workqueue: implement concurrency managed dynamic worker pool
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
e22bee78
TH
37
38#include "workqueue_sched.h"
1da177e4 39
c8e55f36 40enum {
db7bccf4 41 /* global_cwq flags */
e22bee78
TH
42 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
43 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
44 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4
TH
45 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
46
c8e55f36
TH
47 /* worker flags */
48 WORKER_STARTED = 1 << 0, /* started */
49 WORKER_DIE = 1 << 1, /* die die die */
50 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 51 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 52 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78
TH
53 WORKER_REBIND = 1 << 5, /* mom is home, come back */
54
55 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND,
db7bccf4
TH
56
57 /* gcwq->trustee_state */
58 TRUSTEE_START = 0, /* start */
59 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
60 TRUSTEE_BUTCHER = 2, /* butcher workers */
61 TRUSTEE_RELEASE = 3, /* release workers */
62 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
63
64 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
65 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
66 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 67
e22bee78
TH
68 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
69 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
70
71 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
72 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
73 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 74 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
75
76 /*
77 * Rescue workers are used only on emergencies and shared by
78 * all cpus. Give -20.
79 */
80 RESCUER_NICE_LEVEL = -20,
c8e55f36
TH
81};
82
4690c4ab
TH
83/*
84 * Structure fields follow one of the following exclusion rules.
85 *
86 * I: Set during initialization and read-only afterwards.
87 *
e22bee78
TH
88 * P: Preemption protected. Disabling preemption is enough and should
89 * only be modified and accessed from the local cpu.
90 *
8b03ae3c 91 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 92 *
e22bee78
TH
93 * X: During normal operation, modification requires gcwq->lock and
94 * should be done only from local cpu. Either disabling preemption
95 * on local cpu or grabbing gcwq->lock is enough for read access.
96 * While trustee is in charge, it's identical to L.
97 *
73f53c4a
TH
98 * F: wq->flush_mutex protected.
99 *
4690c4ab
TH
100 * W: workqueue_lock protected.
101 */
102
8b03ae3c 103struct global_cwq;
c34056a3 104
e22bee78
TH
105/*
106 * The poor guys doing the actual heavy lifting. All on-duty workers
107 * are either serving the manager role, on idle list or on busy hash.
108 */
c34056a3 109struct worker {
c8e55f36
TH
110 /* on idle list while idle, on busy hash table while busy */
111 union {
112 struct list_head entry; /* L: while idle */
113 struct hlist_node hentry; /* L: while busy */
114 };
115
c34056a3 116 struct work_struct *current_work; /* L: work being processed */
8cca0eea 117 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 118 struct list_head scheduled; /* L: scheduled works */
c34056a3 119 struct task_struct *task; /* I: worker task */
8b03ae3c 120 struct global_cwq *gcwq; /* I: the associated gcwq */
e22bee78
TH
121 /* 64 bytes boundary on 64bit, 32 on 32bit */
122 unsigned long last_active; /* L: last active timestamp */
123 unsigned int flags; /* X: flags */
c34056a3 124 int id; /* I: worker id */
e22bee78 125 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
126};
127
8b03ae3c 128/*
e22bee78
TH
129 * Global per-cpu workqueue. There's one and only one for each cpu
130 * and all works are queued and processed here regardless of their
131 * target workqueues.
8b03ae3c
TH
132 */
133struct global_cwq {
134 spinlock_t lock; /* the gcwq lock */
7e11629d 135 struct list_head worklist; /* L: list of pending works */
8b03ae3c 136 unsigned int cpu; /* I: the associated cpu */
db7bccf4 137 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
138
139 int nr_workers; /* L: total number of workers */
140 int nr_idle; /* L: currently idle ones */
141
142 /* workers are chained either in the idle_list or busy_hash */
e22bee78 143 struct list_head idle_list; /* X: list of idle workers */
c8e55f36
TH
144 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
145 /* L: hash of busy workers */
146
e22bee78
TH
147 struct timer_list idle_timer; /* L: worker idle timeout */
148 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
149
8b03ae3c 150 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
151
152 struct task_struct *trustee; /* L: for gcwq shutdown */
153 unsigned int trustee_state; /* L: trustee state */
154 wait_queue_head_t trustee_wait; /* trustee wait */
e22bee78 155 struct worker *first_idle; /* L: first idle worker */
8b03ae3c
TH
156} ____cacheline_aligned_in_smp;
157
1da177e4 158/*
502ca9d8 159 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
160 * work_struct->data are used for flags and thus cwqs need to be
161 * aligned at two's power of the number of flag bits.
1da177e4
LT
162 */
163struct cpu_workqueue_struct {
8b03ae3c 164 struct global_cwq *gcwq; /* I: the associated gcwq */
4690c4ab 165 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
166 int work_color; /* L: current color */
167 int flush_color; /* L: flushing color */
168 int nr_in_flight[WORK_NR_COLORS];
169 /* L: nr of in_flight works */
1e19ffc6 170 int nr_active; /* L: nr of active works */
a0a1a5fd 171 int max_active; /* L: max active works */
1e19ffc6 172 struct list_head delayed_works; /* L: delayed works */
0f900049 173};
1da177e4 174
73f53c4a
TH
175/*
176 * Structure used to wait for workqueue flush.
177 */
178struct wq_flusher {
179 struct list_head list; /* F: list of flushers */
180 int flush_color; /* F: flush color waiting for */
181 struct completion done; /* flush completion */
182};
183
1da177e4
LT
184/*
185 * The externally visible workqueue abstraction is an array of
186 * per-CPU workqueues:
187 */
188struct workqueue_struct {
97e37d7b 189 unsigned int flags; /* I: WQ_* flags */
4690c4ab
TH
190 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
191 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
192
193 struct mutex flush_mutex; /* protects wq flushing */
194 int work_color; /* F: current work color */
195 int flush_color; /* F: current flush color */
196 atomic_t nr_cwqs_to_flush; /* flush in progress */
197 struct wq_flusher *first_flusher; /* F: first flusher */
198 struct list_head flusher_queue; /* F: flush waiters */
199 struct list_head flusher_overflow; /* F: flush overflow list */
200
502ca9d8
TH
201 unsigned long single_cpu; /* cpu for single cpu wq */
202
e22bee78
TH
203 cpumask_var_t mayday_mask; /* cpus requesting rescue */
204 struct worker *rescuer; /* I: rescue worker */
205
a0a1a5fd 206 int saved_max_active; /* I: saved cwq max_active */
4690c4ab 207 const char *name; /* I: workqueue name */
4e6045f1 208#ifdef CONFIG_LOCKDEP
4690c4ab 209 struct lockdep_map lockdep_map;
4e6045f1 210#endif
1da177e4
LT
211};
212
db7bccf4
TH
213#define for_each_busy_worker(worker, i, pos, gcwq) \
214 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
215 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
216
dc186ad7
TG
217#ifdef CONFIG_DEBUG_OBJECTS_WORK
218
219static struct debug_obj_descr work_debug_descr;
220
221/*
222 * fixup_init is called when:
223 * - an active object is initialized
224 */
225static int work_fixup_init(void *addr, enum debug_obj_state state)
226{
227 struct work_struct *work = addr;
228
229 switch (state) {
230 case ODEBUG_STATE_ACTIVE:
231 cancel_work_sync(work);
232 debug_object_init(work, &work_debug_descr);
233 return 1;
234 default:
235 return 0;
236 }
237}
238
239/*
240 * fixup_activate is called when:
241 * - an active object is activated
242 * - an unknown object is activated (might be a statically initialized object)
243 */
244static int work_fixup_activate(void *addr, enum debug_obj_state state)
245{
246 struct work_struct *work = addr;
247
248 switch (state) {
249
250 case ODEBUG_STATE_NOTAVAILABLE:
251 /*
252 * This is not really a fixup. The work struct was
253 * statically initialized. We just make sure that it
254 * is tracked in the object tracker.
255 */
22df02bb 256 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
257 debug_object_init(work, &work_debug_descr);
258 debug_object_activate(work, &work_debug_descr);
259 return 0;
260 }
261 WARN_ON_ONCE(1);
262 return 0;
263
264 case ODEBUG_STATE_ACTIVE:
265 WARN_ON(1);
266
267 default:
268 return 0;
269 }
270}
271
272/*
273 * fixup_free is called when:
274 * - an active object is freed
275 */
276static int work_fixup_free(void *addr, enum debug_obj_state state)
277{
278 struct work_struct *work = addr;
279
280 switch (state) {
281 case ODEBUG_STATE_ACTIVE:
282 cancel_work_sync(work);
283 debug_object_free(work, &work_debug_descr);
284 return 1;
285 default:
286 return 0;
287 }
288}
289
290static struct debug_obj_descr work_debug_descr = {
291 .name = "work_struct",
292 .fixup_init = work_fixup_init,
293 .fixup_activate = work_fixup_activate,
294 .fixup_free = work_fixup_free,
295};
296
297static inline void debug_work_activate(struct work_struct *work)
298{
299 debug_object_activate(work, &work_debug_descr);
300}
301
302static inline void debug_work_deactivate(struct work_struct *work)
303{
304 debug_object_deactivate(work, &work_debug_descr);
305}
306
307void __init_work(struct work_struct *work, int onstack)
308{
309 if (onstack)
310 debug_object_init_on_stack(work, &work_debug_descr);
311 else
312 debug_object_init(work, &work_debug_descr);
313}
314EXPORT_SYMBOL_GPL(__init_work);
315
316void destroy_work_on_stack(struct work_struct *work)
317{
318 debug_object_free(work, &work_debug_descr);
319}
320EXPORT_SYMBOL_GPL(destroy_work_on_stack);
321
322#else
323static inline void debug_work_activate(struct work_struct *work) { }
324static inline void debug_work_deactivate(struct work_struct *work) { }
325#endif
326
95402b38
GS
327/* Serializes the accesses to the list of workqueues. */
328static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 329static LIST_HEAD(workqueues);
a0a1a5fd 330static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 331
e22bee78
TH
332/*
333 * The almighty global cpu workqueues. nr_running is the only field
334 * which is expected to be used frequently by other cpus via
335 * try_to_wake_up(). Put it in a separate cacheline.
336 */
8b03ae3c 337static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e22bee78 338static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
8b03ae3c 339
c34056a3 340static int worker_thread(void *__worker);
1da177e4 341
8b03ae3c
TH
342static struct global_cwq *get_gcwq(unsigned int cpu)
343{
344 return &per_cpu(global_cwq, cpu);
345}
346
e22bee78
TH
347static atomic_t *get_gcwq_nr_running(unsigned int cpu)
348{
349 return &per_cpu(gcwq_nr_running, cpu);
350}
351
1537663f
TH
352static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
353 struct workqueue_struct *wq)
b1f4ec17 354{
1537663f 355 return per_cpu_ptr(wq->cpu_wq, cpu);
b1f4ec17
ON
356}
357
73f53c4a
TH
358static unsigned int work_color_to_flags(int color)
359{
360 return color << WORK_STRUCT_COLOR_SHIFT;
361}
362
363static int get_work_color(struct work_struct *work)
364{
365 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
366 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
367}
368
369static int work_next_color(int color)
370{
371 return (color + 1) % WORK_NR_COLORS;
372}
373
4594bf15 374/*
7a22ad75
TH
375 * Work data points to the cwq while a work is on queue. Once
376 * execution starts, it points to the cpu the work was last on. This
377 * can be distinguished by comparing the data value against
378 * PAGE_OFFSET.
379 *
380 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
381 * cwq, cpu or clear work->data. These functions should only be
382 * called while the work is owned - ie. while the PENDING bit is set.
383 *
384 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
385 * corresponding to a work. gcwq is available once the work has been
386 * queued anywhere after initialization. cwq is available only from
387 * queueing until execution starts.
4594bf15 388 */
7a22ad75
TH
389static inline void set_work_data(struct work_struct *work, unsigned long data,
390 unsigned long flags)
365970a1 391{
4594bf15 392 BUG_ON(!work_pending(work));
7a22ad75
TH
393 atomic_long_set(&work->data, data | flags | work_static(work));
394}
365970a1 395
7a22ad75
TH
396static void set_work_cwq(struct work_struct *work,
397 struct cpu_workqueue_struct *cwq,
398 unsigned long extra_flags)
399{
400 set_work_data(work, (unsigned long)cwq,
401 WORK_STRUCT_PENDING | extra_flags);
365970a1
DH
402}
403
7a22ad75
TH
404static void set_work_cpu(struct work_struct *work, unsigned int cpu)
405{
406 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
407}
408
409static void clear_work_data(struct work_struct *work)
410{
411 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
412}
413
414static inline unsigned long get_work_data(struct work_struct *work)
415{
416 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
417}
418
419static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
4d707b9f 420{
7a22ad75
TH
421 unsigned long data = get_work_data(work);
422
423 return data >= PAGE_OFFSET ? (void *)data : NULL;
4d707b9f
ON
424}
425
7a22ad75 426static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 427{
7a22ad75
TH
428 unsigned long data = get_work_data(work);
429 unsigned int cpu;
430
431 if (data >= PAGE_OFFSET)
432 return ((struct cpu_workqueue_struct *)data)->gcwq;
433
434 cpu = data >> WORK_STRUCT_FLAG_BITS;
435 if (cpu == NR_CPUS)
436 return NULL;
437
438 BUG_ON(cpu >= num_possible_cpus());
439 return get_gcwq(cpu);
365970a1
DH
440}
441
e22bee78
TH
442/*
443 * Policy functions. These define the policies on how the global
444 * worker pool is managed. Unless noted otherwise, these functions
445 * assume that they're being called with gcwq->lock held.
446 */
447
448/*
449 * Need to wake up a worker? Called from anything but currently
450 * running workers.
