workqueue: implement worker_{set|clr}_flags()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
7e11629d 37#include <linux/delay.h>
1da177e4 38
c8e55f36 39enum {
db7bccf4
TH
40 /* global_cwq flags */
41 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
42
c8e55f36
TH
43 /* worker flags */
44 WORKER_STARTED = 1 << 0, /* started */
45 WORKER_DIE = 1 << 1, /* die die die */
46 WORKER_IDLE = 1 << 2, /* is idle */
db7bccf4
TH
47 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
48
49 /* gcwq->trustee_state */
50 TRUSTEE_START = 0, /* start */
51 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
52 TRUSTEE_BUTCHER = 2, /* butcher workers */
53 TRUSTEE_RELEASE = 3, /* release workers */
54 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
55
56 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
57 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
58 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4
TH
59
60 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
c8e55f36
TH
61};
62
4690c4ab
TH
63/*
64 * Structure fields follow one of the following exclusion rules.
65 *
66 * I: Set during initialization and read-only afterwards.
67 *
8b03ae3c 68 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 69 *
73f53c4a
TH
70 * F: wq->flush_mutex protected.
71 *
4690c4ab
TH
72 * W: workqueue_lock protected.
73 */
74
8b03ae3c 75struct global_cwq;
c34056a3
TH
76
77struct worker {
c8e55f36
TH
78 /* on idle list while idle, on busy hash table while busy */
79 union {
80 struct list_head entry; /* L: while idle */
81 struct hlist_node hentry; /* L: while busy */
82 };
83
c34056a3 84 struct work_struct *current_work; /* L: work being processed */
8cca0eea 85 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 86 struct list_head scheduled; /* L: scheduled works */
c34056a3 87 struct task_struct *task; /* I: worker task */
8b03ae3c 88 struct global_cwq *gcwq; /* I: the associated gcwq */
c8e55f36 89 unsigned int flags; /* L: flags */
c34056a3
TH
90 int id; /* I: worker id */
91};
92
8b03ae3c
TH
93/*
94 * Global per-cpu workqueue.
95 */
96struct global_cwq {
97 spinlock_t lock; /* the gcwq lock */
7e11629d 98 struct list_head worklist; /* L: list of pending works */
8b03ae3c 99 unsigned int cpu; /* I: the associated cpu */
db7bccf4 100 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
101
102 int nr_workers; /* L: total number of workers */
103 int nr_idle; /* L: currently idle ones */
104
105 /* workers are chained either in the idle_list or busy_hash */
106 struct list_head idle_list; /* L: list of idle workers */
107 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
108 /* L: hash of busy workers */
109
8b03ae3c 110 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
111
112 struct task_struct *trustee; /* L: for gcwq shutdown */
113 unsigned int trustee_state; /* L: trustee state */
114 wait_queue_head_t trustee_wait; /* trustee wait */
8b03ae3c
TH
115} ____cacheline_aligned_in_smp;
116
1da177e4 117/*
502ca9d8 118 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
119 * work_struct->data are used for flags and thus cwqs need to be
120 * aligned at two's power of the number of flag bits.
1da177e4
LT
121 */
122struct cpu_workqueue_struct {
8b03ae3c 123 struct global_cwq *gcwq; /* I: the associated gcwq */
c34056a3 124 struct worker *worker;
4690c4ab 125 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
126 int work_color; /* L: current color */
127 int flush_color; /* L: flushing color */
128 int nr_in_flight[WORK_NR_COLORS];
129 /* L: nr of in_flight works */
1e19ffc6 130 int nr_active; /* L: nr of active works */
a0a1a5fd 131 int max_active; /* L: max active works */
1e19ffc6 132 struct list_head delayed_works; /* L: delayed works */
0f900049 133};
1da177e4 134
73f53c4a
TH
135/*
136 * Structure used to wait for workqueue flush.
137 */
138struct wq_flusher {
139 struct list_head list; /* F: list of flushers */
140 int flush_color; /* F: flush color waiting for */
141 struct completion done; /* flush completion */
142};
143
1da177e4
LT
144/*
145 * The externally visible workqueue abstraction is an array of
146 * per-CPU workqueues:
147 */
148struct workqueue_struct {
97e37d7b 149 unsigned int flags; /* I: WQ_* flags */
4690c4ab
TH
150 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
151 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
152
153 struct mutex flush_mutex; /* protects wq flushing */
154 int work_color; /* F: current work color */
155 int flush_color; /* F: current flush color */
156 atomic_t nr_cwqs_to_flush; /* flush in progress */
157 struct wq_flusher *first_flusher; /* F: first flusher */
158 struct list_head flusher_queue; /* F: flush waiters */
159 struct list_head flusher_overflow; /* F: flush overflow list */
160
502ca9d8
TH
161 unsigned long single_cpu; /* cpu for single cpu wq */
162
a0a1a5fd 163 int saved_max_active; /* I: saved cwq max_active */
4690c4ab 164 const char *name; /* I: workqueue name */
4e6045f1 165#ifdef CONFIG_LOCKDEP
4690c4ab 166 struct lockdep_map lockdep_map;
4e6045f1 167#endif
1da177e4
LT
168};
169
db7bccf4
TH
170#define for_each_busy_worker(worker, i, pos, gcwq) \
171 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
172 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
173
dc186ad7
TG
174#ifdef CONFIG_DEBUG_OBJECTS_WORK
175
176static struct debug_obj_descr work_debug_descr;
177
178/*
179 * fixup_init is called when:
180 * - an active object is initialized
181 */
182static int work_fixup_init(void *addr, enum debug_obj_state state)
183{
184 struct work_struct *work = addr;
185
186 switch (state) {
187 case ODEBUG_STATE_ACTIVE:
188 cancel_work_sync(work);
189 debug_object_init(work, &work_debug_descr);
190 return 1;
191 default:
192 return 0;
193 }
194}
195
196/*
197 * fixup_activate is called when:
198 * - an active object is activated
199 * - an unknown object is activated (might be a statically initialized object)
200 */
201static int work_fixup_activate(void *addr, enum debug_obj_state state)
202{
203 struct work_struct *work = addr;
204
205 switch (state) {
206
207 case ODEBUG_STATE_NOTAVAILABLE:
208 /*
209 * This is not really a fixup. The work struct was
210 * statically initialized. We just make sure that it
211 * is tracked in the object tracker.
212 */
22df02bb 213 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
214 debug_object_init(work, &work_debug_descr);
215 debug_object_activate(work, &work_debug_descr);
216 return 0;
217 }
218 WARN_ON_ONCE(1);
219 return 0;
220
221 case ODEBUG_STATE_ACTIVE:
222 WARN_ON(1);
223
224 default:
225 return 0;
226 }
227}
228
229/*
230 * fixup_free is called when:
231 * - an active object is freed
232 */
233static int work_fixup_free(void *addr, enum debug_obj_state state)
234{
235 struct work_struct *work = addr;
236
237 switch (state) {
238 case ODEBUG_STATE_ACTIVE:
239 cancel_work_sync(work);
240 debug_object_free(work, &work_debug_descr);
241 return 1;
242 default:
243 return 0;
244 }
245}
246
247static struct debug_obj_descr work_debug_descr = {
248 .name = "work_struct",
249 .fixup_init = work_fixup_init,
250 .fixup_activate = work_fixup_activate,
251 .fixup_free = work_fixup_free,
252};
253
254static inline void debug_work_activate(struct work_struct *work)
255{
256 debug_object_activate(work, &work_debug_descr);
257}
258
259static inline void debug_work_deactivate(struct work_struct *work)
260{
261 debug_object_deactivate(work, &work_debug_descr);
262}
263
264void __init_work(struct work_struct *work, int onstack)
265{
266 if (onstack)
267 debug_object_init_on_stack(work, &work_debug_descr);
268 else
269 debug_object_init(work, &work_debug_descr);
270}
271EXPORT_SYMBOL_GPL(__init_work);
272
273void destroy_work_on_stack(struct work_struct *work)
274{
275 debug_object_free(work, &work_debug_descr);
276}
277EXPORT_SYMBOL_GPL(destroy_work_on_stack);
278
279#else
280static inline void debug_work_activate(struct work_struct *work) { }
281static inline void debug_work_deactivate(struct work_struct *work) { }
282#endif
283
95402b38
GS
284/* Serializes the accesses to the list of workqueues. */
285static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 286static LIST_HEAD(workqueues);
a0a1a5fd 287static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 288
8b03ae3c
TH
289static DEFINE_PER_CPU(struct global_cwq, global_cwq);
290
c34056a3 291static int worker_thread(void *__worker);
1da177e4 292
8b03ae3c
TH
293static struct global_cwq *get_gcwq(unsigned int cpu)
294{
295 return &per_cpu(global_cwq, cpu);
296}
297
1537663f
TH
298static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
299 struct workqueue_struct *wq)
b1f4ec17 300{
1537663f 301 return per_cpu_ptr(wq->cpu_wq, cpu);
b1f4ec17
ON
302}
303
73f53c4a
TH
304static unsigned int work_color_to_flags(int color)
305{
306 return color << WORK_STRUCT_COLOR_SHIFT;
307}
308
309static int get_work_color(struct work_struct *work)
310{
311 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
312 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
313}
314
315static int work_next_color(int color)
316{
317 return (color + 1) % WORK_NR_COLORS;
318}
319
4594bf15 320/*
7a22ad75
TH
321 * Work data points to the cwq while a work is on queue. Once
322 * execution starts, it points to the cpu the work was last on. This
323 * can be distinguished by comparing the data value against
324 * PAGE_OFFSET.
325 *
326 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
327 * cwq, cpu or clear work->data. These functions should only be
328 * called while the work is owned - ie. while the PENDING bit is set.
329 *
330 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
331 * corresponding to a work. gcwq is available once the work has been
332 * queued anywhere after initialization. cwq is available only from
333 * queueing until execution starts.
4594bf15 334 */
7a22ad75
TH
335static inline void set_work_data(struct work_struct *work, unsigned long data,
336 unsigned long flags)
365970a1 337{
4594bf15 338 BUG_ON(!work_pending(work));
7a22ad75
TH
339 atomic_long_set(&work->data, data | flags | work_static(work));
340}
365970a1 341
7a22ad75
TH
342static void set_work_cwq(struct work_struct *work,
343 struct cpu_workqueue_struct *cwq,
344 unsigned long extra_flags)
345{
346 set_work_data(work, (unsigned long)cwq,
347 WORK_STRUCT_PENDING | extra_flags);
365970a1
DH
348}
349
7a22ad75
TH
350static void set_work_cpu(struct work_struct *work, unsigned int cpu)
351{
352 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
353}
354
355static void clear_work_data(struct work_struct *work)
356{
357 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
358}
359
360static inline unsigned long get_work_data(struct work_struct *work)
361{
362 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
363}
364
365static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
4d707b9f 366{
7a22ad75
TH
367 unsigned long data = get_work_data(work);
368
369 return data >= PAGE_OFFSET ? (void *)data : NULL;
4d707b9f
ON
370}
371
7a22ad75 372static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 373{
7a22ad75
TH
374 unsigned long data = get_work_data(work);
375 unsigned int cpu;
376
377 if (data >= PAGE_OFFSET)
378 return ((struct cpu_workqueue_struct *)data)->gcwq;
379
380 cpu = data >> WORK_STRUCT_FLAG_BITS;
381 if (cpu == NR_CPUS)
382 return NULL;
383
384 BUG_ON(cpu >= num_possible_cpus());
385 return get_gcwq(cpu);
365970a1
DH
386}
387
7e11629d
TH
388/* Return the first worker. Safe with preemption disabled */
389static struct worker *first_worker(struct global_cwq *gcwq)
390{
391 if (unlikely(list_empty(&gcwq->idle_list)))
392 return NULL;
393
394 return list_first_entry(&gcwq->idle_list, struct worker, entry);
395}
396
397/**
398 * wake_up_worker - wake up an idle worker
399 * @gcwq: gcwq to wake worker for
400 *
401 * Wake up the first idle worker of @gcwq.
