workqueue: move nr_running into worker_pool
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
502ca9d8 157 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
158 * work_struct->data are used for flags and thus cwqs need to be
159 * aligned at two's power of the number of flag bits.
1da177e4
LT
160 */
161struct cpu_workqueue_struct {
bd7bdd43 162 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 163 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
164 int work_color; /* L: current color */
165 int flush_color; /* L: flushing color */
166 int nr_in_flight[WORK_NR_COLORS];
167 /* L: nr of in_flight works */
1e19ffc6 168 int nr_active; /* L: nr of active works */
a0a1a5fd 169 int max_active; /* L: max active works */
1e19ffc6 170 struct list_head delayed_works; /* L: delayed works */
0f900049 171};
1da177e4 172
73f53c4a
TH
173/*
174 * Structure used to wait for workqueue flush.
175 */
176struct wq_flusher {
177 struct list_head list; /* F: list of flushers */
178 int flush_color; /* F: flush color waiting for */
179 struct completion done; /* flush completion */
180};
181
f2e005aa
TH
182/*
183 * All cpumasks are assumed to be always set on UP and thus can't be
184 * used to determine whether there's something to be done.
185 */
186#ifdef CONFIG_SMP
187typedef cpumask_var_t mayday_mask_t;
188#define mayday_test_and_set_cpu(cpu, mask) \
189 cpumask_test_and_set_cpu((cpu), (mask))
190#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
191#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 192#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
193#define free_mayday_mask(mask) free_cpumask_var((mask))
194#else
195typedef unsigned long mayday_mask_t;
196#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
197#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
198#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
199#define alloc_mayday_mask(maskp, gfp) true
200#define free_mayday_mask(mask) do { } while (0)
201#endif
1da177e4
LT
202
203/*
204 * The externally visible workqueue abstraction is an array of
205 * per-CPU workqueues:
206 */
207struct workqueue_struct {
9c5a2ba7 208 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
209 union {
210 struct cpu_workqueue_struct __percpu *pcpu;
211 struct cpu_workqueue_struct *single;
212 unsigned long v;
213 } cpu_wq; /* I: cwq's */
4690c4ab 214 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
215
216 struct mutex flush_mutex; /* protects wq flushing */
217 int work_color; /* F: current work color */
218 int flush_color; /* F: current flush color */
219 atomic_t nr_cwqs_to_flush; /* flush in progress */
220 struct wq_flusher *first_flusher; /* F: first flusher */
221 struct list_head flusher_queue; /* F: flush waiters */
222 struct list_head flusher_overflow; /* F: flush overflow list */
223
f2e005aa 224 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
225 struct worker *rescuer; /* I: rescue worker */
226
9c5a2ba7 227 int nr_drainers; /* W: drain in progress */
dcd989cb 228 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 229#ifdef CONFIG_LOCKDEP
4690c4ab 230 struct lockdep_map lockdep_map;
4e6045f1 231#endif
b196be89 232 char name[]; /* I: workqueue name */
1da177e4
LT
233};
234
d320c038 235struct workqueue_struct *system_wq __read_mostly;
d320c038 236EXPORT_SYMBOL_GPL(system_wq);
044c782c 237struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 238EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 239struct workqueue_struct *system_long_wq __read_mostly;
d320c038 240EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 241struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 242EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 243struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 244EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 245
97bd2347
TH
246#define CREATE_TRACE_POINTS
247#include <trace/events/workqueue.h>
248
38db41d9 249#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
250 for ((pool) = &std_worker_pools(cpu)[0]; \
251 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 252
c9e7cf27
TH
253#define for_each_busy_worker(worker, i, pos, pool) \
254 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 255
706026c2
TH
256static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
257 unsigned int sw)
f3421797
TH
258{
259 if (cpu < nr_cpu_ids) {
260 if (sw & 1) {
261 cpu = cpumask_next(cpu, mask);
262 if (cpu < nr_cpu_ids)
263 return cpu;
264 }
265 if (sw & 2)
266 return WORK_CPU_UNBOUND;
267 }
6be19588 268 return WORK_CPU_END;
f3421797
TH
269}
270
706026c2
TH
271static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
272 struct workqueue_struct *wq)
f3421797 273{
706026c2 274 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
275}
276
09884951
TH
277/*
278 * CPU iterators
279 *
706026c2 280 * An extra cpu number is defined using an invalid cpu number
09884951 281 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
282 * specific CPU. The following iterators are similar to for_each_*_cpu()
283 * iterators but also considers the unbound CPU.
09884951 284 *
706026c2
TH
285 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
286 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
287 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
288 * WORK_CPU_UNBOUND for unbound workqueues
289 */
706026c2
TH
290#define for_each_wq_cpu(cpu) \
291 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 292 (cpu) < WORK_CPU_END; \
706026c2 293 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 294
706026c2
TH
295#define for_each_online_wq_cpu(cpu) \
296 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 297 (cpu) < WORK_CPU_END; \
706026c2 298 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
299
300#define for_each_cwq_cpu(cpu, wq) \
706026c2 301 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 302 (cpu) < WORK_CPU_END; \
706026c2 303 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 304
dc186ad7
TG
305#ifdef CONFIG_DEBUG_OBJECTS_WORK
306
307static struct debug_obj_descr work_debug_descr;
308
99777288
SG
309static void *work_debug_hint(void *addr)
310{
311 return ((struct work_struct *) addr)->func;
312}
313
dc186ad7
TG
314/*
315 * fixup_init is called when:
316 * - an active object is initialized
317 */
318static int work_fixup_init(void *addr, enum debug_obj_state state)
319{
320 struct work_struct *work = addr;
321
322 switch (state) {
323 case ODEBUG_STATE_ACTIVE:
324 cancel_work_sync(work);
325 debug_object_init(work, &work_debug_descr);
326 return 1;
327 default:
328 return 0;
329 }
330}
331
332/*
333 * fixup_activate is called when:
334 * - an active object is activated
335 * - an unknown object is activated (might be a statically initialized object)
336 */
337static int work_fixup_activate(void *addr, enum debug_obj_state state)
338{
339 struct work_struct *work = addr;
340
341 switch (state) {
342
343 case ODEBUG_STATE_NOTAVAILABLE:
344 /*
345 * This is not really a fixup. The work struct was
346 * statically initialized. We just make sure that it
347 * is tracked in the object tracker.
348 */
22df02bb 349 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
350 debug_object_init(work, &work_debug_descr);
351 debug_object_activate(work, &work_debug_descr);
352 return 0;
353 }
354 WARN_ON_ONCE(1);
355 return 0;
356
357 case ODEBUG_STATE_ACTIVE:
358 WARN_ON(1);
359
360 default:
361 return 0;
362 }
363}
364
365/*
366 * fixup_free is called when:
367 * - an active object is freed
368 */
369static int work_fixup_free(void *addr, enum debug_obj_state state)
370{
371 struct work_struct *work = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 cancel_work_sync(work);
376 debug_object_free(work, &work_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381}
382
383static struct debug_obj_descr work_debug_descr = {
384 .name = "work_struct",
99777288 385 .debug_hint = work_debug_hint,
dc186ad7
TG
386 .fixup_init = work_fixup_init,
387 .fixup_activate = work_fixup_activate,
388 .fixup_free = work_fixup_free,
389};
390
391static inline void debug_work_activate(struct work_struct *work)
392{
393 debug_object_activate(work, &work_debug_descr);
394}
395
396static inline void debug_work_deactivate(struct work_struct *work)
397{
398 debug_object_deactivate(work, &work_debug_descr);
399}
400
401void __init_work(struct work_struct *work, int onstack)
402{
403 if (onstack)
404 debug_object_init_on_stack(work, &work_debug_descr);
405 else
406 debug_object_init(work, &work_debug_descr);
407}
408EXPORT_SYMBOL_GPL(__init_work);
409
410void destroy_work_on_stack(struct work_struct *work)
411{
412 debug_object_free(work, &work_debug_descr);
413}
414EXPORT_SYMBOL_GPL(destroy_work_on_stack);
415
416#else
417static inline void debug_work_activate(struct work_struct *work) { }
418static inline void debug_work_deactivate(struct work_struct *work) { }
419#endif
420
95402b38
GS
421/* Serializes the accesses to the list of workqueues. */
422static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 423static LIST_HEAD(workqueues);
a0a1a5fd 424static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 425
e22bee78 426/*
e19e397a
TH
427 * The CPU and unbound standard worker pools. The unbound ones have
428 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 429 */
e19e397a
TH
430static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
431 cpu_std_worker_pools);
a60dc39c 432static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 433
9daf9e67
TH
434/* idr of all pools */
435static DEFINE_MUTEX(worker_pool_idr_mutex);
436static DEFINE_IDR(worker_pool_idr);
437
c34056a3 438static int worker_thread(void *__worker);
1da177e4 439
a60dc39c 440static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 441{
f3421797 442 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 443 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 444 else
a60dc39c 445 return unbound_std_worker_pools;
8b03ae3c
TH
446}
447
4e8f0a60
TH
448static int std_worker_pool_pri(struct worker_pool *pool)
449{
a60dc39c 450 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
451}
452
9daf9e67
TH
453/* allocate ID and assign it to @pool */
454static int worker_pool_assign_id(struct worker_pool *pool)
455{
456 int ret;
457
458 mutex_lock(&worker_pool_idr_mutex);
459 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
460 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
461 mutex_unlock(&worker_pool_idr_mutex);
462
463 return ret;
464}
465
7c3eed5c
TH
466/*
467 * Lookup worker_pool by id. The idr currently is built during boot and
468 * never modified. Don't worry about locking for now.
469 */
470static struct worker_pool *worker_pool_by_id(int pool_id)
471{
472 return idr_find(&worker_pool_idr, pool_id);
473}
474
d565ed63
TH
475static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
476{
a60dc39c 477 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 478
a60dc39c 479 return &pools[highpri];
d565ed63
TH
480}
481
1537663f
TH
482static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
483 struct workqueue_struct *wq)
b1f4ec17 484{
f3421797 485 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 486 if (likely(cpu < nr_cpu_ids))
f3421797 487 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
488 } else if (likely(cpu == WORK_CPU_UNBOUND))
489 return wq->cpu_wq.single;
490 return NULL;
b1f4ec17
ON
491}
492
73f53c4a
TH
493static unsigned int work_color_to_flags(int color)
494{
495 return color << WORK_STRUCT_COLOR_SHIFT;
496}
497
498static int get_work_color(struct work_struct *work)
499{
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502}
503
504static int work_next_color(int color)
505{
506 return (color + 1) % WORK_NR_COLORS;
507}
1da177e4 508
14441960 509/*
b5490077
TH
510 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
511 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 512 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 513 *
7c3eed5c
TH
514 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
515 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
516 * work->data. These functions should only be called while the work is
517 * owned - ie. while the PENDING bit is set.
7a22ad75 518 *
7c3eed5c
TH
519 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
520 * corresponding to a work. Pool is available once the work has been
521 * queued anywhere after initialization until it is sync canceled. cwq is
522 * available only while the work item is queued.
7a22ad75 523 *
bbb68dfa
TH
524 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
525 * canceled. While being canceled, a work item may have its PENDING set
526 * but stay off timer and worklist for arbitrarily long and nobody should
527 * try to steal the PENDING bit.
14441960 528 */
7a22ad75
TH
529static inline void set_work_data(struct work_struct *work, unsigned long data,
530 unsigned long flags)
365970a1 531{
4594bf15 532 BUG_ON(!work_pending(work));
7a22ad75
TH
533 atomic_long_set(&work->data, data | flags | work_static(work));
534}
365970a1 535
7a22ad75
TH
536static void set_work_cwq(struct work_struct *work,
537 struct cpu_workqueue_struct *cwq,
538 unsigned long extra_flags)
539{
540 set_work_data(work, (unsigned long)cwq,
e120153d 541 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
542}
543
4468a00f
LJ
544static void set_work_pool_and_keep_pending(struct work_struct *work,
545 int pool_id)
546{
547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 WORK_STRUCT_PENDING);
549}
550
7c3eed5c
TH
551static void set_work_pool_and_clear_pending(struct work_struct *work,
552 int pool_id)
7a22ad75 553{
23657bb1
TH
554 /*
555 * The following wmb is paired with the implied mb in
556 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 * here are visible to and precede any updates by the next PENDING
558 * owner.
559 */
560 smp_wmb();
7c3eed5c 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 562}
f756d5e2 563
7a22ad75 564static void clear_work_data(struct work_struct *work)
1da177e4 565{
7c3eed5c
TH
566 smp_wmb(); /* see set_work_pool_and_clear_pending() */
567 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
568}
569
7a22ad75 570static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 571{
e120153d 572 unsigned long data = atomic_long_read(&work->data);
7a22ad75 573
e120153d
TH
574 if (data & WORK_STRUCT_CWQ)
575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 else
577 return NULL;
4d707b9f
ON
578}
579
7c3eed5c
TH
580/**
581 * get_work_pool - return the worker_pool a given work was associated with
582 * @work: the work item of interest
583 *
584 * Return the worker_pool @work was last associated with. %NULL if none.
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
589 struct worker_pool *pool;
590 int pool_id;
7a22ad75 591
e120153d
TH
592 if (data & WORK_STRUCT_CWQ)
593 return ((struct cpu_workqueue_struct *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
7c3eed5c
TH
600 pool = worker_pool_by_id(pool_id);
601 WARN_ON_ONCE(!pool);
602 return pool;
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
614 struct worker_pool *pool = get_work_pool(work);
615
616 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
617}
618
bbb68dfa
TH
619static void mark_work_canceling(struct work_struct *work)
620{
7c3eed5c 621 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 622
7c3eed5c
TH
623 pool_id <<= WORK_OFFQ_POOL_SHIFT;
624 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
625}
626
627static bool work_is_canceling(struct work_struct *work)
628{
629 unsigned long data = atomic_long_read(&work->data);
630
631 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
632}
633
e22bee78 634/*
3270476a
TH
635 * Policy functions. These define the policies on how the global worker
636 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 637 * they're being called with pool->lock held.
e22bee78
TH
638 */
639
63d95a91 640static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 641{
e19e397a 642 return !atomic_read(&pool->nr_running);
a848e3b6
ON
643}
644
4594bf15 645/*
e22bee78
TH
646 * Need to wake up a worker? Called from anything but currently
647 * running workers.
974271c4
TH
648 *
649 * Note that, because unbound workers never contribute to nr_running, this
706026c2 650 * function will always return %true for unbound pools as long as the
974271c4 651 * worklist isn't empty.
