workqueue: move busy_hash from global_cwq to worker_pool
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
8b03ae3c 111 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 112 *
e22bee78
TH
113 * X: During normal operation, modification requires gcwq->lock and
114 * should be done only from local cpu. Either disabling preemption
115 * on local cpu or grabbing gcwq->lock is enough for read access.
24647570 116 * If POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43
TH
125struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
9daf9e67 127 int id; /* I: pool ID */
11ebea50 128 unsigned int flags; /* X: flags */
bd7bdd43
TH
129
130 struct list_head worklist; /* L: list of pending works */
131 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
132
133 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
134 int nr_idle; /* L: currently idle ones */
135
136 struct list_head idle_list; /* X: list of idle workers */
137 struct timer_list idle_timer; /* L: worker idle timeout */
138 struct timer_list mayday_timer; /* L: SOS timer for workers */
139
c9e7cf27
TH
140 /* workers are chained either in busy_hash or idle_list */
141 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
142 /* L: hash of busy workers */
143
24647570 144 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 145 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
146};
147
8b03ae3c 148/*
e22bee78
TH
149 * Global per-cpu workqueue. There's one and only one for each cpu
150 * and all works are queued and processed here regardless of their
151 * target workqueues.
8b03ae3c
TH
152 */
153struct global_cwq {
154 spinlock_t lock; /* the gcwq lock */
155 unsigned int cpu; /* I: the associated cpu */
c8e55f36 156
e34cdddb 157 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 158 /* normal and highpri pools */
8b03ae3c
TH
159} ____cacheline_aligned_in_smp;
160
1da177e4 161/*
502ca9d8 162 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
163 * work_struct->data are used for flags and thus cwqs need to be
164 * aligned at two's power of the number of flag bits.
1da177e4
LT
165 */
166struct cpu_workqueue_struct {
bd7bdd43 167 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 168 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
169 int work_color; /* L: current color */
170 int flush_color; /* L: flushing color */
171 int nr_in_flight[WORK_NR_COLORS];
172 /* L: nr of in_flight works */
1e19ffc6 173 int nr_active; /* L: nr of active works */
a0a1a5fd 174 int max_active; /* L: max active works */
1e19ffc6 175 struct list_head delayed_works; /* L: delayed works */
0f900049 176};
1da177e4 177
73f53c4a
TH
178/*
179 * Structure used to wait for workqueue flush.
180 */
181struct wq_flusher {
182 struct list_head list; /* F: list of flushers */
183 int flush_color; /* F: flush color waiting for */
184 struct completion done; /* flush completion */
185};
186
f2e005aa
TH
187/*
188 * All cpumasks are assumed to be always set on UP and thus can't be
189 * used to determine whether there's something to be done.
190 */
191#ifdef CONFIG_SMP
192typedef cpumask_var_t mayday_mask_t;
193#define mayday_test_and_set_cpu(cpu, mask) \
194 cpumask_test_and_set_cpu((cpu), (mask))
195#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
196#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 197#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
198#define free_mayday_mask(mask) free_cpumask_var((mask))
199#else
200typedef unsigned long mayday_mask_t;
201#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
202#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
203#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
204#define alloc_mayday_mask(maskp, gfp) true
205#define free_mayday_mask(mask) do { } while (0)
206#endif
1da177e4
LT
207
208/*
209 * The externally visible workqueue abstraction is an array of
210 * per-CPU workqueues:
211 */
212struct workqueue_struct {
9c5a2ba7 213 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
214 union {
215 struct cpu_workqueue_struct __percpu *pcpu;
216 struct cpu_workqueue_struct *single;
217 unsigned long v;
218 } cpu_wq; /* I: cwq's */
4690c4ab 219 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
220
221 struct mutex flush_mutex; /* protects wq flushing */
222 int work_color; /* F: current work color */
223 int flush_color; /* F: current flush color */
224 atomic_t nr_cwqs_to_flush; /* flush in progress */
225 struct wq_flusher *first_flusher; /* F: first flusher */
226 struct list_head flusher_queue; /* F: flush waiters */
227 struct list_head flusher_overflow; /* F: flush overflow list */
228
f2e005aa 229 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
230 struct worker *rescuer; /* I: rescue worker */
231
9c5a2ba7 232 int nr_drainers; /* W: drain in progress */
dcd989cb 233 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 234#ifdef CONFIG_LOCKDEP
4690c4ab 235 struct lockdep_map lockdep_map;
4e6045f1 236#endif
b196be89 237 char name[]; /* I: workqueue name */
1da177e4
LT
238};
239
d320c038 240struct workqueue_struct *system_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_wq);
044c782c 242struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 243EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 244struct workqueue_struct *system_long_wq __read_mostly;
d320c038 245EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 246struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 247EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 248struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 249EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 250
97bd2347
TH
251#define CREATE_TRACE_POINTS
252#include <trace/events/workqueue.h>
253
4ce62e9e 254#define for_each_worker_pool(pool, gcwq) \
3270476a 255 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 256 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 257
c9e7cf27
TH
258#define for_each_busy_worker(worker, i, pos, pool) \
259 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 260
f3421797
TH
261static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
263{
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
269 }
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
272 }
273 return WORK_CPU_NONE;
274}
275
276static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
277 struct workqueue_struct *wq)
278{
279 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
280}
281
09884951
TH
282/*
283 * CPU iterators
284 *
285 * An extra gcwq is defined for an invalid cpu number
286 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
287 * specific CPU. The following iterators are similar to
288 * for_each_*_cpu() iterators but also considers the unbound gcwq.
