workqueue: Remove deprecated system_nrt[_freezable]_wq
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36
TH
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
3270476a 106 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
822d8405
TH
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
68e13a67 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 133 *
3c25a55d
LJ
134 * WQ: wq->mutex protected.
135 *
b5927605 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
137 *
138 * MD: wq_mayday_lock protected.
1da177e4 139 */
1da177e4 140
2eaebdb3 141/* struct worker is defined in workqueue_internal.h */
c34056a3 142
bd7bdd43 143struct worker_pool {
d565ed63 144 spinlock_t lock; /* the pool lock */
d84ff051 145 int cpu; /* I: the associated cpu */
f3f90ad4 146 int node; /* I: the associated node ID */
9daf9e67 147 int id; /* I: pool ID */
11ebea50 148 unsigned int flags; /* X: flags */
bd7bdd43
TH
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
152
153 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
c5aa87bb 160 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
bc3a1afc 164 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 165 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 166 struct mutex manager_mutex; /* manager exclusion */
822d8405 167 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 234 struct list_head list; /* PL: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
265};
266
e904e6c2
TH
267static struct kmem_cache *pwq_cache;
268
bce90380
TH
269static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
d55262c4
TH
273static bool wq_disable_numa;
274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
cee22a15
VK
276/* see the comment above the definition of WQ_POWER_EFFICIENT */
277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278static bool wq_power_efficient = true;
279#else
280static bool wq_power_efficient;
281#endif
282
283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
bce90380
TH
285static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
4c16bd32
TH
287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
68e13a67 290static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 291static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 292
68e13a67
LJ
293static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
295
296/* the per-cpu worker pools */
297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
68e13a67 300static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 301
68e13a67 302/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
c5aa87bb 305/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
8a2b7538
TH
308/* I: attributes used when instantiating ordered pools on demand */
309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
d320c038 311struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 312EXPORT_SYMBOL(system_wq);
044c782c 313struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 314EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 315struct workqueue_struct *system_long_wq __read_mostly;
d320c038 316EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 317struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 318EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 319struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 320EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
321struct workqueue_struct *system_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 325
7d19c5ce
TH
326static int worker_thread(void *__worker);
327static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
97bd2347
TH
330#define CREATE_TRACE_POINTS
331#include <trace/events/workqueue.h>
332
68e13a67 333#define assert_rcu_or_pool_mutex() \
5bcab335 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
5bcab335 337
b09f4fd3 338#define assert_rcu_or_wq_mutex(wq) \
76af4d93 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 340 lockdep_is_held(&wq->mutex), \
b09f4fd3 341 "sched RCU or wq->mutex should be held")
76af4d93 342
822d8405
TH
343#ifdef CONFIG_LOCKDEP
344#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349#else
350#define assert_manager_or_pool_lock(pool) do { } while (0)
351#endif
352
f02ae73a
TH
353#define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 356 (pool)++)
4ce62e9e 357
17116969
TH
358/**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
611c92a0 361 * @pi: integer used for iteration
fa1b54e6 362 *
68e13a67
LJ
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
17116969 369 */
611c92a0
TH
370#define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 373 else
17116969 374
822d8405
TH
375/**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386#define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
49e3cf44
TH
391/**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
76af4d93 395 *
b09f4fd3 396 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
49e3cf44
TH
402 */
403#define for_each_pwq(pwq, wq) \
76af4d93 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 406 else
f3421797 407
dc186ad7
TG
408#ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410static struct debug_obj_descr work_debug_descr;
411
99777288
SG
412static void *work_debug_hint(void *addr)
413{
414 return ((struct work_struct *) addr)->func;
415}
416
dc186ad7
TG
417/*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421static int work_fixup_init(void *addr, enum debug_obj_state state)
422{
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433}
434
435/*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440static int work_fixup_activate(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
22df02bb 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466}
467
468/*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472static int work_fixup_free(void *addr, enum debug_obj_state state)
473{
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484}
485
486static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
99777288 488 .debug_hint = work_debug_hint,
dc186ad7
TG
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492};
493
494static inline void debug_work_activate(struct work_struct *work)
495{
496 debug_object_activate(work, &work_debug_descr);
497}
498
499static inline void debug_work_deactivate(struct work_struct *work)
500{
501 debug_object_deactivate(work, &work_debug_descr);
502}
503
504void __init_work(struct work_struct *work, int onstack)
505{
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(__init_work);
512
513void destroy_work_on_stack(struct work_struct *work)
514{
515 debug_object_free(work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
ea2e64f2
TG
519void destroy_delayed_work_on_stack(struct delayed_work *work)
520{
521 destroy_timer_on_stack(&work->timer);
522 debug_object_free(&work->work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525
dc186ad7
TG
526#else
527static inline void debug_work_activate(struct work_struct *work) { }
528static inline void debug_work_deactivate(struct work_struct *work) { }
529#endif
530
4e8b22bd
LB
531/**
532 * worker_pool_assign_id - allocate ID and assing it to @pool
533 * @pool: the pool pointer of interest
534 *
535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536 * successfully, -errno on failure.
537 */
9daf9e67
TH
538static int worker_pool_assign_id(struct worker_pool *pool)
539{
540 int ret;
541
68e13a67 542 lockdep_assert_held(&wq_pool_mutex);
5bcab335 543
4e8b22bd
LB
544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 GFP_KERNEL);
229641a6 546 if (ret >= 0) {
e68035fb 547 pool->id = ret;
229641a6
TH
548 return 0;
549 }
fa1b54e6 550 return ret;
7c3eed5c
TH
551}
552
df2d5ae4
TH
553/**
554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555 * @wq: the target workqueue
556 * @node: the node ID
557 *
558 * This must be called either with pwq_lock held or sched RCU read locked.
559 * If the pwq needs to be used beyond the locking in effect, the caller is
560 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
561 *
562 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
563 */
564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 int node)
566{
567 assert_rcu_or_wq_mutex(wq);
568 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
569}
570
73f53c4a
TH
571static unsigned int work_color_to_flags(int color)
572{
573 return color << WORK_STRUCT_COLOR_SHIFT;
574}
575
576static int get_work_color(struct work_struct *work)
577{
578 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
579 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
580}
581
582static int work_next_color(int color)
583{
584 return (color + 1) % WORK_NR_COLORS;
585}
1da177e4 586
14441960 587/*
112202d9
TH
588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
589 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 590 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 591 *
112202d9
TH
592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
593 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
594 * work->data. These functions should only be called while the work is
595 * owned - ie. while the PENDING bit is set.
7a22ad75 596 *
112202d9 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 598 * corresponding to a work. Pool is available once the work has been
112202d9 599 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 600 * available only while the work item is queued.
7a22ad75 601 *
bbb68dfa
TH
602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
603 * canceled. While being canceled, a work item may have its PENDING set
604 * but stay off timer and worklist for arbitrarily long and nobody should
605 * try to steal the PENDING bit.
14441960 606 */
7a22ad75
TH
607static inline void set_work_data(struct work_struct *work, unsigned long data,
608 unsigned long flags)
365970a1 609{
6183c009 610 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
611 atomic_long_set(&work->data, data | flags | work_static(work));
612}
365970a1 613
112202d9 614static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
615 unsigned long extra_flags)
616{
112202d9
TH
617 set_work_data(work, (unsigned long)pwq,
618 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
619}
620
4468a00f
LJ
621static void set_work_pool_and_keep_pending(struct work_struct *work,
622 int pool_id)
623{
624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
625 WORK_STRUCT_PENDING);
626}
627
7c3eed5c
TH
628static void set_work_pool_and_clear_pending(struct work_struct *work,
629 int pool_id)
7a22ad75 630{
23657bb1
TH
631 /*
632 * The following wmb is paired with the implied mb in
633 * test_and_set_bit(PENDING) and ensures all updates to @work made
634 * here are visible to and precede any updates by the next PENDING
635 * owner.
636 */
637 smp_wmb();
7c3eed5c 638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 639}
f756d5e2 640
7a22ad75 641static void clear_work_data(struct work_struct *work)
1da177e4 642{
7c3eed5c
TH
643 smp_wmb(); /* see set_work_pool_and_clear_pending() */
644 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
645}
646
112202d9 647static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 648{
e120153d 649 unsigned long data = atomic_long_read(&work->data);
7a22ad75 650
112202d9 651 if (data & WORK_STRUCT_PWQ)
e120153d
TH
652 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
653 else
654 return NULL;
4d707b9f
ON
655}
656
7c3eed5c
TH
657/**
658 * get_work_pool - return the worker_pool a given work was associated with
659 * @work: the work item of interest
660 *
68e13a67
LJ
661 * Pools are created and destroyed under wq_pool_mutex, and allows read
662 * access under sched-RCU read lock. As such, this function should be
663 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
664 *
665 * All fields of the returned pool are accessible as long as the above
666 * mentioned locking is in effect. If the returned pool needs to be used
667 * beyond the critical section, the caller is responsible for ensuring the
668 * returned pool is and stays online.
d185af30
YB
669 *
670 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
671 */
672static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 673{
e120153d 674 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 675 int pool_id;
7a22ad75 676
68e13a67 677 assert_rcu_or_pool_mutex();
fa1b54e6 678
112202d9
TH
679 if (data & WORK_STRUCT_PWQ)
680 return ((struct pool_workqueue *)
7c3eed5c 681 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 682
7c3eed5c
TH
683 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
684 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
685 return NULL;
686
fa1b54e6 687 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
688}
689
690/**
691 * get_work_pool_id - return the worker pool ID a given work is associated with
692 * @work: the work item of interest
693 *
d185af30 694 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
695 * %WORK_OFFQ_POOL_NONE if none.
696 */
697static int get_work_pool_id(struct work_struct *work)
698{
54d5b7d0
LJ
699 unsigned long data = atomic_long_read(&work->data);
700
112202d9
TH
701 if (data & WORK_STRUCT_PWQ)
702 return ((struct pool_workqueue *)
54d5b7d0 703 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 704
54d5b7d0 705 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
706}
707
bbb68dfa
TH
708static void mark_work_canceling(struct work_struct *work)
709{
7c3eed5c 710 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 711
7c3eed5c
TH
712 pool_id <<= WORK_OFFQ_POOL_SHIFT;
713 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
714}
715
716static bool work_is_canceling(struct work_struct *work)
717{
718 unsigned long data = atomic_long_read(&work->data);
719
112202d9 720 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
721}
722
e22bee78 723/*
3270476a
TH
724 * Policy functions. These define the policies on how the global worker
725 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 726 * they're being called with pool->lock held.
e22bee78
TH
727 */
728
63d95a91 729static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 730{
e19e397a 731 return !atomic_read(&pool->nr_running);
a848e3b6
ON
732}
733
4594bf15 734/*
e22bee78
TH
735 * Need to wake up a worker? Called from anything but currently
736 * running workers.
974271c4
TH
737 *
738 * Note that, because unbound workers never contribute to nr_running, this
706026c2 739 * function will always return %true for unbound pools as long as the
974271c4 740 * worklist isn't empty.
4594bf15 741 */
63d95a91 742static bool need_more_worker(struct worker_pool *pool)
365970a1 743{
63d95a91 744 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 745}
4594bf15 746
e22bee78 747/* Can I start working? Called from busy but !running workers. */
63d95a91 748static bool may_start_working(struct worker_pool *pool)
e22bee78 749{
63d95a91 750 return pool->nr_idle;
e22bee78
TH
751}
752
753/* Do I need to keep working? Called from currently running workers. */
63d95a91 754static bool keep_working(struct worker_pool *pool)
e22bee78 755{
e19e397a
TH
756 return !list_empty(&pool->worklist) &&
757 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
758}
759
760/* Do we need a new worker? Called from manager. */
63d95a91 761static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 762{
63d95a91 763 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 764}
365970a1 765
e22bee78 766/* Do I need to be the manager? */
63d95a91 767static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 768{
63d95a91 769 return need_to_create_worker(pool) ||
11ebea50 770 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
771}
772
773/* Do we have too many workers and should some go away? */
63d95a91 774static bool too_many_workers(struct worker_pool *pool)
e22bee78 775{
34a06bd6 776 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
777 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
778 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 779
ea1abd61
LJ
780 /*
781 * nr_idle and idle_list may disagree if idle rebinding is in
782 * progress. Never return %true if idle_list is empty.
783 */
784 if (list_empty(&pool->idle_list))
785 return false;
786
e22bee78 787 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
788}
789
4d707b9f 790/*
e22bee78
TH
791 * Wake up functions.
792 */
793
7e11629d 794/* Return the first worker. Safe with preemption disabled */
63d95a91 795static struct worker *first_worker(struct worker_pool *pool)
7e11629d 796{
63d95a91 797 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
798 return NULL;
799
63d95a91 800 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
801}
802
803/**
804 * wake_up_worker - wake up an idle worker
63d95a91 805 * @pool: worker pool to wake worker from
7e11629d 806 *
63d95a91 807 * Wake up the first idle worker of @pool.
7e11629d
TH
808 *
809 * CONTEXT:
d565ed63 810 * spin_lock_irq(pool->lock).
7e11629d 811 */
63d95a91 812static void wake_up_worker(struct worker_pool *pool)
7e11629d 813{
63d95a91 814 struct worker *worker = first_worker(pool);
7e11629d
TH
815
816 if (likely(worker))
817 wake_up_process(worker->task);
818}
819
d302f017 820/**
e22bee78
TH
821 * wq_worker_waking_up - a worker is waking up
822 * @task: task waking up
823 * @cpu: CPU @task is waking up to
824 *
825 * This function is called during try_to_wake_up() when a worker is
826 * being awoken.
827 *
828 * CONTEXT:
829 * spin_lock_irq(rq->lock)
830 */
d84ff051 831void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
832{
833 struct worker *worker = kthread_data(task);
834
36576000 835 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 836 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 837 atomic_inc(&worker->pool->nr_running);
36576000 838 }
e22bee78
TH
839}
840
841/**
842 * wq_worker_sleeping - a worker is going to sleep
843 * @task: task going to sleep
844 * @cpu: CPU in question, must be the current CPU number
845 *
846 * This function is called during schedule() when a busy worker is
847 * going to sleep. Worker on the same cpu can be woken up by
848 * returning pointer to its task.
849 *
850 * CONTEXT:
851 * spin_lock_irq(rq->lock)
852 *
d185af30 853 * Return:
e22bee78
TH
854 * Worker task on @cpu to wake up, %NULL if none.
855 */
d84ff051 856struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
857{
858 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 859 struct worker_pool *pool;
e22bee78 860
111c225a
TH
861 /*
862 * Rescuers, which may not have all the fields set up like normal
863 * workers, also reach here, let's not access anything before
864 * checking NOT_RUNNING.
865 */
2d64672e 866 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
867 return NULL;
868
111c225a 869 pool = worker->pool;
111c225a 870
e22bee78 871 /* this can only happen on the local cpu */
6183c009
TH
872 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
873 return NULL;
e22bee78
TH
874
875 /*
876 * The counterpart of the following dec_and_test, implied mb,
877 * worklist not empty test sequence is in insert_work().
878 * Please read comment there.
879 *
628c78e7
TH
880 * NOT_RUNNING is clear. This means that we're bound to and
881 * running on the local cpu w/ rq lock held and preemption
882 * disabled, which in turn means that none else could be
d565ed63 883 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 884 * lock is safe.
e22bee78 885 */
e19e397a
TH
886 if (atomic_dec_and_test(&pool->nr_running) &&
887 !list_empty(&pool->worklist))
63d95a91 888 to_wakeup = first_worker(pool);
e22bee78
TH
889 return to_wakeup ? to_wakeup->task : NULL;
890}
891
892/**
893 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 894 * @worker: self
d302f017
TH
895 * @flags: flags to set
896 * @wakeup: wakeup an idle worker if necessary
897 *
e22bee78
TH
898 * Set @flags in @worker->flags and adjust nr_running accordingly. If
899 * nr_running becomes zero and @wakeup is %true, an idle worker is
900 * woken up.
d302f017 901 *
cb444766 902 * CONTEXT:
d565ed63 903 * spin_lock_irq(pool->lock)
d302f017
TH
904 */
905static inline void worker_set_flags(struct worker *worker, unsigned int flags,
906 bool wakeup)
907{
bd7bdd43 908 struct worker_pool *pool = worker->pool;
e22bee78 909
cb444766
TH
910 WARN_ON_ONCE(worker->task != current);
911
e22bee78
TH
912 /*
913 * If transitioning into NOT_RUNNING, adjust nr_running and
914 * wake up an idle worker as necessary if requested by
915 * @wakeup.
916 */
917 if ((flags & WORKER_NOT_RUNNING) &&
918 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 919 if (wakeup) {
e19e397a 920 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 921 !list_empty(&pool->worklist))
63d95a91 922 wake_up_worker(pool);
e22bee78 923 } else
e19e397a 924 atomic_dec(&pool->nr_running);
e22bee78
TH
925 }
926
d302f017
TH
927 worker->flags |= flags;
928}
929
930/**
e22bee78 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 932 * @worker: self
d302f017
TH
933 * @flags: flags to clear
934 *
e22bee78 935 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 936 *
cb444766 937 * CONTEXT:
d565ed63 938 * spin_lock_irq(pool->lock)
d302f017
TH
939 */
940static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
941{
63d95a91 942 struct worker_pool *pool = worker->pool;
e22bee78
TH
943 unsigned int oflags = worker->flags;
944
cb444766
TH
945 WARN_ON_ONCE(worker->task != current);
946
d302f017 947 worker->flags &= ~flags;
e22bee78 948
42c025f3
TH
949 /*
950 * If transitioning out of NOT_RUNNING, increment nr_running. Note
951 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
952 * of multiple flags, not a single flag.
953 */
e22bee78
TH
954 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
955 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 956 atomic_inc(&pool->nr_running);
d302f017
TH
957}
958
8cca0eea
TH
959/**
960 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 961 * @pool: pool of interest
8cca0eea
TH
962 * @work: work to find worker for
963 *
c9e7cf27
TH
964 * Find a worker which is executing @work on @pool by searching
965 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
966 * to match, its current execution should match the address of @work and
967 * its work function. This is to avoid unwanted dependency between
968 * unrelated work executions through a work item being recycled while still
969 * being executed.
970 *
971 * This is a bit tricky. A work item may be freed once its execution
972 * starts and nothing prevents the freed area from being recycled for
973 * another work item. If the same work item address ends up being reused
974 * before the original execution finishes, workqueue will identify the
975 * recycled work item as currently executing and make it wait until the
976 * current execution finishes, introducing an unwanted dependency.
977 *
c5aa87bb
TH
978 * This function checks the work item address and work function to avoid
979 * false positives. Note that this isn't complete as one may construct a
980 * work function which can introduce dependency onto itself through a
981 * recycled work item. Well, if somebody wants to shoot oneself in the
982 * foot that badly, there's only so much we can do, and if such deadlock
983 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
984 *
985 * CONTEXT:
d565ed63 986 * spin_lock_irq(pool->lock).
8cca0eea 987 *
d185af30
YB
988 * Return:
989 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 990 * otherwise.
4d707b9f 991 */
c9e7cf27 992static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 993 struct work_struct *work)
4d707b9f 994{
42f8570f 995 struct worker *worker;
42f8570f 996
b67bfe0d 997 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
998 (unsigned long)work)
999 if (worker->current_work == work &&
1000 worker->current_func == work->func)
42f8570f
SL
1001 return worker;
1002
1003 return NULL;
4d707b9f
ON
1004}
1005
bf4ede01
TH
1006/**
1007 * move_linked_works - move linked works to a list
1008 * @work: start of series of works to be scheduled
1009 * @head: target list to append @work to
1010 * @nextp: out paramter for nested worklist walking
1011 *
1012 * Schedule linked works starting from @work to @head. Work series to
1013 * be scheduled starts at @work and includes any consecutive work with
1014 * WORK_STRUCT_LINKED set in its predecessor.
