workqueue: make all workqueues non-reentrant
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038 271struct workqueue_struct *system_wq __read_mostly;
d320c038 272EXPORT_SYMBOL_GPL(system_wq);
044c782c 273struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 274EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 275struct workqueue_struct *system_long_wq __read_mostly;
d320c038 276EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 277struct workqueue_struct *system_nrt_wq __read_mostly;
d320c038 278EXPORT_SYMBOL_GPL(system_nrt_wq);
044c782c 279struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 280EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 281struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 282EXPORT_SYMBOL_GPL(system_freezable_wq);
044c782c 283struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
62d3c543 284EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 285
97bd2347
TH
286#define CREATE_TRACE_POINTS
287#include <trace/events/workqueue.h>
288
4ce62e9e 289#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
290 for ((pool) = &(gcwq)->pools[0]; \
291 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 292
db7bccf4
TH
293#define for_each_busy_worker(worker, i, pos, gcwq) \
294 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
295 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
296
f3421797
TH
297static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 unsigned int sw)
299{
300 if (cpu < nr_cpu_ids) {
301 if (sw & 1) {
302 cpu = cpumask_next(cpu, mask);
303 if (cpu < nr_cpu_ids)
304 return cpu;
305 }
306 if (sw & 2)
307 return WORK_CPU_UNBOUND;
308 }
309 return WORK_CPU_NONE;
310}
311
312static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
313 struct workqueue_struct *wq)
314{
315 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
316}
317
09884951
TH
318/*
319 * CPU iterators
320 *
321 * An extra gcwq is defined for an invalid cpu number
322 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
323 * specific CPU. The following iterators are similar to
324 * for_each_*_cpu() iterators but also considers the unbound gcwq.
325 *
326 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
327 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
328 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
329 * WORK_CPU_UNBOUND for unbound workqueues
330 */
f3421797
TH
331#define for_each_gcwq_cpu(cpu) \
332 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
333 (cpu) < WORK_CPU_NONE; \
334 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
335
336#define for_each_online_gcwq_cpu(cpu) \
337 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
338 (cpu) < WORK_CPU_NONE; \
339 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
340
341#define for_each_cwq_cpu(cpu, wq) \
342 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
343 (cpu) < WORK_CPU_NONE; \
344 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
345
dc186ad7
TG
346#ifdef CONFIG_DEBUG_OBJECTS_WORK
347
348static struct debug_obj_descr work_debug_descr;
349
99777288
SG
350static void *work_debug_hint(void *addr)
351{
352 return ((struct work_struct *) addr)->func;
353}
354
dc186ad7
TG
355/*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359static int work_fixup_init(void *addr, enum debug_obj_state state)
360{
361 struct work_struct *work = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 cancel_work_sync(work);
366 debug_object_init(work, &work_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371}
372
373/*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378static int work_fixup_activate(void *addr, enum debug_obj_state state)
379{
380 struct work_struct *work = addr;
381
382 switch (state) {
383
384 case ODEBUG_STATE_NOTAVAILABLE:
385 /*
386 * This is not really a fixup. The work struct was
387 * statically initialized. We just make sure that it
388 * is tracked in the object tracker.
389 */
22df02bb 390 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
391 debug_object_init(work, &work_debug_descr);
392 debug_object_activate(work, &work_debug_descr);
393 return 0;
394 }
395 WARN_ON_ONCE(1);
396 return 0;
397
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400
401 default:
402 return 0;
403 }
404}
405
406/*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
410static int work_fixup_free(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_free(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424static struct debug_obj_descr work_debug_descr = {
425 .name = "work_struct",
99777288 426 .debug_hint = work_debug_hint,
dc186ad7
TG
427 .fixup_init = work_fixup_init,
428 .fixup_activate = work_fixup_activate,
429 .fixup_free = work_fixup_free,
430};
431
432static inline void debug_work_activate(struct work_struct *work)
433{
434 debug_object_activate(work, &work_debug_descr);
435}
436
437static inline void debug_work_deactivate(struct work_struct *work)
438{
439 debug_object_deactivate(work, &work_debug_descr);
440}
441
442void __init_work(struct work_struct *work, int onstack)
443{
444 if (onstack)
445 debug_object_init_on_stack(work, &work_debug_descr);
446 else
447 debug_object_init(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(__init_work);
450
451void destroy_work_on_stack(struct work_struct *work)
452{
453 debug_object_free(work, &work_debug_descr);
454}
455EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456
457#else
458static inline void debug_work_activate(struct work_struct *work) { }
459static inline void debug_work_deactivate(struct work_struct *work) { }
460#endif
461
95402b38
GS
462/* Serializes the accesses to the list of workqueues. */
463static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 464static LIST_HEAD(workqueues);
a0a1a5fd 465static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 466
e22bee78
TH
467/*
468 * The almighty global cpu workqueues. nr_running is the only field
469 * which is expected to be used frequently by other cpus via
470 * try_to_wake_up(). Put it in a separate cacheline.
471 */
8b03ae3c 472static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 473static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 474
f3421797
TH
475/*
476 * Global cpu workqueue and nr_running counter for unbound gcwq. The
477 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
478 * workers have WORKER_UNBOUND set.
479 */
480static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
481static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
482 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483};
f3421797 484
c34056a3 485static int worker_thread(void *__worker);
1da177e4 486
3270476a
TH
487static int worker_pool_pri(struct worker_pool *pool)
488{
489 return pool - pool->gcwq->pools;
490}
491
8b03ae3c
TH
492static struct global_cwq *get_gcwq(unsigned int cpu)
493{
f3421797
TH
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(global_cwq, cpu);
496 else
497 return &unbound_global_cwq;
8b03ae3c
TH
498}
499
63d95a91 500static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 501{
63d95a91 502 int cpu = pool->gcwq->cpu;
3270476a 503 int idx = worker_pool_pri(pool);
63d95a91 504
f3421797 505 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 506 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 507 else
4ce62e9e 508 return &unbound_pool_nr_running[idx];
e22bee78
TH
509}
510
1537663f
TH
511static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
512 struct workqueue_struct *wq)
b1f4ec17 513{
f3421797 514 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 515 if (likely(cpu < nr_cpu_ids))
f3421797 516 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
517 } else if (likely(cpu == WORK_CPU_UNBOUND))
518 return wq->cpu_wq.single;
519 return NULL;
b1f4ec17
ON
520}
521
73f53c4a
TH
522static unsigned int work_color_to_flags(int color)
523{
524 return color << WORK_STRUCT_COLOR_SHIFT;
525}
526
527static int get_work_color(struct work_struct *work)
528{
529 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
530 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531}
532
533static int work_next_color(int color)
534{
535 return (color + 1) % WORK_NR_COLORS;
536}
1da177e4 537
14441960 538/*
b5490077
TH
539 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
540 * contain the pointer to the queued cwq. Once execution starts, the flag
541 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 542 *
bbb68dfa
TH
543 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
544 * and clear_work_data() can be used to set the cwq, cpu or clear
545 * work->data. These functions should only be called while the work is
546 * owned - ie. while the PENDING bit is set.
547 *
548 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
549 * a work. gcwq is available once the work has been queued anywhere after
550 * initialization until it is sync canceled. cwq is available only while
551 * the work item is queued.
552 *
553 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
554 * canceled. While being canceled, a work item may have its PENDING set
555 * but stay off timer and worklist for arbitrarily long and nobody should
556 * try to steal the PENDING bit.
14441960 557 */
7a22ad75
TH
558static inline void set_work_data(struct work_struct *work, unsigned long data,
559 unsigned long flags)
365970a1 560{
4594bf15 561 BUG_ON(!work_pending(work));
7a22ad75
TH
562 atomic_long_set(&work->data, data | flags | work_static(work));
563}
365970a1 564
7a22ad75
TH
565static void set_work_cwq(struct work_struct *work,
566 struct cpu_workqueue_struct *cwq,
567 unsigned long extra_flags)
568{
569 set_work_data(work, (unsigned long)cwq,
e120153d 570 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
571}
572
8930caba
TH
573static void set_work_cpu_and_clear_pending(struct work_struct *work,
574 unsigned int cpu)
7a22ad75 575{
23657bb1
TH
576 /*
577 * The following wmb is paired with the implied mb in
578 * test_and_set_bit(PENDING) and ensures all updates to @work made
579 * here are visible to and precede any updates by the next PENDING
580 * owner.
581 */
582 smp_wmb();
b5490077 583 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 584}
f756d5e2 585
7a22ad75 586static void clear_work_data(struct work_struct *work)
1da177e4 587{
23657bb1 588 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 589 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
590}
591
7a22ad75 592static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 593{
e120153d 594 unsigned long data = atomic_long_read(&work->data);
7a22ad75 595
e120153d
TH
596 if (data & WORK_STRUCT_CWQ)
597 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
598 else
599 return NULL;
4d707b9f
ON
600}
601
7a22ad75 602static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 603{
e120153d 604 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
605 unsigned int cpu;
606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
bd7bdd43 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 610
b5490077 611 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 612 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
613 return NULL;
614
f3421797 615 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 616 return get_gcwq(cpu);
b1f4ec17
ON
617}
618
bbb68dfa
TH
619static void mark_work_canceling(struct work_struct *work)
620{
621 struct global_cwq *gcwq = get_work_gcwq(work);
622 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
623
624 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
625 WORK_STRUCT_PENDING);
626}
627
628static bool work_is_canceling(struct work_struct *work)
629{
630 unsigned long data = atomic_long_read(&work->data);
631
632 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
633}
634
e22bee78 635/*
3270476a
TH
636 * Policy functions. These define the policies on how the global worker
637 * pools are managed. Unless noted otherwise, these functions assume that
638 * they're being called with gcwq->lock held.
e22bee78
TH
639 */
640
63d95a91 641static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 642{
3270476a 643 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
644}
645
4594bf15 646/*
e22bee78
TH
647 * Need to wake up a worker? Called from anything but currently
648 * running workers.
974271c4
TH
649 *
650 * Note that, because unbound workers never contribute to nr_running, this
651 * function will always return %true for unbound gcwq as long as the
652 * worklist isn't empty.
4594bf15 653 */
63d95a91 654static bool need_more_worker(struct worker_pool *pool)
365970a1 655{
63d95a91 656 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 657}
4594bf15 658
e22bee78 659/* Can I start working? Called from busy but !running workers. */
63d95a91 660static bool may_start_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 return pool->nr_idle;
e22bee78
TH
663}
664
665/* Do I need to keep working? Called from currently running workers. */
63d95a91 666static bool keep_working(struct worker_pool *pool)
e22bee78 667{
63d95a91 668 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 669
3270476a 670 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
671}
672
673/* Do we need a new worker? Called from manager. */
63d95a91 674static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 677}
365970a1 678
e22bee78 679/* Do I need to be the manager? */
63d95a91 680static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_to_create_worker(pool) ||
11ebea50 683 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
684}
685
686/* Do we have too many workers and should some go away? */
63d95a91 687static bool too_many_workers(struct worker_pool *pool)
e22bee78 688{
60373152 689 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
692
693 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
694}
695
4d707b9f 696/*
e22bee78
TH
697 * Wake up functions.
698 */
699
7e11629d 700/* Return the first worker. Safe with preemption disabled */
63d95a91 701static struct worker *first_worker(struct worker_pool *pool)
7e11629d 702{
63d95a91 703 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
704 return NULL;
705
63d95a91 706 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
707}
708
709/**
710 * wake_up_worker - wake up an idle worker
63d95a91 711 * @pool: worker pool to wake worker from
7e11629d 712 *
63d95a91 713 * Wake up the first idle worker of @pool.
7e11629d
TH
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 */
63d95a91 718static void wake_up_worker(struct worker_pool *pool)
7e11629d 719{
63d95a91 720 struct worker *worker = first_worker(pool);
7e11629d
TH
721
722 if (likely(worker))
723 wake_up_process(worker->task);
724}
725
d302f017 726/**
e22bee78
TH
727 * wq_worker_waking_up - a worker is waking up
728 * @task: task waking up
729 * @cpu: CPU @task is waking up to
730 *
731 * This function is called during try_to_wake_up() when a worker is
732 * being awoken.
733 *
734 * CONTEXT:
735 * spin_lock_irq(rq->lock)
736 */
737void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
738{
739 struct worker *worker = kthread_data(task);
740
2d64672e 741 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 742 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
743}
744
745/**
746 * wq_worker_sleeping - a worker is going to sleep
747 * @task: task going to sleep
748 * @cpu: CPU in question, must be the current CPU number
749 *
750 * This function is called during schedule() when a busy worker is
751 * going to sleep. Worker on the same cpu can be woken up by
752 * returning pointer to its task.
753 *
754 * CONTEXT:
755 * spin_lock_irq(rq->lock)
756 *
757 * RETURNS:
758 * Worker task on @cpu to wake up, %NULL if none.
759 */
760struct task_struct *wq_worker_sleeping(struct task_struct *task,
761 unsigned int cpu)
762{
763 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 764 struct worker_pool *pool = worker->pool;
63d95a91 765 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 766
2d64672e 767 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
768 return NULL;
769
770 /* this can only happen on the local cpu */
771 BUG_ON(cpu != raw_smp_processor_id());
772
773 /*
774 * The counterpart of the following dec_and_test, implied mb,
775 * worklist not empty test sequence is in insert_work().
776 * Please read comment there.
777 *
628c78e7
TH
778 * NOT_RUNNING is clear. This means that we're bound to and
779 * running on the local cpu w/ rq lock held and preemption
780 * disabled, which in turn means that none else could be
781 * manipulating idle_list, so dereferencing idle_list without gcwq
782 * lock is safe.
e22bee78 783 */
bd7bdd43 784 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 785 to_wakeup = first_worker(pool);
e22bee78
TH
786 return to_wakeup ? to_wakeup->task : NULL;
787}
788
789/**
790 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 791 * @worker: self
d302f017
TH
792 * @flags: flags to set
793 * @wakeup: wakeup an idle worker if necessary
794 *
e22bee78
TH
795 * Set @flags in @worker->flags and adjust nr_running accordingly. If
796 * nr_running becomes zero and @wakeup is %true, an idle worker is
797 * woken up.
d302f017 798 *
cb444766
TH
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock)
d302f017
TH
801 */
802static inline void worker_set_flags(struct worker *worker, unsigned int flags,
803 bool wakeup)
804{
bd7bdd43 805 struct worker_pool *pool = worker->pool;
e22bee78 806
cb444766
TH
807 WARN_ON_ONCE(worker->task != current);
808
e22bee78
TH
809 /*
810 * If transitioning into NOT_RUNNING, adjust nr_running and
811 * wake up an idle worker as necessary if requested by
812 * @wakeup.
