Linux 3.7-rc1
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
b2eb83d1 61 * assoc_mutex of all pools on the gcwq to avoid changing binding
bc2ae0f5
TH
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
1da177e4 128
e22bee78
TH
129/*
130 * The poor guys doing the actual heavy lifting. All on-duty workers
131 * are either serving the manager role, on idle list or on busy hash.
132 */
c34056a3 133struct worker {
c8e55f36
TH
134 /* on idle list while idle, on busy hash table while busy */
135 union {
136 struct list_head entry; /* L: while idle */
137 struct hlist_node hentry; /* L: while busy */
138 };
1da177e4 139
c34056a3 140 struct work_struct *current_work; /* L: work being processed */
8cca0eea 141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 142 struct list_head scheduled; /* L: scheduled works */
c34056a3 143 struct task_struct *task; /* I: worker task */
bd7bdd43 144 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
145 /* 64 bytes boundary on 64bit, 32 on 32bit */
146 unsigned long last_active; /* L: last active timestamp */
147 unsigned int flags; /* X: flags */
c34056a3 148 int id; /* I: worker id */
25511a47
TH
149
150 /* for rebinding worker to CPU */
25511a47 151 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
152};
153
bd7bdd43
TH
154struct worker_pool {
155 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 156 unsigned int flags; /* X: flags */
bd7bdd43
TH
157
158 struct list_head worklist; /* L: list of pending works */
159 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
160
161 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
b2eb83d1 168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
8b03ae3c
TH
188} ____cacheline_aligned_in_smp;
189
1da177e4 190/*
502ca9d8 191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
192 * work_struct->data are used for flags and thus cwqs need to be
193 * aligned at two's power of the number of flag bits.
1da177e4
LT
194 */
195struct cpu_workqueue_struct {
bd7bdd43 196 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 197 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
198 int work_color; /* L: current color */
199 int flush_color; /* L: flushing color */
200 int nr_in_flight[WORK_NR_COLORS];
201 /* L: nr of in_flight works */
1e19ffc6 202 int nr_active; /* L: nr of active works */
a0a1a5fd 203 int max_active; /* L: max active works */
1e19ffc6 204 struct list_head delayed_works; /* L: delayed works */
0f900049 205};
1da177e4 206
73f53c4a
TH
207/*
208 * Structure used to wait for workqueue flush.
209 */
210struct wq_flusher {
211 struct list_head list; /* F: list of flushers */
212 int flush_color; /* F: flush color waiting for */
213 struct completion done; /* flush completion */
214};
215
f2e005aa
TH
216/*
217 * All cpumasks are assumed to be always set on UP and thus can't be
218 * used to determine whether there's something to be done.
219 */
220#ifdef CONFIG_SMP
221typedef cpumask_var_t mayday_mask_t;
222#define mayday_test_and_set_cpu(cpu, mask) \
223 cpumask_test_and_set_cpu((cpu), (mask))
224#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
225#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 226#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
227#define free_mayday_mask(mask) free_cpumask_var((mask))
228#else
229typedef unsigned long mayday_mask_t;
230#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
231#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
232#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
233#define alloc_mayday_mask(maskp, gfp) true
234#define free_mayday_mask(mask) do { } while (0)
235#endif
1da177e4
LT
236
237/*
238 * The externally visible workqueue abstraction is an array of
239 * per-CPU workqueues:
240 */
241struct workqueue_struct {
9c5a2ba7 242 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
243 union {
244 struct cpu_workqueue_struct __percpu *pcpu;
245 struct cpu_workqueue_struct *single;
246 unsigned long v;
247 } cpu_wq; /* I: cwq's */
4690c4ab 248 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
249
250 struct mutex flush_mutex; /* protects wq flushing */
251 int work_color; /* F: current work color */
252 int flush_color; /* F: current flush color */
253 atomic_t nr_cwqs_to_flush; /* flush in progress */
254 struct wq_flusher *first_flusher; /* F: first flusher */
255 struct list_head flusher_queue; /* F: flush waiters */
256 struct list_head flusher_overflow; /* F: flush overflow list */
257
f2e005aa 258 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
259 struct worker *rescuer; /* I: rescue worker */
260
9c5a2ba7 261 int nr_drainers; /* W: drain in progress */
dcd989cb 262 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
b196be89 266 char name[]; /* I: workqueue name */
1da177e4
LT
267};
268
d320c038 269struct workqueue_struct *system_wq __read_mostly;
d320c038 270EXPORT_SYMBOL_GPL(system_wq);
044c782c 271struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 272EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 273struct workqueue_struct *system_long_wq __read_mostly;
d320c038 274EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 275struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 276EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 277struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 278EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 279
97bd2347
TH
280#define CREATE_TRACE_POINTS
281#include <trace/events/workqueue.h>
282
4ce62e9e 283#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
284 for ((pool) = &(gcwq)->pools[0]; \
285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 286
db7bccf4
TH
287#define for_each_busy_worker(worker, i, pos, gcwq) \
288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290
f3421797
TH
291static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 unsigned int sw)
293{
294 if (cpu < nr_cpu_ids) {
295 if (sw & 1) {
296 cpu = cpumask_next(cpu, mask);
297 if (cpu < nr_cpu_ids)
298 return cpu;
299 }
300 if (sw & 2)
301 return WORK_CPU_UNBOUND;
302 }
303 return WORK_CPU_NONE;
304}
305
306static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 struct workqueue_struct *wq)
308{
309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310}
311
09884951
TH
312/*
313 * CPU iterators
314 *
315 * An extra gcwq is defined for an invalid cpu number
316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317 * specific CPU. The following iterators are similar to
318 * for_each_*_cpu() iterators but also considers the unbound gcwq.
319 *
320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
322 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
323 * WORK_CPU_UNBOUND for unbound workqueues
324 */
f3421797
TH
325#define for_each_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329
330#define for_each_online_gcwq_cpu(cpu) \
331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334
335#define for_each_cwq_cpu(cpu, wq) \
336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
337 (cpu) < WORK_CPU_NONE; \
338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339
dc186ad7
TG
340#ifdef CONFIG_DEBUG_OBJECTS_WORK
341
342static struct debug_obj_descr work_debug_descr;
343
99777288
SG
344static void *work_debug_hint(void *addr)
345{
346 return ((struct work_struct *) addr)->func;
347}
348
dc186ad7
TG
349/*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
353static int work_fixup_init(void *addr, enum debug_obj_state state)
354{
355 struct work_struct *work = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 cancel_work_sync(work);
360 debug_object_init(work, &work_debug_descr);
361 return 1;
362 default:
363 return 0;
364 }
365}
366
367/*
368 * fixup_activate is called when:
369 * - an active object is activated
370 * - an unknown object is activated (might be a statically initialized object)
371 */
372static int work_fixup_activate(void *addr, enum debug_obj_state state)
373{
374 struct work_struct *work = addr;
375
376 switch (state) {
377
378 case ODEBUG_STATE_NOTAVAILABLE:
379 /*
380 * This is not really a fixup. The work struct was
381 * statically initialized. We just make sure that it
382 * is tracked in the object tracker.
383 */
22df02bb 384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
385 debug_object_init(work, &work_debug_descr);
386 debug_object_activate(work, &work_debug_descr);
387 return 0;
388 }
389 WARN_ON_ONCE(1);
390 return 0;
391
392 case ODEBUG_STATE_ACTIVE:
393 WARN_ON(1);
394
395 default:
396 return 0;
397 }
398}
399
400/*
401 * fixup_free is called when:
402 * - an active object is freed
403 */
404static int work_fixup_free(void *addr, enum debug_obj_state state)
405{
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_free(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416}
417
418static struct debug_obj_descr work_debug_descr = {
419 .name = "work_struct",
99777288 420 .debug_hint = work_debug_hint,
dc186ad7
TG
421 .fixup_init = work_fixup_init,
422 .fixup_activate = work_fixup_activate,
423 .fixup_free = work_fixup_free,
424};
425
426static inline void debug_work_activate(struct work_struct *work)
427{
428 debug_object_activate(work, &work_debug_descr);
429}
430
431static inline void debug_work_deactivate(struct work_struct *work)
432{
433 debug_object_deactivate(work, &work_debug_descr);
434}
435
436void __init_work(struct work_struct *work, int onstack)
437{
438 if (onstack)
439 debug_object_init_on_stack(work, &work_debug_descr);
440 else
441 debug_object_init(work, &work_debug_descr);
442}
443EXPORT_SYMBOL_GPL(__init_work);
444
445void destroy_work_on_stack(struct work_struct *work)
446{
447 debug_object_free(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450
451#else
452static inline void debug_work_activate(struct work_struct *work) { }
453static inline void debug_work_deactivate(struct work_struct *work) { }
454#endif
455
95402b38
GS
456/* Serializes the accesses to the list of workqueues. */
457static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 458static LIST_HEAD(workqueues);
a0a1a5fd 459static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 460
e22bee78
TH
461/*
462 * The almighty global cpu workqueues. nr_running is the only field
463 * which is expected to be used frequently by other cpus via
464 * try_to_wake_up(). Put it in a separate cacheline.
465 */
8b03ae3c 466static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 467static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 468
f3421797
TH
469/*
470 * Global cpu workqueue and nr_running counter for unbound gcwq. The
471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472 * workers have WORKER_UNBOUND set.
473 */
474static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
475static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
477};
f3421797 478
c34056a3 479static int worker_thread(void *__worker);
1da177e4 480
3270476a
TH
481static int worker_pool_pri(struct worker_pool *pool)
482{
483 return pool - pool->gcwq->pools;
484}
485
8b03ae3c
TH
486static struct global_cwq *get_gcwq(unsigned int cpu)
487{
f3421797
TH
488 if (cpu != WORK_CPU_UNBOUND)
489 return &per_cpu(global_cwq, cpu);
490 else
491 return &unbound_global_cwq;
8b03ae3c
TH
492}
493
63d95a91 494static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 495{
63d95a91 496 int cpu = pool->gcwq->cpu;
3270476a 497 int idx = worker_pool_pri(pool);
63d95a91 498
f3421797 499 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 500 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 501 else
4ce62e9e 502 return &unbound_pool_nr_running[idx];
e22bee78
TH
503}
504
1537663f
TH
505static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 struct workqueue_struct *wq)
b1f4ec17 507{
f3421797 508 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 509 if (likely(cpu < nr_cpu_ids))
f3421797 510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
511 } else if (likely(cpu == WORK_CPU_UNBOUND))
512 return wq->cpu_wq.single;
513 return NULL;
b1f4ec17
ON
514}
515
73f53c4a
TH
516static unsigned int work_color_to_flags(int color)
517{
518 return color << WORK_STRUCT_COLOR_SHIFT;
519}
520
521static int get_work_color(struct work_struct *work)
522{
523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
525}
526
527static int work_next_color(int color)
528{
529 return (color + 1) % WORK_NR_COLORS;
530}
1da177e4 531
14441960 532/*
b5490077
TH
533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534 * contain the pointer to the queued cwq. Once execution starts, the flag
535 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 536 *
bbb68dfa
TH
537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538 * and clear_work_data() can be used to set the cwq, cpu or clear
539 * work->data. These functions should only be called while the work is
540 * owned - ie. while the PENDING bit is set.
7a22ad75 541 *
bbb68dfa
TH
542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543 * a work. gcwq is available once the work has been queued anywhere after
544 * initialization until it is sync canceled. cwq is available only while
545 * the work item is queued.
7a22ad75 546 *
bbb68dfa
TH
547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548 * canceled. While being canceled, a work item may have its PENDING set
549 * but stay off timer and worklist for arbitrarily long and nobody should
550 * try to steal the PENDING bit.
14441960 551 */
7a22ad75
TH
552static inline void set_work_data(struct work_struct *work, unsigned long data,
553 unsigned long flags)
365970a1 554{
4594bf15 555 BUG_ON(!work_pending(work));
7a22ad75
TH
556 atomic_long_set(&work->data, data | flags | work_static(work));
557}
365970a1 558
7a22ad75
TH
559static void set_work_cwq(struct work_struct *work,
560 struct cpu_workqueue_struct *cwq,
561 unsigned long extra_flags)
562{
563 set_work_data(work, (unsigned long)cwq,
e120153d 564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
565}
566
8930caba
TH
567static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 unsigned int cpu)
7a22ad75 569{
23657bb1
TH
570 /*
571 * The following wmb is paired with the implied mb in
572 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 * here are visible to and precede any updates by the next PENDING
574 * owner.
575 */
576 smp_wmb();
b5490077 577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 578}
f756d5e2 579
7a22ad75 580static void clear_work_data(struct work_struct *work)
1da177e4 581{
23657bb1 582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
584}
585
7a22ad75 586static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75 589
e120153d
TH
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
4d707b9f
ON
594}
595
7a22ad75 596static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 597{
e120153d 598 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
599 unsigned int cpu;
600
e120153d
TH
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
bd7bdd43 603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 604
b5490077 605 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 606 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
607 return NULL;
608
f3421797 609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 610 return get_gcwq(cpu);
b1f4ec17
ON
611}
612
bbb68dfa
TH
613static void mark_work_canceling(struct work_struct *work)
614{
615 struct global_cwq *gcwq = get_work_gcwq(work);
616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617
618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 WORK_STRUCT_PENDING);
620}
621
622static bool work_is_canceling(struct work_struct *work)
623{
624 unsigned long data = atomic_long_read(&work->data);
625
626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627}
628
e22bee78 629/*
3270476a
TH
630 * Policy functions. These define the policies on how the global worker
631 * pools are managed. Unless noted otherwise, these functions assume that
632 * they're being called with gcwq->lock held.
e22bee78
TH
633 */
634
63d95a91 635static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 636{
3270476a 637 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
638}
639
4594bf15 640/*
e22bee78
TH
641 * Need to wake up a worker? Called from anything but currently
642 * running workers.
974271c4
TH
643 *
644 * Note that, because unbound workers never contribute to nr_running, this
645 * function will always return %true for unbound gcwq as long as the
646 * worklist isn't empty.
4594bf15 647 */
63d95a91 648static bool need_more_worker(struct worker_pool *pool)
365970a1 649{
63d95a91 650 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 651}
4594bf15 652
e22bee78 653/* Can I start working? Called from busy but !running workers. */
63d95a91 654static bool may_start_working(struct worker_pool *pool)
e22bee78 655{
63d95a91 656 return pool->nr_idle;
e22bee78
TH
657}
658
659/* Do I need to keep working? Called from currently running workers. */
63d95a91 660static bool keep_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 663
3270476a 664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
665}
666
667/* Do we need a new worker? Called from manager. */
63d95a91 668static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 671}
365970a1 672
e22bee78 673/* Do I need to be the manager? */
63d95a91 674static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_to_create_worker(pool) ||
11ebea50 677 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
678}
679
680/* Do we have too many workers and should some go away? */
63d95a91 681static bool too_many_workers(struct worker_pool *pool)
e22bee78 682{
552a37e9 683 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 686
ea1abd61
LJ
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
e22bee78 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
695}
696
4d707b9f 697/*
e22bee78
TH
698 * Wake up functions.
