TH
701 * wq_worker_waking_up - a worker is waking up
702 * @task: task waking up
703 * @cpu: CPU @task is waking up to
704 *
705 * This function is called during try_to_wake_up() when a worker is
706 * being awoken.
707 *
708 * CONTEXT:
709 * spin_lock_irq(rq->lock)
710 */
711void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
712{
713 struct worker *worker = kthread_data(task);
714
36576000
JK
715 if (!(worker->flags & WORKER_NOT_RUNNING)) {
716 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 717 atomic_inc(get_pool_nr_running(worker->pool));
36576000 718 }
e22bee78
TH
719}
720
721/**
722 * wq_worker_sleeping - a worker is going to sleep
723 * @task: task going to sleep
724 * @cpu: CPU in question, must be the current CPU number
725 *
726 * This function is called during schedule() when a busy worker is
727 * going to sleep. Worker on the same cpu can be woken up by
728 * returning pointer to its task.
729 *
730 * CONTEXT:
731 * spin_lock_irq(rq->lock)
732 *
733 * RETURNS:
734 * Worker task on @cpu to wake up, %NULL if none.
735 */
736struct task_struct *wq_worker_sleeping(struct task_struct *task,
737 unsigned int cpu)
738{
739 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
740 struct worker_pool *pool;
741 atomic_t *nr_running;
e22bee78 742
111c225a
TH
743 /*
744 * Rescuers, which may not have all the fields set up like normal
745 * workers, also reach here, let's not access anything before
746 * checking NOT_RUNNING.
747 */
2d64672e 748 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
749 return NULL;
750
111c225a
TH
751 pool = worker->pool;
752 nr_running = get_pool_nr_running(pool);
753
e22bee78
TH
754 /* this can only happen on the local cpu */
755 BUG_ON(cpu != raw_smp_processor_id());
756
757 /*
758 * The counterpart of the following dec_and_test, implied mb,
759 * worklist not empty test sequence is in insert_work().
760 * Please read comment there.
761 *
628c78e7
TH
762 * NOT_RUNNING is clear. This means that we're bound to and
763 * running on the local cpu w/ rq lock held and preemption
764 * disabled, which in turn means that none else could be
765 * manipulating idle_list, so dereferencing idle_list without gcwq
766 * lock is safe.
e22bee78 767 */
bd7bdd43 768 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 769 to_wakeup = first_worker(pool);
e22bee78
TH
770 return to_wakeup ? to_wakeup->task : NULL;
771}
772
773/**
774 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 775 * @worker: self
d302f017
TH
776 * @flags: flags to set
777 * @wakeup: wakeup an idle worker if necessary
778 *
e22bee78
TH
779 * Set @flags in @worker->flags and adjust nr_running accordingly. If
780 * nr_running becomes zero and @wakeup is %true, an idle worker is
781 * woken up.
d302f017 782 *
cb444766
TH
783 * CONTEXT:
784 * spin_lock_irq(gcwq->lock)
d302f017
TH
785 */
786static inline void worker_set_flags(struct worker *worker, unsigned int flags,
787 bool wakeup)
788{
bd7bdd43 789 struct worker_pool *pool = worker->pool;
e22bee78 790
cb444766
TH
791 WARN_ON_ONCE(worker->task != current);
792
e22bee78
TH
793 /*
794 * If transitioning into NOT_RUNNING, adjust nr_running and
795 * wake up an idle worker as necessary if requested by
796 * @wakeup.
797 */
798 if ((flags & WORKER_NOT_RUNNING) &&
799 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 800 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
801
802 if (wakeup) {
803 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 804 !list_empty(&pool->worklist))
63d95a91 805 wake_up_worker(pool);
e22bee78
TH
806 } else
807 atomic_dec(nr_running);
808 }
809
d302f017
TH
810 worker->flags |= flags;
811}
812
813/**
e22bee78 814 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 815 * @worker: self
d302f017
TH
816 * @flags: flags to clear
817 *
e22bee78 818 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 819 *
cb444766
TH
820 * CONTEXT:
821 * spin_lock_irq(gcwq->lock)
d302f017
TH
822 */
823static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
824{
63d95a91 825 struct worker_pool *pool = worker->pool;
e22bee78
TH
826 unsigned int oflags = worker->flags;
827
cb444766
TH
828 WARN_ON_ONCE(worker->task != current);
829
d302f017 830 worker->flags &= ~flags;
e22bee78 831
42c025f3
TH
832 /*
833 * If transitioning out of NOT_RUNNING, increment nr_running. Note
834 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
835 * of multiple flags, not a single flag.
836 */
e22bee78
TH
837 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
838 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 839 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
840}
841
8cca0eea
TH
842/**
843 * find_worker_executing_work - find worker which is executing a work
844 * @gcwq: gcwq of interest
845 * @work: work to find worker for
846 *
a2c1c57b
TH
847 * Find a worker which is executing @work on @gcwq by searching
848 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
849 * to match, its current execution should match the address of @work and
850 * its work function. This is to avoid unwanted dependency between
851 * unrelated work executions through a work item being recycled while still
852 * being executed.
853 *
854 * This is a bit tricky. A work item may be freed once its execution
855 * starts and nothing prevents the freed area from being recycled for
856 * another work item. If the same work item address ends up being reused
857 * before the original execution finishes, workqueue will identify the
858 * recycled work item as currently executing and make it wait until the
859 * current execution finishes, introducing an unwanted dependency.
860 *
861 * This function checks the work item address, work function and workqueue
862 * to avoid false positives. Note that this isn't complete as one may
863 * construct a work function which can introduce dependency onto itself
864 * through a recycled work item. Well, if somebody wants to shoot oneself
865 * in the foot that badly, there's only so much we can do, and if such
866 * deadlock actually occurs, it should be easy to locate the culprit work
867 * function.
8cca0eea
TH
868 *
869 * CONTEXT:
870 * spin_lock_irq(gcwq->lock).
871 *
872 * RETURNS:
873 * Pointer to worker which is executing @work if found, NULL
874 * otherwise.
4d707b9f 875 */
8cca0eea
TH
876static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
877 struct work_struct *work)
4d707b9f 878{
42f8570f
SL
879 struct worker *worker;
880 struct hlist_node *tmp;
881
a2c1c57b
TH
882 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
883 (unsigned long)work)
884 if (worker->current_work == work &&
885 worker->current_func == work->func)
42f8570f
SL
886 return worker;
887
888 return NULL;
4d707b9f
ON
889}
890
bf4ede01
TH
891/**
892 * move_linked_works - move linked works to a list
893 * @work: start of series of works to be scheduled
894 * @head: target list to append @work to
895 * @nextp: out paramter for nested worklist walking
896 *
897 * Schedule linked works starting from @work to @head. Work series to
898 * be scheduled starts at @work and includes any consecutive work with
899 * WORK_STRUCT_LINKED set in its predecessor.
900 *
901 * If @nextp is not NULL, it's updated to point to the next work of
902 * the last scheduled work. This allows move_linked_works() to be
903 * nested inside outer list_for_each_entry_safe().
904 *
905 * CONTEXT:
906 * spin_lock_irq(gcwq->lock).
907 */
908static void move_linked_works(struct work_struct *work, struct list_head *head,
909 struct work_struct **nextp)
910{
911 struct work_struct *n;
912
913 /*
914 * Linked worklist will always end before the end of the list,
915 * use NULL for list head.
916 */
917 list_for_each_entry_safe_from(work, n, NULL, entry) {
918 list_move_tail(&work->entry, head);
919 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
920 break;
921 }
922
923 /*
924 * If we're already inside safe list traversal and have moved
925 * multiple works to the scheduled queue, the next position
926 * needs to be updated.
927 */
928 if (nextp)
929 *nextp = n;
930}
931
3aa62497 932static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 933{
3aa62497 934 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
935
936 trace_workqueue_activate_work(work);
937 move_linked_works(work, &cwq->pool->worklist, NULL);
938 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
939 cwq->nr_active++;
940}
941
3aa62497
LJ
942static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
943{
944 struct work_struct *work = list_first_entry(&cwq->delayed_works,
945 struct work_struct, entry);
946
947 cwq_activate_delayed_work(work);
948}
949
bf4ede01
TH
950/**
951 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
952 * @cwq: cwq of interest
953 * @color: color of work which left the queue
bf4ede01
TH
954 *
955 * A work either has completed or is removed from pending queue,
956 * decrement nr_in_flight of its cwq and handle workqueue flushing.
957 *
958 * CONTEXT:
959 * spin_lock_irq(gcwq->lock).
960 */
b3f9f405 961static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
962{
963 /* ignore uncolored works */
964 if (color == WORK_NO_COLOR)
965 return;
966
967 cwq->nr_in_flight[color]--;
968
b3f9f405
LJ
969 cwq->nr_active--;
970 if (!list_empty(&cwq->delayed_works)) {
971 /* one down, submit a delayed one */
972 if (cwq->nr_active < cwq->max_active)
973 cwq_activate_first_delayed(cwq);
bf4ede01
TH
974 }
975
976 /* is flush in progress and are we at the flushing tip? */
977 if (likely(cwq->flush_color != color))
978 return;
979
980 /* are there still in-flight works? */
981 if (cwq->nr_in_flight[color])
982 return;
983
984 /* this cwq is done, clear flush_color */
985 cwq->flush_color = -1;
986
987 /*
988 * If this was the last cwq, wake up the first flusher. It
989 * will handle the rest.
990 */
991 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
992 complete(&cwq->wq->first_flusher->done);
993}
994
36e227d2 995/**
bbb68dfa 996 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
997 * @work: work item to steal
998 * @is_dwork: @work is a delayed_work
bbb68dfa 999 * @flags: place to store irq state
36e227d2
TH
1000 *
1001 * Try to grab PENDING bit of @work. This function can handle @work in any
1002 * stable state - idle, on timer or on worklist. Return values are
1003 *
1004 * 1 if @work was pending and we successfully stole PENDING
1005 * 0 if @work was idle and we claimed PENDING
1006 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1007 * -ENOENT if someone else is canceling @work, this state may persist
1008 * for arbitrarily long
36e227d2 1009 *
bbb68dfa 1010 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1011 * interrupted while holding PENDING and @work off queue, irq must be
1012 * disabled on entry. This, combined with delayed_work->timer being
1013 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1014 *
1015 * On successful return, >= 0, irq is disabled and the caller is
1016 * responsible for releasing it using local_irq_restore(*@flags).
1017 *
e0aecdd8 1018 * This function is safe to call from any context including IRQ handler.
bf4ede01 1019 */
bbb68dfa
TH
1020static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1021 unsigned long *flags)
bf4ede01
TH
1022{
1023 struct global_cwq *gcwq;
bf4ede01 1024
bbb68dfa
TH
1025 local_irq_save(*flags);
1026
36e227d2
TH
1027 /* try to steal the timer if it exists */
1028 if (is_dwork) {
1029 struct delayed_work *dwork = to_delayed_work(work);
1030
e0aecdd8
TH
1031 /*
1032 * dwork->timer is irqsafe. If del_timer() fails, it's
1033 * guaranteed that the timer is not queued anywhere and not
1034 * running on the local CPU.
1035 */
36e227d2
TH
1036 if (likely(del_timer(&dwork->timer)))
1037 return 1;
1038 }
1039
1040 /* try to claim PENDING the normal way */
bf4ede01
TH
1041 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1042 return 0;
1043
1044 /*
1045 * The queueing is in progress, or it is already queued. Try to
1046 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1047 */
1048 gcwq = get_work_gcwq(work);
1049 if (!gcwq)
bbb68dfa 1050 goto fail;
bf4ede01 1051
bbb68dfa 1052 spin_lock(&gcwq->lock);
bf4ede01
TH
1053 if (!list_empty(&work->entry)) {
1054 /*
1055 * This work is queued, but perhaps we locked the wrong gcwq.
1056 * In that case we must see the new value after rmb(), see
1057 * insert_work()->wmb().
1058 */
1059 smp_rmb();
1060 if (gcwq == get_work_gcwq(work)) {
1061 debug_work_deactivate(work);
3aa62497
LJ
1062
1063 /*
1064 * A delayed work item cannot be grabbed directly
1065 * because it might have linked NO_COLOR work items
1066 * which, if left on the delayed_list, will confuse
1067 * cwq->nr_active management later on and cause
1068 * stall. Make sure the work item is activated
1069 * before grabbing.
1070 */
1071 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1072 cwq_activate_delayed_work(work);
1073
bf4ede01
TH
1074 list_del_init(&work->entry);
1075 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1076 get_work_color(work));
36e227d2 1077
bbb68dfa 1078 spin_unlock(&gcwq->lock);
36e227d2 1079 return 1;
bf4ede01
TH
1080 }
1081 }
bbb68dfa
TH
1082 spin_unlock(&gcwq->lock);
1083fail:
1084 local_irq_restore(*flags);
1085 if (work_is_canceling(work))
1086 return -ENOENT;
1087 cpu_relax();
36e227d2 1088 return -EAGAIN;
bf4ede01
TH
1089}
1090
4690c4ab 1091/**
7e11629d 1092 * insert_work - insert a work into gcwq
4690c4ab
TH
1093 * @cwq: cwq @work belongs to
1094 * @work: work to insert
1095 * @head: insertion point
1096 * @extra_flags: extra WORK_STRUCT_* flags to set
1097 *
7e11629d
TH
1098 * Insert @work which belongs to @cwq into @gcwq after @head.