4594bf15 652 */
63d95a91 653static bool need_more_worker(struct worker_pool *pool)
365970a1 654{
63d95a91 655 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 656}
4594bf15 657
e22bee78 658/* Can I start working? Called from busy but !running workers. */
63d95a91 659static bool may_start_working(struct worker_pool *pool)
e22bee78 660{
63d95a91 661 return pool->nr_idle;
e22bee78
TH
662}
663
664/* Do I need to keep working? Called from currently running workers. */
63d95a91 665static bool keep_working(struct worker_pool *pool)
e22bee78 666{
e19e397a
TH
667 return !list_empty(&pool->worklist) &&
668 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
669}
670
671/* Do we need a new worker? Called from manager. */
63d95a91 672static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 673{
63d95a91 674 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 675}
365970a1 676
e22bee78 677/* Do I need to be the manager? */
63d95a91 678static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 679{
63d95a91 680 return need_to_create_worker(pool) ||
11ebea50 681 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
682}
683
684/* Do we have too many workers and should some go away? */
63d95a91 685static bool too_many_workers(struct worker_pool *pool)
e22bee78 686{
552a37e9 687 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
688 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
689 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 690
ea1abd61
LJ
691 /*
692 * nr_idle and idle_list may disagree if idle rebinding is in
693 * progress. Never return %true if idle_list is empty.
694 */
695 if (list_empty(&pool->idle_list))
696 return false;
697
e22bee78 698 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
699}
700
4d707b9f 701/*
e22bee78
TH
702 * Wake up functions.
703 */
704
7e11629d 705/* Return the first worker. Safe with preemption disabled */
63d95a91 706static struct worker *first_worker(struct worker_pool *pool)
7e11629d 707{
63d95a91 708 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
709 return NULL;
710
63d95a91 711 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
712}
713
714/**
715 * wake_up_worker - wake up an idle worker
63d95a91 716 * @pool: worker pool to wake worker from
7e11629d 717 *
63d95a91 718 * Wake up the first idle worker of @pool.
7e11629d
TH
719 *
720 * CONTEXT:
d565ed63 721 * spin_lock_irq(pool->lock).
7e11629d 722 */
63d95a91 723static void wake_up_worker(struct worker_pool *pool)
7e11629d 724{
63d95a91 725 struct worker *worker = first_worker(pool);
7e11629d
TH
726
727 if (likely(worker))
728 wake_up_process(worker->task);
729}
730
d302f017 731/**
e22bee78
TH
732 * wq_worker_waking_up - a worker is waking up
733 * @task: task waking up
734 * @cpu: CPU @task is waking up to
735 *
736 * This function is called during try_to_wake_up() when a worker is
737 * being awoken.
738 *
739 * CONTEXT:
740 * spin_lock_irq(rq->lock)
741 */
742void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
743{
744 struct worker *worker = kthread_data(task);
745
36576000 746 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 747 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 748 atomic_inc(&worker->pool->nr_running);
36576000 749 }
e22bee78
TH
750}
751
752/**
753 * wq_worker_sleeping - a worker is going to sleep
754 * @task: task going to sleep
755 * @cpu: CPU in question, must be the current CPU number
756 *
757 * This function is called during schedule() when a busy worker is
758 * going to sleep. Worker on the same cpu can be woken up by
759 * returning pointer to its task.
760 *
761 * CONTEXT:
762 * spin_lock_irq(rq->lock)
763 *
764 * RETURNS:
765 * Worker task on @cpu to wake up, %NULL if none.
766 */
767struct task_struct *wq_worker_sleeping(struct task_struct *task,
768 unsigned int cpu)
769{
770 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 771 struct worker_pool *pool;
e22bee78 772
111c225a
TH
773 /*
774 * Rescuers, which may not have all the fields set up like normal
775 * workers, also reach here, let's not access anything before
776 * checking NOT_RUNNING.
777 */
2d64672e 778 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
779 return NULL;
780
111c225a 781 pool = worker->pool;
111c225a 782
e22bee78
TH
783 /* this can only happen on the local cpu */
784 BUG_ON(cpu != raw_smp_processor_id());
785
786 /*
787 * The counterpart of the following dec_and_test, implied mb,
788 * worklist not empty test sequence is in insert_work().
789 * Please read comment there.
790 *
628c78e7
TH
791 * NOT_RUNNING is clear. This means that we're bound to and
792 * running on the local cpu w/ rq lock held and preemption
793 * disabled, which in turn means that none else could be
d565ed63 794 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 795 * lock is safe.
e22bee78 796 */
e19e397a
TH
797 if (atomic_dec_and_test(&pool->nr_running) &&
798 !list_empty(&pool->worklist))
63d95a91 799 to_wakeup = first_worker(pool);
e22bee78
TH
800 return to_wakeup ? to_wakeup->task : NULL;
801}
802
803/**
804 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 805 * @worker: self
d302f017
TH
806 * @flags: flags to set
807 * @wakeup: wakeup an idle worker if necessary
808 *
e22bee78
TH
809 * Set @flags in @worker->flags and adjust nr_running accordingly. If
810 * nr_running becomes zero and @wakeup is %true, an idle worker is
811 * woken up.
d302f017 812 *
cb444766 813 * CONTEXT:
d565ed63 814 * spin_lock_irq(pool->lock)
d302f017
TH
815 */
816static inline void worker_set_flags(struct worker *worker, unsigned int flags,
817 bool wakeup)
818{
bd7bdd43 819 struct worker_pool *pool = worker->pool;
e22bee78 820
cb444766
TH
821 WARN_ON_ONCE(worker->task != current);
822
e22bee78
TH
823 /*
824 * If transitioning into NOT_RUNNING, adjust nr_running and
825 * wake up an idle worker as necessary if requested by
826 * @wakeup.
827 */
828 if ((flags & WORKER_NOT_RUNNING) &&
829 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 830 if (wakeup) {
e19e397a 831 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 832 !list_empty(&pool->worklist))
63d95a91 833 wake_up_worker(pool);
e22bee78 834 } else
e19e397a 835 atomic_dec(&pool->nr_running);
e22bee78
TH
836 }
837
d302f017
TH
838 worker->flags |= flags;
839}
840
841/**
e22bee78 842 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 843 * @worker: self
d302f017
TH
844 * @flags: flags to clear
845 *
e22bee78 846 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 847 *
cb444766 848 * CONTEXT:
d565ed63 849 * spin_lock_irq(pool->lock)
d302f017
TH
850 */
851static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
852{
63d95a91 853 struct worker_pool *pool = worker->pool;
e22bee78
TH
854 unsigned int oflags = worker->flags;
855
cb444766
TH
856 WARN_ON_ONCE(worker->task != current);
857
d302f017 858 worker->flags &= ~flags;
e22bee78 859
42c025f3
TH
860 /*
861 * If transitioning out of NOT_RUNNING, increment nr_running. Note
862 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
863 * of multiple flags, not a single flag.
864 */
e22bee78
TH
865 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
866 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 867 atomic_inc(&pool->nr_running);
d302f017
TH
868}
869
8cca0eea
TH
870/**
871 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 872 * @pool: pool of interest
8cca0eea
TH
873 * @work: work to find worker for
874 *
c9e7cf27
TH
875 * Find a worker which is executing @work on @pool by searching
876 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
877 * to match, its current execution should match the address of @work and
878 * its work function. This is to avoid unwanted dependency between
879 * unrelated work executions through a work item being recycled while still
880 * being executed.
881 *
882 * This is a bit tricky. A work item may be freed once its execution
883 * starts and nothing prevents the freed area from being recycled for
884 * another work item. If the same work item address ends up being reused
885 * before the original execution finishes, workqueue will identify the
886 * recycled work item as currently executing and make it wait until the
887 * current execution finishes, introducing an unwanted dependency.
888 *
889 * This function checks the work item address, work function and workqueue
890 * to avoid false positives. Note that this isn't complete as one may
891 * construct a work function which can introduce dependency onto itself
892 * through a recycled work item. Well, if somebody wants to shoot oneself
893 * in the foot that badly, there's only so much we can do, and if such
894 * deadlock actually occurs, it should be easy to locate the culprit work
895 * function.
8cca0eea
TH
896 *
897 * CONTEXT:
d565ed63 898 * spin_lock_irq(pool->lock).
8cca0eea
TH
899 *
900 * RETURNS:
901 * Pointer to worker which is executing @work if found, NULL
902 * otherwise.
4d707b9f 903 */
c9e7cf27 904static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 905 struct work_struct *work)
4d707b9f 906{
42f8570f
SL
907 struct worker *worker;
908 struct hlist_node *tmp;
909
c9e7cf27 910 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
911 (unsigned long)work)
912 if (worker->current_work == work &&
913 worker->current_func == work->func)
42f8570f
SL
914 return worker;
915
916 return NULL;
4d707b9f
ON
917}
918
bf4ede01
TH
919/**
920 * move_linked_works - move linked works to a list
921 * @work: start of series of works to be scheduled
922 * @head: target list to append @work to
923 * @nextp: out paramter for nested worklist walking
924 *
925 * Schedule linked works starting from @work to @head. Work series to
926 * be scheduled starts at @work and includes any consecutive work with
927 * WORK_STRUCT_LINKED set in its predecessor.
928 *
929 * If @nextp is not NULL, it's updated to point to the next work of
930 * the last scheduled work. This allows move_linked_works() to be
931 * nested inside outer list_for_each_entry_safe().
932 *
933 * CONTEXT:
d565ed63 934 * spin_lock_irq(pool->lock).
bf4ede01
TH
935 */
936static void move_linked_works(struct work_struct *work, struct list_head *head,
937 struct work_struct **nextp)
938{
939 struct work_struct *n;
940
941 /*
942 * Linked worklist will always end before the end of the list,
943 * use NULL for list head.
944 */
945 list_for_each_entry_safe_from(work, n, NULL, entry) {
946 list_move_tail(&work->entry, head);
947 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
948 break;
949 }
950
951 /*
952 * If we're already inside safe list traversal and have moved
953 * multiple works to the scheduled queue, the next position
954 * needs to be updated.
955 */
956 if (nextp)
957 *nextp = n;
958}
959
3aa62497 960static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 961{
3aa62497 962 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
963
964 trace_workqueue_activate_work(work);
965 move_linked_works(work, &cwq->pool->worklist, NULL);
966 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
967 cwq->nr_active++;
968}
969
3aa62497
LJ
970static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
971{
972 struct work_struct *work = list_first_entry(&cwq->delayed_works,
973 struct work_struct, entry);
974
975 cwq_activate_delayed_work(work);
976}
977
bf4ede01
TH
978/**
979 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
980 * @cwq: cwq of interest
981 * @color: color of work which left the queue
bf4ede01
TH
982 *
983 * A work either has completed or is removed from pending queue,
984 * decrement nr_in_flight of its cwq and handle workqueue flushing.
985 *
986 * CONTEXT:
d565ed63 987 * spin_lock_irq(pool->lock).
bf4ede01 988 */
b3f9f405 989static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
990{
991 /* ignore uncolored works */
992 if (color == WORK_NO_COLOR)
993 return;
994
995 cwq->nr_in_flight[color]--;
996
b3f9f405
LJ
997 cwq->nr_active--;
998 if (!list_empty(&cwq->delayed_works)) {
999 /* one down, submit a delayed one */
1000 if (cwq->nr_active < cwq->max_active)
1001 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1002 }
1003
1004 /* is flush in progress and are we at the flushing tip? */
1005 if (likely(cwq->flush_color != color))
1006 return;
1007
1008 /* are there still in-flight works? */
1009 if (cwq->nr_in_flight[color])
1010 return;
1011
1012 /* this cwq is done, clear flush_color */
1013 cwq->flush_color = -1;
1014
1015 /*
1016 * If this was the last cwq, wake up the first flusher. It
1017 * will handle the rest.
1018 */
1019 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1020 complete(&cwq->wq->first_flusher->done);
1021}
1022
36e227d2 1023/**
bbb68dfa 1024 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1025 * @work: work item to steal
1026 * @is_dwork: @work is a delayed_work
bbb68dfa 1027 * @flags: place to store irq state
36e227d2
TH
1028 *
1029 * Try to grab PENDING bit of @work. This function can handle @work in any
1030 * stable state - idle, on timer or on worklist. Return values are
1031 *
1032 * 1 if @work was pending and we successfully stole PENDING
1033 * 0 if @work was idle and we claimed PENDING
1034 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1035 * -ENOENT if someone else is canceling @work, this state may persist
1036 * for arbitrarily long
36e227d2 1037 *
bbb68dfa 1038 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1039 * interrupted while holding PENDING and @work off queue, irq must be
1040 * disabled on entry. This, combined with delayed_work->timer being
1041 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1042 *
1043 * On successful return, >= 0, irq is disabled and the caller is
1044 * responsible for releasing it using local_irq_restore(*@flags).
1045 *
e0aecdd8 1046 * This function is safe to call from any context including IRQ handler.
bf4ede01 1047 */
bbb68dfa
TH
1048static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1049 unsigned long *flags)
bf4ede01 1050{
d565ed63 1051 struct worker_pool *pool;
0b3dae68 1052 struct cpu_workqueue_struct *cwq;
bf4ede01 1053
bbb68dfa
TH
1054 local_irq_save(*flags);
1055
36e227d2
TH
1056 /* try to steal the timer if it exists */
1057 if (is_dwork) {
1058 struct delayed_work *dwork = to_delayed_work(work);
1059
e0aecdd8
TH
1060 /*
1061 * dwork->timer is irqsafe. If del_timer() fails, it's
1062 * guaranteed that the timer is not queued anywhere and not
1063 * running on the local CPU.
1064 */
36e227d2
TH
1065 if (likely(del_timer(&dwork->timer)))
1066 return 1;
1067 }
1068
1069 /* try to claim PENDING the normal way */
bf4ede01
TH
1070 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1071 return 0;
1072
1073 /*
1074 * The queueing is in progress, or it is already queued. Try to
1075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1076 */
d565ed63
TH
1077 pool = get_work_pool(work);
1078 if (!pool)
bbb68dfa 1079 goto fail;
bf4ede01 1080
d565ed63 1081 spin_lock(&pool->lock);
0b3dae68
LJ
1082 /*
1083 * work->data is guaranteed to point to cwq only while the work
1084 * item is queued on cwq->wq, and both updating work->data to point
1085 * to cwq on queueing and to pool on dequeueing are done under
1086 * cwq->pool->lock. This in turn guarantees that, if work->data
1087 * points to cwq which is associated with a locked pool, the work
1088 * item is currently queued on that pool.
1089 */
1090 cwq = get_work_cwq(work);
16062836
TH
1091 if (cwq && cwq->pool == pool) {
1092 debug_work_deactivate(work);
1093
1094 /*
1095 * A delayed work item cannot be grabbed directly because
1096 * it might have linked NO_COLOR work items which, if left
1097 * on the delayed_list, will confuse cwq->nr_active
1098 * management later on and cause stall. Make sure the work
1099 * item is activated before grabbing.
1100 */
1101 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1102 cwq_activate_delayed_work(work);
1103
1104 list_del_init(&work->entry);
1105 cwq_dec_nr_in_flight(get_work_cwq(work), get_work_color(work));
1106
1107 /* work->data points to cwq iff queued, point to pool */
1108 set_work_pool_and_keep_pending(work, pool->id);
1109
1110 spin_unlock(&pool->lock);
1111 return 1;
bf4ede01 1112 }
d565ed63 1113 spin_unlock(&pool->lock);
bbb68dfa
TH
1114fail:
1115 local_irq_restore(*flags);
1116 if (work_is_canceling(work))
1117 return -ENOENT;
1118 cpu_relax();
36e227d2 1119 return -EAGAIN;
bf4ede01
TH
1120}
1121
4690c4ab 1122/**
706026c2 1123 * insert_work - insert a work into a pool
4690c4ab
TH
1124 * @cwq: cwq @work belongs to
1125 * @work: work to insert
1126 * @head: insertion point
1127 * @extra_flags: extra WORK_STRUCT_* flags to set
1128 *
706026c2
TH
1129 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1130 * work_struct flags.