451 */
452static bool need_more_worker(struct global_cwq *gcwq)
453{
454 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
455
456 return !list_empty(&gcwq->worklist) && !atomic_read(nr_running);
457}
458
459/* Can I start working? Called from busy but !running workers. */
460static bool may_start_working(struct global_cwq *gcwq)
461{
462 return gcwq->nr_idle;
463}
464
465/* Do I need to keep working? Called from currently running workers. */
466static bool keep_working(struct global_cwq *gcwq)
467{
468 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
469
470 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
471}
472
473/* Do we need a new worker? Called from manager. */
474static bool need_to_create_worker(struct global_cwq *gcwq)
475{
476 return need_more_worker(gcwq) && !may_start_working(gcwq);
477}
478
479/* Do I need to be the manager? */
480static bool need_to_manage_workers(struct global_cwq *gcwq)
481{
482 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
483}
484
485/* Do we have too many workers and should some go away? */
486static bool too_many_workers(struct global_cwq *gcwq)
487{
488 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
489 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
490 int nr_busy = gcwq->nr_workers - nr_idle;
491
492 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
493}
494
495/*
496 * Wake up functions.
497 */
498
7e11629d
TH
499/* Return the first worker. Safe with preemption disabled */
500static struct worker *first_worker(struct global_cwq *gcwq)
501{
502 if (unlikely(list_empty(&gcwq->idle_list)))
503 return NULL;
504
505 return list_first_entry(&gcwq->idle_list, struct worker, entry);
506}
507
508/**
509 * wake_up_worker - wake up an idle worker
510 * @gcwq: gcwq to wake worker for
511 *
512 * Wake up the first idle worker of @gcwq.
513 *
514 * CONTEXT:
515 * spin_lock_irq(gcwq->lock).
516 */
517static void wake_up_worker(struct global_cwq *gcwq)
518{
519 struct worker *worker = first_worker(gcwq);
520
521 if (likely(worker))
522 wake_up_process(worker->task);
523}
524
d302f017 525/**
e22bee78
TH
526 * wq_worker_waking_up - a worker is waking up
527 * @task: task waking up
528 * @cpu: CPU @task is waking up to
529 *
530 * This function is called during try_to_wake_up() when a worker is
531 * being awoken.
532 *
533 * CONTEXT:
534 * spin_lock_irq(rq->lock)
535 */
536void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
537{
538 struct worker *worker = kthread_data(task);
539
540 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
541 atomic_inc(get_gcwq_nr_running(cpu));
542}
543
544/**
545 * wq_worker_sleeping - a worker is going to sleep
546 * @task: task going to sleep
547 * @cpu: CPU in question, must be the current CPU number
548 *
549 * This function is called during schedule() when a busy worker is
550 * going to sleep. Worker on the same cpu can be woken up by
551 * returning pointer to its task.
552 *
553 * CONTEXT:
554 * spin_lock_irq(rq->lock)
555 *
556 * RETURNS:
557 * Worker task on @cpu to wake up, %NULL if none.
558 */
559struct task_struct *wq_worker_sleeping(struct task_struct *task,
560 unsigned int cpu)
561{
562 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
563 struct global_cwq *gcwq = get_gcwq(cpu);
564 atomic_t *nr_running = get_gcwq_nr_running(cpu);
565
566 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
567 return NULL;
568
569 /* this can only happen on the local cpu */
570 BUG_ON(cpu != raw_smp_processor_id());
571
572 /*
573 * The counterpart of the following dec_and_test, implied mb,
574 * worklist not empty test sequence is in insert_work().
575 * Please read comment there.
576 *
577 * NOT_RUNNING is clear. This means that trustee is not in
578 * charge and we're running on the local cpu w/ rq lock held
579 * and preemption disabled, which in turn means that none else
580 * could be manipulating idle_list, so dereferencing idle_list
581 * without gcwq lock is safe.
582 */
583 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
584 to_wakeup = first_worker(gcwq);
585 return to_wakeup ? to_wakeup->task : NULL;
586}
587
588/**
589 * worker_set_flags - set worker flags and adjust nr_running accordingly
d302f017
TH
590 * @worker: worker to set flags for
591 * @flags: flags to set
592 * @wakeup: wakeup an idle worker if necessary
593 *
e22bee78
TH
594 * Set @flags in @worker->flags and adjust nr_running accordingly. If
595 * nr_running becomes zero and @wakeup is %true, an idle worker is
596 * woken up.
d302f017
TH
597 *
598 * LOCKING:
599 * spin_lock_irq(gcwq->lock).
600 */
601static inline void worker_set_flags(struct worker *worker, unsigned int flags,
602 bool wakeup)
603{
e22bee78
TH
604 struct global_cwq *gcwq = worker->gcwq;
605
606 /*
607 * If transitioning into NOT_RUNNING, adjust nr_running and
608 * wake up an idle worker as necessary if requested by
609 * @wakeup.
610 */
611 if ((flags & WORKER_NOT_RUNNING) &&
612 !(worker->flags & WORKER_NOT_RUNNING)) {
613 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
614
615 if (wakeup) {
616 if (atomic_dec_and_test(nr_running) &&
617 !list_empty(&gcwq->worklist))
618 wake_up_worker(gcwq);
619 } else
620 atomic_dec(nr_running);
621 }
622
d302f017
TH
623 worker->flags |= flags;
624}
625
626/**
e22bee78 627 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
d302f017
TH
628 * @worker: worker to set flags for
629 * @flags: flags to clear
630 *
e22bee78 631 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017
TH
632 *
633 * LOCKING:
634 * spin_lock_irq(gcwq->lock).
635 */
636static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
637{
e22bee78
TH
638 struct global_cwq *gcwq = worker->gcwq;
639 unsigned int oflags = worker->flags;
640
d302f017 641 worker->flags &= ~flags;
e22bee78
TH
642
643 /* if transitioning out of NOT_RUNNING, increment nr_running */
644 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
645 if (!(worker->flags & WORKER_NOT_RUNNING))
646 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
d302f017
TH
647}
648
c8e55f36
TH
649/**
650 * busy_worker_head - return the busy hash head for a work
651 * @gcwq: gcwq of interest
652 * @work: work to be hashed
653 *
654 * Return hash head of @gcwq for @work.
655 *
656 * CONTEXT:
657 * spin_lock_irq(gcwq->lock).
658 *
659 * RETURNS:
660 * Pointer to the hash head.
661 */
662static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
663 struct work_struct *work)
664{
665 const int base_shift = ilog2(sizeof(struct work_struct));
666 unsigned long v = (unsigned long)work;
667
668 /* simple shift and fold hash, do we need something better? */
669 v >>= base_shift;
670 v += v >> BUSY_WORKER_HASH_ORDER;
671 v &= BUSY_WORKER_HASH_MASK;
672
673 return &gcwq->busy_hash[v];
674}
675
8cca0eea
TH
676/**
677 * __find_worker_executing_work - find worker which is executing a work
678 * @gcwq: gcwq of interest
679 * @bwh: hash head as returned by busy_worker_head()
680 * @work: work to find worker for
681 *
682 * Find a worker which is executing @work on @gcwq. @bwh should be
683 * the hash head obtained by calling busy_worker_head() with the same
684 * work.
685 *
686 * CONTEXT:
687 * spin_lock_irq(gcwq->lock).
688 *
689 * RETURNS:
690 * Pointer to worker which is executing @work if found, NULL
691 * otherwise.
692 */
693static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
694 struct hlist_head *bwh,
695 struct work_struct *work)
696{
697 struct worker *worker;
698 struct hlist_node *tmp;
699
700 hlist_for_each_entry(worker, tmp, bwh, hentry)
701 if (worker->current_work == work)
702 return worker;
703 return NULL;
704}
705
706/**
707 * find_worker_executing_work - find worker which is executing a work
708 * @gcwq: gcwq of interest
709 * @work: work to find worker for
710 *
711 * Find a worker which is executing @work on @gcwq. This function is
712 * identical to __find_worker_executing_work() except that this
713 * function calculates @bwh itself.
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 *
718 * RETURNS:
719 * Pointer to worker which is executing @work if found, NULL
720 * otherwise.
721 */
722static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
723 struct work_struct *work)
724{
725 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
726 work);
727}
728
4690c4ab 729/**
7e11629d 730 * insert_work - insert a work into gcwq
4690c4ab
TH
731 * @cwq: cwq @work belongs to
732 * @work: work to insert
733 * @head: insertion point
734 * @extra_flags: extra WORK_STRUCT_* flags to set
735 *
7e11629d
TH
736 * Insert @work which belongs to @cwq into @gcwq after @head.
737 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
738 *
739 * CONTEXT:
8b03ae3c 740 * spin_lock_irq(gcwq->lock).
4690c4ab 741 */
b89deed3 742static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
743 struct work_struct *work, struct list_head *head,
744 unsigned int extra_flags)
b89deed3 745{
e22bee78
TH
746 struct global_cwq *gcwq = cwq->gcwq;
747
4690c4ab 748 /* we own @work, set data and link */
7a22ad75 749 set_work_cwq(work, cwq, extra_flags);
4690c4ab 750
6e84d644
ON
751 /*
752 * Ensure that we get the right work->data if we see the
753 * result of list_add() below, see try_to_grab_pending().
754 */
755 smp_wmb();
4690c4ab 756
1a4d9b0a 757 list_add_tail(&work->entry, head);
e22bee78
TH
758
759 /*
760 * Ensure either worker_sched_deactivated() sees the above
761 * list_add_tail() or we see zero nr_running to avoid workers
762 * lying around lazily while there are works to be processed.
763 */
764 smp_mb();
765
766 if (!atomic_read(get_gcwq_nr_running(gcwq->cpu)))
767 wake_up_worker(gcwq);
b89deed3
ON
768}
769
502ca9d8
TH
770/**
771 * cwq_unbind_single_cpu - unbind cwq from single cpu workqueue processing
772 * @cwq: cwq to unbind
773 *
774 * Try to unbind @cwq from single cpu workqueue processing. If
775 * @cwq->wq is frozen, unbind is delayed till the workqueue is thawed.
776 *
777 * CONTEXT:
778 * spin_lock_irq(gcwq->lock).
779 */
780static void cwq_unbind_single_cpu(struct cpu_workqueue_struct *cwq)
781{
782 struct workqueue_struct *wq = cwq->wq;
783 struct global_cwq *gcwq = cwq->gcwq;
784
785 BUG_ON(wq->single_cpu != gcwq->cpu);
786 /*
787 * Unbind from workqueue if @cwq is not frozen. If frozen,
788 * thaw_workqueues() will either restart processing on this
789 * cpu or unbind if empty. This keeps works queued while
790 * frozen fully ordered and flushable.
791 */
792 if (likely(!(gcwq->flags & GCWQ_FREEZING))) {
793 smp_wmb(); /* paired with cmpxchg() in __queue_work() */
794 wq->single_cpu = NR_CPUS;
795 }
796}
797
4690c4ab 798static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
799 struct work_struct *work)
800{
502ca9d8
TH
801 struct global_cwq *gcwq;
802 struct cpu_workqueue_struct *cwq;
1e19ffc6 803 struct list_head *worklist;
1da177e4 804 unsigned long flags;
502ca9d8 805 bool arbitrate;
1da177e4 806
dc186ad7 807 debug_work_activate(work);
1e19ffc6 808
18aa9eff
TH
809 /*
810 * Determine gcwq to use. SINGLE_CPU is inherently
811 * NON_REENTRANT, so test it first.
812 */
502ca9d8 813 if (!(wq->flags & WQ_SINGLE_CPU)) {
18aa9eff
TH
814 struct global_cwq *last_gcwq;
815
816 /*
817 * It's multi cpu. If @wq is non-reentrant and @work
818 * was previously on a different cpu, it might still
819 * be running there, in which case the work needs to
820 * be queued on that cpu to guarantee non-reentrance.
821 */
502ca9d8 822 gcwq = get_gcwq(cpu);
18aa9eff
TH
823 if (wq->flags & WQ_NON_REENTRANT &&
824 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
825 struct worker *worker;
826
827 spin_lock_irqsave(&last_gcwq->lock, flags);
828
829 worker = find_worker_executing_work(last_gcwq, work);
830
831 if (worker && worker->current_cwq->wq == wq)
832 gcwq = last_gcwq;
833 else {
834 /* meh... not running there, queue here */
835 spin_unlock_irqrestore(&last_gcwq->lock, flags);
836 spin_lock_irqsave(&gcwq->lock, flags);
837 }
838 } else
839 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
840 } else {
841 unsigned int req_cpu = cpu;
842
843 /*
844 * It's a bit more complex for single cpu workqueues.
845 * We first need to determine which cpu is going to be
846 * used. If no cpu is currently serving this
847 * workqueue, arbitrate using atomic accesses to
848 * wq->single_cpu; otherwise, use the current one.
849 */
850 retry:
851 cpu = wq->single_cpu;
852 arbitrate = cpu == NR_CPUS;
853 if (arbitrate)
854 cpu = req_cpu;
855
856 gcwq = get_gcwq(cpu);
857 spin_lock_irqsave(&gcwq->lock, flags);
858
859 /*
860 * The following cmpxchg() is a full barrier paired
861 * with smp_wmb() in cwq_unbind_single_cpu() and
862 * guarantees that all changes to wq->st_* fields are
863 * visible on the new cpu after this point.
864 */
865 if (arbitrate)
866 cmpxchg(&wq->single_cpu, NR_CPUS, cpu);
867
868 if (unlikely(wq->single_cpu != cpu)) {
869 spin_unlock_irqrestore(&gcwq->lock, flags);
870 goto retry;
871 }
872 }
873
874 /* gcwq determined, get cwq and queue */
875 cwq = get_cwq(gcwq->cpu, wq);
876
4690c4ab 877 BUG_ON(!list_empty(&work->entry));
1e19ffc6 878
73f53c4a 879 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
880
881 if (likely(cwq->nr_active < cwq->max_active)) {
882 cwq->nr_active++;
7e11629d 883 worklist = &gcwq->worklist;
1e19ffc6
TH
884 } else
885 worklist = &cwq->delayed_works;
886
887 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
888
8b03ae3c 889 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
890}
891
0fcb78c2
REB
892/**
893 * queue_work - queue work on a workqueue
894 * @wq: workqueue to use
895 * @work: work to queue
896 *
057647fc 897 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 898 *
00dfcaf7
ON
899 * We queue the work to the CPU on which it was submitted, but if the CPU dies
900 * it can be processed by another CPU.