1099 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1100 *
1101 * CONTEXT:
8b03ae3c 1102 * spin_lock_irq(gcwq->lock).
4690c4ab 1103 */
b89deed3 1104static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1105 struct work_struct *work, struct list_head *head,
1106 unsigned int extra_flags)
b89deed3 1107{
63d95a91 1108 struct worker_pool *pool = cwq->pool;
e22bee78 1109
4690c4ab 1110 /* we own @work, set data and link */
7a22ad75 1111 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1112
6e84d644
ON
1113 /*
1114 * Ensure that we get the right work->data if we see the
1115 * result of list_add() below, see try_to_grab_pending().
1116 */
1117 smp_wmb();
4690c4ab 1118
1a4d9b0a 1119 list_add_tail(&work->entry, head);
e22bee78
TH
1120
1121 /*
1122 * Ensure either worker_sched_deactivated() sees the above
1123 * list_add_tail() or we see zero nr_running to avoid workers
1124 * lying around lazily while there are works to be processed.
1125 */
1126 smp_mb();
1127
63d95a91
TH
1128 if (__need_more_worker(pool))
1129 wake_up_worker(pool);
b89deed3
ON
1130}
1131
c8efcc25
TH
1132/*
1133 * Test whether @work is being queued from another work executing on the
1134 * same workqueue. This is rather expensive and should only be used from
1135 * cold paths.
1136 */
1137static bool is_chained_work(struct workqueue_struct *wq)
1138{
1139 unsigned long flags;
1140 unsigned int cpu;
1141
1142 for_each_gcwq_cpu(cpu) {
1143 struct global_cwq *gcwq = get_gcwq(cpu);
1144 struct worker *worker;
1145 struct hlist_node *pos;
1146 int i;
1147
1148 spin_lock_irqsave(&gcwq->lock, flags);
1149 for_each_busy_worker(worker, i, pos, gcwq) {
1150 if (worker->task != current)
1151 continue;
1152 spin_unlock_irqrestore(&gcwq->lock, flags);
1153 /*
1154 * I'm @worker, no locking necessary. See if @work
1155 * is headed to the same workqueue.
1156 */
1157 return worker->current_cwq->wq == wq;
1158 }
1159 spin_unlock_irqrestore(&gcwq->lock, flags);
1160 }
1161 return false;
1162}
1163
4690c4ab 1164static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1165 struct work_struct *work)
1166{
502ca9d8
TH
1167 struct global_cwq *gcwq;
1168 struct cpu_workqueue_struct *cwq;
1e19ffc6 1169 struct list_head *worklist;
8a2e8e5d 1170 unsigned int work_flags;
b75cac93 1171 unsigned int req_cpu = cpu;
8930caba
TH
1172
1173 /*
1174 * While a work item is PENDING && off queue, a task trying to
1175 * steal the PENDING will busy-loop waiting for it to either get
1176 * queued or lose PENDING. Grabbing PENDING and queueing should
1177 * happen with IRQ disabled.
1178 */
1179 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1180
dc186ad7 1181 debug_work_activate(work);
1e19ffc6 1182
c8efcc25 1183 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1184 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1185 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1186 return;
1187
c7fc77f7
TH
1188 /* determine gcwq to use */
1189 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1190 struct global_cwq *last_gcwq;
1191
57469821 1192 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1193 cpu = raw_smp_processor_id();
1194
18aa9eff 1195 /*
dbf2576e
TH
1196 * It's multi cpu. If @work was previously on a different
1197 * cpu, it might still be running there, in which case the
1198 * work needs to be queued on that cpu to guarantee
1199 * non-reentrancy.
18aa9eff 1200 */
502ca9d8 1201 gcwq = get_gcwq(cpu);
dbf2576e
TH
1202 last_gcwq = get_work_gcwq(work);
1203
1204 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1205 struct worker *worker;
1206
8930caba 1207 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1208
1209 worker = find_worker_executing_work(last_gcwq, work);
1210
1211 if (worker && worker->current_cwq->wq == wq)
1212 gcwq = last_gcwq;
1213 else {
1214 /* meh... not running there, queue here */
8930caba
TH
1215 spin_unlock(&last_gcwq->lock);
1216 spin_lock(&gcwq->lock);
18aa9eff 1217 }
8930caba
TH
1218 } else {
1219 spin_lock(&gcwq->lock);
1220 }
f3421797
TH
1221 } else {
1222 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1223 spin_lock(&gcwq->lock);
502ca9d8
TH
1224 }
1225
1226 /* gcwq determined, get cwq and queue */
1227 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1228 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1229
f5b2552b 1230 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1231 spin_unlock(&gcwq->lock);
f5b2552b
DC
1232 return;
1233 }
1e19ffc6 1234
73f53c4a 1235 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1236 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1237
1238 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1239 trace_workqueue_activate_work(work);
1e19ffc6 1240 cwq->nr_active++;
3270476a 1241 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1242 } else {
1243 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1244 worklist = &cwq->delayed_works;
8a2e8e5d 1245 }
1e19ffc6 1246
8a2e8e5d 1247 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1248
8930caba 1249 spin_unlock(&gcwq->lock);
1da177e4
LT
1250}
1251
0fcb78c2 1252/**
c1a220e7
ZR
1253 * queue_work_on - queue work on specific cpu
1254 * @cpu: CPU number to execute work on
0fcb78c2
REB
1255 * @wq: workqueue to use
1256 * @work: work to queue
1257 *
d4283e93 1258 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1259 *
c1a220e7
ZR
1260 * We queue the work to a specific CPU, the caller must ensure it
1261 * can't go away.
1da177e4 1262 */
d4283e93
TH
1263bool queue_work_on(int cpu, struct workqueue_struct *wq,
1264 struct work_struct *work)
1da177e4 1265{
d4283e93 1266 bool ret = false;
8930caba 1267 unsigned long flags;
ef1ca236 1268
8930caba 1269 local_irq_save(flags);
c1a220e7 1270
22df02bb 1271 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1272 __queue_work(cpu, wq, work);
d4283e93 1273 ret = true;
c1a220e7 1274 }
ef1ca236 1275
8930caba 1276 local_irq_restore(flags);
1da177e4
LT
1277 return ret;
1278}
c1a220e7 1279EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1280
c1a220e7 1281/**
0a13c00e 1282 * queue_work - queue work on a workqueue
c1a220e7
ZR
1283 * @wq: workqueue to use
1284 * @work: work to queue
1285 *
d4283e93 1286 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1287 *
0a13c00e
TH
1288 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1289 * it can be processed by another CPU.
c1a220e7 1290 */
d4283e93 1291bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1292{
57469821 1293 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1294}
0a13c00e 1295EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1296
d8e794df 1297void delayed_work_timer_fn(unsigned long __data)
1da177e4 1298{
52bad64d 1299 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1300 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1301
e0aecdd8 1302 /* should have been called from irqsafe timer with irq already off */
1265057f 1303 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1304}
d8e794df 1305EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1306
7beb2edf
TH
1307static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1308 struct delayed_work *dwork, unsigned long delay)
1da177e4 1309{
7beb2edf
TH
1310 struct timer_list *timer = &dwork->timer;
1311 struct work_struct *work = &dwork->work;
1312 unsigned int lcpu;
1313
1314 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1315 timer->data != (unsigned long)dwork);
fc4b514f
TH
1316 WARN_ON_ONCE(timer_pending(timer));
1317 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1318
8852aac2
TH
1319 /*
1320 * If @delay is 0, queue @dwork->work immediately. This is for
1321 * both optimization and correctness. The earliest @timer can
1322 * expire is on the closest next tick and delayed_work users depend
1323 * on that there's no such delay when @delay is 0.
1324 */
1325 if (!delay) {
1326 __queue_work(cpu, wq, &dwork->work);
1327 return;
1328 }
1329
7beb2edf 1330 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1331
7beb2edf
TH
1332 /*
1333 * This stores cwq for the moment, for the timer_fn. Note that the
1334 * work's gcwq is preserved to allow reentrance detection for
1335 * delayed works.
1336 */
1337 if (!(wq->flags & WQ_UNBOUND)) {
1338 struct global_cwq *gcwq = get_work_gcwq(work);
1339
e42986de
JK
1340 /*
1341 * If we cannot get the last gcwq from @work directly,
1342 * select the last CPU such that it avoids unnecessarily
1343 * triggering non-reentrancy check in __queue_work().
1344 */
1345 lcpu = cpu;
1346 if (gcwq)
7beb2edf 1347 lcpu = gcwq->cpu;
e42986de 1348 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1349 lcpu = raw_smp_processor_id();
1350 } else {
1351 lcpu = WORK_CPU_UNBOUND;
1352 }
1353
1354 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1355
1265057f 1356 dwork->cpu = cpu;
7beb2edf
TH
1357 timer->expires = jiffies + delay;
1358
1359 if (unlikely(cpu != WORK_CPU_UNBOUND))
1360 add_timer_on(timer, cpu);
1361 else
1362 add_timer(timer);
1da177e4
LT
1363}
1364
0fcb78c2
REB
1365/**
1366 * queue_delayed_work_on - queue work on specific CPU after delay
1367 * @cpu: CPU number to execute work on
1368 * @wq: workqueue to use
af9997e4 1369 * @dwork: work to queue
0fcb78c2
REB
1370 * @delay: number of jiffies to wait before queueing
1371 *
715f1300
TH
1372 * Returns %false if @work was already on a queue, %true otherwise. If
1373 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1374 * execution.
0fcb78c2 1375 */
d4283e93
TH
1376bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1377 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1378{
52bad64d 1379 struct work_struct *work = &dwork->work;
d4283e93 1380 bool ret = false;
8930caba 1381 unsigned long flags;
7a6bc1cd 1382
8930caba
TH
1383 /* read the comment in __queue_work() */
1384 local_irq_save(flags);
7a6bc1cd 1385
22df02bb 1386 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1387 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1388 ret = true;
7a6bc1cd 1389 }
8a3e77cc 1390
8930caba 1391 local_irq_restore(flags);
7a6bc1cd
VP
1392 return ret;
1393}
ae90dd5d 1394EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1395
0a13c00e
TH
1396/**
1397 * queue_delayed_work - queue work on a workqueue after delay
1398 * @wq: workqueue to use
1399 * @dwork: delayable work to queue
1400 * @delay: number of jiffies to wait before queueing
1401 *
715f1300 1402 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1403 */
d4283e93 1404bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1405 struct delayed_work *dwork, unsigned long delay)
1406{
57469821 1407 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1408}
1409EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1410
8376fe22
TH
1411/**
1412 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1413 * @cpu: CPU number to execute work on
1414 * @wq: workqueue to use
1415 * @dwork: work to queue
1416 * @delay: number of jiffies to wait before queueing
1417 *
1418 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1419 * modify @dwork's timer so that it expires after @delay. If @delay is
1420 * zero, @work is guaranteed to be scheduled immediately regardless of its
1421 * current state.
1422 *
1423 * Returns %false if @dwork was idle and queued, %true if @dwork was
1424 * pending and its timer was modified.
1425 *
e0aecdd8 1426 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1427 * See try_to_grab_pending() for details.
1428 */
1429bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1430 struct delayed_work *dwork, unsigned long delay)
1431{
1432 unsigned long flags;
1433 int ret;
c7fc77f7 1434
8376fe22
TH
1435 do {
1436 ret = try_to_grab_pending(&dwork->work, true, &flags);
1437 } while (unlikely(ret == -EAGAIN));
63bc0362 1438
8376fe22
TH
1439 if (likely(ret >= 0)) {
1440 __queue_delayed_work(cpu, wq, dwork, delay);
1441 local_irq_restore(flags);
7a6bc1cd 1442 }
8376fe22
TH
1443
1444 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1445 return ret;
1446}
8376fe22
TH
1447EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1448
1449/**
1450 * mod_delayed_work - modify delay of or queue a delayed work
1451 * @wq: workqueue to use
1452 * @dwork: work to queue
1453 * @delay: number of jiffies to wait before queueing
1454 *
1455 * mod_delayed_work_on() on local CPU.
1456 */
1457bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1458 unsigned long delay)
1459{
1460 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1461}
1462EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1463
c8e55f36
TH
1464/**
1465 * worker_enter_idle - enter idle state
1466 * @worker: worker which is entering idle state
1467 *
1468 * @worker is entering idle state. Update stats and idle timer if
1469 * necessary.
1470 *
1471 * LOCKING:
1472 * spin_lock_irq(gcwq->lock).
1473 */
1474static void worker_enter_idle(struct worker *worker)
1da177e4 1475{
bd7bdd43
TH
1476 struct worker_pool *pool = worker->pool;
1477 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1478
1479 BUG_ON(worker->flags & WORKER_IDLE);
1480 BUG_ON(!list_empty(&worker->entry) &&
1481 (worker->hentry.next || worker->hentry.pprev));
1482
cb444766
TH
1483 /* can't use worker_set_flags(), also called from start_worker() */
1484 worker->flags |= WORKER_IDLE;
bd7bdd43 1485 pool->nr_idle++;
e22bee78 1486 worker->last_active = jiffies;
c8e55f36
TH
1487
1488 /* idle_list is LIFO */
bd7bdd43 1489 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1490
628c78e7
TH
1491 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1492 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1493
544ecf31 1494 /*
628c78e7
TH
1495 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1496 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1497 * nr_running, the warning may trigger spuriously. Check iff
1498 * unbind is not in progress.