813 */
814 if ((flags & WORKER_NOT_RUNNING) &&
815 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 816 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
817
818 if (wakeup) {
819 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 820 !list_empty(&pool->worklist))
63d95a91 821 wake_up_worker(pool);
e22bee78
TH
822 } else
823 atomic_dec(nr_running);
824 }
825
d302f017
TH
826 worker->flags |= flags;
827}
828
829/**
e22bee78 830 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 831 * @worker: self
d302f017
TH
832 * @flags: flags to clear
833 *
e22bee78 834 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 835 *
cb444766
TH
836 * CONTEXT:
837 * spin_lock_irq(gcwq->lock)
d302f017
TH
838 */
839static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
840{
63d95a91 841 struct worker_pool *pool = worker->pool;
e22bee78
TH
842 unsigned int oflags = worker->flags;
843
cb444766
TH
844 WARN_ON_ONCE(worker->task != current);
845
d302f017 846 worker->flags &= ~flags;
e22bee78 847
42c025f3
TH
848 /*
849 * If transitioning out of NOT_RUNNING, increment nr_running. Note
850 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
851 * of multiple flags, not a single flag.
852 */
e22bee78
TH
853 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
854 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 855 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
856}
857
c8e55f36
TH
858/**
859 * busy_worker_head - return the busy hash head for a work
860 * @gcwq: gcwq of interest
861 * @work: work to be hashed
862 *
863 * Return hash head of @gcwq for @work.
864 *
865 * CONTEXT:
866 * spin_lock_irq(gcwq->lock).
867 *
868 * RETURNS:
869 * Pointer to the hash head.
870 */
871static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
872 struct work_struct *work)
873{
874 const int base_shift = ilog2(sizeof(struct work_struct));
875 unsigned long v = (unsigned long)work;
876
877 /* simple shift and fold hash, do we need something better? */
878 v >>= base_shift;
879 v += v >> BUSY_WORKER_HASH_ORDER;
880 v &= BUSY_WORKER_HASH_MASK;
881
882 return &gcwq->busy_hash[v];
883}
884
8cca0eea
TH
885/**
886 * __find_worker_executing_work - find worker which is executing a work
887 * @gcwq: gcwq of interest
888 * @bwh: hash head as returned by busy_worker_head()
889 * @work: work to find worker for
890 *
891 * Find a worker which is executing @work on @gcwq. @bwh should be
892 * the hash head obtained by calling busy_worker_head() with the same
893 * work.
894 *
895 * CONTEXT:
896 * spin_lock_irq(gcwq->lock).
897 *
898 * RETURNS:
899 * Pointer to worker which is executing @work if found, NULL
900 * otherwise.
901 */
902static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
903 struct hlist_head *bwh,
904 struct work_struct *work)
905{
906 struct worker *worker;
907 struct hlist_node *tmp;
908
909 hlist_for_each_entry(worker, tmp, bwh, hentry)
910 if (worker->current_work == work)
911 return worker;
912 return NULL;
913}
914
915/**
916 * find_worker_executing_work - find worker which is executing a work
917 * @gcwq: gcwq of interest
918 * @work: work to find worker for
919 *
920 * Find a worker which is executing @work on @gcwq. This function is
921 * identical to __find_worker_executing_work() except that this
922 * function calculates @bwh itself.
923 *
924 * CONTEXT:
925 * spin_lock_irq(gcwq->lock).
926 *
927 * RETURNS:
928 * Pointer to worker which is executing @work if found, NULL
929 * otherwise.
4d707b9f 930 */
8cca0eea
TH
931static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
932 struct work_struct *work)
4d707b9f 933{
8cca0eea
TH
934 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
935 work);
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
953 * spin_lock_irq(gcwq->lock).
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
979static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
980{
981 struct work_struct *work = list_first_entry(&cwq->delayed_works,
982 struct work_struct, entry);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
990/**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 * @delayed: for a delayed work
995 *
996 * A work either has completed or is removed from pending queue,
997 * decrement nr_in_flight of its cwq and handle workqueue flushing.
998 *
999 * CONTEXT:
1000 * spin_lock_irq(gcwq->lock).
1001 */
1002static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1003 bool delayed)
1004{
1005 /* ignore uncolored works */
1006 if (color == WORK_NO_COLOR)
1007 return;
1008
1009 cwq->nr_in_flight[color]--;
1010
1011 if (!delayed) {
1012 cwq->nr_active--;
1013 if (!list_empty(&cwq->delayed_works)) {
1014 /* one down, submit a delayed one */
1015 if (cwq->nr_active < cwq->max_active)
1016 cwq_activate_first_delayed(cwq);
1017 }
1018 }
1019
1020 /* is flush in progress and are we at the flushing tip? */
1021 if (likely(cwq->flush_color != color))
1022 return;
1023
1024 /* are there still in-flight works? */
1025 if (cwq->nr_in_flight[color])
1026 return;
1027
1028 /* this cwq is done, clear flush_color */
1029 cwq->flush_color = -1;
1030
1031 /*
1032 * If this was the last cwq, wake up the first flusher. It
1033 * will handle the rest.
1034 */
1035 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1036 complete(&cwq->wq->first_flusher->done);
1037}
1038
36e227d2 1039/**
bbb68dfa 1040 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1041 * @work: work item to steal
1042 * @is_dwork: @work is a delayed_work
bbb68dfa 1043 * @flags: place to store irq state
36e227d2
TH
1044 *
1045 * Try to grab PENDING bit of @work. This function can handle @work in any
1046 * stable state - idle, on timer or on worklist. Return values are
1047 *
1048 * 1 if @work was pending and we successfully stole PENDING
1049 * 0 if @work was idle and we claimed PENDING
1050 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1051 * -ENOENT if someone else is canceling @work, this state may persist
1052 * for arbitrarily long
36e227d2 1053 *
bbb68dfa
TH
1054 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1055 * preempted while holding PENDING and @work off queue, preemption must be
1056 * disabled on entry. This ensures that we don't return -EAGAIN while
1057 * another task is preempted in this function.
1058 *
1059 * On successful return, >= 0, irq is disabled and the caller is
1060 * responsible for releasing it using local_irq_restore(*@flags).
1061 *
1062 * This function is safe to call from any context other than IRQ handler.
1063 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1064 * this function return -EAGAIN perpetually.
bf4ede01 1065 */
bbb68dfa
TH
1066static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1067 unsigned long *flags)
bf4ede01
TH
1068{
1069 struct global_cwq *gcwq;
bf4ede01 1070
bbb68dfa
TH
1071 WARN_ON_ONCE(in_irq());
1072
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 if (likely(del_timer(&dwork->timer)))
1080 return 1;
1081 }
1082
1083 /* try to claim PENDING the normal way */
bf4ede01
TH
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1085 return 0;
1086
1087 /*
1088 * The queueing is in progress, or it is already queued. Try to
1089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1090 */
1091 gcwq = get_work_gcwq(work);
1092 if (!gcwq)
bbb68dfa 1093 goto fail;
bf4ede01 1094
bbb68dfa 1095 spin_lock(&gcwq->lock);
bf4ede01
TH
1096 if (!list_empty(&work->entry)) {
1097 /*
1098 * This work is queued, but perhaps we locked the wrong gcwq.
1099 * In that case we must see the new value after rmb(), see
1100 * insert_work()->wmb().
1101 */
1102 smp_rmb();
1103 if (gcwq == get_work_gcwq(work)) {
1104 debug_work_deactivate(work);
1105 list_del_init(&work->entry);
1106 cwq_dec_nr_in_flight(get_work_cwq(work),
1107 get_work_color(work),
1108 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1109
bbb68dfa 1110 spin_unlock(&gcwq->lock);
36e227d2 1111 return 1;
bf4ede01
TH
1112 }
1113 }
bbb68dfa
TH
1114 spin_unlock(&gcwq->lock);
1115fail:
1116 local_irq_restore(*flags);
1117 if (work_is_canceling(work))
1118 return -ENOENT;
1119 cpu_relax();
36e227d2 1120 return -EAGAIN;
bf4ede01
TH
1121}
1122
4690c4ab 1123/**
7e11629d 1124 * insert_work - insert a work into gcwq
4690c4ab
TH
1125 * @cwq: cwq @work belongs to
1126 * @work: work to insert
1127 * @head: insertion point
1128 * @extra_flags: extra WORK_STRUCT_* flags to set
1129 *
7e11629d
TH
1130 * Insert @work which belongs to @cwq into @gcwq after @head.
1131 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1132 *
1133 * CONTEXT:
8b03ae3c 1134 * spin_lock_irq(gcwq->lock).
4690c4ab 1135 */
b89deed3 1136static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1137 struct work_struct *work, struct list_head *head,
1138 unsigned int extra_flags)
b89deed3 1139{
63d95a91 1140 struct worker_pool *pool = cwq->pool;
e22bee78 1141
4690c4ab 1142 /* we own @work, set data and link */
7a22ad75 1143 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1144
6e84d644
ON
1145 /*
1146 * Ensure that we get the right work->data if we see the
1147 * result of list_add() below, see try_to_grab_pending().
1148 */
1149 smp_wmb();
4690c4ab 1150
1a4d9b0a 1151 list_add_tail(&work->entry, head);
e22bee78
TH
1152
1153 /*
1154 * Ensure either worker_sched_deactivated() sees the above
1155 * list_add_tail() or we see zero nr_running to avoid workers
1156 * lying around lazily while there are works to be processed.
1157 */
1158 smp_mb();
1159
63d95a91
TH
1160 if (__need_more_worker(pool))
1161 wake_up_worker(pool);
b89deed3
ON
1162}
1163
c8efcc25
TH
1164/*
1165 * Test whether @work is being queued from another work executing on the
1166 * same workqueue. This is rather expensive and should only be used from
1167 * cold paths.
1168 */
1169static bool is_chained_work(struct workqueue_struct *wq)
1170{
1171 unsigned long flags;
1172 unsigned int cpu;
1173
1174 for_each_gcwq_cpu(cpu) {
1175 struct global_cwq *gcwq = get_gcwq(cpu);
1176 struct worker *worker;
1177 struct hlist_node *pos;
1178 int i;
1179
1180 spin_lock_irqsave(&gcwq->lock, flags);
1181 for_each_busy_worker(worker, i, pos, gcwq) {
1182 if (worker->task != current)
1183 continue;
1184 spin_unlock_irqrestore(&gcwq->lock, flags);
1185 /*
1186 * I'm @worker, no locking necessary. See if @work
1187 * is headed to the same workqueue.
1188 */
1189 return worker->current_cwq->wq == wq;
1190 }
1191 spin_unlock_irqrestore(&gcwq->lock, flags);
1192 }
1193 return false;
1194}
1195
4690c4ab 1196static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1197 struct work_struct *work)
1198{
502ca9d8
TH
1199 struct global_cwq *gcwq;
1200 struct cpu_workqueue_struct *cwq;
1e19ffc6 1201 struct list_head *worklist;
8a2e8e5d 1202 unsigned int work_flags;
b75cac93 1203 unsigned int req_cpu = cpu;
8930caba
TH
1204
1205 /*
1206 * While a work item is PENDING && off queue, a task trying to
1207 * steal the PENDING will busy-loop waiting for it to either get
1208 * queued or lose PENDING. Grabbing PENDING and queueing should
1209 * happen with IRQ disabled.
1210 */
1211 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1212
dc186ad7 1213 debug_work_activate(work);
1e19ffc6 1214
c8efcc25 1215 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1216 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1217 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1218 return;
1219
c7fc77f7
TH
1220 /* determine gcwq to use */
1221 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1222 struct global_cwq *last_gcwq;
1223
57469821 1224 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1225 cpu = raw_smp_processor_id();
1226
18aa9eff 1227 /*
dbf2576e
TH
1228 * It's multi cpu. If @work was previously on a different
1229 * cpu, it might still be running there, in which case the
1230 * work needs to be queued on that cpu to guarantee
1231 * non-reentrancy.
18aa9eff 1232 */
502ca9d8 1233 gcwq = get_gcwq(cpu);
dbf2576e
TH
1234 last_gcwq = get_work_gcwq(work);
1235
1236 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1237 struct worker *worker;
1238
8930caba 1239 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1240
1241 worker = find_worker_executing_work(last_gcwq, work);
1242
1243 if (worker && worker->current_cwq->wq == wq)
1244 gcwq = last_gcwq;
1245 else {
1246 /* meh... not running there, queue here */
8930caba
TH
1247 spin_unlock(&last_gcwq->lock);
1248 spin_lock(&gcwq->lock);
18aa9eff 1249 }
8930caba
TH
1250 } else {
1251 spin_lock(&gcwq->lock);
1252 }
f3421797
TH
1253 } else {
1254 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1255 spin_lock(&gcwq->lock);
502ca9d8
TH
1256 }
1257
1258 /* gcwq determined, get cwq and queue */
1259 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1260 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1261
f5b2552b 1262 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1263 spin_unlock(&gcwq->lock);
f5b2552b
DC
1264 return;
1265 }
1e19ffc6 1266
73f53c4a 1267 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1268 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1269
1270 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1271 trace_workqueue_activate_work(work);
1e19ffc6 1272 cwq->nr_active++;
3270476a 1273 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1274 } else {
1275 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1276 worklist = &cwq->delayed_works;
8a2e8e5d 1277 }
1e19ffc6 1278
8a2e8e5d 1279 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1280
8930caba 1281 spin_unlock(&gcwq->lock);
1da177e4
LT
1282}
1283
c1a220e7
ZR
1284/**
1285 * queue_work_on - queue work on specific cpu
1286 * @cpu: CPU number to execute work on
1287 * @wq: workqueue to use
1288 * @work: work to queue
1289 *
d4283e93 1290 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1291 *
1292 * We queue the work to a specific CPU, the caller must ensure it
1293 * can't go away.
1294 */
d4283e93
TH
1295bool queue_work_on(int cpu, struct workqueue_struct *wq,
1296 struct work_struct *work)
c1a220e7 1297{
d4283e93 1298 bool ret = false;
8930caba
TH
1299 unsigned long flags;
1300
1301 local_irq_save(flags);
c1a220e7 1302
22df02bb 1303 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1304 __queue_work(cpu, wq, work);
d4283e93 1305 ret = true;
c1a220e7 1306 }
8930caba
TH
1307
1308 local_irq_restore(flags);
c1a220e7
ZR
1309 return ret;
1310}
1311EXPORT_SYMBOL_GPL(queue_work_on);
1312
0fcb78c2 1313/**
0a13c00e 1314 * queue_work - queue work on a workqueue
0fcb78c2 1315 * @wq: workqueue to use
0a13c00e 1316 * @work: work to queue
0fcb78c2 1317 *
d4283e93 1318 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1319 *
1320 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1321 * it can be processed by another CPU.