1da177e4 901 */
7ad5b3a5 902int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 903{
ef1ca236
ON
904 int ret;
905
906 ret = queue_work_on(get_cpu(), wq, work);
907 put_cpu();
908
1da177e4
LT
909 return ret;
910}
ae90dd5d 911EXPORT_SYMBOL_GPL(queue_work);
1da177e4 912
c1a220e7
ZR
913/**
914 * queue_work_on - queue work on specific cpu
915 * @cpu: CPU number to execute work on
916 * @wq: workqueue to use
917 * @work: work to queue
918 *
919 * Returns 0 if @work was already on a queue, non-zero otherwise.
920 *
921 * We queue the work to a specific CPU, the caller must ensure it
922 * can't go away.
923 */
924int
925queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
926{
927 int ret = 0;
928
22df02bb 929 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 930 __queue_work(cpu, wq, work);
c1a220e7
ZR
931 ret = 1;
932 }
933 return ret;
934}
935EXPORT_SYMBOL_GPL(queue_work_on);
936
6d141c3f 937static void delayed_work_timer_fn(unsigned long __data)
1da177e4 938{
52bad64d 939 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 940 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 941
4690c4ab 942 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
943}
944
0fcb78c2
REB
945/**
946 * queue_delayed_work - queue work on a workqueue after delay
947 * @wq: workqueue to use
af9997e4 948 * @dwork: delayable work to queue
0fcb78c2
REB
949 * @delay: number of jiffies to wait before queueing
950 *
057647fc 951 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 952 */
7ad5b3a5 953int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 954 struct delayed_work *dwork, unsigned long delay)
1da177e4 955{
52bad64d 956 if (delay == 0)
63bc0362 957 return queue_work(wq, &dwork->work);
1da177e4 958
63bc0362 959 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 960}
ae90dd5d 961EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 962
0fcb78c2
REB
963/**
964 * queue_delayed_work_on - queue work on specific CPU after delay
965 * @cpu: CPU number to execute work on
966 * @wq: workqueue to use
af9997e4 967 * @dwork: work to queue
0fcb78c2
REB
968 * @delay: number of jiffies to wait before queueing
969 *
057647fc 970 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 971 */
7a6bc1cd 972int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 973 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
974{
975 int ret = 0;
52bad64d
DH
976 struct timer_list *timer = &dwork->timer;
977 struct work_struct *work = &dwork->work;
7a6bc1cd 978
22df02bb 979 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7a22ad75
TH
980 struct global_cwq *gcwq = get_work_gcwq(work);
981 unsigned int lcpu = gcwq ? gcwq->cpu : raw_smp_processor_id();
982
7a6bc1cd
VP
983 BUG_ON(timer_pending(timer));
984 BUG_ON(!list_empty(&work->entry));
985
8a3e77cc 986 timer_stats_timer_set_start_info(&dwork->timer);
7a22ad75
TH
987 /*
988 * This stores cwq for the moment, for the timer_fn.
989 * Note that the work's gcwq is preserved to allow
990 * reentrance detection for delayed works.
991 */
992 set_work_cwq(work, get_cwq(lcpu, wq), 0);
7a6bc1cd 993 timer->expires = jiffies + delay;
52bad64d 994 timer->data = (unsigned long)dwork;
7a6bc1cd 995 timer->function = delayed_work_timer_fn;
63bc0362
ON
996
997 if (unlikely(cpu >= 0))
998 add_timer_on(timer, cpu);
999 else
1000 add_timer(timer);
7a6bc1cd
VP
1001 ret = 1;
1002 }
1003 return ret;
1004}
ae90dd5d 1005EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1006
c8e55f36
TH
1007/**
1008 * worker_enter_idle - enter idle state
1009 * @worker: worker which is entering idle state
1010 *
1011 * @worker is entering idle state. Update stats and idle timer if
1012 * necessary.
1013 *
1014 * LOCKING:
1015 * spin_lock_irq(gcwq->lock).
1016 */
1017static void worker_enter_idle(struct worker *worker)
1018{
1019 struct global_cwq *gcwq = worker->gcwq;
1020
1021 BUG_ON(worker->flags & WORKER_IDLE);
1022 BUG_ON(!list_empty(&worker->entry) &&
1023 (worker->hentry.next || worker->hentry.pprev));
1024
d302f017 1025 worker_set_flags(worker, WORKER_IDLE, false);
c8e55f36 1026 gcwq->nr_idle++;
e22bee78 1027 worker->last_active = jiffies;
c8e55f36
TH
1028
1029 /* idle_list is LIFO */
1030 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4 1031
e22bee78
TH
1032 if (likely(!(worker->flags & WORKER_ROGUE))) {
1033 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1034 mod_timer(&gcwq->idle_timer,
1035 jiffies + IDLE_WORKER_TIMEOUT);
1036 } else
db7bccf4 1037 wake_up_all(&gcwq->trustee_wait);
c8e55f36
TH
1038}
1039
1040/**
1041 * worker_leave_idle - leave idle state
1042 * @worker: worker which is leaving idle state
1043 *
1044 * @worker is leaving idle state. Update stats.
1045 *
1046 * LOCKING:
1047 * spin_lock_irq(gcwq->lock).
1048 */
1049static void worker_leave_idle(struct worker *worker)
1050{
1051 struct global_cwq *gcwq = worker->gcwq;
1052
1053 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1054 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
1055 gcwq->nr_idle--;
1056 list_del_init(&worker->entry);
1057}
1058
e22bee78
TH
1059/**
1060 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1061 * @worker: self
1062 *
1063 * Works which are scheduled while the cpu is online must at least be
1064 * scheduled to a worker which is bound to the cpu so that if they are
1065 * flushed from cpu callbacks while cpu is going down, they are
1066 * guaranteed to execute on the cpu.
1067 *
1068 * This function is to be used by rogue workers and rescuers to bind
1069 * themselves to the target cpu and may race with cpu going down or
1070 * coming online. kthread_bind() can't be used because it may put the
1071 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1072 * verbatim as it's best effort and blocking and gcwq may be
1073 * [dis]associated in the meantime.
1074 *
1075 * This function tries set_cpus_allowed() and locks gcwq and verifies
1076 * the binding against GCWQ_DISASSOCIATED which is set during
1077 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1078 * idle state or fetches works without dropping lock, it can guarantee
1079 * the scheduling requirement described in the first paragraph.
1080 *
1081 * CONTEXT:
1082 * Might sleep. Called without any lock but returns with gcwq->lock
1083 * held.
1084 *
1085 * RETURNS:
1086 * %true if the associated gcwq is online (@worker is successfully
1087 * bound), %false if offline.
1088 */
1089static bool worker_maybe_bind_and_lock(struct worker *worker)
1090{
1091 struct global_cwq *gcwq = worker->gcwq;
1092 struct task_struct *task = worker->task;
1093
1094 while (true) {
1095 /*
1096 * The following call may fail, succeed or succeed
1097 * without actually migrating the task to the cpu if
1098 * it races with cpu hotunplug operation. Verify
1099 * against GCWQ_DISASSOCIATED.
1100 */
1101 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1102
1103 spin_lock_irq(&gcwq->lock);
1104 if (gcwq->flags & GCWQ_DISASSOCIATED)
1105 return false;
1106 if (task_cpu(task) == gcwq->cpu &&
1107 cpumask_equal(&current->cpus_allowed,
1108 get_cpu_mask(gcwq->cpu)))
1109 return true;
1110 spin_unlock_irq(&gcwq->lock);
1111
1112 /* CPU has come up inbetween, retry migration */
1113 cpu_relax();
1114 }
1115}
1116
1117/*
1118 * Function for worker->rebind_work used to rebind rogue busy workers
1119 * to the associated cpu which is coming back online. This is
1120 * scheduled by cpu up but can race with other cpu hotplug operations
1121 * and may be executed twice without intervening cpu down.
1122 */
1123static void worker_rebind_fn(struct work_struct *work)
1124{
1125 struct worker *worker = container_of(work, struct worker, rebind_work);
1126 struct global_cwq *gcwq = worker->gcwq;
1127
1128 if (worker_maybe_bind_and_lock(worker))
1129 worker_clr_flags(worker, WORKER_REBIND);
1130
1131 spin_unlock_irq(&gcwq->lock);
1132}
1133
c34056a3
TH
1134static struct worker *alloc_worker(void)
1135{
1136 struct worker *worker;
1137
1138 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1139 if (worker) {
1140 INIT_LIST_HEAD(&worker->entry);
affee4b2 1141 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1142 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1143 /* on creation a worker is in !idle && prep state */
1144 worker->flags = WORKER_PREP;
c8e55f36 1145 }
c34056a3
TH
1146 return worker;
1147}
1148
1149/**
1150 * create_worker - create a new workqueue worker
7e11629d 1151 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
1152 * @bind: whether to set affinity to @cpu or not
1153 *
7e11629d 1154 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
1155 * can be started by calling start_worker() or destroyed using
1156 * destroy_worker().
1157 *
1158 * CONTEXT:
1159 * Might sleep. Does GFP_KERNEL allocations.
1160 *
1161 * RETURNS:
1162 * Pointer to the newly created worker.
1163 */
7e11629d 1164static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3
TH
1165{
1166 int id = -1;
1167 struct worker *worker = NULL;
1168
8b03ae3c
TH
1169 spin_lock_irq(&gcwq->lock);
1170 while (ida_get_new(&gcwq->worker_ida, &id)) {
1171 spin_unlock_irq(&gcwq->lock);
1172 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 1173 goto fail;
8b03ae3c 1174 spin_lock_irq(&gcwq->lock);
c34056a3 1175 }
8b03ae3c 1176 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1177
1178 worker = alloc_worker();
1179 if (!worker)
1180 goto fail;
1181
8b03ae3c 1182 worker->gcwq = gcwq;
c34056a3
TH
1183 worker->id = id;
1184
1185 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
8b03ae3c 1186 gcwq->cpu, id);
c34056a3
TH
1187 if (IS_ERR(worker->task))
1188 goto fail;
1189
db7bccf4
TH
1190 /*
1191 * A rogue worker will become a regular one if CPU comes
1192 * online later on. Make sure every worker has
1193 * PF_THREAD_BOUND set.
1194 */
c34056a3 1195 if (bind)
8b03ae3c 1196 kthread_bind(worker->task, gcwq->cpu);
db7bccf4
TH
1197 else
1198 worker->task->flags |= PF_THREAD_BOUND;
c34056a3
TH
1199
1200 return worker;
1201fail:
1202 if (id >= 0) {
8b03ae3c
TH
1203 spin_lock_irq(&gcwq->lock);
1204 ida_remove(&gcwq->worker_ida, id);
1205 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1206 }
1207 kfree(worker);
1208 return NULL;
1209}
1210
1211/**
1212 * start_worker - start a newly created worker
1213 * @worker: worker to start
1214 *
c8e55f36 1215 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1216 *
1217 * CONTEXT:
8b03ae3c 1218 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1219 */
1220static void start_worker(struct worker *worker)
1221{
d302f017 1222 worker_set_flags(worker, WORKER_STARTED, false);
c8e55f36
TH
1223 worker->gcwq->nr_workers++;
1224 worker_enter_idle(worker);
c34056a3
TH
1225 wake_up_process(worker->task);
1226}
1227
1228/**
1229 * destroy_worker - destroy a workqueue worker
1230 * @worker: worker to be destroyed
1231 *
c8e55f36
TH
1232 * Destroy @worker and adjust @gcwq stats accordingly.
1233 *
1234 * CONTEXT:
1235 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1236 */
1237static void destroy_worker(struct worker *worker)
1238{
8b03ae3c 1239 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
1240 int id = worker->id;
1241
1242 /* sanity check frenzy */
1243 BUG_ON(worker->current_work);
affee4b2 1244 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1245
c8e55f36
TH
1246 if (worker->flags & WORKER_STARTED)
1247 gcwq->nr_workers--;
1248 if (worker->flags & WORKER_IDLE)
1249 gcwq->nr_idle--;
1250
1251 list_del_init(&worker->entry);
d302f017 1252 worker_set_flags(worker, WORKER_DIE, false);
c8e55f36
TH
1253
1254 spin_unlock_irq(&gcwq->lock);
1255
c34056a3
TH
1256 kthread_stop(worker->task);
1257 kfree(worker);
1258
8b03ae3c
TH
1259 spin_lock_irq(&gcwq->lock);
1260 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
1261}
1262
e22bee78
TH
1263static void idle_worker_timeout(unsigned long __gcwq)
1264{
1265 struct global_cwq *gcwq = (void *)__gcwq;
1266
1267 spin_lock_irq(&gcwq->lock);
1268
1269 if (too_many_workers(gcwq)) {
1270 struct worker *worker;
1271 unsigned long expires;
1272
1273 /* idle_list is kept in LIFO order, check the last one */
1274 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1275 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1276
1277 if (time_before(jiffies, expires))
1278 mod_timer(&gcwq->idle_timer, expires);
1279 else {
1280 /* it's been idle for too long, wake up manager */
1281 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1282 wake_up_worker(gcwq);
1283 }
1284 }
1285
1286 spin_unlock_irq(&gcwq->lock);
1287}
1288
1289static bool send_mayday(struct work_struct *work)
1290{
1291 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1292 struct workqueue_struct *wq = cwq->wq;
1293
1294 if (!(wq->flags & WQ_RESCUER))
1295 return false;
1296
1297 /* mayday mayday mayday */
1298 if (!cpumask_test_and_set_cpu(cwq->gcwq->cpu, wq->mayday_mask))
1299 wake_up_process(wq->rescuer->task);
1300 return true;
1301}
1302
1303static void gcwq_mayday_timeout(unsigned long __gcwq)
1304{
1305 struct global_cwq *gcwq = (void *)__gcwq;
1306 struct work_struct *work;
1307
1308 spin_lock_irq(&gcwq->lock);
1309
1310 if (need_to_create_worker(gcwq)) {
1311 /*
1312 * We've been trying to create a new worker but
1313 * haven't been successful. We might be hitting an
1314 * allocation deadlock. Send distress signals to
1315 * rescuers.