289 *
290 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
291 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
292 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
293 * WORK_CPU_UNBOUND for unbound workqueues
294 */
f3421797
TH
295#define for_each_gcwq_cpu(cpu) \
296 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
297 (cpu) < WORK_CPU_NONE; \
298 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
299
300#define for_each_online_gcwq_cpu(cpu) \
301 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
302 (cpu) < WORK_CPU_NONE; \
303 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
304
305#define for_each_cwq_cpu(cpu, wq) \
306 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
309
dc186ad7
TG
310#ifdef CONFIG_DEBUG_OBJECTS_WORK
311
312static struct debug_obj_descr work_debug_descr;
313
99777288
SG
314static void *work_debug_hint(void *addr)
315{
316 return ((struct work_struct *) addr)->func;
317}
318
dc186ad7
TG
319/*
320 * fixup_init is called when:
321 * - an active object is initialized
322 */
323static int work_fixup_init(void *addr, enum debug_obj_state state)
324{
325 struct work_struct *work = addr;
326
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
334 }
335}
336
337/*
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
341 */
342static int work_fixup_activate(void *addr, enum debug_obj_state state)
343{
344 struct work_struct *work = addr;
345
346 switch (state) {
347
348 case ODEBUG_STATE_NOTAVAILABLE:
349 /*
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
353 */
22df02bb 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
358 }
359 WARN_ON_ONCE(1);
360 return 0;
361
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
364
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_free is called when:
372 * - an active object is freed
373 */
374static int work_fixup_free(void *addr, enum debug_obj_state state)
375{
376 struct work_struct *work = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386}
387
388static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
99777288 390 .debug_hint = work_debug_hint,
dc186ad7
TG
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
394};
395
396static inline void debug_work_activate(struct work_struct *work)
397{
398 debug_object_activate(work, &work_debug_descr);
399}
400
401static inline void debug_work_deactivate(struct work_struct *work)
402{
403 debug_object_deactivate(work, &work_debug_descr);
404}
405
406void __init_work(struct work_struct *work, int onstack)
407{
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
412}
413EXPORT_SYMBOL_GPL(__init_work);
414
415void destroy_work_on_stack(struct work_struct *work)
416{
417 debug_object_free(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(destroy_work_on_stack);
420
421#else
422static inline void debug_work_activate(struct work_struct *work) { }
423static inline void debug_work_deactivate(struct work_struct *work) { }
424#endif
425
95402b38
GS
426/* Serializes the accesses to the list of workqueues. */
427static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 428static LIST_HEAD(workqueues);
a0a1a5fd 429static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 430
e22bee78
TH
431/*
432 * The almighty global cpu workqueues. nr_running is the only field
433 * which is expected to be used frequently by other cpus via
434 * try_to_wake_up(). Put it in a separate cacheline.
435 */
8b03ae3c 436static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 437static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 438
f3421797 439/*
24647570
TH
440 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
441 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
442 * WORKER_UNBOUND set.
f3421797
TH
443 */
444static struct global_cwq unbound_global_cwq;
e34cdddb
TH
445static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
446 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 447};
f3421797 448
9daf9e67
TH
449/* idr of all pools */
450static DEFINE_MUTEX(worker_pool_idr_mutex);
451static DEFINE_IDR(worker_pool_idr);
452
c34056a3 453static int worker_thread(void *__worker);
1da177e4 454
e34cdddb 455static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
456{
457 return pool - pool->gcwq->pools;
458}
459
8b03ae3c
TH
460static struct global_cwq *get_gcwq(unsigned int cpu)
461{
f3421797
TH
462 if (cpu != WORK_CPU_UNBOUND)
463 return &per_cpu(global_cwq, cpu);
464 else
465 return &unbound_global_cwq;
8b03ae3c
TH
466}
467
9daf9e67
TH
468/* allocate ID and assign it to @pool */
469static int worker_pool_assign_id(struct worker_pool *pool)
470{
471 int ret;
472
473 mutex_lock(&worker_pool_idr_mutex);
474 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
475 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
476 mutex_unlock(&worker_pool_idr_mutex);
477
478 return ret;
479}
480
7c3eed5c
TH
481/*
482 * Lookup worker_pool by id. The idr currently is built during boot and
483 * never modified. Don't worry about locking for now.
484 */
485static struct worker_pool *worker_pool_by_id(int pool_id)
486{
487 return idr_find(&worker_pool_idr, pool_id);
488}
489
63d95a91 490static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 491{
63d95a91 492 int cpu = pool->gcwq->cpu;
e34cdddb 493 int idx = std_worker_pool_pri(pool);
63d95a91 494
f3421797 495 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 496 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 497 else
4ce62e9e 498 return &unbound_pool_nr_running[idx];
e22bee78
TH
499}
500
1537663f
TH
501static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
502 struct workqueue_struct *wq)
b1f4ec17 503{
f3421797 504 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 505 if (likely(cpu < nr_cpu_ids))
f3421797 506 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
507 } else if (likely(cpu == WORK_CPU_UNBOUND))
508 return wq->cpu_wq.single;
509 return NULL;
b1f4ec17
ON
510}
511
73f53c4a
TH
512static unsigned int work_color_to_flags(int color)
513{
514 return color << WORK_STRUCT_COLOR_SHIFT;
515}
516
517static int get_work_color(struct work_struct *work)
518{
519 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
520 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
521}
522
523static int work_next_color(int color)
524{
525 return (color + 1) % WORK_NR_COLORS;
526}
1da177e4 527
14441960 528/*
b5490077
TH
529 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
530 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 531 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 532 *
7c3eed5c
TH
533 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
534 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
535 * work->data. These functions should only be called while the work is
536 * owned - ie. while the PENDING bit is set.
7a22ad75 537 *
7c3eed5c
TH
538 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
539 * corresponding to a work. Pool is available once the work has been
540 * queued anywhere after initialization until it is sync canceled. cwq is
541 * available only while the work item is queued.
7a22ad75 542 *
bbb68dfa
TH
543 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
544 * canceled. While being canceled, a work item may have its PENDING set
545 * but stay off timer and worklist for arbitrarily long and nobody should
546 * try to steal the PENDING bit.
14441960 547 */
7a22ad75
TH
548static inline void set_work_data(struct work_struct *work, unsigned long data,
549 unsigned long flags)
365970a1 550{
4594bf15 551 BUG_ON(!work_pending(work));
7a22ad75
TH
552 atomic_long_set(&work->data, data | flags | work_static(work));
553}
365970a1 554
7a22ad75
TH
555static void set_work_cwq(struct work_struct *work,
556 struct cpu_workqueue_struct *cwq,
557 unsigned long extra_flags)
558{
559 set_work_data(work, (unsigned long)cwq,
e120153d 560 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
561}
562
7c3eed5c
TH
563static void set_work_pool_and_clear_pending(struct work_struct *work,
564 int pool_id)
7a22ad75 565{
23657bb1
TH
566 /*
567 * The following wmb is paired with the implied mb in
568 * test_and_set_bit(PENDING) and ensures all updates to @work made
569 * here are visible to and precede any updates by the next PENDING
570 * owner.