402 *
403 * CONTEXT:
404 * spin_lock_irq(gcwq->lock).
405 */
406static void wake_up_worker(struct global_cwq *gcwq)
407{
408 struct worker *worker = first_worker(gcwq);
409
410 if (likely(worker))
411 wake_up_process(worker->task);
412}
413
d302f017
TH
414/**
415 * worker_set_flags - set worker flags
416 * @worker: worker to set flags for
417 * @flags: flags to set
418 * @wakeup: wakeup an idle worker if necessary
419 *
420 * Set @flags in @worker->flags.
421 *
422 * LOCKING:
423 * spin_lock_irq(gcwq->lock).
424 */
425static inline void worker_set_flags(struct worker *worker, unsigned int flags,
426 bool wakeup)
427{
428 worker->flags |= flags;
429}
430
431/**
432 * worker_clr_flags - clear worker flags
433 * @worker: worker to set flags for
434 * @flags: flags to clear
435 *
436 * Clear @flags in @worker->flags.
437 *
438 * LOCKING:
439 * spin_lock_irq(gcwq->lock).
440 */
441static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
442{
443 worker->flags &= ~flags;
444}
445
c8e55f36
TH
446/**
447 * busy_worker_head - return the busy hash head for a work
448 * @gcwq: gcwq of interest
449 * @work: work to be hashed
450 *
451 * Return hash head of @gcwq for @work.
452 *
453 * CONTEXT:
454 * spin_lock_irq(gcwq->lock).
455 *
456 * RETURNS:
457 * Pointer to the hash head.
458 */
459static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
460 struct work_struct *work)
461{
462 const int base_shift = ilog2(sizeof(struct work_struct));
463 unsigned long v = (unsigned long)work;
464
465 /* simple shift and fold hash, do we need something better? */
466 v >>= base_shift;
467 v += v >> BUSY_WORKER_HASH_ORDER;
468 v &= BUSY_WORKER_HASH_MASK;
469
470 return &gcwq->busy_hash[v];
471}
472
8cca0eea
TH
473/**
474 * __find_worker_executing_work - find worker which is executing a work
475 * @gcwq: gcwq of interest
476 * @bwh: hash head as returned by busy_worker_head()
477 * @work: work to find worker for
478 *
479 * Find a worker which is executing @work on @gcwq. @bwh should be
480 * the hash head obtained by calling busy_worker_head() with the same
481 * work.
482 *
483 * CONTEXT:
484 * spin_lock_irq(gcwq->lock).
485 *
486 * RETURNS:
487 * Pointer to worker which is executing @work if found, NULL
488 * otherwise.
489 */
490static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
491 struct hlist_head *bwh,
492 struct work_struct *work)
493{
494 struct worker *worker;
495 struct hlist_node *tmp;
496
497 hlist_for_each_entry(worker, tmp, bwh, hentry)
498 if (worker->current_work == work)
499 return worker;
500 return NULL;
501}
502
503/**
504 * find_worker_executing_work - find worker which is executing a work
505 * @gcwq: gcwq of interest
506 * @work: work to find worker for
507 *
508 * Find a worker which is executing @work on @gcwq. This function is
509 * identical to __find_worker_executing_work() except that this
510 * function calculates @bwh itself.
511 *
512 * CONTEXT:
513 * spin_lock_irq(gcwq->lock).
514 *
515 * RETURNS:
516 * Pointer to worker which is executing @work if found, NULL
517 * otherwise.
518 */
519static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
520 struct work_struct *work)
521{
522 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
523 work);
524}
525
4690c4ab 526/**
7e11629d 527 * insert_work - insert a work into gcwq
4690c4ab
TH
528 * @cwq: cwq @work belongs to
529 * @work: work to insert
530 * @head: insertion point
531 * @extra_flags: extra WORK_STRUCT_* flags to set
532 *
7e11629d
TH
533 * Insert @work which belongs to @cwq into @gcwq after @head.
534 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
535 *
536 * CONTEXT:
8b03ae3c 537 * spin_lock_irq(gcwq->lock).
4690c4ab 538 */
b89deed3 539static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
540 struct work_struct *work, struct list_head *head,
541 unsigned int extra_flags)
b89deed3 542{
4690c4ab 543 /* we own @work, set data and link */
7a22ad75 544 set_work_cwq(work, cwq, extra_flags);
4690c4ab 545
6e84d644
ON
546 /*
547 * Ensure that we get the right work->data if we see the
548 * result of list_add() below, see try_to_grab_pending().
549 */
550 smp_wmb();
4690c4ab 551
1a4d9b0a 552 list_add_tail(&work->entry, head);
7e11629d 553 wake_up_worker(cwq->gcwq);
b89deed3
ON
554}
555
502ca9d8
TH
556/**
557 * cwq_unbind_single_cpu - unbind cwq from single cpu workqueue processing
558 * @cwq: cwq to unbind
559 *
560 * Try to unbind @cwq from single cpu workqueue processing. If
561 * @cwq->wq is frozen, unbind is delayed till the workqueue is thawed.
562 *
563 * CONTEXT:
564 * spin_lock_irq(gcwq->lock).
565 */
566static void cwq_unbind_single_cpu(struct cpu_workqueue_struct *cwq)
567{
568 struct workqueue_struct *wq = cwq->wq;
569 struct global_cwq *gcwq = cwq->gcwq;
570
571 BUG_ON(wq->single_cpu != gcwq->cpu);
572 /*
573 * Unbind from workqueue if @cwq is not frozen. If frozen,
574 * thaw_workqueues() will either restart processing on this
575 * cpu or unbind if empty. This keeps works queued while
576 * frozen fully ordered and flushable.
577 */
578 if (likely(!(gcwq->flags & GCWQ_FREEZING))) {
579 smp_wmb(); /* paired with cmpxchg() in __queue_work() */
580 wq->single_cpu = NR_CPUS;
581 }
582}
583
4690c4ab 584static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
585 struct work_struct *work)
586{
502ca9d8
TH
587 struct global_cwq *gcwq;
588 struct cpu_workqueue_struct *cwq;
1e19ffc6 589 struct list_head *worklist;
1da177e4 590 unsigned long flags;
502ca9d8 591 bool arbitrate;
1da177e4 592
dc186ad7 593 debug_work_activate(work);
1e19ffc6 594
18aa9eff
TH
595 /*
596 * Determine gcwq to use. SINGLE_CPU is inherently
597 * NON_REENTRANT, so test it first.
598 */
502ca9d8 599 if (!(wq->flags & WQ_SINGLE_CPU)) {
18aa9eff
TH
600 struct global_cwq *last_gcwq;
601
602 /*
603 * It's multi cpu. If @wq is non-reentrant and @work
604 * was previously on a different cpu, it might still
605 * be running there, in which case the work needs to
606 * be queued on that cpu to guarantee non-reentrance.
607 */
502ca9d8 608 gcwq = get_gcwq(cpu);
18aa9eff
TH
609 if (wq->flags & WQ_NON_REENTRANT &&
610 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
611 struct worker *worker;
612
613 spin_lock_irqsave(&last_gcwq->lock, flags);
614
615 worker = find_worker_executing_work(last_gcwq, work);
616
617 if (worker && worker->current_cwq->wq == wq)
618 gcwq = last_gcwq;
619 else {
620 /* meh... not running there, queue here */
621 spin_unlock_irqrestore(&last_gcwq->lock, flags);
622 spin_lock_irqsave(&gcwq->lock, flags);
623 }
624 } else
625 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
626 } else {
627 unsigned int req_cpu = cpu;
628
629 /*
630 * It's a bit more complex for single cpu workqueues.
631 * We first need to determine which cpu is going to be
632 * used. If no cpu is currently serving this
633 * workqueue, arbitrate using atomic accesses to
634 * wq->single_cpu; otherwise, use the current one.
635 */
636 retry:
637 cpu = wq->single_cpu;
638 arbitrate = cpu == NR_CPUS;
639 if (arbitrate)
640 cpu = req_cpu;
641
642 gcwq = get_gcwq(cpu);
643 spin_lock_irqsave(&gcwq->lock, flags);
644
645 /*
646 * The following cmpxchg() is a full barrier paired
647 * with smp_wmb() in cwq_unbind_single_cpu() and
648 * guarantees that all changes to wq->st_* fields are
649 * visible on the new cpu after this point.
650 */
651 if (arbitrate)
652 cmpxchg(&wq->single_cpu, NR_CPUS, cpu);
653
654 if (unlikely(wq->single_cpu != cpu)) {
655 spin_unlock_irqrestore(&gcwq->lock, flags);
656 goto retry;
657 }
658 }
659
660 /* gcwq determined, get cwq and queue */
661 cwq = get_cwq(gcwq->cpu, wq);
662
4690c4ab 663 BUG_ON(!list_empty(&work->entry));
1e19ffc6 664
73f53c4a 665 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
666
667 if (likely(cwq->nr_active < cwq->max_active)) {
668 cwq->nr_active++;
7e11629d 669 worklist = &gcwq->worklist;
1e19ffc6
TH
670 } else
671 worklist = &cwq->delayed_works;
672
673 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
674
8b03ae3c 675 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
676}
677
0fcb78c2
REB
678/**
679 * queue_work - queue work on a workqueue
680 * @wq: workqueue to use
681 * @work: work to queue
682 *
057647fc 683 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 684 *
00dfcaf7
ON
685 * We queue the work to the CPU on which it was submitted, but if the CPU dies
686 * it can be processed by another CPU.
1da177e4 687 */
7ad5b3a5 688int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 689{
ef1ca236
ON
690 int ret;
691
692 ret = queue_work_on(get_cpu(), wq, work);
693 put_cpu();
694
1da177e4
LT
695 return ret;
696}
ae90dd5d 697EXPORT_SYMBOL_GPL(queue_work);
1da177e4 698
c1a220e7
ZR
699/**
700 * queue_work_on - queue work on specific cpu
701 * @cpu: CPU number to execute work on
702 * @wq: workqueue to use
703 * @work: work to queue
704 *
705 * Returns 0 if @work was already on a queue, non-zero otherwise.
706 *
707 * We queue the work to a specific CPU, the caller must ensure it
708 * can't go away.