1316 */
1317 list_for_each_entry(work, &gcwq->worklist, entry)
1318 send_mayday(work);
1319 }
1320
1321 spin_unlock_irq(&gcwq->lock);
1322
1323 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1324}
1325
1326/**
1327 * maybe_create_worker - create a new worker if necessary
1328 * @gcwq: gcwq to create a new worker for
1329 *
1330 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1331 * have at least one idle worker on return from this function. If
1332 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1333 * sent to all rescuers with works scheduled on @gcwq to resolve
1334 * possible allocation deadlock.
1335 *
1336 * On return, need_to_create_worker() is guaranteed to be false and
1337 * may_start_working() true.
1338 *
1339 * LOCKING:
1340 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1341 * multiple times. Does GFP_KERNEL allocations. Called only from
1342 * manager.
1343 *
1344 * RETURNS:
1345 * false if no action was taken and gcwq->lock stayed locked, true
1346 * otherwise.
1347 */
1348static bool maybe_create_worker(struct global_cwq *gcwq)
1349{
1350 if (!need_to_create_worker(gcwq))
1351 return false;
1352restart:
1353 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1354 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1355
1356 while (true) {
1357 struct worker *worker;
1358
1359 spin_unlock_irq(&gcwq->lock);
1360
1361 worker = create_worker(gcwq, true);
1362 if (worker) {
1363 del_timer_sync(&gcwq->mayday_timer);
1364 spin_lock_irq(&gcwq->lock);
1365 start_worker(worker);
1366 BUG_ON(need_to_create_worker(gcwq));
1367 return true;
1368 }
1369
1370 if (!need_to_create_worker(gcwq))
1371 break;
1372
1373 spin_unlock_irq(&gcwq->lock);
1374 __set_current_state(TASK_INTERRUPTIBLE);
1375 schedule_timeout(CREATE_COOLDOWN);
1376 spin_lock_irq(&gcwq->lock);
1377 if (!need_to_create_worker(gcwq))
1378 break;
1379 }
1380
1381 spin_unlock_irq(&gcwq->lock);
1382 del_timer_sync(&gcwq->mayday_timer);
1383 spin_lock_irq(&gcwq->lock);
1384 if (need_to_create_worker(gcwq))
1385 goto restart;
1386 return true;
1387}
1388
1389/**
1390 * maybe_destroy_worker - destroy workers which have been idle for a while
1391 * @gcwq: gcwq to destroy workers for
1392 *
1393 * Destroy @gcwq workers which have been idle for longer than
1394 * IDLE_WORKER_TIMEOUT.
1395 *
1396 * LOCKING:
1397 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1398 * multiple times. Called only from manager.
1399 *
1400 * RETURNS:
1401 * false if no action was taken and gcwq->lock stayed locked, true
1402 * otherwise.
1403 */
1404static bool maybe_destroy_workers(struct global_cwq *gcwq)
1405{
1406 bool ret = false;
1407
1408 while (too_many_workers(gcwq)) {
1409 struct worker *worker;
1410 unsigned long expires;
1411
1412 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1413 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1414
1415 if (time_before(jiffies, expires)) {
1416 mod_timer(&gcwq->idle_timer, expires);
1417 break;
1418 }
1419
1420 destroy_worker(worker);
1421 ret = true;
1422 }
1423
1424 return ret;
1425}
1426
1427/**
1428 * manage_workers - manage worker pool
1429 * @worker: self
1430 *
1431 * Assume the manager role and manage gcwq worker pool @worker belongs
1432 * to. At any given time, there can be only zero or one manager per
1433 * gcwq. The exclusion is handled automatically by this function.
1434 *
1435 * The caller can safely start processing works on false return. On
1436 * true return, it's guaranteed that need_to_create_worker() is false
1437 * and may_start_working() is true.
1438 *
1439 * CONTEXT:
1440 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1441 * multiple times. Does GFP_KERNEL allocations.
1442 *
1443 * RETURNS:
1444 * false if no action was taken and gcwq->lock stayed locked, true if
1445 * some action was taken.
1446 */
1447static bool manage_workers(struct worker *worker)
1448{
1449 struct global_cwq *gcwq = worker->gcwq;
1450 bool ret = false;
1451
1452 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1453 return ret;
1454
1455 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1456 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1457
1458 /*
1459 * Destroy and then create so that may_start_working() is true
1460 * on return.
1461 */
1462 ret |= maybe_destroy_workers(gcwq);
1463 ret |= maybe_create_worker(gcwq);
1464
1465 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1466
1467 /*
1468 * The trustee might be waiting to take over the manager
1469 * position, tell it we're done.
1470 */
1471 if (unlikely(gcwq->trustee))
1472 wake_up_all(&gcwq->trustee_wait);
1473
1474 return ret;
1475}
1476
affee4b2
TH
1477/**
1478 * move_linked_works - move linked works to a list
1479 * @work: start of series of works to be scheduled
1480 * @head: target list to append @work to
1481 * @nextp: out paramter for nested worklist walking
1482 *
1483 * Schedule linked works starting from @work to @head. Work series to
1484 * be scheduled starts at @work and includes any consecutive work with
1485 * WORK_STRUCT_LINKED set in its predecessor.
1486 *
1487 * If @nextp is not NULL, it's updated to point to the next work of
1488 * the last scheduled work. This allows move_linked_works() to be
1489 * nested inside outer list_for_each_entry_safe().
1490 *
1491 * CONTEXT:
8b03ae3c 1492 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1493 */
1494static void move_linked_works(struct work_struct *work, struct list_head *head,
1495 struct work_struct **nextp)
1496{
1497 struct work_struct *n;
1498
1499 /*
1500 * Linked worklist will always end before the end of the list,
1501 * use NULL for list head.
1502 */
1503 list_for_each_entry_safe_from(work, n, NULL, entry) {
1504 list_move_tail(&work->entry, head);
1505 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1506 break;
1507 }
1508
1509 /*
1510 * If we're already inside safe list traversal and have moved
1511 * multiple works to the scheduled queue, the next position
1512 * needs to be updated.
1513 */
1514 if (nextp)
1515 *nextp = n;
1516}
1517
1e19ffc6
TH
1518static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1519{
1520 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1521 struct work_struct, entry);
1522
7e11629d 1523 move_linked_works(work, &cwq->gcwq->worklist, NULL);
1e19ffc6
TH
1524 cwq->nr_active++;
1525}
1526
73f53c4a
TH
1527/**
1528 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1529 * @cwq: cwq of interest
1530 * @color: color of work which left the queue
1531 *
1532 * A work either has completed or is removed from pending queue,
1533 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1534 *
1535 * CONTEXT:
8b03ae3c 1536 * spin_lock_irq(gcwq->lock).
73f53c4a
TH
1537 */
1538static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1539{
1540 /* ignore uncolored works */
1541 if (color == WORK_NO_COLOR)
1542 return;
1543
1544 cwq->nr_in_flight[color]--;
1e19ffc6
TH
1545 cwq->nr_active--;
1546
502ca9d8
TH
1547 if (!list_empty(&cwq->delayed_works)) {
1548 /* one down, submit a delayed one */
1549 if (cwq->nr_active < cwq->max_active)
1550 cwq_activate_first_delayed(cwq);
1551 } else if (!cwq->nr_active && cwq->wq->flags & WQ_SINGLE_CPU) {
1552 /* this was the last work, unbind from single cpu */
1553 cwq_unbind_single_cpu(cwq);
1554 }
73f53c4a
TH
1555
1556 /* is flush in progress and are we at the flushing tip? */
1557 if (likely(cwq->flush_color != color))
1558 return;
1559
1560 /* are there still in-flight works? */
1561 if (cwq->nr_in_flight[color])
1562 return;
1563
1564 /* this cwq is done, clear flush_color */
1565 cwq->flush_color = -1;
1566
1567 /*
1568 * If this was the last cwq, wake up the first flusher. It
1569 * will handle the rest.
1570 */
1571 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1572 complete(&cwq->wq->first_flusher->done);
1573}
1574
a62428c0
TH
1575/**
1576 * process_one_work - process single work
c34056a3 1577 * @worker: self
a62428c0
TH
1578 * @work: work to process
1579 *
1580 * Process @work. This function contains all the logics necessary to
1581 * process a single work including synchronization against and
1582 * interaction with other workers on the same cpu, queueing and
1583 * flushing. As long as context requirement is met, any worker can
1584 * call this function to process a work.
1585 *
1586 * CONTEXT:
8b03ae3c 1587 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1588 */
c34056a3 1589static void process_one_work(struct worker *worker, struct work_struct *work)
a62428c0 1590{
7e11629d 1591 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1592 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1593 struct hlist_head *bwh = busy_worker_head(gcwq, work);
a62428c0 1594 work_func_t f = work->func;
73f53c4a 1595 int work_color;
7e11629d 1596 struct worker *collision;
a62428c0
TH
1597#ifdef CONFIG_LOCKDEP
1598 /*
1599 * It is permissible to free the struct work_struct from
1600 * inside the function that is called from it, this we need to
1601 * take into account for lockdep too. To avoid bogus "held
1602 * lock freed" warnings as well as problems when looking into
1603 * work->lockdep_map, make a copy and use that here.
1604 */
1605 struct lockdep_map lockdep_map = work->lockdep_map;
1606#endif
7e11629d
TH
1607 /*
1608 * A single work shouldn't be executed concurrently by
1609 * multiple workers on a single cpu. Check whether anyone is
1610 * already processing the work. If so, defer the work to the
1611 * currently executing one.
1612 */
1613 collision = __find_worker_executing_work(gcwq, bwh, work);
1614 if (unlikely(collision)) {
1615 move_linked_works(work, &collision->scheduled, NULL);
1616 return;
1617 }
1618
a62428c0 1619 /* claim and process */
a62428c0 1620 debug_work_deactivate(work);
c8e55f36 1621 hlist_add_head(&worker->hentry, bwh);
c34056a3 1622 worker->current_work = work;
8cca0eea 1623 worker->current_cwq = cwq;
73f53c4a 1624 work_color = get_work_color(work);
7a22ad75 1625
7a22ad75
TH
1626 /* record the current cpu number in the work data and dequeue */
1627 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1628 list_del_init(&work->entry);
1629
8b03ae3c 1630 spin_unlock_irq(&gcwq->lock);
a62428c0 1631
a62428c0
TH
1632 work_clear_pending(work);
1633 lock_map_acquire(&cwq->wq->lockdep_map);
1634 lock_map_acquire(&lockdep_map);
1635 f(work);
1636 lock_map_release(&lockdep_map);
1637 lock_map_release(&cwq->wq->lockdep_map);
1638
1639 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1640 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1641 "%s/0x%08x/%d\n",
1642 current->comm, preempt_count(), task_pid_nr(current));
1643 printk(KERN_ERR " last function: ");
1644 print_symbol("%s\n", (unsigned long)f);
1645 debug_show_held_locks(current);
1646 dump_stack();
1647 }
1648
8b03ae3c 1649 spin_lock_irq(&gcwq->lock);
a62428c0
TH
1650
1651 /* we're done with it, release */
c8e55f36 1652 hlist_del_init(&worker->hentry);
c34056a3 1653 worker->current_work = NULL;
8cca0eea 1654 worker->current_cwq = NULL;
73f53c4a 1655 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
1656}
1657
affee4b2
TH
1658/**
1659 * process_scheduled_works - process scheduled works
1660 * @worker: self
1661 *
1662 * Process all scheduled works. Please note that the scheduled list
1663 * may change while processing a work, so this function repeatedly
1664 * fetches a work from the top and executes it.
1665 *
1666 * CONTEXT:
8b03ae3c 1667 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1668 * multiple times.
1669 */
1670static void process_scheduled_works(struct worker *worker)
1da177e4 1671{
affee4b2
TH
1672 while (!list_empty(&worker->scheduled)) {
1673 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1674 struct work_struct, entry);
c34056a3 1675 process_one_work(worker, work);
1da177e4 1676 }
1da177e4
LT
1677}
1678
4690c4ab
TH
1679/**
1680 * worker_thread - the worker thread function
c34056a3 1681 * @__worker: self
4690c4ab 1682 *
e22bee78
TH
1683 * The gcwq worker thread function. There's a single dynamic pool of
1684 * these per each cpu. These workers process all works regardless of
1685 * their specific target workqueue. The only exception is works which
1686 * belong to workqueues with a rescuer which will be explained in
1687 * rescuer_thread().
4690c4ab 1688 */
c34056a3 1689static int worker_thread(void *__worker)
1da177e4 1690{
c34056a3 1691 struct worker *worker = __worker;
8b03ae3c 1692 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1693
e22bee78
TH
1694 /* tell the scheduler that this is a workqueue worker */
1695 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1696woke_up:
c8e55f36 1697 spin_lock_irq(&gcwq->lock);
1da177e4 1698
c8e55f36
TH
1699 /* DIE can be set only while we're idle, checking here is enough */
1700 if (worker->flags & WORKER_DIE) {
1701 spin_unlock_irq(&gcwq->lock);
e22bee78 1702 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1703 return 0;
1704 }
affee4b2 1705
c8e55f36 1706 worker_leave_idle(worker);
db7bccf4 1707recheck:
e22bee78
TH
1708 /* no more worker necessary? */
1709 if (!need_more_worker(gcwq))
1710 goto sleep;
1711
1712 /* do we need to manage? */
1713 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1714 goto recheck;
1715
c8e55f36
TH
1716 /*
1717 * ->scheduled list can only be filled while a worker is
1718 * preparing to process a work or actually processing it.
1719 * Make sure nobody diddled with it while I was sleeping.
1720 */
1721 BUG_ON(!list_empty(&worker->scheduled));
1722
e22bee78
TH
1723 /*
1724 * When control reaches this point, we're guaranteed to have
1725 * at least one idle worker or that someone else has already
1726 * assumed the manager role.