571 */
572 smp_wmb();
7c3eed5c 573 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 574}
f756d5e2 575
7a22ad75 576static void clear_work_data(struct work_struct *work)
1da177e4 577{
7c3eed5c
TH
578 smp_wmb(); /* see set_work_pool_and_clear_pending() */
579 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
580}
581
7a22ad75 582static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 583{
e120153d 584 unsigned long data = atomic_long_read(&work->data);
7a22ad75 585
e120153d
TH
586 if (data & WORK_STRUCT_CWQ)
587 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
588 else
589 return NULL;
4d707b9f
ON
590}
591
7c3eed5c
TH
592/**
593 * get_work_pool - return the worker_pool a given work was associated with
594 * @work: the work item of interest
595 *
596 * Return the worker_pool @work was last associated with. %NULL if none.
597 */
598static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 599{
e120153d 600 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
601 struct worker_pool *pool;
602 int pool_id;
7a22ad75 603
e120153d
TH
604 if (data & WORK_STRUCT_CWQ)
605 return ((struct cpu_workqueue_struct *)
7c3eed5c 606 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 607
7c3eed5c
TH
608 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
609 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
610 return NULL;
611
7c3eed5c
TH
612 pool = worker_pool_by_id(pool_id);
613 WARN_ON_ONCE(!pool);
614 return pool;
615}
616
617/**
618 * get_work_pool_id - return the worker pool ID a given work is associated with
619 * @work: the work item of interest
620 *
621 * Return the worker_pool ID @work was last associated with.
622 * %WORK_OFFQ_POOL_NONE if none.
623 */
624static int get_work_pool_id(struct work_struct *work)
625{
626 struct worker_pool *pool = get_work_pool(work);
627
628 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
629}
630
631static struct global_cwq *get_work_gcwq(struct work_struct *work)
632{
633 struct worker_pool *pool = get_work_pool(work);
634
635 return pool ? pool->gcwq : NULL;
b1f4ec17
ON
636}
637
bbb68dfa
TH
638static void mark_work_canceling(struct work_struct *work)
639{
7c3eed5c 640 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 641
7c3eed5c
TH
642 pool_id <<= WORK_OFFQ_POOL_SHIFT;
643 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
644}
645
646static bool work_is_canceling(struct work_struct *work)
647{
648 unsigned long data = atomic_long_read(&work->data);
649
650 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
651}
652
e22bee78 653/*
3270476a
TH
654 * Policy functions. These define the policies on how the global worker
655 * pools are managed. Unless noted otherwise, these functions assume that
656 * they're being called with gcwq->lock held.
e22bee78
TH
657 */
658
63d95a91 659static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 660{
3270476a 661 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
662}
663
4594bf15 664/*
e22bee78
TH
665 * Need to wake up a worker? Called from anything but currently
666 * running workers.
974271c4
TH
667 *
668 * Note that, because unbound workers never contribute to nr_running, this
669 * function will always return %true for unbound gcwq as long as the
670 * worklist isn't empty.
4594bf15 671 */
63d95a91 672static bool need_more_worker(struct worker_pool *pool)
365970a1 673{
63d95a91 674 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 675}
4594bf15 676
e22bee78 677/* Can I start working? Called from busy but !running workers. */
63d95a91 678static bool may_start_working(struct worker_pool *pool)
e22bee78 679{
63d95a91 680 return pool->nr_idle;
e22bee78
TH
681}
682
683/* Do I need to keep working? Called from currently running workers. */
63d95a91 684static bool keep_working(struct worker_pool *pool)
e22bee78 685{
63d95a91 686 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 687
3270476a 688 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
689}
690
691/* Do we need a new worker? Called from manager. */
63d95a91 692static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 693{
63d95a91 694 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 695}
365970a1 696
e22bee78 697/* Do I need to be the manager? */
63d95a91 698static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 699{
63d95a91 700 return need_to_create_worker(pool) ||
11ebea50 701 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
702}
703
704/* Do we have too many workers and should some go away? */
63d95a91 705static bool too_many_workers(struct worker_pool *pool)
e22bee78 706{
552a37e9 707 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
708 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
709 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 710
ea1abd61
LJ
711 /*
712 * nr_idle and idle_list may disagree if idle rebinding is in
713 * progress. Never return %true if idle_list is empty.
714 */
715 if (list_empty(&pool->idle_list))
716 return false;
717
e22bee78 718 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
719}
720
4d707b9f 721/*
e22bee78
TH
722 * Wake up functions.
723 */
724
7e11629d 725/* Return the first worker. Safe with preemption disabled */
63d95a91 726static struct worker *first_worker(struct worker_pool *pool)
7e11629d 727{
63d95a91 728 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
729 return NULL;
730
63d95a91 731 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
732}
733
734/**
735 * wake_up_worker - wake up an idle worker
63d95a91 736 * @pool: worker pool to wake worker from
7e11629d 737 *
63d95a91 738 * Wake up the first idle worker of @pool.
7e11629d
TH
739 *
740 * CONTEXT:
741 * spin_lock_irq(gcwq->lock).
742 */
63d95a91 743static void wake_up_worker(struct worker_pool *pool)
7e11629d 744{
63d95a91 745 struct worker *worker = first_worker(pool);
7e11629d
TH
746
747 if (likely(worker))
748 wake_up_process(worker->task);
749}
750
d302f017 751/**
e22bee78
TH
752 * wq_worker_waking_up - a worker is waking up
753 * @task: task waking up
754 * @cpu: CPU @task is waking up to
755 *
756 * This function is called during try_to_wake_up() when a worker is
757 * being awoken.