699 */
700
7e11629d 701/* Return the first worker. Safe with preemption disabled */
63d95a91 702static struct worker *first_worker(struct worker_pool *pool)
7e11629d 703{
63d95a91 704 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
705 return NULL;
706
63d95a91 707 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
708}
709
710/**
711 * wake_up_worker - wake up an idle worker
63d95a91 712 * @pool: worker pool to wake worker from
7e11629d 713 *
63d95a91 714 * Wake up the first idle worker of @pool.
7e11629d
TH
715 *
716 * CONTEXT:
717 * spin_lock_irq(gcwq->lock).
718 */
63d95a91 719static void wake_up_worker(struct worker_pool *pool)
7e11629d 720{
63d95a91 721 struct worker *worker = first_worker(pool);
7e11629d
TH
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725}
726
d302f017 727/**
e22bee78
TH
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
738void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739{
740 struct worker *worker = kthread_data(task);
741
2d64672e 742 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 743 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
744}
745
746/**
747 * wq_worker_sleeping - a worker is going to sleep
748 * @task: task going to sleep
749 * @cpu: CPU in question, must be the current CPU number
750 *
751 * This function is called during schedule() when a busy worker is
752 * going to sleep. Worker on the same cpu can be woken up by
753 * returning pointer to its task.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 *
758 * RETURNS:
759 * Worker task on @cpu to wake up, %NULL if none.
760 */
761struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 unsigned int cpu)
763{
764 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 765 struct worker_pool *pool = worker->pool;
63d95a91 766 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 767
2d64672e 768 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
769 return NULL;
770
771 /* this can only happen on the local cpu */
772 BUG_ON(cpu != raw_smp_processor_id());
773
774 /*
775 * The counterpart of the following dec_and_test, implied mb,
776 * worklist not empty test sequence is in insert_work().
777 * Please read comment there.
778 *
628c78e7
TH
779 * NOT_RUNNING is clear. This means that we're bound to and
780 * running on the local cpu w/ rq lock held and preemption
781 * disabled, which in turn means that none else could be
782 * manipulating idle_list, so dereferencing idle_list without gcwq
783 * lock is safe.
e22bee78 784 */
bd7bdd43 785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 786 to_wakeup = first_worker(pool);
e22bee78
TH
787 return to_wakeup ? to_wakeup->task : NULL;
788}
789
790/**
791 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 792 * @worker: self
d302f017
TH
793 * @flags: flags to set
794 * @wakeup: wakeup an idle worker if necessary
795 *
e22bee78
TH
796 * Set @flags in @worker->flags and adjust nr_running accordingly. If
797 * nr_running becomes zero and @wakeup is %true, an idle worker is
798 * woken up.
d302f017 799 *
cb444766
TH
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock)
d302f017
TH
802 */
803static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 bool wakeup)
805{
bd7bdd43 806 struct worker_pool *pool = worker->pool;
e22bee78 807
cb444766
TH
808 WARN_ON_ONCE(worker->task != current);
809
e22bee78
TH
810 /*
811 * If transitioning into NOT_RUNNING, adjust nr_running and
812 * wake up an idle worker as necessary if requested by
813 * @wakeup.
814 */
815 if ((flags & WORKER_NOT_RUNNING) &&
816 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 817 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
818
819 if (wakeup) {
820 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 821 !list_empty(&pool->worklist))
63d95a91 822 wake_up_worker(pool);
e22bee78
TH
823 } else
824 atomic_dec(nr_running);
825 }
826
d302f017
TH
827 worker->flags |= flags;
828}
829
830/**
e22bee78 831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 832 * @worker: self
d302f017
TH
833 * @flags: flags to clear
834 *
e22bee78 835 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 836 *
cb444766
TH
837 * CONTEXT:
838 * spin_lock_irq(gcwq->lock)
d302f017
TH
839 */
840static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841{
63d95a91 842 struct worker_pool *pool = worker->pool;
e22bee78
TH
843 unsigned int oflags = worker->flags;
844
cb444766
TH
845 WARN_ON_ONCE(worker->task != current);
846
d302f017 847 worker->flags &= ~flags;
e22bee78 848
42c025f3
TH
849 /*
850 * If transitioning out of NOT_RUNNING, increment nr_running. Note
851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
852 * of multiple flags, not a single flag.
853 */
e22bee78
TH
854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 856 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
857}
858
c8e55f36
TH
859/**
860 * busy_worker_head - return the busy hash head for a work
861 * @gcwq: gcwq of interest
862 * @work: work to be hashed
863 *
864 * Return hash head of @gcwq for @work.
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to the hash head.
871 */
872static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
873 struct work_struct *work)
874{
875 const int base_shift = ilog2(sizeof(struct work_struct));
876 unsigned long v = (unsigned long)work;
877
878 /* simple shift and fold hash, do we need something better? */
879 v >>= base_shift;
880 v += v >> BUSY_WORKER_HASH_ORDER;
881 v &= BUSY_WORKER_HASH_MASK;
882
883 return &gcwq->busy_hash[v];
884}
885
8cca0eea
TH
886/**
887 * __find_worker_executing_work - find worker which is executing a work
888 * @gcwq: gcwq of interest
889 * @bwh: hash head as returned by busy_worker_head()
890 * @work: work to find worker for
891 *
892 * Find a worker which is executing @work on @gcwq. @bwh should be
893 * the hash head obtained by calling busy_worker_head() with the same
894 * work.
895 *
896 * CONTEXT:
897 * spin_lock_irq(gcwq->lock).
898 *
899 * RETURNS:
900 * Pointer to worker which is executing @work if found, NULL
901 * otherwise.
902 */
903static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
904 struct hlist_head *bwh,
905 struct work_struct *work)
906{
907 struct worker *worker;
908 struct hlist_node *tmp;
909
910 hlist_for_each_entry(worker, tmp, bwh, hentry)
911 if (worker->current_work == work)
912 return worker;
913 return NULL;
914}
915
916/**
917 * find_worker_executing_work - find worker which is executing a work
918 * @gcwq: gcwq of interest
919 * @work: work to find worker for
920 *
921 * Find a worker which is executing @work on @gcwq. This function is
922 * identical to __find_worker_executing_work() except that this
923 * function calculates @bwh itself.
924 *
925 * CONTEXT:
926 * spin_lock_irq(gcwq->lock).
927 *
928 * RETURNS:
929 * Pointer to worker which is executing @work if found, NULL
930 * otherwise.
4d707b9f 931 */
8cca0eea
TH
932static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
933 struct work_struct *work)
4d707b9f 934{
8cca0eea
TH
935 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
936 work);
4d707b9f
ON
937}
938
bf4ede01
TH
939/**
940 * move_linked_works - move linked works to a list
941 * @work: start of series of works to be scheduled
942 * @head: target list to append @work to
943 * @nextp: out paramter for nested worklist walking
944 *
945 * Schedule linked works starting from @work to @head. Work series to
946 * be scheduled starts at @work and includes any consecutive work with
947 * WORK_STRUCT_LINKED set in its predecessor.
948 *
949 * If @nextp is not NULL, it's updated to point to the next work of
950 * the last scheduled work. This allows move_linked_works() to be
951 * nested inside outer list_for_each_entry_safe().
952 *
953 * CONTEXT:
954 * spin_lock_irq(gcwq->lock).
955 */
956static void move_linked_works(struct work_struct *work, struct list_head *head,
957 struct work_struct **nextp)
958{
959 struct work_struct *n;
960
961 /*
962 * Linked worklist will always end before the end of the list,
963 * use NULL for list head.
964 */
965 list_for_each_entry_safe_from(work, n, NULL, entry) {
966 list_move_tail(&work->entry, head);
967 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
968 break;
969 }
970
971 /*
972 * If we're already inside safe list traversal and have moved
973 * multiple works to the scheduled queue, the next position
974 * needs to be updated.
975 */
976 if (nextp)
977 *nextp = n;
978}
979
3aa62497 980static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 981{
3aa62497 982 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
3aa62497
LJ
990static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
991{
992 struct work_struct *work = list_first_entry(&cwq->delayed_works,
993 struct work_struct, entry);
994
995 cwq_activate_delayed_work(work);
996}
997
bf4ede01
TH
998/**
999 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1000 * @cwq: cwq of interest
1001 * @color: color of work which left the queue
bf4ede01
TH
1002 *
1003 * A work either has completed or is removed from pending queue,
1004 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1005 *
1006 * CONTEXT:
1007 * spin_lock_irq(gcwq->lock).
1008 */
b3f9f405 1009static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1010{
1011 /* ignore uncolored works */
1012 if (color == WORK_NO_COLOR)
1013 return;
1014
1015 cwq->nr_in_flight[color]--;
1016
b3f9f405
LJ
1017 cwq->nr_active--;
1018 if (!list_empty(&cwq->delayed_works)) {
1019 /* one down, submit a delayed one */
1020 if (cwq->nr_active < cwq->max_active)
1021 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1022 }
1023
1024 /* is flush in progress and are we at the flushing tip? */
1025 if (likely(cwq->flush_color != color))
1026 return;
1027
1028 /* are there still in-flight works? */
1029 if (cwq->nr_in_flight[color])
1030 return;
1031
1032 /* this cwq is done, clear flush_color */
1033 cwq->flush_color = -1;
1034
1035 /*
1036 * If this was the last cwq, wake up the first flusher. It
1037 * will handle the rest.
1038 */
1039 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1040 complete(&cwq->wq->first_flusher->done);
1041}
1042
36e227d2 1043/**
bbb68dfa 1044 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1045 * @work: work item to steal
1046 * @is_dwork: @work is a delayed_work
bbb68dfa 1047 * @flags: place to store irq state
36e227d2
TH
1048 *
1049 * Try to grab PENDING bit of @work. This function can handle @work in any
1050 * stable state - idle, on timer or on worklist. Return values are
1051 *
1052 * 1 if @work was pending and we successfully stole PENDING
1053 * 0 if @work was idle and we claimed PENDING
1054 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1055 * -ENOENT if someone else is canceling @work, this state may persist
1056 * for arbitrarily long
36e227d2 1057 *
bbb68dfa 1058 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1059 * interrupted while holding PENDING and @work off queue, irq must be
1060 * disabled on entry. This, combined with delayed_work->timer being
1061 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1062 *
1063 * On successful return, >= 0, irq is disabled and the caller is
1064 * responsible for releasing it using local_irq_restore(*@flags).
1065 *
e0aecdd8 1066 * This function is safe to call from any context including IRQ handler.
bf4ede01 1067 */
bbb68dfa
TH
1068static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1069 unsigned long *flags)
bf4ede01
TH
1070{
1071 struct global_cwq *gcwq;
bf4ede01 1072
bbb68dfa
TH
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
e0aecdd8
TH
1079 /*
1080 * dwork->timer is irqsafe. If del_timer() fails, it's
1081 * guaranteed that the timer is not queued anywhere and not
1082 * running on the local CPU.
1083 */
36e227d2
TH
1084 if (likely(del_timer(&dwork->timer)))
1085 return 1;
1086 }
1087
1088 /* try to claim PENDING the normal way */
bf4ede01
TH
1089 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1090 return 0;
1091
1092 /*
1093 * The queueing is in progress, or it is already queued. Try to
1094 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1095 */
1096 gcwq = get_work_gcwq(work);
1097 if (!gcwq)
bbb68dfa 1098 goto fail;
bf4ede01 1099
bbb68dfa 1100 spin_lock(&gcwq->lock);
bf4ede01
TH
1101 if (!list_empty(&work->entry)) {
1102 /*
1103 * This work is queued, but perhaps we locked the wrong gcwq.
1104 * In that case we must see the new value after rmb(), see
1105 * insert_work()->wmb().
1106 */
1107 smp_rmb();
1108 if (gcwq == get_work_gcwq(work)) {
1109 debug_work_deactivate(work);
3aa62497
LJ
1110
1111 /*
1112 * A delayed work item cannot be grabbed directly
1113 * because it might have linked NO_COLOR work items
1114 * which, if left on the delayed_list, will confuse
1115 * cwq->nr_active management later on and cause
1116 * stall. Make sure the work item is activated
1117 * before grabbing.
1118 */
1119 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1120 cwq_activate_delayed_work(work);
1121
bf4ede01
TH
1122 list_del_init(&work->entry);
1123 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1124 get_work_color(work));
36e227d2 1125
bbb68dfa 1126 spin_unlock(&gcwq->lock);
36e227d2 1127 return 1;
bf4ede01
TH
1128 }
1129 }
bbb68dfa
TH
1130 spin_unlock(&gcwq->lock);
1131fail:
1132 local_irq_restore(*flags);
1133 if (work_is_canceling(work))
1134 return -ENOENT;
1135 cpu_relax();
36e227d2 1136 return -EAGAIN;
bf4ede01
TH
1137}
1138
4690c4ab 1139/**
7e11629d 1140 * insert_work - insert a work into gcwq
4690c4ab
TH
1141 * @cwq: cwq @work belongs to
1142 * @work: work to insert
1143 * @head: insertion point
1144 * @extra_flags: extra WORK_STRUCT_* flags to set
1145 *
7e11629d
TH
1146 * Insert @work which belongs to @cwq into @gcwq after @head.
1147 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1148 *
1149 * CONTEXT:
8b03ae3c 1150 * spin_lock_irq(gcwq->lock).
4690c4ab 1151 */
b89deed3 1152static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1153 struct work_struct *work, struct list_head *head,
1154 unsigned int extra_flags)
b89deed3 1155{
63d95a91 1156 struct worker_pool *pool = cwq->pool;
e22bee78 1157
4690c4ab 1158 /* we own @work, set data and link */
7a22ad75 1159 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1160
6e84d644
ON
1161 /*
1162 * Ensure that we get the right work->data if we see the
1163 * result of list_add() below, see try_to_grab_pending().
1164 */
1165 smp_wmb();
4690c4ab 1166
1a4d9b0a 1167 list_add_tail(&work->entry, head);
e22bee78
TH
1168
1169 /*
1170 * Ensure either worker_sched_deactivated() sees the above
1171 * list_add_tail() or we see zero nr_running to avoid workers
1172 * lying around lazily while there are works to be processed.
1173 */
1174 smp_mb();
1175
63d95a91
TH
1176 if (__need_more_worker(pool))
1177 wake_up_worker(pool);
b89deed3
ON
1178}
1179
c8efcc25
TH
1180/*
1181 * Test whether @work is being queued from another work executing on the
1182 * same workqueue. This is rather expensive and should only be used from
1183 * cold paths.
1184 */
1185static bool is_chained_work(struct workqueue_struct *wq)
1186{
1187 unsigned long flags;
1188 unsigned int cpu;
1189
1190 for_each_gcwq_cpu(cpu) {
1191 struct global_cwq *gcwq = get_gcwq(cpu);
1192 struct worker *worker;
1193 struct hlist_node *pos;
1194 int i;
1195
1196 spin_lock_irqsave(&gcwq->lock, flags);
1197 for_each_busy_worker(worker, i, pos, gcwq) {
1198 if (worker->task != current)
1199 continue;
1200 spin_unlock_irqrestore(&gcwq->lock, flags);
1201 /*
1202 * I'm @worker, no locking necessary. See if @work
1203 * is headed to the same workqueue.