1727 */
1728 worker_clr_flags(worker, WORKER_PREP);
1729
1730 do {
c8e55f36 1731 struct work_struct *work =
7e11629d 1732 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1733 struct work_struct, entry);
1734
1735 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1736 /* optimization path, not strictly necessary */
1737 process_one_work(worker, work);
1738 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1739 process_scheduled_works(worker);
c8e55f36
TH
1740 } else {
1741 move_linked_works(work, &worker->scheduled, NULL);
1742 process_scheduled_works(worker);
affee4b2 1743 }
e22bee78
TH
1744 } while (keep_working(gcwq));
1745
1746 worker_set_flags(worker, WORKER_PREP, false);
3af24433 1747
e22bee78
TH
1748 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1749 goto recheck;
1750sleep:
c8e55f36 1751 /*
e22bee78
TH
1752 * gcwq->lock is held and there's no work to process and no
1753 * need to manage, sleep. Workers are woken up only while
1754 * holding gcwq->lock or from local cpu, so setting the
1755 * current state before releasing gcwq->lock is enough to
1756 * prevent losing any event.
c8e55f36
TH
1757 */
1758 worker_enter_idle(worker);
1759 __set_current_state(TASK_INTERRUPTIBLE);
1760 spin_unlock_irq(&gcwq->lock);
1761 schedule();
1762 goto woke_up;
1da177e4
LT
1763}
1764
e22bee78
TH
1765/**
1766 * rescuer_thread - the rescuer thread function
1767 * @__wq: the associated workqueue
1768 *
1769 * Workqueue rescuer thread function. There's one rescuer for each
1770 * workqueue which has WQ_RESCUER set.
1771 *
1772 * Regular work processing on a gcwq may block trying to create a new
1773 * worker which uses GFP_KERNEL allocation which has slight chance of
1774 * developing into deadlock if some works currently on the same queue
1775 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1776 * the problem rescuer solves.
1777 *
1778 * When such condition is possible, the gcwq summons rescuers of all
1779 * workqueues which have works queued on the gcwq and let them process
1780 * those works so that forward progress can be guaranteed.
1781 *
1782 * This should happen rarely.
1783 */
1784static int rescuer_thread(void *__wq)
1785{
1786 struct workqueue_struct *wq = __wq;
1787 struct worker *rescuer = wq->rescuer;
1788 struct list_head *scheduled = &rescuer->scheduled;
1789 unsigned int cpu;
1790
1791 set_user_nice(current, RESCUER_NICE_LEVEL);
1792repeat:
1793 set_current_state(TASK_INTERRUPTIBLE);
1794
1795 if (kthread_should_stop())
1796 return 0;
1797
1798 for_each_cpu(cpu, wq->mayday_mask) {
1799 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1800 struct global_cwq *gcwq = cwq->gcwq;
1801 struct work_struct *work, *n;
1802
1803 __set_current_state(TASK_RUNNING);
1804 cpumask_clear_cpu(cpu, wq->mayday_mask);
1805
1806 /* migrate to the target cpu if possible */
1807 rescuer->gcwq = gcwq;
1808 worker_maybe_bind_and_lock(rescuer);
1809
1810 /*
1811 * Slurp in all works issued via this workqueue and
1812 * process'em.
1813 */
1814 BUG_ON(!list_empty(&rescuer->scheduled));
1815 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1816 if (get_work_cwq(work) == cwq)
1817 move_linked_works(work, scheduled, &n);
1818
1819 process_scheduled_works(rescuer);
1820 spin_unlock_irq(&gcwq->lock);
1821 }
1822
1823 schedule();
1824 goto repeat;
1825}
1826
fc2e4d70
ON
1827struct wq_barrier {
1828 struct work_struct work;
1829 struct completion done;
1830};
1831
1832static void wq_barrier_func(struct work_struct *work)
1833{
1834 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1835 complete(&barr->done);
1836}
1837
4690c4ab
TH
1838/**
1839 * insert_wq_barrier - insert a barrier work
1840 * @cwq: cwq to insert barrier into
1841 * @barr: wq_barrier to insert
affee4b2
TH
1842 * @target: target work to attach @barr to
1843 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 1844 *
affee4b2
TH
1845 * @barr is linked to @target such that @barr is completed only after
1846 * @target finishes execution. Please note that the ordering
1847 * guarantee is observed only with respect to @target and on the local
1848 * cpu.
1849 *
1850 * Currently, a queued barrier can't be canceled. This is because
1851 * try_to_grab_pending() can't determine whether the work to be
1852 * grabbed is at the head of the queue and thus can't clear LINKED
1853 * flag of the previous work while there must be a valid next work
1854 * after a work with LINKED flag set.
1855 *
1856 * Note that when @worker is non-NULL, @target may be modified
1857 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
1858 *
1859 * CONTEXT:
8b03ae3c 1860 * spin_lock_irq(gcwq->lock).
4690c4ab 1861 */
83c22520 1862static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
1863 struct wq_barrier *barr,
1864 struct work_struct *target, struct worker *worker)
fc2e4d70 1865{
affee4b2
TH
1866 struct list_head *head;
1867 unsigned int linked = 0;
1868
dc186ad7 1869 /*
8b03ae3c 1870 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
1871 * as we know for sure that this will not trigger any of the
1872 * checks and call back into the fixup functions where we
1873 * might deadlock.
1874 */
1875 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 1876 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 1877 init_completion(&barr->done);
83c22520 1878
affee4b2
TH
1879 /*
1880 * If @target is currently being executed, schedule the
1881 * barrier to the worker; otherwise, put it after @target.
1882 */
1883 if (worker)
1884 head = worker->scheduled.next;
1885 else {
1886 unsigned long *bits = work_data_bits(target);
1887
1888 head = target->entry.next;
1889 /* there can already be other linked works, inherit and set */
1890 linked = *bits & WORK_STRUCT_LINKED;
1891 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
1892 }
1893
dc186ad7 1894 debug_work_activate(&barr->work);
affee4b2
TH
1895 insert_work(cwq, &barr->work, head,
1896 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
1897}
1898
73f53c4a
TH
1899/**
1900 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
1901 * @wq: workqueue being flushed
1902 * @flush_color: new flush color, < 0 for no-op
1903 * @work_color: new work color, < 0 for no-op
1904 *
1905 * Prepare cwqs for workqueue flushing.
1906 *
1907 * If @flush_color is non-negative, flush_color on all cwqs should be
1908 * -1. If no cwq has in-flight commands at the specified color, all
1909 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
1910 * has in flight commands, its cwq->flush_color is set to
1911 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
1912 * wakeup logic is armed and %true is returned.
1913 *
1914 * The caller should have initialized @wq->first_flusher prior to
1915 * calling this function with non-negative @flush_color. If
1916 * @flush_color is negative, no flush color update is done and %false
1917 * is returned.
1918 *
1919 * If @work_color is non-negative, all cwqs should have the same
1920 * work_color which is previous to @work_color and all will be
1921 * advanced to @work_color.
1922 *
1923 * CONTEXT:
1924 * mutex_lock(wq->flush_mutex).
1925 *
1926 * RETURNS:
1927 * %true if @flush_color >= 0 and there's something to flush. %false
1928 * otherwise.
1929 */
1930static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
1931 int flush_color, int work_color)
1da177e4 1932{
73f53c4a
TH
1933 bool wait = false;
1934 unsigned int cpu;
1da177e4 1935
73f53c4a
TH
1936 if (flush_color >= 0) {
1937 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
1938 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 1939 }
2355b70f 1940
73f53c4a
TH
1941 for_each_possible_cpu(cpu) {
1942 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1943 struct global_cwq *gcwq = cwq->gcwq;
73f53c4a 1944
8b03ae3c 1945 spin_lock_irq(&gcwq->lock);
73f53c4a
TH
1946
1947 if (flush_color >= 0) {
1948 BUG_ON(cwq->flush_color != -1);
1949
1950 if (cwq->nr_in_flight[flush_color]) {
1951 cwq->flush_color = flush_color;
1952 atomic_inc(&wq->nr_cwqs_to_flush);
1953 wait = true;
1954 }
1955 }
1956
1957 if (work_color >= 0) {
1958 BUG_ON(work_color != work_next_color(cwq->work_color));
1959 cwq->work_color = work_color;
1960 }
1961
8b03ae3c 1962 spin_unlock_irq(&gcwq->lock);
dc186ad7 1963 }
14441960 1964
73f53c4a
TH
1965 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
1966 complete(&wq->first_flusher->done);
1967
1968 return wait;
1da177e4
LT
1969}
1970
0fcb78c2 1971/**
1da177e4 1972 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 1973 * @wq: workqueue to flush
1da177e4
LT
1974 *
1975 * Forces execution of the workqueue and blocks until its completion.
1976 * This is typically used in driver shutdown handlers.
1977 *
fc2e4d70
ON
1978 * We sleep until all works which were queued on entry have been handled,
1979 * but we are not livelocked by new incoming ones.
1da177e4 1980 */
7ad5b3a5 1981void flush_workqueue(struct workqueue_struct *wq)
1da177e4 1982{
73f53c4a
TH
1983 struct wq_flusher this_flusher = {
1984 .list = LIST_HEAD_INIT(this_flusher.list),
1985 .flush_color = -1,
1986 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
1987 };
1988 int next_color;
1da177e4 1989
3295f0ef
IM
1990 lock_map_acquire(&wq->lockdep_map);
1991 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
1992
1993 mutex_lock(&wq->flush_mutex);
1994
1995 /*
1996 * Start-to-wait phase
1997 */
1998 next_color = work_next_color(wq->work_color);
1999
2000 if (next_color != wq->flush_color) {
2001 /*
2002 * Color space is not full. The current work_color
2003 * becomes our flush_color and work_color is advanced
2004 * by one.
2005 */
2006 BUG_ON(!list_empty(&wq->flusher_overflow));
2007 this_flusher.flush_color = wq->work_color;
2008 wq->work_color = next_color;
2009
2010 if (!wq->first_flusher) {
2011 /* no flush in progress, become the first flusher */
2012 BUG_ON(wq->flush_color != this_flusher.flush_color);
2013
2014 wq->first_flusher = &this_flusher;
2015
2016 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2017 wq->work_color)) {
2018 /* nothing to flush, done */
2019 wq->flush_color = next_color;
2020 wq->first_flusher = NULL;
2021 goto out_unlock;
2022 }
2023 } else {
2024 /* wait in queue */
2025 BUG_ON(wq->flush_color == this_flusher.flush_color);
2026 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2027 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2028 }
2029 } else {
2030 /*
2031 * Oops, color space is full, wait on overflow queue.
2032 * The next flush completion will assign us
2033 * flush_color and transfer to flusher_queue.
2034 */
2035 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2036 }
2037
2038 mutex_unlock(&wq->flush_mutex);
2039
2040 wait_for_completion(&this_flusher.done);
2041
2042 /*
2043 * Wake-up-and-cascade phase
2044 *
2045 * First flushers are responsible for cascading flushes and
2046 * handling overflow. Non-first flushers can simply return.
2047 */
2048 if (wq->first_flusher != &this_flusher)
2049 return;
2050
2051 mutex_lock(&wq->flush_mutex);
2052
2053 wq->first_flusher = NULL;
2054
2055 BUG_ON(!list_empty(&this_flusher.list));
2056 BUG_ON(wq->flush_color != this_flusher.flush_color);
2057
2058 while (true) {
2059 struct wq_flusher *next, *tmp;
2060
2061 /* complete all the flushers sharing the current flush color */
2062 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2063 if (next->flush_color != wq->flush_color)
2064 break;
2065 list_del_init(&next->list);
2066 complete(&next->done);
2067 }
2068
2069 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2070 wq->flush_color != work_next_color(wq->work_color));
2071
2072 /* this flush_color is finished, advance by one */
2073 wq->flush_color = work_next_color(wq->flush_color);
2074
2075 /* one color has been freed, handle overflow queue */
2076 if (!list_empty(&wq->flusher_overflow)) {
2077 /*
2078 * Assign the same color to all overflowed
2079 * flushers, advance work_color and append to
2080 * flusher_queue. This is the start-to-wait
2081 * phase for these overflowed flushers.
2082 */
2083 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2084 tmp->flush_color = wq->work_color;
2085
2086 wq->work_color = work_next_color(wq->work_color);
2087
2088 list_splice_tail_init(&wq->flusher_overflow,
2089 &wq->flusher_queue);
2090 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2091 }
2092
2093 if (list_empty(&wq->flusher_queue)) {
2094 BUG_ON(wq->flush_color != wq->work_color);
2095 break;
2096 }
2097
2098 /*
2099 * Need to flush more colors. Make the next flusher
2100 * the new first flusher and arm cwqs.
2101 */
2102 BUG_ON(wq->flush_color == wq->work_color);
2103 BUG_ON(wq->flush_color != next->flush_color);
2104
2105 list_del_init(&next->list);
2106 wq->first_flusher = next;
2107
2108 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2109 break;
2110
2111 /*
2112 * Meh... this color is already done, clear first
2113 * flusher and repeat cascading.
2114 */
2115 wq->first_flusher = NULL;
2116 }
2117
2118out_unlock:
2119 mutex_unlock(&wq->flush_mutex);
1da177e4 2120}
ae90dd5d 2121EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2122
db700897
ON
2123/**
2124 * flush_work - block until a work_struct's callback has terminated
2125 * @work: the work which is to be flushed
2126 *
a67da70d
ON
2127 * Returns false if @work has already terminated.
2128 *
db700897
ON
2129 * It is expected that, prior to calling flush_work(), the caller has
2130 * arranged for the work to not be requeued, otherwise it doesn't make
2131 * sense to use this function.