709 */
710int
711queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
712{
713 int ret = 0;
714
22df02bb 715 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 716 __queue_work(cpu, wq, work);
c1a220e7
ZR
717 ret = 1;
718 }
719 return ret;
720}
721EXPORT_SYMBOL_GPL(queue_work_on);
722
6d141c3f 723static void delayed_work_timer_fn(unsigned long __data)
1da177e4 724{
52bad64d 725 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 726 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 727
4690c4ab 728 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
729}
730
0fcb78c2
REB
731/**
732 * queue_delayed_work - queue work on a workqueue after delay
733 * @wq: workqueue to use
af9997e4 734 * @dwork: delayable work to queue
0fcb78c2
REB
735 * @delay: number of jiffies to wait before queueing
736 *
057647fc 737 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 738 */
7ad5b3a5 739int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 740 struct delayed_work *dwork, unsigned long delay)
1da177e4 741{
52bad64d 742 if (delay == 0)
63bc0362 743 return queue_work(wq, &dwork->work);
1da177e4 744
63bc0362 745 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 746}
ae90dd5d 747EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 748
0fcb78c2
REB
749/**
750 * queue_delayed_work_on - queue work on specific CPU after delay
751 * @cpu: CPU number to execute work on
752 * @wq: workqueue to use
af9997e4 753 * @dwork: work to queue
0fcb78c2
REB
754 * @delay: number of jiffies to wait before queueing
755 *
057647fc 756 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 757 */
7a6bc1cd 758int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 759 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
760{
761 int ret = 0;
52bad64d
DH
762 struct timer_list *timer = &dwork->timer;
763 struct work_struct *work = &dwork->work;
7a6bc1cd 764
22df02bb 765 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7a22ad75
TH
766 struct global_cwq *gcwq = get_work_gcwq(work);
767 unsigned int lcpu = gcwq ? gcwq->cpu : raw_smp_processor_id();
768
7a6bc1cd
VP
769 BUG_ON(timer_pending(timer));
770 BUG_ON(!list_empty(&work->entry));
771
8a3e77cc 772 timer_stats_timer_set_start_info(&dwork->timer);
7a22ad75
TH
773 /*
774 * This stores cwq for the moment, for the timer_fn.
775 * Note that the work's gcwq is preserved to allow
776 * reentrance detection for delayed works.
777 */
778 set_work_cwq(work, get_cwq(lcpu, wq), 0);
7a6bc1cd 779 timer->expires = jiffies + delay;
52bad64d 780 timer->data = (unsigned long)dwork;
7a6bc1cd 781 timer->function = delayed_work_timer_fn;
63bc0362
ON
782
783 if (unlikely(cpu >= 0))
784 add_timer_on(timer, cpu);
785 else
786 add_timer(timer);
7a6bc1cd
VP
787 ret = 1;
788 }
789 return ret;
790}
ae90dd5d 791EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 792
c8e55f36
TH
793/**
794 * worker_enter_idle - enter idle state
795 * @worker: worker which is entering idle state
796 *
797 * @worker is entering idle state. Update stats and idle timer if
798 * necessary.
799 *
800 * LOCKING:
801 * spin_lock_irq(gcwq->lock).
802 */
803static void worker_enter_idle(struct worker *worker)
804{
805 struct global_cwq *gcwq = worker->gcwq;
806
807 BUG_ON(worker->flags & WORKER_IDLE);
808 BUG_ON(!list_empty(&worker->entry) &&
809 (worker->hentry.next || worker->hentry.pprev));
810
d302f017 811 worker_set_flags(worker, WORKER_IDLE, false);
c8e55f36
TH
812 gcwq->nr_idle++;
813
814 /* idle_list is LIFO */
815 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4
TH
816
817 if (unlikely(worker->flags & WORKER_ROGUE))
818 wake_up_all(&gcwq->trustee_wait);
c8e55f36
TH
819}
820
821/**
822 * worker_leave_idle - leave idle state
823 * @worker: worker which is leaving idle state
824 *
825 * @worker is leaving idle state. Update stats.
826 *
827 * LOCKING:
828 * spin_lock_irq(gcwq->lock).
829 */
830static void worker_leave_idle(struct worker *worker)
831{
832 struct global_cwq *gcwq = worker->gcwq;
833
834 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 835 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
836 gcwq->nr_idle--;
837 list_del_init(&worker->entry);
838}
839
c34056a3
TH
840static struct worker *alloc_worker(void)
841{
842 struct worker *worker;
843
844 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
845 if (worker) {
846 INIT_LIST_HEAD(&worker->entry);
affee4b2 847 INIT_LIST_HEAD(&worker->scheduled);
c8e55f36 848 }
c34056a3
TH
849 return worker;
850}
851
852/**
853 * create_worker - create a new workqueue worker
7e11629d 854 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
855 * @bind: whether to set affinity to @cpu or not
856 *
7e11629d 857 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
858 * can be started by calling start_worker() or destroyed using
859 * destroy_worker().
860 *
861 * CONTEXT:
862 * Might sleep. Does GFP_KERNEL allocations.
863 *
864 * RETURNS:
865 * Pointer to the newly created worker.
866 */
7e11629d 867static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3
TH
868{
869 int id = -1;
870 struct worker *worker = NULL;
871
8b03ae3c
TH
872 spin_lock_irq(&gcwq->lock);
873 while (ida_get_new(&gcwq->worker_ida, &id)) {
874 spin_unlock_irq(&gcwq->lock);
875 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 876 goto fail;
8b03ae3c 877 spin_lock_irq(&gcwq->lock);
c34056a3 878 }
8b03ae3c 879 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
880
881 worker = alloc_worker();
882 if (!worker)
883 goto fail;
884
8b03ae3c 885 worker->gcwq = gcwq;
c34056a3
TH
886 worker->id = id;
887
888 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
8b03ae3c 889 gcwq->cpu, id);
c34056a3
TH
890 if (IS_ERR(worker->task))
891 goto fail;
892
db7bccf4
TH
893 /*
894 * A rogue worker will become a regular one if CPU comes
895 * online later on. Make sure every worker has
896 * PF_THREAD_BOUND set.
897 */
c34056a3 898 if (bind)
8b03ae3c 899 kthread_bind(worker->task, gcwq->cpu);
db7bccf4
TH
900 else
901 worker->task->flags |= PF_THREAD_BOUND;
c34056a3
TH
902
903 return worker;
904fail:
905 if (id >= 0) {
8b03ae3c
TH
906 spin_lock_irq(&gcwq->lock);
907 ida_remove(&gcwq->worker_ida, id);
908 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
909 }
910 kfree(worker);
911 return NULL;
912}
913
914/**
915 * start_worker - start a newly created worker
916 * @worker: worker to start
917 *
c8e55f36 918 * Make the gcwq aware of @worker and start it.
c34056a3
TH
919 *
920 * CONTEXT:
8b03ae3c 921 * spin_lock_irq(gcwq->lock).
c34056a3
TH
922 */
923static void start_worker(struct worker *worker)
924{
d302f017 925 worker_set_flags(worker, WORKER_STARTED, false);
c8e55f36
TH
926 worker->gcwq->nr_workers++;
927 worker_enter_idle(worker);
c34056a3
TH
928 wake_up_process(worker->task);
929}
930
931/**
932 * destroy_worker - destroy a workqueue worker
933 * @worker: worker to be destroyed
934 *
c8e55f36
TH
935 * Destroy @worker and adjust @gcwq stats accordingly.
936 *
937 * CONTEXT:
938 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
939 */
940static void destroy_worker(struct worker *worker)
941{
8b03ae3c 942 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
943 int id = worker->id;
944
945 /* sanity check frenzy */
946 BUG_ON(worker->current_work);
affee4b2 947 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 948
c8e55f36
TH
949 if (worker->flags & WORKER_STARTED)
950 gcwq->nr_workers--;
951 if (worker->flags & WORKER_IDLE)
952 gcwq->nr_idle--;
953
954 list_del_init(&worker->entry);
d302f017 955 worker_set_flags(worker, WORKER_DIE, false);
c8e55f36
TH
956
957 spin_unlock_irq(&gcwq->lock);
958
c34056a3
TH
959 kthread_stop(worker->task);
960 kfree(worker);
961
8b03ae3c
TH
962 spin_lock_irq(&gcwq->lock);
963 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
964}
965
affee4b2
TH
966/**
967 * move_linked_works - move linked works to a list
968 * @work: start of series of works to be scheduled
969 * @head: target list to append @work to
970 * @nextp: out paramter for nested worklist walking
971 *
972 * Schedule linked works starting from @work to @head. Work series to
973 * be scheduled starts at @work and includes any consecutive work with
974 * WORK_STRUCT_LINKED set in its predecessor.
975 *
976 * If @nextp is not NULL, it's updated to point to the next work of
977 * the last scheduled work. This allows move_linked_works() to be
978 * nested inside outer list_for_each_entry_safe().
979 *
980 * CONTEXT:
8b03ae3c 981 * spin_lock_irq(gcwq->lock).
affee4b2
TH
982 */
983static void move_linked_works(struct work_struct *work, struct list_head *head,
984 struct work_struct **nextp)
985{
986 struct work_struct *n;
987
988 /*
989 * Linked worklist will always end before the end of the list,
990 * use NULL for list head.
991 */
992 list_for_each_entry_safe_from(work, n, NULL, entry) {
993 list_move_tail(&work->entry, head);
994 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
995 break;
996 }
997
998 /*
999 * If we're already inside safe list traversal and have moved
1000 * multiple works to the scheduled queue, the next position
1001 * needs to be updated.
1002 */
1003 if (nextp)
1004 *nextp = n;
1005}
1006
1e19ffc6
TH
1007static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1008{
1009 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1010 struct work_struct, entry);
1011
7e11629d 1012 move_linked_works(work, &cwq->gcwq->worklist, NULL);
1e19ffc6
TH
1013 cwq->nr_active++;
1014}
1015
73f53c4a
TH
1016/**
1017 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1018 * @cwq: cwq of interest
1019 * @color: color of work which left the queue
1020 *
1021 * A work either has completed or is removed from pending queue,
1022 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1023 *
1024 * CONTEXT:
8b03ae3c 1025 * spin_lock_irq(gcwq->lock).
73f53c4a
TH
1026 */
1027static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1028{
1029 /* ignore uncolored works */
1030 if (color == WORK_NO_COLOR)
1031 return;
1032
1033 cwq->nr_in_flight[color]--;
1e19ffc6
TH
1034 cwq->nr_active--;
1035
502ca9d8
TH
1036 if (!list_empty(&cwq->delayed_works)) {
1037 /* one down, submit a delayed one */
1038 if (cwq->nr_active < cwq->max_active)
1039 cwq_activate_first_delayed(cwq);
1040 } else if (!cwq->nr_active && cwq->wq->flags & WQ_SINGLE_CPU) {
1041 /* this was the last work, unbind from single cpu */
1042 cwq_unbind_single_cpu(cwq);
1043 }
73f53c4a
TH
1044
1045 /* is flush in progress and are we at the flushing tip? */
1046 if (likely(cwq->flush_color != color))
1047 return;
1048
1049 /* are there still in-flight works? */
1050 if (cwq->nr_in_flight[color])
1051 return;
1052
1053 /* this cwq is done, clear flush_color */
1054 cwq->flush_color = -1;
1055
1056 /*
1057 * If this was the last cwq, wake up the first flusher. It
1058 * will handle the rest.