1204 */
1205 return worker->current_cwq->wq == wq;
1206 }
1207 spin_unlock_irqrestore(&gcwq->lock, flags);
1208 }
1209 return false;
1210}
1211
4690c4ab 1212static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1213 struct work_struct *work)
1214{
502ca9d8
TH
1215 struct global_cwq *gcwq;
1216 struct cpu_workqueue_struct *cwq;
1e19ffc6 1217 struct list_head *worklist;
8a2e8e5d 1218 unsigned int work_flags;
b75cac93 1219 unsigned int req_cpu = cpu;
8930caba
TH
1220
1221 /*
1222 * While a work item is PENDING && off queue, a task trying to
1223 * steal the PENDING will busy-loop waiting for it to either get
1224 * queued or lose PENDING. Grabbing PENDING and queueing should
1225 * happen with IRQ disabled.
1226 */
1227 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1228
dc186ad7 1229 debug_work_activate(work);
1e19ffc6 1230
c8efcc25 1231 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1232 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1233 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1234 return;
1235
c7fc77f7
TH
1236 /* determine gcwq to use */
1237 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1238 struct global_cwq *last_gcwq;
1239
57469821 1240 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1241 cpu = raw_smp_processor_id();
1242
18aa9eff 1243 /*
dbf2576e
TH
1244 * It's multi cpu. If @work was previously on a different
1245 * cpu, it might still be running there, in which case the
1246 * work needs to be queued on that cpu to guarantee
1247 * non-reentrancy.
18aa9eff 1248 */
502ca9d8 1249 gcwq = get_gcwq(cpu);
dbf2576e
TH
1250 last_gcwq = get_work_gcwq(work);
1251
1252 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1253 struct worker *worker;
1254
8930caba 1255 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1256
1257 worker = find_worker_executing_work(last_gcwq, work);
1258
1259 if (worker && worker->current_cwq->wq == wq)
1260 gcwq = last_gcwq;
1261 else {
1262 /* meh... not running there, queue here */
8930caba
TH
1263 spin_unlock(&last_gcwq->lock);
1264 spin_lock(&gcwq->lock);
18aa9eff 1265 }
8930caba
TH
1266 } else {
1267 spin_lock(&gcwq->lock);
1268 }
f3421797
TH
1269 } else {
1270 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1271 spin_lock(&gcwq->lock);
502ca9d8
TH
1272 }
1273
1274 /* gcwq determined, get cwq and queue */
1275 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1276 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1277
f5b2552b 1278 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1279 spin_unlock(&gcwq->lock);
f5b2552b
DC
1280 return;
1281 }
1e19ffc6 1282
73f53c4a 1283 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1284 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1285
1286 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1287 trace_workqueue_activate_work(work);
1e19ffc6 1288 cwq->nr_active++;
3270476a 1289 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1290 } else {
1291 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1292 worklist = &cwq->delayed_works;
8a2e8e5d 1293 }
1e19ffc6 1294
8a2e8e5d 1295 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1296
8930caba 1297 spin_unlock(&gcwq->lock);
1da177e4
LT
1298}
1299
0fcb78c2 1300/**
c1a220e7
ZR
1301 * queue_work_on - queue work on specific cpu
1302 * @cpu: CPU number to execute work on
0fcb78c2
REB
1303 * @wq: workqueue to use
1304 * @work: work to queue
1305 *
d4283e93 1306 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1307 *
c1a220e7
ZR
1308 * We queue the work to a specific CPU, the caller must ensure it
1309 * can't go away.
1da177e4 1310 */
d4283e93
TH
1311bool queue_work_on(int cpu, struct workqueue_struct *wq,
1312 struct work_struct *work)
1da177e4 1313{
d4283e93 1314 bool ret = false;
8930caba 1315 unsigned long flags;
ef1ca236 1316
8930caba 1317 local_irq_save(flags);
c1a220e7 1318
22df02bb 1319 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1320 __queue_work(cpu, wq, work);
d4283e93 1321 ret = true;
c1a220e7 1322 }
ef1ca236 1323
8930caba 1324 local_irq_restore(flags);
1da177e4
LT
1325 return ret;
1326}
c1a220e7 1327EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1328
c1a220e7 1329/**
0a13c00e 1330 * queue_work - queue work on a workqueue
c1a220e7
ZR
1331 * @wq: workqueue to use
1332 * @work: work to queue
1333 *
d4283e93 1334 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1335 *
0a13c00e
TH
1336 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1337 * it can be processed by another CPU.
c1a220e7 1338 */
d4283e93 1339bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1340{
57469821 1341 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1342}
0a13c00e 1343EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1344
d8e794df 1345void delayed_work_timer_fn(unsigned long __data)
1da177e4 1346{
52bad64d 1347 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1348 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1349
e0aecdd8 1350 /* should have been called from irqsafe timer with irq already off */
1265057f 1351 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1352}
d8e794df 1353EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1354
7beb2edf
TH
1355static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1356 struct delayed_work *dwork, unsigned long delay)
1da177e4 1357{
7beb2edf
TH
1358 struct timer_list *timer = &dwork->timer;
1359 struct work_struct *work = &dwork->work;
1360 unsigned int lcpu;
1361
1362 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1363 timer->data != (unsigned long)dwork);
1364 BUG_ON(timer_pending(timer));
1365 BUG_ON(!list_empty(&work->entry));
1366
1367 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1368
7beb2edf
TH
1369 /*
1370 * This stores cwq for the moment, for the timer_fn. Note that the
1371 * work's gcwq is preserved to allow reentrance detection for
1372 * delayed works.
1373 */
1374 if (!(wq->flags & WQ_UNBOUND)) {
1375 struct global_cwq *gcwq = get_work_gcwq(work);
1376
e42986de
JK
1377 /*
1378 * If we cannot get the last gcwq from @work directly,
1379 * select the last CPU such that it avoids unnecessarily
1380 * triggering non-reentrancy check in __queue_work().
1381 */
1382 lcpu = cpu;
1383 if (gcwq)
7beb2edf 1384 lcpu = gcwq->cpu;
e42986de 1385 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1386 lcpu = raw_smp_processor_id();
1387 } else {
1388 lcpu = WORK_CPU_UNBOUND;
1389 }
1390
1391 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1392
1265057f 1393 dwork->cpu = cpu;
7beb2edf
TH
1394 timer->expires = jiffies + delay;
1395
1396 if (unlikely(cpu != WORK_CPU_UNBOUND))
1397 add_timer_on(timer, cpu);
1398 else
1399 add_timer(timer);
1da177e4
LT
1400}
1401
0fcb78c2
REB
1402/**
1403 * queue_delayed_work_on - queue work on specific CPU after delay
1404 * @cpu: CPU number to execute work on
1405 * @wq: workqueue to use
af9997e4 1406 * @dwork: work to queue
0fcb78c2
REB
1407 * @delay: number of jiffies to wait before queueing
1408 *
715f1300
TH
1409 * Returns %false if @work was already on a queue, %true otherwise. If
1410 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1411 * execution.
0fcb78c2 1412 */
d4283e93
TH
1413bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1415{
52bad64d 1416 struct work_struct *work = &dwork->work;
d4283e93 1417 bool ret = false;
8930caba 1418 unsigned long flags;
7a6bc1cd 1419
715f1300
TH
1420 if (!delay)
1421 return queue_work_on(cpu, wq, &dwork->work);
7a22ad75 1422
8930caba
TH
1423 /* read the comment in __queue_work() */
1424 local_irq_save(flags);
7a6bc1cd 1425
22df02bb 1426 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1427 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1428 ret = true;
7a6bc1cd 1429 }
8a3e77cc 1430
8930caba 1431 local_irq_restore(flags);
7a6bc1cd
VP
1432 return ret;
1433}
ae90dd5d 1434EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1435
0a13c00e
TH
1436/**
1437 * queue_delayed_work - queue work on a workqueue after delay
1438 * @wq: workqueue to use
1439 * @dwork: delayable work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
715f1300 1442 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1443 */
d4283e93 1444bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1445 struct delayed_work *dwork, unsigned long delay)
1446{
57469821 1447 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1448}
1449EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1450
8376fe22
TH
1451/**
1452 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1453 * @cpu: CPU number to execute work on
1454 * @wq: workqueue to use
1455 * @dwork: work to queue
1456 * @delay: number of jiffies to wait before queueing
1457 *
1458 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1459 * modify @dwork's timer so that it expires after @delay. If @delay is
1460 * zero, @work is guaranteed to be scheduled immediately regardless of its
1461 * current state.
1462 *
1463 * Returns %false if @dwork was idle and queued, %true if @dwork was
1464 * pending and its timer was modified.
1465 *
e0aecdd8 1466 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1467 * See try_to_grab_pending() for details.
1468 */
1469bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1470 struct delayed_work *dwork, unsigned long delay)
1471{
1472 unsigned long flags;
1473 int ret;
c7fc77f7 1474
8376fe22
TH
1475 do {
1476 ret = try_to_grab_pending(&dwork->work, true, &flags);
1477 } while (unlikely(ret == -EAGAIN));
63bc0362 1478
8376fe22
TH
1479 if (likely(ret >= 0)) {
1480 __queue_delayed_work(cpu, wq, dwork, delay);
1481 local_irq_restore(flags);
7a6bc1cd 1482 }
8376fe22
TH
1483
1484 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1485 return ret;
1486}
8376fe22
TH
1487EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1488
1489/**
1490 * mod_delayed_work - modify delay of or queue a delayed work
1491 * @wq: workqueue to use
1492 * @dwork: work to queue
1493 * @delay: number of jiffies to wait before queueing
1494 *
1495 * mod_delayed_work_on() on local CPU.
1496 */
1497bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1498 unsigned long delay)
1499{
1500 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1501}
1502EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1503
c8e55f36
TH
1504/**
1505 * worker_enter_idle - enter idle state
1506 * @worker: worker which is entering idle state
1507 *
1508 * @worker is entering idle state. Update stats and idle timer if
1509 * necessary.
1510 *
1511 * LOCKING:
1512 * spin_lock_irq(gcwq->lock).
1513 */
1514static void worker_enter_idle(struct worker *worker)
1da177e4 1515{
bd7bdd43
TH
1516 struct worker_pool *pool = worker->pool;
1517 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1518
1519 BUG_ON(worker->flags & WORKER_IDLE);
1520 BUG_ON(!list_empty(&worker->entry) &&
1521 (worker->hentry.next || worker->hentry.pprev));
1522
cb444766
TH
1523 /* can't use worker_set_flags(), also called from start_worker() */
1524 worker->flags |= WORKER_IDLE;
bd7bdd43 1525 pool->nr_idle++;
e22bee78 1526 worker->last_active = jiffies;
c8e55f36
TH
1527
1528 /* idle_list is LIFO */
bd7bdd43 1529 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1530
628c78e7
TH
1531 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1532 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1533
544ecf31 1534 /*
628c78e7
TH
1535 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1536 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1537 * nr_running, the warning may trigger spuriously. Check iff
1538 * unbind is not in progress.
544ecf31 1539 */
628c78e7 1540 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1541 pool->nr_workers == pool->nr_idle &&
63d95a91 1542 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1543}
1544
1545/**
1546 * worker_leave_idle - leave idle state
1547 * @worker: worker which is leaving idle state
1548 *
1549 * @worker is leaving idle state. Update stats.
1550 *
1551 * LOCKING:
1552 * spin_lock_irq(gcwq->lock).
1553 */
1554static void worker_leave_idle(struct worker *worker)
1555{
bd7bdd43 1556 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1557
1558 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1559 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1560 pool->nr_idle--;
c8e55f36
TH
1561 list_del_init(&worker->entry);
1562}
1563
e22bee78
TH
1564/**
1565 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1566 * @worker: self
1567 *
1568 * Works which are scheduled while the cpu is online must at least be
1569 * scheduled to a worker which is bound to the cpu so that if they are
1570 * flushed from cpu callbacks while cpu is going down, they are
1571 * guaranteed to execute on the cpu.
1572 *
1573 * This function is to be used by rogue workers and rescuers to bind
1574 * themselves to the target cpu and may race with cpu going down or
1575 * coming online. kthread_bind() can't be used because it may put the
1576 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1577 * verbatim as it's best effort and blocking and gcwq may be
1578 * [dis]associated in the meantime.
1579 *
f2d5a0ee
TH
1580 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1581 * binding against %GCWQ_DISASSOCIATED which is set during
1582 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1583 * enters idle state or fetches works without dropping lock, it can
1584 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1585 *
1586 * CONTEXT:
1587 * Might sleep. Called without any lock but returns with gcwq->lock
1588 * held.
1589 *
1590 * RETURNS:
1591 * %true if the associated gcwq is online (@worker is successfully
1592 * bound), %false if offline.
1593 */
1594static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1595__acquires(&gcwq->lock)
e22bee78 1596{
bd7bdd43 1597 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1598 struct task_struct *task = worker->task;
1599
1600 while (true) {
4e6045f1 1601 /*
e22bee78
TH
1602 * The following call may fail, succeed or succeed
1603 * without actually migrating the task to the cpu if
1604 * it races with cpu hotunplug operation. Verify
1605 * against GCWQ_DISASSOCIATED.
4e6045f1 1606 */
f3421797
TH
1607 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1608 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1609
1610 spin_lock_irq(&gcwq->lock);
1611 if (gcwq->flags & GCWQ_DISASSOCIATED)
1612 return false;
1613 if (task_cpu(task) == gcwq->cpu &&
1614 cpumask_equal(&current->cpus_allowed,
1615 get_cpu_mask(gcwq->cpu)))
1616 return true;
1617 spin_unlock_irq(&gcwq->lock);
1618
5035b20f
TH
1619 /*
1620 * We've raced with CPU hot[un]plug. Give it a breather
1621 * and retry migration. cond_resched() is required here;
1622 * otherwise, we might deadlock against cpu_stop trying to
1623 * bring down the CPU on non-preemptive kernel.
1624 */
e22bee78 1625 cpu_relax();
5035b20f 1626 cond_resched();
e22bee78
TH
1627 }
1628}
1629
25511a47 1630/*
ea1abd61 1631 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1632 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1633 */
1634static void idle_worker_rebind(struct worker *worker)
1635{
1636 struct global_cwq *gcwq = worker->pool->gcwq;
1637
5f7dabfd
LJ
1638 /* CPU may go down again inbetween, clear UNBOUND only on success */
1639 if (worker_maybe_bind_and_lock(worker))
1640 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1641
ea1abd61
LJ
1642 /* rebind complete, become available again */
1643 list_add(&worker->entry, &worker->pool->idle_list);
1644 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1645}
1646
e22bee78 1647/*
25511a47 1648 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1649 * the associated cpu which is coming back online. This is scheduled by
1650 * cpu up but can race with other cpu hotplug operations and may be
1651 * executed twice without intervening cpu down.
e22bee78 1652 */
25511a47 1653static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1654{
1655 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1656 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1657
eab6d828
LJ
1658 if (worker_maybe_bind_and_lock(worker))
1659 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1660
1661 spin_unlock_irq(&gcwq->lock);
1662}
1663
25511a47
TH
1664/**
1665 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1666 * @gcwq: gcwq of interest
1667 *
1668 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1669 * is different for idle and busy ones.