0fcb78c2 1322 */
d4283e93 1323bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1324{
57469821 1325 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1326}
1327EXPORT_SYMBOL_GPL(queue_work);
1328
d8e794df 1329void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1330{
1331 struct delayed_work *dwork = (struct delayed_work *)__data;
1332 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1333
8930caba 1334 local_irq_disable();
1265057f 1335 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1336 local_irq_enable();
1da177e4 1337}
d8e794df 1338EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1339
7beb2edf
TH
1340static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1341 struct delayed_work *dwork, unsigned long delay)
1342{
1343 struct timer_list *timer = &dwork->timer;
1344 struct work_struct *work = &dwork->work;
1345 unsigned int lcpu;
1346
1347 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1348 timer->data != (unsigned long)dwork);
1349 BUG_ON(timer_pending(timer));
1350 BUG_ON(!list_empty(&work->entry));
1351
1352 timer_stats_timer_set_start_info(&dwork->timer);
1353
1354 /*
1355 * This stores cwq for the moment, for the timer_fn. Note that the
1356 * work's gcwq is preserved to allow reentrance detection for
1357 * delayed works.
1358 */
1359 if (!(wq->flags & WQ_UNBOUND)) {
1360 struct global_cwq *gcwq = get_work_gcwq(work);
1361
e42986de
JK
1362 /*
1363 * If we cannot get the last gcwq from @work directly,
1364 * select the last CPU such that it avoids unnecessarily
1365 * triggering non-reentrancy check in __queue_work().
1366 */
1367 lcpu = cpu;
1368 if (gcwq)
7beb2edf 1369 lcpu = gcwq->cpu;
e42986de 1370 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1371 lcpu = raw_smp_processor_id();
1372 } else {
1373 lcpu = WORK_CPU_UNBOUND;
1374 }
1375
1376 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1377
1265057f 1378 dwork->cpu = cpu;
7beb2edf
TH
1379 timer->expires = jiffies + delay;
1380
1381 if (unlikely(cpu != WORK_CPU_UNBOUND))
1382 add_timer_on(timer, cpu);
1383 else
1384 add_timer(timer);
1385}
1386
0fcb78c2
REB
1387/**
1388 * queue_delayed_work_on - queue work on specific CPU after delay
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
af9997e4 1391 * @dwork: work to queue
0fcb78c2
REB
1392 * @delay: number of jiffies to wait before queueing
1393 *
715f1300
TH
1394 * Returns %false if @work was already on a queue, %true otherwise. If
1395 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1396 * execution.
0fcb78c2 1397 */
d4283e93
TH
1398bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1399 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1400{
52bad64d 1401 struct work_struct *work = &dwork->work;
d4283e93 1402 bool ret = false;
8930caba
TH
1403 unsigned long flags;
1404
715f1300
TH
1405 if (!delay)
1406 return queue_work_on(cpu, wq, &dwork->work);
1407
8930caba
TH
1408 /* read the comment in __queue_work() */
1409 local_irq_save(flags);
7a6bc1cd 1410
22df02bb 1411 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1412 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1413 ret = true;
7a6bc1cd 1414 }
8930caba
TH
1415
1416 local_irq_restore(flags);
7a6bc1cd
VP
1417 return ret;
1418}
ae90dd5d 1419EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1420
0a13c00e
TH
1421/**
1422 * queue_delayed_work - queue work on a workqueue after delay
1423 * @wq: workqueue to use
1424 * @dwork: delayable work to queue
1425 * @delay: number of jiffies to wait before queueing
1426 *
715f1300 1427 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1428 */
d4283e93 1429bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1430 struct delayed_work *dwork, unsigned long delay)
1431{
57469821 1432 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1433}
1434EXPORT_SYMBOL_GPL(queue_delayed_work);
1435
8376fe22
TH
1436/**
1437 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1438 * @cpu: CPU number to execute work on
1439 * @wq: workqueue to use
1440 * @dwork: work to queue
1441 * @delay: number of jiffies to wait before queueing
1442 *
1443 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1444 * modify @dwork's timer so that it expires after @delay. If @delay is
1445 * zero, @work is guaranteed to be scheduled immediately regardless of its
1446 * current state.
1447 *
1448 * Returns %false if @dwork was idle and queued, %true if @dwork was
1449 * pending and its timer was modified.
1450 *
1451 * This function is safe to call from any context other than IRQ handler.
1452 * See try_to_grab_pending() for details.
1453 */
1454bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1455 struct delayed_work *dwork, unsigned long delay)
1456{
1457 unsigned long flags;
1458 int ret;
1459
1460 do {
1461 ret = try_to_grab_pending(&dwork->work, true, &flags);
1462 } while (unlikely(ret == -EAGAIN));
1463
1464 if (likely(ret >= 0)) {
1465 __queue_delayed_work(cpu, wq, dwork, delay);
1466 local_irq_restore(flags);
1467 }
1468
1469 /* -ENOENT from try_to_grab_pending() becomes %true */
1470 return ret;
1471}
1472EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1473
1474/**
1475 * mod_delayed_work - modify delay of or queue a delayed work
1476 * @wq: workqueue to use
1477 * @dwork: work to queue
1478 * @delay: number of jiffies to wait before queueing
1479 *
1480 * mod_delayed_work_on() on local CPU.
1481 */
1482bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1483 unsigned long delay)
1484{
1485 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1486}
1487EXPORT_SYMBOL_GPL(mod_delayed_work);
1488
c8e55f36
TH
1489/**
1490 * worker_enter_idle - enter idle state
1491 * @worker: worker which is entering idle state
1492 *
1493 * @worker is entering idle state. Update stats and idle timer if
1494 * necessary.
1495 *
1496 * LOCKING:
1497 * spin_lock_irq(gcwq->lock).
1498 */
1499static void worker_enter_idle(struct worker *worker)
1da177e4 1500{
bd7bdd43
TH
1501 struct worker_pool *pool = worker->pool;
1502 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1503
1504 BUG_ON(worker->flags & WORKER_IDLE);
1505 BUG_ON(!list_empty(&worker->entry) &&
1506 (worker->hentry.next || worker->hentry.pprev));
1507
cb444766
TH
1508 /* can't use worker_set_flags(), also called from start_worker() */
1509 worker->flags |= WORKER_IDLE;
bd7bdd43 1510 pool->nr_idle++;
e22bee78 1511 worker->last_active = jiffies;
c8e55f36
TH
1512
1513 /* idle_list is LIFO */
bd7bdd43 1514 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1515
628c78e7
TH
1516 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1517 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1518
544ecf31 1519 /*
628c78e7
TH
1520 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1521 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1522 * nr_running, the warning may trigger spuriously. Check iff
1523 * unbind is not in progress.
544ecf31 1524 */
628c78e7 1525 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1526 pool->nr_workers == pool->nr_idle &&
63d95a91 1527 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1528}
1529
1530/**
1531 * worker_leave_idle - leave idle state
1532 * @worker: worker which is leaving idle state
1533 *
1534 * @worker is leaving idle state. Update stats.
1535 *
1536 * LOCKING:
1537 * spin_lock_irq(gcwq->lock).
1538 */
1539static void worker_leave_idle(struct worker *worker)
1540{
bd7bdd43 1541 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1542
1543 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1544 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1545 pool->nr_idle--;
c8e55f36
TH
1546 list_del_init(&worker->entry);
1547}
1548
e22bee78
TH
1549/**
1550 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1551 * @worker: self
1552 *
1553 * Works which are scheduled while the cpu is online must at least be
1554 * scheduled to a worker which is bound to the cpu so that if they are
1555 * flushed from cpu callbacks while cpu is going down, they are
1556 * guaranteed to execute on the cpu.
1557 *
1558 * This function is to be used by rogue workers and rescuers to bind
1559 * themselves to the target cpu and may race with cpu going down or
1560 * coming online. kthread_bind() can't be used because it may put the
1561 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1562 * verbatim as it's best effort and blocking and gcwq may be
1563 * [dis]associated in the meantime.
1564 *
f2d5a0ee
TH
1565 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1566 * binding against %GCWQ_DISASSOCIATED which is set during
1567 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1568 * enters idle state or fetches works without dropping lock, it can
1569 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1570 *
1571 * CONTEXT:
1572 * Might sleep. Called without any lock but returns with gcwq->lock
1573 * held.
1574 *
1575 * RETURNS:
1576 * %true if the associated gcwq is online (@worker is successfully
1577 * bound), %false if offline.
1578 */
1579static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1580__acquires(&gcwq->lock)
e22bee78 1581{
bd7bdd43 1582 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1583 struct task_struct *task = worker->task;
1584
1585 while (true) {
4e6045f1 1586 /*
e22bee78
TH
1587 * The following call may fail, succeed or succeed
1588 * without actually migrating the task to the cpu if
1589 * it races with cpu hotunplug operation. Verify
1590 * against GCWQ_DISASSOCIATED.
4e6045f1 1591 */
f3421797
TH
1592 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1593 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1594
1595 spin_lock_irq(&gcwq->lock);
1596 if (gcwq->flags & GCWQ_DISASSOCIATED)
1597 return false;
1598 if (task_cpu(task) == gcwq->cpu &&
1599 cpumask_equal(&current->cpus_allowed,
1600 get_cpu_mask(gcwq->cpu)))
1601 return true;
1602 spin_unlock_irq(&gcwq->lock);
1603
5035b20f
TH
1604 /*
1605 * We've raced with CPU hot[un]plug. Give it a breather
1606 * and retry migration. cond_resched() is required here;
1607 * otherwise, we might deadlock against cpu_stop trying to
1608 * bring down the CPU on non-preemptive kernel.
1609 */
e22bee78 1610 cpu_relax();
5035b20f 1611 cond_resched();
e22bee78
TH
1612 }
1613}
1614
25511a47
TH
1615struct idle_rebind {
1616 int cnt; /* # workers to be rebound */
1617 struct completion done; /* all workers rebound */
1618};
1619
1620/*
1621 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1622 * happen synchronously for idle workers. worker_thread() will test
1623 * %WORKER_REBIND before leaving idle and call this function.
1624 */
1625static void idle_worker_rebind(struct worker *worker)
1626{
1627 struct global_cwq *gcwq = worker->pool->gcwq;
1628
1629 /* CPU must be online at this point */
1630 WARN_ON(!worker_maybe_bind_and_lock(worker));
1631 if (!--worker->idle_rebind->cnt)
1632 complete(&worker->idle_rebind->done);
1633 spin_unlock_irq(&worker->pool->gcwq->lock);
1634
1635 /* we did our part, wait for rebind_workers() to finish up */
1636 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1637}
1638
e22bee78 1639/*
25511a47 1640 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1641 * the associated cpu which is coming back online. This is scheduled by
1642 * cpu up but can race with other cpu hotplug operations and may be
1643 * executed twice without intervening cpu down.
e22bee78 1644 */
25511a47 1645static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1646{
1647 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1648 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1649
1650 if (worker_maybe_bind_and_lock(worker))
1651 worker_clr_flags(worker, WORKER_REBIND);
1652
1653 spin_unlock_irq(&gcwq->lock);
1654}
1655
25511a47
TH
1656/**
1657 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1658 * @gcwq: gcwq of interest
1659 *
1660 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1661 * is different for idle and busy ones.
1662 *
1663 * The idle ones should be rebound synchronously and idle rebinding should
1664 * be complete before any worker starts executing work items with
1665 * concurrency management enabled; otherwise, scheduler may oops trying to
1666 * wake up non-local idle worker from wq_worker_sleeping().
1667 *
1668 * This is achieved by repeatedly requesting rebinding until all idle
1669 * workers are known to have been rebound under @gcwq->lock and holding all
1670 * idle workers from becoming busy until idle rebinding is complete.
1671 *
1672 * Once idle workers are rebound, busy workers can be rebound as they
1673 * finish executing their current work items. Queueing the rebind work at
1674 * the head of their scheduled lists is enough. Note that nr_running will
1675 * be properbly bumped as busy workers rebind.
1676 *
1677 * On return, all workers are guaranteed to either be bound or have rebind
1678 * work item scheduled.
1679 */
1680static void rebind_workers(struct global_cwq *gcwq)
1681 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1682{
1683 struct idle_rebind idle_rebind;
1684 struct worker_pool *pool;
1685 struct worker *worker;
1686 struct hlist_node *pos;
1687 int i;
1688
1689 lockdep_assert_held(&gcwq->lock);
1690
1691 for_each_worker_pool(pool, gcwq)
1692 lockdep_assert_held(&pool->manager_mutex);
1693
1694 /*
1695 * Rebind idle workers. Interlocked both ways. We wait for
1696 * workers to rebind via @idle_rebind.done. Workers will wait for
1697 * us to finish up by watching %WORKER_REBIND.
1698 */
1699 init_completion(&idle_rebind.done);
1700retry:
1701 idle_rebind.cnt = 1;
1702 INIT_COMPLETION(idle_rebind.done);
1703
1704 /* set REBIND and kick idle ones, we'll wait for these later */
1705 for_each_worker_pool(pool, gcwq) {
1706 list_for_each_entry(worker, &pool->idle_list, entry) {
1707 if (worker->flags & WORKER_REBIND)
1708 continue;
1709
1710 /* morph UNBOUND to REBIND */
1711 worker->flags &= ~WORKER_UNBOUND;
1712 worker->flags |= WORKER_REBIND;
1713
1714 idle_rebind.cnt++;
1715 worker->idle_rebind = &idle_rebind;
1716
1717 /* worker_thread() will call idle_worker_rebind() */
1718 wake_up_process(worker->task);
1719 }
1720 }
1721
1722 if (--idle_rebind.cnt) {
1723 spin_unlock_irq(&gcwq->lock);
1724 wait_for_completion(&idle_rebind.done);
1725 spin_lock_irq(&gcwq->lock);
1726 /* busy ones might have become idle while waiting, retry */
1727 goto retry;
1728 }
1729
1730 /*
1731 * All idle workers are rebound and waiting for %WORKER_REBIND to
1732 * be cleared inside idle_worker_rebind(). Clear and release.
1733 * Clearing %WORKER_REBIND from this foreign context is safe
1734 * because these workers are still guaranteed to be idle.