4690c4ab
TH
1131 *
1132 * CONTEXT:
d565ed63 1133 * spin_lock_irq(pool->lock).
4690c4ab 1134 */
b89deed3 1135static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1136 struct work_struct *work, struct list_head *head,
1137 unsigned int extra_flags)
b89deed3 1138{
63d95a91 1139 struct worker_pool *pool = cwq->pool;
e22bee78 1140
4690c4ab 1141 /* we own @work, set data and link */
7a22ad75 1142 set_work_cwq(work, cwq, extra_flags);
1a4d9b0a 1143 list_add_tail(&work->entry, head);
e22bee78
TH
1144
1145 /*
1146 * Ensure either worker_sched_deactivated() sees the above
1147 * list_add_tail() or we see zero nr_running to avoid workers
1148 * lying around lazily while there are works to be processed.
1149 */
1150 smp_mb();
1151
63d95a91
TH
1152 if (__need_more_worker(pool))
1153 wake_up_worker(pool);
b89deed3
ON
1154}
1155
c8efcc25
TH
1156/*
1157 * Test whether @work is being queued from another work executing on the
1158 * same workqueue. This is rather expensive and should only be used from
1159 * cold paths.
1160 */
1161static bool is_chained_work(struct workqueue_struct *wq)
1162{
1163 unsigned long flags;
1164 unsigned int cpu;
1165
706026c2 1166 for_each_wq_cpu(cpu) {
c9e7cf27
TH
1167 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1168 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1169 struct worker *worker;
1170 struct hlist_node *pos;
1171 int i;
1172
d565ed63 1173 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1174 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1175 if (worker->task != current)
1176 continue;
d565ed63 1177 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1178 /*
1179 * I'm @worker, no locking necessary. See if @work
1180 * is headed to the same workqueue.
1181 */
1182 return worker->current_cwq->wq == wq;
1183 }
d565ed63 1184 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1185 }
1186 return false;
1187}
1188
4690c4ab 1189static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1190 struct work_struct *work)
1191{
d565ed63
TH
1192 bool highpri = wq->flags & WQ_HIGHPRI;
1193 struct worker_pool *pool;
502ca9d8 1194 struct cpu_workqueue_struct *cwq;
1e19ffc6 1195 struct list_head *worklist;
8a2e8e5d 1196 unsigned int work_flags;
b75cac93 1197 unsigned int req_cpu = cpu;
8930caba
TH
1198
1199 /*
1200 * While a work item is PENDING && off queue, a task trying to
1201 * steal the PENDING will busy-loop waiting for it to either get
1202 * queued or lose PENDING. Grabbing PENDING and queueing should
1203 * happen with IRQ disabled.
1204 */
1205 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1206
dc186ad7 1207 debug_work_activate(work);
1e19ffc6 1208
c8efcc25 1209 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1210 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1211 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1212 return;
1213
d565ed63 1214 /* determine pool to use */
c7fc77f7 1215 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1216 struct worker_pool *last_pool;
18aa9eff 1217
57469821 1218 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1219 cpu = raw_smp_processor_id();
1220
18aa9eff 1221 /*
dbf2576e
TH
1222 * It's multi cpu. If @work was previously on a different
1223 * cpu, it might still be running there, in which case the
1224 * work needs to be queued on that cpu to guarantee
1225 * non-reentrancy.
18aa9eff 1226 */
d565ed63 1227 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1228 last_pool = get_work_pool(work);
dbf2576e 1229
d565ed63 1230 if (last_pool && last_pool != pool) {
18aa9eff
TH
1231 struct worker *worker;
1232
d565ed63 1233 spin_lock(&last_pool->lock);
18aa9eff 1234
c9e7cf27 1235 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1236
1237 if (worker && worker->current_cwq->wq == wq)
d565ed63 1238 pool = last_pool;
18aa9eff
TH
1239 else {
1240 /* meh... not running there, queue here */
d565ed63
TH
1241 spin_unlock(&last_pool->lock);
1242 spin_lock(&pool->lock);
18aa9eff 1243 }
8930caba 1244 } else {
d565ed63 1245 spin_lock(&pool->lock);
8930caba 1246 }
f3421797 1247 } else {
d565ed63
TH
1248 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1249 spin_lock(&pool->lock);
502ca9d8
TH
1250 }
1251
d565ed63
TH
1252 /* pool determined, get cwq and queue */
1253 cwq = get_cwq(pool->cpu, wq);
b75cac93 1254 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1255
f5b2552b 1256 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1257 spin_unlock(&pool->lock);
f5b2552b
DC
1258 return;
1259 }
1e19ffc6 1260
73f53c4a 1261 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1262 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1263
1264 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1265 trace_workqueue_activate_work(work);
1e19ffc6 1266 cwq->nr_active++;
3270476a 1267 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1268 } else {
1269 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1270 worklist = &cwq->delayed_works;
8a2e8e5d 1271 }
1e19ffc6 1272
8a2e8e5d 1273 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1274
d565ed63 1275 spin_unlock(&pool->lock);
1da177e4
LT
1276}
1277
0fcb78c2 1278/**
c1a220e7
ZR
1279 * queue_work_on - queue work on specific cpu
1280 * @cpu: CPU number to execute work on
0fcb78c2
REB
1281 * @wq: workqueue to use
1282 * @work: work to queue
1283 *
d4283e93 1284 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1285 *
c1a220e7
ZR
1286 * We queue the work to a specific CPU, the caller must ensure it
1287 * can't go away.
1da177e4 1288 */
d4283e93
TH
1289bool queue_work_on(int cpu, struct workqueue_struct *wq,
1290 struct work_struct *work)
1da177e4 1291{
d4283e93 1292 bool ret = false;
8930caba 1293 unsigned long flags;
ef1ca236 1294
8930caba 1295 local_irq_save(flags);
c1a220e7 1296
22df02bb 1297 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1298 __queue_work(cpu, wq, work);
d4283e93 1299 ret = true;
c1a220e7 1300 }
ef1ca236 1301
8930caba 1302 local_irq_restore(flags);
1da177e4
LT
1303 return ret;
1304}
c1a220e7 1305EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1306
c1a220e7 1307/**
0a13c00e 1308 * queue_work - queue work on a workqueue
c1a220e7
ZR
1309 * @wq: workqueue to use
1310 * @work: work to queue
1311 *
d4283e93 1312 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1313 *
0a13c00e
TH
1314 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1315 * it can be processed by another CPU.
c1a220e7 1316 */
d4283e93 1317bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1318{
57469821 1319 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1320}
0a13c00e 1321EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1322
d8e794df 1323void delayed_work_timer_fn(unsigned long __data)
1da177e4 1324{
52bad64d 1325 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1326
e0aecdd8 1327 /* should have been called from irqsafe timer with irq already off */
60c057bc 1328 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1329}
d8e794df 1330EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1331
7beb2edf
TH
1332static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1333 struct delayed_work *dwork, unsigned long delay)
1da177e4 1334{
7beb2edf
TH
1335 struct timer_list *timer = &dwork->timer;
1336 struct work_struct *work = &dwork->work;
7beb2edf
TH
1337
1338 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1339 timer->data != (unsigned long)dwork);
fc4b514f
TH
1340 WARN_ON_ONCE(timer_pending(timer));
1341 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1342
8852aac2
TH
1343 /*
1344 * If @delay is 0, queue @dwork->work immediately. This is for
1345 * both optimization and correctness. The earliest @timer can
1346 * expire is on the closest next tick and delayed_work users depend
1347 * on that there's no such delay when @delay is 0.
1348 */
1349 if (!delay) {
1350 __queue_work(cpu, wq, &dwork->work);
1351 return;
1352 }
1353
7beb2edf 1354 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1355
60c057bc 1356 dwork->wq = wq;
1265057f 1357 dwork->cpu = cpu;
7beb2edf
TH
1358 timer->expires = jiffies + delay;
1359
1360 if (unlikely(cpu != WORK_CPU_UNBOUND))
1361 add_timer_on(timer, cpu);
1362 else
1363 add_timer(timer);
1da177e4
LT
1364}
1365
0fcb78c2
REB
1366/**
1367 * queue_delayed_work_on - queue work on specific CPU after delay
1368 * @cpu: CPU number to execute work on
1369 * @wq: workqueue to use
af9997e4 1370 * @dwork: work to queue
0fcb78c2
REB
1371 * @delay: number of jiffies to wait before queueing
1372 *
715f1300
TH
1373 * Returns %false if @work was already on a queue, %true otherwise. If
1374 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1375 * execution.
0fcb78c2 1376 */
d4283e93
TH
1377bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1378 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1379{
52bad64d 1380 struct work_struct *work = &dwork->work;
d4283e93 1381 bool ret = false;
8930caba 1382 unsigned long flags;
7a6bc1cd 1383
8930caba
TH
1384 /* read the comment in __queue_work() */
1385 local_irq_save(flags);
7a6bc1cd 1386
22df02bb 1387 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1388 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1389 ret = true;
7a6bc1cd 1390 }
8a3e77cc 1391
8930caba 1392 local_irq_restore(flags);
7a6bc1cd
VP
1393 return ret;
1394}
ae90dd5d 1395EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1396
0a13c00e
TH
1397/**
1398 * queue_delayed_work - queue work on a workqueue after delay
1399 * @wq: workqueue to use
1400 * @dwork: delayable work to queue
1401 * @delay: number of jiffies to wait before queueing
1402 *
715f1300 1403 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1404 */
d4283e93 1405bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1406 struct delayed_work *dwork, unsigned long delay)
1407{
57469821 1408 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1409}
1410EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1411
8376fe22
TH
1412/**
1413 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1414 * @cpu: CPU number to execute work on
1415 * @wq: workqueue to use
1416 * @dwork: work to queue
1417 * @delay: number of jiffies to wait before queueing
1418 *
1419 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1420 * modify @dwork's timer so that it expires after @delay. If @delay is
1421 * zero, @work is guaranteed to be scheduled immediately regardless of its
1422 * current state.
1423 *
1424 * Returns %false if @dwork was idle and queued, %true if @dwork was
1425 * pending and its timer was modified.
1426 *
e0aecdd8 1427 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1428 * See try_to_grab_pending() for details.
1429 */
1430bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1431 struct delayed_work *dwork, unsigned long delay)
1432{
1433 unsigned long flags;
1434 int ret;
c7fc77f7 1435
8376fe22
TH
1436 do {
1437 ret = try_to_grab_pending(&dwork->work, true, &flags);
1438 } while (unlikely(ret == -EAGAIN));
63bc0362 1439
8376fe22
TH
1440 if (likely(ret >= 0)) {
1441 __queue_delayed_work(cpu, wq, dwork, delay);
1442 local_irq_restore(flags);
7a6bc1cd 1443 }
8376fe22
TH
1444
1445 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1446 return ret;
1447}
8376fe22
TH
1448EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1449
1450/**
1451 * mod_delayed_work - modify delay of or queue a delayed work
1452 * @wq: workqueue to use
1453 * @dwork: work to queue
1454 * @delay: number of jiffies to wait before queueing
1455 *
1456 * mod_delayed_work_on() on local CPU.
1457 */
1458bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1459 unsigned long delay)
1460{
1461 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1462}
1463EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1464
c8e55f36
TH
1465/**
1466 * worker_enter_idle - enter idle state
1467 * @worker: worker which is entering idle state
1468 *
1469 * @worker is entering idle state. Update stats and idle timer if
1470 * necessary.
1471 *
1472 * LOCKING:
d565ed63 1473 * spin_lock_irq(pool->lock).
c8e55f36
TH
1474 */
1475static void worker_enter_idle(struct worker *worker)
1da177e4 1476{
bd7bdd43 1477 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1478
1479 BUG_ON(worker->flags & WORKER_IDLE);
1480 BUG_ON(!list_empty(&worker->entry) &&
1481 (worker->hentry.next || worker->hentry.pprev));
1482
cb444766
TH
1483 /* can't use worker_set_flags(), also called from start_worker() */
1484 worker->flags |= WORKER_IDLE;
bd7bdd43 1485 pool->nr_idle++;
e22bee78 1486 worker->last_active = jiffies;
c8e55f36
TH
1487
1488 /* idle_list is LIFO */
bd7bdd43 1489 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1490
628c78e7
TH
1491 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1492 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1493
544ecf31 1494 /*
706026c2 1495 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1496 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1497 * nr_running, the warning may trigger spuriously. Check iff
1498 * unbind is not in progress.
544ecf31 1499 */
24647570 1500 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1501 pool->nr_workers == pool->nr_idle &&
e19e397a 1502 atomic_read(&pool->nr_running));
c8e55f36
TH
1503}
1504
1505/**
1506 * worker_leave_idle - leave idle state
1507 * @worker: worker which is leaving idle state
1508 *
1509 * @worker is leaving idle state. Update stats.
1510 *
1511 * LOCKING:
d565ed63 1512 * spin_lock_irq(pool->lock).
c8e55f36
TH
1513 */
1514static void worker_leave_idle(struct worker *worker)
1515{
bd7bdd43 1516 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1517
1518 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1519 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1520 pool->nr_idle--;
c8e55f36
TH
1521 list_del_init(&worker->entry);
1522}
1523
e22bee78 1524/**
706026c2 1525 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1526 * @worker: self
1527 *
1528 * Works which are scheduled while the cpu is online must at least be
1529 * scheduled to a worker which is bound to the cpu so that if they are
1530 * flushed from cpu callbacks while cpu is going down, they are
1531 * guaranteed to execute on the cpu.
1532 *
1533 * This function is to be used by rogue workers and rescuers to bind
1534 * themselves to the target cpu and may race with cpu going down or
1535 * coming online. kthread_bind() can't be used because it may put the
1536 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1537 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1538 * [dis]associated in the meantime.
1539 *
706026c2 1540 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1541 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1542 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1543 * enters idle state or fetches works without dropping lock, it can
1544 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1545 *
1546 * CONTEXT:
d565ed63 1547 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1548 * held.
1549 *
1550 * RETURNS:
706026c2 1551 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1552 * bound), %false if offline.
1553 */
1554static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1555__acquires(&pool->lock)
e22bee78 1556{
24647570 1557 struct worker_pool *pool = worker->pool;
e22bee78
TH
1558 struct task_struct *task = worker->task;
1559
1560 while (true) {
4e6045f1 1561 /*
e22bee78
TH
1562 * The following call may fail, succeed or succeed
1563 * without actually migrating the task to the cpu if
1564 * it races with cpu hotunplug operation. Verify
24647570 1565 * against POOL_DISASSOCIATED.