1015 *
1016 * If @nextp is not NULL, it's updated to point to the next work of
1017 * the last scheduled work. This allows move_linked_works() to be
1018 * nested inside outer list_for_each_entry_safe().
1019 *
1020 * CONTEXT:
d565ed63 1021 * spin_lock_irq(pool->lock).
bf4ede01
TH
1022 */
1023static void move_linked_works(struct work_struct *work, struct list_head *head,
1024 struct work_struct **nextp)
1025{
1026 struct work_struct *n;
1027
1028 /*
1029 * Linked worklist will always end before the end of the list,
1030 * use NULL for list head.
1031 */
1032 list_for_each_entry_safe_from(work, n, NULL, entry) {
1033 list_move_tail(&work->entry, head);
1034 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035 break;
1036 }
1037
1038 /*
1039 * If we're already inside safe list traversal and have moved
1040 * multiple works to the scheduled queue, the next position
1041 * needs to be updated.
1042 */
1043 if (nextp)
1044 *nextp = n;
1045}
1046
8864b4e5
TH
1047/**
1048 * get_pwq - get an extra reference on the specified pool_workqueue
1049 * @pwq: pool_workqueue to get
1050 *
1051 * Obtain an extra reference on @pwq. The caller should guarantee that
1052 * @pwq has positive refcnt and be holding the matching pool->lock.
1053 */
1054static void get_pwq(struct pool_workqueue *pwq)
1055{
1056 lockdep_assert_held(&pwq->pool->lock);
1057 WARN_ON_ONCE(pwq->refcnt <= 0);
1058 pwq->refcnt++;
1059}
1060
1061/**
1062 * put_pwq - put a pool_workqueue reference
1063 * @pwq: pool_workqueue to put
1064 *
1065 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1066 * destruction. The caller should be holding the matching pool->lock.
1067 */
1068static void put_pwq(struct pool_workqueue *pwq)
1069{
1070 lockdep_assert_held(&pwq->pool->lock);
1071 if (likely(--pwq->refcnt))
1072 return;
1073 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074 return;
1075 /*
1076 * @pwq can't be released under pool->lock, bounce to
1077 * pwq_unbound_release_workfn(). This never recurses on the same
1078 * pool->lock as this path is taken only for unbound workqueues and
1079 * the release work item is scheduled on a per-cpu workqueue. To
1080 * avoid lockdep warning, unbound pool->locks are given lockdep
1081 * subclass of 1 in get_unbound_pool().
1082 */
1083 schedule_work(&pwq->unbound_release_work);
1084}
1085
dce90d47
TH
1086/**
1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088 * @pwq: pool_workqueue to put (can be %NULL)
1089 *
1090 * put_pwq() with locking. This function also allows %NULL @pwq.
1091 */
1092static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093{
1094 if (pwq) {
1095 /*
1096 * As both pwqs and pools are sched-RCU protected, the
1097 * following lock operations are safe.
1098 */
1099 spin_lock_irq(&pwq->pool->lock);
1100 put_pwq(pwq);
1101 spin_unlock_irq(&pwq->pool->lock);
1102 }
1103}
1104
112202d9 1105static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1106{
112202d9 1107 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1108
1109 trace_workqueue_activate_work(work);
112202d9 1110 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1111 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1112 pwq->nr_active++;
bf4ede01
TH
1113}
1114
112202d9 1115static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1116{
112202d9 1117 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1118 struct work_struct, entry);
1119
112202d9 1120 pwq_activate_delayed_work(work);
3aa62497
LJ
1121}
1122
bf4ede01 1123/**
112202d9
TH
1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125 * @pwq: pwq of interest
bf4ede01 1126 * @color: color of work which left the queue
bf4ede01
TH
1127 *
1128 * A work either has completed or is removed from pending queue,
112202d9 1129 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1130 *
1131 * CONTEXT:
d565ed63 1132 * spin_lock_irq(pool->lock).
bf4ede01 1133 */
112202d9 1134static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1135{
8864b4e5 1136 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1137 if (color == WORK_NO_COLOR)
8864b4e5 1138 goto out_put;
bf4ede01 1139
112202d9 1140 pwq->nr_in_flight[color]--;
bf4ede01 1141
112202d9
TH
1142 pwq->nr_active--;
1143 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1144 /* one down, submit a delayed one */
112202d9
TH
1145 if (pwq->nr_active < pwq->max_active)
1146 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1147 }
1148
1149 /* is flush in progress and are we at the flushing tip? */
112202d9 1150 if (likely(pwq->flush_color != color))
8864b4e5 1151 goto out_put;
bf4ede01
TH
1152
1153 /* are there still in-flight works? */
112202d9 1154 if (pwq->nr_in_flight[color])
8864b4e5 1155 goto out_put;
bf4ede01 1156
112202d9
TH
1157 /* this pwq is done, clear flush_color */
1158 pwq->flush_color = -1;
bf4ede01
TH
1159
1160 /*
112202d9 1161 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1162 * will handle the rest.
1163 */
112202d9
TH
1164 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1166out_put:
1167 put_pwq(pwq);
bf4ede01
TH
1168}
1169
36e227d2 1170/**
bbb68dfa 1171 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1172 * @work: work item to steal
1173 * @is_dwork: @work is a delayed_work
bbb68dfa 1174 * @flags: place to store irq state
36e227d2
TH
1175 *
1176 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1177 * stable state - idle, on timer or on worklist.
36e227d2 1178 *
d185af30 1179 * Return:
36e227d2
TH
1180 * 1 if @work was pending and we successfully stole PENDING
1181 * 0 if @work was idle and we claimed PENDING
1182 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1183 * -ENOENT if someone else is canceling @work, this state may persist
1184 * for arbitrarily long
36e227d2 1185 *
d185af30 1186 * Note:
bbb68dfa 1187 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1188 * interrupted while holding PENDING and @work off queue, irq must be
1189 * disabled on entry. This, combined with delayed_work->timer being
1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1191 *
1192 * On successful return, >= 0, irq is disabled and the caller is
1193 * responsible for releasing it using local_irq_restore(*@flags).
1194 *
e0aecdd8 1195 * This function is safe to call from any context including IRQ handler.
bf4ede01 1196 */
bbb68dfa
TH
1197static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198 unsigned long *flags)
bf4ede01 1199{
d565ed63 1200 struct worker_pool *pool;
112202d9 1201 struct pool_workqueue *pwq;
bf4ede01 1202
bbb68dfa
TH
1203 local_irq_save(*flags);
1204
36e227d2
TH
1205 /* try to steal the timer if it exists */
1206 if (is_dwork) {
1207 struct delayed_work *dwork = to_delayed_work(work);
1208
e0aecdd8
TH
1209 /*
1210 * dwork->timer is irqsafe. If del_timer() fails, it's
1211 * guaranteed that the timer is not queued anywhere and not
1212 * running on the local CPU.
1213 */
36e227d2
TH
1214 if (likely(del_timer(&dwork->timer)))
1215 return 1;
1216 }
1217
1218 /* try to claim PENDING the normal way */
bf4ede01
TH
1219 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220 return 0;
1221
1222 /*
1223 * The queueing is in progress, or it is already queued. Try to
1224 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225 */
d565ed63
TH
1226 pool = get_work_pool(work);
1227 if (!pool)
bbb68dfa 1228 goto fail;
bf4ede01 1229
d565ed63 1230 spin_lock(&pool->lock);
0b3dae68 1231 /*
112202d9
TH
1232 * work->data is guaranteed to point to pwq only while the work
1233 * item is queued on pwq->wq, and both updating work->data to point
1234 * to pwq on queueing and to pool on dequeueing are done under
1235 * pwq->pool->lock. This in turn guarantees that, if work->data
1236 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1237 * item is currently queued on that pool.
1238 */
112202d9
TH
1239 pwq = get_work_pwq(work);
1240 if (pwq && pwq->pool == pool) {
16062836
TH
1241 debug_work_deactivate(work);
1242
1243 /*
1244 * A delayed work item cannot be grabbed directly because
1245 * it might have linked NO_COLOR work items which, if left
112202d9 1246 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1247 * management later on and cause stall. Make sure the work
1248 * item is activated before grabbing.
1249 */
1250 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1251 pwq_activate_delayed_work(work);
16062836
TH
1252
1253 list_del_init(&work->entry);
112202d9 1254 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1255
112202d9 1256 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1257 set_work_pool_and_keep_pending(work, pool->id);
1258
1259 spin_unlock(&pool->lock);
1260 return 1;
bf4ede01 1261 }
d565ed63 1262 spin_unlock(&pool->lock);
bbb68dfa
TH
1263fail:
1264 local_irq_restore(*flags);
1265 if (work_is_canceling(work))
1266 return -ENOENT;
1267 cpu_relax();
36e227d2 1268 return -EAGAIN;
bf4ede01
TH
1269}
1270
4690c4ab 1271/**
706026c2 1272 * insert_work - insert a work into a pool
112202d9 1273 * @pwq: pwq @work belongs to
4690c4ab
TH
1274 * @work: work to insert
1275 * @head: insertion point
1276 * @extra_flags: extra WORK_STRUCT_* flags to set
1277 *
112202d9 1278 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1279 * work_struct flags.
4690c4ab
TH
1280 *
1281 * CONTEXT:
d565ed63 1282 * spin_lock_irq(pool->lock).
4690c4ab 1283 */
112202d9
TH
1284static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285 struct list_head *head, unsigned int extra_flags)
b89deed3 1286{
112202d9 1287 struct worker_pool *pool = pwq->pool;
e22bee78 1288
4690c4ab 1289 /* we own @work, set data and link */
112202d9 1290 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1291 list_add_tail(&work->entry, head);
8864b4e5 1292 get_pwq(pwq);
e22bee78
TH
1293
1294 /*
c5aa87bb
TH
1295 * Ensure either wq_worker_sleeping() sees the above
1296 * list_add_tail() or we see zero nr_running to avoid workers lying
1297 * around lazily while there are works to be processed.
e22bee78
TH
1298 */
1299 smp_mb();
1300
63d95a91
TH
1301 if (__need_more_worker(pool))
1302 wake_up_worker(pool);
b89deed3
ON
1303}
1304
c8efcc25
TH
1305/*
1306 * Test whether @work is being queued from another work executing on the
8d03ecfe 1307 * same workqueue.
c8efcc25
TH
1308 */
1309static bool is_chained_work(struct workqueue_struct *wq)
1310{
8d03ecfe
TH
1311 struct worker *worker;
1312
1313 worker = current_wq_worker();
1314 /*
1315 * Return %true iff I'm a worker execuing a work item on @wq. If
1316 * I'm @worker, it's safe to dereference it without locking.
1317 */
112202d9 1318 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1319}
1320
d84ff051 1321static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1322 struct work_struct *work)
1323{
112202d9 1324 struct pool_workqueue *pwq;
c9178087 1325 struct worker_pool *last_pool;
1e19ffc6 1326 struct list_head *worklist;
8a2e8e5d 1327 unsigned int work_flags;
b75cac93 1328 unsigned int req_cpu = cpu;
8930caba
TH
1329
1330 /*
1331 * While a work item is PENDING && off queue, a task trying to
1332 * steal the PENDING will busy-loop waiting for it to either get
1333 * queued or lose PENDING. Grabbing PENDING and queueing should
1334 * happen with IRQ disabled.
1335 */
1336 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1337
dc186ad7 1338 debug_work_activate(work);
1e19ffc6 1339
9ef28a73 1340 /* if draining, only works from the same workqueue are allowed */
618b01eb 1341 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1342 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1343 return;
9e8cd2f5 1344retry:
df2d5ae4
TH
1345 if (req_cpu == WORK_CPU_UNBOUND)
1346 cpu = raw_smp_processor_id();
1347
c9178087 1348 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1349 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1350 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1351 else
1352 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1353
c9178087
TH
1354 /*
1355 * If @work was previously on a different pool, it might still be
1356 * running there, in which case the work needs to be queued on that
1357 * pool to guarantee non-reentrancy.
1358 */
1359 last_pool = get_work_pool(work);
1360 if (last_pool && last_pool != pwq->pool) {
1361 struct worker *worker;
18aa9eff 1362
c9178087 1363 spin_lock(&last_pool->lock);
18aa9eff 1364
c9178087 1365 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1366
c9178087
TH
1367 if (worker && worker->current_pwq->wq == wq) {
1368 pwq = worker->current_pwq;
8930caba 1369 } else {
c9178087
TH
1370 /* meh... not running there, queue here */
1371 spin_unlock(&last_pool->lock);
112202d9 1372 spin_lock(&pwq->pool->lock);
8930caba 1373 }
f3421797 1374 } else {
112202d9 1375 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1376 }
1377
9e8cd2f5
TH
1378 /*
1379 * pwq is determined and locked. For unbound pools, we could have
1380 * raced with pwq release and it could already be dead. If its
1381 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1382 * without another pwq replacing it in the numa_pwq_tbl or while
1383 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1384 * make forward-progress.
1385 */
1386 if (unlikely(!pwq->refcnt)) {
1387 if (wq->flags & WQ_UNBOUND) {
1388 spin_unlock(&pwq->pool->lock);
1389 cpu_relax();
1390 goto retry;
1391 }
1392 /* oops */
1393 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394 wq->name, cpu);
1395 }
1396
112202d9
TH
1397 /* pwq determined, queue */
1398 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1399
f5b2552b 1400 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1401 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1402 return;
1403 }
1e19ffc6 1404
112202d9
TH
1405 pwq->nr_in_flight[pwq->work_color]++;
1406 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1407
112202d9 1408 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1409 trace_workqueue_activate_work(work);
112202d9
TH
1410 pwq->nr_active++;
1411 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1412 } else {
1413 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1414 worklist = &pwq->delayed_works;
8a2e8e5d 1415 }
1e19ffc6 1416
112202d9 1417 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1418
112202d9 1419 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1420}
1421
0fcb78c2 1422/**
c1a220e7
ZR
1423 * queue_work_on - queue work on specific cpu
1424 * @cpu: CPU number to execute work on
0fcb78c2
REB
1425 * @wq: workqueue to use
1426 * @work: work to queue
1427 *
c1a220e7
ZR
1428 * We queue the work to a specific CPU, the caller must ensure it
1429 * can't go away.
d185af30
YB
1430 *
1431 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1432 */
d4283e93
TH
1433bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434 struct work_struct *work)
1da177e4 1435{
d4283e93 1436 bool ret = false;
8930caba 1437 unsigned long flags;
ef1ca236 1438
8930caba 1439 local_irq_save(flags);
c1a220e7 1440
22df02bb 1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1442 __queue_work(cpu, wq, work);
d4283e93 1443 ret = true;
c1a220e7 1444 }
ef1ca236 1445
8930caba 1446 local_irq_restore(flags);
1da177e4
LT
1447 return ret;
1448}
ad7b1f84 1449EXPORT_SYMBOL(queue_work_on);
1da177e4 1450
d8e794df 1451void delayed_work_timer_fn(unsigned long __data)
1da177e4 1452{
52bad64d 1453 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1454
e0aecdd8 1455 /* should have been called from irqsafe timer with irq already off */
60c057bc 1456 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1457}
1438ade5 1458EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1459
7beb2edf
TH
1460static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461 struct delayed_work *dwork, unsigned long delay)
1da177e4 1462{
7beb2edf
TH
1463 struct timer_list *timer = &dwork->timer;
1464 struct work_struct *work = &dwork->work;
7beb2edf
TH
1465
1466 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467 timer->data != (unsigned long)dwork);
fc4b514f
TH
1468 WARN_ON_ONCE(timer_pending(timer));
1469 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1470
8852aac2
TH
1471 /*
1472 * If @delay is 0, queue @dwork->work immediately. This is for
1473 * both optimization and correctness. The earliest @timer can
1474 * expire is on the closest next tick and delayed_work users depend
1475 * on that there's no such delay when @delay is 0.
1476 */
1477 if (!delay) {
1478 __queue_work(cpu, wq, &dwork->work);
1479 return;
1480 }
1481
7beb2edf 1482 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1483
60c057bc 1484 dwork->wq = wq;
1265057f 1485 dwork->cpu = cpu;
7beb2edf
TH
1486 timer->expires = jiffies + delay;
1487
1488 if (unlikely(cpu != WORK_CPU_UNBOUND))
1489 add_timer_on(timer, cpu);
1490 else
1491 add_timer(timer);
1da177e4
LT
1492}
1493
0fcb78c2
REB
1494/**
1495 * queue_delayed_work_on - queue work on specific CPU after delay
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
af9997e4 1498 * @dwork: work to queue
0fcb78c2
REB
1499 * @delay: number of jiffies to wait before queueing
1500 *
d185af30 1501 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503 * execution.
0fcb78c2 1504 */
d4283e93
TH
1505bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1507{
52bad64d 1508 struct work_struct *work = &dwork->work;
d4283e93 1509 bool ret = false;
8930caba 1510 unsigned long flags;
7a6bc1cd 1511
8930caba
TH
1512 /* read the comment in __queue_work() */
1513 local_irq_save(flags);
7a6bc1cd 1514
22df02bb 1515 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1516 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1517 ret = true;
7a6bc1cd 1518 }
8a3e77cc 1519
8930caba 1520 local_irq_restore(flags);
7a6bc1cd
VP
1521 return ret;
1522}
ad7b1f84 1523EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1524
8376fe22
TH
1525/**
1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
1529 * @dwork: work to queue
1530 * @delay: number of jiffies to wait before queueing
1531 *
1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533 * modify @dwork's timer so that it expires after @delay. If @delay is
1534 * zero, @work is guaranteed to be scheduled immediately regardless of its
1535 * current state.
1536 *
d185af30 1537 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1538 * pending and its timer was modified.
1539 *
e0aecdd8 1540 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1541 * See try_to_grab_pending() for details.
1542 */
1543bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544 struct delayed_work *dwork, unsigned long delay)
1545{
1546 unsigned long flags;
1547 int ret;
c7fc77f7 1548
8376fe22
TH
1549 do {
1550 ret = try_to_grab_pending(&dwork->work, true, &flags);
1551 } while (unlikely(ret == -EAGAIN));
63bc0362 1552
8376fe22
TH
1553 if (likely(ret >= 0)) {
1554 __queue_delayed_work(cpu, wq, dwork, delay);
1555 local_irq_restore(flags);
7a6bc1cd 1556 }
8376fe22
TH
1557
1558 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1559 return ret;
1560}
8376fe22
TH
1561EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562
c8e55f36
TH
1563/**
1564 * worker_enter_idle - enter idle state
1565 * @worker: worker which is entering idle state
1566 *
1567 * @worker is entering idle state. Update stats and idle timer if
1568 * necessary.
1569 *
1570 * LOCKING:
d565ed63 1571 * spin_lock_irq(pool->lock).
c8e55f36
TH
1572 */
1573static void worker_enter_idle(struct worker *worker)
1da177e4 1574{
bd7bdd43 1575 struct worker_pool *pool = worker->pool;
c8e55f36 1576
6183c009
TH
1577 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579 (worker->hentry.next || worker->hentry.pprev)))
1580 return;
c8e55f36 1581
cb444766
TH
1582 /* can't use worker_set_flags(), also called from start_worker() */
1583 worker->flags |= WORKER_IDLE;
bd7bdd43 1584 pool->nr_idle++;
e22bee78 1585 worker->last_active = jiffies;
c8e55f36
TH
1586
1587 /* idle_list is LIFO */
bd7bdd43 1588 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1589
628c78e7
TH
1590 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1592
544ecf31 1593 /*
706026c2 1594 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1595 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1596 * nr_running, the warning may trigger spuriously. Check iff
1597 * unbind is not in progress.