1735 */
1736 for_each_worker_pool(pool, gcwq)
1737 list_for_each_entry(worker, &pool->idle_list, entry)
1738 worker->flags &= ~WORKER_REBIND;
1739
1740 wake_up_all(&gcwq->rebind_hold);
1741
1742 /* rebind busy workers */
1743 for_each_busy_worker(worker, i, pos, gcwq) {
1744 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1745 struct workqueue_struct *wq;
25511a47
TH
1746
1747 /* morph UNBOUND to REBIND */
1748 worker->flags &= ~WORKER_UNBOUND;
1749 worker->flags |= WORKER_REBIND;
1750
1751 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1752 work_data_bits(rebind_work)))
1753 continue;
1754
25511a47 1755 debug_work_activate(rebind_work);
e2b6a6d5
JK
1756
1757 /*
1758 * wq doesn't really matter but let's keep @worker->pool
1759 * and @cwq->pool consistent for sanity.
1760 */
1761 if (worker_pool_pri(worker->pool))
1762 wq = system_highpri_wq;
1763 else
1764 wq = system_wq;
1765
1766 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1767 worker->scheduled.next,
1768 work_color_to_flags(WORK_NO_COLOR));
25511a47
TH
1769 }
1770}
1771
c34056a3
TH
1772static struct worker *alloc_worker(void)
1773{
1774 struct worker *worker;
1775
1776 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1777 if (worker) {
1778 INIT_LIST_HEAD(&worker->entry);
affee4b2 1779 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1780 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1781 /* on creation a worker is in !idle && prep state */
1782 worker->flags = WORKER_PREP;
c8e55f36 1783 }
c34056a3
TH
1784 return worker;
1785}
1786
1787/**
1788 * create_worker - create a new workqueue worker
63d95a91 1789 * @pool: pool the new worker will belong to
c34056a3 1790 *
63d95a91 1791 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1792 * can be started by calling start_worker() or destroyed using
1793 * destroy_worker().
1794 *
1795 * CONTEXT:
1796 * Might sleep. Does GFP_KERNEL allocations.
1797 *
1798 * RETURNS:
1799 * Pointer to the newly created worker.
1800 */
bc2ae0f5 1801static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1802{
63d95a91 1803 struct global_cwq *gcwq = pool->gcwq;
3270476a 1804 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1805 struct worker *worker = NULL;
f3421797 1806 int id = -1;
c34056a3 1807
8b03ae3c 1808 spin_lock_irq(&gcwq->lock);
bd7bdd43 1809 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1810 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1811 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1812 goto fail;
8b03ae3c 1813 spin_lock_irq(&gcwq->lock);
c34056a3 1814 }
8b03ae3c 1815 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1816
1817 worker = alloc_worker();
1818 if (!worker)
1819 goto fail;
1820
bd7bdd43 1821 worker->pool = pool;
c34056a3
TH
1822 worker->id = id;
1823
bc2ae0f5 1824 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1825 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1826 worker, cpu_to_node(gcwq->cpu),
1827 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1828 else
1829 worker->task = kthread_create(worker_thread, worker,
3270476a 1830 "kworker/u:%d%s", id, pri);
c34056a3
TH
1831 if (IS_ERR(worker->task))
1832 goto fail;
1833
3270476a
TH
1834 if (worker_pool_pri(pool))
1835 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1836
db7bccf4 1837 /*
bc2ae0f5
TH
1838 * Determine CPU binding of the new worker depending on
1839 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1840 * flag remains stable across this function. See the comments
1841 * above the flag definition for details.
1842 *
1843 * As an unbound worker may later become a regular one if CPU comes
1844 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1845 */
bc2ae0f5 1846 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1847 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1848 } else {
db7bccf4 1849 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1850 worker->flags |= WORKER_UNBOUND;
f3421797 1851 }
c34056a3
TH
1852
1853 return worker;
1854fail:
1855 if (id >= 0) {
8b03ae3c 1856 spin_lock_irq(&gcwq->lock);
bd7bdd43 1857 ida_remove(&pool->worker_ida, id);
8b03ae3c 1858 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1859 }
1860 kfree(worker);
1861 return NULL;
1862}
1863
1864/**
1865 * start_worker - start a newly created worker
1866 * @worker: worker to start
1867 *
c8e55f36 1868 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1869 *
1870 * CONTEXT:
8b03ae3c 1871 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1872 */
1873static void start_worker(struct worker *worker)
1874{
cb444766 1875 worker->flags |= WORKER_STARTED;
bd7bdd43 1876 worker->pool->nr_workers++;
c8e55f36 1877 worker_enter_idle(worker);
c34056a3
TH
1878 wake_up_process(worker->task);
1879}
1880
1881/**
1882 * destroy_worker - destroy a workqueue worker
1883 * @worker: worker to be destroyed
1884 *
c8e55f36
TH
1885 * Destroy @worker and adjust @gcwq stats accordingly.
1886 *
1887 * CONTEXT:
1888 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1889 */
1890static void destroy_worker(struct worker *worker)
1891{
bd7bdd43
TH
1892 struct worker_pool *pool = worker->pool;
1893 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1894 int id = worker->id;
1895
1896 /* sanity check frenzy */
1897 BUG_ON(worker->current_work);
affee4b2 1898 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1899
c8e55f36 1900 if (worker->flags & WORKER_STARTED)
bd7bdd43 1901 pool->nr_workers--;
c8e55f36 1902 if (worker->flags & WORKER_IDLE)
bd7bdd43 1903 pool->nr_idle--;
c8e55f36
TH
1904
1905 list_del_init(&worker->entry);
cb444766 1906 worker->flags |= WORKER_DIE;
c8e55f36
TH
1907
1908 spin_unlock_irq(&gcwq->lock);
1909
c34056a3
TH
1910 kthread_stop(worker->task);
1911 kfree(worker);
1912
8b03ae3c 1913 spin_lock_irq(&gcwq->lock);
bd7bdd43 1914 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1915}
1916
63d95a91 1917static void idle_worker_timeout(unsigned long __pool)
e22bee78 1918{
63d95a91
TH
1919 struct worker_pool *pool = (void *)__pool;
1920 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1921
1922 spin_lock_irq(&gcwq->lock);
1923
63d95a91 1924 if (too_many_workers(pool)) {
e22bee78
TH
1925 struct worker *worker;
1926 unsigned long expires;
1927
1928 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1929 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1930 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1931
1932 if (time_before(jiffies, expires))
63d95a91 1933 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1934 else {
1935 /* it's been idle for too long, wake up manager */
11ebea50 1936 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1937 wake_up_worker(pool);
d5abe669 1938 }
e22bee78
TH
1939 }
1940
1941 spin_unlock_irq(&gcwq->lock);
1942}
d5abe669 1943
e22bee78
TH
1944static bool send_mayday(struct work_struct *work)
1945{
1946 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1947 struct workqueue_struct *wq = cwq->wq;
f3421797 1948 unsigned int cpu;
e22bee78
TH
1949
1950 if (!(wq->flags & WQ_RESCUER))
1951 return false;
1952
1953 /* mayday mayday mayday */
bd7bdd43 1954 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1955 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1956 if (cpu == WORK_CPU_UNBOUND)
1957 cpu = 0;
f2e005aa 1958 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1959 wake_up_process(wq->rescuer->task);
1960 return true;
1961}
1962
63d95a91 1963static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1964{
63d95a91
TH
1965 struct worker_pool *pool = (void *)__pool;
1966 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1967 struct work_struct *work;
1968
1969 spin_lock_irq(&gcwq->lock);
1970
63d95a91 1971 if (need_to_create_worker(pool)) {
e22bee78
TH
1972 /*
1973 * We've been trying to create a new worker but
1974 * haven't been successful. We might be hitting an
1975 * allocation deadlock. Send distress signals to
1976 * rescuers.
1977 */
63d95a91 1978 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1979 send_mayday(work);
1da177e4 1980 }
e22bee78
TH
1981
1982 spin_unlock_irq(&gcwq->lock);
1983
63d95a91 1984 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1985}
1986
e22bee78
TH
1987/**
1988 * maybe_create_worker - create a new worker if necessary
63d95a91 1989 * @pool: pool to create a new worker for
e22bee78 1990 *
63d95a91 1991 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1992 * have at least one idle worker on return from this function. If
1993 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1994 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1995 * possible allocation deadlock.
1996 *
1997 * On return, need_to_create_worker() is guaranteed to be false and
1998 * may_start_working() true.
1999 *
2000 * LOCKING:
2001 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2002 * multiple times. Does GFP_KERNEL allocations. Called only from
2003 * manager.
2004 *
2005 * RETURNS:
2006 * false if no action was taken and gcwq->lock stayed locked, true
2007 * otherwise.
2008 */
63d95a91 2009static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
2010__releases(&gcwq->lock)
2011__acquires(&gcwq->lock)
1da177e4 2012{
63d95a91
TH
2013 struct global_cwq *gcwq = pool->gcwq;
2014
2015 if (!need_to_create_worker(pool))
e22bee78
TH
2016 return false;
2017restart:
9f9c2364
TH
2018 spin_unlock_irq(&gcwq->lock);
2019
e22bee78 2020 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2021 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2022
2023 while (true) {
2024 struct worker *worker;
2025
bc2ae0f5 2026 worker = create_worker(pool);
e22bee78 2027 if (worker) {
63d95a91 2028 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2029 spin_lock_irq(&gcwq->lock);
2030 start_worker(worker);
63d95a91 2031 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2032 return true;
2033 }
2034
63d95a91 2035 if (!need_to_create_worker(pool))
e22bee78 2036 break;
1da177e4 2037
e22bee78
TH
2038 __set_current_state(TASK_INTERRUPTIBLE);
2039 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2040
63d95a91 2041 if (!need_to_create_worker(pool))
e22bee78
TH
2042 break;
2043 }
2044
63d95a91 2045 del_timer_sync(&pool->mayday_timer);
e22bee78 2046 spin_lock_irq(&gcwq->lock);
63d95a91 2047 if (need_to_create_worker(pool))
e22bee78
TH
2048 goto restart;
2049 return true;
2050}
2051
2052/**
2053 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2054 * @pool: pool to destroy workers for
e22bee78 2055 *
63d95a91 2056 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2057 * IDLE_WORKER_TIMEOUT.
2058 *
2059 * LOCKING:
2060 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2061 * multiple times. Called only from manager.
2062 *
2063 * RETURNS:
2064 * false if no action was taken and gcwq->lock stayed locked, true
2065 * otherwise.
2066 */
63d95a91 2067static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2068{
2069 bool ret = false;
1da177e4 2070
63d95a91 2071 while (too_many_workers(pool)) {
e22bee78
TH
2072 struct worker *worker;
2073 unsigned long expires;
3af24433 2074
63d95a91 2075 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2076 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2077
e22bee78 2078 if (time_before(jiffies, expires)) {
63d95a91 2079 mod_timer(&pool->idle_timer, expires);
3af24433 2080 break;
e22bee78 2081 }
1da177e4 2082
e22bee78
TH
2083 destroy_worker(worker);
2084 ret = true;
1da177e4 2085 }
3af24433 2086
e22bee78
TH
2087 return ret;
2088}
2089
2090/**
2091 * manage_workers - manage worker pool
2092 * @worker: self
2093 *
2094 * Assume the manager role and manage gcwq worker pool @worker belongs
2095 * to. At any given time, there can be only zero or one manager per
2096 * gcwq. The exclusion is handled automatically by this function.
2097 *
2098 * The caller can safely start processing works on false return. On
2099 * true return, it's guaranteed that need_to_create_worker() is false
2100 * and may_start_working() is true.
2101 *
2102 * CONTEXT:
2103 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2104 * multiple times. Does GFP_KERNEL allocations.
2105 *
2106 * RETURNS:
2107 * false if no action was taken and gcwq->lock stayed locked, true if
2108 * some action was taken.
2109 */
2110static bool manage_workers(struct worker *worker)
2111{
63d95a91 2112 struct worker_pool *pool = worker->pool;
e22bee78
TH
2113 bool ret = false;
2114
60373152 2115 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2116 return ret;
2117
11ebea50 2118 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2119
2120 /*
2121 * Destroy and then create so that may_start_working() is true
2122 * on return.
2123 */
63d95a91
TH
2124 ret |= maybe_destroy_workers(pool);
2125 ret |= maybe_create_worker(pool);
e22bee78 2126
60373152 2127 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2128 return ret;
2129}
2130
a62428c0
TH
2131/**
2132 * process_one_work - process single work
c34056a3 2133 * @worker: self
a62428c0
TH
2134 * @work: work to process
2135 *
2136 * Process @work. This function contains all the logics necessary to
2137 * process a single work including synchronization against and
2138 * interaction with other workers on the same cpu, queueing and
2139 * flushing. As long as context requirement is met, any worker can
2140 * call this function to process a work.
2141 *
2142 * CONTEXT:
8b03ae3c 2143 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2144 */
c34056a3 2145static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2146__releases(&gcwq->lock)
2147__acquires(&gcwq->lock)
a62428c0 2148{
7e11629d 2149 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2150 struct worker_pool *pool = worker->pool;
2151 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2152 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2153 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2154 work_func_t f = work->func;
73f53c4a 2155 int work_color;
7e11629d 2156 struct worker *collision;
a62428c0
TH
2157#ifdef CONFIG_LOCKDEP
2158 /*
2159 * It is permissible to free the struct work_struct from
2160 * inside the function that is called from it, this we need to
2161 * take into account for lockdep too. To avoid bogus "held
2162 * lock freed" warnings as well as problems when looking into
2163 * work->lockdep_map, make a copy and use that here.
2164 */
4d82a1de
PZ
2165 struct lockdep_map lockdep_map;
2166
2167 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2168#endif
6fec10a1
TH
2169 /*
2170 * Ensure we're on the correct CPU. DISASSOCIATED test is
2171 * necessary to avoid spurious warnings from rescuers servicing the
2172 * unbound or a disassociated gcwq.
2173 */
25511a47 2174 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2175 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2176 raw_smp_processor_id() != gcwq->cpu);
2177
7e11629d
TH
2178 /*
2179 * A single work shouldn't be executed concurrently by
2180 * multiple workers on a single cpu. Check whether anyone is
2181 * already processing the work. If so, defer the work to the
2182 * currently executing one.
2183 */
2184 collision = __find_worker_executing_work(gcwq, bwh, work);
2185 if (unlikely(collision)) {
2186 move_linked_works(work, &collision->scheduled, NULL);
2187 return;
2188 }
2189
8930caba 2190 /* claim and dequeue */
a62428c0 2191 debug_work_deactivate(work);
c8e55f36 2192 hlist_add_head(&worker->hentry, bwh);
c34056a3 2193 worker->current_work = work;
8cca0eea 2194 worker->current_cwq = cwq;
73f53c4a 2195 work_color = get_work_color(work);
7a22ad75 2196
a62428c0
TH
2197 list_del_init(&work->entry);
2198
fb0e7beb
TH
2199 /*
2200 * CPU intensive works don't participate in concurrency
2201 * management. They're the scheduler's responsibility.