4e6045f1 1566 */
24647570 1567 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1568 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1569
d565ed63 1570 spin_lock_irq(&pool->lock);
24647570 1571 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1572 return false;
ec22ca5e 1573 if (task_cpu(task) == pool->cpu &&
e22bee78 1574 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1575 get_cpu_mask(pool->cpu)))
e22bee78 1576 return true;
d565ed63 1577 spin_unlock_irq(&pool->lock);
e22bee78 1578
5035b20f
TH
1579 /*
1580 * We've raced with CPU hot[un]plug. Give it a breather
1581 * and retry migration. cond_resched() is required here;
1582 * otherwise, we might deadlock against cpu_stop trying to
1583 * bring down the CPU on non-preemptive kernel.
1584 */
e22bee78 1585 cpu_relax();
5035b20f 1586 cond_resched();
e22bee78
TH
1587 }
1588}
1589
25511a47 1590/*
ea1abd61 1591 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1592 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1593 */
1594static void idle_worker_rebind(struct worker *worker)
1595{
5f7dabfd
LJ
1596 /* CPU may go down again inbetween, clear UNBOUND only on success */
1597 if (worker_maybe_bind_and_lock(worker))
1598 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1599
ea1abd61
LJ
1600 /* rebind complete, become available again */
1601 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1602 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1603}
1604
e22bee78 1605/*
25511a47 1606 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1607 * the associated cpu which is coming back online. This is scheduled by
1608 * cpu up but can race with other cpu hotplug operations and may be
1609 * executed twice without intervening cpu down.
e22bee78 1610 */
25511a47 1611static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1612{
1613 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1614
eab6d828
LJ
1615 if (worker_maybe_bind_and_lock(worker))
1616 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1617
d565ed63 1618 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1619}
1620
25511a47 1621/**
94cf58bb
TH
1622 * rebind_workers - rebind all workers of a pool to the associated CPU
1623 * @pool: pool of interest
25511a47 1624 *
94cf58bb 1625 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1626 * is different for idle and busy ones.
1627 *
ea1abd61
LJ
1628 * Idle ones will be removed from the idle_list and woken up. They will
1629 * add themselves back after completing rebind. This ensures that the
1630 * idle_list doesn't contain any unbound workers when re-bound busy workers
1631 * try to perform local wake-ups for concurrency management.
25511a47 1632 *
ea1abd61
LJ
1633 * Busy workers can rebind after they finish their current work items.
1634 * Queueing the rebind work item at the head of the scheduled list is
1635 * enough. Note that nr_running will be properly bumped as busy workers
1636 * rebind.
25511a47 1637 *
ea1abd61
LJ
1638 * On return, all non-manager workers are scheduled for rebind - see
1639 * manage_workers() for the manager special case. Any idle worker
1640 * including the manager will not appear on @idle_list until rebind is
1641 * complete, making local wake-ups safe.
25511a47 1642 */
94cf58bb 1643static void rebind_workers(struct worker_pool *pool)
25511a47 1644{
ea1abd61 1645 struct worker *worker, *n;
25511a47
TH
1646 struct hlist_node *pos;
1647 int i;
1648
94cf58bb
TH
1649 lockdep_assert_held(&pool->assoc_mutex);
1650 lockdep_assert_held(&pool->lock);
25511a47 1651
5f7dabfd 1652 /* dequeue and kick idle ones */
94cf58bb
TH
1653 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1654 /*
1655 * idle workers should be off @pool->idle_list until rebind
1656 * is complete to avoid receiving premature local wake-ups.
1657 */
1658 list_del_init(&worker->entry);
25511a47 1659
94cf58bb
TH
1660 /*
1661 * worker_thread() will see the above dequeuing and call
1662 * idle_worker_rebind().
1663 */
1664 wake_up_process(worker->task);
1665 }
25511a47 1666
94cf58bb
TH
1667 /* rebind busy workers */
1668 for_each_busy_worker(worker, i, pos, pool) {
1669 struct work_struct *rebind_work = &worker->rebind_work;
1670 struct workqueue_struct *wq;
25511a47 1671
94cf58bb
TH
1672 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1673 work_data_bits(rebind_work)))
1674 continue;
25511a47 1675
94cf58bb 1676 debug_work_activate(rebind_work);
90beca5d 1677
94cf58bb
TH
1678 /*
1679 * wq doesn't really matter but let's keep @worker->pool
1680 * and @cwq->pool consistent for sanity.
1681 */
1682 if (std_worker_pool_pri(worker->pool))
1683 wq = system_highpri_wq;
1684 else
1685 wq = system_wq;
1686
1687 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1688 worker->scheduled.next,
1689 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1690 }
25511a47
TH
1691}
1692
c34056a3
TH
1693static struct worker *alloc_worker(void)
1694{
1695 struct worker *worker;
1696
1697 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1698 if (worker) {
1699 INIT_LIST_HEAD(&worker->entry);
affee4b2 1700 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1701 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1702 /* on creation a worker is in !idle && prep state */
1703 worker->flags = WORKER_PREP;
c8e55f36 1704 }
c34056a3
TH
1705 return worker;
1706}
1707
1708/**
1709 * create_worker - create a new workqueue worker
63d95a91 1710 * @pool: pool the new worker will belong to
c34056a3 1711 *
63d95a91 1712 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1713 * can be started by calling start_worker() or destroyed using
1714 * destroy_worker().
1715 *
1716 * CONTEXT:
1717 * Might sleep. Does GFP_KERNEL allocations.
1718 *
1719 * RETURNS:
1720 * Pointer to the newly created worker.
1721 */
bc2ae0f5 1722static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1723{
e34cdddb 1724 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1725 struct worker *worker = NULL;
f3421797 1726 int id = -1;
c34056a3 1727
d565ed63 1728 spin_lock_irq(&pool->lock);
bd7bdd43 1729 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1730 spin_unlock_irq(&pool->lock);
bd7bdd43 1731 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1732 goto fail;
d565ed63 1733 spin_lock_irq(&pool->lock);
c34056a3 1734 }
d565ed63 1735 spin_unlock_irq(&pool->lock);
c34056a3
TH
1736
1737 worker = alloc_worker();
1738 if (!worker)
1739 goto fail;
1740
bd7bdd43 1741 worker->pool = pool;
c34056a3
TH
1742 worker->id = id;
1743
ec22ca5e 1744 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1745 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1746 worker, cpu_to_node(pool->cpu),
1747 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1748 else
1749 worker->task = kthread_create(worker_thread, worker,
3270476a 1750 "kworker/u:%d%s", id, pri);
c34056a3
TH
1751 if (IS_ERR(worker->task))
1752 goto fail;
1753
e34cdddb 1754 if (std_worker_pool_pri(pool))
3270476a
TH
1755 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1756
db7bccf4 1757 /*
bc2ae0f5 1758 * Determine CPU binding of the new worker depending on
24647570 1759 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1760 * flag remains stable across this function. See the comments
1761 * above the flag definition for details.
1762 *
1763 * As an unbound worker may later become a regular one if CPU comes
1764 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1765 */
24647570 1766 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1767 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1768 } else {
db7bccf4 1769 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1770 worker->flags |= WORKER_UNBOUND;
f3421797 1771 }
c34056a3
TH
1772
1773 return worker;
1774fail:
1775 if (id >= 0) {
d565ed63 1776 spin_lock_irq(&pool->lock);
bd7bdd43 1777 ida_remove(&pool->worker_ida, id);
d565ed63 1778 spin_unlock_irq(&pool->lock);
c34056a3
TH
1779 }
1780 kfree(worker);
1781 return NULL;
1782}
1783
1784/**
1785 * start_worker - start a newly created worker
1786 * @worker: worker to start
1787 *
706026c2 1788 * Make the pool aware of @worker and start it.
c34056a3
TH
1789 *
1790 * CONTEXT:
d565ed63 1791 * spin_lock_irq(pool->lock).
c34056a3
TH
1792 */
1793static void start_worker(struct worker *worker)
1794{
cb444766 1795 worker->flags |= WORKER_STARTED;
bd7bdd43 1796 worker->pool->nr_workers++;
c8e55f36 1797 worker_enter_idle(worker);
c34056a3
TH
1798 wake_up_process(worker->task);
1799}
1800
1801/**
1802 * destroy_worker - destroy a workqueue worker
1803 * @worker: worker to be destroyed
1804 *
706026c2 1805 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1806 *
1807 * CONTEXT:
d565ed63 1808 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1809 */
1810static void destroy_worker(struct worker *worker)
1811{
bd7bdd43 1812 struct worker_pool *pool = worker->pool;
c34056a3
TH
1813 int id = worker->id;
1814
1815 /* sanity check frenzy */
1816 BUG_ON(worker->current_work);
affee4b2 1817 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1818
c8e55f36 1819 if (worker->flags & WORKER_STARTED)
bd7bdd43 1820 pool->nr_workers--;
c8e55f36 1821 if (worker->flags & WORKER_IDLE)
bd7bdd43 1822 pool->nr_idle--;
c8e55f36
TH
1823
1824 list_del_init(&worker->entry);
cb444766 1825 worker->flags |= WORKER_DIE;
c8e55f36 1826
d565ed63 1827 spin_unlock_irq(&pool->lock);
c8e55f36 1828
c34056a3
TH
1829 kthread_stop(worker->task);
1830 kfree(worker);
1831
d565ed63 1832 spin_lock_irq(&pool->lock);
bd7bdd43 1833 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1834}
1835
63d95a91 1836static void idle_worker_timeout(unsigned long __pool)
e22bee78 1837{
63d95a91 1838 struct worker_pool *pool = (void *)__pool;
e22bee78 1839
d565ed63 1840 spin_lock_irq(&pool->lock);
e22bee78 1841
63d95a91 1842 if (too_many_workers(pool)) {
e22bee78
TH
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850 if (time_before(jiffies, expires))
63d95a91 1851 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1852 else {
1853 /* it's been idle for too long, wake up manager */
11ebea50 1854 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1855 wake_up_worker(pool);
d5abe669 1856 }
e22bee78
TH
1857 }
1858
d565ed63 1859 spin_unlock_irq(&pool->lock);
e22bee78 1860}
d5abe669 1861
e22bee78
TH
1862static bool send_mayday(struct work_struct *work)
1863{
1864 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1865 struct workqueue_struct *wq = cwq->wq;
f3421797 1866 unsigned int cpu;
e22bee78
TH
1867
1868 if (!(wq->flags & WQ_RESCUER))
1869 return false;
1870
1871 /* mayday mayday mayday */
ec22ca5e 1872 cpu = cwq->pool->cpu;
f3421797
TH
1873 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1874 if (cpu == WORK_CPU_UNBOUND)
1875 cpu = 0;
f2e005aa 1876 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1877 wake_up_process(wq->rescuer->task);
1878 return true;
1879}
1880
706026c2 1881static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1882{
63d95a91 1883 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1884 struct work_struct *work;
1885
d565ed63 1886 spin_lock_irq(&pool->lock);
e22bee78 1887
63d95a91 1888 if (need_to_create_worker(pool)) {
e22bee78
TH
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
63d95a91 1895 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1896 send_mayday(work);
1da177e4 1897 }
e22bee78 1898
d565ed63 1899 spin_unlock_irq(&pool->lock);
e22bee78 1900
63d95a91 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1902}
1903
e22bee78
TH
1904/**
1905 * maybe_create_worker - create a new worker if necessary
63d95a91 1906 * @pool: pool to create a new worker for
e22bee78 1907 *
63d95a91 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1911 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1912 * possible allocation deadlock.
1913 *
1914 * On return, need_to_create_worker() is guaranteed to be false and
1915 * may_start_working() true.
1916 *
1917 * LOCKING:
d565ed63 1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 *
1922 * RETURNS:
d565ed63 1923 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1924 * otherwise.
1925 */
63d95a91 1926static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1927__releases(&pool->lock)
1928__acquires(&pool->lock)
1da177e4 1929{
63d95a91 1930 if (!need_to_create_worker(pool))
e22bee78
TH
1931 return false;
1932restart:
d565ed63 1933 spin_unlock_irq(&pool->lock);
9f9c2364 1934
e22bee78 1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1937
1938 while (true) {
1939 struct worker *worker;
1940
bc2ae0f5 1941 worker = create_worker(pool);
e22bee78 1942 if (worker) {
63d95a91 1943 del_timer_sync(&pool->mayday_timer);
d565ed63 1944 spin_lock_irq(&pool->lock);
e22bee78 1945 start_worker(worker);
63d95a91 1946 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1947 return true;
1948 }
1949
63d95a91 1950 if (!need_to_create_worker(pool))
e22bee78 1951 break;
1da177e4 1952
e22bee78
TH
1953 __set_current_state(TASK_INTERRUPTIBLE);
1954 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1955
63d95a91 1956 if (!need_to_create_worker(pool))
e22bee78
TH
1957 break;
1958 }
1959
63d95a91 1960 del_timer_sync(&pool->mayday_timer);
d565ed63 1961 spin_lock_irq(&pool->lock);
63d95a91 1962 if (need_to_create_worker(pool))
e22bee78
TH
1963 goto restart;
1964 return true;
1965}
1966
1967/**
1968 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1969 * @pool: pool to destroy workers for
e22bee78 1970 *
63d95a91 1971 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1972 * IDLE_WORKER_TIMEOUT.
1973 *
1974 * LOCKING:
d565ed63 1975 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1976 * multiple times. Called only from manager.
1977 *
1978 * RETURNS:
d565ed63 1979 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1980 * otherwise.
1981 */
63d95a91 1982static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1983{
1984 bool ret = false;
1da177e4 1985
63d95a91 1986 while (too_many_workers(pool)) {
e22bee78
TH
1987 struct worker *worker;
1988 unsigned long expires;
3af24433 1989
63d95a91 1990 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1991 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1992
e22bee78 1993 if (time_before(jiffies, expires)) {
63d95a91 1994 mod_timer(&pool->idle_timer, expires);
3af24433 1995 break;
e22bee78 1996 }
1da177e4 1997
e22bee78
TH
1998 destroy_worker(worker);
1999 ret = true;
1da177e4 2000 }
1e19ffc6 2001
e22bee78 2002 return ret;
1e19ffc6
TH
2003}
2004
73f53c4a 2005/**
e22bee78
TH
2006 * manage_workers - manage worker pool
2007 * @worker: self
73f53c4a 2008 *
706026c2 2009 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2010 * to. At any given time, there can be only zero or one manager per
706026c2 2011 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2012 *
2013 * The caller can safely start processing works on false return. On
2014 * true return, it's guaranteed that need_to_create_worker() is false
2015 * and may_start_working() is true.
73f53c4a
TH
2016 *
2017 * CONTEXT:
d565ed63 2018 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2019 * multiple times. Does GFP_KERNEL allocations.
2020 *
2021 * RETURNS:
d565ed63
TH
2022 * spin_lock_irq(pool->lock) which may be released and regrabbed
2023 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2024 */
e22bee78 2025static bool manage_workers(struct worker *worker)
73f53c4a 2026{
63d95a91 2027 struct worker_pool *pool = worker->pool;
e22bee78 2028 bool ret = false;
73f53c4a 2029
ee378aa4 2030 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2031 return ret;
1e19ffc6 2032
552a37e9 2033 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2034
ee378aa4
LJ
2035 /*
2036 * To simplify both worker management and CPU hotplug, hold off
2037 * management while hotplug is in progress. CPU hotplug path can't
2038 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2039 * lead to idle worker depletion (all become busy thinking someone
2040 * else is managing) which in turn can result in deadlock under
b2eb83d1 2041 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2042 * manager against CPU hotplug.