544ecf31 1598 */
24647570 1599 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1600 pool->nr_workers == pool->nr_idle &&
e19e397a 1601 atomic_read(&pool->nr_running));
c8e55f36
TH
1602}
1603
1604/**
1605 * worker_leave_idle - leave idle state
1606 * @worker: worker which is leaving idle state
1607 *
1608 * @worker is leaving idle state. Update stats.
1609 *
1610 * LOCKING:
d565ed63 1611 * spin_lock_irq(pool->lock).
c8e55f36
TH
1612 */
1613static void worker_leave_idle(struct worker *worker)
1614{
bd7bdd43 1615 struct worker_pool *pool = worker->pool;
c8e55f36 1616
6183c009
TH
1617 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618 return;
d302f017 1619 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1620 pool->nr_idle--;
c8e55f36
TH
1621 list_del_init(&worker->entry);
1622}
1623
e22bee78 1624/**
f36dc67b
LJ
1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626 * @pool: target worker_pool
1627 *
1628 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1629 *
1630 * Works which are scheduled while the cpu is online must at least be
1631 * scheduled to a worker which is bound to the cpu so that if they are
1632 * flushed from cpu callbacks while cpu is going down, they are
1633 * guaranteed to execute on the cpu.
1634 *
f5faa077 1635 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1636 * themselves to the target cpu and may race with cpu going down or
1637 * coming online. kthread_bind() can't be used because it may put the
1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1639 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1640 * [dis]associated in the meantime.
1641 *
706026c2 1642 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1643 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645 * enters idle state or fetches works without dropping lock, it can
1646 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1647 *
1648 * CONTEXT:
d565ed63 1649 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1650 * held.
1651 *
d185af30 1652 * Return:
706026c2 1653 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1654 * bound), %false if offline.
1655 */
f36dc67b 1656static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1657__acquires(&pool->lock)
e22bee78 1658{
e22bee78 1659 while (true) {
4e6045f1 1660 /*
e22bee78
TH
1661 * The following call may fail, succeed or succeed
1662 * without actually migrating the task to the cpu if
1663 * it races with cpu hotunplug operation. Verify
24647570 1664 * against POOL_DISASSOCIATED.
4e6045f1 1665 */
24647570 1666 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1667 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1668
d565ed63 1669 spin_lock_irq(&pool->lock);
24647570 1670 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1671 return false;
f5faa077 1672 if (task_cpu(current) == pool->cpu &&
7a4e344c 1673 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1674 return true;
d565ed63 1675 spin_unlock_irq(&pool->lock);
e22bee78 1676
5035b20f
TH
1677 /*
1678 * We've raced with CPU hot[un]plug. Give it a breather
1679 * and retry migration. cond_resched() is required here;
1680 * otherwise, we might deadlock against cpu_stop trying to
1681 * bring down the CPU on non-preemptive kernel.
1682 */
e22bee78 1683 cpu_relax();
5035b20f 1684 cond_resched();
e22bee78
TH
1685 }
1686}
1687
c34056a3
TH
1688static struct worker *alloc_worker(void)
1689{
1690 struct worker *worker;
1691
1692 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1693 if (worker) {
1694 INIT_LIST_HEAD(&worker->entry);
affee4b2 1695 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1696 /* on creation a worker is in !idle && prep state */
1697 worker->flags = WORKER_PREP;
c8e55f36 1698 }
c34056a3
TH
1699 return worker;
1700}
1701
1702/**
1703 * create_worker - create a new workqueue worker
63d95a91 1704 * @pool: pool the new worker will belong to
c34056a3 1705 *
63d95a91 1706 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1707 * can be started by calling start_worker() or destroyed using
1708 * destroy_worker().
1709 *
1710 * CONTEXT:
1711 * Might sleep. Does GFP_KERNEL allocations.
1712 *
d185af30 1713 * Return:
c34056a3
TH
1714 * Pointer to the newly created worker.
1715 */
bc2ae0f5 1716static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1717{
c34056a3 1718 struct worker *worker = NULL;
f3421797 1719 int id = -1;
e3c916a4 1720 char id_buf[16];
c34056a3 1721
cd549687
TH
1722 lockdep_assert_held(&pool->manager_mutex);
1723
822d8405
TH
1724 /*
1725 * ID is needed to determine kthread name. Allocate ID first
1726 * without installing the pointer.
1727 */
1728 idr_preload(GFP_KERNEL);
d565ed63 1729 spin_lock_irq(&pool->lock);
822d8405
TH
1730
1731 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732
d565ed63 1733 spin_unlock_irq(&pool->lock);
822d8405
TH
1734 idr_preload_end();
1735 if (id < 0)
1736 goto fail;
c34056a3
TH
1737
1738 worker = alloc_worker();
1739 if (!worker)
1740 goto fail;
1741
bd7bdd43 1742 worker->pool = pool;
c34056a3
TH
1743 worker->id = id;
1744
29c91e99 1745 if (pool->cpu >= 0)
e3c916a4
TH
1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 pool->attrs->nice < 0 ? "H" : "");
f3421797 1748 else
e3c916a4
TH
1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
f3f90ad4 1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1752 "kworker/%s", id_buf);
c34056a3
TH
1753 if (IS_ERR(worker->task))
1754 goto fail;
1755
91151228
ON
1756 set_user_nice(worker->task, pool->attrs->nice);
1757
1758 /* prevent userland from meddling with cpumask of workqueue workers */
1759 worker->task->flags |= PF_NO_SETAFFINITY;
1760
c5aa87bb
TH
1761 /*
1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 * online CPUs. It'll be re-applied when any of the CPUs come up.
1764 */
7a4e344c 1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1766
7a4e344c
TH
1767 /*
1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 * remains stable across this function. See the comments above the
1770 * flag definition for details.
1771 */
1772 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1773 worker->flags |= WORKER_UNBOUND;
c34056a3 1774
822d8405
TH
1775 /* successful, commit the pointer to idr */
1776 spin_lock_irq(&pool->lock);
1777 idr_replace(&pool->worker_idr, worker, worker->id);
1778 spin_unlock_irq(&pool->lock);
1779
c34056a3 1780 return worker;
822d8405 1781
c34056a3
TH
1782fail:
1783 if (id >= 0) {
d565ed63 1784 spin_lock_irq(&pool->lock);
822d8405 1785 idr_remove(&pool->worker_idr, id);
d565ed63 1786 spin_unlock_irq(&pool->lock);
c34056a3
TH
1787 }
1788 kfree(worker);
1789 return NULL;
1790}
1791
1792/**
1793 * start_worker - start a newly created worker
1794 * @worker: worker to start
1795 *
706026c2 1796 * Make the pool aware of @worker and start it.
c34056a3
TH
1797 *
1798 * CONTEXT:
d565ed63 1799 * spin_lock_irq(pool->lock).
c34056a3
TH
1800 */
1801static void start_worker(struct worker *worker)
1802{
cb444766 1803 worker->flags |= WORKER_STARTED;
bd7bdd43 1804 worker->pool->nr_workers++;
c8e55f36 1805 worker_enter_idle(worker);
c34056a3
TH
1806 wake_up_process(worker->task);
1807}
1808
ebf44d16
TH
1809/**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
cd549687 1813 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1816 */
1817static int create_and_start_worker(struct worker_pool *pool)
1818{
1819 struct worker *worker;
1820
cd549687
TH
1821 mutex_lock(&pool->manager_mutex);
1822
ebf44d16
TH
1823 worker = create_worker(pool);
1824 if (worker) {
1825 spin_lock_irq(&pool->lock);
1826 start_worker(worker);
1827 spin_unlock_irq(&pool->lock);
1828 }
1829
cd549687
TH
1830 mutex_unlock(&pool->manager_mutex);
1831
ebf44d16
TH
1832 return worker ? 0 : -ENOMEM;
1833}
1834
c34056a3
TH
1835/**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
706026c2 1839 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1840 *
1841 * CONTEXT:
d565ed63 1842 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1843 */
1844static void destroy_worker(struct worker *worker)
1845{
bd7bdd43 1846 struct worker_pool *pool = worker->pool;
c34056a3 1847
cd549687
TH
1848 lockdep_assert_held(&pool->manager_mutex);
1849 lockdep_assert_held(&pool->lock);
1850
c34056a3 1851 /* sanity check frenzy */
6183c009
TH
1852 if (WARN_ON(worker->current_work) ||
1853 WARN_ON(!list_empty(&worker->scheduled)))
1854 return;
c34056a3 1855
c8e55f36 1856 if (worker->flags & WORKER_STARTED)
bd7bdd43 1857 pool->nr_workers--;
c8e55f36 1858 if (worker->flags & WORKER_IDLE)
bd7bdd43 1859 pool->nr_idle--;
c8e55f36 1860
5bdfff96
LJ
1861 /*
1862 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863 * point. Pin to ensure the task stays until we're done with it.
1864 */
1865 get_task_struct(worker->task);
1866
c8e55f36 1867 list_del_init(&worker->entry);
cb444766 1868 worker->flags |= WORKER_DIE;
c8e55f36 1869
822d8405
TH
1870 idr_remove(&pool->worker_idr, worker->id);
1871
d565ed63 1872 spin_unlock_irq(&pool->lock);
c8e55f36 1873
c34056a3 1874 kthread_stop(worker->task);
5bdfff96 1875 put_task_struct(worker->task);
c34056a3
TH
1876 kfree(worker);
1877
d565ed63 1878 spin_lock_irq(&pool->lock);
c34056a3
TH
1879}
1880
63d95a91 1881static void idle_worker_timeout(unsigned long __pool)
e22bee78 1882{
63d95a91 1883 struct worker_pool *pool = (void *)__pool;
e22bee78 1884
d565ed63 1885 spin_lock_irq(&pool->lock);
e22bee78 1886
63d95a91 1887 if (too_many_workers(pool)) {
e22bee78
TH
1888 struct worker *worker;
1889 unsigned long expires;
1890
1891 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1892 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1893 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894
1895 if (time_before(jiffies, expires))
63d95a91 1896 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1897 else {
1898 /* it's been idle for too long, wake up manager */
11ebea50 1899 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1900 wake_up_worker(pool);
d5abe669 1901 }
e22bee78
TH
1902 }
1903
d565ed63 1904 spin_unlock_irq(&pool->lock);
e22bee78 1905}
d5abe669 1906
493a1724 1907static void send_mayday(struct work_struct *work)
e22bee78 1908{
112202d9
TH
1909 struct pool_workqueue *pwq = get_work_pwq(work);
1910 struct workqueue_struct *wq = pwq->wq;
493a1724 1911
2e109a28 1912 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1913
493008a8 1914 if (!wq->rescuer)
493a1724 1915 return;
e22bee78
TH
1916
1917 /* mayday mayday mayday */
493a1724 1918 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1919 /*
1920 * If @pwq is for an unbound wq, its base ref may be put at
1921 * any time due to an attribute change. Pin @pwq until the
1922 * rescuer is done with it.
1923 */
1924 get_pwq(pwq);
493a1724 1925 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1926 wake_up_process(wq->rescuer->task);
493a1724 1927 }
e22bee78
TH
1928}
1929
706026c2 1930static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1931{
63d95a91 1932 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1933 struct work_struct *work;
1934
2e109a28 1935 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1936 spin_lock(&pool->lock);
e22bee78 1937
63d95a91 1938 if (need_to_create_worker(pool)) {
e22bee78
TH
1939 /*
1940 * We've been trying to create a new worker but
1941 * haven't been successful. We might be hitting an
1942 * allocation deadlock. Send distress signals to
1943 * rescuers.
1944 */
63d95a91 1945 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1946 send_mayday(work);
1da177e4 1947 }
e22bee78 1948
493a1724 1949 spin_unlock(&pool->lock);
2e109a28 1950 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1951
63d95a91 1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1953}
1954
e22bee78
TH
1955/**
1956 * maybe_create_worker - create a new worker if necessary
63d95a91 1957 * @pool: pool to create a new worker for
e22bee78 1958 *
63d95a91 1959 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1960 * have at least one idle worker on return from this function. If
1961 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1962 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1963 * possible allocation deadlock.
1964 *
c5aa87bb
TH
1965 * On return, need_to_create_worker() is guaranteed to be %false and
1966 * may_start_working() %true.
e22bee78
TH
1967 *
1968 * LOCKING:
d565ed63 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1970 * multiple times. Does GFP_KERNEL allocations. Called only from
1971 * manager.
1972 *
d185af30 1973 * Return:
c5aa87bb 1974 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1975 * otherwise.
1976 */
63d95a91 1977static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1978__releases(&pool->lock)
1979__acquires(&pool->lock)
1da177e4 1980{
63d95a91 1981 if (!need_to_create_worker(pool))
e22bee78
TH
1982 return false;
1983restart:
d565ed63 1984 spin_unlock_irq(&pool->lock);
9f9c2364 1985
e22bee78 1986 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1987 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1988
1989 while (true) {
1990 struct worker *worker;
1991
bc2ae0f5 1992 worker = create_worker(pool);
e22bee78 1993 if (worker) {
63d95a91 1994 del_timer_sync(&pool->mayday_timer);
d565ed63 1995 spin_lock_irq(&pool->lock);
e22bee78 1996 start_worker(worker);
6183c009
TH
1997 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1998 goto restart;
e22bee78
TH
1999 return true;
2000 }
2001
63d95a91 2002 if (!need_to_create_worker(pool))
e22bee78 2003 break;
1da177e4 2004
e22bee78
TH
2005 __set_current_state(TASK_INTERRUPTIBLE);
2006 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2007
63d95a91 2008 if (!need_to_create_worker(pool))
e22bee78
TH
2009 break;
2010 }
2011
63d95a91 2012 del_timer_sync(&pool->mayday_timer);
d565ed63 2013 spin_lock_irq(&pool->lock);
63d95a91 2014 if (need_to_create_worker(pool))
e22bee78
TH
2015 goto restart;
2016 return true;
2017}
2018
2019/**
2020 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2021 * @pool: pool to destroy workers for
e22bee78 2022 *
63d95a91 2023 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2024 * IDLE_WORKER_TIMEOUT.
2025 *
2026 * LOCKING:
d565ed63 2027 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2028 * multiple times. Called only from manager.
2029 *
d185af30 2030 * Return:
c5aa87bb 2031 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2032 * otherwise.
2033 */
63d95a91 2034static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2035{
2036 bool ret = false;
1da177e4 2037
63d95a91 2038 while (too_many_workers(pool)) {
e22bee78
TH
2039 struct worker *worker;
2040 unsigned long expires;
3af24433 2041
63d95a91 2042 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2043 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2044
e22bee78 2045 if (time_before(jiffies, expires)) {
63d95a91 2046 mod_timer(&pool->idle_timer, expires);
3af24433 2047 break;
e22bee78 2048 }
1da177e4 2049
e22bee78
TH
2050 destroy_worker(worker);
2051 ret = true;
1da177e4 2052 }
1e19ffc6 2053
e22bee78 2054 return ret;
1e19ffc6
TH
2055}
2056
73f53c4a 2057/**
e22bee78
TH
2058 * manage_workers - manage worker pool
2059 * @worker: self
73f53c4a 2060 *
706026c2 2061 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2062 * to. At any given time, there can be only zero or one manager per
706026c2 2063 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2064 *
2065 * The caller can safely start processing works on false return. On
2066 * true return, it's guaranteed that need_to_create_worker() is false
2067 * and may_start_working() is true.
73f53c4a
TH
2068 *
2069 * CONTEXT:
d565ed63 2070 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2071 * multiple times. Does GFP_KERNEL allocations.
2072 *
d185af30 2073 * Return:
2d498db9
L
2074 * %false if the pool don't need management and the caller can safely start
2075 * processing works, %true indicates that the function released pool->lock
2076 * and reacquired it to perform some management function and that the
2077 * conditions that the caller verified while holding the lock before
2078 * calling the function might no longer be true.
73f53c4a 2079 */
e22bee78 2080static bool manage_workers(struct worker *worker)
73f53c4a 2081{
63d95a91 2082 struct worker_pool *pool = worker->pool;
e22bee78 2083 bool ret = false;
73f53c4a 2084
bc3a1afc
TH
2085 /*
2086 * Managership is governed by two mutexes - manager_arb and
2087 * manager_mutex. manager_arb handles arbitration of manager role.
2088 * Anyone who successfully grabs manager_arb wins the arbitration
2089 * and becomes the manager. mutex_trylock() on pool->manager_arb
2090 * failure while holding pool->lock reliably indicates that someone
2091 * else is managing the pool and the worker which failed trylock
2092 * can proceed to executing work items. This means that anyone
2093 * grabbing manager_arb is responsible for actually performing
2094 * manager duties. If manager_arb is grabbed and released without
2095 * actual management, the pool may stall indefinitely.
2096 *
2097 * manager_mutex is used for exclusion of actual management
2098 * operations. The holder of manager_mutex can be sure that none
2099 * of management operations, including creation and destruction of
2100 * workers, won't take place until the mutex is released. Because
2101 * manager_mutex doesn't interfere with manager role arbitration,
2102 * it is guaranteed that the pool's management, while may be
2103 * delayed, won't be disturbed by someone else grabbing
2104 * manager_mutex.
2105 */
34a06bd6 2106 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2107 return ret;
1e19ffc6 2108
ee378aa4 2109 /*
bc3a1afc
TH
2110 * With manager arbitration won, manager_mutex would be free in
2111 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2112 */
bc3a1afc 2113 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2114 spin_unlock_irq(&pool->lock);
bc3a1afc 2115 mutex_lock(&pool->manager_mutex);
8f174b11 2116 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2117 ret = true;
2118 }
73f53c4a 2119
11ebea50 2120 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2121
2122 /*
e22bee78
TH
2123 * Destroy and then create so that may_start_working() is true
2124 * on return.
73f53c4a 2125 */
63d95a91
TH
2126 ret |= maybe_destroy_workers(pool);
2127 ret |= maybe_create_worker(pool);
e22bee78 2128
bc3a1afc 2129 mutex_unlock(&pool->manager_mutex);
34a06bd6 2130 mutex_unlock(&pool->manager_arb);
e22bee78 2131 return ret;
73f53c4a
TH
2132}
2133
a62428c0
TH
2134/**
2135 * process_one_work - process single work
c34056a3 2136 * @worker: self
a62428c0
TH
2137 * @work: work to process
2138 *
2139 * Process @work. This function contains all the logics necessary to
2140 * process a single work including synchronization against and
2141 * interaction with other workers on the same cpu, queueing and
2142 * flushing. As long as context requirement is met, any worker can
2143 * call this function to process a work.
2144 *
2145 * CONTEXT:
d565ed63 2146 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2147 */
c34056a3 2148static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2149__releases(&pool->lock)
2150__acquires(&pool->lock)
a62428c0 2151{
112202d9 2152 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2153 struct worker_pool *pool = worker->pool;
112202d9 2154 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2155 int work_color;
7e11629d 2156 struct worker *collision;
a62428c0
TH
2157#ifdef CONFIG_LOCKDEP
2158 /*
2159 * It is permissible to free the struct work_struct from
2160 * inside the function that is called from it, this we need to
2161 * take into account for lockdep too. To avoid bogus "held
2162 * lock freed" warnings as well as problems when looking into
2163 * work->lockdep_map, make a copy and use that here.