2202 */
2203 if (unlikely(cpu_intensive))
2204 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2205
974271c4
TH
2206 /*
2207 * Unbound gcwq isn't concurrency managed and work items should be
2208 * executed ASAP. Wake up another worker if necessary.
2209 */
63d95a91
TH
2210 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2211 wake_up_worker(pool);
974271c4 2212
8930caba 2213 /*
23657bb1
TH
2214 * Record the last CPU and clear PENDING which should be the last
2215 * update to @work. Also, do this inside @gcwq->lock so that
2216 * PENDING and queued state changes happen together while IRQ is
2217 * disabled.
8930caba 2218 */
8930caba 2219 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2220
8930caba 2221 spin_unlock_irq(&gcwq->lock);
959d1af8 2222
e159489b 2223 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2224 lock_map_acquire(&lockdep_map);
e36c886a 2225 trace_workqueue_execute_start(work);
a62428c0 2226 f(work);
e36c886a
AV
2227 /*
2228 * While we must be careful to not use "work" after this, the trace
2229 * point will only record its address.
2230 */
2231 trace_workqueue_execute_end(work);
a62428c0
TH
2232 lock_map_release(&lockdep_map);
2233 lock_map_release(&cwq->wq->lockdep_map);
2234
2235 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2236 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2237 " last function: %pf\n",
2238 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2239 debug_show_held_locks(current);
2240 dump_stack();
2241 }
2242
8b03ae3c 2243 spin_lock_irq(&gcwq->lock);
a62428c0 2244
fb0e7beb
TH
2245 /* clear cpu intensive status */
2246 if (unlikely(cpu_intensive))
2247 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2248
a62428c0 2249 /* we're done with it, release */
c8e55f36 2250 hlist_del_init(&worker->hentry);
c34056a3 2251 worker->current_work = NULL;
8cca0eea 2252 worker->current_cwq = NULL;
8a2e8e5d 2253 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2254}
2255
affee4b2
TH
2256/**
2257 * process_scheduled_works - process scheduled works
2258 * @worker: self
2259 *
2260 * Process all scheduled works. Please note that the scheduled list
2261 * may change while processing a work, so this function repeatedly
2262 * fetches a work from the top and executes it.
2263 *
2264 * CONTEXT:
8b03ae3c 2265 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2266 * multiple times.
2267 */
2268static void process_scheduled_works(struct worker *worker)
1da177e4 2269{
affee4b2
TH
2270 while (!list_empty(&worker->scheduled)) {
2271 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2272 struct work_struct, entry);
c34056a3 2273 process_one_work(worker, work);
1da177e4 2274 }
1da177e4
LT
2275}
2276
4690c4ab
TH
2277/**
2278 * worker_thread - the worker thread function
c34056a3 2279 * @__worker: self
4690c4ab 2280 *
e22bee78
TH
2281 * The gcwq worker thread function. There's a single dynamic pool of
2282 * these per each cpu. These workers process all works regardless of
2283 * their specific target workqueue. The only exception is works which
2284 * belong to workqueues with a rescuer which will be explained in
2285 * rescuer_thread().
4690c4ab 2286 */
c34056a3 2287static int worker_thread(void *__worker)
1da177e4 2288{
c34056a3 2289 struct worker *worker = __worker;
bd7bdd43
TH
2290 struct worker_pool *pool = worker->pool;
2291 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2292
e22bee78
TH
2293 /* tell the scheduler that this is a workqueue worker */
2294 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2295woke_up:
c8e55f36 2296 spin_lock_irq(&gcwq->lock);
1da177e4 2297
25511a47
TH
2298 /*
2299 * DIE can be set only while idle and REBIND set while busy has
2300 * @worker->rebind_work scheduled. Checking here is enough.
2301 */
2302 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2303 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2304
2305 if (worker->flags & WORKER_DIE) {
2306 worker->task->flags &= ~PF_WQ_WORKER;
2307 return 0;
2308 }
2309
2310 idle_worker_rebind(worker);
2311 goto woke_up;
c8e55f36 2312 }
affee4b2 2313
c8e55f36 2314 worker_leave_idle(worker);
db7bccf4 2315recheck:
e22bee78 2316 /* no more worker necessary? */
63d95a91 2317 if (!need_more_worker(pool))
e22bee78
TH
2318 goto sleep;
2319
2320 /* do we need to manage? */
63d95a91 2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2322 goto recheck;
2323
c8e55f36
TH
2324 /*
2325 * ->scheduled list can only be filled while a worker is
2326 * preparing to process a work or actually processing it.
2327 * Make sure nobody diddled with it while I was sleeping.
2328 */
2329 BUG_ON(!list_empty(&worker->scheduled));
2330
e22bee78
TH
2331 /*
2332 * When control reaches this point, we're guaranteed to have
2333 * at least one idle worker or that someone else has already
2334 * assumed the manager role.
2335 */
2336 worker_clr_flags(worker, WORKER_PREP);
2337
2338 do {
c8e55f36 2339 struct work_struct *work =
bd7bdd43 2340 list_first_entry(&pool->worklist,
c8e55f36
TH
2341 struct work_struct, entry);
2342
2343 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2344 /* optimization path, not strictly necessary */
2345 process_one_work(worker, work);
2346 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2347 process_scheduled_works(worker);
c8e55f36
TH
2348 } else {
2349 move_linked_works(work, &worker->scheduled, NULL);
2350 process_scheduled_works(worker);
affee4b2 2351 }
63d95a91 2352 } while (keep_working(pool));
e22bee78
TH
2353
2354 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2355sleep:
63d95a91 2356 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2357 goto recheck;
d313dd85 2358
c8e55f36 2359 /*
e22bee78
TH
2360 * gcwq->lock is held and there's no work to process and no
2361 * need to manage, sleep. Workers are woken up only while
2362 * holding gcwq->lock or from local cpu, so setting the
2363 * current state before releasing gcwq->lock is enough to
2364 * prevent losing any event.
c8e55f36
TH
2365 */
2366 worker_enter_idle(worker);
2367 __set_current_state(TASK_INTERRUPTIBLE);
2368 spin_unlock_irq(&gcwq->lock);
2369 schedule();
2370 goto woke_up;
1da177e4
LT
2371}
2372
e22bee78
TH
2373/**
2374 * rescuer_thread - the rescuer thread function
2375 * @__wq: the associated workqueue
2376 *
2377 * Workqueue rescuer thread function. There's one rescuer for each
2378 * workqueue which has WQ_RESCUER set.
2379 *
2380 * Regular work processing on a gcwq may block trying to create a new
2381 * worker which uses GFP_KERNEL allocation which has slight chance of
2382 * developing into deadlock if some works currently on the same queue
2383 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2384 * the problem rescuer solves.
2385 *
2386 * When such condition is possible, the gcwq summons rescuers of all
2387 * workqueues which have works queued on the gcwq and let them process
2388 * those works so that forward progress can be guaranteed.
2389 *
2390 * This should happen rarely.
2391 */
2392static int rescuer_thread(void *__wq)
2393{
2394 struct workqueue_struct *wq = __wq;
2395 struct worker *rescuer = wq->rescuer;
2396 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2397 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2398 unsigned int cpu;
2399
2400 set_user_nice(current, RESCUER_NICE_LEVEL);
2401repeat:
2402 set_current_state(TASK_INTERRUPTIBLE);
2403
2404 if (kthread_should_stop())
2405 return 0;
2406
f3421797
TH
2407 /*
2408 * See whether any cpu is asking for help. Unbounded
2409 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2410 */
f2e005aa 2411 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2412 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2413 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2414 struct worker_pool *pool = cwq->pool;
2415 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2416 struct work_struct *work, *n;
2417
2418 __set_current_state(TASK_RUNNING);
f2e005aa 2419 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2420
2421 /* migrate to the target cpu if possible */
bd7bdd43 2422 rescuer->pool = pool;
e22bee78
TH
2423 worker_maybe_bind_and_lock(rescuer);
2424
2425 /*
2426 * Slurp in all works issued via this workqueue and
2427 * process'em.
2428 */
2429 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2430 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2431 if (get_work_cwq(work) == cwq)
2432 move_linked_works(work, scheduled, &n);
2433
2434 process_scheduled_works(rescuer);
7576958a
TH
2435
2436 /*
2437 * Leave this gcwq. If keep_working() is %true, notify a
2438 * regular worker; otherwise, we end up with 0 concurrency
2439 * and stalling the execution.
2440 */
63d95a91
TH
2441 if (keep_working(pool))
2442 wake_up_worker(pool);
7576958a 2443
e22bee78
TH
2444 spin_unlock_irq(&gcwq->lock);
2445 }
2446
2447 schedule();
2448 goto repeat;
1da177e4
LT
2449}
2450
fc2e4d70
ON
2451struct wq_barrier {
2452 struct work_struct work;
2453 struct completion done;
2454};
2455
2456static void wq_barrier_func(struct work_struct *work)
2457{
2458 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2459 complete(&barr->done);
2460}
2461
4690c4ab
TH
2462/**
2463 * insert_wq_barrier - insert a barrier work
2464 * @cwq: cwq to insert barrier into
2465 * @barr: wq_barrier to insert
affee4b2
TH
2466 * @target: target work to attach @barr to
2467 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2468 *
affee4b2
TH
2469 * @barr is linked to @target such that @barr is completed only after
2470 * @target finishes execution. Please note that the ordering
2471 * guarantee is observed only with respect to @target and on the local
2472 * cpu.
2473 *
2474 * Currently, a queued barrier can't be canceled. This is because
2475 * try_to_grab_pending() can't determine whether the work to be
2476 * grabbed is at the head of the queue and thus can't clear LINKED
2477 * flag of the previous work while there must be a valid next work
2478 * after a work with LINKED flag set.
2479 *
2480 * Note that when @worker is non-NULL, @target may be modified
2481 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2482 *
2483 * CONTEXT:
8b03ae3c 2484 * spin_lock_irq(gcwq->lock).
4690c4ab 2485 */
83c22520 2486static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2487 struct wq_barrier *barr,
2488 struct work_struct *target, struct worker *worker)
fc2e4d70 2489{
affee4b2
TH
2490 struct list_head *head;
2491 unsigned int linked = 0;
2492
dc186ad7 2493 /*
8b03ae3c 2494 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2495 * as we know for sure that this will not trigger any of the
2496 * checks and call back into the fixup functions where we
2497 * might deadlock.
2498 */
ca1cab37 2499 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2500 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2501 init_completion(&barr->done);
83c22520 2502
affee4b2
TH
2503 /*
2504 * If @target is currently being executed, schedule the
2505 * barrier to the worker; otherwise, put it after @target.
2506 */
2507 if (worker)
2508 head = worker->scheduled.next;
2509 else {
2510 unsigned long *bits = work_data_bits(target);
2511
2512 head = target->entry.next;
2513 /* there can already be other linked works, inherit and set */
2514 linked = *bits & WORK_STRUCT_LINKED;
2515 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2516 }
2517
dc186ad7 2518 debug_work_activate(&barr->work);
affee4b2
TH
2519 insert_work(cwq, &barr->work, head,
2520 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2521}
2522
73f53c4a
TH
2523/**
2524 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2525 * @wq: workqueue being flushed
2526 * @flush_color: new flush color, < 0 for no-op
2527 * @work_color: new work color, < 0 for no-op
2528 *
2529 * Prepare cwqs for workqueue flushing.
2530 *
2531 * If @flush_color is non-negative, flush_color on all cwqs should be
2532 * -1. If no cwq has in-flight commands at the specified color, all
2533 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2534 * has in flight commands, its cwq->flush_color is set to
2535 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2536 * wakeup logic is armed and %true is returned.
2537 *
2538 * The caller should have initialized @wq->first_flusher prior to
2539 * calling this function with non-negative @flush_color. If
2540 * @flush_color is negative, no flush color update is done and %false
2541 * is returned.
2542 *
2543 * If @work_color is non-negative, all cwqs should have the same
2544 * work_color which is previous to @work_color and all will be
2545 * advanced to @work_color.
2546 *
2547 * CONTEXT:
2548 * mutex_lock(wq->flush_mutex).
2549 *
2550 * RETURNS:
2551 * %true if @flush_color >= 0 and there's something to flush. %false
2552 * otherwise.
2553 */
2554static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2555 int flush_color, int work_color)
1da177e4 2556{
73f53c4a
TH
2557 bool wait = false;
2558 unsigned int cpu;
1da177e4 2559
73f53c4a
TH
2560 if (flush_color >= 0) {
2561 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2562 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2563 }
2355b70f 2564
f3421797 2565 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2566 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2567 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2568
8b03ae3c 2569 spin_lock_irq(&gcwq->lock);
83c22520 2570
73f53c4a
TH
2571 if (flush_color >= 0) {
2572 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2573
73f53c4a
TH
2574 if (cwq->nr_in_flight[flush_color]) {
2575 cwq->flush_color = flush_color;
2576 atomic_inc(&wq->nr_cwqs_to_flush);
2577 wait = true;
2578 }
2579 }
1da177e4 2580
73f53c4a
TH
2581 if (work_color >= 0) {
2582 BUG_ON(work_color != work_next_color(cwq->work_color));
2583 cwq->work_color = work_color;
2584 }
1da177e4 2585
8b03ae3c 2586 spin_unlock_irq(&gcwq->lock);
1da177e4 2587 }
2355b70f 2588
73f53c4a
TH
2589 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2590 complete(&wq->first_flusher->done);
14441960 2591
73f53c4a 2592 return wait;
1da177e4
LT
2593}
2594
0fcb78c2 2595/**
1da177e4 2596 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2597 * @wq: workqueue to flush
1da177e4
LT
2598 *
2599 * Forces execution of the workqueue and blocks until its completion.
2600 * This is typically used in driver shutdown handlers.
2601 *
fc2e4d70
ON
2602 * We sleep until all works which were queued on entry have been handled,
2603 * but we are not livelocked by new incoming ones.
1da177e4 2604 */
7ad5b3a5 2605void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2606{
73f53c4a
TH
2607 struct wq_flusher this_flusher = {
2608 .list = LIST_HEAD_INIT(this_flusher.list),
2609 .flush_color = -1,
2610 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2611 };
2612 int next_color;
1da177e4 2613
3295f0ef
IM
2614 lock_map_acquire(&wq->lockdep_map);
2615 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2616
2617 mutex_lock(&wq->flush_mutex);
2618
2619 /*
2620 * Start-to-wait phase
2621 */
2622 next_color = work_next_color(wq->work_color);
2623
2624 if (next_color != wq->flush_color) {
2625 /*
2626 * Color space is not full. The current work_color
2627 * becomes our flush_color and work_color is advanced
2628 * by one.