2043 *
b2eb83d1 2044 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2045 * progress. trylock first without dropping @pool->lock.
ee378aa4 2046 */
b2eb83d1 2047 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2048 spin_unlock_irq(&pool->lock);
b2eb83d1 2049 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2050 /*
2051 * CPU hotplug could have happened while we were waiting
b2eb83d1 2052 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2053 * because manager isn't either on idle or busy list, and
706026c2 2054 * @pool's state and ours could have deviated.
ee378aa4 2055 *
b2eb83d1 2056 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2057 * simply try to bind. It will succeed or fail depending
706026c2 2058 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2059 * %WORKER_UNBOUND accordingly.
2060 */
2061 if (worker_maybe_bind_and_lock(worker))
2062 worker->flags &= ~WORKER_UNBOUND;
2063 else
2064 worker->flags |= WORKER_UNBOUND;
73f53c4a 2065
ee378aa4
LJ
2066 ret = true;
2067 }
73f53c4a 2068
11ebea50 2069 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2070
2071 /*
e22bee78
TH
2072 * Destroy and then create so that may_start_working() is true
2073 * on return.
73f53c4a 2074 */
63d95a91
TH
2075 ret |= maybe_destroy_workers(pool);
2076 ret |= maybe_create_worker(pool);
e22bee78 2077
552a37e9 2078 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2079 mutex_unlock(&pool->assoc_mutex);
e22bee78 2080 return ret;
73f53c4a
TH
2081}
2082
a62428c0
TH
2083/**
2084 * process_one_work - process single work
c34056a3 2085 * @worker: self
a62428c0
TH
2086 * @work: work to process
2087 *
2088 * Process @work. This function contains all the logics necessary to
2089 * process a single work including synchronization against and
2090 * interaction with other workers on the same cpu, queueing and
2091 * flushing. As long as context requirement is met, any worker can
2092 * call this function to process a work.
2093 *
2094 * CONTEXT:
d565ed63 2095 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2096 */
c34056a3 2097static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2098__releases(&pool->lock)
2099__acquires(&pool->lock)
a62428c0 2100{
7e11629d 2101 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2102 struct worker_pool *pool = worker->pool;
fb0e7beb 2103 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2104 int work_color;
7e11629d 2105 struct worker *collision;
a62428c0
TH
2106#ifdef CONFIG_LOCKDEP
2107 /*
2108 * It is permissible to free the struct work_struct from
2109 * inside the function that is called from it, this we need to
2110 * take into account for lockdep too. To avoid bogus "held
2111 * lock freed" warnings as well as problems when looking into
2112 * work->lockdep_map, make a copy and use that here.
2113 */
4d82a1de
PZ
2114 struct lockdep_map lockdep_map;
2115
2116 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2117#endif
6fec10a1
TH
2118 /*
2119 * Ensure we're on the correct CPU. DISASSOCIATED test is
2120 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2121 * unbound or a disassociated pool.
6fec10a1 2122 */
5f7dabfd 2123 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2124 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2125 raw_smp_processor_id() != pool->cpu);
25511a47 2126
7e11629d
TH
2127 /*
2128 * A single work shouldn't be executed concurrently by
2129 * multiple workers on a single cpu. Check whether anyone is
2130 * already processing the work. If so, defer the work to the
2131 * currently executing one.
2132 */
c9e7cf27 2133 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2134 if (unlikely(collision)) {
2135 move_linked_works(work, &collision->scheduled, NULL);
2136 return;
2137 }
2138
8930caba 2139 /* claim and dequeue */
a62428c0 2140 debug_work_deactivate(work);
c9e7cf27 2141 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2142 worker->current_work = work;
a2c1c57b 2143 worker->current_func = work->func;
8cca0eea 2144 worker->current_cwq = cwq;
73f53c4a 2145 work_color = get_work_color(work);
7a22ad75 2146
a62428c0
TH
2147 list_del_init(&work->entry);
2148
fb0e7beb
TH
2149 /*
2150 * CPU intensive works don't participate in concurrency
2151 * management. They're the scheduler's responsibility.
2152 */
2153 if (unlikely(cpu_intensive))
2154 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2155
974271c4 2156 /*
d565ed63 2157 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2158 * executed ASAP. Wake up another worker if necessary.
2159 */
63d95a91
TH
2160 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2161 wake_up_worker(pool);
974271c4 2162
8930caba 2163 /*
7c3eed5c 2164 * Record the last pool and clear PENDING which should be the last
d565ed63 2165 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2166 * PENDING and queued state changes happen together while IRQ is
2167 * disabled.
8930caba 2168 */
7c3eed5c 2169 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2170
d565ed63 2171 spin_unlock_irq(&pool->lock);
a62428c0 2172
e159489b 2173 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2174 lock_map_acquire(&lockdep_map);
e36c886a 2175 trace_workqueue_execute_start(work);
a2c1c57b 2176 worker->current_func(work);
e36c886a
AV
2177 /*
2178 * While we must be careful to not use "work" after this, the trace
2179 * point will only record its address.
2180 */
2181 trace_workqueue_execute_end(work);
a62428c0
TH
2182 lock_map_release(&lockdep_map);
2183 lock_map_release(&cwq->wq->lockdep_map);
2184
2185 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2186 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2187 " last function: %pf\n",
a2c1c57b
TH
2188 current->comm, preempt_count(), task_pid_nr(current),
2189 worker->current_func);
a62428c0
TH
2190 debug_show_held_locks(current);
2191 dump_stack();
2192 }
2193
d565ed63 2194 spin_lock_irq(&pool->lock);
a62428c0 2195
fb0e7beb
TH
2196 /* clear cpu intensive status */
2197 if (unlikely(cpu_intensive))
2198 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2199
a62428c0 2200 /* we're done with it, release */
42f8570f 2201 hash_del(&worker->hentry);
c34056a3 2202 worker->current_work = NULL;
a2c1c57b 2203 worker->current_func = NULL;
8cca0eea 2204 worker->current_cwq = NULL;
b3f9f405 2205 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2206}
2207
affee4b2
TH
2208/**
2209 * process_scheduled_works - process scheduled works
2210 * @worker: self
2211 *
2212 * Process all scheduled works. Please note that the scheduled list
2213 * may change while processing a work, so this function repeatedly
2214 * fetches a work from the top and executes it.
2215 *
2216 * CONTEXT:
d565ed63 2217 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2218 * multiple times.
2219 */
2220static void process_scheduled_works(struct worker *worker)
1da177e4 2221{
affee4b2
TH
2222 while (!list_empty(&worker->scheduled)) {
2223 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2224 struct work_struct, entry);
c34056a3 2225 process_one_work(worker, work);
1da177e4 2226 }
1da177e4
LT
2227}
2228
4690c4ab
TH
2229/**
2230 * worker_thread - the worker thread function
c34056a3 2231 * @__worker: self
4690c4ab 2232 *
706026c2
TH
2233 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2234 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2235 * their specific target workqueue. The only exception is works which
2236 * belong to workqueues with a rescuer which will be explained in
2237 * rescuer_thread().
4690c4ab 2238 */
c34056a3 2239static int worker_thread(void *__worker)
1da177e4 2240{
c34056a3 2241 struct worker *worker = __worker;
bd7bdd43 2242 struct worker_pool *pool = worker->pool;
1da177e4 2243
e22bee78
TH
2244 /* tell the scheduler that this is a workqueue worker */
2245 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2246woke_up:
d565ed63 2247 spin_lock_irq(&pool->lock);
1da177e4 2248
5f7dabfd
LJ
2249 /* we are off idle list if destruction or rebind is requested */
2250 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2251 spin_unlock_irq(&pool->lock);
25511a47 2252
5f7dabfd 2253 /* if DIE is set, destruction is requested */
25511a47
TH
2254 if (worker->flags & WORKER_DIE) {
2255 worker->task->flags &= ~PF_WQ_WORKER;
2256 return 0;
2257 }
2258
5f7dabfd 2259 /* otherwise, rebind */
25511a47
TH
2260 idle_worker_rebind(worker);
2261 goto woke_up;
c8e55f36 2262 }
affee4b2 2263
c8e55f36 2264 worker_leave_idle(worker);
db7bccf4 2265recheck:
e22bee78 2266 /* no more worker necessary? */
63d95a91 2267 if (!need_more_worker(pool))
e22bee78
TH
2268 goto sleep;
2269
2270 /* do we need to manage? */
63d95a91 2271 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2272 goto recheck;
2273
c8e55f36
TH
2274 /*
2275 * ->scheduled list can only be filled while a worker is
2276 * preparing to process a work or actually processing it.
2277 * Make sure nobody diddled with it while I was sleeping.
2278 */
2279 BUG_ON(!list_empty(&worker->scheduled));
2280
e22bee78
TH
2281 /*
2282 * When control reaches this point, we're guaranteed to have
2283 * at least one idle worker or that someone else has already
2284 * assumed the manager role.
2285 */
2286 worker_clr_flags(worker, WORKER_PREP);
2287
2288 do {
c8e55f36 2289 struct work_struct *work =
bd7bdd43 2290 list_first_entry(&pool->worklist,
c8e55f36
TH
2291 struct work_struct, entry);
2292
2293 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2294 /* optimization path, not strictly necessary */
2295 process_one_work(worker, work);
2296 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2297 process_scheduled_works(worker);
c8e55f36
TH
2298 } else {
2299 move_linked_works(work, &worker->scheduled, NULL);
2300 process_scheduled_works(worker);
affee4b2 2301 }
63d95a91 2302 } while (keep_working(pool));
e22bee78
TH
2303
2304 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2305sleep:
63d95a91 2306 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2307 goto recheck;
d313dd85 2308
c8e55f36 2309 /*
d565ed63
TH
2310 * pool->lock is held and there's no work to process and no need to
2311 * manage, sleep. Workers are woken up only while holding
2312 * pool->lock or from local cpu, so setting the current state
2313 * before releasing pool->lock is enough to prevent losing any
2314 * event.
c8e55f36
TH
2315 */
2316 worker_enter_idle(worker);
2317 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2318 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2319 schedule();
2320 goto woke_up;
1da177e4
LT
2321}
2322
e22bee78
TH
2323/**
2324 * rescuer_thread - the rescuer thread function
111c225a 2325 * @__rescuer: self
e22bee78
TH
2326 *
2327 * Workqueue rescuer thread function. There's one rescuer for each
2328 * workqueue which has WQ_RESCUER set.
2329 *
706026c2 2330 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2331 * worker which uses GFP_KERNEL allocation which has slight chance of
2332 * developing into deadlock if some works currently on the same queue
2333 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2334 * the problem rescuer solves.
2335 *
706026c2
TH
2336 * When such condition is possible, the pool summons rescuers of all
2337 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2338 * those works so that forward progress can be guaranteed.
2339 *
2340 * This should happen rarely.
2341 */
111c225a 2342static int rescuer_thread(void *__rescuer)
e22bee78 2343{
111c225a
TH
2344 struct worker *rescuer = __rescuer;
2345 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2346 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2347 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2348 unsigned int cpu;
2349
2350 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2351
2352 /*
2353 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2354 * doesn't participate in concurrency management.
2355 */
2356 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2357repeat:
2358 set_current_state(TASK_INTERRUPTIBLE);
2359
412d32e6
MG
2360 if (kthread_should_stop()) {
2361 __set_current_state(TASK_RUNNING);
111c225a 2362 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2363 return 0;
412d32e6 2364 }
e22bee78 2365
f3421797
TH
2366 /*
2367 * See whether any cpu is asking for help. Unbounded
2368 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2369 */
f2e005aa 2370 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2371 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2372 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2373 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2374 struct work_struct *work, *n;
2375
2376 __set_current_state(TASK_RUNNING);
f2e005aa 2377 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2378
2379 /* migrate to the target cpu if possible */
bd7bdd43 2380 rescuer->pool = pool;
e22bee78
TH
2381 worker_maybe_bind_and_lock(rescuer);
2382
2383 /*
2384 * Slurp in all works issued via this workqueue and
2385 * process'em.
2386 */
2387 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2388 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2389 if (get_work_cwq(work) == cwq)
2390 move_linked_works(work, scheduled, &n);
2391
2392 process_scheduled_works(rescuer);
7576958a
TH
2393
2394 /*
d565ed63 2395 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2396 * regular worker; otherwise, we end up with 0 concurrency
2397 * and stalling the execution.
2398 */
63d95a91
TH
2399 if (keep_working(pool))
2400 wake_up_worker(pool);
7576958a 2401
d565ed63 2402 spin_unlock_irq(&pool->lock);
e22bee78
TH
2403 }
2404
111c225a
TH
2405 /* rescuers should never participate in concurrency management */
2406 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2407 schedule();
2408 goto repeat;
1da177e4
LT
2409}
2410
fc2e4d70
ON
2411struct wq_barrier {
2412 struct work_struct work;
2413 struct completion done;
2414};
2415
2416static void wq_barrier_func(struct work_struct *work)
2417{
2418 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2419 complete(&barr->done);
2420}
2421
4690c4ab
TH
2422/**
2423 * insert_wq_barrier - insert a barrier work
2424 * @cwq: cwq to insert barrier into
2425 * @barr: wq_barrier to insert
affee4b2
TH
2426 * @target: target work to attach @barr to
2427 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2428 *
affee4b2
TH
2429 * @barr is linked to @target such that @barr is completed only after
2430 * @target finishes execution. Please note that the ordering
2431 * guarantee is observed only with respect to @target and on the local
2432 * cpu.
2433 *
2434 * Currently, a queued barrier can't be canceled. This is because
2435 * try_to_grab_pending() can't determine whether the work to be
2436 * grabbed is at the head of the queue and thus can't clear LINKED
2437 * flag of the previous work while there must be a valid next work
2438 * after a work with LINKED flag set.
2439 *
2440 * Note that when @worker is non-NULL, @target may be modified
2441 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2442 *
2443 * CONTEXT:
d565ed63 2444 * spin_lock_irq(pool->lock).
4690c4ab 2445 */
83c22520 2446static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2447 struct wq_barrier *barr,
2448 struct work_struct *target, struct worker *worker)
fc2e4d70 2449{
affee4b2
TH
2450 struct list_head *head;
2451 unsigned int linked = 0;
2452
dc186ad7 2453 /*
d565ed63 2454 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2455 * as we know for sure that this will not trigger any of the
2456 * checks and call back into the fixup functions where we
2457 * might deadlock.
2458 */
ca1cab37 2459 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2460 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2461 init_completion(&barr->done);
83c22520 2462
affee4b2
TH
2463 /*
2464 * If @target is currently being executed, schedule the
2465 * barrier to the worker; otherwise, put it after @target.