2164 */
4d82a1de
PZ
2165 struct lockdep_map lockdep_map;
2166
2167 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2168#endif
6fec10a1
TH
2169 /*
2170 * Ensure we're on the correct CPU. DISASSOCIATED test is
2171 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2172 * unbound or a disassociated pool.
6fec10a1 2173 */
5f7dabfd 2174 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2175 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2176 raw_smp_processor_id() != pool->cpu);
25511a47 2177
7e11629d
TH
2178 /*
2179 * A single work shouldn't be executed concurrently by
2180 * multiple workers on a single cpu. Check whether anyone is
2181 * already processing the work. If so, defer the work to the
2182 * currently executing one.
2183 */
c9e7cf27 2184 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2185 if (unlikely(collision)) {
2186 move_linked_works(work, &collision->scheduled, NULL);
2187 return;
2188 }
2189
8930caba 2190 /* claim and dequeue */
a62428c0 2191 debug_work_deactivate(work);
c9e7cf27 2192 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2193 worker->current_work = work;
a2c1c57b 2194 worker->current_func = work->func;
112202d9 2195 worker->current_pwq = pwq;
73f53c4a 2196 work_color = get_work_color(work);
7a22ad75 2197
a62428c0
TH
2198 list_del_init(&work->entry);
2199
fb0e7beb
TH
2200 /*
2201 * CPU intensive works don't participate in concurrency
2202 * management. They're the scheduler's responsibility.
2203 */
2204 if (unlikely(cpu_intensive))
2205 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2206
974271c4 2207 /*
d565ed63 2208 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2209 * executed ASAP. Wake up another worker if necessary.
2210 */
63d95a91
TH
2211 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2212 wake_up_worker(pool);
974271c4 2213
8930caba 2214 /*
7c3eed5c 2215 * Record the last pool and clear PENDING which should be the last
d565ed63 2216 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2217 * PENDING and queued state changes happen together while IRQ is
2218 * disabled.
8930caba 2219 */
7c3eed5c 2220 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2221
d565ed63 2222 spin_unlock_irq(&pool->lock);
a62428c0 2223
112202d9 2224 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2225 lock_map_acquire(&lockdep_map);
e36c886a 2226 trace_workqueue_execute_start(work);
a2c1c57b 2227 worker->current_func(work);
e36c886a
AV
2228 /*
2229 * While we must be careful to not use "work" after this, the trace
2230 * point will only record its address.
2231 */
2232 trace_workqueue_execute_end(work);
a62428c0 2233 lock_map_release(&lockdep_map);
112202d9 2234 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2235
2236 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2237 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2238 " last function: %pf\n",
a2c1c57b
TH
2239 current->comm, preempt_count(), task_pid_nr(current),
2240 worker->current_func);
a62428c0
TH
2241 debug_show_held_locks(current);
2242 dump_stack();
2243 }
2244
b22ce278
TH
2245 /*
2246 * The following prevents a kworker from hogging CPU on !PREEMPT
2247 * kernels, where a requeueing work item waiting for something to
2248 * happen could deadlock with stop_machine as such work item could
2249 * indefinitely requeue itself while all other CPUs are trapped in
2250 * stop_machine.
2251 */
2252 cond_resched();
2253
d565ed63 2254 spin_lock_irq(&pool->lock);
a62428c0 2255
fb0e7beb
TH
2256 /* clear cpu intensive status */
2257 if (unlikely(cpu_intensive))
2258 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2259
a62428c0 2260 /* we're done with it, release */
42f8570f 2261 hash_del(&worker->hentry);
c34056a3 2262 worker->current_work = NULL;
a2c1c57b 2263 worker->current_func = NULL;
112202d9 2264 worker->current_pwq = NULL;
3d1cb205 2265 worker->desc_valid = false;
112202d9 2266 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2267}
2268
affee4b2
TH
2269/**
2270 * process_scheduled_works - process scheduled works
2271 * @worker: self
2272 *
2273 * Process all scheduled works. Please note that the scheduled list
2274 * may change while processing a work, so this function repeatedly
2275 * fetches a work from the top and executes it.
2276 *
2277 * CONTEXT:
d565ed63 2278 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2279 * multiple times.
2280 */
2281static void process_scheduled_works(struct worker *worker)
1da177e4 2282{
affee4b2
TH
2283 while (!list_empty(&worker->scheduled)) {
2284 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2285 struct work_struct, entry);
c34056a3 2286 process_one_work(worker, work);
1da177e4 2287 }
1da177e4
LT
2288}
2289
4690c4ab
TH
2290/**
2291 * worker_thread - the worker thread function
c34056a3 2292 * @__worker: self
4690c4ab 2293 *
c5aa87bb
TH
2294 * The worker thread function. All workers belong to a worker_pool -
2295 * either a per-cpu one or dynamic unbound one. These workers process all
2296 * work items regardless of their specific target workqueue. The only
2297 * exception is work items which belong to workqueues with a rescuer which
2298 * will be explained in rescuer_thread().
d185af30
YB
2299 *
2300 * Return: 0
4690c4ab 2301 */
c34056a3 2302static int worker_thread(void *__worker)
1da177e4 2303{
c34056a3 2304 struct worker *worker = __worker;
bd7bdd43 2305 struct worker_pool *pool = worker->pool;
1da177e4 2306
e22bee78
TH
2307 /* tell the scheduler that this is a workqueue worker */
2308 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2309woke_up:
d565ed63 2310 spin_lock_irq(&pool->lock);
1da177e4 2311
a9ab775b
TH
2312 /* am I supposed to die? */
2313 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2314 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2315 WARN_ON_ONCE(!list_empty(&worker->entry));
2316 worker->task->flags &= ~PF_WQ_WORKER;
2317 return 0;
c8e55f36 2318 }
affee4b2 2319
c8e55f36 2320 worker_leave_idle(worker);
db7bccf4 2321recheck:
e22bee78 2322 /* no more worker necessary? */
63d95a91 2323 if (!need_more_worker(pool))
e22bee78
TH
2324 goto sleep;
2325
2326 /* do we need to manage? */
63d95a91 2327 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2328 goto recheck;
2329
c8e55f36
TH
2330 /*
2331 * ->scheduled list can only be filled while a worker is
2332 * preparing to process a work or actually processing it.
2333 * Make sure nobody diddled with it while I was sleeping.
2334 */
6183c009 2335 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2336
e22bee78 2337 /*
a9ab775b
TH
2338 * Finish PREP stage. We're guaranteed to have at least one idle
2339 * worker or that someone else has already assumed the manager
2340 * role. This is where @worker starts participating in concurrency
2341 * management if applicable and concurrency management is restored
2342 * after being rebound. See rebind_workers() for details.
e22bee78 2343 */
a9ab775b 2344 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2345
2346 do {
c8e55f36 2347 struct work_struct *work =
bd7bdd43 2348 list_first_entry(&pool->worklist,
c8e55f36
TH
2349 struct work_struct, entry);
2350
2351 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2352 /* optimization path, not strictly necessary */
2353 process_one_work(worker, work);
2354 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2355 process_scheduled_works(worker);
c8e55f36
TH
2356 } else {
2357 move_linked_works(work, &worker->scheduled, NULL);
2358 process_scheduled_works(worker);
affee4b2 2359 }
63d95a91 2360 } while (keep_working(pool));
e22bee78
TH
2361
2362 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2363sleep:
63d95a91 2364 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2365 goto recheck;
d313dd85 2366
c8e55f36 2367 /*
d565ed63
TH
2368 * pool->lock is held and there's no work to process and no need to
2369 * manage, sleep. Workers are woken up only while holding
2370 * pool->lock or from local cpu, so setting the current state
2371 * before releasing pool->lock is enough to prevent losing any
2372 * event.
c8e55f36
TH
2373 */
2374 worker_enter_idle(worker);
2375 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2376 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2377 schedule();
2378 goto woke_up;
1da177e4
LT
2379}
2380
e22bee78
TH
2381/**
2382 * rescuer_thread - the rescuer thread function
111c225a 2383 * @__rescuer: self
e22bee78
TH
2384 *
2385 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2386 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2387 *
706026c2 2388 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2389 * worker which uses GFP_KERNEL allocation which has slight chance of
2390 * developing into deadlock if some works currently on the same queue
2391 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2392 * the problem rescuer solves.
2393 *
706026c2
TH
2394 * When such condition is possible, the pool summons rescuers of all
2395 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2396 * those works so that forward progress can be guaranteed.
2397 *
2398 * This should happen rarely.
d185af30
YB
2399 *
2400 * Return: 0
e22bee78 2401 */
111c225a 2402static int rescuer_thread(void *__rescuer)
e22bee78 2403{
111c225a
TH
2404 struct worker *rescuer = __rescuer;
2405 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2406 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2407 bool should_stop;
e22bee78
TH
2408
2409 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2410
2411 /*
2412 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2413 * doesn't participate in concurrency management.
2414 */
2415 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2416repeat:
2417 set_current_state(TASK_INTERRUPTIBLE);
2418
4d595b86
LJ
2419 /*
2420 * By the time the rescuer is requested to stop, the workqueue
2421 * shouldn't have any work pending, but @wq->maydays may still have
2422 * pwq(s) queued. This can happen by non-rescuer workers consuming
2423 * all the work items before the rescuer got to them. Go through
2424 * @wq->maydays processing before acting on should_stop so that the
2425 * list is always empty on exit.
2426 */
2427 should_stop = kthread_should_stop();
e22bee78 2428
493a1724 2429 /* see whether any pwq is asking for help */
2e109a28 2430 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2431
2432 while (!list_empty(&wq->maydays)) {
2433 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2434 struct pool_workqueue, mayday_node);
112202d9 2435 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2436 struct work_struct *work, *n;
2437
2438 __set_current_state(TASK_RUNNING);
493a1724
TH
2439 list_del_init(&pwq->mayday_node);
2440
2e109a28 2441 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2442
2443 /* migrate to the target cpu if possible */
f36dc67b 2444 worker_maybe_bind_and_lock(pool);
b3104104 2445 rescuer->pool = pool;
e22bee78
TH
2446
2447 /*
2448 * Slurp in all works issued via this workqueue and
2449 * process'em.
2450 */
6183c009 2451 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2452 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2453 if (get_work_pwq(work) == pwq)
e22bee78
TH
2454 move_linked_works(work, scheduled, &n);
2455
2456 process_scheduled_works(rescuer);
7576958a 2457
77668c8b
LJ
2458 /*
2459 * Put the reference grabbed by send_mayday(). @pool won't
2460 * go away while we're holding its lock.
2461 */
2462 put_pwq(pwq);
2463
7576958a 2464 /*
d565ed63 2465 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2466 * regular worker; otherwise, we end up with 0 concurrency
2467 * and stalling the execution.
2468 */
63d95a91
TH
2469 if (keep_working(pool))
2470 wake_up_worker(pool);
7576958a 2471
b3104104 2472 rescuer->pool = NULL;
493a1724 2473 spin_unlock(&pool->lock);
2e109a28 2474 spin_lock(&wq_mayday_lock);
e22bee78
TH
2475 }
2476
2e109a28 2477 spin_unlock_irq(&wq_mayday_lock);
493a1724 2478
4d595b86
LJ
2479 if (should_stop) {
2480 __set_current_state(TASK_RUNNING);
2481 rescuer->task->flags &= ~PF_WQ_WORKER;
2482 return 0;
2483 }
2484
111c225a
TH
2485 /* rescuers should never participate in concurrency management */
2486 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2487 schedule();
2488 goto repeat;
1da177e4
LT
2489}
2490
fc2e4d70
ON
2491struct wq_barrier {
2492 struct work_struct work;
2493 struct completion done;
2494};
2495
2496static void wq_barrier_func(struct work_struct *work)
2497{
2498 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2499 complete(&barr->done);
2500}
2501
4690c4ab
TH
2502/**
2503 * insert_wq_barrier - insert a barrier work
112202d9 2504 * @pwq: pwq to insert barrier into
4690c4ab 2505 * @barr: wq_barrier to insert
affee4b2
TH
2506 * @target: target work to attach @barr to
2507 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2508 *
affee4b2
TH
2509 * @barr is linked to @target such that @barr is completed only after
2510 * @target finishes execution. Please note that the ordering
2511 * guarantee is observed only with respect to @target and on the local
2512 * cpu.
2513 *
2514 * Currently, a queued barrier can't be canceled. This is because
2515 * try_to_grab_pending() can't determine whether the work to be
2516 * grabbed is at the head of the queue and thus can't clear LINKED
2517 * flag of the previous work while there must be a valid next work
2518 * after a work with LINKED flag set.
2519 *
2520 * Note that when @worker is non-NULL, @target may be modified
112202d9 2521 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2522 *
2523 * CONTEXT:
d565ed63 2524 * spin_lock_irq(pool->lock).
4690c4ab 2525 */
112202d9 2526static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2527 struct wq_barrier *barr,
2528 struct work_struct *target, struct worker *worker)
fc2e4d70 2529{
affee4b2
TH
2530 struct list_head *head;
2531 unsigned int linked = 0;
2532
dc186ad7 2533 /*
d565ed63 2534 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2535 * as we know for sure that this will not trigger any of the
2536 * checks and call back into the fixup functions where we
2537 * might deadlock.
2538 */
ca1cab37 2539 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2540 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2541 init_completion(&barr->done);
83c22520 2542
affee4b2
TH
2543 /*
2544 * If @target is currently being executed, schedule the
2545 * barrier to the worker; otherwise, put it after @target.
2546 */
2547 if (worker)
2548 head = worker->scheduled.next;
2549 else {
2550 unsigned long *bits = work_data_bits(target);
2551
2552 head = target->entry.next;
2553 /* there can already be other linked works, inherit and set */
2554 linked = *bits & WORK_STRUCT_LINKED;
2555 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2556 }
2557
dc186ad7 2558 debug_work_activate(&barr->work);
112202d9 2559 insert_work(pwq, &barr->work, head,
affee4b2 2560 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2561}
2562
73f53c4a 2563/**
112202d9 2564 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2565 * @wq: workqueue being flushed
2566 * @flush_color: new flush color, < 0 for no-op
2567 * @work_color: new work color, < 0 for no-op
2568 *
112202d9 2569 * Prepare pwqs for workqueue flushing.
73f53c4a 2570 *
112202d9
TH
2571 * If @flush_color is non-negative, flush_color on all pwqs should be
2572 * -1. If no pwq has in-flight commands at the specified color, all
2573 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2574 * has in flight commands, its pwq->flush_color is set to
2575 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2576 * wakeup logic is armed and %true is returned.
2577 *
2578 * The caller should have initialized @wq->first_flusher prior to
2579 * calling this function with non-negative @flush_color. If
2580 * @flush_color is negative, no flush color update is done and %false
2581 * is returned.
2582 *
112202d9 2583 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2584 * work_color which is previous to @work_color and all will be
2585 * advanced to @work_color.
2586 *
2587 * CONTEXT:
3c25a55d 2588 * mutex_lock(wq->mutex).
73f53c4a 2589 *
d185af30 2590 * Return:
73f53c4a
TH
2591 * %true if @flush_color >= 0 and there's something to flush. %false
2592 * otherwise.
2593 */
112202d9 2594static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2595 int flush_color, int work_color)
1da177e4 2596{
73f53c4a 2597 bool wait = false;
49e3cf44 2598 struct pool_workqueue *pwq;
1da177e4 2599
73f53c4a 2600 if (flush_color >= 0) {
6183c009 2601 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2602 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2603 }
2355b70f 2604
49e3cf44 2605 for_each_pwq(pwq, wq) {
112202d9 2606 struct worker_pool *pool = pwq->pool;
fc2e4d70 2607
b09f4fd3 2608 spin_lock_irq(&pool->lock);
83c22520 2609
73f53c4a 2610 if (flush_color >= 0) {
6183c009 2611 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2612
112202d9
TH
2613 if (pwq->nr_in_flight[flush_color]) {
2614 pwq->flush_color = flush_color;
2615 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2616 wait = true;
2617 }
2618 }
1da177e4 2619
73f53c4a 2620 if (work_color >= 0) {
6183c009 2621 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2622 pwq->work_color = work_color;
73f53c4a 2623 }
1da177e4 2624
b09f4fd3 2625 spin_unlock_irq(&pool->lock);
1da177e4 2626 }
2355b70f 2627
112202d9 2628 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2629 complete(&wq->first_flusher->done);
14441960 2630
73f53c4a 2631 return wait;
1da177e4
LT
2632}
2633
0fcb78c2 2634/**
1da177e4 2635 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2636 * @wq: workqueue to flush
1da177e4 2637 *
c5aa87bb
TH
2638 * This function sleeps until all work items which were queued on entry
2639 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2640 */
7ad5b3a5 2641void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2642{
73f53c4a
TH
2643 struct wq_flusher this_flusher = {
2644 .list = LIST_HEAD_INIT(this_flusher.list),
2645 .flush_color = -1,
2646 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2647 };
2648 int next_color;
1da177e4 2649
3295f0ef
IM
2650 lock_map_acquire(&wq->lockdep_map);
2651 lock_map_release(&wq->lockdep_map);
73f53c4a 2652
3c25a55d 2653 mutex_lock(&wq->mutex);
73f53c4a
TH
2654
2655 /*
2656 * Start-to-wait phase
2657 */
2658 next_color = work_next_color(wq->work_color);
2659
2660 if (next_color != wq->flush_color) {
2661 /*
2662 * Color space is not full. The current work_color
2663 * becomes our flush_color and work_color is advanced
2664 * by one.
2665 */
6183c009 2666 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2667 this_flusher.flush_color = wq->work_color;
2668 wq->work_color = next_color;
2669
2670 if (!wq->first_flusher) {
2671 /* no flush in progress, become the first flusher */
6183c009 2672 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2673
2674 wq->first_flusher = &this_flusher;
2675
112202d9 2676 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2677 wq->work_color)) {
2678 /* nothing to flush, done */
2679 wq->flush_color = next_color;
2680 wq->first_flusher = NULL;
2681 goto out_unlock;
2682 }
2683 } else {
2684 /* wait in queue */
6183c009 2685 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2686 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2687 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2688 }
2689 } else {
2690 /*
2691 * Oops, color space is full, wait on overflow queue.
2692 * The next flush completion will assign us
2693 * flush_color and transfer to flusher_queue.
2694 */
2695 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2696 }
2697
3c25a55d 2698 mutex_unlock(&wq->mutex);
73f53c4a
TH
2699
2700 wait_for_completion(&this_flusher.done);
2701
2702 /*
2703 * Wake-up-and-cascade phase
2704 *
2705 * First flushers are responsible for cascading flushes and
2706 * handling overflow. Non-first flushers can simply return.
2707 */
2708 if (wq->first_flusher != &this_flusher)
2709 return;
2710
3c25a55d 2711 mutex_lock(&wq->mutex);
73f53c4a 2712
4ce48b37
TH
2713 /* we might have raced, check again with mutex held */
2714 if (wq->first_flusher != &this_flusher)
2715 goto out_unlock;
2716
73f53c4a
TH
2717 wq->first_flusher = NULL;
2718
6183c009
TH
2719 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2720 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2721
2722 while (true) {
2723 struct wq_flusher *next, *tmp;
2724
2725 /* complete all the flushers sharing the current flush color */
2726 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2727 if (next->flush_color != wq->flush_color)
2728 break;
2729 list_del_init(&next->list);
2730 complete(&next->done);
2731 }
2732
6183c009
TH
2733 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2734 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2735
2736 /* this flush_color is finished, advance by one */
2737 wq->flush_color = work_next_color(wq->flush_color);
2738
2739 /* one color has been freed, handle overflow queue */
2740 if (!list_empty(&wq->flusher_overflow)) {
2741 /*
2742 * Assign the same color to all overflowed
2743 * flushers, advance work_color and append to
2744 * flusher_queue. This is the start-to-wait
2745 * phase for these overflowed flushers.