2629 */
2630 BUG_ON(!list_empty(&wq->flusher_overflow));
2631 this_flusher.flush_color = wq->work_color;
2632 wq->work_color = next_color;
2633
2634 if (!wq->first_flusher) {
2635 /* no flush in progress, become the first flusher */
2636 BUG_ON(wq->flush_color != this_flusher.flush_color);
2637
2638 wq->first_flusher = &this_flusher;
2639
2640 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2641 wq->work_color)) {
2642 /* nothing to flush, done */
2643 wq->flush_color = next_color;
2644 wq->first_flusher = NULL;
2645 goto out_unlock;
2646 }
2647 } else {
2648 /* wait in queue */
2649 BUG_ON(wq->flush_color == this_flusher.flush_color);
2650 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2651 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2652 }
2653 } else {
2654 /*
2655 * Oops, color space is full, wait on overflow queue.
2656 * The next flush completion will assign us
2657 * flush_color and transfer to flusher_queue.
2658 */
2659 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2660 }
2661
2662 mutex_unlock(&wq->flush_mutex);
2663
2664 wait_for_completion(&this_flusher.done);
2665
2666 /*
2667 * Wake-up-and-cascade phase
2668 *
2669 * First flushers are responsible for cascading flushes and
2670 * handling overflow. Non-first flushers can simply return.
2671 */
2672 if (wq->first_flusher != &this_flusher)
2673 return;
2674
2675 mutex_lock(&wq->flush_mutex);
2676
4ce48b37
TH
2677 /* we might have raced, check again with mutex held */
2678 if (wq->first_flusher != &this_flusher)
2679 goto out_unlock;
2680
73f53c4a
TH
2681 wq->first_flusher = NULL;
2682
2683 BUG_ON(!list_empty(&this_flusher.list));
2684 BUG_ON(wq->flush_color != this_flusher.flush_color);
2685
2686 while (true) {
2687 struct wq_flusher *next, *tmp;
2688
2689 /* complete all the flushers sharing the current flush color */
2690 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691 if (next->flush_color != wq->flush_color)
2692 break;
2693 list_del_init(&next->list);
2694 complete(&next->done);
2695 }
2696
2697 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2698 wq->flush_color != work_next_color(wq->work_color));
2699
2700 /* this flush_color is finished, advance by one */
2701 wq->flush_color = work_next_color(wq->flush_color);
2702
2703 /* one color has been freed, handle overflow queue */
2704 if (!list_empty(&wq->flusher_overflow)) {
2705 /*
2706 * Assign the same color to all overflowed
2707 * flushers, advance work_color and append to
2708 * flusher_queue. This is the start-to-wait
2709 * phase for these overflowed flushers.
2710 */
2711 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712 tmp->flush_color = wq->work_color;
2713
2714 wq->work_color = work_next_color(wq->work_color);
2715
2716 list_splice_tail_init(&wq->flusher_overflow,
2717 &wq->flusher_queue);
2718 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2719 }
2720
2721 if (list_empty(&wq->flusher_queue)) {
2722 BUG_ON(wq->flush_color != wq->work_color);
2723 break;
2724 }
2725
2726 /*
2727 * Need to flush more colors. Make the next flusher
2728 * the new first flusher and arm cwqs.
2729 */
2730 BUG_ON(wq->flush_color == wq->work_color);
2731 BUG_ON(wq->flush_color != next->flush_color);
2732
2733 list_del_init(&next->list);
2734 wq->first_flusher = next;
2735
2736 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2737 break;
2738
2739 /*
2740 * Meh... this color is already done, clear first
2741 * flusher and repeat cascading.
2742 */
2743 wq->first_flusher = NULL;
2744 }
2745
2746out_unlock:
2747 mutex_unlock(&wq->flush_mutex);
1da177e4 2748}
ae90dd5d 2749EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2750
9c5a2ba7
TH
2751/**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty. While draining is in progress,
2756 * only chain queueing is allowed. IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it. @wq is flushed
2758 * repeatedly until it becomes empty. The number of flushing is detemined
2759 * by the depth of chaining and should be relatively short. Whine if it
2760 * takes too long.
2761 */
2762void drain_workqueue(struct workqueue_struct *wq)
2763{
2764 unsigned int flush_cnt = 0;
2765 unsigned int cpu;
2766
2767 /*
2768 * __queue_work() needs to test whether there are drainers, is much
2769 * hotter than drain_workqueue() and already looks at @wq->flags.
2770 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771 */
2772 spin_lock(&workqueue_lock);
2773 if (!wq->nr_drainers++)
2774 wq->flags |= WQ_DRAINING;
2775 spin_unlock(&workqueue_lock);
2776reflush:
2777 flush_workqueue(wq);
2778
2779 for_each_cwq_cpu(cpu, wq) {
2780 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2781 bool drained;
9c5a2ba7 2782
bd7bdd43 2783 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2784 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2785 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2786
2787 if (drained)
9c5a2ba7
TH
2788 continue;
2789
2790 if (++flush_cnt == 10 ||
2791 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2792 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2793 wq->name, flush_cnt);
9c5a2ba7
TH
2794 goto reflush;
2795 }
2796
2797 spin_lock(&workqueue_lock);
2798 if (!--wq->nr_drainers)
2799 wq->flags &= ~WQ_DRAINING;
2800 spin_unlock(&workqueue_lock);
2801}
2802EXPORT_SYMBOL_GPL(drain_workqueue);
2803
baf59022
TH
2804static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2805 bool wait_executing)
db700897 2806{
affee4b2 2807 struct worker *worker = NULL;
8b03ae3c 2808 struct global_cwq *gcwq;
db700897 2809 struct cpu_workqueue_struct *cwq;
db700897
ON
2810
2811 might_sleep();
7a22ad75
TH
2812 gcwq = get_work_gcwq(work);
2813 if (!gcwq)
baf59022 2814 return false;
db700897 2815
8b03ae3c 2816 spin_lock_irq(&gcwq->lock);
db700897
ON
2817 if (!list_empty(&work->entry)) {
2818 /*
2819 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2820 * If it was re-queued to a different gcwq under us, we
2821 * are not going to wait.
db700897
ON
2822 */
2823 smp_rmb();
7a22ad75 2824 cwq = get_work_cwq(work);
bd7bdd43 2825 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2826 goto already_gone;
baf59022 2827 } else if (wait_executing) {
7a22ad75 2828 worker = find_worker_executing_work(gcwq, work);
affee4b2 2829 if (!worker)
4690c4ab 2830 goto already_gone;
7a22ad75 2831 cwq = worker->current_cwq;
baf59022
TH
2832 } else
2833 goto already_gone;
db700897 2834
baf59022 2835 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2836 spin_unlock_irq(&gcwq->lock);
7a22ad75 2837
e159489b
TH
2838 /*
2839 * If @max_active is 1 or rescuer is in use, flushing another work
2840 * item on the same workqueue may lead to deadlock. Make sure the
2841 * flusher is not running on the same workqueue by verifying write
2842 * access.
2843 */
2844 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2845 lock_map_acquire(&cwq->wq->lockdep_map);
2846 else
2847 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2848 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2849
401a8d04 2850 return true;
4690c4ab 2851already_gone:
8b03ae3c 2852 spin_unlock_irq(&gcwq->lock);
401a8d04 2853 return false;
db700897 2854}
baf59022
TH
2855
2856/**
2857 * flush_work - wait for a work to finish executing the last queueing instance
2858 * @work: the work to flush
2859 *
2860 * Wait until @work has finished execution. This function considers
2861 * only the last queueing instance of @work. If @work has been
2862 * enqueued across different CPUs on a non-reentrant workqueue or on
2863 * multiple workqueues, @work might still be executing on return on
2864 * some of the CPUs from earlier queueing.
2865 *
2866 * If @work was queued only on a non-reentrant, ordered or unbound
2867 * workqueue, @work is guaranteed to be idle on return if it hasn't
2868 * been requeued since flush started.
2869 *
2870 * RETURNS:
2871 * %true if flush_work() waited for the work to finish execution,
2872 * %false if it was already idle.
2873 */
2874bool flush_work(struct work_struct *work)
2875{
2876 struct wq_barrier barr;
2877
0976dfc1
SB
2878 lock_map_acquire(&work->lockdep_map);
2879 lock_map_release(&work->lockdep_map);
2880
baf59022
TH
2881 if (start_flush_work(work, &barr, true)) {
2882 wait_for_completion(&barr.done);
2883 destroy_work_on_stack(&barr.work);
2884 return true;
2885 } else
2886 return false;
2887}
db700897
ON
2888EXPORT_SYMBOL_GPL(flush_work);
2889
401a8d04
TH
2890static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2891{
2892 struct wq_barrier barr;
2893 struct worker *worker;
2894
2895 spin_lock_irq(&gcwq->lock);
2896
2897 worker = find_worker_executing_work(gcwq, work);
2898 if (unlikely(worker))
2899 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2900
2901 spin_unlock_irq(&gcwq->lock);
2902
2903 if (unlikely(worker)) {
2904 wait_for_completion(&barr.done);
2905 destroy_work_on_stack(&barr.work);
2906 return true;
2907 } else
2908 return false;
2909}
2910
2911static bool wait_on_work(struct work_struct *work)
2912{
2913 bool ret = false;
2914 int cpu;
2915
2916 might_sleep();
2917
2918 lock_map_acquire(&work->lockdep_map);
2919 lock_map_release(&work->lockdep_map);
2920
2921 for_each_gcwq_cpu(cpu)
2922 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2923 return ret;
2924}
2925
09383498
TH
2926/**
2927 * flush_work_sync - wait until a work has finished execution
2928 * @work: the work to flush
2929 *
2930 * Wait until @work has finished execution. On return, it's
2931 * guaranteed that all queueing instances of @work which happened
2932 * before this function is called are finished. In other words, if
2933 * @work hasn't been requeued since this function was called, @work is
2934 * guaranteed to be idle on return.
2935 *
2936 * RETURNS:
2937 * %true if flush_work_sync() waited for the work to finish execution,
2938 * %false if it was already idle.
2939 */
2940bool flush_work_sync(struct work_struct *work)
2941{
2942 struct wq_barrier barr;
2943 bool pending, waited;
2944
2945 /* we'll wait for executions separately, queue barr only if pending */
2946 pending = start_flush_work(work, &barr, false);
2947
2948 /* wait for executions to finish */
2949 waited = wait_on_work(work);
2950
2951 /* wait for the pending one */
2952 if (pending) {
2953 wait_for_completion(&barr.done);
2954 destroy_work_on_stack(&barr.work);
2955 }
2956
2957 return pending || waited;
2958}
2959EXPORT_SYMBOL_GPL(flush_work_sync);
2960
36e227d2 2961static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2962{
bbb68dfa 2963 unsigned long flags;
1f1f642e
ON
2964 int ret;
2965
2966 do {
bbb68dfa
TH
2967 ret = try_to_grab_pending(work, is_dwork, &flags);
2968 /*
2969 * If someone else is canceling, wait for the same event it
2970 * would be waiting for before retrying.
2971 */
2972 if (unlikely(ret == -ENOENT))
2973 wait_on_work(work);
1f1f642e
ON
2974 } while (unlikely(ret < 0));
2975
bbb68dfa
TH
2976 /* tell other tasks trying to grab @work to back off */
2977 mark_work_canceling(work);
2978 local_irq_restore(flags);
2979
2980 wait_on_work(work);
7a22ad75 2981 clear_work_data(work);
1f1f642e
ON
2982 return ret;
2983}
2984
6e84d644 2985/**
401a8d04
TH
2986 * cancel_work_sync - cancel a work and wait for it to finish
2987 * @work: the work to cancel
6e84d644 2988 *
401a8d04
TH
2989 * Cancel @work and wait for its execution to finish. This function
2990 * can be used even if the work re-queues itself or migrates to
2991 * another workqueue. On return from this function, @work is
2992 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2993 *
401a8d04
TH
2994 * cancel_work_sync(&delayed_work->work) must not be used for
2995 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2996 *
401a8d04 2997 * The caller must ensure that the workqueue on which @work was last
6e84d644 2998 * queued can't be destroyed before this function returns.
401a8d04
TH
2999 *
3000 * RETURNS:
3001 * %true if @work was pending, %false otherwise.
6e84d644 3002 */
401a8d04 3003bool cancel_work_sync(struct work_struct *work)
6e84d644 3004{
36e227d2 3005 return __cancel_work_timer(work, false);
b89deed3 3006}
28e53bdd 3007EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3008
6e84d644 3009/**
401a8d04
TH
3010 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3011 * @dwork: the delayed work to flush
6e84d644 3012 *
401a8d04
TH
3013 * Delayed timer is cancelled and the pending work is queued for
3014 * immediate execution. Like flush_work(), this function only
3015 * considers the last queueing instance of @dwork.
1f1f642e 3016 *
401a8d04
TH
3017 * RETURNS:
3018 * %true if flush_work() waited for the work to finish execution,
3019 * %false if it was already idle.
6e84d644 3020 */
401a8d04
TH
3021bool flush_delayed_work(struct delayed_work *dwork)
3022{
8930caba 3023 local_irq_disable();
401a8d04 3024 if (del_timer_sync(&dwork->timer))
1265057f 3025 __queue_work(dwork->cpu,
401a8d04 3026 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3027 local_irq_enable();
401a8d04
TH
3028 return flush_work(&dwork->work);
3029}
3030EXPORT_SYMBOL(flush_delayed_work);
3031
09383498
TH
3032/**
3033 * flush_delayed_work_sync - wait for a dwork to finish
3034 * @dwork: the delayed work to flush
3035 *
3036 * Delayed timer is cancelled and the pending work is queued for
3037 * execution immediately. Other than timer handling, its behavior
3038 * is identical to flush_work_sync().
3039 *
3040 * RETURNS:
3041 * %true if flush_work_sync() waited for the work to finish execution,
3042 * %false if it was already idle.
3043 */
3044bool flush_delayed_work_sync(struct delayed_work *dwork)
3045{
8930caba 3046 local_irq_disable();
09383498 3047 if (del_timer_sync(&dwork->timer))
1265057f 3048 __queue_work(dwork->cpu,
09383498 3049 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3050 local_irq_enable();
09383498
TH
3051 return flush_work_sync(&dwork->work);
3052}
3053EXPORT_SYMBOL(flush_delayed_work_sync);
3054
401a8d04
TH
3055/**
3056 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3057 * @dwork: the delayed work cancel
3058 *
3059 * This is cancel_work_sync() for delayed works.
3060 *
3061 * RETURNS:
3062 * %true if @dwork was pending, %false otherwise.