2466 */
2467 if (worker)
2468 head = worker->scheduled.next;
2469 else {
2470 unsigned long *bits = work_data_bits(target);
2471
2472 head = target->entry.next;
2473 /* there can already be other linked works, inherit and set */
2474 linked = *bits & WORK_STRUCT_LINKED;
2475 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2476 }
2477
dc186ad7 2478 debug_work_activate(&barr->work);
affee4b2
TH
2479 insert_work(cwq, &barr->work, head,
2480 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2481}
2482
73f53c4a
TH
2483/**
2484 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2485 * @wq: workqueue being flushed
2486 * @flush_color: new flush color, < 0 for no-op
2487 * @work_color: new work color, < 0 for no-op
2488 *
2489 * Prepare cwqs for workqueue flushing.
2490 *
2491 * If @flush_color is non-negative, flush_color on all cwqs should be
2492 * -1. If no cwq has in-flight commands at the specified color, all
2493 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2494 * has in flight commands, its cwq->flush_color is set to
2495 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2496 * wakeup logic is armed and %true is returned.
2497 *
2498 * The caller should have initialized @wq->first_flusher prior to
2499 * calling this function with non-negative @flush_color. If
2500 * @flush_color is negative, no flush color update is done and %false
2501 * is returned.
2502 *
2503 * If @work_color is non-negative, all cwqs should have the same
2504 * work_color which is previous to @work_color and all will be
2505 * advanced to @work_color.
2506 *
2507 * CONTEXT:
2508 * mutex_lock(wq->flush_mutex).
2509 *
2510 * RETURNS:
2511 * %true if @flush_color >= 0 and there's something to flush. %false
2512 * otherwise.
2513 */
2514static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2515 int flush_color, int work_color)
1da177e4 2516{
73f53c4a
TH
2517 bool wait = false;
2518 unsigned int cpu;
1da177e4 2519
73f53c4a
TH
2520 if (flush_color >= 0) {
2521 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2522 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2523 }
2355b70f 2524
f3421797 2525 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2526 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2527 struct worker_pool *pool = cwq->pool;
fc2e4d70 2528
d565ed63 2529 spin_lock_irq(&pool->lock);
83c22520 2530
73f53c4a
TH
2531 if (flush_color >= 0) {
2532 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2533
73f53c4a
TH
2534 if (cwq->nr_in_flight[flush_color]) {
2535 cwq->flush_color = flush_color;
2536 atomic_inc(&wq->nr_cwqs_to_flush);
2537 wait = true;
2538 }
2539 }
1da177e4 2540
73f53c4a
TH
2541 if (work_color >= 0) {
2542 BUG_ON(work_color != work_next_color(cwq->work_color));
2543 cwq->work_color = work_color;
2544 }
1da177e4 2545
d565ed63 2546 spin_unlock_irq(&pool->lock);
1da177e4 2547 }
2355b70f 2548
73f53c4a
TH
2549 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2550 complete(&wq->first_flusher->done);
14441960 2551
73f53c4a 2552 return wait;
1da177e4
LT
2553}
2554
0fcb78c2 2555/**
1da177e4 2556 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2557 * @wq: workqueue to flush
1da177e4
LT
2558 *
2559 * Forces execution of the workqueue and blocks until its completion.
2560 * This is typically used in driver shutdown handlers.
2561 *
fc2e4d70
ON
2562 * We sleep until all works which were queued on entry have been handled,
2563 * but we are not livelocked by new incoming ones.
1da177e4 2564 */
7ad5b3a5 2565void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2566{
73f53c4a
TH
2567 struct wq_flusher this_flusher = {
2568 .list = LIST_HEAD_INIT(this_flusher.list),
2569 .flush_color = -1,
2570 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2571 };
2572 int next_color;
1da177e4 2573
3295f0ef
IM
2574 lock_map_acquire(&wq->lockdep_map);
2575 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2576
2577 mutex_lock(&wq->flush_mutex);
2578
2579 /*
2580 * Start-to-wait phase
2581 */
2582 next_color = work_next_color(wq->work_color);
2583
2584 if (next_color != wq->flush_color) {
2585 /*
2586 * Color space is not full. The current work_color
2587 * becomes our flush_color and work_color is advanced
2588 * by one.
2589 */
2590 BUG_ON(!list_empty(&wq->flusher_overflow));
2591 this_flusher.flush_color = wq->work_color;
2592 wq->work_color = next_color;
2593
2594 if (!wq->first_flusher) {
2595 /* no flush in progress, become the first flusher */
2596 BUG_ON(wq->flush_color != this_flusher.flush_color);
2597
2598 wq->first_flusher = &this_flusher;
2599
2600 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2601 wq->work_color)) {
2602 /* nothing to flush, done */
2603 wq->flush_color = next_color;
2604 wq->first_flusher = NULL;
2605 goto out_unlock;
2606 }
2607 } else {
2608 /* wait in queue */
2609 BUG_ON(wq->flush_color == this_flusher.flush_color);
2610 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2611 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2612 }
2613 } else {
2614 /*
2615 * Oops, color space is full, wait on overflow queue.
2616 * The next flush completion will assign us
2617 * flush_color and transfer to flusher_queue.
2618 */
2619 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2620 }
2621
2622 mutex_unlock(&wq->flush_mutex);
2623
2624 wait_for_completion(&this_flusher.done);
2625
2626 /*
2627 * Wake-up-and-cascade phase
2628 *
2629 * First flushers are responsible for cascading flushes and
2630 * handling overflow. Non-first flushers can simply return.
2631 */
2632 if (wq->first_flusher != &this_flusher)
2633 return;
2634
2635 mutex_lock(&wq->flush_mutex);
2636
4ce48b37
TH
2637 /* we might have raced, check again with mutex held */
2638 if (wq->first_flusher != &this_flusher)
2639 goto out_unlock;
2640
73f53c4a
TH
2641 wq->first_flusher = NULL;
2642
2643 BUG_ON(!list_empty(&this_flusher.list));
2644 BUG_ON(wq->flush_color != this_flusher.flush_color);
2645
2646 while (true) {
2647 struct wq_flusher *next, *tmp;
2648
2649 /* complete all the flushers sharing the current flush color */
2650 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2651 if (next->flush_color != wq->flush_color)
2652 break;
2653 list_del_init(&next->list);
2654 complete(&next->done);
2655 }
2656
2657 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2658 wq->flush_color != work_next_color(wq->work_color));
2659
2660 /* this flush_color is finished, advance by one */
2661 wq->flush_color = work_next_color(wq->flush_color);
2662
2663 /* one color has been freed, handle overflow queue */
2664 if (!list_empty(&wq->flusher_overflow)) {
2665 /*
2666 * Assign the same color to all overflowed
2667 * flushers, advance work_color and append to
2668 * flusher_queue. This is the start-to-wait
2669 * phase for these overflowed flushers.
2670 */
2671 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2672 tmp->flush_color = wq->work_color;
2673
2674 wq->work_color = work_next_color(wq->work_color);
2675
2676 list_splice_tail_init(&wq->flusher_overflow,
2677 &wq->flusher_queue);
2678 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2679 }
2680
2681 if (list_empty(&wq->flusher_queue)) {
2682 BUG_ON(wq->flush_color != wq->work_color);
2683 break;
2684 }
2685
2686 /*
2687 * Need to flush more colors. Make the next flusher
2688 * the new first flusher and arm cwqs.
2689 */
2690 BUG_ON(wq->flush_color == wq->work_color);
2691 BUG_ON(wq->flush_color != next->flush_color);
2692
2693 list_del_init(&next->list);
2694 wq->first_flusher = next;
2695
2696 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2697 break;
2698
2699 /*
2700 * Meh... this color is already done, clear first
2701 * flusher and repeat cascading.
2702 */
2703 wq->first_flusher = NULL;
2704 }
2705
2706out_unlock:
2707 mutex_unlock(&wq->flush_mutex);
1da177e4 2708}
ae90dd5d 2709EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2710
9c5a2ba7
TH
2711/**
2712 * drain_workqueue - drain a workqueue
2713 * @wq: workqueue to drain
2714 *
2715 * Wait until the workqueue becomes empty. While draining is in progress,
2716 * only chain queueing is allowed. IOW, only currently pending or running
2717 * work items on @wq can queue further work items on it. @wq is flushed
2718 * repeatedly until it becomes empty. The number of flushing is detemined
2719 * by the depth of chaining and should be relatively short. Whine if it
2720 * takes too long.
2721 */
2722void drain_workqueue(struct workqueue_struct *wq)
2723{
2724 unsigned int flush_cnt = 0;
2725 unsigned int cpu;
2726
2727 /*
2728 * __queue_work() needs to test whether there are drainers, is much
2729 * hotter than drain_workqueue() and already looks at @wq->flags.
2730 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2731 */
2732 spin_lock(&workqueue_lock);
2733 if (!wq->nr_drainers++)
2734 wq->flags |= WQ_DRAINING;
2735 spin_unlock(&workqueue_lock);
2736reflush:
2737 flush_workqueue(wq);
2738
2739 for_each_cwq_cpu(cpu, wq) {
2740 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2741 bool drained;
9c5a2ba7 2742
d565ed63 2743 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2744 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2745 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2746
2747 if (drained)
9c5a2ba7
TH
2748 continue;
2749
2750 if (++flush_cnt == 10 ||
2751 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2752 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2753 wq->name, flush_cnt);
9c5a2ba7
TH
2754 goto reflush;
2755 }
2756
2757 spin_lock(&workqueue_lock);
2758 if (!--wq->nr_drainers)
2759 wq->flags &= ~WQ_DRAINING;
2760 spin_unlock(&workqueue_lock);
2761}
2762EXPORT_SYMBOL_GPL(drain_workqueue);
2763
606a5020 2764static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2765{
affee4b2 2766 struct worker *worker = NULL;
c9e7cf27 2767 struct worker_pool *pool;
db700897 2768 struct cpu_workqueue_struct *cwq;
db700897
ON
2769
2770 might_sleep();
c9e7cf27
TH
2771 pool = get_work_pool(work);
2772 if (!pool)
baf59022 2773 return false;
db700897 2774
d565ed63 2775 spin_lock_irq(&pool->lock);
0b3dae68
LJ
2776 /* see the comment in try_to_grab_pending() with the same code */
2777 cwq = get_work_cwq(work);
2778 if (cwq) {
2779 if (unlikely(cwq->pool != pool))
4690c4ab 2780 goto already_gone;
606a5020 2781 } else {
c9e7cf27 2782 worker = find_worker_executing_work(pool, work);
affee4b2 2783 if (!worker)
4690c4ab 2784 goto already_gone;
7a22ad75 2785 cwq = worker->current_cwq;
606a5020 2786 }
db700897 2787
baf59022 2788 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2789 spin_unlock_irq(&pool->lock);
7a22ad75 2790
e159489b
TH
2791 /*
2792 * If @max_active is 1 or rescuer is in use, flushing another work
2793 * item on the same workqueue may lead to deadlock. Make sure the
2794 * flusher is not running on the same workqueue by verifying write
2795 * access.
2796 */
2797 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2798 lock_map_acquire(&cwq->wq->lockdep_map);
2799 else
2800 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2801 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2802
401a8d04 2803 return true;
4690c4ab 2804already_gone:
d565ed63 2805 spin_unlock_irq(&pool->lock);
401a8d04 2806 return false;
db700897 2807}
baf59022
TH
2808
2809/**
2810 * flush_work - wait for a work to finish executing the last queueing instance
2811 * @work: the work to flush
2812 *
606a5020
TH
2813 * Wait until @work has finished execution. @work is guaranteed to be idle
2814 * on return if it hasn't been requeued since flush started.
baf59022
TH
2815 *
2816 * RETURNS:
2817 * %true if flush_work() waited for the work to finish execution,
2818 * %false if it was already idle.
2819 */
2820bool flush_work(struct work_struct *work)
2821{
2822 struct wq_barrier barr;
2823
0976dfc1
SB
2824 lock_map_acquire(&work->lockdep_map);
2825 lock_map_release(&work->lockdep_map);
2826
606a5020 2827 if (start_flush_work(work, &barr)) {
401a8d04
TH
2828 wait_for_completion(&barr.done);
2829 destroy_work_on_stack(&barr.work);
2830 return true;
606a5020 2831 } else {
401a8d04 2832 return false;
6e84d644 2833 }
6e84d644 2834}
606a5020 2835EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2836
36e227d2 2837static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2838{
bbb68dfa 2839 unsigned long flags;
1f1f642e
ON
2840 int ret;
2841
2842 do {
bbb68dfa
TH
2843 ret = try_to_grab_pending(work, is_dwork, &flags);
2844 /*
2845 * If someone else is canceling, wait for the same event it
2846 * would be waiting for before retrying.
2847 */
2848 if (unlikely(ret == -ENOENT))
606a5020 2849 flush_work(work);
1f1f642e
ON
2850 } while (unlikely(ret < 0));
2851
bbb68dfa
TH
2852 /* tell other tasks trying to grab @work to back off */
2853 mark_work_canceling(work);
2854 local_irq_restore(flags);
2855
606a5020 2856 flush_work(work);
7a22ad75 2857 clear_work_data(work);
1f1f642e
ON
2858 return ret;
2859}
2860
6e84d644 2861/**
401a8d04
TH
2862 * cancel_work_sync - cancel a work and wait for it to finish
2863 * @work: the work to cancel
6e84d644 2864 *
401a8d04
TH
2865 * Cancel @work and wait for its execution to finish. This function
2866 * can be used even if the work re-queues itself or migrates to
2867 * another workqueue. On return from this function, @work is
2868 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2869 *
401a8d04
TH
2870 * cancel_work_sync(&delayed_work->work) must not be used for
2871 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2872 *
401a8d04 2873 * The caller must ensure that the workqueue on which @work was last
6e84d644 2874 * queued can't be destroyed before this function returns.
401a8d04
TH
2875 *
2876 * RETURNS:
2877 * %true if @work was pending, %false otherwise.
6e84d644 2878 */
401a8d04 2879bool cancel_work_sync(struct work_struct *work)
6e84d644 2880{
36e227d2 2881 return __cancel_work_timer(work, false);
b89deed3 2882}
28e53bdd 2883EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2884
6e84d644 2885/**
401a8d04
TH
2886 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2887 * @dwork: the delayed work to flush
6e84d644 2888 *
401a8d04
TH
2889 * Delayed timer is cancelled and the pending work is queued for
2890 * immediate execution. Like flush_work(), this function only
2891 * considers the last queueing instance of @dwork.
1f1f642e 2892 *
401a8d04
TH
2893 * RETURNS:
2894 * %true if flush_work() waited for the work to finish execution,
2895 * %false if it was already idle.
6e84d644 2896 */
401a8d04
TH
2897bool flush_delayed_work(struct delayed_work *dwork)
2898{
8930caba 2899 local_irq_disable();
401a8d04 2900 if (del_timer_sync(&dwork->timer))
60c057bc 2901 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2902 local_irq_enable();
401a8d04
TH
2903 return flush_work(&dwork->work);
2904}
2905EXPORT_SYMBOL(flush_delayed_work);
2906
09383498 2907/**
57b30ae7
TH
2908 * cancel_delayed_work - cancel a delayed work
2909 * @dwork: delayed_work to cancel
09383498 2910 *
57b30ae7
TH
2911 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2912 * and canceled; %false if wasn't pending. Note that the work callback
2913 * function may still be running on return, unless it returns %true and the
2914 * work doesn't re-arm itself. Explicitly flush or use
2915 * cancel_delayed_work_sync() to wait on it.