2132 */
2133int flush_work(struct work_struct *work)
2134{
affee4b2 2135 struct worker *worker = NULL;
8b03ae3c 2136 struct global_cwq *gcwq;
7a22ad75 2137 struct cpu_workqueue_struct *cwq;
db700897
ON
2138 struct wq_barrier barr;
2139
2140 might_sleep();
7a22ad75
TH
2141 gcwq = get_work_gcwq(work);
2142 if (!gcwq)
db700897 2143 return 0;
a67da70d 2144
8b03ae3c 2145 spin_lock_irq(&gcwq->lock);
db700897
ON
2146 if (!list_empty(&work->entry)) {
2147 /*
2148 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2149 * If it was re-queued to a different gcwq under us, we
2150 * are not going to wait.
db700897
ON
2151 */
2152 smp_rmb();
7a22ad75
TH
2153 cwq = get_work_cwq(work);
2154 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 2155 goto already_gone;
db700897 2156 } else {
7a22ad75 2157 worker = find_worker_executing_work(gcwq, work);
affee4b2 2158 if (!worker)
4690c4ab 2159 goto already_gone;
7a22ad75 2160 cwq = worker->current_cwq;
db700897 2161 }
db700897 2162
affee4b2 2163 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 2164 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
2165
2166 lock_map_acquire(&cwq->wq->lockdep_map);
2167 lock_map_release(&cwq->wq->lockdep_map);
2168
db700897 2169 wait_for_completion(&barr.done);
dc186ad7 2170 destroy_work_on_stack(&barr.work);
db700897 2171 return 1;
4690c4ab 2172already_gone:
8b03ae3c 2173 spin_unlock_irq(&gcwq->lock);
4690c4ab 2174 return 0;
db700897
ON
2175}
2176EXPORT_SYMBOL_GPL(flush_work);
2177
6e84d644 2178/*
1f1f642e 2179 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2180 * so this work can't be re-armed in any way.
2181 */
2182static int try_to_grab_pending(struct work_struct *work)
2183{
8b03ae3c 2184 struct global_cwq *gcwq;
1f1f642e 2185 int ret = -1;
6e84d644 2186
22df02bb 2187 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2188 return 0;
6e84d644
ON
2189
2190 /*
2191 * The queueing is in progress, or it is already queued. Try to
2192 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2193 */
7a22ad75
TH
2194 gcwq = get_work_gcwq(work);
2195 if (!gcwq)
6e84d644
ON
2196 return ret;
2197
8b03ae3c 2198 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2199 if (!list_empty(&work->entry)) {
2200 /*
7a22ad75 2201 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2202 * In that case we must see the new value after rmb(), see
2203 * insert_work()->wmb().
2204 */
2205 smp_rmb();
7a22ad75 2206 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2207 debug_work_deactivate(work);
6e84d644 2208 list_del_init(&work->entry);
7a22ad75
TH
2209 cwq_dec_nr_in_flight(get_work_cwq(work),
2210 get_work_color(work));
6e84d644
ON
2211 ret = 1;
2212 }
2213 }
8b03ae3c 2214 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2215
2216 return ret;
2217}
2218
7a22ad75 2219static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
b89deed3
ON
2220{
2221 struct wq_barrier barr;
affee4b2 2222 struct worker *worker;
b89deed3 2223
8b03ae3c 2224 spin_lock_irq(&gcwq->lock);
affee4b2 2225
7a22ad75
TH
2226 worker = find_worker_executing_work(gcwq, work);
2227 if (unlikely(worker))
2228 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
affee4b2 2229
8b03ae3c 2230 spin_unlock_irq(&gcwq->lock);
b89deed3 2231
affee4b2 2232 if (unlikely(worker)) {
b89deed3 2233 wait_for_completion(&barr.done);
dc186ad7
TG
2234 destroy_work_on_stack(&barr.work);
2235 }
b89deed3
ON
2236}
2237
6e84d644 2238static void wait_on_work(struct work_struct *work)
b89deed3 2239{
b1f4ec17 2240 int cpu;
b89deed3 2241
f293ea92
ON
2242 might_sleep();
2243
3295f0ef
IM
2244 lock_map_acquire(&work->lockdep_map);
2245 lock_map_release(&work->lockdep_map);
4e6045f1 2246
1537663f 2247 for_each_possible_cpu(cpu)
7a22ad75 2248 wait_on_cpu_work(get_gcwq(cpu), work);
6e84d644
ON
2249}
2250
1f1f642e
ON
2251static int __cancel_work_timer(struct work_struct *work,
2252 struct timer_list* timer)
2253{
2254 int ret;
2255
2256 do {
2257 ret = (timer && likely(del_timer(timer)));
2258 if (!ret)
2259 ret = try_to_grab_pending(work);
2260 wait_on_work(work);
2261 } while (unlikely(ret < 0));
2262
7a22ad75 2263 clear_work_data(work);
1f1f642e
ON
2264 return ret;
2265}
2266
6e84d644
ON
2267/**
2268 * cancel_work_sync - block until a work_struct's callback has terminated
2269 * @work: the work which is to be flushed
2270 *
1f1f642e
ON
2271 * Returns true if @work was pending.
2272 *
6e84d644
ON
2273 * cancel_work_sync() will cancel the work if it is queued. If the work's
2274 * callback appears to be running, cancel_work_sync() will block until it
2275 * has completed.
2276 *
2277 * It is possible to use this function if the work re-queues itself. It can
2278 * cancel the work even if it migrates to another workqueue, however in that
2279 * case it only guarantees that work->func() has completed on the last queued
2280 * workqueue.
2281 *
2282 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2283 * pending, otherwise it goes into a busy-wait loop until the timer expires.
2284 *
2285 * The caller must ensure that workqueue_struct on which this work was last
2286 * queued can't be destroyed before this function returns.
2287 */
1f1f642e 2288int cancel_work_sync(struct work_struct *work)
6e84d644 2289{
1f1f642e 2290 return __cancel_work_timer(work, NULL);
b89deed3 2291}
28e53bdd 2292EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2293
6e84d644 2294/**
f5a421a4 2295 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
2296 * @dwork: the delayed work struct
2297 *
1f1f642e
ON
2298 * Returns true if @dwork was pending.
2299 *
6e84d644
ON
2300 * It is possible to use this function if @dwork rearms itself via queue_work()
2301 * or queue_delayed_work(). See also the comment for cancel_work_sync().
2302 */
1f1f642e 2303int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2304{
1f1f642e 2305 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2306}
f5a421a4 2307EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2308
6e84d644 2309static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 2310
0fcb78c2
REB
2311/**
2312 * schedule_work - put work task in global workqueue
2313 * @work: job to be done
2314 *
5b0f437d
BVA
2315 * Returns zero if @work was already on the kernel-global workqueue and
2316 * non-zero otherwise.
2317 *
2318 * This puts a job in the kernel-global workqueue if it was not already
2319 * queued and leaves it in the same position on the kernel-global
2320 * workqueue otherwise.
0fcb78c2 2321 */
7ad5b3a5 2322int schedule_work(struct work_struct *work)
1da177e4
LT
2323{
2324 return queue_work(keventd_wq, work);
2325}
ae90dd5d 2326EXPORT_SYMBOL(schedule_work);
1da177e4 2327
c1a220e7
ZR
2328/*
2329 * schedule_work_on - put work task on a specific cpu
2330 * @cpu: cpu to put the work task on
2331 * @work: job to be done
2332 *
2333 * This puts a job on a specific cpu
2334 */
2335int schedule_work_on(int cpu, struct work_struct *work)
2336{
2337 return queue_work_on(cpu, keventd_wq, work);
2338}
2339EXPORT_SYMBOL(schedule_work_on);
2340
0fcb78c2
REB
2341/**
2342 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2343 * @dwork: job to be done
2344 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2345 *
2346 * After waiting for a given time this puts a job in the kernel-global
2347 * workqueue.
2348 */
7ad5b3a5 2349int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2350 unsigned long delay)
1da177e4 2351{
52bad64d 2352 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 2353}
ae90dd5d 2354EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2355
8c53e463
LT
2356/**
2357 * flush_delayed_work - block until a dwork_struct's callback has terminated
2358 * @dwork: the delayed work which is to be flushed
2359 *
2360 * Any timeout is cancelled, and any pending work is run immediately.
2361 */
2362void flush_delayed_work(struct delayed_work *dwork)
2363{
2364 if (del_timer_sync(&dwork->timer)) {
7a22ad75 2365 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
4690c4ab 2366 &dwork->work);
8c53e463
LT
2367 put_cpu();
2368 }
2369 flush_work(&dwork->work);
2370}
2371EXPORT_SYMBOL(flush_delayed_work);
2372
0fcb78c2
REB
2373/**
2374 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2375 * @cpu: cpu to use
52bad64d 2376 * @dwork: job to be done
0fcb78c2
REB
2377 * @delay: number of jiffies to wait
2378 *
2379 * After waiting for a given time this puts a job in the kernel-global
2380 * workqueue on the specified CPU.
2381 */
1da177e4 2382int schedule_delayed_work_on(int cpu,
52bad64d 2383 struct delayed_work *dwork, unsigned long delay)
1da177e4 2384{
52bad64d 2385 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 2386}
ae90dd5d 2387EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2388
b6136773
AM
2389/**
2390 * schedule_on_each_cpu - call a function on each online CPU from keventd
2391 * @func: the function to call
b6136773
AM
2392 *
2393 * Returns zero on success.
2394 * Returns -ve errno on failure.
2395 *
b6136773
AM
2396 * schedule_on_each_cpu() is very slow.
2397 */
65f27f38 2398int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2399{
2400 int cpu;
65a64464 2401 int orig = -1;
b6136773 2402 struct work_struct *works;
15316ba8 2403
b6136773
AM
2404 works = alloc_percpu(struct work_struct);
2405 if (!works)
15316ba8 2406 return -ENOMEM;
b6136773 2407
93981800
TH
2408 get_online_cpus();
2409
65a64464 2410 /*
93981800
TH
2411 * When running in keventd don't schedule a work item on
2412 * itself. Can just call directly because the work queue is
2413 * already bound. This also is faster.
65a64464 2414 */
93981800 2415 if (current_is_keventd())
65a64464 2416 orig = raw_smp_processor_id();
65a64464 2417
15316ba8 2418 for_each_online_cpu(cpu) {
9bfb1839
IM
2419 struct work_struct *work = per_cpu_ptr(works, cpu);
2420
2421 INIT_WORK(work, func);
65a64464 2422 if (cpu != orig)
93981800 2423 schedule_work_on(cpu, work);
65a64464 2424 }
93981800
TH
2425 if (orig >= 0)
2426 func(per_cpu_ptr(works, orig));
2427
2428 for_each_online_cpu(cpu)
2429 flush_work(per_cpu_ptr(works, cpu));
2430
95402b38 2431 put_online_cpus();
b6136773 2432 free_percpu(works);
15316ba8
CL
2433 return 0;
2434}
2435
eef6a7d5
AS
2436/**
2437 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2438 *
2439 * Forces execution of the kernel-global workqueue and blocks until its
2440 * completion.
2441 *
2442 * Think twice before calling this function! It's very easy to get into
2443 * trouble if you don't take great care. Either of the following situations
2444 * will lead to deadlock:
2445 *
2446 * One of the work items currently on the workqueue needs to acquire
2447 * a lock held by your code or its caller.
2448 *
2449 * Your code is running in the context of a work routine.
2450 *
2451 * They will be detected by lockdep when they occur, but the first might not
2452 * occur very often. It depends on what work items are on the workqueue and
2453 * what locks they need, which you have no control over.
2454 *
2455 * In most situations flushing the entire workqueue is overkill; you merely
2456 * need to know that a particular work item isn't queued and isn't running.
2457 * In such cases you should use cancel_delayed_work_sync() or
2458 * cancel_work_sync() instead.
2459 */
1da177e4
LT
2460void flush_scheduled_work(void)
2461{
2462 flush_workqueue(keventd_wq);
2463}
ae90dd5d 2464EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2465
1fa44eca
JB
2466/**
2467 * execute_in_process_context - reliably execute the routine with user context
2468 * @fn: the function to execute
1fa44eca
JB
2469 * @ew: guaranteed storage for the execute work structure (must
2470 * be available when the work executes)
2471 *
2472 * Executes the function immediately if process context is available,
2473 * otherwise schedules the function for delayed execution.
2474 *
2475 * Returns: 0 - function was executed
2476 * 1 - function was scheduled for execution
2477 */
65f27f38 2478int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2479{
2480 if (!in_interrupt()) {
65f27f38 2481 fn(&ew->work);
1fa44eca
JB
2482 return 0;
2483 }
2484
65f27f38 2485 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2486 schedule_work(&ew->work);
2487
2488 return 1;
2489}
2490EXPORT_SYMBOL_GPL(execute_in_process_context);
2491
1da177e4
LT
2492int keventd_up(void)
2493{
2494 return keventd_wq != NULL;
2495}
2496
2497int current_is_keventd(void)
2498{
7e11629d
TH
2499 bool found = false;
2500 unsigned int cpu;
1da177e4 2501
7e11629d
TH
2502 /*
2503 * There no longer is one-to-one relation between worker and
2504 * work queue and a worker task might be unbound from its cpu
2505 * if the cpu was offlined. Match all busy workers. This
2506 * function will go away once dynamic pool is implemented.
2507 */
2508 for_each_possible_cpu(cpu) {
2509 struct global_cwq *gcwq = get_gcwq(cpu);
2510 struct worker *worker;
2511 struct hlist_node *pos;
2512 unsigned long flags;
2513 int i;
1da177e4 2514
7e11629d 2515 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 2516
7e11629d
TH
2517 for_each_busy_worker(worker, i, pos, gcwq) {
2518 if (worker->task == current) {
2519 found = true;
2520 break;
2521 }
2522 }
2523
2524 spin_unlock_irqrestore(&gcwq->lock, flags);
2525 if (found)
2526 break;
2527 }
1da177e4 2528
7e11629d 2529 return found;
1da177e4
LT
2530}
2531
0f900049
TH
2532static struct cpu_workqueue_struct *alloc_cwqs(void)
2533{
2534 /*
2535 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2536 * Make sure that the alignment isn't lower than that of
2537 * unsigned long long.
2538 */
2539 const size_t size = sizeof(struct cpu_workqueue_struct);
2540 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2541 __alignof__(unsigned long long));
2542 struct cpu_workqueue_struct *cwqs;
2543#ifndef CONFIG_SMP
2544 void *ptr;
2545
2546 /*
2547 * On UP, percpu allocator doesn't honor alignment parameter
2548 * and simply uses arch-dependent default. Allocate enough
2549 * room to align cwq and put an extra pointer at the end
2550 * pointing back to the originally allocated pointer which
2551 * will be used for free.