3063 */
3064bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3065{
36e227d2 3066 return __cancel_work_timer(&dwork->work, true);
6e84d644 3067}
f5a421a4 3068EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3069
d4283e93 3070/**
0a13c00e
TH
3071 * schedule_work_on - put work task on a specific cpu
3072 * @cpu: cpu to put the work task on
3073 * @work: job to be done
3074 *
3075 * This puts a job on a specific cpu
3076 */
d4283e93 3077bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3078{
3079 return queue_work_on(cpu, system_wq, work);
3080}
3081EXPORT_SYMBOL(schedule_work_on);
3082
0fcb78c2
REB
3083/**
3084 * schedule_work - put work task in global workqueue
3085 * @work: job to be done
3086 *
d4283e93
TH
3087 * Returns %false if @work was already on the kernel-global workqueue and
3088 * %true otherwise.
5b0f437d
BVA
3089 *
3090 * This puts a job in the kernel-global workqueue if it was not already
3091 * queued and leaves it in the same position on the kernel-global
3092 * workqueue otherwise.
0fcb78c2 3093 */
d4283e93 3094bool schedule_work(struct work_struct *work)
1da177e4 3095{
d320c038 3096 return queue_work(system_wq, work);
1da177e4 3097}
ae90dd5d 3098EXPORT_SYMBOL(schedule_work);
1da177e4 3099
0a13c00e
TH
3100/**
3101 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3102 * @cpu: cpu to use
3103 * @dwork: job to be done
3104 * @delay: number of jiffies to wait
c1a220e7 3105 *
0a13c00e
TH
3106 * After waiting for a given time this puts a job in the kernel-global
3107 * workqueue on the specified CPU.
c1a220e7 3108 */
d4283e93
TH
3109bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3110 unsigned long delay)
c1a220e7 3111{
0a13c00e 3112 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3113}
0a13c00e 3114EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3115
0fcb78c2
REB
3116/**
3117 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3118 * @dwork: job to be done
3119 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3120 *
3121 * After waiting for a given time this puts a job in the kernel-global
3122 * workqueue.
3123 */
d4283e93 3124bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3125{
d320c038 3126 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3127}
ae90dd5d 3128EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3129
b6136773 3130/**
31ddd871 3131 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3132 * @func: the function to call
b6136773 3133 *
31ddd871
TH
3134 * schedule_on_each_cpu() executes @func on each online CPU using the
3135 * system workqueue and blocks until all CPUs have completed.
b6136773 3136 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3137 *
3138 * RETURNS:
3139 * 0 on success, -errno on failure.
b6136773 3140 */
65f27f38 3141int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3142{
3143 int cpu;
38f51568 3144 struct work_struct __percpu *works;
15316ba8 3145
b6136773
AM
3146 works = alloc_percpu(struct work_struct);
3147 if (!works)
15316ba8 3148 return -ENOMEM;
b6136773 3149
93981800
TH
3150 get_online_cpus();
3151
15316ba8 3152 for_each_online_cpu(cpu) {
9bfb1839
IM
3153 struct work_struct *work = per_cpu_ptr(works, cpu);
3154
3155 INIT_WORK(work, func);
b71ab8c2 3156 schedule_work_on(cpu, work);
65a64464 3157 }
93981800
TH
3158
3159 for_each_online_cpu(cpu)
3160 flush_work(per_cpu_ptr(works, cpu));
3161
95402b38 3162 put_online_cpus();
b6136773 3163 free_percpu(works);
15316ba8
CL
3164 return 0;
3165}
3166
eef6a7d5
AS
3167/**
3168 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3169 *
3170 * Forces execution of the kernel-global workqueue and blocks until its
3171 * completion.
3172 *
3173 * Think twice before calling this function! It's very easy to get into
3174 * trouble if you don't take great care. Either of the following situations
3175 * will lead to deadlock:
3176 *
3177 * One of the work items currently on the workqueue needs to acquire
3178 * a lock held by your code or its caller.
3179 *
3180 * Your code is running in the context of a work routine.
3181 *
3182 * They will be detected by lockdep when they occur, but the first might not
3183 * occur very often. It depends on what work items are on the workqueue and
3184 * what locks they need, which you have no control over.
3185 *
3186 * In most situations flushing the entire workqueue is overkill; you merely
3187 * need to know that a particular work item isn't queued and isn't running.
3188 * In such cases you should use cancel_delayed_work_sync() or
3189 * cancel_work_sync() instead.
3190 */
1da177e4
LT
3191void flush_scheduled_work(void)
3192{
d320c038 3193 flush_workqueue(system_wq);
1da177e4 3194}
ae90dd5d 3195EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3196
1fa44eca
JB
3197/**
3198 * execute_in_process_context - reliably execute the routine with user context
3199 * @fn: the function to execute
1fa44eca
JB
3200 * @ew: guaranteed storage for the execute work structure (must
3201 * be available when the work executes)
3202 *
3203 * Executes the function immediately if process context is available,
3204 * otherwise schedules the function for delayed execution.
3205 *
3206 * Returns: 0 - function was executed
3207 * 1 - function was scheduled for execution
3208 */
65f27f38 3209int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3210{
3211 if (!in_interrupt()) {
65f27f38 3212 fn(&ew->work);
1fa44eca
JB
3213 return 0;
3214 }
3215
65f27f38 3216 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3217 schedule_work(&ew->work);
3218
3219 return 1;
3220}
3221EXPORT_SYMBOL_GPL(execute_in_process_context);
3222
1da177e4
LT
3223int keventd_up(void)
3224{
d320c038 3225 return system_wq != NULL;
1da177e4
LT
3226}
3227
bdbc5dd7 3228static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3229{
65a64464 3230 /*
0f900049
TH
3231 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3232 * Make sure that the alignment isn't lower than that of
3233 * unsigned long long.
65a64464 3234 */
0f900049
TH
3235 const size_t size = sizeof(struct cpu_workqueue_struct);
3236 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3237 __alignof__(unsigned long long));
65a64464 3238
e06ffa1e 3239 if (!(wq->flags & WQ_UNBOUND))
f3421797 3240 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3241 else {
f3421797
TH
3242 void *ptr;
3243
3244 /*
3245 * Allocate enough room to align cwq and put an extra
3246 * pointer at the end pointing back to the originally
3247 * allocated pointer which will be used for free.
3248 */
3249 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3250 if (ptr) {
3251 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3252 *(void **)(wq->cpu_wq.single + 1) = ptr;
3253 }
bdbc5dd7 3254 }
f3421797 3255
0415b00d 3256 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3257 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3258 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3259}
3260
bdbc5dd7 3261static void free_cwqs(struct workqueue_struct *wq)
0f900049 3262{
e06ffa1e 3263 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3264 free_percpu(wq->cpu_wq.pcpu);
3265 else if (wq->cpu_wq.single) {
3266 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3267 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3268 }
0f900049
TH
3269}
3270
f3421797
TH
3271static int wq_clamp_max_active(int max_active, unsigned int flags,
3272 const char *name)
b71ab8c2 3273{
f3421797
TH
3274 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3275
3276 if (max_active < 1 || max_active > lim)
044c782c
VI
3277 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3278 max_active, name, 1, lim);
b71ab8c2 3279
f3421797 3280 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3281}
3282
b196be89 3283struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3284 unsigned int flags,
3285 int max_active,
3286 struct lock_class_key *key,
b196be89 3287 const char *lock_name, ...)
1da177e4 3288{
b196be89 3289 va_list args, args1;
1da177e4 3290 struct workqueue_struct *wq;
c34056a3 3291 unsigned int cpu;
b196be89
TH
3292 size_t namelen;
3293
3294 /* determine namelen, allocate wq and format name */
3295 va_start(args, lock_name);
3296 va_copy(args1, args);
3297 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3298
3299 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3300 if (!wq)
3301 goto err;
3302
3303 vsnprintf(wq->name, namelen, fmt, args1);
3304 va_end(args);
3305 va_end(args1);
1da177e4 3306
6370a6ad
TH
3307 /*
3308 * Workqueues which may be used during memory reclaim should
3309 * have a rescuer to guarantee forward progress.
3310 */
3311 if (flags & WQ_MEM_RECLAIM)
3312 flags |= WQ_RESCUER;
3313
d320c038 3314 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3315 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3316
b196be89 3317 /* init wq */
97e37d7b 3318 wq->flags = flags;
a0a1a5fd 3319 wq->saved_max_active = max_active;
73f53c4a
TH
3320 mutex_init(&wq->flush_mutex);
3321 atomic_set(&wq->nr_cwqs_to_flush, 0);
3322 INIT_LIST_HEAD(&wq->flusher_queue);
3323 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3324
eb13ba87 3325 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3326 INIT_LIST_HEAD(&wq->list);
3af24433 3327
bdbc5dd7
TH
3328 if (alloc_cwqs(wq) < 0)
3329 goto err;
3330
f3421797 3331 for_each_cwq_cpu(cpu, wq) {
1537663f 3332 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3333 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3334 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3335
0f900049 3336 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3337 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3338 cwq->wq = wq;
73f53c4a 3339 cwq->flush_color = -1;
1e19ffc6 3340 cwq->max_active = max_active;
1e19ffc6 3341 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3342 }
1537663f 3343
e22bee78
TH
3344 if (flags & WQ_RESCUER) {
3345 struct worker *rescuer;
3346
f2e005aa 3347 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3348 goto err;
3349
3350 wq->rescuer = rescuer = alloc_worker();
3351 if (!rescuer)
3352 goto err;
3353
b196be89
TH
3354 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3355 wq->name);
e22bee78
TH
3356 if (IS_ERR(rescuer->task))
3357 goto err;
3358
e22bee78
TH
3359 rescuer->task->flags |= PF_THREAD_BOUND;
3360 wake_up_process(rescuer->task);
3af24433
ON
3361 }
3362
a0a1a5fd
TH
3363 /*
3364 * workqueue_lock protects global freeze state and workqueues
3365 * list. Grab it, set max_active accordingly and add the new
3366 * workqueue to workqueues list.
3367 */
1537663f 3368 spin_lock(&workqueue_lock);
a0a1a5fd 3369
58a69cb4 3370 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3371 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3372 get_cwq(cpu, wq)->max_active = 0;
3373
1537663f 3374 list_add(&wq->list, &workqueues);
a0a1a5fd 3375
1537663f
TH
3376 spin_unlock(&workqueue_lock);
3377
3af24433 3378 return wq;
4690c4ab
TH
3379err:
3380 if (wq) {
bdbc5dd7 3381 free_cwqs(wq);
f2e005aa 3382 free_mayday_mask(wq->mayday_mask);
e22bee78 3383 kfree(wq->rescuer);
4690c4ab
TH
3384 kfree(wq);
3385 }
3386 return NULL;
3af24433 3387}
d320c038 3388EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3389
3af24433
ON
3390/**
3391 * destroy_workqueue - safely terminate a workqueue
3392 * @wq: target workqueue
3393 *
3394 * Safely destroy a workqueue. All work currently pending will be done first.
3395 */
3396void destroy_workqueue(struct workqueue_struct *wq)
3397{
c8e55f36 3398 unsigned int cpu;
3af24433 3399
9c5a2ba7
TH
3400 /* drain it before proceeding with destruction */
3401 drain_workqueue(wq);
c8efcc25 3402
a0a1a5fd
TH
3403 /*
3404 * wq list is used to freeze wq, remove from list after
3405 * flushing is complete in case freeze races us.
3406 */
95402b38 3407 spin_lock(&workqueue_lock);
b1f4ec17 3408 list_del(&wq->list);
95402b38 3409 spin_unlock(&workqueue_lock);
3af24433 3410
e22bee78 3411 /* sanity check */
f3421797 3412 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3413 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3414 int i;
3415
73f53c4a
TH
3416 for (i = 0; i < WORK_NR_COLORS; i++)
3417 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3418 BUG_ON(cwq->nr_active);
3419 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3420 }
9b41ea72 3421
e22bee78
TH
3422 if (wq->flags & WQ_RESCUER) {
3423 kthread_stop(wq->rescuer->task);
f2e005aa 3424 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3425 kfree(wq->rescuer);
e22bee78
TH
3426 }
3427
bdbc5dd7 3428 free_cwqs(wq);
3af24433
ON
3429 kfree(wq);
3430}
3431EXPORT_SYMBOL_GPL(destroy_workqueue);
3432
dcd989cb
TH
3433/**
3434 * workqueue_set_max_active - adjust max_active of a workqueue
3435 * @wq: target workqueue
3436 * @max_active: new max_active value.
3437 *
3438 * Set max_active of @wq to @max_active.
3439 *
3440 * CONTEXT:
3441 * Don't call from IRQ context.
3442 */
3443void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3444{
3445 unsigned int cpu;
3446
f3421797 3447 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3448
3449 spin_lock(&workqueue_lock);
3450
3451 wq->saved_max_active = max_active;
3452
f3421797 3453 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3454 struct global_cwq *gcwq = get_gcwq(cpu);
3455
3456 spin_lock_irq(&gcwq->lock);
3457
58a69cb4 3458 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3459 !(gcwq->flags & GCWQ_FREEZING))
3460 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3461
dcd989cb 3462 spin_unlock_irq(&gcwq->lock);
65a64464 3463 }
93981800 3464
dcd989cb 3465 spin_unlock(&workqueue_lock);
15316ba8 3466}
dcd989cb 3467EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3468
eef6a7d5 3469/**
dcd989cb
TH
3470 * workqueue_congested - test whether a workqueue is congested
3471 * @cpu: CPU in question
3472 * @wq: target workqueue
eef6a7d5 3473 *
dcd989cb
TH
3474 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3475 * no synchronization around this function and the test result is
3476 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3477 *
dcd989cb
TH
3478 * RETURNS:
3479 * %true if congested, %false otherwise.
eef6a7d5 3480 */
dcd989cb 3481bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3482{
dcd989cb
TH
3483 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3484
3485 return !list_empty(&cwq->delayed_works);
1da177e4 3486}
dcd989cb 3487EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3488
1fa44eca 3489/**
dcd989cb
TH
3490 * work_cpu - return the last known associated cpu for @work
3491 * @work: the work of interest
1fa44eca 3492 *
dcd989cb 3493 * RETURNS:
bdbc5dd7 3494 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3495 */
dcd989cb 3496unsigned int work_cpu(struct work_struct *work)
1fa44eca 3497{
dcd989cb 3498 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3499
bdbc5dd7 3500 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3501}
dcd989cb 3502EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3503
dcd989cb
TH
3504/**
3505 * work_busy - test whether a work is currently pending or running
3506 * @work: the work to be tested
3507 *
3508 * Test whether @work is currently pending or running. There is no
3509 * synchronization around this function and the test result is
3510 * unreliable and only useful as advisory hints or for debugging.