1059 */
1060 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1061 complete(&cwq->wq->first_flusher->done);
1062}
1063
a62428c0
TH
1064/**
1065 * process_one_work - process single work
c34056a3 1066 * @worker: self
a62428c0
TH
1067 * @work: work to process
1068 *
1069 * Process @work. This function contains all the logics necessary to
1070 * process a single work including synchronization against and
1071 * interaction with other workers on the same cpu, queueing and
1072 * flushing. As long as context requirement is met, any worker can
1073 * call this function to process a work.
1074 *
1075 * CONTEXT:
8b03ae3c 1076 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1077 */
c34056a3 1078static void process_one_work(struct worker *worker, struct work_struct *work)
a62428c0 1079{
7e11629d 1080 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1081 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1082 struct hlist_head *bwh = busy_worker_head(gcwq, work);
a62428c0 1083 work_func_t f = work->func;
73f53c4a 1084 int work_color;
7e11629d 1085 struct worker *collision;
a62428c0
TH
1086#ifdef CONFIG_LOCKDEP
1087 /*
1088 * It is permissible to free the struct work_struct from
1089 * inside the function that is called from it, this we need to
1090 * take into account for lockdep too. To avoid bogus "held
1091 * lock freed" warnings as well as problems when looking into
1092 * work->lockdep_map, make a copy and use that here.
1093 */
1094 struct lockdep_map lockdep_map = work->lockdep_map;
1095#endif
7e11629d
TH
1096 /*
1097 * A single work shouldn't be executed concurrently by
1098 * multiple workers on a single cpu. Check whether anyone is
1099 * already processing the work. If so, defer the work to the
1100 * currently executing one.
1101 */
1102 collision = __find_worker_executing_work(gcwq, bwh, work);
1103 if (unlikely(collision)) {
1104 move_linked_works(work, &collision->scheduled, NULL);
1105 return;
1106 }
1107
a62428c0 1108 /* claim and process */
a62428c0 1109 debug_work_deactivate(work);
c8e55f36 1110 hlist_add_head(&worker->hentry, bwh);
c34056a3 1111 worker->current_work = work;
8cca0eea 1112 worker->current_cwq = cwq;
73f53c4a 1113 work_color = get_work_color(work);
7a22ad75 1114
7a22ad75
TH
1115 /* record the current cpu number in the work data and dequeue */
1116 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1117 list_del_init(&work->entry);
1118
8b03ae3c 1119 spin_unlock_irq(&gcwq->lock);
a62428c0 1120
a62428c0
TH
1121 work_clear_pending(work);
1122 lock_map_acquire(&cwq->wq->lockdep_map);
1123 lock_map_acquire(&lockdep_map);
1124 f(work);
1125 lock_map_release(&lockdep_map);
1126 lock_map_release(&cwq->wq->lockdep_map);
1127
1128 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1129 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1130 "%s/0x%08x/%d\n",
1131 current->comm, preempt_count(), task_pid_nr(current));
1132 printk(KERN_ERR " last function: ");
1133 print_symbol("%s\n", (unsigned long)f);
1134 debug_show_held_locks(current);
1135 dump_stack();
1136 }
1137
8b03ae3c 1138 spin_lock_irq(&gcwq->lock);
a62428c0
TH
1139
1140 /* we're done with it, release */
c8e55f36 1141 hlist_del_init(&worker->hentry);
c34056a3 1142 worker->current_work = NULL;
8cca0eea 1143 worker->current_cwq = NULL;
73f53c4a 1144 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
1145}
1146
affee4b2
TH
1147/**
1148 * process_scheduled_works - process scheduled works
1149 * @worker: self
1150 *
1151 * Process all scheduled works. Please note that the scheduled list
1152 * may change while processing a work, so this function repeatedly
1153 * fetches a work from the top and executes it.
1154 *
1155 * CONTEXT:
8b03ae3c 1156 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1157 * multiple times.
1158 */
1159static void process_scheduled_works(struct worker *worker)
1da177e4 1160{
affee4b2
TH
1161 while (!list_empty(&worker->scheduled)) {
1162 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1163 struct work_struct, entry);
c34056a3 1164 process_one_work(worker, work);
1da177e4 1165 }
1da177e4
LT
1166}
1167
4690c4ab
TH
1168/**
1169 * worker_thread - the worker thread function
c34056a3 1170 * @__worker: self
4690c4ab
TH
1171 *
1172 * The cwq worker thread function.
1173 */
c34056a3 1174static int worker_thread(void *__worker)
1da177e4 1175{
c34056a3 1176 struct worker *worker = __worker;
8b03ae3c 1177 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1178
c8e55f36 1179woke_up:
c8e55f36 1180 spin_lock_irq(&gcwq->lock);
1da177e4 1181
c8e55f36
TH
1182 /* DIE can be set only while we're idle, checking here is enough */
1183 if (worker->flags & WORKER_DIE) {
1184 spin_unlock_irq(&gcwq->lock);
1185 return 0;
1186 }
affee4b2 1187
c8e55f36 1188 worker_leave_idle(worker);
db7bccf4 1189recheck:
c8e55f36
TH
1190 /*
1191 * ->scheduled list can only be filled while a worker is
1192 * preparing to process a work or actually processing it.
1193 * Make sure nobody diddled with it while I was sleeping.
1194 */
1195 BUG_ON(!list_empty(&worker->scheduled));
1196
7e11629d 1197 while (!list_empty(&gcwq->worklist)) {
c8e55f36 1198 struct work_struct *work =
7e11629d 1199 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1200 struct work_struct, entry);
1201
db7bccf4
TH
1202 /*
1203 * The following is a rather inefficient way to close
1204 * race window against cpu hotplug operations. Will
1205 * be replaced soon.
1206 */
1207 if (unlikely(!(worker->flags & WORKER_ROGUE) &&
1208 !cpumask_equal(&worker->task->cpus_allowed,
1209 get_cpu_mask(gcwq->cpu)))) {
1210 spin_unlock_irq(&gcwq->lock);
1211 set_cpus_allowed_ptr(worker->task,
1212 get_cpu_mask(gcwq->cpu));
1213 cpu_relax();
1214 spin_lock_irq(&gcwq->lock);
1215 goto recheck;
1216 }
1217
c8e55f36
TH
1218 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1219 /* optimization path, not strictly necessary */
1220 process_one_work(worker, work);
1221 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1222 process_scheduled_works(worker);
c8e55f36
TH
1223 } else {
1224 move_linked_works(work, &worker->scheduled, NULL);
1225 process_scheduled_works(worker);
affee4b2 1226 }
1da177e4 1227 }
3af24433 1228
c8e55f36
TH
1229 /*
1230 * gcwq->lock is held and there's no work to process, sleep.
1231 * Workers are woken up only while holding gcwq->lock, so
1232 * setting the current state before releasing gcwq->lock is
1233 * enough to prevent losing any event.
1234 */
1235 worker_enter_idle(worker);
1236 __set_current_state(TASK_INTERRUPTIBLE);
1237 spin_unlock_irq(&gcwq->lock);
1238 schedule();
1239 goto woke_up;
1da177e4
LT
1240}
1241
fc2e4d70
ON
1242struct wq_barrier {
1243 struct work_struct work;
1244 struct completion done;
1245};
1246
1247static void wq_barrier_func(struct work_struct *work)
1248{
1249 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1250 complete(&barr->done);
1251}
1252
4690c4ab
TH
1253/**
1254 * insert_wq_barrier - insert a barrier work
1255 * @cwq: cwq to insert barrier into
1256 * @barr: wq_barrier to insert
affee4b2
TH
1257 * @target: target work to attach @barr to
1258 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 1259 *
affee4b2
TH
1260 * @barr is linked to @target such that @barr is completed only after
1261 * @target finishes execution. Please note that the ordering
1262 * guarantee is observed only with respect to @target and on the local
1263 * cpu.
1264 *
1265 * Currently, a queued barrier can't be canceled. This is because
1266 * try_to_grab_pending() can't determine whether the work to be
1267 * grabbed is at the head of the queue and thus can't clear LINKED
1268 * flag of the previous work while there must be a valid next work
1269 * after a work with LINKED flag set.
1270 *
1271 * Note that when @worker is non-NULL, @target may be modified
1272 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
1273 *
1274 * CONTEXT:
8b03ae3c 1275 * spin_lock_irq(gcwq->lock).
4690c4ab 1276 */
83c22520 1277static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
1278 struct wq_barrier *barr,
1279 struct work_struct *target, struct worker *worker)
fc2e4d70 1280{
affee4b2
TH
1281 struct list_head *head;
1282 unsigned int linked = 0;
1283
dc186ad7 1284 /*
8b03ae3c 1285 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
1286 * as we know for sure that this will not trigger any of the
1287 * checks and call back into the fixup functions where we
1288 * might deadlock.
1289 */
1290 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 1291 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 1292 init_completion(&barr->done);
83c22520 1293
affee4b2
TH
1294 /*
1295 * If @target is currently being executed, schedule the
1296 * barrier to the worker; otherwise, put it after @target.
1297 */
1298 if (worker)
1299 head = worker->scheduled.next;
1300 else {
1301 unsigned long *bits = work_data_bits(target);
1302
1303 head = target->entry.next;
1304 /* there can already be other linked works, inherit and set */
1305 linked = *bits & WORK_STRUCT_LINKED;
1306 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
1307 }
1308
dc186ad7 1309 debug_work_activate(&barr->work);
affee4b2
TH
1310 insert_work(cwq, &barr->work, head,
1311 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
1312}
1313
73f53c4a
TH
1314/**
1315 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
1316 * @wq: workqueue being flushed
1317 * @flush_color: new flush color, < 0 for no-op
1318 * @work_color: new work color, < 0 for no-op
1319 *
1320 * Prepare cwqs for workqueue flushing.
1321 *
1322 * If @flush_color is non-negative, flush_color on all cwqs should be
1323 * -1. If no cwq has in-flight commands at the specified color, all
1324 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
1325 * has in flight commands, its cwq->flush_color is set to
1326 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
1327 * wakeup logic is armed and %true is returned.
1328 *
1329 * The caller should have initialized @wq->first_flusher prior to
1330 * calling this function with non-negative @flush_color. If
1331 * @flush_color is negative, no flush color update is done and %false
1332 * is returned.
1333 *
1334 * If @work_color is non-negative, all cwqs should have the same
1335 * work_color which is previous to @work_color and all will be
1336 * advanced to @work_color.
1337 *
1338 * CONTEXT:
1339 * mutex_lock(wq->flush_mutex).
1340 *
1341 * RETURNS:
1342 * %true if @flush_color >= 0 and there's something to flush. %false
1343 * otherwise.