2746 */
2747 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2748 tmp->flush_color = wq->work_color;
2749
2750 wq->work_color = work_next_color(wq->work_color);
2751
2752 list_splice_tail_init(&wq->flusher_overflow,
2753 &wq->flusher_queue);
112202d9 2754 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2755 }
2756
2757 if (list_empty(&wq->flusher_queue)) {
6183c009 2758 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2759 break;
2760 }
2761
2762 /*
2763 * Need to flush more colors. Make the next flusher
112202d9 2764 * the new first flusher and arm pwqs.
73f53c4a 2765 */
6183c009
TH
2766 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2767 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2768
2769 list_del_init(&next->list);
2770 wq->first_flusher = next;
2771
112202d9 2772 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2773 break;
2774
2775 /*
2776 * Meh... this color is already done, clear first
2777 * flusher and repeat cascading.
2778 */
2779 wq->first_flusher = NULL;
2780 }
2781
2782out_unlock:
3c25a55d 2783 mutex_unlock(&wq->mutex);
1da177e4 2784}
ae90dd5d 2785EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2786
9c5a2ba7
TH
2787/**
2788 * drain_workqueue - drain a workqueue
2789 * @wq: workqueue to drain
2790 *
2791 * Wait until the workqueue becomes empty. While draining is in progress,
2792 * only chain queueing is allowed. IOW, only currently pending or running
2793 * work items on @wq can queue further work items on it. @wq is flushed
2794 * repeatedly until it becomes empty. The number of flushing is detemined
2795 * by the depth of chaining and should be relatively short. Whine if it
2796 * takes too long.
2797 */
2798void drain_workqueue(struct workqueue_struct *wq)
2799{
2800 unsigned int flush_cnt = 0;
49e3cf44 2801 struct pool_workqueue *pwq;
9c5a2ba7
TH
2802
2803 /*
2804 * __queue_work() needs to test whether there are drainers, is much
2805 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2806 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2807 */
87fc741e 2808 mutex_lock(&wq->mutex);
9c5a2ba7 2809 if (!wq->nr_drainers++)
618b01eb 2810 wq->flags |= __WQ_DRAINING;
87fc741e 2811 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2812reflush:
2813 flush_workqueue(wq);
2814
b09f4fd3 2815 mutex_lock(&wq->mutex);
76af4d93 2816
49e3cf44 2817 for_each_pwq(pwq, wq) {
fa2563e4 2818 bool drained;
9c5a2ba7 2819
b09f4fd3 2820 spin_lock_irq(&pwq->pool->lock);
112202d9 2821 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2822 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2823
2824 if (drained)
9c5a2ba7
TH
2825 continue;
2826
2827 if (++flush_cnt == 10 ||
2828 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2829 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2830 wq->name, flush_cnt);
76af4d93 2831
b09f4fd3 2832 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2833 goto reflush;
2834 }
2835
9c5a2ba7 2836 if (!--wq->nr_drainers)
618b01eb 2837 wq->flags &= ~__WQ_DRAINING;
87fc741e 2838 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2839}
2840EXPORT_SYMBOL_GPL(drain_workqueue);
2841
606a5020 2842static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2843{
affee4b2 2844 struct worker *worker = NULL;
c9e7cf27 2845 struct worker_pool *pool;
112202d9 2846 struct pool_workqueue *pwq;
db700897
ON
2847
2848 might_sleep();
fa1b54e6
TH
2849
2850 local_irq_disable();
c9e7cf27 2851 pool = get_work_pool(work);
fa1b54e6
TH
2852 if (!pool) {
2853 local_irq_enable();
baf59022 2854 return false;
fa1b54e6 2855 }
db700897 2856
fa1b54e6 2857 spin_lock(&pool->lock);
0b3dae68 2858 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2859 pwq = get_work_pwq(work);
2860 if (pwq) {
2861 if (unlikely(pwq->pool != pool))
4690c4ab 2862 goto already_gone;
606a5020 2863 } else {
c9e7cf27 2864 worker = find_worker_executing_work(pool, work);
affee4b2 2865 if (!worker)
4690c4ab 2866 goto already_gone;
112202d9 2867 pwq = worker->current_pwq;
606a5020 2868 }
db700897 2869
112202d9 2870 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2871 spin_unlock_irq(&pool->lock);
7a22ad75 2872
e159489b
TH
2873 /*
2874 * If @max_active is 1 or rescuer is in use, flushing another work
2875 * item on the same workqueue may lead to deadlock. Make sure the
2876 * flusher is not running on the same workqueue by verifying write
2877 * access.
2878 */
493008a8 2879 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2880 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2881 else
112202d9
TH
2882 lock_map_acquire_read(&pwq->wq->lockdep_map);
2883 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2884
401a8d04 2885 return true;
4690c4ab 2886already_gone:
d565ed63 2887 spin_unlock_irq(&pool->lock);
401a8d04 2888 return false;
db700897 2889}
baf59022
TH
2890
2891/**
2892 * flush_work - wait for a work to finish executing the last queueing instance
2893 * @work: the work to flush
2894 *
606a5020
TH
2895 * Wait until @work has finished execution. @work is guaranteed to be idle
2896 * on return if it hasn't been requeued since flush started.
baf59022 2897 *
d185af30 2898 * Return:
baf59022
TH
2899 * %true if flush_work() waited for the work to finish execution,
2900 * %false if it was already idle.
2901 */
2902bool flush_work(struct work_struct *work)
2903{
12997d1a
BH
2904 struct wq_barrier barr;
2905
0976dfc1
SB
2906 lock_map_acquire(&work->lockdep_map);
2907 lock_map_release(&work->lockdep_map);
2908
12997d1a
BH
2909 if (start_flush_work(work, &barr)) {
2910 wait_for_completion(&barr.done);
2911 destroy_work_on_stack(&barr.work);
2912 return true;
2913 } else {
2914 return false;
2915 }
6e84d644 2916}
606a5020 2917EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2918
36e227d2 2919static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2920{
bbb68dfa 2921 unsigned long flags;
1f1f642e
ON
2922 int ret;
2923
2924 do {
bbb68dfa
TH
2925 ret = try_to_grab_pending(work, is_dwork, &flags);
2926 /*
2927 * If someone else is canceling, wait for the same event it
2928 * would be waiting for before retrying.
2929 */
2930 if (unlikely(ret == -ENOENT))
606a5020 2931 flush_work(work);
1f1f642e
ON
2932 } while (unlikely(ret < 0));
2933
bbb68dfa
TH
2934 /* tell other tasks trying to grab @work to back off */
2935 mark_work_canceling(work);
2936 local_irq_restore(flags);
2937
606a5020 2938 flush_work(work);
7a22ad75 2939 clear_work_data(work);
1f1f642e
ON
2940 return ret;
2941}
2942
6e84d644 2943/**
401a8d04
TH
2944 * cancel_work_sync - cancel a work and wait for it to finish
2945 * @work: the work to cancel
6e84d644 2946 *
401a8d04
TH
2947 * Cancel @work and wait for its execution to finish. This function
2948 * can be used even if the work re-queues itself or migrates to
2949 * another workqueue. On return from this function, @work is
2950 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2951 *
401a8d04
TH
2952 * cancel_work_sync(&delayed_work->work) must not be used for
2953 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2954 *
401a8d04 2955 * The caller must ensure that the workqueue on which @work was last
6e84d644 2956 * queued can't be destroyed before this function returns.
401a8d04 2957 *
d185af30 2958 * Return:
401a8d04 2959 * %true if @work was pending, %false otherwise.
6e84d644 2960 */
401a8d04 2961bool cancel_work_sync(struct work_struct *work)
6e84d644 2962{
36e227d2 2963 return __cancel_work_timer(work, false);
b89deed3 2964}
28e53bdd 2965EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2966
6e84d644 2967/**
401a8d04
TH
2968 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2969 * @dwork: the delayed work to flush
6e84d644 2970 *
401a8d04
TH
2971 * Delayed timer is cancelled and the pending work is queued for
2972 * immediate execution. Like flush_work(), this function only
2973 * considers the last queueing instance of @dwork.
1f1f642e 2974 *
d185af30 2975 * Return:
401a8d04
TH
2976 * %true if flush_work() waited for the work to finish execution,
2977 * %false if it was already idle.
6e84d644 2978 */
401a8d04
TH
2979bool flush_delayed_work(struct delayed_work *dwork)
2980{
8930caba 2981 local_irq_disable();
401a8d04 2982 if (del_timer_sync(&dwork->timer))
60c057bc 2983 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2984 local_irq_enable();
401a8d04
TH
2985 return flush_work(&dwork->work);
2986}
2987EXPORT_SYMBOL(flush_delayed_work);
2988
09383498 2989/**
57b30ae7
TH
2990 * cancel_delayed_work - cancel a delayed work
2991 * @dwork: delayed_work to cancel
09383498 2992 *
d185af30
YB
2993 * Kill off a pending delayed_work.
2994 *
2995 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2996 * pending.
2997 *
2998 * Note:
2999 * The work callback function may still be running on return, unless
3000 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3001 * use cancel_delayed_work_sync() to wait on it.
09383498 3002 *
57b30ae7 3003 * This function is safe to call from any context including IRQ handler.
09383498 3004 */
57b30ae7 3005bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3006{
57b30ae7
TH
3007 unsigned long flags;
3008 int ret;
3009
3010 do {
3011 ret = try_to_grab_pending(&dwork->work, true, &flags);
3012 } while (unlikely(ret == -EAGAIN));
3013
3014 if (unlikely(ret < 0))
3015 return false;
3016
7c3eed5c
TH
3017 set_work_pool_and_clear_pending(&dwork->work,
3018 get_work_pool_id(&dwork->work));
57b30ae7 3019 local_irq_restore(flags);
c0158ca6 3020 return ret;
09383498 3021}
57b30ae7 3022EXPORT_SYMBOL(cancel_delayed_work);
09383498 3023
401a8d04
TH
3024/**
3025 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026 * @dwork: the delayed work cancel
3027 *
3028 * This is cancel_work_sync() for delayed works.
3029 *
d185af30 3030 * Return:
401a8d04
TH
3031 * %true if @dwork was pending, %false otherwise.
3032 */
3033bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3034{
36e227d2 3035 return __cancel_work_timer(&dwork->work, true);
6e84d644 3036}
f5a421a4 3037EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3038
b6136773 3039/**
31ddd871 3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3041 * @func: the function to call
b6136773 3042 *
31ddd871
TH
3043 * schedule_on_each_cpu() executes @func on each online CPU using the
3044 * system workqueue and blocks until all CPUs have completed.
b6136773 3045 * schedule_on_each_cpu() is very slow.
31ddd871 3046 *
d185af30 3047 * Return:
31ddd871 3048 * 0 on success, -errno on failure.
b6136773 3049 */
65f27f38 3050int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3051{
3052 int cpu;
38f51568 3053 struct work_struct __percpu *works;
15316ba8 3054
b6136773
AM
3055 works = alloc_percpu(struct work_struct);
3056 if (!works)
15316ba8 3057 return -ENOMEM;
b6136773 3058
93981800
TH
3059 get_online_cpus();
3060
15316ba8 3061 for_each_online_cpu(cpu) {
9bfb1839
IM
3062 struct work_struct *work = per_cpu_ptr(works, cpu);
3063
3064 INIT_WORK(work, func);
b71ab8c2 3065 schedule_work_on(cpu, work);
65a64464 3066 }
93981800
TH
3067
3068 for_each_online_cpu(cpu)
3069 flush_work(per_cpu_ptr(works, cpu));
3070
95402b38 3071 put_online_cpus();
b6136773 3072 free_percpu(works);
15316ba8
CL
3073 return 0;
3074}
3075
eef6a7d5
AS
3076/**
3077 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3078 *
3079 * Forces execution of the kernel-global workqueue and blocks until its
3080 * completion.
3081 *
3082 * Think twice before calling this function! It's very easy to get into
3083 * trouble if you don't take great care. Either of the following situations
3084 * will lead to deadlock:
3085 *
3086 * One of the work items currently on the workqueue needs to acquire
3087 * a lock held by your code or its caller.
3088 *
3089 * Your code is running in the context of a work routine.
3090 *
3091 * They will be detected by lockdep when they occur, but the first might not
3092 * occur very often. It depends on what work items are on the workqueue and
3093 * what locks they need, which you have no control over.
3094 *
3095 * In most situations flushing the entire workqueue is overkill; you merely
3096 * need to know that a particular work item isn't queued and isn't running.
3097 * In such cases you should use cancel_delayed_work_sync() or
3098 * cancel_work_sync() instead.
3099 */
1da177e4
LT
3100void flush_scheduled_work(void)
3101{
d320c038 3102 flush_workqueue(system_wq);
1da177e4 3103}
ae90dd5d 3104EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3105
1fa44eca
JB
3106/**
3107 * execute_in_process_context - reliably execute the routine with user context
3108 * @fn: the function to execute
1fa44eca
JB
3109 * @ew: guaranteed storage for the execute work structure (must
3110 * be available when the work executes)
3111 *
3112 * Executes the function immediately if process context is available,
3113 * otherwise schedules the function for delayed execution.
3114 *
d185af30 3115 * Return: 0 - function was executed
1fa44eca
JB
3116 * 1 - function was scheduled for execution
3117 */
65f27f38 3118int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3119{
3120 if (!in_interrupt()) {
65f27f38 3121 fn(&ew->work);
1fa44eca
JB
3122 return 0;
3123 }
3124
65f27f38 3125 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3126 schedule_work(&ew->work);
3127
3128 return 1;
3129}
3130EXPORT_SYMBOL_GPL(execute_in_process_context);
3131
226223ab
TH
3132#ifdef CONFIG_SYSFS
3133/*
3134 * Workqueues with WQ_SYSFS flag set is visible to userland via
3135 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3136 * following attributes.
3137 *
3138 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3139 * max_active RW int : maximum number of in-flight work items
3140 *
3141 * Unbound workqueues have the following extra attributes.
3142 *
3143 * id RO int : the associated pool ID
3144 * nice RW int : nice value of the workers
3145 * cpumask RW mask : bitmask of allowed CPUs for the workers
3146 */
3147struct wq_device {
3148 struct workqueue_struct *wq;
3149 struct device dev;
3150};
3151
3152static struct workqueue_struct *dev_to_wq(struct device *dev)
3153{
3154 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3155
3156 return wq_dev->wq;
3157}
3158
1a6661da
GKH
3159static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3160 char *buf)
226223ab
TH
3161{
3162 struct workqueue_struct *wq = dev_to_wq(dev);
3163
3164 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3165}
1a6661da 3166static DEVICE_ATTR_RO(per_cpu);
226223ab 3167
1a6661da
GKH
3168static ssize_t max_active_show(struct device *dev,
3169 struct device_attribute *attr, char *buf)
226223ab
TH
3170{
3171 struct workqueue_struct *wq = dev_to_wq(dev);
3172
3173 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3174}
3175
1a6661da
GKH
3176static ssize_t max_active_store(struct device *dev,
3177 struct device_attribute *attr, const char *buf,
3178 size_t count)
226223ab
TH
3179{
3180 struct workqueue_struct *wq = dev_to_wq(dev);
3181 int val;
3182
3183 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3184 return -EINVAL;
3185
3186 workqueue_set_max_active(wq, val);
3187 return count;
3188}
1a6661da 3189static DEVICE_ATTR_RW(max_active);
226223ab 3190
1a6661da
GKH
3191static struct attribute *wq_sysfs_attrs[] = {
3192 &dev_attr_per_cpu.attr,
3193 &dev_attr_max_active.attr,
3194 NULL,
226223ab 3195};
1a6661da 3196ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3197
d55262c4
TH
3198static ssize_t wq_pool_ids_show(struct device *dev,
3199 struct device_attribute *attr, char *buf)
226223ab
TH
3200{
3201 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3202 const char *delim = "";
3203 int node, written = 0;
226223ab
TH
3204
3205 rcu_read_lock_sched();
d55262c4
TH
3206 for_each_node(node) {
3207 written += scnprintf(buf + written, PAGE_SIZE - written,
3208 "%s%d:%d", delim, node,
3209 unbound_pwq_by_node(wq, node)->pool->id);
3210 delim = " ";
3211 }
3212 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3213 rcu_read_unlock_sched();
3214
3215 return written;
3216}
3217
3218static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3219 char *buf)
3220{
3221 struct workqueue_struct *wq = dev_to_wq(dev);
3222 int written;
3223
6029a918
TH
3224 mutex_lock(&wq->mutex);
3225 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3226 mutex_unlock(&wq->mutex);
226223ab
TH
3227
3228 return written;
3229}
3230
3231/* prepare workqueue_attrs for sysfs store operations */
3232static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3233{
3234 struct workqueue_attrs *attrs;
3235
3236 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3237 if (!attrs)
3238 return NULL;
3239
6029a918
TH
3240 mutex_lock(&wq->mutex);
3241 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3242 mutex_unlock(&wq->mutex);
226223ab
TH
3243 return attrs;
3244}
3245
3246static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3247 const char *buf, size_t count)
3248{
3249 struct workqueue_struct *wq = dev_to_wq(dev);
3250 struct workqueue_attrs *attrs;
3251 int ret;
3252
3253 attrs = wq_sysfs_prep_attrs(wq);
3254 if (!attrs)
3255 return -ENOMEM;
3256
3257 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3258 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3259 ret = apply_workqueue_attrs(wq, attrs);
3260 else
3261 ret = -EINVAL;
3262
3263 free_workqueue_attrs(attrs);
3264 return ret ?: count;
3265}
3266
3267static ssize_t wq_cpumask_show(struct device *dev,
3268 struct device_attribute *attr, char *buf)
3269{
3270 struct workqueue_struct *wq = dev_to_wq(dev);
3271 int written;
3272
6029a918
TH
3273 mutex_lock(&wq->mutex);
3274 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3275 mutex_unlock(&wq->mutex);
226223ab
TH
3276
3277 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3278 return written;
3279}
3280
3281static ssize_t wq_cpumask_store(struct device *dev,
3282 struct device_attribute *attr,
3283 const char *buf, size_t count)
3284{
3285 struct workqueue_struct *wq = dev_to_wq(dev);
3286 struct workqueue_attrs *attrs;
3287 int ret;
3288
3289 attrs = wq_sysfs_prep_attrs(wq);
3290 if (!attrs)
3291 return -ENOMEM;
3292
3293 ret = cpumask_parse(buf, attrs->cpumask);
3294 if (!ret)
3295 ret = apply_workqueue_attrs(wq, attrs);
3296
3297 free_workqueue_attrs(attrs);
3298 return ret ?: count;
3299}
3300
d55262c4
TH
3301static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3302 char *buf)
3303{
3304 struct workqueue_struct *wq = dev_to_wq(dev);
3305 int written;
3306
3307 mutex_lock(&wq->mutex);
3308 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3309 !wq->unbound_attrs->no_numa);
3310 mutex_unlock(&wq->mutex);
3311
3312 return written;
3313}
3314
3315static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3316 const char *buf, size_t count)
3317{
3318 struct workqueue_struct *wq = dev_to_wq(dev);
3319 struct workqueue_attrs *attrs;
3320 int v, ret;
3321
3322 attrs = wq_sysfs_prep_attrs(wq);
3323 if (!attrs)
3324 return -ENOMEM;
3325
3326 ret = -EINVAL;
3327 if (sscanf(buf, "%d", &v) == 1) {
3328 attrs->no_numa = !v;
3329 ret = apply_workqueue_attrs(wq, attrs);
3330 }
3331
3332 free_workqueue_attrs(attrs);
3333 return ret ?: count;
3334}
3335
226223ab 3336static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3337 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3338 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3339 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3340 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3341 __ATTR_NULL,
3342};
3343
3344static struct bus_type wq_subsys = {
3345 .name = "workqueue",
1a6661da 3346 .dev_groups = wq_sysfs_groups,
226223ab
TH
3347};
3348
3349static int __init wq_sysfs_init(void)
3350{
3351 return subsys_virtual_register(&wq_subsys, NULL);
3352}
3353core_initcall(wq_sysfs_init);
3354
3355static void wq_device_release(struct device *dev)
3356{
3357 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3358
3359 kfree(wq_dev);
3360}
3361
3362/**
3363 * workqueue_sysfs_register - make a workqueue visible in sysfs
3364 * @wq: the workqueue to register
3365 *
3366 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3367 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3368 * which is the preferred method.