09383498 2916 *
57b30ae7 2917 * This function is safe to call from any context including IRQ handler.
09383498 2918 */
57b30ae7 2919bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2920{
57b30ae7
TH
2921 unsigned long flags;
2922 int ret;
2923
2924 do {
2925 ret = try_to_grab_pending(&dwork->work, true, &flags);
2926 } while (unlikely(ret == -EAGAIN));
2927
2928 if (unlikely(ret < 0))
2929 return false;
2930
7c3eed5c
TH
2931 set_work_pool_and_clear_pending(&dwork->work,
2932 get_work_pool_id(&dwork->work));
57b30ae7 2933 local_irq_restore(flags);
c0158ca6 2934 return ret;
09383498 2935}
57b30ae7 2936EXPORT_SYMBOL(cancel_delayed_work);
09383498 2937
401a8d04
TH
2938/**
2939 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2940 * @dwork: the delayed work cancel
2941 *
2942 * This is cancel_work_sync() for delayed works.
2943 *
2944 * RETURNS:
2945 * %true if @dwork was pending, %false otherwise.
2946 */
2947bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2948{
36e227d2 2949 return __cancel_work_timer(&dwork->work, true);
6e84d644 2950}
f5a421a4 2951EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2952
0fcb78c2 2953/**
c1a220e7
ZR
2954 * schedule_work_on - put work task on a specific cpu
2955 * @cpu: cpu to put the work task on
2956 * @work: job to be done
2957 *
2958 * This puts a job on a specific cpu
2959 */
d4283e93 2960bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2961{
d320c038 2962 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2963}
2964EXPORT_SYMBOL(schedule_work_on);
2965
0fcb78c2 2966/**
0fcb78c2
REB
2967 * schedule_work - put work task in global workqueue
2968 * @work: job to be done
0fcb78c2 2969 *
d4283e93
TH
2970 * Returns %false if @work was already on the kernel-global workqueue and
2971 * %true otherwise.
5b0f437d
BVA
2972 *
2973 * This puts a job in the kernel-global workqueue if it was not already
2974 * queued and leaves it in the same position on the kernel-global
2975 * workqueue otherwise.
0fcb78c2 2976 */
d4283e93 2977bool schedule_work(struct work_struct *work)
1da177e4 2978{
d320c038 2979 return queue_work(system_wq, work);
1da177e4 2980}
ae90dd5d 2981EXPORT_SYMBOL(schedule_work);
1da177e4 2982
0fcb78c2
REB
2983/**
2984 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2985 * @cpu: cpu to use
52bad64d 2986 * @dwork: job to be done
0fcb78c2
REB
2987 * @delay: number of jiffies to wait
2988 *
2989 * After waiting for a given time this puts a job in the kernel-global
2990 * workqueue on the specified CPU.
2991 */
d4283e93
TH
2992bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2993 unsigned long delay)
1da177e4 2994{
d320c038 2995 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2996}
ae90dd5d 2997EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2998
0fcb78c2
REB
2999/**
3000 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3001 * @dwork: job to be done
3002 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3003 *
3004 * After waiting for a given time this puts a job in the kernel-global
3005 * workqueue.
3006 */
d4283e93 3007bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3008{
d320c038 3009 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3010}
ae90dd5d 3011EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3012
b6136773 3013/**
31ddd871 3014 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3015 * @func: the function to call
b6136773 3016 *
31ddd871
TH
3017 * schedule_on_each_cpu() executes @func on each online CPU using the
3018 * system workqueue and blocks until all CPUs have completed.
b6136773 3019 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3020 *
3021 * RETURNS:
3022 * 0 on success, -errno on failure.
b6136773 3023 */
65f27f38 3024int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3025{
3026 int cpu;
38f51568 3027 struct work_struct __percpu *works;
15316ba8 3028
b6136773
AM
3029 works = alloc_percpu(struct work_struct);
3030 if (!works)
15316ba8 3031 return -ENOMEM;
b6136773 3032
93981800
TH
3033 get_online_cpus();
3034
15316ba8 3035 for_each_online_cpu(cpu) {
9bfb1839
IM
3036 struct work_struct *work = per_cpu_ptr(works, cpu);
3037
3038 INIT_WORK(work, func);
b71ab8c2 3039 schedule_work_on(cpu, work);
65a64464 3040 }
93981800
TH
3041
3042 for_each_online_cpu(cpu)
3043 flush_work(per_cpu_ptr(works, cpu));
3044
95402b38 3045 put_online_cpus();
b6136773 3046 free_percpu(works);
15316ba8
CL
3047 return 0;
3048}
3049
eef6a7d5
AS
3050/**
3051 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3052 *
3053 * Forces execution of the kernel-global workqueue and blocks until its
3054 * completion.
3055 *
3056 * Think twice before calling this function! It's very easy to get into
3057 * trouble if you don't take great care. Either of the following situations
3058 * will lead to deadlock:
3059 *
3060 * One of the work items currently on the workqueue needs to acquire
3061 * a lock held by your code or its caller.
3062 *
3063 * Your code is running in the context of a work routine.
3064 *
3065 * They will be detected by lockdep when they occur, but the first might not
3066 * occur very often. It depends on what work items are on the workqueue and
3067 * what locks they need, which you have no control over.
3068 *
3069 * In most situations flushing the entire workqueue is overkill; you merely
3070 * need to know that a particular work item isn't queued and isn't running.
3071 * In such cases you should use cancel_delayed_work_sync() or
3072 * cancel_work_sync() instead.
3073 */
1da177e4
LT
3074void flush_scheduled_work(void)
3075{
d320c038 3076 flush_workqueue(system_wq);
1da177e4 3077}
ae90dd5d 3078EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3079
1fa44eca
JB
3080/**
3081 * execute_in_process_context - reliably execute the routine with user context
3082 * @fn: the function to execute
1fa44eca
JB
3083 * @ew: guaranteed storage for the execute work structure (must
3084 * be available when the work executes)
3085 *
3086 * Executes the function immediately if process context is available,
3087 * otherwise schedules the function for delayed execution.
3088 *
3089 * Returns: 0 - function was executed
3090 * 1 - function was scheduled for execution
3091 */
65f27f38 3092int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3093{
3094 if (!in_interrupt()) {
65f27f38 3095 fn(&ew->work);
1fa44eca
JB
3096 return 0;
3097 }
3098
65f27f38 3099 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3100 schedule_work(&ew->work);
3101
3102 return 1;
3103}
3104EXPORT_SYMBOL_GPL(execute_in_process_context);
3105
1da177e4
LT
3106int keventd_up(void)
3107{
d320c038 3108 return system_wq != NULL;
1da177e4
LT
3109}
3110
bdbc5dd7 3111static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3112{
65a64464 3113 /*
0f900049
TH
3114 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3115 * Make sure that the alignment isn't lower than that of
3116 * unsigned long long.
65a64464 3117 */
0f900049
TH
3118 const size_t size = sizeof(struct cpu_workqueue_struct);
3119 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3120 __alignof__(unsigned long long));
65a64464 3121
e06ffa1e 3122 if (!(wq->flags & WQ_UNBOUND))
f3421797 3123 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3124 else {
f3421797
TH
3125 void *ptr;
3126
3127 /*
3128 * Allocate enough room to align cwq and put an extra
3129 * pointer at the end pointing back to the originally
3130 * allocated pointer which will be used for free.
3131 */
3132 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3133 if (ptr) {
3134 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3135 *(void **)(wq->cpu_wq.single + 1) = ptr;
3136 }
bdbc5dd7 3137 }
f3421797 3138
0415b00d 3139 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3140 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3141 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3142}
3143
bdbc5dd7 3144static void free_cwqs(struct workqueue_struct *wq)
0f900049 3145{
e06ffa1e 3146 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3147 free_percpu(wq->cpu_wq.pcpu);
3148 else if (wq->cpu_wq.single) {
3149 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3150 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3151 }
0f900049
TH
3152}
3153
f3421797
TH
3154static int wq_clamp_max_active(int max_active, unsigned int flags,
3155 const char *name)
b71ab8c2 3156{
f3421797
TH
3157 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3158
3159 if (max_active < 1 || max_active > lim)
044c782c
VI
3160 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3161 max_active, name, 1, lim);
b71ab8c2 3162
f3421797 3163 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3164}
3165
b196be89 3166struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3167 unsigned int flags,
3168 int max_active,
3169 struct lock_class_key *key,
b196be89 3170 const char *lock_name, ...)
1da177e4 3171{
b196be89 3172 va_list args, args1;
1da177e4 3173 struct workqueue_struct *wq;
c34056a3 3174 unsigned int cpu;
b196be89
TH
3175 size_t namelen;
3176
3177 /* determine namelen, allocate wq and format name */
3178 va_start(args, lock_name);
3179 va_copy(args1, args);
3180 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3181
3182 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3183 if (!wq)
3184 goto err;
3185
3186 vsnprintf(wq->name, namelen, fmt, args1);
3187 va_end(args);
3188 va_end(args1);
1da177e4 3189
6370a6ad
TH
3190 /*
3191 * Workqueues which may be used during memory reclaim should
3192 * have a rescuer to guarantee forward progress.
3193 */
3194 if (flags & WQ_MEM_RECLAIM)
3195 flags |= WQ_RESCUER;
3196
d320c038 3197 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3198 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3199
b196be89 3200 /* init wq */
97e37d7b 3201 wq->flags = flags;
a0a1a5fd 3202 wq->saved_max_active = max_active;
73f53c4a
TH
3203 mutex_init(&wq->flush_mutex);
3204 atomic_set(&wq->nr_cwqs_to_flush, 0);
3205 INIT_LIST_HEAD(&wq->flusher_queue);
3206 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3207
eb13ba87 3208 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3209 INIT_LIST_HEAD(&wq->list);
3af24433 3210
bdbc5dd7
TH
3211 if (alloc_cwqs(wq) < 0)
3212 goto err;
3213
f3421797 3214 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3215 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3216
0f900049 3217 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3218 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3219 cwq->wq = wq;
73f53c4a 3220 cwq->flush_color = -1;
1e19ffc6 3221 cwq->max_active = max_active;
1e19ffc6 3222 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3223 }
1537663f 3224
e22bee78
TH
3225 if (flags & WQ_RESCUER) {
3226 struct worker *rescuer;
3227
f2e005aa 3228 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3229 goto err;
3230
3231 wq->rescuer = rescuer = alloc_worker();
3232 if (!rescuer)
3233 goto err;
3234
111c225a
TH
3235 rescuer->rescue_wq = wq;
3236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3237 wq->name);
e22bee78
TH
3238 if (IS_ERR(rescuer->task))
3239 goto err;
3240
e22bee78
TH
3241 rescuer->task->flags |= PF_THREAD_BOUND;
3242 wake_up_process(rescuer->task);
3af24433
ON
3243 }
3244
a0a1a5fd
TH
3245 /*
3246 * workqueue_lock protects global freeze state and workqueues
3247 * list. Grab it, set max_active accordingly and add the new
3248 * workqueue to workqueues list.
3249 */
1537663f 3250 spin_lock(&workqueue_lock);
a0a1a5fd 3251
58a69cb4 3252 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3253 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3254 get_cwq(cpu, wq)->max_active = 0;
3255
1537663f 3256 list_add(&wq->list, &workqueues);
a0a1a5fd 3257
1537663f
TH
3258 spin_unlock(&workqueue_lock);
3259
3af24433 3260 return wq;
4690c4ab
TH
3261err:
3262 if (wq) {
bdbc5dd7 3263 free_cwqs(wq);
f2e005aa 3264 free_mayday_mask(wq->mayday_mask);
e22bee78 3265 kfree(wq->rescuer);
4690c4ab
TH
3266 kfree(wq);
3267 }
3268 return NULL;
3af24433 3269}
d320c038 3270EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3271
3af24433
ON
3272/**
3273 * destroy_workqueue - safely terminate a workqueue
3274 * @wq: target workqueue
3275 *
3276 * Safely destroy a workqueue. All work currently pending will be done first.
3277 */
3278void destroy_workqueue(struct workqueue_struct *wq)
3279{
c8e55f36 3280 unsigned int cpu;
3af24433 3281
9c5a2ba7
TH
3282 /* drain it before proceeding with destruction */
3283 drain_workqueue(wq);
c8efcc25 3284
a0a1a5fd
TH
3285 /*
3286 * wq list is used to freeze wq, remove from list after
3287 * flushing is complete in case freeze races us.
3288 */
95402b38 3289 spin_lock(&workqueue_lock);
b1f4ec17 3290 list_del(&wq->list);
95402b38 3291 spin_unlock(&workqueue_lock);
3af24433 3292
e22bee78 3293 /* sanity check */
f3421797 3294 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3295 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3296 int i;
3297
73f53c4a
TH
3298 for (i = 0; i < WORK_NR_COLORS; i++)
3299 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3300 BUG_ON(cwq->nr_active);
3301 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3302 }
9b41ea72 3303
e22bee78
TH
3304 if (wq->flags & WQ_RESCUER) {
3305 kthread_stop(wq->rescuer->task);
f2e005aa 3306 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3307 kfree(wq->rescuer);
e22bee78
TH
3308 }
3309
bdbc5dd7 3310 free_cwqs(wq);
3af24433
ON
3311 kfree(wq);
3312}
3313EXPORT_SYMBOL_GPL(destroy_workqueue);
3314
9f4bd4cd
LJ
3315/**
3316 * cwq_set_max_active - adjust max_active of a cwq
3317 * @cwq: target cpu_workqueue_struct
3318 * @max_active: new max_active value.
3319 *
3320 * Set @cwq->max_active to @max_active and activate delayed works if
3321 * increased.
3322 *
3323 * CONTEXT:
d565ed63 3324 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3325 */
3326static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3327{
3328 cwq->max_active = max_active;
3329
3330 while (!list_empty(&cwq->delayed_works) &&
3331 cwq->nr_active < cwq->max_active)
3332 cwq_activate_first_delayed(cwq);
3333}
3334
dcd989cb
TH
3335/**
3336 * workqueue_set_max_active - adjust max_active of a workqueue
3337 * @wq: target workqueue
3338 * @max_active: new max_active value.
3339 *
3340 * Set max_active of @wq to @max_active.
3341 *
3342 * CONTEXT:
3343 * Don't call from IRQ context.