1344 */
1345static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
1346 int flush_color, int work_color)
1da177e4 1347{
73f53c4a
TH
1348 bool wait = false;
1349 unsigned int cpu;
1da177e4 1350
73f53c4a
TH
1351 if (flush_color >= 0) {
1352 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
1353 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 1354 }
2355b70f 1355
73f53c4a
TH
1356 for_each_possible_cpu(cpu) {
1357 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1358 struct global_cwq *gcwq = cwq->gcwq;
73f53c4a 1359
8b03ae3c 1360 spin_lock_irq(&gcwq->lock);
73f53c4a
TH
1361
1362 if (flush_color >= 0) {
1363 BUG_ON(cwq->flush_color != -1);
1364
1365 if (cwq->nr_in_flight[flush_color]) {
1366 cwq->flush_color = flush_color;
1367 atomic_inc(&wq->nr_cwqs_to_flush);
1368 wait = true;
1369 }
1370 }
1371
1372 if (work_color >= 0) {
1373 BUG_ON(work_color != work_next_color(cwq->work_color));
1374 cwq->work_color = work_color;
1375 }
1376
8b03ae3c 1377 spin_unlock_irq(&gcwq->lock);
dc186ad7 1378 }
14441960 1379
73f53c4a
TH
1380 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
1381 complete(&wq->first_flusher->done);
1382
1383 return wait;
1da177e4
LT
1384}
1385
0fcb78c2 1386/**
1da177e4 1387 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 1388 * @wq: workqueue to flush
1da177e4
LT
1389 *
1390 * Forces execution of the workqueue and blocks until its completion.
1391 * This is typically used in driver shutdown handlers.
1392 *
fc2e4d70
ON
1393 * We sleep until all works which were queued on entry have been handled,
1394 * but we are not livelocked by new incoming ones.
1da177e4 1395 */
7ad5b3a5 1396void flush_workqueue(struct workqueue_struct *wq)
1da177e4 1397{
73f53c4a
TH
1398 struct wq_flusher this_flusher = {
1399 .list = LIST_HEAD_INIT(this_flusher.list),
1400 .flush_color = -1,
1401 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
1402 };
1403 int next_color;
1da177e4 1404
3295f0ef
IM
1405 lock_map_acquire(&wq->lockdep_map);
1406 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
1407
1408 mutex_lock(&wq->flush_mutex);
1409
1410 /*
1411 * Start-to-wait phase
1412 */
1413 next_color = work_next_color(wq->work_color);
1414
1415 if (next_color != wq->flush_color) {
1416 /*
1417 * Color space is not full. The current work_color
1418 * becomes our flush_color and work_color is advanced
1419 * by one.
1420 */
1421 BUG_ON(!list_empty(&wq->flusher_overflow));
1422 this_flusher.flush_color = wq->work_color;
1423 wq->work_color = next_color;
1424
1425 if (!wq->first_flusher) {
1426 /* no flush in progress, become the first flusher */
1427 BUG_ON(wq->flush_color != this_flusher.flush_color);
1428
1429 wq->first_flusher = &this_flusher;
1430
1431 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
1432 wq->work_color)) {
1433 /* nothing to flush, done */
1434 wq->flush_color = next_color;
1435 wq->first_flusher = NULL;
1436 goto out_unlock;
1437 }
1438 } else {
1439 /* wait in queue */
1440 BUG_ON(wq->flush_color == this_flusher.flush_color);
1441 list_add_tail(&this_flusher.list, &wq->flusher_queue);
1442 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1443 }
1444 } else {
1445 /*
1446 * Oops, color space is full, wait on overflow queue.
1447 * The next flush completion will assign us
1448 * flush_color and transfer to flusher_queue.
1449 */
1450 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
1451 }
1452
1453 mutex_unlock(&wq->flush_mutex);
1454
1455 wait_for_completion(&this_flusher.done);
1456
1457 /*
1458 * Wake-up-and-cascade phase
1459 *
1460 * First flushers are responsible for cascading flushes and
1461 * handling overflow. Non-first flushers can simply return.
1462 */
1463 if (wq->first_flusher != &this_flusher)
1464 return;
1465
1466 mutex_lock(&wq->flush_mutex);
1467
1468 wq->first_flusher = NULL;
1469
1470 BUG_ON(!list_empty(&this_flusher.list));
1471 BUG_ON(wq->flush_color != this_flusher.flush_color);
1472
1473 while (true) {
1474 struct wq_flusher *next, *tmp;
1475
1476 /* complete all the flushers sharing the current flush color */
1477 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
1478 if (next->flush_color != wq->flush_color)
1479 break;
1480 list_del_init(&next->list);
1481 complete(&next->done);
1482 }
1483
1484 BUG_ON(!list_empty(&wq->flusher_overflow) &&
1485 wq->flush_color != work_next_color(wq->work_color));
1486
1487 /* this flush_color is finished, advance by one */
1488 wq->flush_color = work_next_color(wq->flush_color);
1489
1490 /* one color has been freed, handle overflow queue */
1491 if (!list_empty(&wq->flusher_overflow)) {
1492 /*
1493 * Assign the same color to all overflowed
1494 * flushers, advance work_color and append to
1495 * flusher_queue. This is the start-to-wait
1496 * phase for these overflowed flushers.
1497 */
1498 list_for_each_entry(tmp, &wq->flusher_overflow, list)
1499 tmp->flush_color = wq->work_color;
1500
1501 wq->work_color = work_next_color(wq->work_color);
1502
1503 list_splice_tail_init(&wq->flusher_overflow,
1504 &wq->flusher_queue);
1505 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1506 }
1507
1508 if (list_empty(&wq->flusher_queue)) {
1509 BUG_ON(wq->flush_color != wq->work_color);
1510 break;
1511 }
1512
1513 /*
1514 * Need to flush more colors. Make the next flusher
1515 * the new first flusher and arm cwqs.
1516 */
1517 BUG_ON(wq->flush_color == wq->work_color);
1518 BUG_ON(wq->flush_color != next->flush_color);
1519
1520 list_del_init(&next->list);
1521 wq->first_flusher = next;
1522
1523 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
1524 break;
1525
1526 /*
1527 * Meh... this color is already done, clear first
1528 * flusher and repeat cascading.
1529 */
1530 wq->first_flusher = NULL;
1531 }
1532
1533out_unlock:
1534 mutex_unlock(&wq->flush_mutex);
1da177e4 1535}
ae90dd5d 1536EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 1537
db700897
ON
1538/**
1539 * flush_work - block until a work_struct's callback has terminated
1540 * @work: the work which is to be flushed
1541 *
a67da70d
ON
1542 * Returns false if @work has already terminated.
1543 *
db700897
ON
1544 * It is expected that, prior to calling flush_work(), the caller has
1545 * arranged for the work to not be requeued, otherwise it doesn't make
1546 * sense to use this function.
1547 */
1548int flush_work(struct work_struct *work)
1549{
affee4b2 1550 struct worker *worker = NULL;
8b03ae3c 1551 struct global_cwq *gcwq;
7a22ad75 1552 struct cpu_workqueue_struct *cwq;
db700897
ON
1553 struct wq_barrier barr;
1554
1555 might_sleep();
7a22ad75
TH
1556 gcwq = get_work_gcwq(work);
1557 if (!gcwq)
db700897 1558 return 0;
a67da70d 1559
8b03ae3c 1560 spin_lock_irq(&gcwq->lock);
db700897
ON
1561 if (!list_empty(&work->entry)) {
1562 /*
1563 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
1564 * If it was re-queued to a different gcwq under us, we
1565 * are not going to wait.
db700897
ON
1566 */
1567 smp_rmb();
7a22ad75
TH
1568 cwq = get_work_cwq(work);
1569 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 1570 goto already_gone;
db700897 1571 } else {
7a22ad75 1572 worker = find_worker_executing_work(gcwq, work);
affee4b2 1573 if (!worker)
4690c4ab 1574 goto already_gone;
7a22ad75 1575 cwq = worker->current_cwq;
db700897 1576 }
db700897 1577
affee4b2 1578 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 1579 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
1580
1581 lock_map_acquire(&cwq->wq->lockdep_map);
1582 lock_map_release(&cwq->wq->lockdep_map);
1583
db700897 1584 wait_for_completion(&barr.done);
dc186ad7 1585 destroy_work_on_stack(&barr.work);
db700897 1586 return 1;
4690c4ab 1587already_gone:
8b03ae3c 1588 spin_unlock_irq(&gcwq->lock);
4690c4ab 1589 return 0;
db700897
ON
1590}
1591EXPORT_SYMBOL_GPL(flush_work);
1592
6e84d644 1593/*
1f1f642e 1594 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
1595 * so this work can't be re-armed in any way.
1596 */
1597static int try_to_grab_pending(struct work_struct *work)
1598{
8b03ae3c 1599 struct global_cwq *gcwq;
1f1f642e 1600 int ret = -1;
6e84d644 1601
22df02bb 1602 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 1603 return 0;
6e84d644
ON
1604
1605 /*
1606 * The queueing is in progress, or it is already queued. Try to
1607 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1608 */
7a22ad75
TH
1609 gcwq = get_work_gcwq(work);
1610 if (!gcwq)
6e84d644
ON
1611 return ret;
1612
8b03ae3c 1613 spin_lock_irq(&gcwq->lock);
6e84d644
ON
1614 if (!list_empty(&work->entry)) {
1615 /*
7a22ad75 1616 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
1617 * In that case we must see the new value after rmb(), see
1618 * insert_work()->wmb().
1619 */
1620 smp_rmb();
7a22ad75 1621 if (gcwq == get_work_gcwq(work)) {
dc186ad7 1622 debug_work_deactivate(work);
6e84d644 1623 list_del_init(&work->entry);
7a22ad75
TH
1624 cwq_dec_nr_in_flight(get_work_cwq(work),
1625 get_work_color(work));
6e84d644
ON
1626 ret = 1;
1627 }
1628 }
8b03ae3c 1629 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
1630
1631 return ret;
1632}
1633
7a22ad75 1634static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
b89deed3
ON
1635{
1636 struct wq_barrier barr;
affee4b2 1637 struct worker *worker;
b89deed3 1638
8b03ae3c 1639 spin_lock_irq(&gcwq->lock);
affee4b2 1640
7a22ad75
TH
1641 worker = find_worker_executing_work(gcwq, work);
1642 if (unlikely(worker))
1643 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
affee4b2 1644
8b03ae3c 1645 spin_unlock_irq(&gcwq->lock);
b89deed3 1646
affee4b2 1647 if (unlikely(worker)) {
b89deed3 1648 wait_for_completion(&barr.done);
dc186ad7
TG
1649 destroy_work_on_stack(&barr.work);
1650 }
b89deed3
ON
1651}
1652
6e84d644 1653static void wait_on_work(struct work_struct *work)
b89deed3 1654{
b1f4ec17 1655 int cpu;
b89deed3 1656
f293ea92
ON
1657 might_sleep();
1658
3295f0ef
IM
1659 lock_map_acquire(&work->lockdep_map);
1660 lock_map_release(&work->lockdep_map);
4e6045f1 1661
1537663f 1662 for_each_possible_cpu(cpu)
7a22ad75 1663 wait_on_cpu_work(get_gcwq(cpu), work);
6e84d644
ON
1664}
1665
1f1f642e
ON
1666static int __cancel_work_timer(struct work_struct *work,
1667 struct timer_list* timer)
1668{
1669 int ret;
1670
1671 do {
1672 ret = (timer && likely(del_timer(timer)));
1673 if (!ret)
1674 ret = try_to_grab_pending(work);
1675 wait_on_work(work);
1676 } while (unlikely(ret < 0));
1677
7a22ad75 1678 clear_work_data(work);
1f1f642e
ON
1679 return ret;
1680}
1681
6e84d644
ON
1682/**
1683 * cancel_work_sync - block until a work_struct's callback has terminated
1684 * @work: the work which is to be flushed
1685 *
1f1f642e
ON
1686 * Returns true if @work was pending.