1670 *
ea1abd61
LJ
1671 * Idle ones will be removed from the idle_list and woken up. They will
1672 * add themselves back after completing rebind. This ensures that the
1673 * idle_list doesn't contain any unbound workers when re-bound busy workers
1674 * try to perform local wake-ups for concurrency management.
25511a47 1675 *
ea1abd61
LJ
1676 * Busy workers can rebind after they finish their current work items.
1677 * Queueing the rebind work item at the head of the scheduled list is
1678 * enough. Note that nr_running will be properly bumped as busy workers
1679 * rebind.
25511a47 1680 *
ea1abd61
LJ
1681 * On return, all non-manager workers are scheduled for rebind - see
1682 * manage_workers() for the manager special case. Any idle worker
1683 * including the manager will not appear on @idle_list until rebind is
1684 * complete, making local wake-ups safe.
25511a47
TH
1685 */
1686static void rebind_workers(struct global_cwq *gcwq)
25511a47 1687{
25511a47 1688 struct worker_pool *pool;
ea1abd61 1689 struct worker *worker, *n;
25511a47
TH
1690 struct hlist_node *pos;
1691 int i;
1692
1693 lockdep_assert_held(&gcwq->lock);
1694
1695 for_each_worker_pool(pool, gcwq)
b2eb83d1 1696 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1697
5f7dabfd 1698 /* dequeue and kick idle ones */
25511a47 1699 for_each_worker_pool(pool, gcwq) {
ea1abd61 1700 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1701 /*
1702 * idle workers should be off @pool->idle_list
1703 * until rebind is complete to avoid receiving
1704 * premature local wake-ups.
1705 */
1706 list_del_init(&worker->entry);
25511a47 1707
5f7dabfd
LJ
1708 /*
1709 * worker_thread() will see the above dequeuing
1710 * and call idle_worker_rebind().
1711 */
25511a47
TH
1712 wake_up_process(worker->task);
1713 }
1714 }
1715
ea1abd61 1716 /* rebind busy workers */
25511a47
TH
1717 for_each_busy_worker(worker, i, pos, gcwq) {
1718 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1719 struct workqueue_struct *wq;
25511a47
TH
1720
1721 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1722 work_data_bits(rebind_work)))
1723 continue;
1724
25511a47 1725 debug_work_activate(rebind_work);
90beca5d 1726
e2b6a6d5
JK
1727 /*
1728 * wq doesn't really matter but let's keep @worker->pool
1729 * and @cwq->pool consistent for sanity.
1730 */
1731 if (worker_pool_pri(worker->pool))
1732 wq = system_highpri_wq;
1733 else
1734 wq = system_wq;
ec58815a 1735
e2b6a6d5
JK
1736 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1737 worker->scheduled.next,
1738 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1739 }
25511a47
TH
1740}
1741
c34056a3
TH
1742static struct worker *alloc_worker(void)
1743{
1744 struct worker *worker;
1745
1746 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1747 if (worker) {
1748 INIT_LIST_HEAD(&worker->entry);
affee4b2 1749 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1750 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1751 /* on creation a worker is in !idle && prep state */
1752 worker->flags = WORKER_PREP;
c8e55f36 1753 }
c34056a3
TH
1754 return worker;
1755}
1756
1757/**
1758 * create_worker - create a new workqueue worker
63d95a91 1759 * @pool: pool the new worker will belong to
c34056a3 1760 *
63d95a91 1761 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1762 * can be started by calling start_worker() or destroyed using
1763 * destroy_worker().
1764 *
1765 * CONTEXT:
1766 * Might sleep. Does GFP_KERNEL allocations.
1767 *
1768 * RETURNS:
1769 * Pointer to the newly created worker.
1770 */
bc2ae0f5 1771static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1772{
63d95a91 1773 struct global_cwq *gcwq = pool->gcwq;
3270476a 1774 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1775 struct worker *worker = NULL;
f3421797 1776 int id = -1;
c34056a3 1777
8b03ae3c 1778 spin_lock_irq(&gcwq->lock);
bd7bdd43 1779 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1780 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1781 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1782 goto fail;
8b03ae3c 1783 spin_lock_irq(&gcwq->lock);
c34056a3 1784 }
8b03ae3c 1785 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1786
1787 worker = alloc_worker();
1788 if (!worker)
1789 goto fail;
1790
bd7bdd43 1791 worker->pool = pool;
c34056a3
TH
1792 worker->id = id;
1793
bc2ae0f5 1794 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1795 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1796 worker, cpu_to_node(gcwq->cpu),
1797 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1798 else
1799 worker->task = kthread_create(worker_thread, worker,
3270476a 1800 "kworker/u:%d%s", id, pri);
c34056a3
TH
1801 if (IS_ERR(worker->task))
1802 goto fail;
1803
3270476a
TH
1804 if (worker_pool_pri(pool))
1805 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1806
db7bccf4 1807 /*
bc2ae0f5
TH
1808 * Determine CPU binding of the new worker depending on
1809 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1810 * flag remains stable across this function. See the comments
1811 * above the flag definition for details.
1812 *
1813 * As an unbound worker may later become a regular one if CPU comes
1814 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1815 */
bc2ae0f5 1816 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1817 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1818 } else {
db7bccf4 1819 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1820 worker->flags |= WORKER_UNBOUND;
f3421797 1821 }
c34056a3
TH
1822
1823 return worker;
1824fail:
1825 if (id >= 0) {
8b03ae3c 1826 spin_lock_irq(&gcwq->lock);
bd7bdd43 1827 ida_remove(&pool->worker_ida, id);
8b03ae3c 1828 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1829 }
1830 kfree(worker);
1831 return NULL;
1832}
1833
1834/**
1835 * start_worker - start a newly created worker
1836 * @worker: worker to start
1837 *
c8e55f36 1838 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1839 *
1840 * CONTEXT:
8b03ae3c 1841 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1842 */
1843static void start_worker(struct worker *worker)
1844{
cb444766 1845 worker->flags |= WORKER_STARTED;
bd7bdd43 1846 worker->pool->nr_workers++;
c8e55f36 1847 worker_enter_idle(worker);
c34056a3
TH
1848 wake_up_process(worker->task);
1849}
1850
1851/**
1852 * destroy_worker - destroy a workqueue worker
1853 * @worker: worker to be destroyed
1854 *
c8e55f36
TH
1855 * Destroy @worker and adjust @gcwq stats accordingly.
1856 *
1857 * CONTEXT:
1858 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1859 */
1860static void destroy_worker(struct worker *worker)
1861{
bd7bdd43
TH
1862 struct worker_pool *pool = worker->pool;
1863 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1864 int id = worker->id;
1865
1866 /* sanity check frenzy */
1867 BUG_ON(worker->current_work);
affee4b2 1868 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1869
c8e55f36 1870 if (worker->flags & WORKER_STARTED)
bd7bdd43 1871 pool->nr_workers--;
c8e55f36 1872 if (worker->flags & WORKER_IDLE)
bd7bdd43 1873 pool->nr_idle--;
c8e55f36
TH
1874
1875 list_del_init(&worker->entry);
cb444766 1876 worker->flags |= WORKER_DIE;
c8e55f36
TH
1877
1878 spin_unlock_irq(&gcwq->lock);
1879
c34056a3
TH
1880 kthread_stop(worker->task);
1881 kfree(worker);
1882
8b03ae3c 1883 spin_lock_irq(&gcwq->lock);
bd7bdd43 1884 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1885}
1886
63d95a91 1887static void idle_worker_timeout(unsigned long __pool)
e22bee78 1888{
63d95a91
TH
1889 struct worker_pool *pool = (void *)__pool;
1890 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1891
1892 spin_lock_irq(&gcwq->lock);
1893
63d95a91 1894 if (too_many_workers(pool)) {
e22bee78
TH
1895 struct worker *worker;
1896 unsigned long expires;
1897
1898 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1899 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1900 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1901
1902 if (time_before(jiffies, expires))
63d95a91 1903 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1904 else {
1905 /* it's been idle for too long, wake up manager */
11ebea50 1906 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1907 wake_up_worker(pool);
d5abe669 1908 }
e22bee78
TH
1909 }
1910
1911 spin_unlock_irq(&gcwq->lock);
1912}
d5abe669 1913
e22bee78
TH
1914static bool send_mayday(struct work_struct *work)
1915{
1916 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1917 struct workqueue_struct *wq = cwq->wq;
f3421797 1918 unsigned int cpu;
e22bee78
TH
1919
1920 if (!(wq->flags & WQ_RESCUER))
1921 return false;
1922
1923 /* mayday mayday mayday */
bd7bdd43 1924 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1925 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1926 if (cpu == WORK_CPU_UNBOUND)
1927 cpu = 0;
f2e005aa 1928 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1929 wake_up_process(wq->rescuer->task);
1930 return true;
1931}
1932
63d95a91 1933static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1934{
63d95a91
TH
1935 struct worker_pool *pool = (void *)__pool;
1936 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1937 struct work_struct *work;
1938
1939 spin_lock_irq(&gcwq->lock);
1940
63d95a91 1941 if (need_to_create_worker(pool)) {
e22bee78
TH
1942 /*
1943 * We've been trying to create a new worker but
1944 * haven't been successful. We might be hitting an
1945 * allocation deadlock. Send distress signals to
1946 * rescuers.
1947 */
63d95a91 1948 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1949 send_mayday(work);
1da177e4 1950 }
e22bee78
TH
1951
1952 spin_unlock_irq(&gcwq->lock);
1953
63d95a91 1954 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1955}
1956
e22bee78
TH
1957/**
1958 * maybe_create_worker - create a new worker if necessary
63d95a91 1959 * @pool: pool to create a new worker for
e22bee78 1960 *
63d95a91 1961 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1962 * have at least one idle worker on return from this function. If
1963 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1964 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1965 * possible allocation deadlock.
1966 *
1967 * On return, need_to_create_worker() is guaranteed to be false and
1968 * may_start_working() true.
1969 *
1970 * LOCKING:
1971 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1972 * multiple times. Does GFP_KERNEL allocations. Called only from
1973 * manager.
1974 *
1975 * RETURNS:
1976 * false if no action was taken and gcwq->lock stayed locked, true
1977 * otherwise.
1978 */
63d95a91 1979static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1980__releases(&gcwq->lock)
1981__acquires(&gcwq->lock)
1da177e4 1982{
63d95a91
TH
1983 struct global_cwq *gcwq = pool->gcwq;
1984
1985 if (!need_to_create_worker(pool))
e22bee78
TH
1986 return false;
1987restart:
9f9c2364
TH
1988 spin_unlock_irq(&gcwq->lock);
1989
e22bee78 1990 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1991 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1992
1993 while (true) {
1994 struct worker *worker;
1995
bc2ae0f5 1996 worker = create_worker(pool);
e22bee78 1997 if (worker) {
63d95a91 1998 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1999 spin_lock_irq(&gcwq->lock);
2000 start_worker(worker);
63d95a91 2001 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2002 return true;
2003 }
2004
63d95a91 2005 if (!need_to_create_worker(pool))
e22bee78 2006 break;
1da177e4 2007
e22bee78
TH
2008 __set_current_state(TASK_INTERRUPTIBLE);
2009 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2010
63d95a91 2011 if (!need_to_create_worker(pool))
e22bee78
TH
2012 break;
2013 }
2014
63d95a91 2015 del_timer_sync(&pool->mayday_timer);
e22bee78 2016 spin_lock_irq(&gcwq->lock);
63d95a91 2017 if (need_to_create_worker(pool))
e22bee78
TH
2018 goto restart;
2019 return true;
2020}
2021
2022/**
2023 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2024 * @pool: pool to destroy workers for
e22bee78 2025 *
63d95a91 2026 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2027 * IDLE_WORKER_TIMEOUT.
2028 *
2029 * LOCKING:
2030 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2031 * multiple times. Called only from manager.
2032 *
2033 * RETURNS:
2034 * false if no action was taken and gcwq->lock stayed locked, true
2035 * otherwise.
2036 */
63d95a91 2037static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2038{
2039 bool ret = false;
1da177e4 2040
63d95a91 2041 while (too_many_workers(pool)) {
e22bee78
TH
2042 struct worker *worker;
2043 unsigned long expires;
3af24433 2044
63d95a91 2045 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2046 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2047
e22bee78 2048 if (time_before(jiffies, expires)) {
63d95a91 2049 mod_timer(&pool->idle_timer, expires);
3af24433 2050 break;
e22bee78 2051 }
1da177e4 2052
e22bee78
TH
2053 destroy_worker(worker);
2054 ret = true;
1da177e4 2055 }
1e19ffc6 2056
e22bee78 2057 return ret;
1e19ffc6
TH
2058}
2059
73f53c4a 2060/**
e22bee78
TH
2061 * manage_workers - manage worker pool
2062 * @worker: self
73f53c4a 2063 *
e22bee78
TH
2064 * Assume the manager role and manage gcwq worker pool @worker belongs
2065 * to. At any given time, there can be only zero or one manager per
2066 * gcwq. The exclusion is handled automatically by this function.
2067 *
2068 * The caller can safely start processing works on false return. On
2069 * true return, it's guaranteed that need_to_create_worker() is false
2070 * and may_start_working() is true.
73f53c4a
TH
2071 *
2072 * CONTEXT:
e22bee78
TH
2073 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations.
2075 *
2076 * RETURNS:
2077 * false if no action was taken and gcwq->lock stayed locked, true if
2078 * some action was taken.
73f53c4a 2079 */
e22bee78 2080static bool manage_workers(struct worker *worker)
73f53c4a 2081{
63d95a91 2082 struct worker_pool *pool = worker->pool;
e22bee78 2083 bool ret = false;
73f53c4a 2084
ee378aa4 2085 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2086 return ret;
1e19ffc6 2087
552a37e9 2088 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2089
ee378aa4
LJ
2090 /*
2091 * To simplify both worker management and CPU hotplug, hold off
2092 * management while hotplug is in progress. CPU hotplug path can't
2093 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2094 * lead to idle worker depletion (all become busy thinking someone
2095 * else is managing) which in turn can result in deadlock under
b2eb83d1 2096 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2097 * manager against CPU hotplug.
2098 *
b2eb83d1 2099 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2100 * progress. trylock first without dropping @gcwq->lock.
2101 */
b2eb83d1 2102 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2103 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2104 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2105 /*
2106 * CPU hotplug could have happened while we were waiting
b2eb83d1 2107 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2108 * because manager isn't either on idle or busy list, and
2109 * @gcwq's state and ours could have deviated.
2110 *
b2eb83d1 2111 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2112 * simply try to bind. It will succeed or fail depending
2113 * on @gcwq's current state. Try it and adjust
2114 * %WORKER_UNBOUND accordingly.