758 *
759 * CONTEXT:
760 * spin_lock_irq(rq->lock)
761 */
762void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
763{
764 struct worker *worker = kthread_data(task);
765
36576000
JK
766 if (!(worker->flags & WORKER_NOT_RUNNING)) {
767 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 768 atomic_inc(get_pool_nr_running(worker->pool));
36576000 769 }
e22bee78
TH
770}
771
772/**
773 * wq_worker_sleeping - a worker is going to sleep
774 * @task: task going to sleep
775 * @cpu: CPU in question, must be the current CPU number
776 *
777 * This function is called during schedule() when a busy worker is
778 * going to sleep. Worker on the same cpu can be woken up by
779 * returning pointer to its task.
780 *
781 * CONTEXT:
782 * spin_lock_irq(rq->lock)
783 *
784 * RETURNS:
785 * Worker task on @cpu to wake up, %NULL if none.
786 */
787struct task_struct *wq_worker_sleeping(struct task_struct *task,
788 unsigned int cpu)
789{
790 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
791 struct worker_pool *pool;
792 atomic_t *nr_running;
e22bee78 793
111c225a
TH
794 /*
795 * Rescuers, which may not have all the fields set up like normal
796 * workers, also reach here, let's not access anything before
797 * checking NOT_RUNNING.
798 */
2d64672e 799 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
800 return NULL;
801
111c225a
TH
802 pool = worker->pool;
803 nr_running = get_pool_nr_running(pool);
804
e22bee78
TH
805 /* this can only happen on the local cpu */
806 BUG_ON(cpu != raw_smp_processor_id());
807
808 /*
809 * The counterpart of the following dec_and_test, implied mb,
810 * worklist not empty test sequence is in insert_work().
811 * Please read comment there.
812 *
628c78e7
TH
813 * NOT_RUNNING is clear. This means that we're bound to and
814 * running on the local cpu w/ rq lock held and preemption
815 * disabled, which in turn means that none else could be
816 * manipulating idle_list, so dereferencing idle_list without gcwq
817 * lock is safe.
e22bee78 818 */
bd7bdd43 819 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 820 to_wakeup = first_worker(pool);
e22bee78
TH
821 return to_wakeup ? to_wakeup->task : NULL;
822}
823
824/**
825 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 826 * @worker: self
d302f017
TH
827 * @flags: flags to set
828 * @wakeup: wakeup an idle worker if necessary
829 *
e22bee78
TH
830 * Set @flags in @worker->flags and adjust nr_running accordingly. If
831 * nr_running becomes zero and @wakeup is %true, an idle worker is
832 * woken up.
d302f017 833 *
cb444766
TH
834 * CONTEXT:
835 * spin_lock_irq(gcwq->lock)
d302f017
TH
836 */
837static inline void worker_set_flags(struct worker *worker, unsigned int flags,
838 bool wakeup)
839{
bd7bdd43 840 struct worker_pool *pool = worker->pool;
e22bee78 841
cb444766
TH
842 WARN_ON_ONCE(worker->task != current);
843
e22bee78
TH
844 /*
845 * If transitioning into NOT_RUNNING, adjust nr_running and
846 * wake up an idle worker as necessary if requested by
847 * @wakeup.
848 */
849 if ((flags & WORKER_NOT_RUNNING) &&
850 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 851 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
852
853 if (wakeup) {
854 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 855 !list_empty(&pool->worklist))
63d95a91 856 wake_up_worker(pool);
e22bee78
TH
857 } else
858 atomic_dec(nr_running);
859 }
860
d302f017
TH
861 worker->flags |= flags;
862}
863
864/**
e22bee78 865 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 866 * @worker: self
d302f017
TH
867 * @flags: flags to clear
868 *
e22bee78 869 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 870 *
cb444766
TH
871 * CONTEXT:
872 * spin_lock_irq(gcwq->lock)
d302f017
TH
873 */
874static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
875{
63d95a91 876 struct worker_pool *pool = worker->pool;
e22bee78
TH
877 unsigned int oflags = worker->flags;
878
cb444766
TH
879 WARN_ON_ONCE(worker->task != current);
880
d302f017 881 worker->flags &= ~flags;
e22bee78 882
42c025f3
TH
883 /*
884 * If transitioning out of NOT_RUNNING, increment nr_running. Note
885 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
886 * of multiple flags, not a single flag.
887 */
e22bee78
TH
888 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
889 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 890 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
891}
892
8cca0eea
TH
893/**
894 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 895 * @pool: pool of interest
8cca0eea
TH
896 * @work: work to find worker for
897 *
c9e7cf27
TH
898 * Find a worker which is executing @work on @pool by searching
899 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
900 * to match, its current execution should match the address of @work and
901 * its work function. This is to avoid unwanted dependency between
902 * unrelated work executions through a work item being recycled while still
903 * being executed.
904 *
905 * This is a bit tricky. A work item may be freed once its execution
906 * starts and nothing prevents the freed area from being recycled for
907 * another work item. If the same work item address ends up being reused
908 * before the original execution finishes, workqueue will identify the
909 * recycled work item as currently executing and make it wait until the
910 * current execution finishes, introducing an unwanted dependency.
911 *
912 * This function checks the work item address, work function and workqueue
913 * to avoid false positives. Note that this isn't complete as one may
914 * construct a work function which can introduce dependency onto itself
915 * through a recycled work item. Well, if somebody wants to shoot oneself
916 * in the foot that badly, there's only so much we can do, and if such
917 * deadlock actually occurs, it should be easy to locate the culprit work
918 * function.
8cca0eea
TH
919 *
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
922 *
923 * RETURNS:
924 * Pointer to worker which is executing @work if found, NULL
925 * otherwise.
4d707b9f 926 */
c9e7cf27 927static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 928 struct work_struct *work)
4d707b9f 929{
42f8570f
SL
930 struct worker *worker;
931 struct hlist_node *tmp;
932
c9e7cf27 933 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
934 (unsigned long)work)
935 if (worker->current_work == work &&
936 worker->current_func == work->func)
42f8570f
SL
937 return worker;
938
939 return NULL;
4d707b9f
ON
940}
941
bf4ede01
TH
942/**
943 * move_linked_works - move linked works to a list
944 * @work: start of series of works to be scheduled
945 * @head: target list to append @work to
946 * @nextp: out paramter for nested worklist walking
947 *
948 * Schedule linked works starting from @work to @head. Work series to
949 * be scheduled starts at @work and includes any consecutive work with
950 * WORK_STRUCT_LINKED set in its predecessor.