1687 *
6e84d644
ON
1688 * cancel_work_sync() will cancel the work if it is queued. If the work's
1689 * callback appears to be running, cancel_work_sync() will block until it
1690 * has completed.
1691 *
1692 * It is possible to use this function if the work re-queues itself. It can
1693 * cancel the work even if it migrates to another workqueue, however in that
1694 * case it only guarantees that work->func() has completed on the last queued
1695 * workqueue.
1696 *
1697 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
1698 * pending, otherwise it goes into a busy-wait loop until the timer expires.
1699 *
1700 * The caller must ensure that workqueue_struct on which this work was last
1701 * queued can't be destroyed before this function returns.
1702 */
1f1f642e 1703int cancel_work_sync(struct work_struct *work)
6e84d644 1704{
1f1f642e 1705 return __cancel_work_timer(work, NULL);
b89deed3 1706}
28e53bdd 1707EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 1708
6e84d644 1709/**
f5a421a4 1710 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
1711 * @dwork: the delayed work struct
1712 *
1f1f642e
ON
1713 * Returns true if @dwork was pending.
1714 *
6e84d644
ON
1715 * It is possible to use this function if @dwork rearms itself via queue_work()
1716 * or queue_delayed_work(). See also the comment for cancel_work_sync().
1717 */
1f1f642e 1718int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 1719{
1f1f642e 1720 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 1721}
f5a421a4 1722EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 1723
6e84d644 1724static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 1725
0fcb78c2
REB
1726/**
1727 * schedule_work - put work task in global workqueue
1728 * @work: job to be done
1729 *
5b0f437d
BVA
1730 * Returns zero if @work was already on the kernel-global workqueue and
1731 * non-zero otherwise.
1732 *
1733 * This puts a job in the kernel-global workqueue if it was not already
1734 * queued and leaves it in the same position on the kernel-global
1735 * workqueue otherwise.
0fcb78c2 1736 */
7ad5b3a5 1737int schedule_work(struct work_struct *work)
1da177e4
LT
1738{
1739 return queue_work(keventd_wq, work);
1740}
ae90dd5d 1741EXPORT_SYMBOL(schedule_work);
1da177e4 1742
c1a220e7
ZR
1743/*
1744 * schedule_work_on - put work task on a specific cpu
1745 * @cpu: cpu to put the work task on
1746 * @work: job to be done
1747 *
1748 * This puts a job on a specific cpu
1749 */
1750int schedule_work_on(int cpu, struct work_struct *work)
1751{
1752 return queue_work_on(cpu, keventd_wq, work);
1753}
1754EXPORT_SYMBOL(schedule_work_on);
1755
0fcb78c2
REB
1756/**
1757 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
1758 * @dwork: job to be done
1759 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
1760 *
1761 * After waiting for a given time this puts a job in the kernel-global
1762 * workqueue.
1763 */
7ad5b3a5 1764int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 1765 unsigned long delay)
1da177e4 1766{
52bad64d 1767 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 1768}
ae90dd5d 1769EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 1770
8c53e463
LT
1771/**
1772 * flush_delayed_work - block until a dwork_struct's callback has terminated
1773 * @dwork: the delayed work which is to be flushed
1774 *
1775 * Any timeout is cancelled, and any pending work is run immediately.
1776 */
1777void flush_delayed_work(struct delayed_work *dwork)
1778{
1779 if (del_timer_sync(&dwork->timer)) {
7a22ad75 1780 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
4690c4ab 1781 &dwork->work);
8c53e463
LT
1782 put_cpu();
1783 }
1784 flush_work(&dwork->work);
1785}
1786EXPORT_SYMBOL(flush_delayed_work);
1787
0fcb78c2
REB
1788/**
1789 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
1790 * @cpu: cpu to use
52bad64d 1791 * @dwork: job to be done
0fcb78c2
REB
1792 * @delay: number of jiffies to wait
1793 *
1794 * After waiting for a given time this puts a job in the kernel-global
1795 * workqueue on the specified CPU.
1796 */
1da177e4 1797int schedule_delayed_work_on(int cpu,
52bad64d 1798 struct delayed_work *dwork, unsigned long delay)
1da177e4 1799{
52bad64d 1800 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 1801}
ae90dd5d 1802EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 1803
b6136773
AM
1804/**
1805 * schedule_on_each_cpu - call a function on each online CPU from keventd
1806 * @func: the function to call
b6136773
AM
1807 *
1808 * Returns zero on success.
1809 * Returns -ve errno on failure.
1810 *
b6136773
AM
1811 * schedule_on_each_cpu() is very slow.
1812 */
65f27f38 1813int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
1814{
1815 int cpu;
65a64464 1816 int orig = -1;
b6136773 1817 struct work_struct *works;
15316ba8 1818
b6136773
AM
1819 works = alloc_percpu(struct work_struct);
1820 if (!works)
15316ba8 1821 return -ENOMEM;
b6136773 1822
93981800
TH
1823 get_online_cpus();
1824
65a64464 1825 /*
93981800
TH
1826 * When running in keventd don't schedule a work item on
1827 * itself. Can just call directly because the work queue is
1828 * already bound. This also is faster.
65a64464 1829 */
93981800 1830 if (current_is_keventd())
65a64464 1831 orig = raw_smp_processor_id();
65a64464 1832
15316ba8 1833 for_each_online_cpu(cpu) {
9bfb1839
IM
1834 struct work_struct *work = per_cpu_ptr(works, cpu);
1835
1836 INIT_WORK(work, func);
65a64464 1837 if (cpu != orig)
93981800 1838 schedule_work_on(cpu, work);
65a64464 1839 }
93981800
TH
1840 if (orig >= 0)
1841 func(per_cpu_ptr(works, orig));
1842
1843 for_each_online_cpu(cpu)
1844 flush_work(per_cpu_ptr(works, cpu));
1845
95402b38 1846 put_online_cpus();
b6136773 1847 free_percpu(works);
15316ba8
CL
1848 return 0;
1849}
1850
eef6a7d5
AS
1851/**
1852 * flush_scheduled_work - ensure that any scheduled work has run to completion.
1853 *
1854 * Forces execution of the kernel-global workqueue and blocks until its
1855 * completion.
1856 *
1857 * Think twice before calling this function! It's very easy to get into
1858 * trouble if you don't take great care. Either of the following situations
1859 * will lead to deadlock:
1860 *
1861 * One of the work items currently on the workqueue needs to acquire
1862 * a lock held by your code or its caller.
1863 *
1864 * Your code is running in the context of a work routine.
1865 *
1866 * They will be detected by lockdep when they occur, but the first might not
1867 * occur very often. It depends on what work items are on the workqueue and
1868 * what locks they need, which you have no control over.
1869 *
1870 * In most situations flushing the entire workqueue is overkill; you merely
1871 * need to know that a particular work item isn't queued and isn't running.
1872 * In such cases you should use cancel_delayed_work_sync() or
1873 * cancel_work_sync() instead.
1874 */
1da177e4
LT
1875void flush_scheduled_work(void)
1876{
1877 flush_workqueue(keventd_wq);
1878}
ae90dd5d 1879EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 1880
1fa44eca
JB
1881/**
1882 * execute_in_process_context - reliably execute the routine with user context
1883 * @fn: the function to execute
1fa44eca
JB
1884 * @ew: guaranteed storage for the execute work structure (must
1885 * be available when the work executes)
1886 *
1887 * Executes the function immediately if process context is available,
1888 * otherwise schedules the function for delayed execution.
1889 *
1890 * Returns: 0 - function was executed
1891 * 1 - function was scheduled for execution
1892 */
65f27f38 1893int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
1894{
1895 if (!in_interrupt()) {
65f27f38 1896 fn(&ew->work);
1fa44eca
JB
1897 return 0;
1898 }
1899
65f27f38 1900 INIT_WORK(&ew->work, fn);
1fa44eca
JB
1901 schedule_work(&ew->work);
1902
1903 return 1;
1904}
1905EXPORT_SYMBOL_GPL(execute_in_process_context);
1906
1da177e4
LT
1907int keventd_up(void)
1908{
1909 return keventd_wq != NULL;
1910}
1911
1912int current_is_keventd(void)
1913{
7e11629d
TH
1914 bool found = false;
1915 unsigned int cpu;
1da177e4 1916
7e11629d
TH
1917 /*
1918 * There no longer is one-to-one relation between worker and
1919 * work queue and a worker task might be unbound from its cpu
1920 * if the cpu was offlined. Match all busy workers. This
1921 * function will go away once dynamic pool is implemented.
1922 */
1923 for_each_possible_cpu(cpu) {
1924 struct global_cwq *gcwq = get_gcwq(cpu);
1925 struct worker *worker;
1926 struct hlist_node *pos;
1927 unsigned long flags;
1928 int i;
1da177e4 1929
7e11629d 1930 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 1931
7e11629d
TH
1932 for_each_busy_worker(worker, i, pos, gcwq) {
1933 if (worker->task == current) {
1934 found = true;
1935 break;
1936 }
1937 }
1938
1939 spin_unlock_irqrestore(&gcwq->lock, flags);
1940 if (found)
1941 break;
1942 }
1da177e4 1943
7e11629d 1944 return found;
1da177e4
LT
1945}
1946
0f900049
TH
1947static struct cpu_workqueue_struct *alloc_cwqs(void)
1948{
1949 /*
1950 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
1951 * Make sure that the alignment isn't lower than that of
1952 * unsigned long long.
1953 */
1954 const size_t size = sizeof(struct cpu_workqueue_struct);
1955 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
1956 __alignof__(unsigned long long));
1957 struct cpu_workqueue_struct *cwqs;
1958#ifndef CONFIG_SMP
1959 void *ptr;
1960
1961 /*
1962 * On UP, percpu allocator doesn't honor alignment parameter
1963 * and simply uses arch-dependent default. Allocate enough
1964 * room to align cwq and put an extra pointer at the end
1965 * pointing back to the originally allocated pointer which
1966 * will be used for free.
1967 *
1968 * FIXME: This really belongs to UP percpu code. Update UP
1969 * percpu code to honor alignment and remove this ugliness.