2552 *
2553 * FIXME: This really belongs to UP percpu code. Update UP
2554 * percpu code to honor alignment and remove this ugliness.
2555 */
2556 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
2557 cwqs = PTR_ALIGN(ptr, align);
2558 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
2559#else
2560 /* On SMP, percpu allocator can do it itself */
2561 cwqs = __alloc_percpu(size, align);
2562#endif
2563 /* just in case, make sure it's actually aligned */
2564 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
2565 return cwqs;
2566}
2567
2568static void free_cwqs(struct cpu_workqueue_struct *cwqs)
2569{
2570#ifndef CONFIG_SMP
2571 /* on UP, the pointer to free is stored right after the cwq */
2572 if (cwqs)
2573 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
2574#else
2575 free_percpu(cwqs);
2576#endif
2577}
2578
4e6045f1 2579struct workqueue_struct *__create_workqueue_key(const char *name,
97e37d7b 2580 unsigned int flags,
1e19ffc6 2581 int max_active,
eb13ba87
JB
2582 struct lock_class_key *key,
2583 const char *lock_name)
1da177e4 2584{
1da177e4 2585 struct workqueue_struct *wq;
c34056a3 2586 unsigned int cpu;
1da177e4 2587
1e19ffc6
TH
2588 max_active = clamp_val(max_active, 1, INT_MAX);
2589
3af24433
ON
2590 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2591 if (!wq)
4690c4ab 2592 goto err;
3af24433 2593
0f900049 2594 wq->cpu_wq = alloc_cwqs();
4690c4ab
TH
2595 if (!wq->cpu_wq)
2596 goto err;
3af24433 2597
97e37d7b 2598 wq->flags = flags;
a0a1a5fd 2599 wq->saved_max_active = max_active;
73f53c4a
TH
2600 mutex_init(&wq->flush_mutex);
2601 atomic_set(&wq->nr_cwqs_to_flush, 0);
2602 INIT_LIST_HEAD(&wq->flusher_queue);
2603 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8
TH
2604 wq->single_cpu = NR_CPUS;
2605
3af24433 2606 wq->name = name;
eb13ba87 2607 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 2608 INIT_LIST_HEAD(&wq->list);
3af24433 2609
1537663f
TH
2610 for_each_possible_cpu(cpu) {
2611 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2612 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 2613
0f900049 2614 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 2615 cwq->gcwq = gcwq;
c34056a3 2616 cwq->wq = wq;
73f53c4a 2617 cwq->flush_color = -1;
1e19ffc6 2618 cwq->max_active = max_active;
1e19ffc6 2619 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 2620 }
1537663f 2621
e22bee78
TH
2622 if (flags & WQ_RESCUER) {
2623 struct worker *rescuer;
2624
2625 if (!alloc_cpumask_var(&wq->mayday_mask, GFP_KERNEL))
2626 goto err;
2627
2628 wq->rescuer = rescuer = alloc_worker();
2629 if (!rescuer)
2630 goto err;
2631
2632 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2633 if (IS_ERR(rescuer->task))
2634 goto err;
2635
2636 wq->rescuer = rescuer;
2637 rescuer->task->flags |= PF_THREAD_BOUND;
2638 wake_up_process(rescuer->task);
3af24433
ON
2639 }
2640
a0a1a5fd
TH
2641 /*
2642 * workqueue_lock protects global freeze state and workqueues
2643 * list. Grab it, set max_active accordingly and add the new
2644 * workqueue to workqueues list.
2645 */
1537663f 2646 spin_lock(&workqueue_lock);
a0a1a5fd
TH
2647
2648 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2649 for_each_possible_cpu(cpu)
2650 get_cwq(cpu, wq)->max_active = 0;
2651
1537663f 2652 list_add(&wq->list, &workqueues);
a0a1a5fd 2653
1537663f
TH
2654 spin_unlock(&workqueue_lock);
2655
3af24433 2656 return wq;
4690c4ab
TH
2657err:
2658 if (wq) {
0f900049 2659 free_cwqs(wq->cpu_wq);
e22bee78
TH
2660 free_cpumask_var(wq->mayday_mask);
2661 kfree(wq->rescuer);
4690c4ab
TH
2662 kfree(wq);
2663 }
2664 return NULL;
3af24433 2665}
4e6045f1 2666EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 2667
3af24433
ON
2668/**
2669 * destroy_workqueue - safely terminate a workqueue
2670 * @wq: target workqueue
2671 *
2672 * Safely destroy a workqueue. All work currently pending will be done first.
2673 */
2674void destroy_workqueue(struct workqueue_struct *wq)
2675{
c8e55f36 2676 unsigned int cpu;
3af24433 2677
a0a1a5fd
TH
2678 flush_workqueue(wq);
2679
2680 /*
2681 * wq list is used to freeze wq, remove from list after
2682 * flushing is complete in case freeze races us.
2683 */
95402b38 2684 spin_lock(&workqueue_lock);
b1f4ec17 2685 list_del(&wq->list);
95402b38 2686 spin_unlock(&workqueue_lock);
3af24433 2687
e22bee78 2688 /* sanity check */
73f53c4a
TH
2689 for_each_possible_cpu(cpu) {
2690 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2691 int i;
2692
73f53c4a
TH
2693 for (i = 0; i < WORK_NR_COLORS; i++)
2694 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2695 BUG_ON(cwq->nr_active);
2696 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2697 }
9b41ea72 2698
e22bee78
TH
2699 if (wq->flags & WQ_RESCUER) {
2700 kthread_stop(wq->rescuer->task);
2701 free_cpumask_var(wq->mayday_mask);
2702 }
2703
0f900049 2704 free_cwqs(wq->cpu_wq);
3af24433
ON
2705 kfree(wq);
2706}
2707EXPORT_SYMBOL_GPL(destroy_workqueue);
2708
db7bccf4
TH
2709/*
2710 * CPU hotplug.
2711 *
e22bee78
TH
2712 * There are two challenges in supporting CPU hotplug. Firstly, there
2713 * are a lot of assumptions on strong associations among work, cwq and
2714 * gcwq which make migrating pending and scheduled works very
2715 * difficult to implement without impacting hot paths. Secondly,
2716 * gcwqs serve mix of short, long and very long running works making
2717 * blocked draining impractical.
2718 *
2719 * This is solved by allowing a gcwq to be detached from CPU, running
2720 * it with unbound (rogue) workers and allowing it to be reattached
2721 * later if the cpu comes back online. A separate thread is created
2722 * to govern a gcwq in such state and is called the trustee of the
2723 * gcwq.
db7bccf4
TH
2724 *
2725 * Trustee states and their descriptions.
2726 *
2727 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2728 * new trustee is started with this state.
2729 *
2730 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
2731 * assuming the manager role and making all existing
2732 * workers rogue. DOWN_PREPARE waits for trustee to
2733 * enter this state. After reaching IN_CHARGE, trustee
2734 * tries to execute the pending worklist until it's empty
2735 * and the state is set to BUTCHER, or the state is set
2736 * to RELEASE.
db7bccf4
TH
2737 *
2738 * BUTCHER Command state which is set by the cpu callback after
2739 * the cpu has went down. Once this state is set trustee
2740 * knows that there will be no new works on the worklist
2741 * and once the worklist is empty it can proceed to
2742 * killing idle workers.
2743 *
2744 * RELEASE Command state which is set by the cpu callback if the
2745 * cpu down has been canceled or it has come online
2746 * again. After recognizing this state, trustee stops
e22bee78
TH
2747 * trying to drain or butcher and clears ROGUE, rebinds
2748 * all remaining workers back to the cpu and releases
2749 * manager role.
db7bccf4
TH
2750 *
2751 * DONE Trustee will enter this state after BUTCHER or RELEASE
2752 * is complete.
2753 *
2754 * trustee CPU draining
2755 * took over down complete
2756 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2757 * | | ^
2758 * | CPU is back online v return workers |
2759 * ----------------> RELEASE --------------
2760 */
2761
2762/**
2763 * trustee_wait_event_timeout - timed event wait for trustee
2764 * @cond: condition to wait for
2765 * @timeout: timeout in jiffies
2766 *
2767 * wait_event_timeout() for trustee to use. Handles locking and
2768 * checks for RELEASE request.
2769 *
2770 * CONTEXT:
2771 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2772 * multiple times. To be used by trustee.
2773 *
2774 * RETURNS:
2775 * Positive indicating left time if @cond is satisfied, 0 if timed
2776 * out, -1 if canceled.
2777 */
2778#define trustee_wait_event_timeout(cond, timeout) ({ \
2779 long __ret = (timeout); \
2780 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2781 __ret) { \
2782 spin_unlock_irq(&gcwq->lock); \
2783 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2784 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2785 __ret); \
2786 spin_lock_irq(&gcwq->lock); \
2787 } \
2788 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2789})
2790
2791/**
2792 * trustee_wait_event - event wait for trustee
2793 * @cond: condition to wait for
2794 *
2795 * wait_event() for trustee to use. Automatically handles locking and
2796 * checks for CANCEL request.
2797 *
2798 * CONTEXT:
2799 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2800 * multiple times. To be used by trustee.
2801 *
2802 * RETURNS:
2803 * 0 if @cond is satisfied, -1 if canceled.
2804 */
2805#define trustee_wait_event(cond) ({ \
2806 long __ret1; \
2807 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
2808 __ret1 < 0 ? -1 : 0; \
2809})
2810
2811static int __cpuinit trustee_thread(void *__gcwq)
2812{
2813 struct global_cwq *gcwq = __gcwq;
2814 struct worker *worker;
e22bee78 2815 struct work_struct *work;
db7bccf4 2816 struct hlist_node *pos;
e22bee78 2817 long rc;
db7bccf4
TH
2818 int i;
2819
2820 BUG_ON(gcwq->cpu != smp_processor_id());
2821
2822 spin_lock_irq(&gcwq->lock);
2823 /*
e22bee78
TH
2824 * Claim the manager position and make all workers rogue.
2825 * Trustee must be bound to the target cpu and can't be
2826 * cancelled.
db7bccf4
TH
2827 */
2828 BUG_ON(gcwq->cpu != smp_processor_id());
e22bee78
TH
2829 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
2830 BUG_ON(rc < 0);
2831
2832 gcwq->flags |= GCWQ_MANAGING_WORKERS;
db7bccf4
TH
2833
2834 list_for_each_entry(worker, &gcwq->idle_list, entry)
d302f017 2835 worker_set_flags(worker, WORKER_ROGUE, false);
db7bccf4
TH
2836
2837 for_each_busy_worker(worker, i, pos, gcwq)
d302f017 2838 worker_set_flags(worker, WORKER_ROGUE, false);
db7bccf4 2839
e22bee78
TH
2840 /*
2841 * Call schedule() so that we cross rq->lock and thus can
2842 * guarantee sched callbacks see the rogue flag. This is
2843 * necessary as scheduler callbacks may be invoked from other
2844 * cpus.
2845 */
2846 spin_unlock_irq(&gcwq->lock);
2847 schedule();
2848 spin_lock_irq(&gcwq->lock);
2849
2850 /*
2851 * Sched callbacks are disabled now. gcwq->nr_running should
2852 * be zero and will stay that way, making need_more_worker()
2853 * and keep_working() always return true as long as the
2854 * worklist is not empty.
2855 */
2856 WARN_ON_ONCE(atomic_read(get_gcwq_nr_running(gcwq->cpu)) != 0);
2857
2858 spin_unlock_irq(&gcwq->lock);
2859 del_timer_sync(&gcwq->idle_timer);
2860 spin_lock_irq(&gcwq->lock);
2861
db7bccf4
TH
2862 /*
2863 * We're now in charge. Notify and proceed to drain. We need
2864 * to keep the gcwq running during the whole CPU down
2865 * procedure as other cpu hotunplug callbacks may need to
2866 * flush currently running tasks.
2867 */
2868 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
2869 wake_up_all(&gcwq->trustee_wait);
2870
2871 /*
2872 * The original cpu is in the process of dying and may go away
2873 * anytime now. When that happens, we and all workers would
e22bee78
TH
2874 * be migrated to other cpus. Try draining any left work. We
2875 * want to get it over with ASAP - spam rescuers, wake up as
2876 * many idlers as necessary and create new ones till the
2877 * worklist is empty. Note that if the gcwq is frozen, there
2878 * may be frozen works in freezeable cwqs. Don't declare
2879 * completion while frozen.
db7bccf4
TH
2880 */
2881 while (gcwq->nr_workers != gcwq->nr_idle ||
2882 gcwq->flags & GCWQ_FREEZING ||
2883 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
e22bee78
TH
2884 int nr_works = 0;
2885
2886 list_for_each_entry(work, &gcwq->worklist, entry) {
2887 send_mayday(work);
2888 nr_works++;
2889 }
2890
2891 list_for_each_entry(worker, &gcwq->idle_list, entry) {
2892 if (!nr_works--)
2893 break;
2894 wake_up_process(worker->task);
2895 }
2896
2897 if (need_to_create_worker(gcwq)) {
2898 spin_unlock_irq(&gcwq->lock);
2899 worker = create_worker(gcwq, false);
2900 spin_lock_irq(&gcwq->lock);
2901 if (worker) {
2902 worker_set_flags(worker, WORKER_ROGUE, false);
2903 start_worker(worker);
2904 }
2905 }
2906
db7bccf4
TH
2907 /* give a breather */
2908 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
2909 break;
2910 }
2911
e22bee78
TH
2912 /*
2913 * Either all works have been scheduled and cpu is down, or
2914 * cpu down has already been canceled. Wait for and butcher
2915 * all workers till we're canceled.
2916 */
2917 do {
2918 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
2919 while (!list_empty(&gcwq->idle_list))
2920 destroy_worker(list_first_entry(&gcwq->idle_list,
2921 struct worker, entry));
2922 } while (gcwq->nr_workers && rc >= 0);
2923
2924 /*
2925 * At this point, either draining has completed and no worker
2926 * is left, or cpu down has been canceled or the cpu is being
2927 * brought back up. There shouldn't be any idle one left.