544ecf31 1499 */
628c78e7 1500 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1501 pool->nr_workers == pool->nr_idle &&
63d95a91 1502 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1503}
1504
1505/**
1506 * worker_leave_idle - leave idle state
1507 * @worker: worker which is leaving idle state
1508 *
1509 * @worker is leaving idle state. Update stats.
1510 *
1511 * LOCKING:
1512 * spin_lock_irq(gcwq->lock).
1513 */
1514static void worker_leave_idle(struct worker *worker)
1515{
bd7bdd43 1516 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1517
1518 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1519 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1520 pool->nr_idle--;
c8e55f36
TH
1521 list_del_init(&worker->entry);
1522}
1523
e22bee78
TH
1524/**
1525 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1526 * @worker: self
1527 *
1528 * Works which are scheduled while the cpu is online must at least be
1529 * scheduled to a worker which is bound to the cpu so that if they are
1530 * flushed from cpu callbacks while cpu is going down, they are
1531 * guaranteed to execute on the cpu.
1532 *
1533 * This function is to be used by rogue workers and rescuers to bind
1534 * themselves to the target cpu and may race with cpu going down or
1535 * coming online. kthread_bind() can't be used because it may put the
1536 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1537 * verbatim as it's best effort and blocking and gcwq may be
1538 * [dis]associated in the meantime.
1539 *
f2d5a0ee
TH
1540 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1541 * binding against %GCWQ_DISASSOCIATED which is set during
1542 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1543 * enters idle state or fetches works without dropping lock, it can
1544 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1545 *
1546 * CONTEXT:
1547 * Might sleep. Called without any lock but returns with gcwq->lock
1548 * held.
1549 *
1550 * RETURNS:
1551 * %true if the associated gcwq is online (@worker is successfully
1552 * bound), %false if offline.
1553 */
1554static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1555__acquires(&gcwq->lock)
e22bee78 1556{
bd7bdd43 1557 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1558 struct task_struct *task = worker->task;
1559
1560 while (true) {
4e6045f1 1561 /*
e22bee78
TH
1562 * The following call may fail, succeed or succeed
1563 * without actually migrating the task to the cpu if
1564 * it races with cpu hotunplug operation. Verify
1565 * against GCWQ_DISASSOCIATED.
4e6045f1 1566 */
f3421797
TH
1567 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1568 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1569
1570 spin_lock_irq(&gcwq->lock);
1571 if (gcwq->flags & GCWQ_DISASSOCIATED)
1572 return false;
1573 if (task_cpu(task) == gcwq->cpu &&
1574 cpumask_equal(&current->cpus_allowed,
1575 get_cpu_mask(gcwq->cpu)))
1576 return true;
1577 spin_unlock_irq(&gcwq->lock);
1578
5035b20f
TH
1579 /*
1580 * We've raced with CPU hot[un]plug. Give it a breather
1581 * and retry migration. cond_resched() is required here;
1582 * otherwise, we might deadlock against cpu_stop trying to
1583 * bring down the CPU on non-preemptive kernel.
1584 */
e22bee78 1585 cpu_relax();
5035b20f 1586 cond_resched();
e22bee78
TH
1587 }
1588}
1589
25511a47 1590/*
ea1abd61 1591 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1592 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1593 */
1594static void idle_worker_rebind(struct worker *worker)
1595{
1596 struct global_cwq *gcwq = worker->pool->gcwq;
1597
5f7dabfd
LJ
1598 /* CPU may go down again inbetween, clear UNBOUND only on success */
1599 if (worker_maybe_bind_and_lock(worker))
1600 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1601
ea1abd61
LJ
1602 /* rebind complete, become available again */
1603 list_add(&worker->entry, &worker->pool->idle_list);
1604 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1605}
1606
e22bee78 1607/*
25511a47 1608 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1609 * the associated cpu which is coming back online. This is scheduled by
1610 * cpu up but can race with other cpu hotplug operations and may be
1611 * executed twice without intervening cpu down.
e22bee78 1612 */
25511a47 1613static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1614{
1615 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1616 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1617
eab6d828
LJ
1618 if (worker_maybe_bind_and_lock(worker))
1619 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1620
1621 spin_unlock_irq(&gcwq->lock);
1622}
1623
25511a47
TH
1624/**
1625 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1626 * @gcwq: gcwq of interest
1627 *
1628 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1629 * is different for idle and busy ones.
1630 *
ea1abd61
LJ
1631 * Idle ones will be removed from the idle_list and woken up. They will
1632 * add themselves back after completing rebind. This ensures that the
1633 * idle_list doesn't contain any unbound workers when re-bound busy workers
1634 * try to perform local wake-ups for concurrency management.
25511a47 1635 *
ea1abd61
LJ
1636 * Busy workers can rebind after they finish their current work items.
1637 * Queueing the rebind work item at the head of the scheduled list is
1638 * enough. Note that nr_running will be properly bumped as busy workers
1639 * rebind.
25511a47 1640 *
ea1abd61
LJ
1641 * On return, all non-manager workers are scheduled for rebind - see
1642 * manage_workers() for the manager special case. Any idle worker
1643 * including the manager will not appear on @idle_list until rebind is
1644 * complete, making local wake-ups safe.
25511a47
TH
1645 */
1646static void rebind_workers(struct global_cwq *gcwq)
25511a47 1647{
25511a47 1648 struct worker_pool *pool;
ea1abd61 1649 struct worker *worker, *n;
25511a47
TH
1650 struct hlist_node *pos;
1651 int i;
1652
1653 lockdep_assert_held(&gcwq->lock);
1654
1655 for_each_worker_pool(pool, gcwq)
b2eb83d1 1656 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1657
5f7dabfd 1658 /* dequeue and kick idle ones */
25511a47 1659 for_each_worker_pool(pool, gcwq) {
ea1abd61 1660 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1661 /*
1662 * idle workers should be off @pool->idle_list
1663 * until rebind is complete to avoid receiving
1664 * premature local wake-ups.
1665 */
1666 list_del_init(&worker->entry);
25511a47 1667
5f7dabfd
LJ
1668 /*
1669 * worker_thread() will see the above dequeuing
1670 * and call idle_worker_rebind().
1671 */
25511a47
TH
1672 wake_up_process(worker->task);
1673 }
1674 }
1675
ea1abd61 1676 /* rebind busy workers */
25511a47
TH
1677 for_each_busy_worker(worker, i, pos, gcwq) {
1678 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1679 struct workqueue_struct *wq;
25511a47
TH
1680
1681 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1682 work_data_bits(rebind_work)))
1683 continue;
1684
25511a47 1685 debug_work_activate(rebind_work);
90beca5d 1686
e2b6a6d5
JK
1687 /*
1688 * wq doesn't really matter but let's keep @worker->pool
1689 * and @cwq->pool consistent for sanity.
1690 */
e34cdddb 1691 if (std_worker_pool_pri(worker->pool))
e2b6a6d5
JK
1692 wq = system_highpri_wq;
1693 else
1694 wq = system_wq;
ec58815a 1695
e2b6a6d5
JK
1696 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1697 worker->scheduled.next,
1698 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1699 }
25511a47
TH
1700}
1701
c34056a3
TH
1702static struct worker *alloc_worker(void)
1703{
1704 struct worker *worker;
1705
1706 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1707 if (worker) {
1708 INIT_LIST_HEAD(&worker->entry);
affee4b2 1709 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1710 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1711 /* on creation a worker is in !idle && prep state */
1712 worker->flags = WORKER_PREP;
c8e55f36 1713 }
c34056a3
TH
1714 return worker;
1715}
1716
1717/**
1718 * create_worker - create a new workqueue worker
63d95a91 1719 * @pool: pool the new worker will belong to
c34056a3 1720 *
63d95a91 1721 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1722 * can be started by calling start_worker() or destroyed using
1723 * destroy_worker().
1724 *
1725 * CONTEXT:
1726 * Might sleep. Does GFP_KERNEL allocations.
1727 *
1728 * RETURNS:
1729 * Pointer to the newly created worker.
1730 */
bc2ae0f5 1731static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1732{
63d95a91 1733 struct global_cwq *gcwq = pool->gcwq;
e34cdddb 1734 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1735 struct worker *worker = NULL;
f3421797 1736 int id = -1;
c34056a3 1737
8b03ae3c 1738 spin_lock_irq(&gcwq->lock);
bd7bdd43 1739 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1740 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1741 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1742 goto fail;
8b03ae3c 1743 spin_lock_irq(&gcwq->lock);
c34056a3 1744 }
8b03ae3c 1745 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1746
1747 worker = alloc_worker();
1748 if (!worker)
1749 goto fail;
1750
bd7bdd43 1751 worker->pool = pool;
c34056a3
TH
1752 worker->id = id;
1753
bc2ae0f5 1754 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1755 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1756 worker, cpu_to_node(gcwq->cpu),
1757 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1758 else
1759 worker->task = kthread_create(worker_thread, worker,
3270476a 1760 "kworker/u:%d%s", id, pri);
c34056a3
TH
1761 if (IS_ERR(worker->task))
1762 goto fail;
1763
e34cdddb 1764 if (std_worker_pool_pri(pool))
3270476a
TH
1765 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1766
db7bccf4 1767 /*
bc2ae0f5
TH
1768 * Determine CPU binding of the new worker depending on
1769 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1770 * flag remains stable across this function. See the comments
1771 * above the flag definition for details.
1772 *
1773 * As an unbound worker may later become a regular one if CPU comes
1774 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1775 */
bc2ae0f5 1776 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1777 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1778 } else {
db7bccf4 1779 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1780 worker->flags |= WORKER_UNBOUND;
f3421797 1781 }
c34056a3
TH
1782
1783 return worker;
1784fail:
1785 if (id >= 0) {
8b03ae3c 1786 spin_lock_irq(&gcwq->lock);
bd7bdd43 1787 ida_remove(&pool->worker_ida, id);
8b03ae3c 1788 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1789 }
1790 kfree(worker);
1791 return NULL;
1792}
1793
1794/**
1795 * start_worker - start a newly created worker
1796 * @worker: worker to start
1797 *
c8e55f36 1798 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1799 *
1800 * CONTEXT:
8b03ae3c 1801 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1802 */
1803static void start_worker(struct worker *worker)
1804{
cb444766 1805 worker->flags |= WORKER_STARTED;
bd7bdd43 1806 worker->pool->nr_workers++;
c8e55f36 1807 worker_enter_idle(worker);
c34056a3
TH
1808 wake_up_process(worker->task);
1809}
1810
1811/**
1812 * destroy_worker - destroy a workqueue worker
1813 * @worker: worker to be destroyed
1814 *
c8e55f36
TH
1815 * Destroy @worker and adjust @gcwq stats accordingly.
1816 *
1817 * CONTEXT:
1818 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1819 */
1820static void destroy_worker(struct worker *worker)
1821{
bd7bdd43
TH
1822 struct worker_pool *pool = worker->pool;
1823 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1824 int id = worker->id;
1825
1826 /* sanity check frenzy */
1827 BUG_ON(worker->current_work);
affee4b2 1828 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1829
c8e55f36 1830 if (worker->flags & WORKER_STARTED)
bd7bdd43 1831 pool->nr_workers--;
c8e55f36 1832 if (worker->flags & WORKER_IDLE)
bd7bdd43 1833 pool->nr_idle--;
c8e55f36
TH
1834
1835 list_del_init(&worker->entry);
cb444766 1836 worker->flags |= WORKER_DIE;
c8e55f36
TH
1837
1838 spin_unlock_irq(&gcwq->lock);
1839
c34056a3
TH
1840 kthread_stop(worker->task);
1841 kfree(worker);
1842
8b03ae3c 1843 spin_lock_irq(&gcwq->lock);
bd7bdd43 1844 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1845}
1846
63d95a91 1847static void idle_worker_timeout(unsigned long __pool)
e22bee78 1848{
63d95a91
TH
1849 struct worker_pool *pool = (void *)__pool;
1850 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1851
1852 spin_lock_irq(&gcwq->lock);
1853
63d95a91 1854 if (too_many_workers(pool)) {
e22bee78
TH
1855 struct worker *worker;
1856 unsigned long expires;
1857
1858 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1859 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1860 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1861
1862 if (time_before(jiffies, expires))
63d95a91 1863 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1864 else {
1865 /* it's been idle for too long, wake up manager */
11ebea50 1866 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1867 wake_up_worker(pool);
d5abe669 1868 }
e22bee78
TH
1869 }
1870
1871 spin_unlock_irq(&gcwq->lock);
1872}
d5abe669 1873
e22bee78
TH
1874static bool send_mayday(struct work_struct *work)
1875{
1876 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1877 struct workqueue_struct *wq = cwq->wq;
f3421797 1878 unsigned int cpu;
e22bee78
TH
1879
1880 if (!(wq->flags & WQ_RESCUER))
1881 return false;
1882
1883 /* mayday mayday mayday */
bd7bdd43 1884 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1885 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1886 if (cpu == WORK_CPU_UNBOUND)
1887 cpu = 0;
f2e005aa 1888 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1889 wake_up_process(wq->rescuer->task);
1890 return true;
1891}
1892
63d95a91 1893static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1894{
63d95a91
TH
1895 struct worker_pool *pool = (void *)__pool;
1896 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1897 struct work_struct *work;
1898
1899 spin_lock_irq(&gcwq->lock);
1900
63d95a91 1901 if (need_to_create_worker(pool)) {
e22bee78
TH
1902 /*
1903 * We've been trying to create a new worker but
1904 * haven't been successful. We might be hitting an
1905 * allocation deadlock. Send distress signals to
1906 * rescuers.