1970 */
1971 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
1972 cwqs = PTR_ALIGN(ptr, align);
1973 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
1974#else
1975 /* On SMP, percpu allocator can do it itself */
1976 cwqs = __alloc_percpu(size, align);
1977#endif
1978 /* just in case, make sure it's actually aligned */
1979 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
1980 return cwqs;
1981}
1982
1983static void free_cwqs(struct cpu_workqueue_struct *cwqs)
1984{
1985#ifndef CONFIG_SMP
1986 /* on UP, the pointer to free is stored right after the cwq */
1987 if (cwqs)
1988 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
1989#else
1990 free_percpu(cwqs);
1991#endif
1992}
1993
4e6045f1 1994struct workqueue_struct *__create_workqueue_key(const char *name,
97e37d7b 1995 unsigned int flags,
1e19ffc6 1996 int max_active,
eb13ba87
JB
1997 struct lock_class_key *key,
1998 const char *lock_name)
1da177e4 1999{
1da177e4 2000 struct workqueue_struct *wq;
c34056a3
TH
2001 bool failed = false;
2002 unsigned int cpu;
1da177e4 2003
1e19ffc6
TH
2004 max_active = clamp_val(max_active, 1, INT_MAX);
2005
3af24433
ON
2006 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2007 if (!wq)
4690c4ab 2008 goto err;
3af24433 2009
0f900049 2010 wq->cpu_wq = alloc_cwqs();
4690c4ab
TH
2011 if (!wq->cpu_wq)
2012 goto err;
3af24433 2013
97e37d7b 2014 wq->flags = flags;
a0a1a5fd 2015 wq->saved_max_active = max_active;
73f53c4a
TH
2016 mutex_init(&wq->flush_mutex);
2017 atomic_set(&wq->nr_cwqs_to_flush, 0);
2018 INIT_LIST_HEAD(&wq->flusher_queue);
2019 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8
TH
2020 wq->single_cpu = NR_CPUS;
2021
3af24433 2022 wq->name = name;
eb13ba87 2023 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 2024 INIT_LIST_HEAD(&wq->list);
3af24433 2025
1537663f
TH
2026 cpu_maps_update_begin();
2027 /*
2028 * We must initialize cwqs for each possible cpu even if we
2029 * are going to call destroy_workqueue() finally. Otherwise
2030 * cpu_up() can hit the uninitialized cwq once we drop the
2031 * lock.
2032 */
2033 for_each_possible_cpu(cpu) {
2034 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2035 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 2036
0f900049 2037 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 2038 cwq->gcwq = gcwq;
c34056a3 2039 cwq->wq = wq;
73f53c4a 2040 cwq->flush_color = -1;
1e19ffc6 2041 cwq->max_active = max_active;
1e19ffc6 2042 INIT_LIST_HEAD(&cwq->delayed_works);
1537663f 2043
c34056a3 2044 if (failed)
1537663f 2045 continue;
7e11629d 2046 cwq->worker = create_worker(gcwq, cpu_online(cpu));
c34056a3
TH
2047 if (cwq->worker)
2048 start_worker(cwq->worker);
1537663f 2049 else
c34056a3 2050 failed = true;
3af24433
ON
2051 }
2052
a0a1a5fd
TH
2053 /*
2054 * workqueue_lock protects global freeze state and workqueues
2055 * list. Grab it, set max_active accordingly and add the new
2056 * workqueue to workqueues list.
2057 */
1537663f 2058 spin_lock(&workqueue_lock);
a0a1a5fd
TH
2059
2060 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2061 for_each_possible_cpu(cpu)
2062 get_cwq(cpu, wq)->max_active = 0;
2063
1537663f 2064 list_add(&wq->list, &workqueues);
a0a1a5fd 2065
1537663f
TH
2066 spin_unlock(&workqueue_lock);
2067
2068 cpu_maps_update_done();
2069
c34056a3 2070 if (failed) {
3af24433
ON
2071 destroy_workqueue(wq);
2072 wq = NULL;
2073 }
2074 return wq;
4690c4ab
TH
2075err:
2076 if (wq) {
0f900049 2077 free_cwqs(wq->cpu_wq);
4690c4ab
TH
2078 kfree(wq);
2079 }
2080 return NULL;
3af24433 2081}
4e6045f1 2082EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 2083
3af24433
ON
2084/**
2085 * destroy_workqueue - safely terminate a workqueue
2086 * @wq: target workqueue
2087 *
2088 * Safely destroy a workqueue. All work currently pending will be done first.
2089 */
2090void destroy_workqueue(struct workqueue_struct *wq)
2091{
c8e55f36 2092 unsigned int cpu;
3af24433 2093
a0a1a5fd
TH
2094 flush_workqueue(wq);
2095
2096 /*
2097 * wq list is used to freeze wq, remove from list after
2098 * flushing is complete in case freeze races us.
2099 */
3da1c84c 2100 cpu_maps_update_begin();
95402b38 2101 spin_lock(&workqueue_lock);
b1f4ec17 2102 list_del(&wq->list);
95402b38 2103 spin_unlock(&workqueue_lock);
1537663f 2104 cpu_maps_update_done();
3af24433 2105
73f53c4a
TH
2106 for_each_possible_cpu(cpu) {
2107 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
7e11629d 2108 struct global_cwq *gcwq = cwq->gcwq;
73f53c4a
TH
2109 int i;
2110
c34056a3 2111 if (cwq->worker) {
7e11629d
TH
2112 retry:
2113 spin_lock_irq(&gcwq->lock);
2114 /*
2115 * Worker can only be destroyed while idle.
2116 * Wait till it becomes idle. This is ugly
2117 * and prone to starvation. It will go away
2118 * once dynamic worker pool is implemented.
2119 */
2120 if (!(cwq->worker->flags & WORKER_IDLE)) {
2121 spin_unlock_irq(&gcwq->lock);
2122 msleep(100);
2123 goto retry;
2124 }
c34056a3
TH
2125 destroy_worker(cwq->worker);
2126 cwq->worker = NULL;
7e11629d 2127 spin_unlock_irq(&gcwq->lock);
73f53c4a
TH
2128 }
2129
2130 for (i = 0; i < WORK_NR_COLORS; i++)
2131 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2132 BUG_ON(cwq->nr_active);
2133 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2134 }
9b41ea72 2135
0f900049 2136 free_cwqs(wq->cpu_wq);
3af24433
ON
2137 kfree(wq);
2138}
2139EXPORT_SYMBOL_GPL(destroy_workqueue);
2140
db7bccf4
TH
2141/*
2142 * CPU hotplug.
2143 *
2144 * CPU hotplug is implemented by allowing cwqs to be detached from
2145 * CPU, running with unbound workers and allowing them to be
2146 * reattached later if the cpu comes back online. A separate thread
2147 * is created to govern cwqs in such state and is called the trustee.
2148 *
2149 * Trustee states and their descriptions.
2150 *
2151 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2152 * new trustee is started with this state.
2153 *
2154 * IN_CHARGE Once started, trustee will enter this state after
2155 * making all existing workers rogue. DOWN_PREPARE waits
2156 * for trustee to enter this state. After reaching
2157 * IN_CHARGE, trustee tries to execute the pending
2158 * worklist until it's empty and the state is set to
2159 * BUTCHER, or the state is set to RELEASE.
2160 *
2161 * BUTCHER Command state which is set by the cpu callback after
2162 * the cpu has went down. Once this state is set trustee
2163 * knows that there will be no new works on the worklist
2164 * and once the worklist is empty it can proceed to
2165 * killing idle workers.
2166 *
2167 * RELEASE Command state which is set by the cpu callback if the
2168 * cpu down has been canceled or it has come online
2169 * again. After recognizing this state, trustee stops
2170 * trying to drain or butcher and transits to DONE.
2171 *
2172 * DONE Trustee will enter this state after BUTCHER or RELEASE
2173 * is complete.
2174 *
2175 * trustee CPU draining
2176 * took over down complete
2177 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2178 * | | ^
2179 * | CPU is back online v return workers |
2180 * ----------------> RELEASE --------------
2181 */
2182
2183/**
2184 * trustee_wait_event_timeout - timed event wait for trustee
2185 * @cond: condition to wait for
2186 * @timeout: timeout in jiffies
2187 *
2188 * wait_event_timeout() for trustee to use. Handles locking and
2189 * checks for RELEASE request.
2190 *
2191 * CONTEXT:
2192 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2193 * multiple times. To be used by trustee.
2194 *
2195 * RETURNS:
2196 * Positive indicating left time if @cond is satisfied, 0 if timed
2197 * out, -1 if canceled.
2198 */
2199#define trustee_wait_event_timeout(cond, timeout) ({ \
2200 long __ret = (timeout); \
2201 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2202 __ret) { \
2203 spin_unlock_irq(&gcwq->lock); \
2204 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2205 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2206 __ret); \
2207 spin_lock_irq(&gcwq->lock); \
2208 } \
2209 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2210})
2211
2212/**
2213 * trustee_wait_event - event wait for trustee
2214 * @cond: condition to wait for
2215 *
2216 * wait_event() for trustee to use. Automatically handles locking and
2217 * checks for CANCEL request.
2218 *
2219 * CONTEXT:
2220 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2221 * multiple times. To be used by trustee.
2222 *
2223 * RETURNS:
2224 * 0 if @cond is satisfied, -1 if canceled.
2225 */
2226#define trustee_wait_event(cond) ({ \
2227 long __ret1; \
2228 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
2229 __ret1 < 0 ? -1 : 0; \
2230})
2231
2232static int __cpuinit trustee_thread(void *__gcwq)
2233{
2234 struct global_cwq *gcwq = __gcwq;
2235 struct worker *worker;
2236 struct hlist_node *pos;
2237 int i;
2238
2239 BUG_ON(gcwq->cpu != smp_processor_id());
2240
2241 spin_lock_irq(&gcwq->lock);
2242 /*
502ca9d8
TH
2243 * Make all workers rogue. Trustee must be bound to the
2244 * target cpu and can't be cancelled.
db7bccf4
TH
2245 */
2246 BUG_ON(gcwq->cpu != smp_processor_id());
2247
2248 list_for_each_entry(worker, &gcwq->idle_list, entry)
d302f017 2249 worker_set_flags(worker, WORKER_ROGUE, false);
db7bccf4
TH
2250
2251 for_each_busy_worker(worker, i, pos, gcwq)
d302f017 2252 worker_set_flags(worker, WORKER_ROGUE, false);
db7bccf4
TH
2253
2254 /*
2255 * We're now in charge. Notify and proceed to drain. We need
2256 * to keep the gcwq running during the whole CPU down
2257 * procedure as other cpu hotunplug callbacks may need to
2258 * flush currently running tasks.
2259 */
2260 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
2261 wake_up_all(&gcwq->trustee_wait);
2262
2263 /*
2264 * The original cpu is in the process of dying and may go away
2265 * anytime now. When that happens, we and all workers would
2266 * be migrated to other cpus. Try draining any left work.
2267 * Note that if the gcwq is frozen, there may be frozen works
2268 * in freezeable cwqs. Don't declare completion while frozen.