951 *
952 * If @nextp is not NULL, it's updated to point to the next work of
953 * the last scheduled work. This allows move_linked_works() to be
954 * nested inside outer list_for_each_entry_safe().
955 *
956 * CONTEXT:
957 * spin_lock_irq(gcwq->lock).
958 */
959static void move_linked_works(struct work_struct *work, struct list_head *head,
960 struct work_struct **nextp)
961{
962 struct work_struct *n;
963
964 /*
965 * Linked worklist will always end before the end of the list,
966 * use NULL for list head.
967 */
968 list_for_each_entry_safe_from(work, n, NULL, entry) {
969 list_move_tail(&work->entry, head);
970 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
971 break;
972 }
973
974 /*
975 * If we're already inside safe list traversal and have moved
976 * multiple works to the scheduled queue, the next position
977 * needs to be updated.
978 */
979 if (nextp)
980 *nextp = n;
981}
982
3aa62497 983static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 984{
3aa62497 985 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
986
987 trace_workqueue_activate_work(work);
988 move_linked_works(work, &cwq->pool->worklist, NULL);
989 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
990 cwq->nr_active++;
991}
992
3aa62497
LJ
993static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
994{
995 struct work_struct *work = list_first_entry(&cwq->delayed_works,
996 struct work_struct, entry);
997
998 cwq_activate_delayed_work(work);
999}
1000
bf4ede01
TH
1001/**
1002 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1003 * @cwq: cwq of interest
1004 * @color: color of work which left the queue
bf4ede01
TH
1005 *
1006 * A work either has completed or is removed from pending queue,
1007 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1008 *
1009 * CONTEXT:
1010 * spin_lock_irq(gcwq->lock).
1011 */
b3f9f405 1012static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1013{
1014 /* ignore uncolored works */
1015 if (color == WORK_NO_COLOR)
1016 return;
1017
1018 cwq->nr_in_flight[color]--;
1019
b3f9f405
LJ
1020 cwq->nr_active--;
1021 if (!list_empty(&cwq->delayed_works)) {
1022 /* one down, submit a delayed one */
1023 if (cwq->nr_active < cwq->max_active)
1024 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1025 }
1026
1027 /* is flush in progress and are we at the flushing tip? */
1028 if (likely(cwq->flush_color != color))
1029 return;
1030
1031 /* are there still in-flight works? */
1032 if (cwq->nr_in_flight[color])
1033 return;
1034
1035 /* this cwq is done, clear flush_color */
1036 cwq->flush_color = -1;
1037
1038 /*
1039 * If this was the last cwq, wake up the first flusher. It
1040 * will handle the rest.
1041 */
1042 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1043 complete(&cwq->wq->first_flusher->done);
1044}
1045
36e227d2 1046/**
bbb68dfa 1047 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1048 * @work: work item to steal
1049 * @is_dwork: @work is a delayed_work
bbb68dfa 1050 * @flags: place to store irq state
36e227d2
TH
1051 *
1052 * Try to grab PENDING bit of @work. This function can handle @work in any
1053 * stable state - idle, on timer or on worklist. Return values are
1054 *
1055 * 1 if @work was pending and we successfully stole PENDING
1056 * 0 if @work was idle and we claimed PENDING
1057 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1058 * -ENOENT if someone else is canceling @work, this state may persist
1059 * for arbitrarily long
36e227d2 1060 *
bbb68dfa 1061 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1062 * interrupted while holding PENDING and @work off queue, irq must be
1063 * disabled on entry. This, combined with delayed_work->timer being
1064 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1065 *
1066 * On successful return, >= 0, irq is disabled and the caller is
1067 * responsible for releasing it using local_irq_restore(*@flags).
1068 *
e0aecdd8 1069 * This function is safe to call from any context including IRQ handler.
bf4ede01 1070 */
bbb68dfa
TH
1071static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1072 unsigned long *flags)
bf4ede01
TH
1073{
1074 struct global_cwq *gcwq;
bf4ede01 1075
bbb68dfa
TH
1076 local_irq_save(*flags);
1077
36e227d2
TH
1078 /* try to steal the timer if it exists */
1079 if (is_dwork) {
1080 struct delayed_work *dwork = to_delayed_work(work);
1081
e0aecdd8
TH
1082 /*
1083 * dwork->timer is irqsafe. If del_timer() fails, it's
1084 * guaranteed that the timer is not queued anywhere and not
1085 * running on the local CPU.
1086 */
36e227d2
TH
1087 if (likely(del_timer(&dwork->timer)))
1088 return 1;
1089 }
1090
1091 /* try to claim PENDING the normal way */
bf4ede01
TH
1092 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1093 return 0;
1094
1095 /*
1096 * The queueing is in progress, or it is already queued. Try to
1097 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1098 */
1099 gcwq = get_work_gcwq(work);
1100 if (!gcwq)
bbb68dfa 1101 goto fail;
bf4ede01 1102
bbb68dfa 1103 spin_lock(&gcwq->lock);
bf4ede01
TH
1104 if (!list_empty(&work->entry)) {
1105 /*
1106 * This work is queued, but perhaps we locked the wrong gcwq.
1107 * In that case we must see the new value after rmb(), see
1108 * insert_work()->wmb().
1109 */
1110 smp_rmb();
1111 if (gcwq == get_work_gcwq(work)) {
1112 debug_work_deactivate(work);
3aa62497
LJ
1113
1114 /*
1115 * A delayed work item cannot be grabbed directly
1116 * because it might have linked NO_COLOR work items
1117 * which, if left on the delayed_list, will confuse
1118 * cwq->nr_active management later on and cause
1119 * stall. Make sure the work item is activated
1120 * before grabbing.