1907 */
63d95a91 1908 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1909 send_mayday(work);
1da177e4 1910 }
e22bee78
TH
1911
1912 spin_unlock_irq(&gcwq->lock);
1913
63d95a91 1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1915}
1916
e22bee78
TH
1917/**
1918 * maybe_create_worker - create a new worker if necessary
63d95a91 1919 * @pool: pool to create a new worker for
e22bee78 1920 *
63d95a91 1921 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1922 * have at least one idle worker on return from this function. If
1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1924 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1925 * possible allocation deadlock.
1926 *
1927 * On return, need_to_create_worker() is guaranteed to be false and
1928 * may_start_working() true.
1929 *
1930 * LOCKING:
1931 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1932 * multiple times. Does GFP_KERNEL allocations. Called only from
1933 * manager.
1934 *
1935 * RETURNS:
1936 * false if no action was taken and gcwq->lock stayed locked, true
1937 * otherwise.
1938 */
63d95a91 1939static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1940__releases(&gcwq->lock)
1941__acquires(&gcwq->lock)
1da177e4 1942{
63d95a91
TH
1943 struct global_cwq *gcwq = pool->gcwq;
1944
1945 if (!need_to_create_worker(pool))
e22bee78
TH
1946 return false;
1947restart:
9f9c2364
TH
1948 spin_unlock_irq(&gcwq->lock);
1949
e22bee78 1950 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1951 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1952
1953 while (true) {
1954 struct worker *worker;
1955
bc2ae0f5 1956 worker = create_worker(pool);
e22bee78 1957 if (worker) {
63d95a91 1958 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1959 spin_lock_irq(&gcwq->lock);
1960 start_worker(worker);
63d95a91 1961 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1962 return true;
1963 }
1964
63d95a91 1965 if (!need_to_create_worker(pool))
e22bee78 1966 break;
1da177e4 1967
e22bee78
TH
1968 __set_current_state(TASK_INTERRUPTIBLE);
1969 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1970
63d95a91 1971 if (!need_to_create_worker(pool))
e22bee78
TH
1972 break;
1973 }
1974
63d95a91 1975 del_timer_sync(&pool->mayday_timer);
e22bee78 1976 spin_lock_irq(&gcwq->lock);
63d95a91 1977 if (need_to_create_worker(pool))
e22bee78
TH
1978 goto restart;
1979 return true;
1980}
1981
1982/**
1983 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1984 * @pool: pool to destroy workers for
e22bee78 1985 *
63d95a91 1986 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1987 * IDLE_WORKER_TIMEOUT.
1988 *
1989 * LOCKING:
1990 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1991 * multiple times. Called only from manager.
1992 *
1993 * RETURNS:
1994 * false if no action was taken and gcwq->lock stayed locked, true
1995 * otherwise.
1996 */
63d95a91 1997static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1998{
1999 bool ret = false;
1da177e4 2000
63d95a91 2001 while (too_many_workers(pool)) {
e22bee78
TH
2002 struct worker *worker;
2003 unsigned long expires;
3af24433 2004
63d95a91 2005 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2006 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2007
e22bee78 2008 if (time_before(jiffies, expires)) {
63d95a91 2009 mod_timer(&pool->idle_timer, expires);
3af24433 2010 break;
e22bee78 2011 }
1da177e4 2012
e22bee78
TH
2013 destroy_worker(worker);
2014 ret = true;
1da177e4 2015 }
1e19ffc6 2016
e22bee78 2017 return ret;
1e19ffc6
TH
2018}
2019
73f53c4a 2020/**
e22bee78
TH
2021 * manage_workers - manage worker pool
2022 * @worker: self
73f53c4a 2023 *
e22bee78
TH
2024 * Assume the manager role and manage gcwq worker pool @worker belongs
2025 * to. At any given time, there can be only zero or one manager per
2026 * gcwq. The exclusion is handled automatically by this function.
2027 *
2028 * The caller can safely start processing works on false return. On
2029 * true return, it's guaranteed that need_to_create_worker() is false
2030 * and may_start_working() is true.
73f53c4a
TH
2031 *
2032 * CONTEXT:
e22bee78
TH
2033 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2034 * multiple times. Does GFP_KERNEL allocations.
2035 *
2036 * RETURNS:
2037 * false if no action was taken and gcwq->lock stayed locked, true if
2038 * some action was taken.
73f53c4a 2039 */
e22bee78 2040static bool manage_workers(struct worker *worker)
73f53c4a 2041{
63d95a91 2042 struct worker_pool *pool = worker->pool;
e22bee78 2043 bool ret = false;
73f53c4a 2044
ee378aa4 2045 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2046 return ret;
1e19ffc6 2047
552a37e9 2048 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2049
ee378aa4
LJ
2050 /*
2051 * To simplify both worker management and CPU hotplug, hold off
2052 * management while hotplug is in progress. CPU hotplug path can't
2053 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2054 * lead to idle worker depletion (all become busy thinking someone
2055 * else is managing) which in turn can result in deadlock under
b2eb83d1 2056 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2057 * manager against CPU hotplug.
2058 *
b2eb83d1 2059 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2060 * progress. trylock first without dropping @gcwq->lock.
2061 */
b2eb83d1 2062 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2063 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2064 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2065 /*
2066 * CPU hotplug could have happened while we were waiting
b2eb83d1 2067 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2068 * because manager isn't either on idle or busy list, and
2069 * @gcwq's state and ours could have deviated.
2070 *
b2eb83d1 2071 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2072 * simply try to bind. It will succeed or fail depending
2073 * on @gcwq's current state. Try it and adjust
2074 * %WORKER_UNBOUND accordingly.
2075 */
2076 if (worker_maybe_bind_and_lock(worker))
2077 worker->flags &= ~WORKER_UNBOUND;
2078 else
2079 worker->flags |= WORKER_UNBOUND;
73f53c4a 2080
ee378aa4
LJ
2081 ret = true;
2082 }
73f53c4a 2083
11ebea50 2084 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2085
2086 /*
e22bee78
TH
2087 * Destroy and then create so that may_start_working() is true
2088 * on return.
73f53c4a 2089 */
63d95a91
TH
2090 ret |= maybe_destroy_workers(pool);
2091 ret |= maybe_create_worker(pool);
e22bee78 2092
552a37e9 2093 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2094 mutex_unlock(&pool->assoc_mutex);
e22bee78 2095 return ret;
73f53c4a
TH
2096}
2097
a62428c0
TH
2098/**
2099 * process_one_work - process single work
c34056a3 2100 * @worker: self
a62428c0
TH
2101 * @work: work to process
2102 *
2103 * Process @work. This function contains all the logics necessary to
2104 * process a single work including synchronization against and
2105 * interaction with other workers on the same cpu, queueing and
2106 * flushing. As long as context requirement is met, any worker can
2107 * call this function to process a work.
2108 *
2109 * CONTEXT:
8b03ae3c 2110 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2111 */
c34056a3 2112static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2113__releases(&gcwq->lock)
2114__acquires(&gcwq->lock)
a62428c0 2115{
7e11629d 2116 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2117 struct worker_pool *pool = worker->pool;
2118 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2119 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2120 int work_color;
7e11629d 2121 struct worker *collision;
a62428c0
TH
2122#ifdef CONFIG_LOCKDEP
2123 /*
2124 * It is permissible to free the struct work_struct from
2125 * inside the function that is called from it, this we need to
2126 * take into account for lockdep too. To avoid bogus "held
2127 * lock freed" warnings as well as problems when looking into
2128 * work->lockdep_map, make a copy and use that here.
2129 */
4d82a1de
PZ
2130 struct lockdep_map lockdep_map;
2131
2132 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2133#endif
6fec10a1
TH
2134 /*
2135 * Ensure we're on the correct CPU. DISASSOCIATED test is
2136 * necessary to avoid spurious warnings from rescuers servicing the
2137 * unbound or a disassociated gcwq.
2138 */
5f7dabfd 2139 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
6fec10a1 2140 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2141 raw_smp_processor_id() != gcwq->cpu);
2142
7e11629d
TH
2143 /*
2144 * A single work shouldn't be executed concurrently by
2145 * multiple workers on a single cpu. Check whether anyone is
2146 * already processing the work. If so, defer the work to the
2147 * currently executing one.
2148 */
42f8570f 2149 collision = find_worker_executing_work(gcwq, work);
7e11629d
TH
2150 if (unlikely(collision)) {
2151 move_linked_works(work, &collision->scheduled, NULL);
2152 return;
2153 }
2154
8930caba 2155 /* claim and dequeue */
a62428c0 2156 debug_work_deactivate(work);
023f27d3 2157 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2158 worker->current_work = work;
a2c1c57b 2159 worker->current_func = work->func;
8cca0eea 2160 worker->current_cwq = cwq;
73f53c4a 2161 work_color = get_work_color(work);
7a22ad75 2162
a62428c0
TH
2163 list_del_init(&work->entry);
2164
fb0e7beb
TH
2165 /*
2166 * CPU intensive works don't participate in concurrency
2167 * management. They're the scheduler's responsibility.
2168 */
2169 if (unlikely(cpu_intensive))
2170 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2171
974271c4
TH
2172 /*
2173 * Unbound gcwq isn't concurrency managed and work items should be
2174 * executed ASAP. Wake up another worker if necessary.
2175 */
63d95a91
TH
2176 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2177 wake_up_worker(pool);
974271c4 2178
8930caba 2179 /*
23657bb1
TH
2180 * Record the last CPU and clear PENDING which should be the last
2181 * update to @work. Also, do this inside @gcwq->lock so that
2182 * PENDING and queued state changes happen together while IRQ is
2183 * disabled.
8930caba 2184 */
8930caba 2185 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2186
8b03ae3c 2187 spin_unlock_irq(&gcwq->lock);
a62428c0 2188
e159489b 2189 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2190 lock_map_acquire(&lockdep_map);
e36c886a 2191 trace_workqueue_execute_start(work);
a2c1c57b 2192 worker->current_func(work);
e36c886a
AV
2193 /*
2194 * While we must be careful to not use "work" after this, the trace
2195 * point will only record its address.
2196 */
2197 trace_workqueue_execute_end(work);
a62428c0
TH
2198 lock_map_release(&lockdep_map);
2199 lock_map_release(&cwq->wq->lockdep_map);
2200
2201 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2202 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2203 " last function: %pf\n",
a2c1c57b
TH
2204 current->comm, preempt_count(), task_pid_nr(current),
2205 worker->current_func);
a62428c0
TH
2206 debug_show_held_locks(current);
2207 dump_stack();
2208 }
2209
8b03ae3c 2210 spin_lock_irq(&gcwq->lock);
a62428c0 2211
fb0e7beb
TH
2212 /* clear cpu intensive status */
2213 if (unlikely(cpu_intensive))
2214 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2215
a62428c0 2216 /* we're done with it, release */
42f8570f 2217 hash_del(&worker->hentry);
c34056a3 2218 worker->current_work = NULL;
a2c1c57b 2219 worker->current_func = NULL;
8cca0eea 2220 worker->current_cwq = NULL;
b3f9f405 2221 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2222}
2223
affee4b2
TH
2224/**
2225 * process_scheduled_works - process scheduled works
2226 * @worker: self
2227 *
2228 * Process all scheduled works. Please note that the scheduled list
2229 * may change while processing a work, so this function repeatedly
2230 * fetches a work from the top and executes it.
2231 *
2232 * CONTEXT:
8b03ae3c 2233 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2234 * multiple times.
2235 */
2236static void process_scheduled_works(struct worker *worker)
1da177e4 2237{
affee4b2
TH
2238 while (!list_empty(&worker->scheduled)) {
2239 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2240 struct work_struct, entry);
c34056a3 2241 process_one_work(worker, work);
1da177e4 2242 }
1da177e4
LT
2243}
2244
4690c4ab
TH
2245/**
2246 * worker_thread - the worker thread function
c34056a3 2247 * @__worker: self
4690c4ab 2248 *
e22bee78
TH
2249 * The gcwq worker thread function. There's a single dynamic pool of
2250 * these per each cpu. These workers process all works regardless of
2251 * their specific target workqueue. The only exception is works which
2252 * belong to workqueues with a rescuer which will be explained in
2253 * rescuer_thread().