2115 */
2116 if (worker_maybe_bind_and_lock(worker))
2117 worker->flags &= ~WORKER_UNBOUND;
2118 else
2119 worker->flags |= WORKER_UNBOUND;
73f53c4a 2120
ee378aa4
LJ
2121 ret = true;
2122 }
73f53c4a 2123
11ebea50 2124 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2125
2126 /*
e22bee78
TH
2127 * Destroy and then create so that may_start_working() is true
2128 * on return.
73f53c4a 2129 */
63d95a91
TH
2130 ret |= maybe_destroy_workers(pool);
2131 ret |= maybe_create_worker(pool);
e22bee78 2132
552a37e9 2133 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2134 mutex_unlock(&pool->assoc_mutex);
e22bee78 2135 return ret;
73f53c4a
TH
2136}
2137
a62428c0
TH
2138/**
2139 * process_one_work - process single work
c34056a3 2140 * @worker: self
a62428c0
TH
2141 * @work: work to process
2142 *
2143 * Process @work. This function contains all the logics necessary to
2144 * process a single work including synchronization against and
2145 * interaction with other workers on the same cpu, queueing and
2146 * flushing. As long as context requirement is met, any worker can
2147 * call this function to process a work.
2148 *
2149 * CONTEXT:
8b03ae3c 2150 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2151 */
c34056a3 2152static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2153__releases(&gcwq->lock)
2154__acquires(&gcwq->lock)
a62428c0 2155{
7e11629d 2156 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2157 struct worker_pool *pool = worker->pool;
2158 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2159 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2160 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2161 work_func_t f = work->func;
73f53c4a 2162 int work_color;
7e11629d 2163 struct worker *collision;
a62428c0
TH
2164#ifdef CONFIG_LOCKDEP
2165 /*
2166 * It is permissible to free the struct work_struct from
2167 * inside the function that is called from it, this we need to
2168 * take into account for lockdep too. To avoid bogus "held
2169 * lock freed" warnings as well as problems when looking into
2170 * work->lockdep_map, make a copy and use that here.
2171 */
4d82a1de
PZ
2172 struct lockdep_map lockdep_map;
2173
2174 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2175#endif
6fec10a1
TH
2176 /*
2177 * Ensure we're on the correct CPU. DISASSOCIATED test is
2178 * necessary to avoid spurious warnings from rescuers servicing the
2179 * unbound or a disassociated gcwq.
2180 */
5f7dabfd 2181 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
6fec10a1 2182 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2183 raw_smp_processor_id() != gcwq->cpu);
2184
7e11629d
TH
2185 /*
2186 * A single work shouldn't be executed concurrently by
2187 * multiple workers on a single cpu. Check whether anyone is
2188 * already processing the work. If so, defer the work to the
2189 * currently executing one.
2190 */
2191 collision = __find_worker_executing_work(gcwq, bwh, work);
2192 if (unlikely(collision)) {
2193 move_linked_works(work, &collision->scheduled, NULL);
2194 return;
2195 }
2196
8930caba 2197 /* claim and dequeue */
a62428c0 2198 debug_work_deactivate(work);
c8e55f36 2199 hlist_add_head(&worker->hentry, bwh);
c34056a3 2200 worker->current_work = work;
8cca0eea 2201 worker->current_cwq = cwq;
73f53c4a 2202 work_color = get_work_color(work);
7a22ad75 2203
a62428c0
TH
2204 list_del_init(&work->entry);
2205
fb0e7beb
TH
2206 /*
2207 * CPU intensive works don't participate in concurrency
2208 * management. They're the scheduler's responsibility.
2209 */
2210 if (unlikely(cpu_intensive))
2211 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2212
974271c4
TH
2213 /*
2214 * Unbound gcwq isn't concurrency managed and work items should be
2215 * executed ASAP. Wake up another worker if necessary.
2216 */
63d95a91
TH
2217 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2218 wake_up_worker(pool);
974271c4 2219
8930caba 2220 /*
23657bb1
TH
2221 * Record the last CPU and clear PENDING which should be the last
2222 * update to @work. Also, do this inside @gcwq->lock so that
2223 * PENDING and queued state changes happen together while IRQ is
2224 * disabled.
8930caba 2225 */
8930caba 2226 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2227
8b03ae3c 2228 spin_unlock_irq(&gcwq->lock);
a62428c0 2229
e159489b 2230 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2231 lock_map_acquire(&lockdep_map);
e36c886a 2232 trace_workqueue_execute_start(work);
a62428c0 2233 f(work);
e36c886a
AV
2234 /*
2235 * While we must be careful to not use "work" after this, the trace
2236 * point will only record its address.
2237 */
2238 trace_workqueue_execute_end(work);
a62428c0
TH
2239 lock_map_release(&lockdep_map);
2240 lock_map_release(&cwq->wq->lockdep_map);
2241
2242 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2243 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2244 " last function: %pf\n",
2245 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2246 debug_show_held_locks(current);
2247 dump_stack();
2248 }
2249
8b03ae3c 2250 spin_lock_irq(&gcwq->lock);
a62428c0 2251
fb0e7beb
TH
2252 /* clear cpu intensive status */
2253 if (unlikely(cpu_intensive))
2254 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2255
a62428c0 2256 /* we're done with it, release */
c8e55f36 2257 hlist_del_init(&worker->hentry);
c34056a3 2258 worker->current_work = NULL;
8cca0eea 2259 worker->current_cwq = NULL;
b3f9f405 2260 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2261}
2262
affee4b2
TH
2263/**
2264 * process_scheduled_works - process scheduled works
2265 * @worker: self
2266 *
2267 * Process all scheduled works. Please note that the scheduled list
2268 * may change while processing a work, so this function repeatedly
2269 * fetches a work from the top and executes it.
2270 *
2271 * CONTEXT:
8b03ae3c 2272 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2273 * multiple times.
2274 */
2275static void process_scheduled_works(struct worker *worker)
1da177e4 2276{
affee4b2
TH
2277 while (!list_empty(&worker->scheduled)) {
2278 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2279 struct work_struct, entry);
c34056a3 2280 process_one_work(worker, work);
1da177e4 2281 }
1da177e4
LT
2282}
2283
4690c4ab
TH
2284/**
2285 * worker_thread - the worker thread function
c34056a3 2286 * @__worker: self
4690c4ab 2287 *
e22bee78
TH
2288 * The gcwq worker thread function. There's a single dynamic pool of
2289 * these per each cpu. These workers process all works regardless of
2290 * their specific target workqueue. The only exception is works which
2291 * belong to workqueues with a rescuer which will be explained in
2292 * rescuer_thread().
4690c4ab 2293 */
c34056a3 2294static int worker_thread(void *__worker)
1da177e4 2295{
c34056a3 2296 struct worker *worker = __worker;
bd7bdd43
TH
2297 struct worker_pool *pool = worker->pool;
2298 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2299
e22bee78
TH
2300 /* tell the scheduler that this is a workqueue worker */
2301 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2302woke_up:
c8e55f36 2303 spin_lock_irq(&gcwq->lock);
1da177e4 2304
5f7dabfd
LJ
2305 /* we are off idle list if destruction or rebind is requested */
2306 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2307 spin_unlock_irq(&gcwq->lock);
25511a47 2308
5f7dabfd 2309 /* if DIE is set, destruction is requested */
25511a47
TH
2310 if (worker->flags & WORKER_DIE) {
2311 worker->task->flags &= ~PF_WQ_WORKER;
2312 return 0;
2313 }
2314
5f7dabfd 2315 /* otherwise, rebind */
25511a47
TH
2316 idle_worker_rebind(worker);
2317 goto woke_up;
c8e55f36 2318 }
affee4b2 2319
c8e55f36 2320 worker_leave_idle(worker);
db7bccf4 2321recheck:
e22bee78 2322 /* no more worker necessary? */
63d95a91 2323 if (!need_more_worker(pool))
e22bee78
TH
2324 goto sleep;
2325
2326 /* do we need to manage? */
63d95a91 2327 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2328 goto recheck;
2329
c8e55f36
TH
2330 /*
2331 * ->scheduled list can only be filled while a worker is
2332 * preparing to process a work or actually processing it.
2333 * Make sure nobody diddled with it while I was sleeping.
2334 */
2335 BUG_ON(!list_empty(&worker->scheduled));
2336
e22bee78
TH
2337 /*
2338 * When control reaches this point, we're guaranteed to have
2339 * at least one idle worker or that someone else has already
2340 * assumed the manager role.
2341 */
2342 worker_clr_flags(worker, WORKER_PREP);
2343
2344 do {
c8e55f36 2345 struct work_struct *work =
bd7bdd43 2346 list_first_entry(&pool->worklist,
c8e55f36
TH
2347 struct work_struct, entry);
2348
2349 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2350 /* optimization path, not strictly necessary */
2351 process_one_work(worker, work);
2352 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2353 process_scheduled_works(worker);
c8e55f36
TH
2354 } else {
2355 move_linked_works(work, &worker->scheduled, NULL);
2356 process_scheduled_works(worker);
affee4b2 2357 }
63d95a91 2358 } while (keep_working(pool));
e22bee78
TH
2359
2360 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2361sleep:
63d95a91 2362 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2363 goto recheck;
d313dd85 2364
c8e55f36 2365 /*
e22bee78
TH
2366 * gcwq->lock is held and there's no work to process and no
2367 * need to manage, sleep. Workers are woken up only while
2368 * holding gcwq->lock or from local cpu, so setting the
2369 * current state before releasing gcwq->lock is enough to
2370 * prevent losing any event.
c8e55f36
TH
2371 */
2372 worker_enter_idle(worker);
2373 __set_current_state(TASK_INTERRUPTIBLE);
2374 spin_unlock_irq(&gcwq->lock);
2375 schedule();
2376 goto woke_up;
1da177e4
LT
2377}
2378
e22bee78
TH
2379/**
2380 * rescuer_thread - the rescuer thread function
2381 * @__wq: the associated workqueue
2382 *
2383 * Workqueue rescuer thread function. There's one rescuer for each
2384 * workqueue which has WQ_RESCUER set.
2385 *
2386 * Regular work processing on a gcwq may block trying to create a new
2387 * worker which uses GFP_KERNEL allocation which has slight chance of
2388 * developing into deadlock if some works currently on the same queue
2389 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2390 * the problem rescuer solves.
2391 *
2392 * When such condition is possible, the gcwq summons rescuers of all
2393 * workqueues which have works queued on the gcwq and let them process
2394 * those works so that forward progress can be guaranteed.
2395 *
2396 * This should happen rarely.
2397 */
2398static int rescuer_thread(void *__wq)
2399{
2400 struct workqueue_struct *wq = __wq;
2401 struct worker *rescuer = wq->rescuer;
2402 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2403 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2404 unsigned int cpu;
2405
2406 set_user_nice(current, RESCUER_NICE_LEVEL);
2407repeat:
2408 set_current_state(TASK_INTERRUPTIBLE);
2409
2410 if (kthread_should_stop())
2411 return 0;
2412
f3421797
TH
2413 /*
2414 * See whether any cpu is asking for help. Unbounded
2415 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2416 */
f2e005aa 2417 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2418 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2419 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2420 struct worker_pool *pool = cwq->pool;
2421 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2422 struct work_struct *work, *n;
2423
2424 __set_current_state(TASK_RUNNING);
f2e005aa 2425 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2426
2427 /* migrate to the target cpu if possible */
bd7bdd43 2428 rescuer->pool = pool;
e22bee78
TH
2429 worker_maybe_bind_and_lock(rescuer);
2430
2431 /*
2432 * Slurp in all works issued via this workqueue and
2433 * process'em.
2434 */
2435 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2436 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2437 if (get_work_cwq(work) == cwq)
2438 move_linked_works(work, scheduled, &n);
2439
2440 process_scheduled_works(rescuer);
7576958a
TH
2441
2442 /*
2443 * Leave this gcwq. If keep_working() is %true, notify a
2444 * regular worker; otherwise, we end up with 0 concurrency
2445 * and stalling the execution.
2446 */
63d95a91
TH
2447 if (keep_working(pool))
2448 wake_up_worker(pool);
7576958a 2449
e22bee78
TH
2450 spin_unlock_irq(&gcwq->lock);
2451 }
2452
2453 schedule();
2454 goto repeat;
1da177e4
LT
2455}
2456
fc2e4d70
ON
2457struct wq_barrier {
2458 struct work_struct work;
2459 struct completion done;
2460};
2461
2462static void wq_barrier_func(struct work_struct *work)
2463{
2464 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2465 complete(&barr->done);
2466}
2467
4690c4ab
TH
2468/**
2469 * insert_wq_barrier - insert a barrier work
2470 * @cwq: cwq to insert barrier into
2471 * @barr: wq_barrier to insert
affee4b2
TH
2472 * @target: target work to attach @barr to
2473 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2474 *
affee4b2
TH
2475 * @barr is linked to @target such that @barr is completed only after
2476 * @target finishes execution. Please note that the ordering
2477 * guarantee is observed only with respect to @target and on the local
2478 * cpu.
2479 *
2480 * Currently, a queued barrier can't be canceled. This is because
2481 * try_to_grab_pending() can't determine whether the work to be
2482 * grabbed is at the head of the queue and thus can't clear LINKED
2483 * flag of the previous work while there must be a valid next work
2484 * after a work with LINKED flag set.
2485 *
2486 * Note that when @worker is non-NULL, @target may be modified
2487 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2488 *
2489 * CONTEXT:
8b03ae3c 2490 * spin_lock_irq(gcwq->lock).
4690c4ab 2491 */
83c22520 2492static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2493 struct wq_barrier *barr,
2494 struct work_struct *target, struct worker *worker)
fc2e4d70 2495{
affee4b2
TH
2496 struct list_head *head;
2497 unsigned int linked = 0;
2498
dc186ad7 2499 /*
8b03ae3c 2500 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2501 * as we know for sure that this will not trigger any of the
2502 * checks and call back into the fixup functions where we
2503 * might deadlock.
2504 */
ca1cab37 2505 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2506 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2507 init_completion(&barr->done);
83c22520 2508
affee4b2
TH
2509 /*
2510 * If @target is currently being executed, schedule the
2511 * barrier to the worker; otherwise, put it after @target.
2512 */
2513 if (worker)
2514 head = worker->scheduled.next;
2515 else {
2516 unsigned long *bits = work_data_bits(target);
2517
2518 head = target->entry.next;
2519 /* there can already be other linked works, inherit and set */
2520 linked = *bits & WORK_STRUCT_LINKED;
2521 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2522 }
2523
dc186ad7 2524 debug_work_activate(&barr->work);
affee4b2
TH
2525 insert_work(cwq, &barr->work, head,
2526 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2527}
2528
73f53c4a
TH
2529/**
2530 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2531 * @wq: workqueue being flushed
2532 * @flush_color: new flush color, < 0 for no-op
2533 * @work_color: new work color, < 0 for no-op
2534 *
2535 * Prepare cwqs for workqueue flushing.