3369 *
3370 * Workqueue user should use this function directly iff it wants to apply
3371 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3372 * apply_workqueue_attrs() may race against userland updating the
3373 * attributes.
3374 *
d185af30 3375 * Return: 0 on success, -errno on failure.
226223ab
TH
3376 */
3377int workqueue_sysfs_register(struct workqueue_struct *wq)
3378{
3379 struct wq_device *wq_dev;
3380 int ret;
3381
3382 /*
3383 * Adjusting max_active or creating new pwqs by applyting
3384 * attributes breaks ordering guarantee. Disallow exposing ordered
3385 * workqueues.
3386 */
3387 if (WARN_ON(wq->flags & __WQ_ORDERED))
3388 return -EINVAL;
3389
3390 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3391 if (!wq_dev)
3392 return -ENOMEM;
3393
3394 wq_dev->wq = wq;
3395 wq_dev->dev.bus = &wq_subsys;
3396 wq_dev->dev.init_name = wq->name;
3397 wq_dev->dev.release = wq_device_release;
3398
3399 /*
3400 * unbound_attrs are created separately. Suppress uevent until
3401 * everything is ready.
3402 */
3403 dev_set_uevent_suppress(&wq_dev->dev, true);
3404
3405 ret = device_register(&wq_dev->dev);
3406 if (ret) {
3407 kfree(wq_dev);
3408 wq->wq_dev = NULL;
3409 return ret;
3410 }
3411
3412 if (wq->flags & WQ_UNBOUND) {
3413 struct device_attribute *attr;
3414
3415 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3416 ret = device_create_file(&wq_dev->dev, attr);
3417 if (ret) {
3418 device_unregister(&wq_dev->dev);
3419 wq->wq_dev = NULL;
3420 return ret;
3421 }
3422 }
3423 }
3424
3425 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3426 return 0;
3427}
3428
3429/**
3430 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3431 * @wq: the workqueue to unregister
3432 *
3433 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3434 */
3435static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3436{
3437 struct wq_device *wq_dev = wq->wq_dev;
3438
3439 if (!wq->wq_dev)
3440 return;
3441
3442 wq->wq_dev = NULL;
3443 device_unregister(&wq_dev->dev);
3444}
3445#else /* CONFIG_SYSFS */
3446static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3447#endif /* CONFIG_SYSFS */
3448
7a4e344c
TH
3449/**
3450 * free_workqueue_attrs - free a workqueue_attrs
3451 * @attrs: workqueue_attrs to free
3452 *
3453 * Undo alloc_workqueue_attrs().
3454 */
3455void free_workqueue_attrs(struct workqueue_attrs *attrs)
3456{
3457 if (attrs) {
3458 free_cpumask_var(attrs->cpumask);
3459 kfree(attrs);
3460 }
3461}
3462
3463/**
3464 * alloc_workqueue_attrs - allocate a workqueue_attrs
3465 * @gfp_mask: allocation mask to use
3466 *
3467 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3468 * return it.
3469 *
3470 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3471 */
3472struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3473{
3474 struct workqueue_attrs *attrs;
3475
3476 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3477 if (!attrs)
3478 goto fail;
3479 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3480 goto fail;
3481
13e2e556 3482 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3483 return attrs;
3484fail:
3485 free_workqueue_attrs(attrs);
3486 return NULL;
3487}
3488
29c91e99
TH
3489static void copy_workqueue_attrs(struct workqueue_attrs *to,
3490 const struct workqueue_attrs *from)
3491{
3492 to->nice = from->nice;
3493 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3494 /*
3495 * Unlike hash and equality test, this function doesn't ignore
3496 * ->no_numa as it is used for both pool and wq attrs. Instead,
3497 * get_unbound_pool() explicitly clears ->no_numa after copying.
3498 */
3499 to->no_numa = from->no_numa;
29c91e99
TH
3500}
3501
29c91e99
TH
3502/* hash value of the content of @attr */
3503static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3504{
3505 u32 hash = 0;
3506
3507 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3508 hash = jhash(cpumask_bits(attrs->cpumask),
3509 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3510 return hash;
3511}
3512
3513/* content equality test */
3514static bool wqattrs_equal(const struct workqueue_attrs *a,
3515 const struct workqueue_attrs *b)
3516{
3517 if (a->nice != b->nice)
3518 return false;
3519 if (!cpumask_equal(a->cpumask, b->cpumask))
3520 return false;
3521 return true;
3522}
3523
7a4e344c
TH
3524/**
3525 * init_worker_pool - initialize a newly zalloc'd worker_pool
3526 * @pool: worker_pool to initialize
3527 *
3528 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3529 *
3530 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3531 * inside @pool proper are initialized and put_unbound_pool() can be called
3532 * on @pool safely to release it.
7a4e344c
TH
3533 */
3534static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3535{
3536 spin_lock_init(&pool->lock);
29c91e99
TH
3537 pool->id = -1;
3538 pool->cpu = -1;
f3f90ad4 3539 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3540 pool->flags |= POOL_DISASSOCIATED;
3541 INIT_LIST_HEAD(&pool->worklist);
3542 INIT_LIST_HEAD(&pool->idle_list);
3543 hash_init(pool->busy_hash);
3544
3545 init_timer_deferrable(&pool->idle_timer);
3546 pool->idle_timer.function = idle_worker_timeout;
3547 pool->idle_timer.data = (unsigned long)pool;
3548
3549 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3550 (unsigned long)pool);
3551
3552 mutex_init(&pool->manager_arb);
bc3a1afc 3553 mutex_init(&pool->manager_mutex);
822d8405 3554 idr_init(&pool->worker_idr);
7a4e344c 3555
29c91e99
TH
3556 INIT_HLIST_NODE(&pool->hash_node);
3557 pool->refcnt = 1;
3558
3559 /* shouldn't fail above this point */
7a4e344c
TH
3560 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3561 if (!pool->attrs)
3562 return -ENOMEM;
3563 return 0;
4e1a1f9a
TH
3564}
3565
29c91e99
TH
3566static void rcu_free_pool(struct rcu_head *rcu)
3567{
3568 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3569
822d8405 3570 idr_destroy(&pool->worker_idr);
29c91e99
TH
3571 free_workqueue_attrs(pool->attrs);
3572 kfree(pool);
3573}
3574
3575/**
3576 * put_unbound_pool - put a worker_pool
3577 * @pool: worker_pool to put
3578 *
3579 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3580 * safe manner. get_unbound_pool() calls this function on its failure path
3581 * and this function should be able to release pools which went through,
3582 * successfully or not, init_worker_pool().
a892cacc
TH
3583 *
3584 * Should be called with wq_pool_mutex held.
29c91e99
TH
3585 */
3586static void put_unbound_pool(struct worker_pool *pool)
3587{
3588 struct worker *worker;
3589
a892cacc
TH
3590 lockdep_assert_held(&wq_pool_mutex);
3591
3592 if (--pool->refcnt)
29c91e99 3593 return;
29c91e99
TH
3594
3595 /* sanity checks */
3596 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3597 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3598 return;
29c91e99
TH
3599
3600 /* release id and unhash */
3601 if (pool->id >= 0)
3602 idr_remove(&worker_pool_idr, pool->id);
3603 hash_del(&pool->hash_node);
3604
c5aa87bb
TH
3605 /*
3606 * Become the manager and destroy all workers. Grabbing
3607 * manager_arb prevents @pool's workers from blocking on
3608 * manager_mutex.
3609 */
29c91e99 3610 mutex_lock(&pool->manager_arb);
cd549687 3611 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3612 spin_lock_irq(&pool->lock);
3613
3614 while ((worker = first_worker(pool)))
3615 destroy_worker(worker);
3616 WARN_ON(pool->nr_workers || pool->nr_idle);
3617
3618 spin_unlock_irq(&pool->lock);
cd549687 3619 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3620 mutex_unlock(&pool->manager_arb);
3621
3622 /* shut down the timers */
3623 del_timer_sync(&pool->idle_timer);
3624 del_timer_sync(&pool->mayday_timer);
3625
3626 /* sched-RCU protected to allow dereferences from get_work_pool() */
3627 call_rcu_sched(&pool->rcu, rcu_free_pool);
3628}
3629
3630/**
3631 * get_unbound_pool - get a worker_pool with the specified attributes
3632 * @attrs: the attributes of the worker_pool to get
3633 *
3634 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3635 * reference count and return it. If there already is a matching
3636 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3637 * create a new one.
a892cacc
TH
3638 *
3639 * Should be called with wq_pool_mutex held.
d185af30
YB
3640 *
3641 * Return: On success, a worker_pool with the same attributes as @attrs.
3642 * On failure, %NULL.
29c91e99
TH
3643 */
3644static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3645{
29c91e99
TH
3646 u32 hash = wqattrs_hash(attrs);
3647 struct worker_pool *pool;
f3f90ad4 3648 int node;
29c91e99 3649
a892cacc 3650 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3651
3652 /* do we already have a matching pool? */
29c91e99
TH
3653 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654 if (wqattrs_equal(pool->attrs, attrs)) {
3655 pool->refcnt++;
3656 goto out_unlock;
3657 }
3658 }
29c91e99
TH
3659
3660 /* nope, create a new one */
3661 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3662 if (!pool || init_worker_pool(pool) < 0)
3663 goto fail;
3664
12ee4fc6
LJ
3665 if (workqueue_freezing)
3666 pool->flags |= POOL_FREEZING;
3667
8864b4e5 3668 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3669 copy_workqueue_attrs(pool->attrs, attrs);
3670
2865a8fb
SL
3671 /*
3672 * no_numa isn't a worker_pool attribute, always clear it. See
3673 * 'struct workqueue_attrs' comments for detail.
3674 */
3675 pool->attrs->no_numa = false;
3676
f3f90ad4
TH
3677 /* if cpumask is contained inside a NUMA node, we belong to that node */
3678 if (wq_numa_enabled) {
3679 for_each_node(node) {
3680 if (cpumask_subset(pool->attrs->cpumask,
3681 wq_numa_possible_cpumask[node])) {
3682 pool->node = node;
3683 break;
3684 }
3685 }
3686 }
3687
29c91e99
TH
3688 if (worker_pool_assign_id(pool) < 0)
3689 goto fail;
3690
3691 /* create and start the initial worker */
ebf44d16 3692 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3693 goto fail;
3694
29c91e99 3695 /* install */
29c91e99
TH
3696 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3697out_unlock:
29c91e99
TH
3698 return pool;
3699fail:
29c91e99
TH
3700 if (pool)
3701 put_unbound_pool(pool);
3702 return NULL;
3703}
3704
8864b4e5
TH
3705static void rcu_free_pwq(struct rcu_head *rcu)
3706{
3707 kmem_cache_free(pwq_cache,
3708 container_of(rcu, struct pool_workqueue, rcu));
3709}
3710
3711/*
3712 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3713 * and needs to be destroyed.
3714 */
3715static void pwq_unbound_release_workfn(struct work_struct *work)
3716{
3717 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3718 unbound_release_work);
3719 struct workqueue_struct *wq = pwq->wq;
3720 struct worker_pool *pool = pwq->pool;
bc0caf09 3721 bool is_last;
8864b4e5
TH
3722
3723 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3724 return;
3725
75ccf595 3726 /*
3c25a55d 3727 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3728 * necessary on release but do it anyway. It's easier to verify
3729 * and consistent with the linking path.
3730 */
3c25a55d 3731 mutex_lock(&wq->mutex);
8864b4e5 3732 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3733 is_last = list_empty(&wq->pwqs);
3c25a55d 3734 mutex_unlock(&wq->mutex);
8864b4e5 3735
a892cacc 3736 mutex_lock(&wq_pool_mutex);
8864b4e5 3737 put_unbound_pool(pool);
a892cacc
TH
3738 mutex_unlock(&wq_pool_mutex);
3739
8864b4e5
TH
3740 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3741
3742 /*
3743 * If we're the last pwq going away, @wq is already dead and no one
3744 * is gonna access it anymore. Free it.
3745 */
6029a918
TH
3746 if (is_last) {
3747 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3748 kfree(wq);
6029a918 3749 }
8864b4e5
TH
3750}
3751
0fbd95aa 3752/**
699ce097 3753 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3754 * @pwq: target pool_workqueue
0fbd95aa 3755 *
699ce097
TH
3756 * If @pwq isn't freezing, set @pwq->max_active to the associated
3757 * workqueue's saved_max_active and activate delayed work items
3758 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3759 */
699ce097 3760static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3761{
699ce097
TH
3762 struct workqueue_struct *wq = pwq->wq;
3763 bool freezable = wq->flags & WQ_FREEZABLE;
3764
3765 /* for @wq->saved_max_active */
a357fc03 3766 lockdep_assert_held(&wq->mutex);
699ce097
TH
3767
3768 /* fast exit for non-freezable wqs */
3769 if (!freezable && pwq->max_active == wq->saved_max_active)
3770 return;
3771
a357fc03 3772 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3773
3774 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3775 pwq->max_active = wq->saved_max_active;
0fbd95aa 3776
699ce097
TH
3777 while (!list_empty(&pwq->delayed_works) &&
3778 pwq->nr_active < pwq->max_active)
3779 pwq_activate_first_delayed(pwq);
951a078a
LJ
3780
3781 /*
3782 * Need to kick a worker after thawed or an unbound wq's
3783 * max_active is bumped. It's a slow path. Do it always.
3784 */
3785 wake_up_worker(pwq->pool);
699ce097
TH
3786 } else {
3787 pwq->max_active = 0;
3788 }
3789
a357fc03 3790 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3791}
3792
e50aba9a 3793/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3794static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3795 struct worker_pool *pool)
d2c1d404
TH
3796{
3797 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3798
e50aba9a
TH
3799 memset(pwq, 0, sizeof(*pwq));
3800
d2c1d404
TH
3801 pwq->pool = pool;
3802 pwq->wq = wq;
3803 pwq->flush_color = -1;
8864b4e5 3804 pwq->refcnt = 1;
d2c1d404 3805 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3806 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3807 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3808 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3809}
d2c1d404 3810
f147f29e 3811/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3812static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3813{
3814 struct workqueue_struct *wq = pwq->wq;
3815
3816 lockdep_assert_held(&wq->mutex);
75ccf595 3817
1befcf30
TH
3818 /* may be called multiple times, ignore if already linked */
3819 if (!list_empty(&pwq->pwqs_node))
3820 return;
3821
983ca25e
TH
3822 /*
3823 * Set the matching work_color. This is synchronized with
3c25a55d 3824 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3825 */
75ccf595 3826 pwq->work_color = wq->work_color;
983ca25e
TH
3827
3828 /* sync max_active to the current setting */
3829 pwq_adjust_max_active(pwq);
3830
3831 /* link in @pwq */
9e8cd2f5 3832 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3833}
a357fc03 3834
f147f29e
TH
3835/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 const struct workqueue_attrs *attrs)
3838{
3839 struct worker_pool *pool;
3840 struct pool_workqueue *pwq;
3841
3842 lockdep_assert_held(&wq_pool_mutex);
3843
3844 pool = get_unbound_pool(attrs);
3845 if (!pool)
3846 return NULL;
3847
e50aba9a 3848 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3849 if (!pwq) {
3850 put_unbound_pool(pool);
3851 return NULL;
df2d5ae4 3852 }
6029a918 3853
f147f29e
TH
3854 init_pwq(pwq, wq, pool);
3855 return pwq;
d2c1d404
TH
3856}
3857
4c16bd32
TH
3858/* undo alloc_unbound_pwq(), used only in the error path */
3859static void free_unbound_pwq(struct pool_workqueue *pwq)
3860{
3861 lockdep_assert_held(&wq_pool_mutex);
3862
3863 if (pwq) {
3864 put_unbound_pool(pwq->pool);
cece95df 3865 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3866 }
3867}
3868
3869/**
3870 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3871 * @attrs: the wq_attrs of interest
3872 * @node: the target NUMA node
3873 * @cpu_going_down: if >= 0, the CPU to consider as offline
3874 * @cpumask: outarg, the resulting cpumask
3875 *
3876 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3877 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3878 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3879 *
3880 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3881 * enabled and @node has online CPUs requested by @attrs, the returned
3882 * cpumask is the intersection of the possible CPUs of @node and
3883 * @attrs->cpumask.
3884 *
3885 * The caller is responsible for ensuring that the cpumask of @node stays
3886 * stable.
d185af30
YB
3887 *
3888 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3889 * %false if equal.
4c16bd32
TH
3890 */
3891static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3892 int cpu_going_down, cpumask_t *cpumask)
3893{
d55262c4 3894 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3895 goto use_dfl;
3896
3897 /* does @node have any online CPUs @attrs wants? */
3898 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3899 if (cpu_going_down >= 0)
3900 cpumask_clear_cpu(cpu_going_down, cpumask);
3901
3902 if (cpumask_empty(cpumask))
3903 goto use_dfl;
3904
3905 /* yeap, return possible CPUs in @node that @attrs wants */
3906 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3907 return !cpumask_equal(cpumask, attrs->cpumask);
3908
3909use_dfl:
3910 cpumask_copy(cpumask, attrs->cpumask);
3911 return false;
3912}
3913
1befcf30
TH
3914/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3915static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3916 int node,
3917 struct pool_workqueue *pwq)
3918{
3919 struct pool_workqueue *old_pwq;
3920
3921 lockdep_assert_held(&wq->mutex);
3922
3923 /* link_pwq() can handle duplicate calls */
3924 link_pwq(pwq);
3925
3926 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3927 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3928 return old_pwq;
3929}
3930
9e8cd2f5
TH
3931/**
3932 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3933 * @wq: the target workqueue
3934 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3935 *
4c16bd32
TH
3936 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3937 * machines, this function maps a separate pwq to each NUMA node with
3938 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3939 * NUMA node it was issued on. Older pwqs are released as in-flight work
3940 * items finish. Note that a work item which repeatedly requeues itself
3941 * back-to-back will stay on its current pwq.
9e8cd2f5 3942 *
d185af30
YB
3943 * Performs GFP_KERNEL allocations.