4690c4ab 2254 */
c34056a3 2255static int worker_thread(void *__worker)
1da177e4 2256{
c34056a3 2257 struct worker *worker = __worker;
bd7bdd43
TH
2258 struct worker_pool *pool = worker->pool;
2259 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2260
e22bee78
TH
2261 /* tell the scheduler that this is a workqueue worker */
2262 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2263woke_up:
c8e55f36 2264 spin_lock_irq(&gcwq->lock);
1da177e4 2265
5f7dabfd
LJ
2266 /* we are off idle list if destruction or rebind is requested */
2267 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2268 spin_unlock_irq(&gcwq->lock);
25511a47 2269
5f7dabfd 2270 /* if DIE is set, destruction is requested */
25511a47
TH
2271 if (worker->flags & WORKER_DIE) {
2272 worker->task->flags &= ~PF_WQ_WORKER;
2273 return 0;
2274 }
2275
5f7dabfd 2276 /* otherwise, rebind */
25511a47
TH
2277 idle_worker_rebind(worker);
2278 goto woke_up;
c8e55f36 2279 }
affee4b2 2280
c8e55f36 2281 worker_leave_idle(worker);
db7bccf4 2282recheck:
e22bee78 2283 /* no more worker necessary? */
63d95a91 2284 if (!need_more_worker(pool))
e22bee78
TH
2285 goto sleep;
2286
2287 /* do we need to manage? */
63d95a91 2288 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2289 goto recheck;
2290
c8e55f36
TH
2291 /*
2292 * ->scheduled list can only be filled while a worker is
2293 * preparing to process a work or actually processing it.
2294 * Make sure nobody diddled with it while I was sleeping.
2295 */
2296 BUG_ON(!list_empty(&worker->scheduled));
2297
e22bee78
TH
2298 /*
2299 * When control reaches this point, we're guaranteed to have
2300 * at least one idle worker or that someone else has already
2301 * assumed the manager role.
2302 */
2303 worker_clr_flags(worker, WORKER_PREP);
2304
2305 do {
c8e55f36 2306 struct work_struct *work =
bd7bdd43 2307 list_first_entry(&pool->worklist,
c8e55f36
TH
2308 struct work_struct, entry);
2309
2310 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2311 /* optimization path, not strictly necessary */
2312 process_one_work(worker, work);
2313 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2314 process_scheduled_works(worker);
c8e55f36
TH
2315 } else {
2316 move_linked_works(work, &worker->scheduled, NULL);
2317 process_scheduled_works(worker);
affee4b2 2318 }
63d95a91 2319 } while (keep_working(pool));
e22bee78
TH
2320
2321 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2322sleep:
63d95a91 2323 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2324 goto recheck;
d313dd85 2325
c8e55f36 2326 /*
e22bee78
TH
2327 * gcwq->lock is held and there's no work to process and no
2328 * need to manage, sleep. Workers are woken up only while
2329 * holding gcwq->lock or from local cpu, so setting the
2330 * current state before releasing gcwq->lock is enough to
2331 * prevent losing any event.
c8e55f36
TH
2332 */
2333 worker_enter_idle(worker);
2334 __set_current_state(TASK_INTERRUPTIBLE);
2335 spin_unlock_irq(&gcwq->lock);
2336 schedule();
2337 goto woke_up;
1da177e4
LT
2338}
2339
e22bee78
TH
2340/**
2341 * rescuer_thread - the rescuer thread function
111c225a 2342 * @__rescuer: self
e22bee78
TH
2343 *
2344 * Workqueue rescuer thread function. There's one rescuer for each
2345 * workqueue which has WQ_RESCUER set.
2346 *
2347 * Regular work processing on a gcwq may block trying to create a new
2348 * worker which uses GFP_KERNEL allocation which has slight chance of
2349 * developing into deadlock if some works currently on the same queue
2350 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2351 * the problem rescuer solves.
2352 *
2353 * When such condition is possible, the gcwq summons rescuers of all
2354 * workqueues which have works queued on the gcwq and let them process
2355 * those works so that forward progress can be guaranteed.
2356 *
2357 * This should happen rarely.
2358 */
111c225a 2359static int rescuer_thread(void *__rescuer)
e22bee78 2360{
111c225a
TH
2361 struct worker *rescuer = __rescuer;
2362 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2363 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2364 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2365 unsigned int cpu;
2366
2367 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2368
2369 /*
2370 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2371 * doesn't participate in concurrency management.
2372 */
2373 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2374repeat:
2375 set_current_state(TASK_INTERRUPTIBLE);
2376
412d32e6
MG
2377 if (kthread_should_stop()) {
2378 __set_current_state(TASK_RUNNING);
111c225a 2379 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2380 return 0;
412d32e6 2381 }
e22bee78 2382
f3421797
TH
2383 /*
2384 * See whether any cpu is asking for help. Unbounded
2385 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2386 */
f2e005aa 2387 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2388 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2389 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2390 struct worker_pool *pool = cwq->pool;
2391 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2392 struct work_struct *work, *n;
2393
2394 __set_current_state(TASK_RUNNING);
f2e005aa 2395 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2396
2397 /* migrate to the target cpu if possible */
bd7bdd43 2398 rescuer->pool = pool;
e22bee78
TH
2399 worker_maybe_bind_and_lock(rescuer);
2400
2401 /*
2402 * Slurp in all works issued via this workqueue and
2403 * process'em.
2404 */
2405 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2406 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2407 if (get_work_cwq(work) == cwq)
2408 move_linked_works(work, scheduled, &n);
2409
2410 process_scheduled_works(rescuer);
7576958a
TH
2411
2412 /*
2413 * Leave this gcwq. If keep_working() is %true, notify a
2414 * regular worker; otherwise, we end up with 0 concurrency
2415 * and stalling the execution.
2416 */
63d95a91
TH
2417 if (keep_working(pool))
2418 wake_up_worker(pool);
7576958a 2419
e22bee78
TH
2420 spin_unlock_irq(&gcwq->lock);
2421 }
2422
111c225a
TH
2423 /* rescuers should never participate in concurrency management */
2424 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2425 schedule();
2426 goto repeat;
1da177e4
LT
2427}
2428
fc2e4d70
ON
2429struct wq_barrier {
2430 struct work_struct work;
2431 struct completion done;
2432};
2433
2434static void wq_barrier_func(struct work_struct *work)
2435{
2436 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2437 complete(&barr->done);
2438}
2439
4690c4ab
TH
2440/**
2441 * insert_wq_barrier - insert a barrier work
2442 * @cwq: cwq to insert barrier into
2443 * @barr: wq_barrier to insert
affee4b2
TH
2444 * @target: target work to attach @barr to
2445 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2446 *
affee4b2
TH
2447 * @barr is linked to @target such that @barr is completed only after
2448 * @target finishes execution. Please note that the ordering
2449 * guarantee is observed only with respect to @target and on the local
2450 * cpu.
2451 *
2452 * Currently, a queued barrier can't be canceled. This is because
2453 * try_to_grab_pending() can't determine whether the work to be
2454 * grabbed is at the head of the queue and thus can't clear LINKED
2455 * flag of the previous work while there must be a valid next work
2456 * after a work with LINKED flag set.
2457 *
2458 * Note that when @worker is non-NULL, @target may be modified
2459 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2460 *
2461 * CONTEXT:
8b03ae3c 2462 * spin_lock_irq(gcwq->lock).
4690c4ab 2463 */
83c22520 2464static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2465 struct wq_barrier *barr,
2466 struct work_struct *target, struct worker *worker)
fc2e4d70 2467{
affee4b2
TH
2468 struct list_head *head;
2469 unsigned int linked = 0;
2470
dc186ad7 2471 /*
8b03ae3c 2472 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2473 * as we know for sure that this will not trigger any of the
2474 * checks and call back into the fixup functions where we
2475 * might deadlock.
2476 */
ca1cab37 2477 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2478 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2479 init_completion(&barr->done);
83c22520 2480
affee4b2
TH
2481 /*
2482 * If @target is currently being executed, schedule the
2483 * barrier to the worker; otherwise, put it after @target.
2484 */
2485 if (worker)
2486 head = worker->scheduled.next;
2487 else {
2488 unsigned long *bits = work_data_bits(target);
2489
2490 head = target->entry.next;
2491 /* there can already be other linked works, inherit and set */
2492 linked = *bits & WORK_STRUCT_LINKED;
2493 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494 }
2495
dc186ad7 2496 debug_work_activate(&barr->work);
affee4b2
TH
2497 insert_work(cwq, &barr->work, head,
2498 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2499}
2500
73f53c4a
TH
2501/**
2502 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2506 *
2507 * Prepare cwqs for workqueue flushing.
2508 *
2509 * If @flush_color is non-negative, flush_color on all cwqs should be
2510 * -1. If no cwq has in-flight commands at the specified color, all
2511 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2512 * has in flight commands, its cwq->flush_color is set to
2513 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2514 * wakeup logic is armed and %true is returned.
2515 *
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color. If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2520 *
2521 * If @work_color is non-negative, all cwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2524 *
2525 * CONTEXT:
2526 * mutex_lock(wq->flush_mutex).
2527 *
2528 * RETURNS:
2529 * %true if @flush_color >= 0 and there's something to flush. %false
2530 * otherwise.
2531 */
2532static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2533 int flush_color, int work_color)
1da177e4 2534{
73f53c4a
TH
2535 bool wait = false;
2536 unsigned int cpu;
1da177e4 2537
73f53c4a
TH
2538 if (flush_color >= 0) {
2539 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2540 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2541 }
2355b70f 2542
f3421797 2543 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2544 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2545 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2546
8b03ae3c 2547 spin_lock_irq(&gcwq->lock);
83c22520 2548
73f53c4a
TH
2549 if (flush_color >= 0) {
2550 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2551
73f53c4a
TH
2552 if (cwq->nr_in_flight[flush_color]) {
2553 cwq->flush_color = flush_color;
2554 atomic_inc(&wq->nr_cwqs_to_flush);
2555 wait = true;
2556 }
2557 }
1da177e4 2558
73f53c4a
TH
2559 if (work_color >= 0) {
2560 BUG_ON(work_color != work_next_color(cwq->work_color));
2561 cwq->work_color = work_color;
2562 }
1da177e4 2563
8b03ae3c 2564 spin_unlock_irq(&gcwq->lock);
1da177e4 2565 }
2355b70f 2566
73f53c4a
TH
2567 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2568 complete(&wq->first_flusher->done);
14441960 2569
73f53c4a 2570 return wait;
1da177e4
LT
2571}
2572
0fcb78c2 2573/**
1da177e4 2574 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2575 * @wq: workqueue to flush
1da177e4
LT
2576 *
2577 * Forces execution of the workqueue and blocks until its completion.
2578 * This is typically used in driver shutdown handlers.
2579 *
fc2e4d70
ON
2580 * We sleep until all works which were queued on entry have been handled,
2581 * but we are not livelocked by new incoming ones.
1da177e4 2582 */
7ad5b3a5 2583void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2584{
73f53c4a
TH
2585 struct wq_flusher this_flusher = {
2586 .list = LIST_HEAD_INIT(this_flusher.list),
2587 .flush_color = -1,
2588 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2589 };
2590 int next_color;
1da177e4 2591
3295f0ef
IM
2592 lock_map_acquire(&wq->lockdep_map);
2593 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2594
2595 mutex_lock(&wq->flush_mutex);
2596
2597 /*
2598 * Start-to-wait phase
2599 */
2600 next_color = work_next_color(wq->work_color);
2601
2602 if (next_color != wq->flush_color) {
2603 /*
2604 * Color space is not full. The current work_color
2605 * becomes our flush_color and work_color is advanced
2606 * by one.
2607 */
2608 BUG_ON(!list_empty(&wq->flusher_overflow));
2609 this_flusher.flush_color = wq->work_color;
2610 wq->work_color = next_color;
2611
2612 if (!wq->first_flusher) {
2613 /* no flush in progress, become the first flusher */
2614 BUG_ON(wq->flush_color != this_flusher.flush_color);
2615
2616 wq->first_flusher = &this_flusher;
2617
2618 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2619 wq->work_color)) {
2620 /* nothing to flush, done */
2621 wq->flush_color = next_color;
2622 wq->first_flusher = NULL;
2623 goto out_unlock;
2624 }
2625 } else {
2626 /* wait in queue */
2627 BUG_ON(wq->flush_color == this_flusher.flush_color);
2628 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2629 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2630 }
2631 } else {
2632 /*
2633 * Oops, color space is full, wait on overflow queue.
2634 * The next flush completion will assign us
2635 * flush_color and transfer to flusher_queue.
2636 */
2637 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2638 }
2639
2640 mutex_unlock(&wq->flush_mutex);
2641
2642 wait_for_completion(&this_flusher.done);
2643
2644 /*
2645 * Wake-up-and-cascade phase
2646 *
2647 * First flushers are responsible for cascading flushes and
2648 * handling overflow. Non-first flushers can simply return.
2649 */
2650 if (wq->first_flusher != &this_flusher)
2651 return;
2652
2653 mutex_lock(&wq->flush_mutex);
2654
4ce48b37
TH
2655 /* we might have raced, check again with mutex held */
2656 if (wq->first_flusher != &this_flusher)
2657 goto out_unlock;
2658
73f53c4a
TH
2659 wq->first_flusher = NULL;
2660
2661 BUG_ON(!list_empty(&this_flusher.list));
2662 BUG_ON(wq->flush_color != this_flusher.flush_color);
2663
2664 while (true) {
2665 struct wq_flusher *next, *tmp;
2666
2667 /* complete all the flushers sharing the current flush color */
2668 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2669 if (next->flush_color != wq->flush_color)
2670 break;
2671 list_del_init(&next->list);
2672 complete(&next->done);
2673 }
2674
2675 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2676 wq->flush_color != work_next_color(wq->work_color));
2677
2678 /* this flush_color is finished, advance by one */
2679 wq->flush_color = work_next_color(wq->flush_color);
2680
2681 /* one color has been freed, handle overflow queue */
2682 if (!list_empty(&wq->flusher_overflow)) {
2683 /*
2684 * Assign the same color to all overflowed
2685 * flushers, advance work_color and append to
2686 * flusher_queue. This is the start-to-wait
2687 * phase for these overflowed flushers.