1121 */
1122 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1123 cwq_activate_delayed_work(work);
1124
bf4ede01
TH
1125 list_del_init(&work->entry);
1126 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1127 get_work_color(work));
36e227d2 1128
bbb68dfa 1129 spin_unlock(&gcwq->lock);
36e227d2 1130 return 1;
bf4ede01
TH
1131 }
1132 }
bbb68dfa
TH
1133 spin_unlock(&gcwq->lock);
1134fail:
1135 local_irq_restore(*flags);
1136 if (work_is_canceling(work))
1137 return -ENOENT;
1138 cpu_relax();
36e227d2 1139 return -EAGAIN;
bf4ede01
TH
1140}
1141
4690c4ab 1142/**
7e11629d 1143 * insert_work - insert a work into gcwq
4690c4ab
TH
1144 * @cwq: cwq @work belongs to
1145 * @work: work to insert
1146 * @head: insertion point
1147 * @extra_flags: extra WORK_STRUCT_* flags to set
1148 *
7e11629d
TH
1149 * Insert @work which belongs to @cwq into @gcwq after @head.
1150 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1151 *
1152 * CONTEXT:
8b03ae3c 1153 * spin_lock_irq(gcwq->lock).
4690c4ab 1154 */
b89deed3 1155static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1156 struct work_struct *work, struct list_head *head,
1157 unsigned int extra_flags)
b89deed3 1158{
63d95a91 1159 struct worker_pool *pool = cwq->pool;
e22bee78 1160
4690c4ab 1161 /* we own @work, set data and link */
7a22ad75 1162 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1163
6e84d644
ON
1164 /*
1165 * Ensure that we get the right work->data if we see the
1166 * result of list_add() below, see try_to_grab_pending().
1167 */
1168 smp_wmb();
4690c4ab 1169
1a4d9b0a 1170 list_add_tail(&work->entry, head);
e22bee78
TH
1171
1172 /*
1173 * Ensure either worker_sched_deactivated() sees the above
1174 * list_add_tail() or we see zero nr_running to avoid workers
1175 * lying around lazily while there are works to be processed.
1176 */
1177 smp_mb();
1178
63d95a91
TH
1179 if (__need_more_worker(pool))
1180 wake_up_worker(pool);
b89deed3
ON
1181}
1182
c8efcc25
TH
1183/*
1184 * Test whether @work is being queued from another work executing on the
1185 * same workqueue. This is rather expensive and should only be used from
1186 * cold paths.
1187 */
1188static bool is_chained_work(struct workqueue_struct *wq)
1189{
1190 unsigned long flags;
1191 unsigned int cpu;
1192
1193 for_each_gcwq_cpu(cpu) {
c9e7cf27
TH
1194 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1195 struct worker_pool *pool = cwq->pool;
1196 struct global_cwq *gcwq = pool->gcwq;
c8efcc25
TH
1197 struct worker *worker;
1198 struct hlist_node *pos;
1199 int i;
1200
1201 spin_lock_irqsave(&gcwq->lock, flags);
c9e7cf27 1202 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1203 if (worker->task != current)
1204 continue;
1205 spin_unlock_irqrestore(&gcwq->lock, flags);
1206 /*
1207 * I'm @worker, no locking necessary. See if @work
1208 * is headed to the same workqueue.
1209 */
1210 return worker->current_cwq->wq == wq;
1211 }
1212 spin_unlock_irqrestore(&gcwq->lock, flags);
1213 }
1214 return false;
1215}
1216
4690c4ab 1217static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1218 struct work_struct *work)
1219{
502ca9d8
TH
1220 struct global_cwq *gcwq;
1221 struct cpu_workqueue_struct *cwq;
1e19ffc6 1222 struct list_head *worklist;
8a2e8e5d 1223 unsigned int work_flags;
b75cac93 1224 unsigned int req_cpu = cpu;
8930caba
TH
1225
1226 /*
1227 * While a work item is PENDING && off queue, a task trying to
1228 * steal the PENDING will busy-loop waiting for it to either get
1229 * queued or lose PENDING. Grabbing PENDING and queueing should
1230 * happen with IRQ disabled.
1231 */
1232 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1233
dc186ad7 1234 debug_work_activate(work);
1e19ffc6 1235
c8efcc25 1236 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1237 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1238 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1239 return;
1240
c7fc77f7
TH
1241 /* determine gcwq to use */
1242 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1243 struct worker_pool *last_pool;
18aa9eff 1244
57469821 1245 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1246 cpu = raw_smp_processor_id();
1247
18aa9eff 1248 /*
dbf2576e
TH
1249 * It's multi cpu. If @work was previously on a different
1250 * cpu, it might still be running there, in which case the
1251 * work needs to be queued on that cpu to guarantee
1252 * non-reentrancy.
18aa9eff 1253 */
502ca9d8 1254 gcwq = get_gcwq(cpu);
c9e7cf27 1255 last_pool = get_work_pool(work);
dbf2576e 1256
c9e7cf27
TH
1257 if (last_pool && last_pool->gcwq != gcwq) {
1258 struct global_cwq *last_gcwq = last_pool->gcwq;
18aa9eff
TH
1259 struct worker *worker;
1260
8930caba 1261 spin_lock(&last_gcwq->lock);
18aa9eff 1262
c9e7cf27 1263 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1264
1265 if (worker && worker->current_cwq->wq == wq)
1266 gcwq = last_gcwq;
1267 else {
1268 /* meh... not running there, queue here */
8930caba
TH
1269 spin_unlock(&last_gcwq->lock);
1270 spin_lock(&gcwq->lock);
18aa9eff 1271 }
8930caba
TH
1272 } else {
1273 spin_lock(&gcwq->lock);
1274 }
f3421797
TH
1275 } else {
1276 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1277 spin_lock(&gcwq->lock);
502ca9d8
TH
1278 }
1279
1280 /* gcwq determined, get cwq and queue */
1281 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1282 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1283
f5b2552b 1284 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1285 spin_unlock(&gcwq->lock);
f5b2552b
DC
1286 return;
1287 }
1e19ffc6 1288
73f53c4a 1289 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1290 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1291
1292 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1293 trace_workqueue_activate_work(work);
1e19ffc6 1294 cwq->nr_active++;
3270476a 1295 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1296 } else {
1297 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1298 worklist = &cwq->delayed_works;
8a2e8e5d 1299 }
1e19ffc6 1300
8a2e8e5d 1301 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1302
8930caba 1303 spin_unlock(&gcwq->lock);
1da177e4
LT
1304}
1305
0fcb78c2 1306/**
c1a220e7
ZR
1307 * queue_work_on - queue work on specific cpu
1308 * @cpu: CPU number to execute work on
0fcb78c2
REB
1309 * @wq: workqueue to use
1310 * @work: work to queue
1311 *
d4283e93 1312 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1313 *
c1a220e7
ZR
1314 * We queue the work to a specific CPU, the caller must ensure it
1315 * can't go away.