2536 *
2537 * If @flush_color is non-negative, flush_color on all cwqs should be
2538 * -1. If no cwq has in-flight commands at the specified color, all
2539 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2540 * has in flight commands, its cwq->flush_color is set to
2541 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2542 * wakeup logic is armed and %true is returned.
2543 *
2544 * The caller should have initialized @wq->first_flusher prior to
2545 * calling this function with non-negative @flush_color. If
2546 * @flush_color is negative, no flush color update is done and %false
2547 * is returned.
2548 *
2549 * If @work_color is non-negative, all cwqs should have the same
2550 * work_color which is previous to @work_color and all will be
2551 * advanced to @work_color.
2552 *
2553 * CONTEXT:
2554 * mutex_lock(wq->flush_mutex).
2555 *
2556 * RETURNS:
2557 * %true if @flush_color >= 0 and there's something to flush. %false
2558 * otherwise.
2559 */
2560static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2561 int flush_color, int work_color)
1da177e4 2562{
73f53c4a
TH
2563 bool wait = false;
2564 unsigned int cpu;
1da177e4 2565
73f53c4a
TH
2566 if (flush_color >= 0) {
2567 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2568 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2569 }
2355b70f 2570
f3421797 2571 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2572 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2573 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2574
8b03ae3c 2575 spin_lock_irq(&gcwq->lock);
83c22520 2576
73f53c4a
TH
2577 if (flush_color >= 0) {
2578 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2579
73f53c4a
TH
2580 if (cwq->nr_in_flight[flush_color]) {
2581 cwq->flush_color = flush_color;
2582 atomic_inc(&wq->nr_cwqs_to_flush);
2583 wait = true;
2584 }
2585 }
1da177e4 2586
73f53c4a
TH
2587 if (work_color >= 0) {
2588 BUG_ON(work_color != work_next_color(cwq->work_color));
2589 cwq->work_color = work_color;
2590 }
1da177e4 2591
8b03ae3c 2592 spin_unlock_irq(&gcwq->lock);
1da177e4 2593 }
2355b70f 2594
73f53c4a
TH
2595 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2596 complete(&wq->first_flusher->done);
14441960 2597
73f53c4a 2598 return wait;
1da177e4
LT
2599}
2600
0fcb78c2 2601/**
1da177e4 2602 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2603 * @wq: workqueue to flush
1da177e4
LT
2604 *
2605 * Forces execution of the workqueue and blocks until its completion.
2606 * This is typically used in driver shutdown handlers.
2607 *
fc2e4d70
ON
2608 * We sleep until all works which were queued on entry have been handled,
2609 * but we are not livelocked by new incoming ones.
1da177e4 2610 */
7ad5b3a5 2611void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2612{
73f53c4a
TH
2613 struct wq_flusher this_flusher = {
2614 .list = LIST_HEAD_INIT(this_flusher.list),
2615 .flush_color = -1,
2616 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2617 };
2618 int next_color;
1da177e4 2619
3295f0ef
IM
2620 lock_map_acquire(&wq->lockdep_map);
2621 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2622
2623 mutex_lock(&wq->flush_mutex);
2624
2625 /*
2626 * Start-to-wait phase
2627 */
2628 next_color = work_next_color(wq->work_color);
2629
2630 if (next_color != wq->flush_color) {
2631 /*
2632 * Color space is not full. The current work_color
2633 * becomes our flush_color and work_color is advanced
2634 * by one.
2635 */
2636 BUG_ON(!list_empty(&wq->flusher_overflow));
2637 this_flusher.flush_color = wq->work_color;
2638 wq->work_color = next_color;
2639
2640 if (!wq->first_flusher) {
2641 /* no flush in progress, become the first flusher */
2642 BUG_ON(wq->flush_color != this_flusher.flush_color);
2643
2644 wq->first_flusher = &this_flusher;
2645
2646 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2647 wq->work_color)) {
2648 /* nothing to flush, done */
2649 wq->flush_color = next_color;
2650 wq->first_flusher = NULL;
2651 goto out_unlock;
2652 }
2653 } else {
2654 /* wait in queue */
2655 BUG_ON(wq->flush_color == this_flusher.flush_color);
2656 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2657 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2658 }
2659 } else {
2660 /*
2661 * Oops, color space is full, wait on overflow queue.
2662 * The next flush completion will assign us
2663 * flush_color and transfer to flusher_queue.
2664 */
2665 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2666 }
2667
2668 mutex_unlock(&wq->flush_mutex);
2669
2670 wait_for_completion(&this_flusher.done);
2671
2672 /*
2673 * Wake-up-and-cascade phase
2674 *
2675 * First flushers are responsible for cascading flushes and
2676 * handling overflow. Non-first flushers can simply return.
2677 */
2678 if (wq->first_flusher != &this_flusher)
2679 return;
2680
2681 mutex_lock(&wq->flush_mutex);
2682
4ce48b37
TH
2683 /* we might have raced, check again with mutex held */
2684 if (wq->first_flusher != &this_flusher)
2685 goto out_unlock;
2686
73f53c4a
TH
2687 wq->first_flusher = NULL;
2688
2689 BUG_ON(!list_empty(&this_flusher.list));
2690 BUG_ON(wq->flush_color != this_flusher.flush_color);
2691
2692 while (true) {
2693 struct wq_flusher *next, *tmp;
2694
2695 /* complete all the flushers sharing the current flush color */
2696 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2697 if (next->flush_color != wq->flush_color)
2698 break;
2699 list_del_init(&next->list);
2700 complete(&next->done);
2701 }
2702
2703 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2704 wq->flush_color != work_next_color(wq->work_color));
2705
2706 /* this flush_color is finished, advance by one */
2707 wq->flush_color = work_next_color(wq->flush_color);
2708
2709 /* one color has been freed, handle overflow queue */
2710 if (!list_empty(&wq->flusher_overflow)) {
2711 /*
2712 * Assign the same color to all overflowed
2713 * flushers, advance work_color and append to
2714 * flusher_queue. This is the start-to-wait
2715 * phase for these overflowed flushers.
2716 */
2717 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2718 tmp->flush_color = wq->work_color;
2719
2720 wq->work_color = work_next_color(wq->work_color);
2721
2722 list_splice_tail_init(&wq->flusher_overflow,
2723 &wq->flusher_queue);
2724 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2725 }
2726
2727 if (list_empty(&wq->flusher_queue)) {
2728 BUG_ON(wq->flush_color != wq->work_color);
2729 break;
2730 }
2731
2732 /*
2733 * Need to flush more colors. Make the next flusher
2734 * the new first flusher and arm cwqs.
2735 */
2736 BUG_ON(wq->flush_color == wq->work_color);
2737 BUG_ON(wq->flush_color != next->flush_color);
2738
2739 list_del_init(&next->list);
2740 wq->first_flusher = next;
2741
2742 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2743 break;
2744
2745 /*
2746 * Meh... this color is already done, clear first
2747 * flusher and repeat cascading.
2748 */
2749 wq->first_flusher = NULL;
2750 }
2751
2752out_unlock:
2753 mutex_unlock(&wq->flush_mutex);
1da177e4 2754}
ae90dd5d 2755EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2756
9c5a2ba7
TH
2757/**
2758 * drain_workqueue - drain a workqueue
2759 * @wq: workqueue to drain
2760 *
2761 * Wait until the workqueue becomes empty. While draining is in progress,
2762 * only chain queueing is allowed. IOW, only currently pending or running
2763 * work items on @wq can queue further work items on it. @wq is flushed
2764 * repeatedly until it becomes empty. The number of flushing is detemined
2765 * by the depth of chaining and should be relatively short. Whine if it
2766 * takes too long.
2767 */
2768void drain_workqueue(struct workqueue_struct *wq)
2769{
2770 unsigned int flush_cnt = 0;
2771 unsigned int cpu;
2772
2773 /*
2774 * __queue_work() needs to test whether there are drainers, is much
2775 * hotter than drain_workqueue() and already looks at @wq->flags.
2776 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2777 */
2778 spin_lock(&workqueue_lock);
2779 if (!wq->nr_drainers++)
2780 wq->flags |= WQ_DRAINING;
2781 spin_unlock(&workqueue_lock);
2782reflush:
2783 flush_workqueue(wq);
2784
2785 for_each_cwq_cpu(cpu, wq) {
2786 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2787 bool drained;
9c5a2ba7 2788
bd7bdd43 2789 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2790 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2791 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2792
2793 if (drained)
9c5a2ba7
TH
2794 continue;
2795
2796 if (++flush_cnt == 10 ||
2797 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2798 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2799 wq->name, flush_cnt);
9c5a2ba7
TH
2800 goto reflush;
2801 }
2802
2803 spin_lock(&workqueue_lock);
2804 if (!--wq->nr_drainers)
2805 wq->flags &= ~WQ_DRAINING;
2806 spin_unlock(&workqueue_lock);
2807}
2808EXPORT_SYMBOL_GPL(drain_workqueue);
2809
606a5020 2810static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2811{
affee4b2 2812 struct worker *worker = NULL;
8b03ae3c 2813 struct global_cwq *gcwq;
db700897 2814 struct cpu_workqueue_struct *cwq;
db700897
ON
2815
2816 might_sleep();
7a22ad75
TH
2817 gcwq = get_work_gcwq(work);
2818 if (!gcwq)
baf59022 2819 return false;
db700897 2820
8b03ae3c 2821 spin_lock_irq(&gcwq->lock);
db700897
ON
2822 if (!list_empty(&work->entry)) {
2823 /*
2824 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2825 * If it was re-queued to a different gcwq under us, we
2826 * are not going to wait.
db700897
ON
2827 */
2828 smp_rmb();
7a22ad75 2829 cwq = get_work_cwq(work);
bd7bdd43 2830 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2831 goto already_gone;
606a5020 2832 } else {
7a22ad75 2833 worker = find_worker_executing_work(gcwq, work);
affee4b2 2834 if (!worker)
4690c4ab 2835 goto already_gone;
7a22ad75 2836 cwq = worker->current_cwq;
606a5020 2837 }
db700897 2838
baf59022 2839 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2840 spin_unlock_irq(&gcwq->lock);
7a22ad75 2841
e159489b
TH
2842 /*
2843 * If @max_active is 1 or rescuer is in use, flushing another work
2844 * item on the same workqueue may lead to deadlock. Make sure the
2845 * flusher is not running on the same workqueue by verifying write
2846 * access.
2847 */
2848 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2849 lock_map_acquire(&cwq->wq->lockdep_map);
2850 else
2851 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2852 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2853
401a8d04 2854 return true;
4690c4ab 2855already_gone:
8b03ae3c 2856 spin_unlock_irq(&gcwq->lock);
401a8d04 2857 return false;
db700897 2858}
baf59022
TH
2859
2860/**
2861 * flush_work - wait for a work to finish executing the last queueing instance
2862 * @work: the work to flush
2863 *
606a5020
TH
2864 * Wait until @work has finished execution. @work is guaranteed to be idle
2865 * on return if it hasn't been requeued since flush started.
baf59022
TH
2866 *
2867 * RETURNS:
2868 * %true if flush_work() waited for the work to finish execution,
2869 * %false if it was already idle.
2870 */
2871bool flush_work(struct work_struct *work)
2872{
2873 struct wq_barrier barr;
2874
0976dfc1
SB
2875 lock_map_acquire(&work->lockdep_map);
2876 lock_map_release(&work->lockdep_map);
2877
606a5020 2878 if (start_flush_work(work, &barr)) {
401a8d04
TH
2879 wait_for_completion(&barr.done);
2880 destroy_work_on_stack(&barr.work);
2881 return true;
606a5020 2882 } else {
401a8d04 2883 return false;
6e84d644 2884 }
6e84d644 2885}
606a5020 2886EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2887
36e227d2 2888static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2889{
bbb68dfa 2890 unsigned long flags;
1f1f642e
ON
2891 int ret;
2892
2893 do {
bbb68dfa
TH
2894 ret = try_to_grab_pending(work, is_dwork, &flags);
2895 /*
2896 * If someone else is canceling, wait for the same event it
2897 * would be waiting for before retrying.
2898 */
2899 if (unlikely(ret == -ENOENT))
606a5020 2900 flush_work(work);
1f1f642e
ON
2901 } while (unlikely(ret < 0));
2902
bbb68dfa
TH
2903 /* tell other tasks trying to grab @work to back off */
2904 mark_work_canceling(work);
2905 local_irq_restore(flags);
2906
606a5020 2907 flush_work(work);
7a22ad75 2908 clear_work_data(work);
1f1f642e
ON
2909 return ret;
2910}
2911
6e84d644 2912/**
401a8d04
TH
2913 * cancel_work_sync - cancel a work and wait for it to finish
2914 * @work: the work to cancel
6e84d644 2915 *
401a8d04
TH
2916 * Cancel @work and wait for its execution to finish. This function
2917 * can be used even if the work re-queues itself or migrates to
2918 * another workqueue. On return from this function, @work is
2919 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2920 *
401a8d04
TH
2921 * cancel_work_sync(&delayed_work->work) must not be used for
2922 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2923 *
401a8d04 2924 * The caller must ensure that the workqueue on which @work was last
6e84d644 2925 * queued can't be destroyed before this function returns.
401a8d04
TH
2926 *
2927 * RETURNS:
2928 * %true if @work was pending, %false otherwise.
6e84d644 2929 */
401a8d04 2930bool cancel_work_sync(struct work_struct *work)
6e84d644 2931{
36e227d2 2932 return __cancel_work_timer(work, false);
b89deed3 2933}
28e53bdd 2934EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2935
6e84d644 2936/**
401a8d04
TH
2937 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2938 * @dwork: the delayed work to flush
6e84d644 2939 *
401a8d04
TH
2940 * Delayed timer is cancelled and the pending work is queued for
2941 * immediate execution. Like flush_work(), this function only
2942 * considers the last queueing instance of @dwork.
1f1f642e 2943 *
401a8d04
TH
2944 * RETURNS:
2945 * %true if flush_work() waited for the work to finish execution,
2946 * %false if it was already idle.
6e84d644 2947 */
401a8d04
TH
2948bool flush_delayed_work(struct delayed_work *dwork)
2949{
8930caba 2950 local_irq_disable();
401a8d04 2951 if (del_timer_sync(&dwork->timer))
1265057f 2952 __queue_work(dwork->cpu,
401a8d04 2953 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2954 local_irq_enable();
401a8d04
TH
2955 return flush_work(&dwork->work);
2956}
2957EXPORT_SYMBOL(flush_delayed_work);
2958
09383498 2959/**
57b30ae7
TH
2960 * cancel_delayed_work - cancel a delayed work
2961 * @dwork: delayed_work to cancel
09383498 2962 *
57b30ae7
TH
2963 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2964 * and canceled; %false if wasn't pending. Note that the work callback
2965 * function may still be running on return, unless it returns %true and the
2966 * work doesn't re-arm itself. Explicitly flush or use
2967 * cancel_delayed_work_sync() to wait on it.
09383498 2968 *
57b30ae7 2969 * This function is safe to call from any context including IRQ handler.