2688 */
2689 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2690 tmp->flush_color = wq->work_color;
2691
2692 wq->work_color = work_next_color(wq->work_color);
2693
2694 list_splice_tail_init(&wq->flusher_overflow,
2695 &wq->flusher_queue);
2696 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2697 }
2698
2699 if (list_empty(&wq->flusher_queue)) {
2700 BUG_ON(wq->flush_color != wq->work_color);
2701 break;
2702 }
2703
2704 /*
2705 * Need to flush more colors. Make the next flusher
2706 * the new first flusher and arm cwqs.
2707 */
2708 BUG_ON(wq->flush_color == wq->work_color);
2709 BUG_ON(wq->flush_color != next->flush_color);
2710
2711 list_del_init(&next->list);
2712 wq->first_flusher = next;
2713
2714 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2715 break;
2716
2717 /*
2718 * Meh... this color is already done, clear first
2719 * flusher and repeat cascading.
2720 */
2721 wq->first_flusher = NULL;
2722 }
2723
2724out_unlock:
2725 mutex_unlock(&wq->flush_mutex);
1da177e4 2726}
ae90dd5d 2727EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2728
9c5a2ba7
TH
2729/**
2730 * drain_workqueue - drain a workqueue
2731 * @wq: workqueue to drain
2732 *
2733 * Wait until the workqueue becomes empty. While draining is in progress,
2734 * only chain queueing is allowed. IOW, only currently pending or running
2735 * work items on @wq can queue further work items on it. @wq is flushed
2736 * repeatedly until it becomes empty. The number of flushing is detemined
2737 * by the depth of chaining and should be relatively short. Whine if it
2738 * takes too long.
2739 */
2740void drain_workqueue(struct workqueue_struct *wq)
2741{
2742 unsigned int flush_cnt = 0;
2743 unsigned int cpu;
2744
2745 /*
2746 * __queue_work() needs to test whether there are drainers, is much
2747 * hotter than drain_workqueue() and already looks at @wq->flags.
2748 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2749 */
2750 spin_lock(&workqueue_lock);
2751 if (!wq->nr_drainers++)
2752 wq->flags |= WQ_DRAINING;
2753 spin_unlock(&workqueue_lock);
2754reflush:
2755 flush_workqueue(wq);
2756
2757 for_each_cwq_cpu(cpu, wq) {
2758 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2759 bool drained;
9c5a2ba7 2760
bd7bdd43 2761 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2762 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2763 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2764
2765 if (drained)
9c5a2ba7
TH
2766 continue;
2767
2768 if (++flush_cnt == 10 ||
2769 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2770 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2771 wq->name, flush_cnt);
9c5a2ba7
TH
2772 goto reflush;
2773 }
2774
2775 spin_lock(&workqueue_lock);
2776 if (!--wq->nr_drainers)
2777 wq->flags &= ~WQ_DRAINING;
2778 spin_unlock(&workqueue_lock);
2779}
2780EXPORT_SYMBOL_GPL(drain_workqueue);
2781
606a5020 2782static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2783{
affee4b2 2784 struct worker *worker = NULL;
8b03ae3c 2785 struct global_cwq *gcwq;
db700897 2786 struct cpu_workqueue_struct *cwq;
db700897
ON
2787
2788 might_sleep();
7a22ad75
TH
2789 gcwq = get_work_gcwq(work);
2790 if (!gcwq)
baf59022 2791 return false;
db700897 2792
8b03ae3c 2793 spin_lock_irq(&gcwq->lock);
db700897
ON
2794 if (!list_empty(&work->entry)) {
2795 /*
2796 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2797 * If it was re-queued to a different gcwq under us, we
2798 * are not going to wait.
db700897
ON
2799 */
2800 smp_rmb();
7a22ad75 2801 cwq = get_work_cwq(work);
bd7bdd43 2802 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2803 goto already_gone;
606a5020 2804 } else {
7a22ad75 2805 worker = find_worker_executing_work(gcwq, work);
affee4b2 2806 if (!worker)
4690c4ab 2807 goto already_gone;
7a22ad75 2808 cwq = worker->current_cwq;
606a5020 2809 }
db700897 2810
baf59022 2811 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2812 spin_unlock_irq(&gcwq->lock);
7a22ad75 2813
e159489b
TH
2814 /*
2815 * If @max_active is 1 or rescuer is in use, flushing another work
2816 * item on the same workqueue may lead to deadlock. Make sure the
2817 * flusher is not running on the same workqueue by verifying write
2818 * access.
2819 */
2820 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2821 lock_map_acquire(&cwq->wq->lockdep_map);
2822 else
2823 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2824 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2825
401a8d04 2826 return true;
4690c4ab 2827already_gone:
8b03ae3c 2828 spin_unlock_irq(&gcwq->lock);
401a8d04 2829 return false;
db700897 2830}
baf59022
TH
2831
2832/**
2833 * flush_work - wait for a work to finish executing the last queueing instance
2834 * @work: the work to flush
2835 *
606a5020
TH
2836 * Wait until @work has finished execution. @work is guaranteed to be idle
2837 * on return if it hasn't been requeued since flush started.
baf59022
TH
2838 *
2839 * RETURNS:
2840 * %true if flush_work() waited for the work to finish execution,
2841 * %false if it was already idle.
2842 */
2843bool flush_work(struct work_struct *work)
2844{
2845 struct wq_barrier barr;
2846
0976dfc1
SB
2847 lock_map_acquire(&work->lockdep_map);
2848 lock_map_release(&work->lockdep_map);
2849
606a5020 2850 if (start_flush_work(work, &barr)) {
401a8d04
TH
2851 wait_for_completion(&barr.done);
2852 destroy_work_on_stack(&barr.work);
2853 return true;
606a5020 2854 } else {
401a8d04 2855 return false;
6e84d644 2856 }
6e84d644 2857}
606a5020 2858EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2859
36e227d2 2860static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2861{
bbb68dfa 2862 unsigned long flags;
1f1f642e
ON
2863 int ret;
2864
2865 do {
bbb68dfa
TH
2866 ret = try_to_grab_pending(work, is_dwork, &flags);
2867 /*
2868 * If someone else is canceling, wait for the same event it
2869 * would be waiting for before retrying.
2870 */
2871 if (unlikely(ret == -ENOENT))
606a5020 2872 flush_work(work);
1f1f642e
ON
2873 } while (unlikely(ret < 0));
2874
bbb68dfa
TH
2875 /* tell other tasks trying to grab @work to back off */
2876 mark_work_canceling(work);
2877 local_irq_restore(flags);
2878
606a5020 2879 flush_work(work);
7a22ad75 2880 clear_work_data(work);
1f1f642e
ON
2881 return ret;
2882}
2883
6e84d644 2884/**
401a8d04
TH
2885 * cancel_work_sync - cancel a work and wait for it to finish
2886 * @work: the work to cancel
6e84d644 2887 *
401a8d04
TH
2888 * Cancel @work and wait for its execution to finish. This function
2889 * can be used even if the work re-queues itself or migrates to
2890 * another workqueue. On return from this function, @work is
2891 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2892 *
401a8d04
TH
2893 * cancel_work_sync(&delayed_work->work) must not be used for
2894 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2895 *
401a8d04 2896 * The caller must ensure that the workqueue on which @work was last
6e84d644 2897 * queued can't be destroyed before this function returns.
401a8d04
TH
2898 *
2899 * RETURNS:
2900 * %true if @work was pending, %false otherwise.
6e84d644 2901 */
401a8d04 2902bool cancel_work_sync(struct work_struct *work)
6e84d644 2903{
36e227d2 2904 return __cancel_work_timer(work, false);
b89deed3 2905}
28e53bdd 2906EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2907
6e84d644 2908/**
401a8d04
TH
2909 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2910 * @dwork: the delayed work to flush
6e84d644 2911 *
401a8d04
TH
2912 * Delayed timer is cancelled and the pending work is queued for
2913 * immediate execution. Like flush_work(), this function only
2914 * considers the last queueing instance of @dwork.
1f1f642e 2915 *
401a8d04
TH
2916 * RETURNS:
2917 * %true if flush_work() waited for the work to finish execution,
2918 * %false if it was already idle.
6e84d644 2919 */
401a8d04
TH
2920bool flush_delayed_work(struct delayed_work *dwork)
2921{
8930caba 2922 local_irq_disable();
401a8d04 2923 if (del_timer_sync(&dwork->timer))
1265057f 2924 __queue_work(dwork->cpu,
401a8d04 2925 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2926 local_irq_enable();
401a8d04
TH
2927 return flush_work(&dwork->work);
2928}
2929EXPORT_SYMBOL(flush_delayed_work);
2930
09383498 2931/**
57b30ae7
TH
2932 * cancel_delayed_work - cancel a delayed work
2933 * @dwork: delayed_work to cancel
09383498 2934 *
57b30ae7
TH
2935 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2936 * and canceled; %false if wasn't pending. Note that the work callback
2937 * function may still be running on return, unless it returns %true and the
2938 * work doesn't re-arm itself. Explicitly flush or use
2939 * cancel_delayed_work_sync() to wait on it.
09383498 2940 *
57b30ae7 2941 * This function is safe to call from any context including IRQ handler.
09383498 2942 */
57b30ae7 2943bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2944{
57b30ae7
TH
2945 unsigned long flags;
2946 int ret;
2947
2948 do {
2949 ret = try_to_grab_pending(&dwork->work, true, &flags);
2950 } while (unlikely(ret == -EAGAIN));
2951
2952 if (unlikely(ret < 0))
2953 return false;
2954
2955 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2956 local_irq_restore(flags);
c0158ca6 2957 return ret;
09383498 2958}
57b30ae7 2959EXPORT_SYMBOL(cancel_delayed_work);
09383498 2960
401a8d04
TH
2961/**
2962 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2963 * @dwork: the delayed work cancel
2964 *
2965 * This is cancel_work_sync() for delayed works.
2966 *
2967 * RETURNS:
2968 * %true if @dwork was pending, %false otherwise.
2969 */
2970bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2971{
36e227d2 2972 return __cancel_work_timer(&dwork->work, true);
6e84d644 2973}
f5a421a4 2974EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2975
0fcb78c2 2976/**
c1a220e7
ZR
2977 * schedule_work_on - put work task on a specific cpu
2978 * @cpu: cpu to put the work task on
2979 * @work: job to be done
2980 *
2981 * This puts a job on a specific cpu
2982 */
d4283e93 2983bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2984{
d320c038 2985 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2986}
2987EXPORT_SYMBOL(schedule_work_on);
2988
0fcb78c2 2989/**
0fcb78c2
REB
2990 * schedule_work - put work task in global workqueue
2991 * @work: job to be done
0fcb78c2 2992 *
d4283e93
TH
2993 * Returns %false if @work was already on the kernel-global workqueue and
2994 * %true otherwise.
5b0f437d
BVA
2995 *
2996 * This puts a job in the kernel-global workqueue if it was not already
2997 * queued and leaves it in the same position on the kernel-global
2998 * workqueue otherwise.
0fcb78c2 2999 */
d4283e93 3000bool schedule_work(struct work_struct *work)
1da177e4 3001{
d320c038 3002 return queue_work(system_wq, work);
1da177e4 3003}
ae90dd5d 3004EXPORT_SYMBOL(schedule_work);
1da177e4 3005
0fcb78c2
REB
3006/**
3007 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3008 * @cpu: cpu to use
52bad64d 3009 * @dwork: job to be done
0fcb78c2
REB
3010 * @delay: number of jiffies to wait
3011 *
3012 * After waiting for a given time this puts a job in the kernel-global
3013 * workqueue on the specified CPU.
3014 */
d4283e93
TH
3015bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3016 unsigned long delay)
1da177e4 3017{
d320c038 3018 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3019}
ae90dd5d 3020EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3021
0fcb78c2
REB
3022/**
3023 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3024 * @dwork: job to be done
3025 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3026 *
3027 * After waiting for a given time this puts a job in the kernel-global
3028 * workqueue.
3029 */
d4283e93 3030bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3031{
d320c038 3032 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3033}
ae90dd5d 3034EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3035
b6136773 3036/**
31ddd871 3037 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3038 * @func: the function to call
b6136773 3039 *
31ddd871
TH
3040 * schedule_on_each_cpu() executes @func on each online CPU using the
3041 * system workqueue and blocks until all CPUs have completed.
b6136773 3042 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3043 *
3044 * RETURNS:
3045 * 0 on success, -errno on failure.
b6136773 3046 */
65f27f38 3047int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3048{
3049 int cpu;
38f51568 3050 struct work_struct __percpu *works;
15316ba8 3051
b6136773
AM
3052 works = alloc_percpu(struct work_struct);
3053 if (!works)
15316ba8 3054 return -ENOMEM;
b6136773 3055
93981800
TH
3056 get_online_cpus();
3057
15316ba8 3058 for_each_online_cpu(cpu) {
9bfb1839
IM
3059 struct work_struct *work = per_cpu_ptr(works, cpu);
3060
3061 INIT_WORK(work, func);
b71ab8c2 3062 schedule_work_on(cpu, work);
65a64464 3063 }
93981800
TH
3064
3065 for_each_online_cpu(cpu)
3066 flush_work(per_cpu_ptr(works, cpu));
3067
95402b38 3068 put_online_cpus();
b6136773 3069 free_percpu(works);
15316ba8
CL
3070 return 0;
3071}
3072
eef6a7d5
AS
3073/**
3074 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3075 *
3076 * Forces execution of the kernel-global workqueue and blocks until its
3077 * completion.