3344 */
3345void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3346{
3347 unsigned int cpu;
3348
f3421797 3349 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3350
3351 spin_lock(&workqueue_lock);
3352
3353 wq->saved_max_active = max_active;
3354
f3421797 3355 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3356 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3357 struct worker_pool *pool = cwq->pool;
dcd989cb 3358
d565ed63 3359 spin_lock_irq(&pool->lock);
dcd989cb 3360
58a69cb4 3361 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3362 !(pool->flags & POOL_FREEZING))
3363 cwq_set_max_active(cwq, max_active);
9bfb1839 3364
d565ed63 3365 spin_unlock_irq(&pool->lock);
65a64464 3366 }
93981800 3367
dcd989cb 3368 spin_unlock(&workqueue_lock);
15316ba8 3369}
dcd989cb 3370EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3371
eef6a7d5 3372/**
dcd989cb
TH
3373 * workqueue_congested - test whether a workqueue is congested
3374 * @cpu: CPU in question
3375 * @wq: target workqueue
eef6a7d5 3376 *
dcd989cb
TH
3377 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3378 * no synchronization around this function and the test result is
3379 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3380 *
dcd989cb
TH
3381 * RETURNS:
3382 * %true if congested, %false otherwise.
eef6a7d5 3383 */
dcd989cb 3384bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3385{
dcd989cb
TH
3386 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3387
3388 return !list_empty(&cwq->delayed_works);
1da177e4 3389}
dcd989cb 3390EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3391
dcd989cb
TH
3392/**
3393 * work_busy - test whether a work is currently pending or running
3394 * @work: the work to be tested
3395 *
3396 * Test whether @work is currently pending or running. There is no
3397 * synchronization around this function and the test result is
3398 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3399 *
3400 * RETURNS:
3401 * OR'd bitmask of WORK_BUSY_* bits.
3402 */
3403unsigned int work_busy(struct work_struct *work)
1da177e4 3404{
c9e7cf27 3405 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3406 unsigned long flags;
3407 unsigned int ret = 0;
1da177e4 3408
dcd989cb
TH
3409 if (work_pending(work))
3410 ret |= WORK_BUSY_PENDING;
1da177e4 3411
038366c5
LJ
3412 if (pool) {
3413 spin_lock_irqsave(&pool->lock, flags);
3414 if (find_worker_executing_work(pool, work))
3415 ret |= WORK_BUSY_RUNNING;
3416 spin_unlock_irqrestore(&pool->lock, flags);
3417 }
1da177e4 3418
dcd989cb 3419 return ret;
1da177e4 3420}
dcd989cb 3421EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3422
db7bccf4
TH
3423/*
3424 * CPU hotplug.
3425 *
e22bee78
TH
3426 * There are two challenges in supporting CPU hotplug. Firstly, there
3427 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3428 * pool which make migrating pending and scheduled works very
e22bee78 3429 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3430 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3431 * blocked draining impractical.
3432 *
24647570 3433 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3434 * running as an unbound one and allowing it to be reattached later if the
3435 * cpu comes back online.
db7bccf4 3436 */
1da177e4 3437
706026c2 3438static void wq_unbind_fn(struct work_struct *work)
3af24433 3439{
38db41d9 3440 int cpu = smp_processor_id();
4ce62e9e 3441 struct worker_pool *pool;
db7bccf4
TH
3442 struct worker *worker;
3443 struct hlist_node *pos;
3444 int i;
3af24433 3445
38db41d9
TH
3446 for_each_std_worker_pool(pool, cpu) {
3447 BUG_ON(cpu != smp_processor_id());
db7bccf4 3448
94cf58bb
TH
3449 mutex_lock(&pool->assoc_mutex);
3450 spin_lock_irq(&pool->lock);
3af24433 3451
94cf58bb
TH
3452 /*
3453 * We've claimed all manager positions. Make all workers
3454 * unbound and set DISASSOCIATED. Before this, all workers
3455 * except for the ones which are still executing works from
3456 * before the last CPU down must be on the cpu. After
3457 * this, they may become diasporas.
3458 */
4ce62e9e 3459 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3460 worker->flags |= WORKER_UNBOUND;
3af24433 3461
c9e7cf27
TH
3462 for_each_busy_worker(worker, i, pos, pool)
3463 worker->flags |= WORKER_UNBOUND;
06ba38a9 3464
24647570 3465 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3466
94cf58bb
TH
3467 spin_unlock_irq(&pool->lock);
3468 mutex_unlock(&pool->assoc_mutex);
3469 }
628c78e7 3470
e22bee78 3471 /*
403c821d 3472 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3473 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3474 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3475 */
e22bee78 3476 schedule();
06ba38a9 3477
e22bee78 3478 /*
628c78e7
TH
3479 * Sched callbacks are disabled now. Zap nr_running. After this,
3480 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3481 * are always true as long as the worklist is not empty. Pools on
3482 * @cpu now behave as unbound (in terms of concurrency management)
3483 * pools which are served by workers tied to the CPU.
628c78e7
TH
3484 *
3485 * On return from this function, the current worker would trigger
3486 * unbound chain execution of pending work items if other workers
3487 * didn't already.
e22bee78 3488 */
38db41d9 3489 for_each_std_worker_pool(pool, cpu)
e19e397a 3490 atomic_set(&pool->nr_running, 0);
3af24433 3491}
3af24433 3492
8db25e78
TH
3493/*
3494 * Workqueues should be brought up before normal priority CPU notifiers.
3495 * This will be registered high priority CPU notifier.
3496 */
9fdf9b73 3497static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3498 unsigned long action,
3499 void *hcpu)
3af24433
ON
3500{
3501 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3502 struct worker_pool *pool;
3ce63377 3503
8db25e78 3504 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3505 case CPU_UP_PREPARE:
38db41d9 3506 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3507 struct worker *worker;
3508
3509 if (pool->nr_workers)
3510 continue;
3511
3512 worker = create_worker(pool);
3513 if (!worker)
3514 return NOTIFY_BAD;
3515
d565ed63 3516 spin_lock_irq(&pool->lock);
3ce63377 3517 start_worker(worker);
d565ed63 3518 spin_unlock_irq(&pool->lock);
3af24433 3519 }
8db25e78 3520 break;
3af24433 3521
db7bccf4
TH
3522 case CPU_DOWN_FAILED:
3523 case CPU_ONLINE:
38db41d9 3524 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3525 mutex_lock(&pool->assoc_mutex);
3526 spin_lock_irq(&pool->lock);
3527
24647570 3528 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3529 rebind_workers(pool);
3530
3531 spin_unlock_irq(&pool->lock);
3532 mutex_unlock(&pool->assoc_mutex);
3533 }
db7bccf4 3534 break;
00dfcaf7 3535 }
65758202
TH
3536 return NOTIFY_OK;
3537}
3538
3539/*
3540 * Workqueues should be brought down after normal priority CPU notifiers.
3541 * This will be registered as low priority CPU notifier.
3542 */
9fdf9b73 3543static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3544 unsigned long action,
3545 void *hcpu)
3546{
8db25e78
TH
3547 unsigned int cpu = (unsigned long)hcpu;
3548 struct work_struct unbind_work;
3549
65758202
TH
3550 switch (action & ~CPU_TASKS_FROZEN) {
3551 case CPU_DOWN_PREPARE:
8db25e78 3552 /* unbinding should happen on the local CPU */
706026c2 3553 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3554 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3555 flush_work(&unbind_work);
3556 break;
65758202
TH
3557 }
3558 return NOTIFY_OK;
3559}
3560
2d3854a3 3561#ifdef CONFIG_SMP
8ccad40d 3562
2d3854a3 3563struct work_for_cpu {
ed48ece2 3564 struct work_struct work;
2d3854a3
RR
3565 long (*fn)(void *);
3566 void *arg;
3567 long ret;
3568};
3569
ed48ece2 3570static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3571{
ed48ece2
TH
3572 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3573
2d3854a3
RR
3574 wfc->ret = wfc->fn(wfc->arg);
3575}
3576
3577/**
3578 * work_on_cpu - run a function in user context on a particular cpu
3579 * @cpu: the cpu to run on
3580 * @fn: the function to run
3581 * @arg: the function arg
3582 *
31ad9081
RR
3583 * This will return the value @fn returns.
3584 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3585 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3586 */
3587long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3588{
ed48ece2 3589 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3590
ed48ece2
TH
3591 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3592 schedule_work_on(cpu, &wfc.work);
3593 flush_work(&wfc.work);
2d3854a3
RR
3594 return wfc.ret;
3595}
3596EXPORT_SYMBOL_GPL(work_on_cpu);
3597#endif /* CONFIG_SMP */
3598
a0a1a5fd
TH
3599#ifdef CONFIG_FREEZER
3600
3601/**
3602 * freeze_workqueues_begin - begin freezing workqueues
3603 *
58a69cb4
TH
3604 * Start freezing workqueues. After this function returns, all freezable
3605 * workqueues will queue new works to their frozen_works list instead of
706026c2 3606 * pool->worklist.
a0a1a5fd
TH
3607 *
3608 * CONTEXT:
d565ed63 3609 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3610 */
3611void freeze_workqueues_begin(void)
3612{
a0a1a5fd
TH
3613 unsigned int cpu;
3614
3615 spin_lock(&workqueue_lock);
3616
3617 BUG_ON(workqueue_freezing);
3618 workqueue_freezing = true;
3619
706026c2 3620 for_each_wq_cpu(cpu) {
35b6bb63 3621 struct worker_pool *pool;
bdbc5dd7 3622 struct workqueue_struct *wq;
8b03ae3c 3623
38db41d9 3624 for_each_std_worker_pool(pool, cpu) {
a1056305 3625 spin_lock_irq(&pool->lock);
d565ed63 3626
35b6bb63
TH
3627 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3628 pool->flags |= POOL_FREEZING;
db7bccf4 3629
a1056305
TH
3630 list_for_each_entry(wq, &workqueues, list) {
3631 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3632
a1056305
TH
3633 if (cwq && cwq->pool == pool &&
3634 (wq->flags & WQ_FREEZABLE))
3635 cwq->max_active = 0;
3636 }
8b03ae3c 3637
a1056305
TH
3638 spin_unlock_irq(&pool->lock);
3639 }
a0a1a5fd
TH
3640 }
3641
3642 spin_unlock(&workqueue_lock);
3643}
3644
3645/**
58a69cb4 3646 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3647 *
3648 * Check whether freezing is complete. This function must be called
3649 * between freeze_workqueues_begin() and thaw_workqueues().
3650 *
3651 * CONTEXT:
3652 * Grabs and releases workqueue_lock.
3653 *
3654 * RETURNS:
58a69cb4
TH
3655 * %true if some freezable workqueues are still busy. %false if freezing
3656 * is complete.
a0a1a5fd
TH
3657 */
3658bool freeze_workqueues_busy(void)
3659{
a0a1a5fd
TH
3660 unsigned int cpu;
3661 bool busy = false;
3662
3663 spin_lock(&workqueue_lock);
3664
3665 BUG_ON(!workqueue_freezing);
3666
706026c2 3667 for_each_wq_cpu(cpu) {
bdbc5dd7 3668 struct workqueue_struct *wq;
a0a1a5fd
TH
3669 /*
3670 * nr_active is monotonically decreasing. It's safe
3671 * to peek without lock.
3672 */
3673 list_for_each_entry(wq, &workqueues, list) {
3674 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3675
58a69cb4 3676 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3677 continue;
3678
3679 BUG_ON(cwq->nr_active < 0);
3680 if (cwq->nr_active) {
3681 busy = true;
3682 goto out_unlock;
3683 }
3684 }
3685 }
3686out_unlock:
3687 spin_unlock(&workqueue_lock);
3688 return busy;
3689}
3690
3691/**
3692 * thaw_workqueues - thaw workqueues
3693 *
3694 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3695 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3696 *
3697 * CONTEXT:
d565ed63 3698 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3699 */
3700void thaw_workqueues(void)
3701{
a0a1a5fd
TH
3702 unsigned int cpu;
3703
3704 spin_lock(&workqueue_lock);
3705
3706 if (!workqueue_freezing)
3707 goto out_unlock;
3708
706026c2 3709 for_each_wq_cpu(cpu) {
4ce62e9e 3710 struct worker_pool *pool;
bdbc5dd7 3711 struct workqueue_struct *wq;
8b03ae3c 3712
38db41d9 3713 for_each_std_worker_pool(pool, cpu) {
a1056305 3714 spin_lock_irq(&pool->lock);
d565ed63 3715
35b6bb63
TH
3716 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3717 pool->flags &= ~POOL_FREEZING;
db7bccf4 3718
a1056305
TH
3719 list_for_each_entry(wq, &workqueues, list) {
3720 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3721
a1056305
TH
3722 if (!cwq || cwq->pool != pool ||
3723 !(wq->flags & WQ_FREEZABLE))
3724 continue;
a0a1a5fd 3725
a1056305
TH
3726 /* restore max_active and repopulate worklist */
3727 cwq_set_max_active(cwq, wq->saved_max_active);
3728 }
8b03ae3c 3729
4ce62e9e 3730 wake_up_worker(pool);
a1056305
TH
3731
3732 spin_unlock_irq(&pool->lock);
d565ed63 3733 }
a0a1a5fd
TH
3734 }
3735
3736 workqueue_freezing = false;
3737out_unlock:
3738 spin_unlock(&workqueue_lock);
3739}
3740#endif /* CONFIG_FREEZER */
3741
6ee0578b 3742static int __init init_workqueues(void)
1da177e4 3743{
c34056a3
TH
3744 unsigned int cpu;
3745
7c3eed5c
TH
3746 /* make sure we have enough bits for OFFQ pool ID */
3747 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3748 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3749
65758202 3750 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3751 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3752
706026c2
TH
3753 /* initialize CPU pools */
3754 for_each_wq_cpu(cpu) {
4ce62e9e 3755 struct worker_pool *pool;
8b03ae3c 3756
38db41d9 3757 for_each_std_worker_pool(pool, cpu) {
d565ed63 3758 spin_lock_init(&pool->lock);
ec22ca5e 3759 pool->cpu = cpu;
24647570 3760 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3761 INIT_LIST_HEAD(&pool->worklist);
3762 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3763 hash_init(pool->busy_hash);
e7577c50 3764
4ce62e9e
TH
3765 init_timer_deferrable(&pool->idle_timer);
3766 pool->idle_timer.function = idle_worker_timeout;
3767 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3768
706026c2 3769 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3770 (unsigned long)pool);
3771
b2eb83d1 3772 mutex_init(&pool->assoc_mutex);
4ce62e9e 3773 ida_init(&pool->worker_ida);
9daf9e67
TH
3774
3775 /* alloc pool ID */
3776 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3777 }
8b03ae3c
TH
3778 }
3779
e22bee78 3780 /* create the initial worker */
706026c2 3781 for_each_online_wq_cpu(cpu) {
4ce62e9e 3782 struct worker_pool *pool;
e22bee78 3783
38db41d9 3784 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3785 struct worker *worker;
3786
24647570
TH
3787 if (cpu != WORK_CPU_UNBOUND)
3788 pool->flags &= ~POOL_DISASSOCIATED;
3789
bc2ae0f5 3790 worker = create_worker(pool);
4ce62e9e 3791 BUG_ON(!worker);
d565ed63 3792 spin_lock_irq(&pool->lock);
4ce62e9e 3793 start_worker(worker);
d565ed63 3794 spin_unlock_irq(&pool->lock);
4ce62e9e 3795 }
e22bee78
TH
3796 }
3797
d320c038 3798 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3799 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3800 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3801 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3802 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3803 system_freezable_wq = alloc_workqueue("events_freezable",
3804 WQ_FREEZABLE, 0);
1aabe902 3805 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3806 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3807 return 0;
1da177e4 3808}
6ee0578b 3809early_initcall(init_workqueues);