1da177e4 1316 */
d4283e93
TH
1317bool queue_work_on(int cpu, struct workqueue_struct *wq,
1318 struct work_struct *work)
1da177e4 1319{
d4283e93 1320 bool ret = false;
8930caba 1321 unsigned long flags;
ef1ca236 1322
8930caba 1323 local_irq_save(flags);
c1a220e7 1324
22df02bb 1325 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1326 __queue_work(cpu, wq, work);
d4283e93 1327 ret = true;
c1a220e7 1328 }
ef1ca236 1329
8930caba 1330 local_irq_restore(flags);
1da177e4
LT
1331 return ret;
1332}
c1a220e7 1333EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1334
c1a220e7 1335/**
0a13c00e 1336 * queue_work - queue work on a workqueue
c1a220e7
ZR
1337 * @wq: workqueue to use
1338 * @work: work to queue
1339 *
d4283e93 1340 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1341 *
0a13c00e
TH
1342 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1343 * it can be processed by another CPU.
c1a220e7 1344 */
d4283e93 1345bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1346{
57469821 1347 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1348}
0a13c00e 1349EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1350
d8e794df 1351void delayed_work_timer_fn(unsigned long __data)
1da177e4 1352{
52bad64d 1353 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1354 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1355
e0aecdd8 1356 /* should have been called from irqsafe timer with irq already off */
1265057f 1357 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1358}
d8e794df 1359EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1360
7beb2edf
TH
1361static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1362 struct delayed_work *dwork, unsigned long delay)
1da177e4 1363{
7beb2edf
TH
1364 struct timer_list *timer = &dwork->timer;
1365 struct work_struct *work = &dwork->work;
1366 unsigned int lcpu;
1367
1368 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1369 timer->data != (unsigned long)dwork);
fc4b514f
TH
1370 WARN_ON_ONCE(timer_pending(timer));
1371 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1372
8852aac2
TH
1373 /*
1374 * If @delay is 0, queue @dwork->work immediately. This is for
1375 * both optimization and correctness. The earliest @timer can
1376 * expire is on the closest next tick and delayed_work users depend
1377 * on that there's no such delay when @delay is 0.
1378 */
1379 if (!delay) {
1380 __queue_work(cpu, wq, &dwork->work);
1381 return;
1382 }
1383
7beb2edf 1384 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1385
7beb2edf
TH
1386 /*
1387 * This stores cwq for the moment, for the timer_fn. Note that the
1388 * work's gcwq is preserved to allow reentrance detection for
1389 * delayed works.
1390 */
1391 if (!(wq->flags & WQ_UNBOUND)) {
1392 struct global_cwq *gcwq = get_work_gcwq(work);
1393
e42986de
JK
1394 /*
1395 * If we cannot get the last gcwq from @work directly,
1396 * select the last CPU such that it avoids unnecessarily
1397 * triggering non-reentrancy check in __queue_work().
1398 */
1399 lcpu = cpu;
1400 if (gcwq)
7beb2edf 1401 lcpu = gcwq->cpu;
e42986de 1402 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1403 lcpu = raw_smp_processor_id();
1404 } else {
1405 lcpu = WORK_CPU_UNBOUND;
1406 }
1407
1408 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1409
1265057f 1410 dwork->cpu = cpu;
7beb2edf
TH
1411 timer->expires = jiffies + delay;
1412
1413 if (unlikely(cpu != WORK_CPU_UNBOUND))
1414 add_timer_on(timer, cpu);
1415 else
1416 add_timer(timer);
1da177e4
LT
1417}
1418
0fcb78c2
REB
1419/**
1420 * queue_delayed_work_on - queue work on specific CPU after delay
1421 * @cpu: CPU number to execute work on
1422 * @wq: workqueue to use
af9997e4 1423 * @dwork: work to queue
0fcb78c2
REB
1424 * @delay: number of jiffies to wait before queueing
1425 *
715f1300
TH
1426 * Returns %false if @work was already on a queue, %true otherwise. If
1427 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1428 * execution.
0fcb78c2 1429 */
d4283e93
TH
1430bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1431 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1432{
52bad64d 1433 struct work_struct *work = &dwork->work;
d4283e93 1434 bool ret = false;
8930caba 1435 unsigned long flags;
7a6bc1cd 1436
8930caba
TH
1437 /* read the comment in __queue_work() */
1438 local_irq_save(flags);
7a6bc1cd 1439
22df02bb 1440 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1441 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1442 ret = true;
7a6bc1cd 1443 }
8a3e77cc 1444
8930caba 1445 local_irq_restore(flags);
7a6bc1cd
VP
1446 return ret;
1447}
ae90dd5d 1448EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1449
0a13c00e
TH
1450/**
1451 * queue_delayed_work - queue work on a workqueue after delay
1452 * @wq: workqueue to use
1453 * @dwork: delayable work to queue
1454 * @delay: number of jiffies to wait before queueing
1455 *
715f1300 1456 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1457 */
d4283e93 1458bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1459 struct delayed_work *dwork, unsigned long delay)
1460{
57469821 1461 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1462}
1463EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1464
8376fe22
TH
1465/**
1466 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1467 * @cpu: CPU number to execute work on
1468 * @wq: workqueue to use
1469 * @dwork: work to queue
1470 * @delay: number of jiffies to wait before queueing
1471 *
1472 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1473 * modify @dwork's timer so that it expires after @delay. If @delay is
1474 * zero, @work is guaranteed to be scheduled immediately regardless of its
1475 * current state.