3078 *
3079 * Think twice before calling this function! It's very easy to get into
3080 * trouble if you don't take great care. Either of the following situations
3081 * will lead to deadlock:
3082 *
3083 * One of the work items currently on the workqueue needs to acquire
3084 * a lock held by your code or its caller.
3085 *
3086 * Your code is running in the context of a work routine.
3087 *
3088 * They will be detected by lockdep when they occur, but the first might not
3089 * occur very often. It depends on what work items are on the workqueue and
3090 * what locks they need, which you have no control over.
3091 *
3092 * In most situations flushing the entire workqueue is overkill; you merely
3093 * need to know that a particular work item isn't queued and isn't running.
3094 * In such cases you should use cancel_delayed_work_sync() or
3095 * cancel_work_sync() instead.
3096 */
1da177e4
LT
3097void flush_scheduled_work(void)
3098{
d320c038 3099 flush_workqueue(system_wq);
1da177e4 3100}
ae90dd5d 3101EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3102
1fa44eca
JB
3103/**
3104 * execute_in_process_context - reliably execute the routine with user context
3105 * @fn: the function to execute
1fa44eca
JB
3106 * @ew: guaranteed storage for the execute work structure (must
3107 * be available when the work executes)
3108 *
3109 * Executes the function immediately if process context is available,
3110 * otherwise schedules the function for delayed execution.
3111 *
3112 * Returns: 0 - function was executed
3113 * 1 - function was scheduled for execution
3114 */
65f27f38 3115int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3116{
3117 if (!in_interrupt()) {
65f27f38 3118 fn(&ew->work);
1fa44eca
JB
3119 return 0;
3120 }
3121
65f27f38 3122 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3123 schedule_work(&ew->work);
3124
3125 return 1;
3126}
3127EXPORT_SYMBOL_GPL(execute_in_process_context);
3128
1da177e4
LT
3129int keventd_up(void)
3130{
d320c038 3131 return system_wq != NULL;
1da177e4
LT
3132}
3133
bdbc5dd7 3134static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3135{
65a64464 3136 /*
0f900049
TH
3137 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3138 * Make sure that the alignment isn't lower than that of
3139 * unsigned long long.
65a64464 3140 */
0f900049
TH
3141 const size_t size = sizeof(struct cpu_workqueue_struct);
3142 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3143 __alignof__(unsigned long long));
65a64464 3144
e06ffa1e 3145 if (!(wq->flags & WQ_UNBOUND))
f3421797 3146 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3147 else {
f3421797
TH
3148 void *ptr;
3149
3150 /*
3151 * Allocate enough room to align cwq and put an extra
3152 * pointer at the end pointing back to the originally
3153 * allocated pointer which will be used for free.
3154 */
3155 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3156 if (ptr) {
3157 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3158 *(void **)(wq->cpu_wq.single + 1) = ptr;
3159 }
bdbc5dd7 3160 }
f3421797 3161
0415b00d 3162 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3163 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3164 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3165}
3166
bdbc5dd7 3167static void free_cwqs(struct workqueue_struct *wq)
0f900049 3168{
e06ffa1e 3169 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3170 free_percpu(wq->cpu_wq.pcpu);
3171 else if (wq->cpu_wq.single) {
3172 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3173 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3174 }
0f900049
TH
3175}
3176
f3421797
TH
3177static int wq_clamp_max_active(int max_active, unsigned int flags,
3178 const char *name)
b71ab8c2 3179{
f3421797
TH
3180 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3181
3182 if (max_active < 1 || max_active > lim)
044c782c
VI
3183 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3184 max_active, name, 1, lim);
b71ab8c2 3185
f3421797 3186 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3187}
3188
b196be89 3189struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3190 unsigned int flags,
3191 int max_active,
3192 struct lock_class_key *key,
b196be89 3193 const char *lock_name, ...)
1da177e4 3194{
b196be89 3195 va_list args, args1;
1da177e4 3196 struct workqueue_struct *wq;
c34056a3 3197 unsigned int cpu;
b196be89
TH
3198 size_t namelen;
3199
3200 /* determine namelen, allocate wq and format name */
3201 va_start(args, lock_name);
3202 va_copy(args1, args);
3203 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3204
3205 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3206 if (!wq)
3207 goto err;
3208
3209 vsnprintf(wq->name, namelen, fmt, args1);
3210 va_end(args);
3211 va_end(args1);
1da177e4 3212
6370a6ad
TH
3213 /*
3214 * Workqueues which may be used during memory reclaim should
3215 * have a rescuer to guarantee forward progress.
3216 */
3217 if (flags & WQ_MEM_RECLAIM)
3218 flags |= WQ_RESCUER;
3219
d320c038 3220 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3221 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3222
b196be89 3223 /* init wq */
97e37d7b 3224 wq->flags = flags;
a0a1a5fd 3225 wq->saved_max_active = max_active;
73f53c4a
TH
3226 mutex_init(&wq->flush_mutex);
3227 atomic_set(&wq->nr_cwqs_to_flush, 0);
3228 INIT_LIST_HEAD(&wq->flusher_queue);
3229 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3230
eb13ba87 3231 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3232 INIT_LIST_HEAD(&wq->list);
3af24433 3233
bdbc5dd7
TH
3234 if (alloc_cwqs(wq) < 0)
3235 goto err;
3236
f3421797 3237 for_each_cwq_cpu(cpu, wq) {
1537663f 3238 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3239 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3240 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3241
0f900049 3242 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3243 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3244 cwq->wq = wq;
73f53c4a 3245 cwq->flush_color = -1;
1e19ffc6 3246 cwq->max_active = max_active;
1e19ffc6 3247 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3248 }
1537663f 3249
e22bee78
TH
3250 if (flags & WQ_RESCUER) {
3251 struct worker *rescuer;
3252
f2e005aa 3253 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3254 goto err;
3255
3256 wq->rescuer = rescuer = alloc_worker();
3257 if (!rescuer)
3258 goto err;
3259
111c225a
TH
3260 rescuer->rescue_wq = wq;
3261 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3262 wq->name);
e22bee78
TH
3263 if (IS_ERR(rescuer->task))
3264 goto err;
3265
e22bee78
TH
3266 rescuer->task->flags |= PF_THREAD_BOUND;
3267 wake_up_process(rescuer->task);
3af24433
ON
3268 }
3269
a0a1a5fd
TH
3270 /*
3271 * workqueue_lock protects global freeze state and workqueues
3272 * list. Grab it, set max_active accordingly and add the new
3273 * workqueue to workqueues list.
3274 */
1537663f 3275 spin_lock(&workqueue_lock);
a0a1a5fd 3276
58a69cb4 3277 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3278 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3279 get_cwq(cpu, wq)->max_active = 0;
3280
1537663f 3281 list_add(&wq->list, &workqueues);
a0a1a5fd 3282
1537663f
TH
3283 spin_unlock(&workqueue_lock);
3284
3af24433 3285 return wq;
4690c4ab
TH
3286err:
3287 if (wq) {
bdbc5dd7 3288 free_cwqs(wq);
f2e005aa 3289 free_mayday_mask(wq->mayday_mask);
e22bee78 3290 kfree(wq->rescuer);
4690c4ab
TH
3291 kfree(wq);
3292 }
3293 return NULL;
3af24433 3294}
d320c038 3295EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3296
3af24433
ON
3297/**
3298 * destroy_workqueue - safely terminate a workqueue
3299 * @wq: target workqueue
3300 *
3301 * Safely destroy a workqueue. All work currently pending will be done first.
3302 */
3303void destroy_workqueue(struct workqueue_struct *wq)
3304{
c8e55f36 3305 unsigned int cpu;
3af24433 3306
9c5a2ba7
TH
3307 /* drain it before proceeding with destruction */
3308 drain_workqueue(wq);
c8efcc25 3309
a0a1a5fd
TH
3310 /*
3311 * wq list is used to freeze wq, remove from list after
3312 * flushing is complete in case freeze races us.
3313 */
95402b38 3314 spin_lock(&workqueue_lock);
b1f4ec17 3315 list_del(&wq->list);
95402b38 3316 spin_unlock(&workqueue_lock);
3af24433 3317
e22bee78 3318 /* sanity check */
f3421797 3319 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3320 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3321 int i;
3322
73f53c4a
TH
3323 for (i = 0; i < WORK_NR_COLORS; i++)
3324 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3325 BUG_ON(cwq->nr_active);
3326 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3327 }
9b41ea72 3328
e22bee78
TH
3329 if (wq->flags & WQ_RESCUER) {
3330 kthread_stop(wq->rescuer->task);
f2e005aa 3331 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3332 kfree(wq->rescuer);
e22bee78
TH
3333 }
3334
bdbc5dd7 3335 free_cwqs(wq);
3af24433
ON
3336 kfree(wq);
3337}
3338EXPORT_SYMBOL_GPL(destroy_workqueue);
3339
9f4bd4cd
LJ
3340/**
3341 * cwq_set_max_active - adjust max_active of a cwq
3342 * @cwq: target cpu_workqueue_struct
3343 * @max_active: new max_active value.
3344 *
3345 * Set @cwq->max_active to @max_active and activate delayed works if
3346 * increased.
3347 *
3348 * CONTEXT:
3349 * spin_lock_irq(gcwq->lock).
3350 */
3351static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3352{
3353 cwq->max_active = max_active;
3354
3355 while (!list_empty(&cwq->delayed_works) &&
3356 cwq->nr_active < cwq->max_active)
3357 cwq_activate_first_delayed(cwq);
3358}
3359
dcd989cb
TH
3360/**
3361 * workqueue_set_max_active - adjust max_active of a workqueue
3362 * @wq: target workqueue
3363 * @max_active: new max_active value.
3364 *
3365 * Set max_active of @wq to @max_active.
3366 *
3367 * CONTEXT:
3368 * Don't call from IRQ context.
3369 */
3370void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3371{
3372 unsigned int cpu;
3373
f3421797 3374 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3375
3376 spin_lock(&workqueue_lock);
3377
3378 wq->saved_max_active = max_active;
3379
f3421797 3380 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3381 struct global_cwq *gcwq = get_gcwq(cpu);
3382
3383 spin_lock_irq(&gcwq->lock);
3384
58a69cb4 3385 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb 3386 !(gcwq->flags & GCWQ_FREEZING))
70369b11 3387 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
9bfb1839 3388
dcd989cb 3389 spin_unlock_irq(&gcwq->lock);
65a64464 3390 }
93981800 3391
dcd989cb 3392 spin_unlock(&workqueue_lock);
15316ba8 3393}
dcd989cb 3394EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3395
eef6a7d5 3396/**
dcd989cb
TH
3397 * workqueue_congested - test whether a workqueue is congested
3398 * @cpu: CPU in question
3399 * @wq: target workqueue
eef6a7d5 3400 *
dcd989cb
TH
3401 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3402 * no synchronization around this function and the test result is
3403 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3404 *
dcd989cb
TH
3405 * RETURNS:
3406 * %true if congested, %false otherwise.
eef6a7d5 3407 */
dcd989cb 3408bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3409{
dcd989cb
TH
3410 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3411
3412 return !list_empty(&cwq->delayed_works);
1da177e4 3413}
dcd989cb 3414EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3415
1fa44eca 3416/**
dcd989cb
TH
3417 * work_cpu - return the last known associated cpu for @work
3418 * @work: the work of interest
1fa44eca 3419 *
dcd989cb 3420 * RETURNS:
bdbc5dd7 3421 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3422 */
e2905b29 3423static unsigned int work_cpu(struct work_struct *work)
1fa44eca 3424{
dcd989cb 3425 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3426
bdbc5dd7 3427 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3428}
1fa44eca 3429
dcd989cb
TH
3430/**
3431 * work_busy - test whether a work is currently pending or running
3432 * @work: the work to be tested
3433 *
3434 * Test whether @work is currently pending or running. There is no
3435 * synchronization around this function and the test result is
3436 * unreliable and only useful as advisory hints or for debugging.
3437 * Especially for reentrant wqs, the pending state might hide the
3438 * running state.
3439 *
3440 * RETURNS:
3441 * OR'd bitmask of WORK_BUSY_* bits.