3944 *
3945 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3946 */
3947int apply_workqueue_attrs(struct workqueue_struct *wq,
3948 const struct workqueue_attrs *attrs)
3949{
4c16bd32
TH
3950 struct workqueue_attrs *new_attrs, *tmp_attrs;
3951 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3952 int node, ret;
9e8cd2f5 3953
8719dcea 3954 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3955 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3956 return -EINVAL;
3957
8719dcea
TH
3958 /* creating multiple pwqs breaks ordering guarantee */
3959 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3960 return -EINVAL;
3961
4c16bd32 3962 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3963 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3964 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3965 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3966 goto enomem;
3967
4c16bd32 3968 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3969 copy_workqueue_attrs(new_attrs, attrs);
3970 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3971
4c16bd32
TH
3972 /*
3973 * We may create multiple pwqs with differing cpumasks. Make a
3974 * copy of @new_attrs which will be modified and used to obtain
3975 * pools.
3976 */
3977 copy_workqueue_attrs(tmp_attrs, new_attrs);
3978
3979 /*
3980 * CPUs should stay stable across pwq creations and installations.
3981 * Pin CPUs, determine the target cpumask for each node and create
3982 * pwqs accordingly.
3983 */
3984 get_online_cpus();
3985
a892cacc 3986 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3987
3988 /*
3989 * If something goes wrong during CPU up/down, we'll fall back to
3990 * the default pwq covering whole @attrs->cpumask. Always create
3991 * it even if we don't use it immediately.
3992 */
3993 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 if (!dfl_pwq)
3995 goto enomem_pwq;
3996
3997 for_each_node(node) {
3998 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3999 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 if (!pwq_tbl[node])
4001 goto enomem_pwq;
4002 } else {
4003 dfl_pwq->refcnt++;
4004 pwq_tbl[node] = dfl_pwq;
4005 }
4006 }
4007
f147f29e 4008 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 4009
4c16bd32 4010 /* all pwqs have been created successfully, let's install'em */
f147f29e 4011 mutex_lock(&wq->mutex);
a892cacc 4012
f147f29e 4013 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
4014
4015 /* save the previous pwq and install the new one */
f147f29e 4016 for_each_node(node)
4c16bd32
TH
4017 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4018
4019 /* @dfl_pwq might not have been used, ensure it's linked */
4020 link_pwq(dfl_pwq);
4021 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4022
4023 mutex_unlock(&wq->mutex);
9e8cd2f5 4024
4c16bd32
TH
4025 /* put the old pwqs */
4026 for_each_node(node)
4027 put_pwq_unlocked(pwq_tbl[node]);
4028 put_pwq_unlocked(dfl_pwq);
4029
4030 put_online_cpus();
4862125b
TH
4031 ret = 0;
4032 /* fall through */
4033out_free:
4c16bd32 4034 free_workqueue_attrs(tmp_attrs);
4862125b 4035 free_workqueue_attrs(new_attrs);
4c16bd32 4036 kfree(pwq_tbl);
4862125b 4037 return ret;
13e2e556 4038
4c16bd32
TH
4039enomem_pwq:
4040 free_unbound_pwq(dfl_pwq);
4041 for_each_node(node)
4042 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4043 free_unbound_pwq(pwq_tbl[node]);
4044 mutex_unlock(&wq_pool_mutex);
4045 put_online_cpus();
13e2e556 4046enomem:
4862125b
TH
4047 ret = -ENOMEM;
4048 goto out_free;
9e8cd2f5
TH
4049}
4050
4c16bd32
TH
4051/**
4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053 * @wq: the target workqueue
4054 * @cpu: the CPU coming up or going down
4055 * @online: whether @cpu is coming up or going down
4056 *
4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4059 * @wq accordingly.
4060 *
4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062 * falls back to @wq->dfl_pwq which may not be optimal but is always
4063 * correct.
4064 *
4065 * Note that when the last allowed CPU of a NUMA node goes offline for a
4066 * workqueue with a cpumask spanning multiple nodes, the workers which were
4067 * already executing the work items for the workqueue will lose their CPU
4068 * affinity and may execute on any CPU. This is similar to how per-cpu
4069 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4070 * affinity, it's the user's responsibility to flush the work item from
4071 * CPU_DOWN_PREPARE.
4072 */
4073static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074 bool online)
4075{
4076 int node = cpu_to_node(cpu);
4077 int cpu_off = online ? -1 : cpu;
4078 struct pool_workqueue *old_pwq = NULL, *pwq;
4079 struct workqueue_attrs *target_attrs;
4080 cpumask_t *cpumask;
4081
4082 lockdep_assert_held(&wq_pool_mutex);
4083
4084 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4085 return;
4086
4087 /*
4088 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4089 * Let's use a preallocated one. The following buf is protected by
4090 * CPU hotplug exclusion.
4091 */
4092 target_attrs = wq_update_unbound_numa_attrs_buf;
4093 cpumask = target_attrs->cpumask;
4094
4095 mutex_lock(&wq->mutex);
d55262c4
TH
4096 if (wq->unbound_attrs->no_numa)
4097 goto out_unlock;
4c16bd32
TH
4098
4099 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100 pwq = unbound_pwq_by_node(wq, node);
4101
4102 /*
4103 * Let's determine what needs to be done. If the target cpumask is
4104 * different from wq's, we need to compare it to @pwq's and create
4105 * a new one if they don't match. If the target cpumask equals
534a3fbb 4106 * wq's, the default pwq should be used.
4c16bd32
TH
4107 */
4108 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4109 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4110 goto out_unlock;
4111 } else {
534a3fbb 4112 goto use_dfl_pwq;
4c16bd32
TH
4113 }
4114
4115 mutex_unlock(&wq->mutex);
4116
4117 /* create a new pwq */
4118 pwq = alloc_unbound_pwq(wq, target_attrs);
4119 if (!pwq) {
2d916033
FF
4120 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4121 wq->name);
77f300b1
DY
4122 mutex_lock(&wq->mutex);
4123 goto use_dfl_pwq;
4c16bd32
TH
4124 }
4125
4126 /*
4127 * Install the new pwq. As this function is called only from CPU
4128 * hotplug callbacks and applying a new attrs is wrapped with
4129 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4130 * inbetween.
4131 */
4132 mutex_lock(&wq->mutex);
4133 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4134 goto out_unlock;
4135
4136use_dfl_pwq:
4137 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4138 get_pwq(wq->dfl_pwq);
4139 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4140 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4141out_unlock:
4142 mutex_unlock(&wq->mutex);
4143 put_pwq_unlocked(old_pwq);
4144}
4145
30cdf249 4146static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4147{
49e3cf44 4148 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4149 int cpu, ret;
30cdf249
TH
4150
4151 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4152 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4153 if (!wq->cpu_pwqs)
30cdf249
TH
4154 return -ENOMEM;
4155
4156 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4157 struct pool_workqueue *pwq =
4158 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4159 struct worker_pool *cpu_pools =
f02ae73a 4160 per_cpu(cpu_worker_pools, cpu);
f3421797 4161
f147f29e
TH
4162 init_pwq(pwq, wq, &cpu_pools[highpri]);
4163
4164 mutex_lock(&wq->mutex);
1befcf30 4165 link_pwq(pwq);
f147f29e 4166 mutex_unlock(&wq->mutex);
30cdf249 4167 }
9e8cd2f5 4168 return 0;
8a2b7538
TH
4169 } else if (wq->flags & __WQ_ORDERED) {
4170 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4171 /* there should only be single pwq for ordering guarantee */
4172 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4173 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4174 "ordering guarantee broken for workqueue %s\n", wq->name);
4175 return ret;
30cdf249 4176 } else {
9e8cd2f5 4177 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4178 }
0f900049
TH
4179}
4180
f3421797
TH
4181static int wq_clamp_max_active(int max_active, unsigned int flags,
4182 const char *name)
b71ab8c2 4183{
f3421797
TH
4184 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4185
4186 if (max_active < 1 || max_active > lim)
044c782c
VI
4187 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4188 max_active, name, 1, lim);
b71ab8c2 4189
f3421797 4190 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4191}
4192
b196be89 4193struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4194 unsigned int flags,
4195 int max_active,
4196 struct lock_class_key *key,
b196be89 4197 const char *lock_name, ...)
1da177e4 4198{
df2d5ae4 4199 size_t tbl_size = 0;
ecf6881f 4200 va_list args;
1da177e4 4201 struct workqueue_struct *wq;
49e3cf44 4202 struct pool_workqueue *pwq;
b196be89 4203
cee22a15
VK
4204 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4205 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4206 flags |= WQ_UNBOUND;
4207
ecf6881f 4208 /* allocate wq and format name */
df2d5ae4
TH
4209 if (flags & WQ_UNBOUND)
4210 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4211
4212 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4213 if (!wq)
d2c1d404 4214 return NULL;
b196be89 4215
6029a918
TH
4216 if (flags & WQ_UNBOUND) {
4217 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4218 if (!wq->unbound_attrs)
4219 goto err_free_wq;
4220 }
4221
ecf6881f
TH
4222 va_start(args, lock_name);
4223 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4224 va_end(args);
1da177e4 4225
d320c038 4226 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4227 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4228
b196be89 4229 /* init wq */
97e37d7b 4230 wq->flags = flags;
a0a1a5fd 4231 wq->saved_max_active = max_active;
3c25a55d 4232 mutex_init(&wq->mutex);
112202d9 4233 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4234 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4235 INIT_LIST_HEAD(&wq->flusher_queue);
4236 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4237 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4238
eb13ba87 4239 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4240 INIT_LIST_HEAD(&wq->list);
3af24433 4241
30cdf249 4242 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4243 goto err_free_wq;
1537663f 4244
493008a8
TH
4245 /*
4246 * Workqueues which may be used during memory reclaim should
4247 * have a rescuer to guarantee forward progress.
4248 */
4249 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4250 struct worker *rescuer;
4251
d2c1d404 4252 rescuer = alloc_worker();
e22bee78 4253 if (!rescuer)
d2c1d404 4254 goto err_destroy;
e22bee78 4255
111c225a
TH
4256 rescuer->rescue_wq = wq;
4257 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4258 wq->name);
d2c1d404
TH
4259 if (IS_ERR(rescuer->task)) {
4260 kfree(rescuer);
4261 goto err_destroy;
4262 }
e22bee78 4263
d2c1d404 4264 wq->rescuer = rescuer;
14a40ffc 4265 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4266 wake_up_process(rescuer->task);
3af24433
ON
4267 }
4268
226223ab
TH
4269 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4270 goto err_destroy;
4271
a0a1a5fd 4272 /*
68e13a67
LJ
4273 * wq_pool_mutex protects global freeze state and workqueues list.
4274 * Grab it, adjust max_active and add the new @wq to workqueues
4275 * list.
a0a1a5fd 4276 */
68e13a67 4277 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4278
a357fc03 4279 mutex_lock(&wq->mutex);
699ce097
TH
4280 for_each_pwq(pwq, wq)
4281 pwq_adjust_max_active(pwq);
a357fc03 4282 mutex_unlock(&wq->mutex);
a0a1a5fd 4283
1537663f 4284 list_add(&wq->list, &workqueues);
a0a1a5fd 4285
68e13a67 4286 mutex_unlock(&wq_pool_mutex);
1537663f 4287
3af24433 4288 return wq;
d2c1d404
TH
4289
4290err_free_wq:
6029a918 4291 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4292 kfree(wq);
4293 return NULL;
4294err_destroy:
4295 destroy_workqueue(wq);
4690c4ab 4296 return NULL;
3af24433 4297}
d320c038 4298EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4299
3af24433
ON
4300/**
4301 * destroy_workqueue - safely terminate a workqueue
4302 * @wq: target workqueue
4303 *
4304 * Safely destroy a workqueue. All work currently pending will be done first.
4305 */
4306void destroy_workqueue(struct workqueue_struct *wq)
4307{
49e3cf44 4308 struct pool_workqueue *pwq;
4c16bd32 4309 int node;
3af24433 4310
9c5a2ba7
TH
4311 /* drain it before proceeding with destruction */
4312 drain_workqueue(wq);
c8efcc25 4313
6183c009 4314 /* sanity checks */
b09f4fd3 4315 mutex_lock(&wq->mutex);
49e3cf44 4316 for_each_pwq(pwq, wq) {
6183c009
TH
4317 int i;
4318
76af4d93
TH
4319 for (i = 0; i < WORK_NR_COLORS; i++) {
4320 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4321 mutex_unlock(&wq->mutex);
6183c009 4322 return;
76af4d93
TH
4323 }
4324 }
4325
5c529597 4326 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4327 WARN_ON(pwq->nr_active) ||
76af4d93 4328 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4329 mutex_unlock(&wq->mutex);
6183c009 4330 return;
76af4d93 4331 }
6183c009 4332 }
b09f4fd3 4333 mutex_unlock(&wq->mutex);
6183c009 4334
a0a1a5fd
TH
4335 /*
4336 * wq list is used to freeze wq, remove from list after
4337 * flushing is complete in case freeze races us.
4338 */
68e13a67 4339 mutex_lock(&wq_pool_mutex);
d2c1d404 4340 list_del_init(&wq->list);
68e13a67 4341 mutex_unlock(&wq_pool_mutex);
3af24433 4342
226223ab
TH
4343 workqueue_sysfs_unregister(wq);
4344
493008a8 4345 if (wq->rescuer) {
e22bee78 4346 kthread_stop(wq->rescuer->task);
8d9df9f0 4347 kfree(wq->rescuer);
493008a8 4348 wq->rescuer = NULL;
e22bee78
TH
4349 }
4350
8864b4e5
TH
4351 if (!(wq->flags & WQ_UNBOUND)) {
4352 /*
4353 * The base ref is never dropped on per-cpu pwqs. Directly
4354 * free the pwqs and wq.
4355 */
4356 free_percpu(wq->cpu_pwqs);
4357 kfree(wq);
4358 } else {
4359 /*
4360 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4361 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4362 * @wq will be freed when the last pwq is released.
8864b4e5 4363 */
4c16bd32
TH
4364 for_each_node(node) {
4365 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4366 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4367 put_pwq_unlocked(pwq);
4368 }
4369
4370 /*
4371 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4372 * put. Don't access it afterwards.
4373 */
4374 pwq = wq->dfl_pwq;
4375 wq->dfl_pwq = NULL;
dce90d47 4376 put_pwq_unlocked(pwq);
29c91e99 4377 }
3af24433
ON
4378}
4379EXPORT_SYMBOL_GPL(destroy_workqueue);
4380
dcd989cb
TH
4381/**
4382 * workqueue_set_max_active - adjust max_active of a workqueue
4383 * @wq: target workqueue
4384 * @max_active: new max_active value.
4385 *
4386 * Set max_active of @wq to @max_active.
4387 *
4388 * CONTEXT:
4389 * Don't call from IRQ context.
4390 */
4391void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4392{
49e3cf44 4393 struct pool_workqueue *pwq;
dcd989cb 4394
8719dcea
TH
4395 /* disallow meddling with max_active for ordered workqueues */
4396 if (WARN_ON(wq->flags & __WQ_ORDERED))
4397 return;
4398
f3421797 4399 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4400
a357fc03 4401 mutex_lock(&wq->mutex);
dcd989cb
TH
4402
4403 wq->saved_max_active = max_active;
4404
699ce097
TH
4405 for_each_pwq(pwq, wq)
4406 pwq_adjust_max_active(pwq);
93981800 4407
a357fc03 4408 mutex_unlock(&wq->mutex);
15316ba8 4409}
dcd989cb 4410EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4411
e6267616
TH
4412/**
4413 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4414 *
4415 * Determine whether %current is a workqueue rescuer. Can be used from
4416 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4417 *
4418 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4419 */
4420bool current_is_workqueue_rescuer(void)
4421{
4422 struct worker *worker = current_wq_worker();
4423
6a092dfd 4424 return worker && worker->rescue_wq;
e6267616
TH
4425}
4426
eef6a7d5 4427/**
dcd989cb
TH
4428 * workqueue_congested - test whether a workqueue is congested
4429 * @cpu: CPU in question
4430 * @wq: target workqueue
eef6a7d5 4431 *
dcd989cb
TH
4432 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4433 * no synchronization around this function and the test result is
4434 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4435 *
d3251859
TH
4436 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4437 * Note that both per-cpu and unbound workqueues may be associated with
4438 * multiple pool_workqueues which have separate congested states. A
4439 * workqueue being congested on one CPU doesn't mean the workqueue is also
4440 * contested on other CPUs / NUMA nodes.
4441 *
d185af30 4442 * Return:
dcd989cb 4443 * %true if congested, %false otherwise.
eef6a7d5 4444 */
d84ff051 4445bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4446{
7fb98ea7 4447 struct pool_workqueue *pwq;
76af4d93
TH
4448 bool ret;
4449
88109453 4450 rcu_read_lock_sched();
7fb98ea7 4451
d3251859
TH
4452 if (cpu == WORK_CPU_UNBOUND)
4453 cpu = smp_processor_id();
4454
7fb98ea7
TH
4455 if (!(wq->flags & WQ_UNBOUND))
4456 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4457 else
df2d5ae4 4458 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4459
76af4d93 4460 ret = !list_empty(&pwq->delayed_works);
88109453 4461 rcu_read_unlock_sched();
76af4d93
TH
4462
4463 return ret;
1da177e4 4464}
dcd989cb 4465EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4466
dcd989cb
TH
4467/**
4468 * work_busy - test whether a work is currently pending or running
4469 * @work: the work to be tested
4470 *
4471 * Test whether @work is currently pending or running. There is no
4472 * synchronization around this function and the test result is
4473 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4474 *
d185af30 4475 * Return:
dcd989cb
TH
4476 * OR'd bitmask of WORK_BUSY_* bits.
4477 */
4478unsigned int work_busy(struct work_struct *work)
1da177e4 4479{
fa1b54e6 4480 struct worker_pool *pool;
dcd989cb
TH
4481 unsigned long flags;
4482 unsigned int ret = 0;
1da177e4 4483
dcd989cb
TH
4484 if (work_pending(work))
4485 ret |= WORK_BUSY_PENDING;
1da177e4 4486
fa1b54e6
TH
4487 local_irq_save(flags);
4488 pool = get_work_pool(work);
038366c5 4489 if (pool) {
fa1b54e6 4490 spin_lock(&pool->lock);
038366c5
LJ
4491 if (find_worker_executing_work(pool, work))
4492 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4493 spin_unlock(&pool->lock);
038366c5 4494 }
fa1b54e6 4495 local_irq_restore(flags);
1da177e4 4496
dcd989cb 4497 return ret;
1da177e4 4498}
dcd989cb 4499EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4500
3d1cb205
TH
4501/**
4502 * set_worker_desc - set description for the current work item
4503 * @fmt: printf-style format string
4504 * @...: arguments for the format string
4505 *
4506 * This function can be called by a running work function to describe what
4507 * the work item is about. If the worker task gets dumped, this
4508 * information will be printed out together to help debugging. The
4509 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4510 */
4511void set_worker_desc(const char *fmt, ...)
4512{
4513 struct worker *worker = current_wq_worker();
4514 va_list args;
4515
4516 if (worker) {
4517 va_start(args, fmt);
4518 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4519 va_end(args);
4520 worker->desc_valid = true;
4521 }
4522}
4523
4524/**
4525 * print_worker_info - print out worker information and description
4526 * @log_lvl: the log level to use when printing
4527 * @task: target task
4528 *
4529 * If @task is a worker and currently executing a work item, print out the
4530 * name of the workqueue being serviced and worker description set with
4531 * set_worker_desc() by the currently executing work item.
4532 *
4533 * This function can be safely called on any task as long as the
4534 * task_struct itself is accessible. While safe, this function isn't
4535 * synchronized and may print out mixups or garbages of limited length.