3511 * Especially for reentrant wqs, the pending state might hide the
3512 * running state.
3513 *
3514 * RETURNS:
3515 * OR'd bitmask of WORK_BUSY_* bits.
3516 */
3517unsigned int work_busy(struct work_struct *work)
1da177e4 3518{
dcd989cb
TH
3519 struct global_cwq *gcwq = get_work_gcwq(work);
3520 unsigned long flags;
3521 unsigned int ret = 0;
1da177e4 3522
dcd989cb
TH
3523 if (!gcwq)
3524 return false;
1da177e4 3525
dcd989cb 3526 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3527
dcd989cb
TH
3528 if (work_pending(work))
3529 ret |= WORK_BUSY_PENDING;
3530 if (find_worker_executing_work(gcwq, work))
3531 ret |= WORK_BUSY_RUNNING;
1da177e4 3532
dcd989cb 3533 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3534
dcd989cb 3535 return ret;
1da177e4 3536}
dcd989cb 3537EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3538
db7bccf4
TH
3539/*
3540 * CPU hotplug.
3541 *
e22bee78
TH
3542 * There are two challenges in supporting CPU hotplug. Firstly, there
3543 * are a lot of assumptions on strong associations among work, cwq and
3544 * gcwq which make migrating pending and scheduled works very
3545 * difficult to implement without impacting hot paths. Secondly,
3546 * gcwqs serve mix of short, long and very long running works making
3547 * blocked draining impractical.
3548 *
628c78e7
TH
3549 * This is solved by allowing a gcwq to be disassociated from the CPU
3550 * running as an unbound one and allowing it to be reattached later if the
3551 * cpu comes back online.
db7bccf4 3552 */
1da177e4 3553
60373152 3554/* claim manager positions of all pools */
8db25e78 3555static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3556{
3557 struct worker_pool *pool;
3558
3559 for_each_worker_pool(pool, gcwq)
3560 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3561 spin_lock_irq(&gcwq->lock);
60373152
TH
3562}
3563
3564/* release manager positions */
8db25e78 3565static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3566{
3567 struct worker_pool *pool;
3568
8db25e78 3569 spin_unlock_irq(&gcwq->lock);
60373152
TH
3570 for_each_worker_pool(pool, gcwq)
3571 mutex_unlock(&pool->manager_mutex);
3572}
3573
628c78e7 3574static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3575{
628c78e7 3576 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3577 struct worker_pool *pool;
db7bccf4
TH
3578 struct worker *worker;
3579 struct hlist_node *pos;
3580 int i;
3af24433 3581
db7bccf4
TH
3582 BUG_ON(gcwq->cpu != smp_processor_id());
3583
8db25e78 3584 gcwq_claim_management_and_lock(gcwq);
3af24433 3585
f2d5a0ee
TH
3586 /*
3587 * We've claimed all manager positions. Make all workers unbound
3588 * and set DISASSOCIATED. Before this, all workers except for the
3589 * ones which are still executing works from before the last CPU
3590 * down must be on the cpu. After this, they may become diasporas.
3591 */
60373152 3592 for_each_worker_pool(pool, gcwq)
4ce62e9e 3593 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3594 worker->flags |= WORKER_UNBOUND;
3af24433 3595
db7bccf4 3596 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3597 worker->flags |= WORKER_UNBOUND;
06ba38a9 3598
f2d5a0ee
TH
3599 gcwq->flags |= GCWQ_DISASSOCIATED;
3600
8db25e78 3601 gcwq_release_management_and_unlock(gcwq);
628c78e7 3602
e22bee78 3603 /*
403c821d 3604 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3605 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3606 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3607 */
e22bee78 3608 schedule();
06ba38a9 3609
e22bee78 3610 /*
628c78e7
TH
3611 * Sched callbacks are disabled now. Zap nr_running. After this,
3612 * nr_running stays zero and need_more_worker() and keep_working()
3613 * are always true as long as the worklist is not empty. @gcwq now
3614 * behaves as unbound (in terms of concurrency management) gcwq
3615 * which is served by workers tied to the CPU.
3616 *
3617 * On return from this function, the current worker would trigger
3618 * unbound chain execution of pending work items if other workers
3619 * didn't already.
e22bee78 3620 */
4ce62e9e
TH
3621 for_each_worker_pool(pool, gcwq)
3622 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3623}
3af24433 3624
8db25e78
TH
3625/*
3626 * Workqueues should be brought up before normal priority CPU notifiers.
3627 * This will be registered high priority CPU notifier.
3628 */
3629static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3630 unsigned long action,
3631 void *hcpu)
3af24433
ON
3632{
3633 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3634 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3635 struct worker_pool *pool;
3ce63377 3636
8db25e78 3637 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3638 case CPU_UP_PREPARE:
4ce62e9e 3639 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3640 struct worker *worker;
3641
3642 if (pool->nr_workers)
3643 continue;
3644
3645 worker = create_worker(pool);
3646 if (!worker)
3647 return NOTIFY_BAD;
3648
3649 spin_lock_irq(&gcwq->lock);
3650 start_worker(worker);
3651 spin_unlock_irq(&gcwq->lock);
3af24433 3652 }
8db25e78 3653 break;
3af24433 3654
db7bccf4
TH
3655 case CPU_DOWN_FAILED:
3656 case CPU_ONLINE:
8db25e78 3657 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3658 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3659 rebind_workers(gcwq);
8db25e78 3660 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3661 break;
00dfcaf7 3662 }
65758202
TH
3663 return NOTIFY_OK;
3664}
3665
3666/*
3667 * Workqueues should be brought down after normal priority CPU notifiers.
3668 * This will be registered as low priority CPU notifier.
3669 */
3670static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3671 unsigned long action,
3672 void *hcpu)
3673{
8db25e78
TH
3674 unsigned int cpu = (unsigned long)hcpu;
3675 struct work_struct unbind_work;
3676
65758202
TH
3677 switch (action & ~CPU_TASKS_FROZEN) {
3678 case CPU_DOWN_PREPARE:
8db25e78
TH
3679 /* unbinding should happen on the local CPU */
3680 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3681 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3682 flush_work(&unbind_work);
3683 break;
65758202
TH
3684 }
3685 return NOTIFY_OK;
3686}
3687
2d3854a3 3688#ifdef CONFIG_SMP
8ccad40d 3689
2d3854a3 3690struct work_for_cpu {
6b44003e 3691 struct completion completion;
2d3854a3
RR
3692 long (*fn)(void *);
3693 void *arg;
3694 long ret;
3695};
3696
6b44003e 3697static int do_work_for_cpu(void *_wfc)
2d3854a3 3698{
6b44003e 3699 struct work_for_cpu *wfc = _wfc;
2d3854a3 3700 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3701 complete(&wfc->completion);
3702 return 0;
2d3854a3
RR
3703}
3704
3705/**
3706 * work_on_cpu - run a function in user context on a particular cpu
3707 * @cpu: the cpu to run on
3708 * @fn: the function to run
3709 * @arg: the function arg
3710 *
31ad9081
RR
3711 * This will return the value @fn returns.
3712 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3713 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3714 */
3715long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3716{
6b44003e
AM
3717 struct task_struct *sub_thread;
3718 struct work_for_cpu wfc = {
3719 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3720 .fn = fn,
3721 .arg = arg,
3722 };
3723
3724 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3725 if (IS_ERR(sub_thread))
3726 return PTR_ERR(sub_thread);
3727 kthread_bind(sub_thread, cpu);
3728 wake_up_process(sub_thread);
3729 wait_for_completion(&wfc.completion);
2d3854a3
RR
3730 return wfc.ret;
3731}
3732EXPORT_SYMBOL_GPL(work_on_cpu);
3733#endif /* CONFIG_SMP */
3734
a0a1a5fd
TH
3735#ifdef CONFIG_FREEZER
3736
3737/**
3738 * freeze_workqueues_begin - begin freezing workqueues
3739 *
58a69cb4
TH
3740 * Start freezing workqueues. After this function returns, all freezable
3741 * workqueues will queue new works to their frozen_works list instead of
3742 * gcwq->worklist.
a0a1a5fd
TH
3743 *
3744 * CONTEXT:
8b03ae3c 3745 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3746 */
3747void freeze_workqueues_begin(void)
3748{
a0a1a5fd
TH
3749 unsigned int cpu;
3750
3751 spin_lock(&workqueue_lock);
3752
3753 BUG_ON(workqueue_freezing);
3754 workqueue_freezing = true;
3755
f3421797 3756 for_each_gcwq_cpu(cpu) {
8b03ae3c 3757 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3758 struct workqueue_struct *wq;
8b03ae3c
TH
3759
3760 spin_lock_irq(&gcwq->lock);
3761
db7bccf4
TH
3762 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3763 gcwq->flags |= GCWQ_FREEZING;
3764
a0a1a5fd
TH
3765 list_for_each_entry(wq, &workqueues, list) {
3766 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3767
58a69cb4 3768 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3769 cwq->max_active = 0;
a0a1a5fd 3770 }
8b03ae3c
TH
3771
3772 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3773 }
3774
3775 spin_unlock(&workqueue_lock);
3776}
3777
3778/**
58a69cb4 3779 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3780 *
3781 * Check whether freezing is complete. This function must be called
3782 * between freeze_workqueues_begin() and thaw_workqueues().
3783 *
3784 * CONTEXT:
3785 * Grabs and releases workqueue_lock.
3786 *
3787 * RETURNS:
58a69cb4
TH
3788 * %true if some freezable workqueues are still busy. %false if freezing
3789 * is complete.
a0a1a5fd
TH
3790 */
3791bool freeze_workqueues_busy(void)
3792{
a0a1a5fd
TH
3793 unsigned int cpu;
3794 bool busy = false;
3795
3796 spin_lock(&workqueue_lock);
3797
3798 BUG_ON(!workqueue_freezing);
3799
f3421797 3800 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3801 struct workqueue_struct *wq;
a0a1a5fd
TH
3802 /*
3803 * nr_active is monotonically decreasing. It's safe
3804 * to peek without lock.
3805 */
3806 list_for_each_entry(wq, &workqueues, list) {
3807 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3808
58a69cb4 3809 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3810 continue;
3811
3812 BUG_ON(cwq->nr_active < 0);
3813 if (cwq->nr_active) {
3814 busy = true;
3815 goto out_unlock;
3816 }
3817 }
3818 }
3819out_unlock:
3820 spin_unlock(&workqueue_lock);
3821 return busy;
3822}
3823
3824/**
3825 * thaw_workqueues - thaw workqueues
3826 *
3827 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3828 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3829 *
3830 * CONTEXT:
8b03ae3c 3831 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3832 */
3833void thaw_workqueues(void)
3834{
a0a1a5fd
TH
3835 unsigned int cpu;
3836
3837 spin_lock(&workqueue_lock);
3838
3839 if (!workqueue_freezing)
3840 goto out_unlock;
3841
f3421797 3842 for_each_gcwq_cpu(cpu) {
8b03ae3c 3843 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3844 struct worker_pool *pool;
bdbc5dd7 3845 struct workqueue_struct *wq;
8b03ae3c
TH
3846
3847 spin_lock_irq(&gcwq->lock);
3848
db7bccf4
TH
3849 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3850 gcwq->flags &= ~GCWQ_FREEZING;
3851
a0a1a5fd
TH
3852 list_for_each_entry(wq, &workqueues, list) {
3853 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3854
58a69cb4 3855 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3856 continue;
3857
a0a1a5fd
TH
3858 /* restore max_active and repopulate worklist */
3859 cwq->max_active = wq->saved_max_active;
3860
3861 while (!list_empty(&cwq->delayed_works) &&
3862 cwq->nr_active < cwq->max_active)
3863 cwq_activate_first_delayed(cwq);
a0a1a5fd 3864 }
8b03ae3c 3865
4ce62e9e
TH
3866 for_each_worker_pool(pool, gcwq)
3867 wake_up_worker(pool);
e22bee78 3868
8b03ae3c 3869 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3870 }
3871
3872 workqueue_freezing = false;
3873out_unlock:
3874 spin_unlock(&workqueue_lock);
3875}
3876#endif /* CONFIG_FREEZER */
3877
6ee0578b 3878static int __init init_workqueues(void)
1da177e4 3879{
c34056a3 3880 unsigned int cpu;
c8e55f36 3881 int i;
c34056a3 3882
b5490077
TH
3883 /* make sure we have enough bits for OFFQ CPU number */
3884 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3885 WORK_CPU_LAST);
3886
65758202
TH
3887 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3888 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3889
3890 /* initialize gcwqs */
f3421797 3891 for_each_gcwq_cpu(cpu) {
8b03ae3c 3892 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3893 struct worker_pool *pool;
8b03ae3c
TH
3894
3895 spin_lock_init(&gcwq->lock);
3896 gcwq->cpu = cpu;
477a3c33 3897 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3898
c8e55f36
TH
3899 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3900 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3901
4ce62e9e
TH
3902 for_each_worker_pool(pool, gcwq) {
3903 pool->gcwq = gcwq;
3904 INIT_LIST_HEAD(&pool->worklist);
3905 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3906
4ce62e9e
TH
3907 init_timer_deferrable(&pool->idle_timer);
3908 pool->idle_timer.function = idle_worker_timeout;
3909 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3910
4ce62e9e
TH
3911 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3912 (unsigned long)pool);
3913
60373152 3914 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3915 ida_init(&pool->worker_ida);
3916 }
db7bccf4 3917
25511a47 3918 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3919 }
3920
e22bee78 3921 /* create the initial worker */
f3421797 3922 for_each_online_gcwq_cpu(cpu) {
e22bee78 3923 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3924 struct worker_pool *pool;
e22bee78 3925
477a3c33
TH
3926 if (cpu != WORK_CPU_UNBOUND)
3927 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3928
3929 for_each_worker_pool(pool, gcwq) {
3930 struct worker *worker;
3931
bc2ae0f5 3932 worker = create_worker(pool);
4ce62e9e
TH
3933 BUG_ON(!worker);
3934 spin_lock_irq(&gcwq->lock);
3935 start_worker(worker);
3936 spin_unlock_irq(&gcwq->lock);
3937 }
e22bee78
TH
3938 }
3939
d320c038 3940 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3941 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038
TH
3942 system_long_wq = alloc_workqueue("events_long", 0, 0);
3943 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3944 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3945 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3946 system_freezable_wq = alloc_workqueue("events_freezable",
3947 WQ_FREEZABLE, 0);
62d3c543
AS
3948 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3949 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
1aabe902
JK
3950 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3951 !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
3952 !system_nrt_freezable_wq);
6ee0578b 3953 return 0;
1da177e4 3954}
6ee0578b 3955early_initcall(init_workqueues);