3442 */
3443unsigned int work_busy(struct work_struct *work)
1da177e4 3444{
dcd989cb
TH
3445 struct global_cwq *gcwq = get_work_gcwq(work);
3446 unsigned long flags;
3447 unsigned int ret = 0;
1da177e4 3448
dcd989cb 3449 if (!gcwq)
999767be 3450 return 0;
1da177e4 3451
dcd989cb 3452 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3453
dcd989cb
TH
3454 if (work_pending(work))
3455 ret |= WORK_BUSY_PENDING;
3456 if (find_worker_executing_work(gcwq, work))
3457 ret |= WORK_BUSY_RUNNING;
1da177e4 3458
dcd989cb 3459 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3460
dcd989cb 3461 return ret;
1da177e4 3462}
dcd989cb 3463EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3464
db7bccf4
TH
3465/*
3466 * CPU hotplug.
3467 *
e22bee78
TH
3468 * There are two challenges in supporting CPU hotplug. Firstly, there
3469 * are a lot of assumptions on strong associations among work, cwq and
3470 * gcwq which make migrating pending and scheduled works very
3471 * difficult to implement without impacting hot paths. Secondly,
3472 * gcwqs serve mix of short, long and very long running works making
3473 * blocked draining impractical.
3474 *
628c78e7
TH
3475 * This is solved by allowing a gcwq to be disassociated from the CPU
3476 * running as an unbound one and allowing it to be reattached later if the
3477 * cpu comes back online.
db7bccf4 3478 */
1da177e4 3479
60373152 3480/* claim manager positions of all pools */
b2eb83d1 3481static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3482{
3483 struct worker_pool *pool;
3484
3485 for_each_worker_pool(pool, gcwq)
b2eb83d1 3486 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3487 spin_lock_irq(&gcwq->lock);
60373152
TH
3488}
3489
3490/* release manager positions */
b2eb83d1 3491static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3492{
3493 struct worker_pool *pool;
3494
8db25e78 3495 spin_unlock_irq(&gcwq->lock);
60373152 3496 for_each_worker_pool(pool, gcwq)
b2eb83d1 3497 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3498}
3499
628c78e7 3500static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3501{
628c78e7 3502 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3503 struct worker_pool *pool;
db7bccf4
TH
3504 struct worker *worker;
3505 struct hlist_node *pos;
3506 int i;
3af24433 3507
db7bccf4
TH
3508 BUG_ON(gcwq->cpu != smp_processor_id());
3509
b2eb83d1 3510 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3511
f2d5a0ee
TH
3512 /*
3513 * We've claimed all manager positions. Make all workers unbound
3514 * and set DISASSOCIATED. Before this, all workers except for the
3515 * ones which are still executing works from before the last CPU
3516 * down must be on the cpu. After this, they may become diasporas.
3517 */
60373152 3518 for_each_worker_pool(pool, gcwq)
4ce62e9e 3519 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3520 worker->flags |= WORKER_UNBOUND;
3af24433 3521
db7bccf4 3522 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3523 worker->flags |= WORKER_UNBOUND;
06ba38a9 3524
f2d5a0ee
TH
3525 gcwq->flags |= GCWQ_DISASSOCIATED;
3526
b2eb83d1 3527 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3528
e22bee78 3529 /*
403c821d 3530 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3531 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3532 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3533 */
e22bee78 3534 schedule();
06ba38a9 3535
e22bee78 3536 /*
628c78e7
TH
3537 * Sched callbacks are disabled now. Zap nr_running. After this,
3538 * nr_running stays zero and need_more_worker() and keep_working()
3539 * are always true as long as the worklist is not empty. @gcwq now
3540 * behaves as unbound (in terms of concurrency management) gcwq
3541 * which is served by workers tied to the CPU.
3542 *
3543 * On return from this function, the current worker would trigger
3544 * unbound chain execution of pending work items if other workers
3545 * didn't already.
e22bee78 3546 */
4ce62e9e
TH
3547 for_each_worker_pool(pool, gcwq)
3548 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3549}
3af24433 3550
8db25e78
TH
3551/*
3552 * Workqueues should be brought up before normal priority CPU notifiers.
3553 * This will be registered high priority CPU notifier.
3554 */
9fdf9b73 3555static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3556 unsigned long action,
3557 void *hcpu)
3af24433
ON
3558{
3559 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3560 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3561 struct worker_pool *pool;
3ce63377 3562
8db25e78 3563 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3564 case CPU_UP_PREPARE:
4ce62e9e 3565 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3566 struct worker *worker;
3567
3568 if (pool->nr_workers)
3569 continue;
3570
3571 worker = create_worker(pool);
3572 if (!worker)
3573 return NOTIFY_BAD;
3574
3575 spin_lock_irq(&gcwq->lock);
3576 start_worker(worker);
3577 spin_unlock_irq(&gcwq->lock);
3af24433 3578 }
8db25e78 3579 break;
3af24433 3580
db7bccf4
TH
3581 case CPU_DOWN_FAILED:
3582 case CPU_ONLINE:
b2eb83d1 3583 gcwq_claim_assoc_and_lock(gcwq);
bc2ae0f5 3584 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3585 rebind_workers(gcwq);
b2eb83d1 3586 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3587 break;
00dfcaf7 3588 }
65758202
TH
3589 return NOTIFY_OK;
3590}
3591
3592/*
3593 * Workqueues should be brought down after normal priority CPU notifiers.
3594 * This will be registered as low priority CPU notifier.
3595 */
9fdf9b73 3596static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3597 unsigned long action,
3598 void *hcpu)
3599{
8db25e78
TH
3600 unsigned int cpu = (unsigned long)hcpu;
3601 struct work_struct unbind_work;
3602
65758202
TH
3603 switch (action & ~CPU_TASKS_FROZEN) {
3604 case CPU_DOWN_PREPARE:
8db25e78
TH
3605 /* unbinding should happen on the local CPU */
3606 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3607 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3608 flush_work(&unbind_work);
3609 break;
65758202
TH
3610 }
3611 return NOTIFY_OK;
3612}
3613
2d3854a3 3614#ifdef CONFIG_SMP
8ccad40d 3615
2d3854a3 3616struct work_for_cpu {
ed48ece2 3617 struct work_struct work;
2d3854a3
RR
3618 long (*fn)(void *);
3619 void *arg;
3620 long ret;
3621};
3622
ed48ece2 3623static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3624{
ed48ece2
TH
3625 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3626
2d3854a3
RR
3627 wfc->ret = wfc->fn(wfc->arg);
3628}
3629
3630/**
3631 * work_on_cpu - run a function in user context on a particular cpu
3632 * @cpu: the cpu to run on
3633 * @fn: the function to run
3634 * @arg: the function arg
3635 *
31ad9081
RR
3636 * This will return the value @fn returns.
3637 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3638 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3639 */
3640long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3641{
ed48ece2 3642 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3643
ed48ece2
TH
3644 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3645 schedule_work_on(cpu, &wfc.work);
3646 flush_work(&wfc.work);
2d3854a3
RR
3647 return wfc.ret;
3648}
3649EXPORT_SYMBOL_GPL(work_on_cpu);
3650#endif /* CONFIG_SMP */
3651
a0a1a5fd
TH
3652#ifdef CONFIG_FREEZER
3653
3654/**
3655 * freeze_workqueues_begin - begin freezing workqueues
3656 *
58a69cb4
TH
3657 * Start freezing workqueues. After this function returns, all freezable
3658 * workqueues will queue new works to their frozen_works list instead of
3659 * gcwq->worklist.
a0a1a5fd
TH
3660 *
3661 * CONTEXT:
8b03ae3c 3662 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3663 */
3664void freeze_workqueues_begin(void)
3665{
a0a1a5fd
TH
3666 unsigned int cpu;
3667
3668 spin_lock(&workqueue_lock);
3669
3670 BUG_ON(workqueue_freezing);
3671 workqueue_freezing = true;
3672
f3421797 3673 for_each_gcwq_cpu(cpu) {
8b03ae3c 3674 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3675 struct workqueue_struct *wq;
8b03ae3c
TH
3676
3677 spin_lock_irq(&gcwq->lock);
3678
db7bccf4
TH
3679 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3680 gcwq->flags |= GCWQ_FREEZING;
3681
a0a1a5fd
TH
3682 list_for_each_entry(wq, &workqueues, list) {
3683 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3684
58a69cb4 3685 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3686 cwq->max_active = 0;
a0a1a5fd 3687 }
8b03ae3c
TH
3688
3689 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3690 }
3691
3692 spin_unlock(&workqueue_lock);
3693}
3694
3695/**
58a69cb4 3696 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3697 *
3698 * Check whether freezing is complete. This function must be called
3699 * between freeze_workqueues_begin() and thaw_workqueues().
3700 *
3701 * CONTEXT:
3702 * Grabs and releases workqueue_lock.
3703 *
3704 * RETURNS:
58a69cb4
TH
3705 * %true if some freezable workqueues are still busy. %false if freezing
3706 * is complete.
a0a1a5fd
TH
3707 */
3708bool freeze_workqueues_busy(void)
3709{
a0a1a5fd
TH
3710 unsigned int cpu;
3711 bool busy = false;
3712
3713 spin_lock(&workqueue_lock);
3714
3715 BUG_ON(!workqueue_freezing);
3716
f3421797 3717 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3718 struct workqueue_struct *wq;
a0a1a5fd
TH
3719 /*
3720 * nr_active is monotonically decreasing. It's safe
3721 * to peek without lock.
3722 */
3723 list_for_each_entry(wq, &workqueues, list) {
3724 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3725
58a69cb4 3726 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3727 continue;
3728
3729 BUG_ON(cwq->nr_active < 0);
3730 if (cwq->nr_active) {
3731 busy = true;
3732 goto out_unlock;
3733 }
3734 }
3735 }
3736out_unlock:
3737 spin_unlock(&workqueue_lock);
3738 return busy;
3739}
3740
3741/**
3742 * thaw_workqueues - thaw workqueues
3743 *
3744 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3745 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3746 *
3747 * CONTEXT:
8b03ae3c 3748 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3749 */
3750void thaw_workqueues(void)
3751{
a0a1a5fd
TH
3752 unsigned int cpu;
3753
3754 spin_lock(&workqueue_lock);
3755
3756 if (!workqueue_freezing)
3757 goto out_unlock;
3758
f3421797 3759 for_each_gcwq_cpu(cpu) {
8b03ae3c 3760 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3761 struct worker_pool *pool;
bdbc5dd7 3762 struct workqueue_struct *wq;
8b03ae3c
TH
3763
3764 spin_lock_irq(&gcwq->lock);
3765
db7bccf4
TH
3766 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3767 gcwq->flags &= ~GCWQ_FREEZING;
3768
a0a1a5fd
TH
3769 list_for_each_entry(wq, &workqueues, list) {
3770 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3771
58a69cb4 3772 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3773 continue;
3774
a0a1a5fd 3775 /* restore max_active and repopulate worklist */
9f4bd4cd 3776 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3777 }
8b03ae3c 3778
4ce62e9e
TH
3779 for_each_worker_pool(pool, gcwq)
3780 wake_up_worker(pool);
e22bee78 3781
8b03ae3c 3782 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3783 }
3784
3785 workqueue_freezing = false;
3786out_unlock:
3787 spin_unlock(&workqueue_lock);
3788}
3789#endif /* CONFIG_FREEZER */
3790
6ee0578b 3791static int __init init_workqueues(void)
1da177e4 3792{
c34056a3
TH
3793 unsigned int cpu;
3794
b5490077
TH
3795 /* make sure we have enough bits for OFFQ CPU number */
3796 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3797 WORK_CPU_LAST);
3798
65758202 3799 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3800 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3801
3802 /* initialize gcwqs */
f3421797 3803 for_each_gcwq_cpu(cpu) {
8b03ae3c 3804 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3805 struct worker_pool *pool;
8b03ae3c
TH
3806
3807 spin_lock_init(&gcwq->lock);
3808 gcwq->cpu = cpu;
477a3c33 3809 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3810
42f8570f 3811 hash_init(gcwq->busy_hash);
c8e55f36 3812
4ce62e9e
TH
3813 for_each_worker_pool(pool, gcwq) {
3814 pool->gcwq = gcwq;
3815 INIT_LIST_HEAD(&pool->worklist);
3816 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3817
4ce62e9e
TH
3818 init_timer_deferrable(&pool->idle_timer);
3819 pool->idle_timer.function = idle_worker_timeout;
3820 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3821
4ce62e9e
TH
3822 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3823 (unsigned long)pool);
3824
b2eb83d1 3825 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3826 ida_init(&pool->worker_ida);
3827 }
8b03ae3c
TH
3828 }
3829
e22bee78 3830 /* create the initial worker */
f3421797 3831 for_each_online_gcwq_cpu(cpu) {
e22bee78 3832 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3833 struct worker_pool *pool;
e22bee78 3834
477a3c33
TH
3835 if (cpu != WORK_CPU_UNBOUND)
3836 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3837
3838 for_each_worker_pool(pool, gcwq) {
3839 struct worker *worker;
3840
bc2ae0f5 3841 worker = create_worker(pool);
4ce62e9e
TH
3842 BUG_ON(!worker);
3843 spin_lock_irq(&gcwq->lock);
3844 start_worker(worker);
3845 spin_unlock_irq(&gcwq->lock);
3846 }
e22bee78
TH
3847 }
3848
d320c038 3849 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3850 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3851 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3852 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3853 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3854 system_freezable_wq = alloc_workqueue("events_freezable",
3855 WQ_FREEZABLE, 0);
1aabe902 3856 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3857 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3858 return 0;
1da177e4 3859}
6ee0578b 3860early_initcall(init_workqueues);