09383498 2970 */
57b30ae7 2971bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2972{
57b30ae7
TH
2973 unsigned long flags;
2974 int ret;
2975
2976 do {
2977 ret = try_to_grab_pending(&dwork->work, true, &flags);
2978 } while (unlikely(ret == -EAGAIN));
2979
2980 if (unlikely(ret < 0))
2981 return false;
2982
2983 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2984 local_irq_restore(flags);
2985 return true;
09383498 2986}
57b30ae7 2987EXPORT_SYMBOL(cancel_delayed_work);
09383498 2988
401a8d04
TH
2989/**
2990 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2991 * @dwork: the delayed work cancel
2992 *
2993 * This is cancel_work_sync() for delayed works.
2994 *
2995 * RETURNS:
2996 * %true if @dwork was pending, %false otherwise.
2997 */
2998bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2999{
36e227d2 3000 return __cancel_work_timer(&dwork->work, true);
6e84d644 3001}
f5a421a4 3002EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3003
0fcb78c2 3004/**
c1a220e7
ZR
3005 * schedule_work_on - put work task on a specific cpu
3006 * @cpu: cpu to put the work task on
3007 * @work: job to be done
3008 *
3009 * This puts a job on a specific cpu
3010 */
d4283e93 3011bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3012{
d320c038 3013 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3014}
3015EXPORT_SYMBOL(schedule_work_on);
3016
0fcb78c2 3017/**
0fcb78c2
REB
3018 * schedule_work - put work task in global workqueue
3019 * @work: job to be done
0fcb78c2 3020 *
d4283e93
TH
3021 * Returns %false if @work was already on the kernel-global workqueue and
3022 * %true otherwise.
5b0f437d
BVA
3023 *
3024 * This puts a job in the kernel-global workqueue if it was not already
3025 * queued and leaves it in the same position on the kernel-global
3026 * workqueue otherwise.
0fcb78c2 3027 */
d4283e93 3028bool schedule_work(struct work_struct *work)
1da177e4 3029{
d320c038 3030 return queue_work(system_wq, work);
1da177e4 3031}
ae90dd5d 3032EXPORT_SYMBOL(schedule_work);
1da177e4 3033
0fcb78c2
REB
3034/**
3035 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3036 * @cpu: cpu to use
52bad64d 3037 * @dwork: job to be done
0fcb78c2
REB
3038 * @delay: number of jiffies to wait
3039 *
3040 * After waiting for a given time this puts a job in the kernel-global
3041 * workqueue on the specified CPU.
3042 */
d4283e93
TH
3043bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3044 unsigned long delay)
1da177e4 3045{
d320c038 3046 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3047}
ae90dd5d 3048EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3049
0fcb78c2
REB
3050/**
3051 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3052 * @dwork: job to be done
3053 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3054 *
3055 * After waiting for a given time this puts a job in the kernel-global
3056 * workqueue.
3057 */
d4283e93 3058bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3059{
d320c038 3060 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3061}
ae90dd5d 3062EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3063
b6136773 3064/**
31ddd871 3065 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3066 * @func: the function to call
b6136773 3067 *
31ddd871
TH
3068 * schedule_on_each_cpu() executes @func on each online CPU using the
3069 * system workqueue and blocks until all CPUs have completed.
b6136773 3070 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3071 *
3072 * RETURNS:
3073 * 0 on success, -errno on failure.
b6136773 3074 */
65f27f38 3075int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3076{
3077 int cpu;
38f51568 3078 struct work_struct __percpu *works;
15316ba8 3079
b6136773
AM
3080 works = alloc_percpu(struct work_struct);
3081 if (!works)
15316ba8 3082 return -ENOMEM;
b6136773 3083
93981800
TH
3084 get_online_cpus();
3085
15316ba8 3086 for_each_online_cpu(cpu) {
9bfb1839
IM
3087 struct work_struct *work = per_cpu_ptr(works, cpu);
3088
3089 INIT_WORK(work, func);
b71ab8c2 3090 schedule_work_on(cpu, work);
65a64464 3091 }
93981800
TH
3092
3093 for_each_online_cpu(cpu)
3094 flush_work(per_cpu_ptr(works, cpu));
3095
95402b38 3096 put_online_cpus();
b6136773 3097 free_percpu(works);
15316ba8
CL
3098 return 0;
3099}
3100
eef6a7d5
AS
3101/**
3102 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3103 *
3104 * Forces execution of the kernel-global workqueue and blocks until its
3105 * completion.
3106 *
3107 * Think twice before calling this function! It's very easy to get into
3108 * trouble if you don't take great care. Either of the following situations
3109 * will lead to deadlock:
3110 *
3111 * One of the work items currently on the workqueue needs to acquire
3112 * a lock held by your code or its caller.
3113 *
3114 * Your code is running in the context of a work routine.
3115 *
3116 * They will be detected by lockdep when they occur, but the first might not
3117 * occur very often. It depends on what work items are on the workqueue and
3118 * what locks they need, which you have no control over.
3119 *
3120 * In most situations flushing the entire workqueue is overkill; you merely
3121 * need to know that a particular work item isn't queued and isn't running.
3122 * In such cases you should use cancel_delayed_work_sync() or
3123 * cancel_work_sync() instead.
3124 */
1da177e4
LT
3125void flush_scheduled_work(void)
3126{
d320c038 3127 flush_workqueue(system_wq);
1da177e4 3128}
ae90dd5d 3129EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3130
1fa44eca
JB
3131/**
3132 * execute_in_process_context - reliably execute the routine with user context
3133 * @fn: the function to execute
1fa44eca
JB
3134 * @ew: guaranteed storage for the execute work structure (must
3135 * be available when the work executes)
3136 *
3137 * Executes the function immediately if process context is available,
3138 * otherwise schedules the function for delayed execution.
3139 *
3140 * Returns: 0 - function was executed
3141 * 1 - function was scheduled for execution
3142 */
65f27f38 3143int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3144{
3145 if (!in_interrupt()) {
65f27f38 3146 fn(&ew->work);
1fa44eca
JB
3147 return 0;
3148 }
3149
65f27f38 3150 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3151 schedule_work(&ew->work);
3152
3153 return 1;
3154}
3155EXPORT_SYMBOL_GPL(execute_in_process_context);
3156
1da177e4
LT
3157int keventd_up(void)
3158{
d320c038 3159 return system_wq != NULL;
1da177e4
LT
3160}
3161
bdbc5dd7 3162static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3163{
65a64464 3164 /*
0f900049
TH
3165 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3166 * Make sure that the alignment isn't lower than that of
3167 * unsigned long long.
65a64464 3168 */
0f900049
TH
3169 const size_t size = sizeof(struct cpu_workqueue_struct);
3170 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3171 __alignof__(unsigned long long));
65a64464 3172
e06ffa1e 3173 if (!(wq->flags & WQ_UNBOUND))
f3421797 3174 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3175 else {
f3421797
TH
3176 void *ptr;
3177
3178 /*
3179 * Allocate enough room to align cwq and put an extra
3180 * pointer at the end pointing back to the originally
3181 * allocated pointer which will be used for free.
3182 */
3183 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3184 if (ptr) {
3185 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3186 *(void **)(wq->cpu_wq.single + 1) = ptr;
3187 }
bdbc5dd7 3188 }
f3421797 3189
0415b00d 3190 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3191 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3192 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3193}
3194
bdbc5dd7 3195static void free_cwqs(struct workqueue_struct *wq)
0f900049 3196{
e06ffa1e 3197 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3198 free_percpu(wq->cpu_wq.pcpu);
3199 else if (wq->cpu_wq.single) {
3200 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3201 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3202 }
0f900049
TH
3203}
3204
f3421797
TH
3205static int wq_clamp_max_active(int max_active, unsigned int flags,
3206 const char *name)
b71ab8c2 3207{
f3421797
TH
3208 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3209
3210 if (max_active < 1 || max_active > lim)
044c782c
VI
3211 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3212 max_active, name, 1, lim);
b71ab8c2 3213
f3421797 3214 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3215}
3216
b196be89 3217struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3218 unsigned int flags,
3219 int max_active,
3220 struct lock_class_key *key,
b196be89 3221 const char *lock_name, ...)
1da177e4 3222{
b196be89 3223 va_list args, args1;
1da177e4 3224 struct workqueue_struct *wq;
c34056a3 3225 unsigned int cpu;
b196be89
TH
3226 size_t namelen;
3227
3228 /* determine namelen, allocate wq and format name */
3229 va_start(args, lock_name);
3230 va_copy(args1, args);
3231 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3232
3233 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3234 if (!wq)
3235 goto err;
3236
3237 vsnprintf(wq->name, namelen, fmt, args1);
3238 va_end(args);
3239 va_end(args1);
1da177e4 3240
6370a6ad
TH
3241 /*
3242 * Workqueues which may be used during memory reclaim should
3243 * have a rescuer to guarantee forward progress.
3244 */
3245 if (flags & WQ_MEM_RECLAIM)
3246 flags |= WQ_RESCUER;
3247
d320c038 3248 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3249 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3250
b196be89 3251 /* init wq */
97e37d7b 3252 wq->flags = flags;
a0a1a5fd 3253 wq->saved_max_active = max_active;
73f53c4a
TH
3254 mutex_init(&wq->flush_mutex);
3255 atomic_set(&wq->nr_cwqs_to_flush, 0);
3256 INIT_LIST_HEAD(&wq->flusher_queue);
3257 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3258
eb13ba87 3259 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3260 INIT_LIST_HEAD(&wq->list);
3af24433 3261
bdbc5dd7
TH
3262 if (alloc_cwqs(wq) < 0)
3263 goto err;
3264
f3421797 3265 for_each_cwq_cpu(cpu, wq) {
1537663f 3266 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3267 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3268 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3269
0f900049 3270 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3271 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3272 cwq->wq = wq;
73f53c4a 3273 cwq->flush_color = -1;
1e19ffc6 3274 cwq->max_active = max_active;
1e19ffc6 3275 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3276 }
1537663f 3277
e22bee78
TH
3278 if (flags & WQ_RESCUER) {
3279 struct worker *rescuer;
3280
f2e005aa 3281 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3282 goto err;
3283
3284 wq->rescuer = rescuer = alloc_worker();
3285 if (!rescuer)
3286 goto err;
3287
b196be89
TH
3288 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3289 wq->name);
e22bee78
TH
3290 if (IS_ERR(rescuer->task))
3291 goto err;
3292
e22bee78
TH
3293 rescuer->task->flags |= PF_THREAD_BOUND;
3294 wake_up_process(rescuer->task);
3af24433
ON
3295 }
3296
a0a1a5fd
TH
3297 /*
3298 * workqueue_lock protects global freeze state and workqueues
3299 * list. Grab it, set max_active accordingly and add the new
3300 * workqueue to workqueues list.
3301 */
1537663f 3302 spin_lock(&workqueue_lock);
a0a1a5fd 3303
58a69cb4 3304 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3305 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3306 get_cwq(cpu, wq)->max_active = 0;
3307
1537663f 3308 list_add(&wq->list, &workqueues);
a0a1a5fd 3309
1537663f
TH
3310 spin_unlock(&workqueue_lock);
3311
3af24433 3312 return wq;
4690c4ab
TH
3313err:
3314 if (wq) {
bdbc5dd7 3315 free_cwqs(wq);
f2e005aa 3316 free_mayday_mask(wq->mayday_mask);
e22bee78 3317 kfree(wq->rescuer);
4690c4ab
TH
3318 kfree(wq);
3319 }
3320 return NULL;
3af24433 3321}
d320c038 3322EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3323
3af24433
ON
3324/**
3325 * destroy_workqueue - safely terminate a workqueue
3326 * @wq: target workqueue
3327 *
3328 * Safely destroy a workqueue. All work currently pending will be done first.
3329 */
3330void destroy_workqueue(struct workqueue_struct *wq)
3331{
c8e55f36 3332 unsigned int cpu;
3af24433 3333
9c5a2ba7
TH
3334 /* drain it before proceeding with destruction */
3335 drain_workqueue(wq);
c8efcc25 3336
a0a1a5fd
TH
3337 /*
3338 * wq list is used to freeze wq, remove from list after
3339 * flushing is complete in case freeze races us.
3340 */
95402b38 3341 spin_lock(&workqueue_lock);
b1f4ec17 3342 list_del(&wq->list);
95402b38 3343 spin_unlock(&workqueue_lock);
3af24433 3344
e22bee78 3345 /* sanity check */
f3421797 3346 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3347 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3348 int i;
3349
73f53c4a
TH
3350 for (i = 0; i < WORK_NR_COLORS; i++)
3351 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3352 BUG_ON(cwq->nr_active);
3353 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3354 }
9b41ea72 3355
e22bee78
TH
3356 if (wq->flags & WQ_RESCUER) {
3357 kthread_stop(wq->rescuer->task);
f2e005aa 3358 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3359 kfree(wq->rescuer);
e22bee78
TH
3360 }
3361
bdbc5dd7 3362 free_cwqs(wq);
3af24433
ON
3363 kfree(wq);
3364}
3365EXPORT_SYMBOL_GPL(destroy_workqueue);
3366
9f4bd4cd
LJ
3367/**
3368 * cwq_set_max_active - adjust max_active of a cwq
3369 * @cwq: target cpu_workqueue_struct
3370 * @max_active: new max_active value.
3371 *
3372 * Set @cwq->max_active to @max_active and activate delayed works if
3373 * increased.
3374 *
3375 * CONTEXT:
3376 * spin_lock_irq(gcwq->lock).
3377 */
3378static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3379{
3380 cwq->max_active = max_active;
3381
3382 while (!list_empty(&cwq->delayed_works) &&
3383 cwq->nr_active < cwq->max_active)
3384 cwq_activate_first_delayed(cwq);
3385}
3386
dcd989cb
TH
3387/**
3388 * workqueue_set_max_active - adjust max_active of a workqueue
3389 * @wq: target workqueue
3390 * @max_active: new max_active value.
3391 *
3392 * Set max_active of @wq to @max_active.
3393 *
3394 * CONTEXT:
3395 * Don't call from IRQ context.