2269 */
2270 while (gcwq->nr_workers != gcwq->nr_idle ||
2271 gcwq->flags & GCWQ_FREEZING ||
2272 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
2273 /* give a breather */
2274 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
2275 break;
2276 }
2277
2278 /* notify completion */
2279 gcwq->trustee = NULL;
2280 gcwq->trustee_state = TRUSTEE_DONE;
2281 wake_up_all(&gcwq->trustee_wait);
2282 spin_unlock_irq(&gcwq->lock);
2283 return 0;
2284}
2285
2286/**
2287 * wait_trustee_state - wait for trustee to enter the specified state
2288 * @gcwq: gcwq the trustee of interest belongs to
2289 * @state: target state to wait for
2290 *
2291 * Wait for the trustee to reach @state. DONE is already matched.
2292 *
2293 * CONTEXT:
2294 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2295 * multiple times. To be used by cpu_callback.
2296 */
2297static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
2298{
2299 if (!(gcwq->trustee_state == state ||
2300 gcwq->trustee_state == TRUSTEE_DONE)) {
2301 spin_unlock_irq(&gcwq->lock);
2302 __wait_event(gcwq->trustee_wait,
2303 gcwq->trustee_state == state ||
2304 gcwq->trustee_state == TRUSTEE_DONE);
2305 spin_lock_irq(&gcwq->lock);
2306 }
2307}
2308
3af24433
ON
2309static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
2310 unsigned long action,
2311 void *hcpu)
2312{
2313 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
2314 struct global_cwq *gcwq = get_gcwq(cpu);
2315 struct task_struct *new_trustee = NULL;
2316 struct worker *worker;
2317 struct hlist_node *pos;
2318 unsigned long flags;
2319 int i;
3af24433 2320
8bb78442
RW
2321 action &= ~CPU_TASKS_FROZEN;
2322
db7bccf4
TH
2323 switch (action) {
2324 case CPU_DOWN_PREPARE:
2325 new_trustee = kthread_create(trustee_thread, gcwq,
2326 "workqueue_trustee/%d\n", cpu);
2327 if (IS_ERR(new_trustee))
2328 return notifier_from_errno(PTR_ERR(new_trustee));
2329 kthread_bind(new_trustee, cpu);
2330 }
3af24433 2331
db7bccf4
TH
2332 /* some are called w/ irq disabled, don't disturb irq status */
2333 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 2334
db7bccf4
TH
2335 switch (action) {
2336 case CPU_DOWN_PREPARE:
2337 /* initialize trustee and tell it to acquire the gcwq */
2338 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
2339 gcwq->trustee = new_trustee;
2340 gcwq->trustee_state = TRUSTEE_START;
2341 wake_up_process(gcwq->trustee);
2342 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
2343 break;
2344
2345 case CPU_POST_DEAD:
2346 gcwq->trustee_state = TRUSTEE_BUTCHER;
2347 break;
2348
2349 case CPU_DOWN_FAILED:
2350 case CPU_ONLINE:
2351 if (gcwq->trustee_state != TRUSTEE_DONE) {
2352 gcwq->trustee_state = TRUSTEE_RELEASE;
2353 wake_up_process(gcwq->trustee);
2354 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 2355 }
db7bccf4 2356
502ca9d8 2357 /* clear ROGUE from all workers */
db7bccf4 2358 list_for_each_entry(worker, &gcwq->idle_list, entry)
d302f017 2359 worker_clr_flags(worker, WORKER_ROGUE);
db7bccf4
TH
2360
2361 for_each_busy_worker(worker, i, pos, gcwq)
d302f017 2362 worker_clr_flags(worker, WORKER_ROGUE);
db7bccf4 2363 break;
1da177e4
LT
2364 }
2365
db7bccf4
TH
2366 spin_unlock_irqrestore(&gcwq->lock, flags);
2367
1537663f 2368 return notifier_from_errno(0);
1da177e4 2369}
1da177e4 2370
2d3854a3 2371#ifdef CONFIG_SMP
8ccad40d 2372
2d3854a3 2373struct work_for_cpu {
6b44003e 2374 struct completion completion;
2d3854a3
RR
2375 long (*fn)(void *);
2376 void *arg;
2377 long ret;
2378};
2379
6b44003e 2380static int do_work_for_cpu(void *_wfc)
2d3854a3 2381{
6b44003e 2382 struct work_for_cpu *wfc = _wfc;
2d3854a3 2383 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
2384 complete(&wfc->completion);
2385 return 0;
2d3854a3
RR
2386}
2387
2388/**
2389 * work_on_cpu - run a function in user context on a particular cpu
2390 * @cpu: the cpu to run on
2391 * @fn: the function to run
2392 * @arg: the function arg
2393 *
31ad9081
RR
2394 * This will return the value @fn returns.
2395 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 2396 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
2397 */
2398long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
2399{
6b44003e
AM
2400 struct task_struct *sub_thread;
2401 struct work_for_cpu wfc = {
2402 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
2403 .fn = fn,
2404 .arg = arg,
2405 };
2406
2407 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
2408 if (IS_ERR(sub_thread))
2409 return PTR_ERR(sub_thread);
2410 kthread_bind(sub_thread, cpu);
2411 wake_up_process(sub_thread);
2412 wait_for_completion(&wfc.completion);
2d3854a3
RR
2413 return wfc.ret;
2414}
2415EXPORT_SYMBOL_GPL(work_on_cpu);
2416#endif /* CONFIG_SMP */
2417
a0a1a5fd
TH
2418#ifdef CONFIG_FREEZER
2419
2420/**
2421 * freeze_workqueues_begin - begin freezing workqueues
2422 *
2423 * Start freezing workqueues. After this function returns, all
2424 * freezeable workqueues will queue new works to their frozen_works
7e11629d 2425 * list instead of gcwq->worklist.
a0a1a5fd
TH
2426 *
2427 * CONTEXT:
8b03ae3c 2428 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2429 */
2430void freeze_workqueues_begin(void)
2431{
2432 struct workqueue_struct *wq;
2433 unsigned int cpu;
2434
2435 spin_lock(&workqueue_lock);
2436
2437 BUG_ON(workqueue_freezing);
2438 workqueue_freezing = true;
2439
2440 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2441 struct global_cwq *gcwq = get_gcwq(cpu);
2442
2443 spin_lock_irq(&gcwq->lock);
2444
db7bccf4
TH
2445 BUG_ON(gcwq->flags & GCWQ_FREEZING);
2446 gcwq->flags |= GCWQ_FREEZING;
2447
a0a1a5fd
TH
2448 list_for_each_entry(wq, &workqueues, list) {
2449 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2450
a0a1a5fd
TH
2451 if (wq->flags & WQ_FREEZEABLE)
2452 cwq->max_active = 0;
a0a1a5fd 2453 }
8b03ae3c
TH
2454
2455 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2456 }
2457
2458 spin_unlock(&workqueue_lock);
2459}
2460
2461/**
2462 * freeze_workqueues_busy - are freezeable workqueues still busy?
2463 *
2464 * Check whether freezing is complete. This function must be called
2465 * between freeze_workqueues_begin() and thaw_workqueues().
2466 *
2467 * CONTEXT:
2468 * Grabs and releases workqueue_lock.
2469 *
2470 * RETURNS:
2471 * %true if some freezeable workqueues are still busy. %false if
2472 * freezing is complete.
2473 */
2474bool freeze_workqueues_busy(void)
2475{
2476 struct workqueue_struct *wq;
2477 unsigned int cpu;
2478 bool busy = false;
2479
2480 spin_lock(&workqueue_lock);
2481
2482 BUG_ON(!workqueue_freezing);
2483
2484 for_each_possible_cpu(cpu) {
2485 /*
2486 * nr_active is monotonically decreasing. It's safe
2487 * to peek without lock.
2488 */
2489 list_for_each_entry(wq, &workqueues, list) {
2490 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2491
2492 if (!(wq->flags & WQ_FREEZEABLE))
2493 continue;
2494
2495 BUG_ON(cwq->nr_active < 0);
2496 if (cwq->nr_active) {
2497 busy = true;
2498 goto out_unlock;
2499 }
2500 }
2501 }
2502out_unlock:
2503 spin_unlock(&workqueue_lock);
2504 return busy;
2505}
2506
2507/**
2508 * thaw_workqueues - thaw workqueues
2509 *
2510 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 2511 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
2512 *
2513 * CONTEXT:
8b03ae3c 2514 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2515 */
2516void thaw_workqueues(void)
2517{
2518 struct workqueue_struct *wq;
2519 unsigned int cpu;
2520
2521 spin_lock(&workqueue_lock);
2522
2523 if (!workqueue_freezing)
2524 goto out_unlock;
2525
2526 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2527 struct global_cwq *gcwq = get_gcwq(cpu);
2528
2529 spin_lock_irq(&gcwq->lock);
2530
db7bccf4
TH
2531 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
2532 gcwq->flags &= ~GCWQ_FREEZING;
2533
a0a1a5fd
TH
2534 list_for_each_entry(wq, &workqueues, list) {
2535 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2536
2537 if (!(wq->flags & WQ_FREEZEABLE))
2538 continue;
2539
a0a1a5fd
TH
2540 /* restore max_active and repopulate worklist */
2541 cwq->max_active = wq->saved_max_active;
2542
2543 while (!list_empty(&cwq->delayed_works) &&
2544 cwq->nr_active < cwq->max_active)
2545 cwq_activate_first_delayed(cwq);
2546
502ca9d8
TH
2547 /* perform delayed unbind from single cpu if empty */
2548 if (wq->single_cpu == gcwq->cpu &&
2549 !cwq->nr_active && list_empty(&cwq->delayed_works))
2550 cwq_unbind_single_cpu(cwq);
2551
c8e55f36 2552 wake_up_process(cwq->worker->task);
a0a1a5fd 2553 }
8b03ae3c
TH
2554
2555 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2556 }
2557
2558 workqueue_freezing = false;
2559out_unlock:
2560 spin_unlock(&workqueue_lock);
2561}
2562#endif /* CONFIG_FREEZER */
2563
c12920d1 2564void __init init_workqueues(void)
1da177e4 2565{
c34056a3 2566 unsigned int cpu;
c8e55f36 2567 int i;
c34056a3 2568
7a22ad75
TH
2569 /*
2570 * The pointer part of work->data is either pointing to the
2571 * cwq or contains the cpu number the work ran last on. Make
2572 * sure cpu number won't overflow into kernel pointer area so
2573 * that they can be distinguished.
2574 */
2575 BUILD_BUG_ON(NR_CPUS << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
2576
db7bccf4 2577 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
2578
2579 /* initialize gcwqs */
2580 for_each_possible_cpu(cpu) {
2581 struct global_cwq *gcwq = get_gcwq(cpu);
2582
2583 spin_lock_init(&gcwq->lock);
7e11629d 2584 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c
TH
2585 gcwq->cpu = cpu;
2586
c8e55f36
TH
2587 INIT_LIST_HEAD(&gcwq->idle_list);
2588 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
2589 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
2590
8b03ae3c 2591 ida_init(&gcwq->worker_ida);
db7bccf4
TH
2592
2593 gcwq->trustee_state = TRUSTEE_DONE;
2594 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
2595 }
2596
1da177e4
LT
2597 keventd_wq = create_workqueue("events");
2598 BUG_ON(!keventd_wq);
2599}