4536 */
4537void print_worker_info(const char *log_lvl, struct task_struct *task)
4538{
4539 work_func_t *fn = NULL;
4540 char name[WQ_NAME_LEN] = { };
4541 char desc[WORKER_DESC_LEN] = { };
4542 struct pool_workqueue *pwq = NULL;
4543 struct workqueue_struct *wq = NULL;
4544 bool desc_valid = false;
4545 struct worker *worker;
4546
4547 if (!(task->flags & PF_WQ_WORKER))
4548 return;
4549
4550 /*
4551 * This function is called without any synchronization and @task
4552 * could be in any state. Be careful with dereferences.
4553 */
4554 worker = probe_kthread_data(task);
4555
4556 /*
4557 * Carefully copy the associated workqueue's workfn and name. Keep
4558 * the original last '\0' in case the original contains garbage.
4559 */
4560 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4561 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4562 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4563 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4564
4565 /* copy worker description */
4566 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4567 if (desc_valid)
4568 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4569
4570 if (fn || name[0] || desc[0]) {
2d916033 4571 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4572 if (desc[0])
4573 pr_cont(" (%s)", desc);
4574 pr_cont("\n");
4575 }
4576}
4577
db7bccf4
TH
4578/*
4579 * CPU hotplug.
4580 *
e22bee78 4581 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4582 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4583 * pool which make migrating pending and scheduled works very
e22bee78 4584 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4585 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4586 * blocked draining impractical.
4587 *
24647570 4588 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4589 * running as an unbound one and allowing it to be reattached later if the
4590 * cpu comes back online.
db7bccf4 4591 */
1da177e4 4592
706026c2 4593static void wq_unbind_fn(struct work_struct *work)
3af24433 4594{
38db41d9 4595 int cpu = smp_processor_id();
4ce62e9e 4596 struct worker_pool *pool;
db7bccf4 4597 struct worker *worker;
a9ab775b 4598 int wi;
3af24433 4599
f02ae73a 4600 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4601 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4602
bc3a1afc 4603 mutex_lock(&pool->manager_mutex);
94cf58bb 4604 spin_lock_irq(&pool->lock);
3af24433 4605
94cf58bb 4606 /*
bc3a1afc 4607 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4608 * unbound and set DISASSOCIATED. Before this, all workers
4609 * except for the ones which are still executing works from
4610 * before the last CPU down must be on the cpu. After
4611 * this, they may become diasporas.
4612 */
a9ab775b 4613 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4614 worker->flags |= WORKER_UNBOUND;
06ba38a9 4615
24647570 4616 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4617
94cf58bb 4618 spin_unlock_irq(&pool->lock);
bc3a1afc 4619 mutex_unlock(&pool->manager_mutex);
628c78e7 4620
eb283428
LJ
4621 /*
4622 * Call schedule() so that we cross rq->lock and thus can
4623 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4624 * This is necessary as scheduler callbacks may be invoked
4625 * from other cpus.
4626 */
4627 schedule();
06ba38a9 4628
eb283428
LJ
4629 /*
4630 * Sched callbacks are disabled now. Zap nr_running.
4631 * After this, nr_running stays zero and need_more_worker()
4632 * and keep_working() are always true as long as the
4633 * worklist is not empty. This pool now behaves as an
4634 * unbound (in terms of concurrency management) pool which
4635 * are served by workers tied to the pool.
4636 */
e19e397a 4637 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4638
4639 /*
4640 * With concurrency management just turned off, a busy
4641 * worker blocking could lead to lengthy stalls. Kick off
4642 * unbound chain execution of currently pending work items.
4643 */
4644 spin_lock_irq(&pool->lock);
4645 wake_up_worker(pool);
4646 spin_unlock_irq(&pool->lock);
4647 }
3af24433 4648}
3af24433 4649
bd7c089e
TH
4650/**
4651 * rebind_workers - rebind all workers of a pool to the associated CPU
4652 * @pool: pool of interest
4653 *
a9ab775b 4654 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4655 */
4656static void rebind_workers(struct worker_pool *pool)
4657{
a9ab775b
TH
4658 struct worker *worker;
4659 int wi;
bd7c089e
TH
4660
4661 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4662
a9ab775b
TH
4663 /*
4664 * Restore CPU affinity of all workers. As all idle workers should
4665 * be on the run-queue of the associated CPU before any local
4666 * wake-ups for concurrency management happen, restore CPU affinty
4667 * of all workers first and then clear UNBOUND. As we're called
4668 * from CPU_ONLINE, the following shouldn't fail.
4669 */
4670 for_each_pool_worker(worker, wi, pool)
4671 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4672 pool->attrs->cpumask) < 0);
bd7c089e 4673
a9ab775b 4674 spin_lock_irq(&pool->lock);
bd7c089e 4675
a9ab775b
TH
4676 for_each_pool_worker(worker, wi, pool) {
4677 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4678
4679 /*
a9ab775b
TH
4680 * A bound idle worker should actually be on the runqueue
4681 * of the associated CPU for local wake-ups targeting it to
4682 * work. Kick all idle workers so that they migrate to the
4683 * associated CPU. Doing this in the same loop as
4684 * replacing UNBOUND with REBOUND is safe as no worker will
4685 * be bound before @pool->lock is released.
bd7c089e 4686 */
a9ab775b
TH
4687 if (worker_flags & WORKER_IDLE)
4688 wake_up_process(worker->task);
bd7c089e 4689
a9ab775b
TH
4690 /*
4691 * We want to clear UNBOUND but can't directly call
4692 * worker_clr_flags() or adjust nr_running. Atomically
4693 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4694 * @worker will clear REBOUND using worker_clr_flags() when
4695 * it initiates the next execution cycle thus restoring
4696 * concurrency management. Note that when or whether
4697 * @worker clears REBOUND doesn't affect correctness.
4698 *
4699 * ACCESS_ONCE() is necessary because @worker->flags may be
4700 * tested without holding any lock in
4701 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4702 * fail incorrectly leading to premature concurrency
4703 * management operations.
4704 */
4705 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4706 worker_flags |= WORKER_REBOUND;
4707 worker_flags &= ~WORKER_UNBOUND;
4708 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4709 }
a9ab775b
TH
4710
4711 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4712}
4713
7dbc725e
TH
4714/**
4715 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4716 * @pool: unbound pool of interest
4717 * @cpu: the CPU which is coming up
4718 *
4719 * An unbound pool may end up with a cpumask which doesn't have any online
4720 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4721 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4722 * online CPU before, cpus_allowed of all its workers should be restored.
4723 */
4724static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4725{
4726 static cpumask_t cpumask;
4727 struct worker *worker;
4728 int wi;
4729
4730 lockdep_assert_held(&pool->manager_mutex);
4731
4732 /* is @cpu allowed for @pool? */
4733 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4734 return;
4735
4736 /* is @cpu the only online CPU? */
4737 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4738 if (cpumask_weight(&cpumask) != 1)
4739 return;
4740
4741 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4742 for_each_pool_worker(worker, wi, pool)
4743 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4744 pool->attrs->cpumask) < 0);
4745}
4746
8db25e78
TH
4747/*
4748 * Workqueues should be brought up before normal priority CPU notifiers.
4749 * This will be registered high priority CPU notifier.
4750 */
0db0628d 4751static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4752 unsigned long action,
4753 void *hcpu)
3af24433 4754{
d84ff051 4755 int cpu = (unsigned long)hcpu;
4ce62e9e 4756 struct worker_pool *pool;
4c16bd32 4757 struct workqueue_struct *wq;
7dbc725e 4758 int pi;
3ce63377 4759
8db25e78 4760 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4761 case CPU_UP_PREPARE:
f02ae73a 4762 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4763 if (pool->nr_workers)
4764 continue;
ebf44d16 4765 if (create_and_start_worker(pool) < 0)
3ce63377 4766 return NOTIFY_BAD;
3af24433 4767 }
8db25e78 4768 break;
3af24433 4769
db7bccf4
TH
4770 case CPU_DOWN_FAILED:
4771 case CPU_ONLINE:
68e13a67 4772 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4773
4774 for_each_pool(pool, pi) {
bc3a1afc 4775 mutex_lock(&pool->manager_mutex);
94cf58bb 4776
7dbc725e
TH
4777 if (pool->cpu == cpu) {
4778 spin_lock_irq(&pool->lock);
4779 pool->flags &= ~POOL_DISASSOCIATED;
4780 spin_unlock_irq(&pool->lock);
a9ab775b 4781
7dbc725e
TH
4782 rebind_workers(pool);
4783 } else if (pool->cpu < 0) {
4784 restore_unbound_workers_cpumask(pool, cpu);
4785 }
94cf58bb 4786
bc3a1afc 4787 mutex_unlock(&pool->manager_mutex);
94cf58bb 4788 }
7dbc725e 4789
4c16bd32
TH
4790 /* update NUMA affinity of unbound workqueues */
4791 list_for_each_entry(wq, &workqueues, list)
4792 wq_update_unbound_numa(wq, cpu, true);
4793
68e13a67 4794 mutex_unlock(&wq_pool_mutex);
db7bccf4 4795 break;
00dfcaf7 4796 }
65758202
TH
4797 return NOTIFY_OK;
4798}
4799
4800/*
4801 * Workqueues should be brought down after normal priority CPU notifiers.
4802 * This will be registered as low priority CPU notifier.
4803 */
0db0628d 4804static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4805 unsigned long action,
4806 void *hcpu)
4807{
d84ff051 4808 int cpu = (unsigned long)hcpu;
8db25e78 4809 struct work_struct unbind_work;
4c16bd32 4810 struct workqueue_struct *wq;
8db25e78 4811
65758202
TH
4812 switch (action & ~CPU_TASKS_FROZEN) {
4813 case CPU_DOWN_PREPARE:
4c16bd32 4814 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4815 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4816 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4817
4818 /* update NUMA affinity of unbound workqueues */
4819 mutex_lock(&wq_pool_mutex);
4820 list_for_each_entry(wq, &workqueues, list)
4821 wq_update_unbound_numa(wq, cpu, false);
4822 mutex_unlock(&wq_pool_mutex);
4823
4824 /* wait for per-cpu unbinding to finish */
8db25e78 4825 flush_work(&unbind_work);
440a1136 4826 destroy_work_on_stack(&unbind_work);
8db25e78 4827 break;
65758202
TH
4828 }
4829 return NOTIFY_OK;
4830}
4831
2d3854a3 4832#ifdef CONFIG_SMP
8ccad40d 4833
2d3854a3 4834struct work_for_cpu {
ed48ece2 4835 struct work_struct work;
2d3854a3
RR
4836 long (*fn)(void *);
4837 void *arg;
4838 long ret;
4839};
4840
ed48ece2 4841static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4842{
ed48ece2
TH
4843 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4844
2d3854a3
RR
4845 wfc->ret = wfc->fn(wfc->arg);
4846}
4847
4848/**
4849 * work_on_cpu - run a function in user context on a particular cpu
4850 * @cpu: the cpu to run on
4851 * @fn: the function to run
4852 * @arg: the function arg
4853 *
31ad9081 4854 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4855 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4856 *
4857 * Return: The value @fn returns.
2d3854a3 4858 */
d84ff051 4859long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4860{
ed48ece2 4861 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4862
ed48ece2
TH
4863 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4864 schedule_work_on(cpu, &wfc.work);
12997d1a 4865 flush_work(&wfc.work);
440a1136 4866 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4867 return wfc.ret;
4868}
4869EXPORT_SYMBOL_GPL(work_on_cpu);
4870#endif /* CONFIG_SMP */
4871
a0a1a5fd
TH
4872#ifdef CONFIG_FREEZER
4873
4874/**
4875 * freeze_workqueues_begin - begin freezing workqueues
4876 *
58a69cb4 4877 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4878 * workqueues will queue new works to their delayed_works list instead of
706026c2 4879 * pool->worklist.
a0a1a5fd
TH
4880 *
4881 * CONTEXT:
a357fc03 4882 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4883 */
4884void freeze_workqueues_begin(void)
4885{
17116969 4886 struct worker_pool *pool;
24b8a847
TH
4887 struct workqueue_struct *wq;
4888 struct pool_workqueue *pwq;
611c92a0 4889 int pi;
a0a1a5fd 4890
68e13a67 4891 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4892
6183c009 4893 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4894 workqueue_freezing = true;
4895
24b8a847 4896 /* set FREEZING */
611c92a0 4897 for_each_pool(pool, pi) {
5bcab335 4898 spin_lock_irq(&pool->lock);
17116969
TH
4899 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4900 pool->flags |= POOL_FREEZING;
5bcab335 4901 spin_unlock_irq(&pool->lock);
24b8a847 4902 }
a0a1a5fd 4903
24b8a847 4904 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4905 mutex_lock(&wq->mutex);
699ce097
TH
4906 for_each_pwq(pwq, wq)
4907 pwq_adjust_max_active(pwq);
a357fc03 4908 mutex_unlock(&wq->mutex);
a0a1a5fd 4909 }
5bcab335 4910
68e13a67 4911 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4912}
4913
4914/**
58a69cb4 4915 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4916 *
4917 * Check whether freezing is complete. This function must be called
4918 * between freeze_workqueues_begin() and thaw_workqueues().
4919 *
4920 * CONTEXT:
68e13a67 4921 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4922 *
d185af30 4923 * Return:
58a69cb4
TH
4924 * %true if some freezable workqueues are still busy. %false if freezing
4925 * is complete.
a0a1a5fd
TH
4926 */
4927bool freeze_workqueues_busy(void)
4928{
a0a1a5fd 4929 bool busy = false;
24b8a847
TH
4930 struct workqueue_struct *wq;
4931 struct pool_workqueue *pwq;
a0a1a5fd 4932
68e13a67 4933 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4934
6183c009 4935 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4936
24b8a847
TH
4937 list_for_each_entry(wq, &workqueues, list) {
4938 if (!(wq->flags & WQ_FREEZABLE))
4939 continue;
a0a1a5fd
TH
4940 /*
4941 * nr_active is monotonically decreasing. It's safe
4942 * to peek without lock.
4943 */
88109453 4944 rcu_read_lock_sched();
24b8a847 4945 for_each_pwq(pwq, wq) {
6183c009 4946 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4947 if (pwq->nr_active) {
a0a1a5fd 4948 busy = true;
88109453 4949 rcu_read_unlock_sched();
a0a1a5fd
TH
4950 goto out_unlock;
4951 }
4952 }
88109453 4953 rcu_read_unlock_sched();
a0a1a5fd
TH
4954 }
4955out_unlock:
68e13a67 4956 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4957 return busy;
4958}
4959
4960/**
4961 * thaw_workqueues - thaw workqueues
4962 *
4963 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4964 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4965 *
4966 * CONTEXT:
a357fc03 4967 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4968 */
4969void thaw_workqueues(void)
4970{
24b8a847
TH
4971 struct workqueue_struct *wq;
4972 struct pool_workqueue *pwq;
4973 struct worker_pool *pool;
611c92a0 4974 int pi;
a0a1a5fd 4975
68e13a67 4976 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4977
4978 if (!workqueue_freezing)
4979 goto out_unlock;
4980
24b8a847 4981 /* clear FREEZING */
611c92a0 4982 for_each_pool(pool, pi) {
5bcab335 4983 spin_lock_irq(&pool->lock);
24b8a847
TH
4984 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4985 pool->flags &= ~POOL_FREEZING;
5bcab335 4986 spin_unlock_irq(&pool->lock);
24b8a847 4987 }
8b03ae3c 4988
24b8a847
TH
4989 /* restore max_active and repopulate worklist */
4990 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4991 mutex_lock(&wq->mutex);
699ce097
TH
4992 for_each_pwq(pwq, wq)
4993 pwq_adjust_max_active(pwq);
a357fc03 4994 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4995 }
4996
4997 workqueue_freezing = false;
4998out_unlock:
68e13a67 4999 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
5000}
5001#endif /* CONFIG_FREEZER */
5002
bce90380
TH
5003static void __init wq_numa_init(void)
5004{
5005 cpumask_var_t *tbl;
5006 int node, cpu;
5007
5008 /* determine NUMA pwq table len - highest node id + 1 */
5009 for_each_node(node)
5010 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5011
5012 if (num_possible_nodes() <= 1)
5013 return;
5014
d55262c4
TH
5015 if (wq_disable_numa) {
5016 pr_info("workqueue: NUMA affinity support disabled\n");
5017 return;
5018 }
5019
4c16bd32
TH
5020 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5021 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5022
bce90380
TH
5023 /*
5024 * We want masks of possible CPUs of each node which isn't readily
5025 * available. Build one from cpu_to_node() which should have been
5026 * fully initialized by now.
5027 */
5028 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5029 BUG_ON(!tbl);
5030
5031 for_each_node(node)
1be0c25d
TH
5032 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5033 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5034
5035 for_each_possible_cpu(cpu) {
5036 node = cpu_to_node(cpu);
5037 if (WARN_ON(node == NUMA_NO_NODE)) {
5038 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5039 /* happens iff arch is bonkers, let's just proceed */
5040 return;
5041 }
5042 cpumask_set_cpu(cpu, tbl[node]);
5043 }
5044
5045 wq_numa_possible_cpumask = tbl;
5046 wq_numa_enabled = true;
5047}
5048
6ee0578b 5049static int __init init_workqueues(void)
1da177e4 5050{
7a4e344c
TH
5051 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5052 int i, cpu;
c34056a3 5053
e904e6c2
TH
5054 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5055
5056 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5057
65758202 5058 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5059 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5060
bce90380
TH
5061 wq_numa_init();
5062
706026c2 5063 /* initialize CPU pools */
29c91e99 5064 for_each_possible_cpu(cpu) {
4ce62e9e 5065 struct worker_pool *pool;
8b03ae3c 5066
7a4e344c 5067 i = 0;
f02ae73a 5068 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5069 BUG_ON(init_worker_pool(pool));
ec22ca5e 5070 pool->cpu = cpu;
29c91e99 5071 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5072 pool->attrs->nice = std_nice[i++];
f3f90ad4 5073 pool->node = cpu_to_node(cpu);
7a4e344c 5074
9daf9e67 5075 /* alloc pool ID */
68e13a67 5076 mutex_lock(&wq_pool_mutex);
9daf9e67 5077 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5078 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5079 }
8b03ae3c
TH
5080 }
5081
e22bee78 5082 /* create the initial worker */
29c91e99 5083 for_each_online_cpu(cpu) {
4ce62e9e 5084 struct worker_pool *pool;
e22bee78 5085
f02ae73a 5086 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5087 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5088 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5089 }
e22bee78
TH
5090 }
5091
8a2b7538 5092 /* create default unbound and ordered wq attrs */
29c91e99
TH
5093 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5094 struct workqueue_attrs *attrs;
5095
5096 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5097 attrs->nice = std_nice[i];
29c91e99 5098 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5099
5100 /*
5101 * An ordered wq should have only one pwq as ordering is
5102 * guaranteed by max_active which is enforced by pwqs.
5103 * Turn off NUMA so that dfl_pwq is used for all nodes.
5104 */
5105 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5106 attrs->nice = std_nice[i];
5107 attrs->no_numa = true;
5108 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5109 }
5110
d320c038 5111 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5112 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5113 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5114 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5115 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5116 system_freezable_wq = alloc_workqueue("events_freezable",
5117 WQ_FREEZABLE, 0);
0668106c
VK
5118 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5119 WQ_POWER_EFFICIENT, 0);
5120 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5121 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5122 0);
1aabe902 5123 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5124 !system_unbound_wq || !system_freezable_wq ||
5125 !system_power_efficient_wq ||
5126 !system_freezable_power_efficient_wq);
6ee0578b 5127 return 0;
1da177e4 5128}
6ee0578b 5129early_initcall(init_workqueues);