3396 */
3397void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3398{
3399 unsigned int cpu;
3400
f3421797 3401 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3402
3403 spin_lock(&workqueue_lock);
3404
3405 wq->saved_max_active = max_active;
3406
f3421797 3407 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3408 struct global_cwq *gcwq = get_gcwq(cpu);
3409
3410 spin_lock_irq(&gcwq->lock);
3411
58a69cb4 3412 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb 3413 !(gcwq->flags & GCWQ_FREEZING))
70369b11 3414 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
9bfb1839 3415
dcd989cb 3416 spin_unlock_irq(&gcwq->lock);
65a64464 3417 }
93981800 3418
dcd989cb 3419 spin_unlock(&workqueue_lock);
15316ba8 3420}
dcd989cb 3421EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3422
eef6a7d5 3423/**
dcd989cb
TH
3424 * workqueue_congested - test whether a workqueue is congested
3425 * @cpu: CPU in question
3426 * @wq: target workqueue
eef6a7d5 3427 *
dcd989cb
TH
3428 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3429 * no synchronization around this function and the test result is
3430 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3431 *
dcd989cb
TH
3432 * RETURNS:
3433 * %true if congested, %false otherwise.
eef6a7d5 3434 */
dcd989cb 3435bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3436{
dcd989cb
TH
3437 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3438
3439 return !list_empty(&cwq->delayed_works);
1da177e4 3440}
dcd989cb 3441EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3442
1fa44eca 3443/**
dcd989cb
TH
3444 * work_cpu - return the last known associated cpu for @work
3445 * @work: the work of interest
1fa44eca 3446 *
dcd989cb 3447 * RETURNS:
bdbc5dd7 3448 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3449 */
dcd989cb 3450unsigned int work_cpu(struct work_struct *work)
1fa44eca 3451{
dcd989cb 3452 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3453
bdbc5dd7 3454 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3455}
dcd989cb 3456EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3457
dcd989cb
TH
3458/**
3459 * work_busy - test whether a work is currently pending or running
3460 * @work: the work to be tested
3461 *
3462 * Test whether @work is currently pending or running. There is no
3463 * synchronization around this function and the test result is
3464 * unreliable and only useful as advisory hints or for debugging.
3465 * Especially for reentrant wqs, the pending state might hide the
3466 * running state.
3467 *
3468 * RETURNS:
3469 * OR'd bitmask of WORK_BUSY_* bits.
3470 */
3471unsigned int work_busy(struct work_struct *work)
1da177e4 3472{
dcd989cb
TH
3473 struct global_cwq *gcwq = get_work_gcwq(work);
3474 unsigned long flags;
3475 unsigned int ret = 0;
1da177e4 3476
dcd989cb
TH
3477 if (!gcwq)
3478 return false;
1da177e4 3479
dcd989cb 3480 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3481
dcd989cb
TH
3482 if (work_pending(work))
3483 ret |= WORK_BUSY_PENDING;
3484 if (find_worker_executing_work(gcwq, work))
3485 ret |= WORK_BUSY_RUNNING;
1da177e4 3486
dcd989cb 3487 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3488
dcd989cb 3489 return ret;
1da177e4 3490}
dcd989cb 3491EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3492
db7bccf4
TH
3493/*
3494 * CPU hotplug.
3495 *
e22bee78
TH
3496 * There are two challenges in supporting CPU hotplug. Firstly, there
3497 * are a lot of assumptions on strong associations among work, cwq and
3498 * gcwq which make migrating pending and scheduled works very
3499 * difficult to implement without impacting hot paths. Secondly,
3500 * gcwqs serve mix of short, long and very long running works making
3501 * blocked draining impractical.
3502 *
628c78e7
TH
3503 * This is solved by allowing a gcwq to be disassociated from the CPU
3504 * running as an unbound one and allowing it to be reattached later if the
3505 * cpu comes back online.
db7bccf4 3506 */
1da177e4 3507
60373152 3508/* claim manager positions of all pools */
b2eb83d1 3509static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3510{
3511 struct worker_pool *pool;
3512
3513 for_each_worker_pool(pool, gcwq)
b2eb83d1 3514 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3515 spin_lock_irq(&gcwq->lock);
60373152
TH
3516}
3517
3518/* release manager positions */
b2eb83d1 3519static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3520{
3521 struct worker_pool *pool;
3522
8db25e78 3523 spin_unlock_irq(&gcwq->lock);
60373152 3524 for_each_worker_pool(pool, gcwq)
b2eb83d1 3525 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3526}
3527
628c78e7 3528static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3529{
628c78e7 3530 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3531 struct worker_pool *pool;
db7bccf4
TH
3532 struct worker *worker;
3533 struct hlist_node *pos;
3534 int i;
3af24433 3535
db7bccf4
TH
3536 BUG_ON(gcwq->cpu != smp_processor_id());
3537
b2eb83d1 3538 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3539
f2d5a0ee
TH
3540 /*
3541 * We've claimed all manager positions. Make all workers unbound
3542 * and set DISASSOCIATED. Before this, all workers except for the
3543 * ones which are still executing works from before the last CPU
3544 * down must be on the cpu. After this, they may become diasporas.
3545 */
60373152 3546 for_each_worker_pool(pool, gcwq)
4ce62e9e 3547 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3548 worker->flags |= WORKER_UNBOUND;
3af24433 3549
db7bccf4 3550 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3551 worker->flags |= WORKER_UNBOUND;
06ba38a9 3552
f2d5a0ee
TH
3553 gcwq->flags |= GCWQ_DISASSOCIATED;
3554
b2eb83d1 3555 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3556
e22bee78 3557 /*
403c821d 3558 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3559 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3560 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3561 */
e22bee78 3562 schedule();
06ba38a9 3563
e22bee78 3564 /*
628c78e7
TH
3565 * Sched callbacks are disabled now. Zap nr_running. After this,
3566 * nr_running stays zero and need_more_worker() and keep_working()
3567 * are always true as long as the worklist is not empty. @gcwq now
3568 * behaves as unbound (in terms of concurrency management) gcwq
3569 * which is served by workers tied to the CPU.
3570 *
3571 * On return from this function, the current worker would trigger
3572 * unbound chain execution of pending work items if other workers
3573 * didn't already.
e22bee78 3574 */
4ce62e9e
TH
3575 for_each_worker_pool(pool, gcwq)
3576 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3577}
3af24433 3578
8db25e78
TH
3579/*
3580 * Workqueues should be brought up before normal priority CPU notifiers.
3581 * This will be registered high priority CPU notifier.
3582 */
9fdf9b73 3583static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3584 unsigned long action,
3585 void *hcpu)
3af24433
ON
3586{
3587 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3588 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3589 struct worker_pool *pool;
3ce63377 3590
8db25e78 3591 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3592 case CPU_UP_PREPARE:
4ce62e9e 3593 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3594 struct worker *worker;
3595
3596 if (pool->nr_workers)
3597 continue;
3598
3599 worker = create_worker(pool);
3600 if (!worker)
3601 return NOTIFY_BAD;
3602
3603 spin_lock_irq(&gcwq->lock);
3604 start_worker(worker);
3605 spin_unlock_irq(&gcwq->lock);
3af24433 3606 }
8db25e78 3607 break;
3af24433 3608
db7bccf4
TH
3609 case CPU_DOWN_FAILED:
3610 case CPU_ONLINE:
b2eb83d1 3611 gcwq_claim_assoc_and_lock(gcwq);
bc2ae0f5 3612 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3613 rebind_workers(gcwq);
b2eb83d1 3614 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3615 break;
00dfcaf7 3616 }
65758202
TH
3617 return NOTIFY_OK;
3618}
3619
3620/*
3621 * Workqueues should be brought down after normal priority CPU notifiers.
3622 * This will be registered as low priority CPU notifier.
3623 */
9fdf9b73 3624static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3625 unsigned long action,
3626 void *hcpu)
3627{
8db25e78
TH
3628 unsigned int cpu = (unsigned long)hcpu;
3629 struct work_struct unbind_work;
3630
65758202
TH
3631 switch (action & ~CPU_TASKS_FROZEN) {
3632 case CPU_DOWN_PREPARE:
8db25e78
TH
3633 /* unbinding should happen on the local CPU */
3634 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3635 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3636 flush_work(&unbind_work);
3637 break;
65758202
TH
3638 }
3639 return NOTIFY_OK;
3640}
3641
2d3854a3 3642#ifdef CONFIG_SMP
8ccad40d 3643
2d3854a3 3644struct work_for_cpu {
ed48ece2 3645 struct work_struct work;
2d3854a3
RR
3646 long (*fn)(void *);
3647 void *arg;
3648 long ret;
3649};
3650
ed48ece2 3651static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3652{
ed48ece2
TH
3653 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3654
2d3854a3
RR
3655 wfc->ret = wfc->fn(wfc->arg);
3656}
3657
3658/**
3659 * work_on_cpu - run a function in user context on a particular cpu
3660 * @cpu: the cpu to run on
3661 * @fn: the function to run
3662 * @arg: the function arg
3663 *
31ad9081
RR
3664 * This will return the value @fn returns.
3665 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3666 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3667 */
3668long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3669{
ed48ece2 3670 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3671
ed48ece2
TH
3672 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3673 schedule_work_on(cpu, &wfc.work);
3674 flush_work(&wfc.work);
2d3854a3
RR
3675 return wfc.ret;
3676}
3677EXPORT_SYMBOL_GPL(work_on_cpu);
3678#endif /* CONFIG_SMP */
3679
a0a1a5fd
TH
3680#ifdef CONFIG_FREEZER
3681
3682/**
3683 * freeze_workqueues_begin - begin freezing workqueues
3684 *
58a69cb4
TH
3685 * Start freezing workqueues. After this function returns, all freezable
3686 * workqueues will queue new works to their frozen_works list instead of
3687 * gcwq->worklist.
a0a1a5fd
TH
3688 *
3689 * CONTEXT:
8b03ae3c 3690 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3691 */
3692void freeze_workqueues_begin(void)
3693{
a0a1a5fd
TH
3694 unsigned int cpu;
3695
3696 spin_lock(&workqueue_lock);
3697
3698 BUG_ON(workqueue_freezing);
3699 workqueue_freezing = true;
3700
f3421797 3701 for_each_gcwq_cpu(cpu) {
8b03ae3c 3702 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3703 struct workqueue_struct *wq;
8b03ae3c
TH
3704
3705 spin_lock_irq(&gcwq->lock);
3706
db7bccf4
TH
3707 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3708 gcwq->flags |= GCWQ_FREEZING;
3709
a0a1a5fd
TH
3710 list_for_each_entry(wq, &workqueues, list) {
3711 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3712
58a69cb4 3713 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3714 cwq->max_active = 0;
a0a1a5fd 3715 }
8b03ae3c
TH
3716
3717 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3718 }
3719
3720 spin_unlock(&workqueue_lock);
3721}
3722
3723/**
58a69cb4 3724 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3725 *
3726 * Check whether freezing is complete. This function must be called
3727 * between freeze_workqueues_begin() and thaw_workqueues().
3728 *
3729 * CONTEXT:
3730 * Grabs and releases workqueue_lock.
3731 *
3732 * RETURNS:
58a69cb4
TH
3733 * %true if some freezable workqueues are still busy. %false if freezing
3734 * is complete.
a0a1a5fd
TH
3735 */
3736bool freeze_workqueues_busy(void)
3737{
a0a1a5fd
TH
3738 unsigned int cpu;
3739 bool busy = false;
3740
3741 spin_lock(&workqueue_lock);
3742
3743 BUG_ON(!workqueue_freezing);
3744
f3421797 3745 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3746 struct workqueue_struct *wq;
a0a1a5fd
TH
3747 /*
3748 * nr_active is monotonically decreasing. It's safe
3749 * to peek without lock.
3750 */
3751 list_for_each_entry(wq, &workqueues, list) {
3752 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3753
58a69cb4 3754 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3755 continue;
3756
3757 BUG_ON(cwq->nr_active < 0);
3758 if (cwq->nr_active) {
3759 busy = true;
3760 goto out_unlock;
3761 }
3762 }
3763 }
3764out_unlock:
3765 spin_unlock(&workqueue_lock);
3766 return busy;
3767}
3768
3769/**
3770 * thaw_workqueues - thaw workqueues
3771 *
3772 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3773 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3774 *
3775 * CONTEXT:
8b03ae3c 3776 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3777 */
3778void thaw_workqueues(void)
3779{
a0a1a5fd
TH
3780 unsigned int cpu;
3781
3782 spin_lock(&workqueue_lock);
3783
3784 if (!workqueue_freezing)
3785 goto out_unlock;
3786
f3421797 3787 for_each_gcwq_cpu(cpu) {
8b03ae3c 3788 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3789 struct worker_pool *pool;
bdbc5dd7 3790 struct workqueue_struct *wq;
8b03ae3c
TH
3791
3792 spin_lock_irq(&gcwq->lock);
3793
db7bccf4
TH
3794 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3795 gcwq->flags &= ~GCWQ_FREEZING;
3796
a0a1a5fd
TH
3797 list_for_each_entry(wq, &workqueues, list) {
3798 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3799
58a69cb4 3800 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3801 continue;
3802
a0a1a5fd 3803 /* restore max_active and repopulate worklist */
9f4bd4cd 3804 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3805 }
8b03ae3c 3806
4ce62e9e
TH
3807 for_each_worker_pool(pool, gcwq)
3808 wake_up_worker(pool);
e22bee78 3809
8b03ae3c 3810 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3811 }
3812
3813 workqueue_freezing = false;
3814out_unlock:
3815 spin_unlock(&workqueue_lock);
3816}
3817#endif /* CONFIG_FREEZER */
3818
6ee0578b 3819static int __init init_workqueues(void)
1da177e4 3820{
c34056a3 3821 unsigned int cpu;
c8e55f36 3822 int i;
c34056a3 3823
b5490077
TH
3824 /* make sure we have enough bits for OFFQ CPU number */
3825 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3826 WORK_CPU_LAST);
3827
65758202 3828 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3829 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3830
3831 /* initialize gcwqs */
f3421797 3832 for_each_gcwq_cpu(cpu) {
8b03ae3c 3833 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3834 struct worker_pool *pool;
8b03ae3c
TH
3835
3836 spin_lock_init(&gcwq->lock);
3837 gcwq->cpu = cpu;
477a3c33 3838 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3839
c8e55f36
TH
3840 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3841 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3842
4ce62e9e
TH
3843 for_each_worker_pool(pool, gcwq) {
3844 pool->gcwq = gcwq;
3845 INIT_LIST_HEAD(&pool->worklist);
3846 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3847
4ce62e9e
TH
3848 init_timer_deferrable(&pool->idle_timer);
3849 pool->idle_timer.function = idle_worker_timeout;
3850 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3851
4ce62e9e
TH
3852 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3853 (unsigned long)pool);
3854
b2eb83d1 3855 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3856 ida_init(&pool->worker_ida);
3857 }
8b03ae3c
TH
3858 }
3859
e22bee78 3860 /* create the initial worker */
f3421797 3861 for_each_online_gcwq_cpu(cpu) {
e22bee78 3862 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3863 struct worker_pool *pool;
e22bee78 3864
477a3c33
TH
3865 if (cpu != WORK_CPU_UNBOUND)
3866 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3867
3868 for_each_worker_pool(pool, gcwq) {
3869 struct worker *worker;
3870
bc2ae0f5 3871 worker = create_worker(pool);
4ce62e9e
TH
3872 BUG_ON(!worker);
3873 spin_lock_irq(&gcwq->lock);
3874 start_worker(worker);
3875 spin_unlock_irq(&gcwq->lock);
3876 }
e22bee78
TH
3877 }
3878
d320c038 3879 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3880 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3881 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3882 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3883 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3884 system_freezable_wq = alloc_workqueue("events_freezable",
3885 WQ_FREEZABLE, 0);
1aabe902 3886 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3887 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3888 return 0;
1da177e4 3889}
6ee0578b 3890early_initcall(init_workqueues);