2928 * Tell the remaining busy ones to rebind once it finishes the
2929 * currently scheduled works by scheduling the rebind_work.
2930 */
2931 WARN_ON(!list_empty(&gcwq->idle_list));
2932
2933 for_each_busy_worker(worker, i, pos, gcwq) {
2934 struct work_struct *rebind_work = &worker->rebind_work;
2935
2936 /*
2937 * Rebind_work may race with future cpu hotplug
2938 * operations. Use a separate flag to mark that
2939 * rebinding is scheduled.
2940 */
2941 worker_set_flags(worker, WORKER_REBIND, false);
2942 worker_clr_flags(worker, WORKER_ROGUE);
2943
2944 /* queue rebind_work, wq doesn't matter, use the default one */
2945 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
2946 work_data_bits(rebind_work)))
2947 continue;
2948
2949 debug_work_activate(rebind_work);
2950 insert_work(get_cwq(gcwq->cpu, keventd_wq), rebind_work,
2951 worker->scheduled.next,
2952 work_color_to_flags(WORK_NO_COLOR));
2953 }
2954
2955 /* relinquish manager role */
2956 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
2957
db7bccf4
TH
2958 /* notify completion */
2959 gcwq->trustee = NULL;
2960 gcwq->trustee_state = TRUSTEE_DONE;
2961 wake_up_all(&gcwq->trustee_wait);
2962 spin_unlock_irq(&gcwq->lock);
2963 return 0;
2964}
2965
2966/**
2967 * wait_trustee_state - wait for trustee to enter the specified state
2968 * @gcwq: gcwq the trustee of interest belongs to
2969 * @state: target state to wait for
2970 *
2971 * Wait for the trustee to reach @state. DONE is already matched.
2972 *
2973 * CONTEXT:
2974 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2975 * multiple times. To be used by cpu_callback.
2976 */
2977static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
2978{
2979 if (!(gcwq->trustee_state == state ||
2980 gcwq->trustee_state == TRUSTEE_DONE)) {
2981 spin_unlock_irq(&gcwq->lock);
2982 __wait_event(gcwq->trustee_wait,
2983 gcwq->trustee_state == state ||
2984 gcwq->trustee_state == TRUSTEE_DONE);
2985 spin_lock_irq(&gcwq->lock);
2986 }
2987}
2988
3af24433
ON
2989static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
2990 unsigned long action,
2991 void *hcpu)
2992{
2993 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
2994 struct global_cwq *gcwq = get_gcwq(cpu);
2995 struct task_struct *new_trustee = NULL;
e22bee78 2996 struct worker *uninitialized_var(new_worker);
db7bccf4 2997 unsigned long flags;
3af24433 2998
8bb78442
RW
2999 action &= ~CPU_TASKS_FROZEN;
3000
db7bccf4
TH
3001 switch (action) {
3002 case CPU_DOWN_PREPARE:
3003 new_trustee = kthread_create(trustee_thread, gcwq,
3004 "workqueue_trustee/%d\n", cpu);
3005 if (IS_ERR(new_trustee))
3006 return notifier_from_errno(PTR_ERR(new_trustee));
3007 kthread_bind(new_trustee, cpu);
e22bee78
TH
3008 /* fall through */
3009 case CPU_UP_PREPARE:
3010 BUG_ON(gcwq->first_idle);
3011 new_worker = create_worker(gcwq, false);
3012 if (!new_worker) {
3013 if (new_trustee)
3014 kthread_stop(new_trustee);
3015 return NOTIFY_BAD;
3016 }
db7bccf4 3017 }
3af24433 3018
db7bccf4
TH
3019 /* some are called w/ irq disabled, don't disturb irq status */
3020 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3021
db7bccf4
TH
3022 switch (action) {
3023 case CPU_DOWN_PREPARE:
3024 /* initialize trustee and tell it to acquire the gcwq */
3025 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3026 gcwq->trustee = new_trustee;
3027 gcwq->trustee_state = TRUSTEE_START;
3028 wake_up_process(gcwq->trustee);
3029 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3030 /* fall through */
3031 case CPU_UP_PREPARE:
3032 BUG_ON(gcwq->first_idle);
3033 gcwq->first_idle = new_worker;
3034 break;
3035
3036 case CPU_DYING:
3037 /*
3038 * Before this, the trustee and all workers except for
3039 * the ones which are still executing works from
3040 * before the last CPU down must be on the cpu. After
3041 * this, they'll all be diasporas.
3042 */
3043 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3044 break;
3045
3046 case CPU_POST_DEAD:
3047 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3048 /* fall through */
3049 case CPU_UP_CANCELED:
3050 destroy_worker(gcwq->first_idle);
3051 gcwq->first_idle = NULL;
db7bccf4
TH
3052 break;
3053
3054 case CPU_DOWN_FAILED:
3055 case CPU_ONLINE:
e22bee78 3056 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3057 if (gcwq->trustee_state != TRUSTEE_DONE) {
3058 gcwq->trustee_state = TRUSTEE_RELEASE;
3059 wake_up_process(gcwq->trustee);
3060 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3061 }
db7bccf4 3062
e22bee78
TH
3063 /*
3064 * Trustee is done and there might be no worker left.
3065 * Put the first_idle in and request a real manager to
3066 * take a look.
3067 */
3068 spin_unlock_irq(&gcwq->lock);
3069 kthread_bind(gcwq->first_idle->task, cpu);
3070 spin_lock_irq(&gcwq->lock);
3071 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3072 start_worker(gcwq->first_idle);
3073 gcwq->first_idle = NULL;
db7bccf4 3074 break;
1da177e4
LT
3075 }
3076
db7bccf4
TH
3077 spin_unlock_irqrestore(&gcwq->lock, flags);
3078
1537663f 3079 return notifier_from_errno(0);
1da177e4 3080}
1da177e4 3081
2d3854a3 3082#ifdef CONFIG_SMP
8ccad40d 3083
2d3854a3 3084struct work_for_cpu {
6b44003e 3085 struct completion completion;
2d3854a3
RR
3086 long (*fn)(void *);
3087 void *arg;
3088 long ret;
3089};
3090
6b44003e 3091static int do_work_for_cpu(void *_wfc)
2d3854a3 3092{
6b44003e 3093 struct work_for_cpu *wfc = _wfc;
2d3854a3 3094 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3095 complete(&wfc->completion);
3096 return 0;
2d3854a3
RR
3097}
3098
3099/**
3100 * work_on_cpu - run a function in user context on a particular cpu
3101 * @cpu: the cpu to run on
3102 * @fn: the function to run
3103 * @arg: the function arg
3104 *
31ad9081
RR
3105 * This will return the value @fn returns.
3106 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3107 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3108 */
3109long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3110{
6b44003e
AM
3111 struct task_struct *sub_thread;
3112 struct work_for_cpu wfc = {
3113 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3114 .fn = fn,
3115 .arg = arg,
3116 };
3117
3118 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3119 if (IS_ERR(sub_thread))
3120 return PTR_ERR(sub_thread);
3121 kthread_bind(sub_thread, cpu);
3122 wake_up_process(sub_thread);
3123 wait_for_completion(&wfc.completion);
2d3854a3
RR
3124 return wfc.ret;
3125}
3126EXPORT_SYMBOL_GPL(work_on_cpu);
3127#endif /* CONFIG_SMP */
3128
a0a1a5fd
TH
3129#ifdef CONFIG_FREEZER
3130
3131/**
3132 * freeze_workqueues_begin - begin freezing workqueues
3133 *
3134 * Start freezing workqueues. After this function returns, all
3135 * freezeable workqueues will queue new works to their frozen_works
7e11629d 3136 * list instead of gcwq->worklist.
a0a1a5fd
TH
3137 *
3138 * CONTEXT:
8b03ae3c 3139 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3140 */
3141void freeze_workqueues_begin(void)
3142{
3143 struct workqueue_struct *wq;
3144 unsigned int cpu;
3145
3146 spin_lock(&workqueue_lock);
3147
3148 BUG_ON(workqueue_freezing);
3149 workqueue_freezing = true;
3150
3151 for_each_possible_cpu(cpu) {
8b03ae3c
TH
3152 struct global_cwq *gcwq = get_gcwq(cpu);
3153
3154 spin_lock_irq(&gcwq->lock);
3155
db7bccf4
TH
3156 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3157 gcwq->flags |= GCWQ_FREEZING;
3158
a0a1a5fd
TH
3159 list_for_each_entry(wq, &workqueues, list) {
3160 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3161
a0a1a5fd
TH
3162 if (wq->flags & WQ_FREEZEABLE)
3163 cwq->max_active = 0;
a0a1a5fd 3164 }
8b03ae3c
TH
3165
3166 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3167 }
3168
3169 spin_unlock(&workqueue_lock);
3170}
3171
3172/**
3173 * freeze_workqueues_busy - are freezeable workqueues still busy?
3174 *
3175 * Check whether freezing is complete. This function must be called
3176 * between freeze_workqueues_begin() and thaw_workqueues().
3177 *
3178 * CONTEXT:
3179 * Grabs and releases workqueue_lock.
3180 *
3181 * RETURNS:
3182 * %true if some freezeable workqueues are still busy. %false if
3183 * freezing is complete.
3184 */
3185bool freeze_workqueues_busy(void)
3186{
3187 struct workqueue_struct *wq;
3188 unsigned int cpu;
3189 bool busy = false;
3190
3191 spin_lock(&workqueue_lock);
3192
3193 BUG_ON(!workqueue_freezing);
3194
3195 for_each_possible_cpu(cpu) {
3196 /*
3197 * nr_active is monotonically decreasing. It's safe
3198 * to peek without lock.
3199 */
3200 list_for_each_entry(wq, &workqueues, list) {
3201 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3202
3203 if (!(wq->flags & WQ_FREEZEABLE))
3204 continue;
3205
3206 BUG_ON(cwq->nr_active < 0);
3207 if (cwq->nr_active) {
3208 busy = true;
3209 goto out_unlock;
3210 }
3211 }
3212 }
3213out_unlock:
3214 spin_unlock(&workqueue_lock);
3215 return busy;
3216}
3217
3218/**
3219 * thaw_workqueues - thaw workqueues
3220 *
3221 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3222 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3223 *
3224 * CONTEXT:
8b03ae3c 3225 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3226 */
3227void thaw_workqueues(void)
3228{
3229 struct workqueue_struct *wq;
3230 unsigned int cpu;
3231
3232 spin_lock(&workqueue_lock);
3233
3234 if (!workqueue_freezing)
3235 goto out_unlock;
3236
3237 for_each_possible_cpu(cpu) {
8b03ae3c
TH
3238 struct global_cwq *gcwq = get_gcwq(cpu);
3239
3240 spin_lock_irq(&gcwq->lock);
3241
db7bccf4
TH
3242 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3243 gcwq->flags &= ~GCWQ_FREEZING;
3244
a0a1a5fd
TH
3245 list_for_each_entry(wq, &workqueues, list) {
3246 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3247
3248 if (!(wq->flags & WQ_FREEZEABLE))
3249 continue;
3250
a0a1a5fd
TH
3251 /* restore max_active and repopulate worklist */
3252 cwq->max_active = wq->saved_max_active;
3253
3254 while (!list_empty(&cwq->delayed_works) &&
3255 cwq->nr_active < cwq->max_active)
3256 cwq_activate_first_delayed(cwq);
3257
502ca9d8
TH
3258 /* perform delayed unbind from single cpu if empty */
3259 if (wq->single_cpu == gcwq->cpu &&
3260 !cwq->nr_active && list_empty(&cwq->delayed_works))
3261 cwq_unbind_single_cpu(cwq);
a0a1a5fd 3262 }
8b03ae3c 3263
e22bee78
TH
3264 wake_up_worker(gcwq);
3265
8b03ae3c 3266 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3267 }
3268
3269 workqueue_freezing = false;
3270out_unlock:
3271 spin_unlock(&workqueue_lock);
3272}
3273#endif /* CONFIG_FREEZER */
3274
c12920d1 3275void __init init_workqueues(void)
1da177e4 3276{
c34056a3 3277 unsigned int cpu;
c8e55f36 3278 int i;
c34056a3 3279
7a22ad75
TH
3280 /*
3281 * The pointer part of work->data is either pointing to the
3282 * cwq or contains the cpu number the work ran last on. Make
3283 * sure cpu number won't overflow into kernel pointer area so
3284 * that they can be distinguished.
3285 */
3286 BUILD_BUG_ON(NR_CPUS << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
3287
db7bccf4 3288 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3289
3290 /* initialize gcwqs */
3291 for_each_possible_cpu(cpu) {
3292 struct global_cwq *gcwq = get_gcwq(cpu);
3293
3294 spin_lock_init(&gcwq->lock);
7e11629d 3295 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c
TH
3296 gcwq->cpu = cpu;
3297
c8e55f36
TH
3298 INIT_LIST_HEAD(&gcwq->idle_list);
3299 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3300 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3301
e22bee78
TH
3302 init_timer_deferrable(&gcwq->idle_timer);
3303 gcwq->idle_timer.function = idle_worker_timeout;
3304 gcwq->idle_timer.data = (unsigned long)gcwq;
3305
3306 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3307 (unsigned long)gcwq);
3308
8b03ae3c 3309 ida_init(&gcwq->worker_ida);
db7bccf4
TH
3310
3311 gcwq->trustee_state = TRUSTEE_DONE;
3312 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3313 }
3314
e22bee78
TH
3315 /* create the initial worker */
3316 for_each_online_cpu(cpu) {
3317 struct global_cwq *gcwq = get_gcwq(cpu);
3318 struct worker *worker;
3319
3320 worker = create_worker(gcwq, true);
3321 BUG_ON(!worker);
3322 spin_lock_irq(&gcwq->lock);
3323 start_worker(worker);
3324 spin_unlock_irq(&gcwq->lock);
3325 }
3326
1da177e4
LT
3327 keventd_wq = create_workqueue("events");
3328 BUG_ON(!keventd_wq);
3329}