1476 *
1477 * Returns %false if @dwork was idle and queued, %true if @dwork was
1478 * pending and its timer was modified.
1479 *
e0aecdd8 1480 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1481 * See try_to_grab_pending() for details.
1482 */
1483bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1484 struct delayed_work *dwork, unsigned long delay)
1485{
1486 unsigned long flags;
1487 int ret;
c7fc77f7 1488
8376fe22
TH
1489 do {
1490 ret = try_to_grab_pending(&dwork->work, true, &flags);
1491 } while (unlikely(ret == -EAGAIN));
63bc0362 1492
8376fe22
TH
1493 if (likely(ret >= 0)) {
1494 __queue_delayed_work(cpu, wq, dwork, delay);
1495 local_irq_restore(flags);
7a6bc1cd 1496 }
8376fe22
TH
1497
1498 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1499 return ret;
1500}
8376fe22
TH
1501EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1502
1503/**
1504 * mod_delayed_work - modify delay of or queue a delayed work
1505 * @wq: workqueue to use
1506 * @dwork: work to queue
1507 * @delay: number of jiffies to wait before queueing
1508 *
1509 * mod_delayed_work_on() on local CPU.
1510 */
1511bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1512 unsigned long delay)
1513{
1514 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1515}
1516EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1517
c8e55f36
TH
1518/**
1519 * worker_enter_idle - enter idle state
1520 * @worker: worker which is entering idle state
1521 *
1522 * @worker is entering idle state. Update stats and idle timer if
1523 * necessary.
1524 *
1525 * LOCKING:
1526 * spin_lock_irq(gcwq->lock).
1527 */
1528static void worker_enter_idle(struct worker *worker)
1da177e4 1529{
bd7bdd43 1530 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1531
1532 BUG_ON(worker->flags & WORKER_IDLE);
1533 BUG_ON(!list_empty(&worker->entry) &&
1534 (worker->hentry.next || worker->hentry.pprev));
1535
cb444766
TH
1536 /* can't use worker_set_flags(), also called from start_worker() */
1537 worker->flags |= WORKER_IDLE;
bd7bdd43 1538 pool->nr_idle++;
e22bee78 1539 worker->last_active = jiffies;
c8e55f36
TH
1540
1541 /* idle_list is LIFO */
bd7bdd43 1542 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1543
628c78e7
TH
1544 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1545 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1546
544ecf31 1547 /*
628c78e7
TH
1548 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1549 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1550 * nr_running, the warning may trigger spuriously. Check iff
1551 * unbind is not in progress.
544ecf31 1552 */
24647570 1553 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1554 pool->nr_workers == pool->nr_idle &&
63d95a91 1555 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1556}
1557
1558/**
1559 * worker_leave_idle - leave idle state
1560 * @worker: worker which is leaving idle state
1561 *
1562 * @worker is leaving idle state. Update stats.
1563 *
1564 * LOCKING:
1565 * spin_lock_irq(gcwq->lock).
1566 */
1567static void worker_leave_idle(struct worker *worker)
1568{
bd7bdd43 1569 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1570
1571 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1572 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1573 pool->nr_idle--;
c8e55f36
TH
1574 list_del_init(&worker->entry);
1575}
1576
e22bee78
TH
1577/**
1578 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1579 * @worker: self
1580 *
1581 * Works which are scheduled while the cpu is online must at least be
1582 * scheduled to a worker which is bound to the cpu so that if they are
1583 * flushed from cpu callbacks while cpu is going down, they are
1584 * guaranteed to execute on the cpu.
1585 *
1586 * This function is to be used by rogue workers and rescuers to bind
1587 * themselves to the target cpu and may race with cpu going down or
1588 * coming online. kthread_bind() can't be used because it may put the
1589 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1590 * verbatim as it's best effort and blocking and gcwq may be
1591 * [dis]associated in the meantime.
1592 *
f2d5a0ee 1593 * This function tries set_cpus_allowed() and locks gcwq and verifies the
24647570 1594 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1595 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1596 * enters idle state or fetches works without dropping lock, it can
1597 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1598 *
1599 * CONTEXT:
1600 * Might sleep. Called without any lock but returns with gcwq->lock
1601 * held.
1602 *
1603 * RETURNS:
1604 * %true if the associated gcwq is online (@worker is successfully
1605 * bound), %false if offline.
1606 */
1607static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1608__acquires(&gcwq->lock)
e22bee78 1609{
24647570
TH
1610 struct worker_pool *pool = worker->pool;
1611 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1612 struct task_struct *task = worker->task;
1613
1614 while (true) {
4e6045f1 1615 /*
e22bee78
TH
1616 * The following call may fail, succeed or succeed
1617 * without actually migrating the task to the cpu if
1618 * it races with cpu hotunplug operation. Verify
24647570 1619 * against POOL_DISASSOCIATED.
4e6045f1 1620 */
24647570 1621 if (!(pool->flags & POOL_DISASSOCIATED))
f3421797 1622 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1623
1624 spin_lock_irq(&gcwq->lock);
24647570 1625 if (pool->flags & POOL_DISASSOCIATED)
e22bee78
TH
1626 return false;
1627 if (task_cpu(task) == gcwq->cpu &&
1628 cpumask_equal(&current->cpus_allowed,
1629 get_cpu_mask(gcwq->cpu)))
1630 return true;
1631 spin_unlock_irq(&gcwq->lock);
1632
5035b20f
TH
1633 /*
1634 * We've raced with CPU hot[un]plug. Give it a breather
1635 * and retry migration. cond_resched() is required here;
1636 * otherwise, we might deadlock against cpu_stop trying to
1637 * bring down the CPU on non-preemptive kernel.
1638 */
e22bee78 1639 cpu_relax();
5035b20f 1640 cond_resched();
e22bee78
TH
1641 }
1642}
1643
25511a47 1644/*
ea1abd61 1645 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1646 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1647 */
1648static void idle_worker_rebind(struct worker *worker)
1649{
1650 struct global_cwq *gcwq = worker->pool->gcwq;
1651
5f7dabfd
LJ
1652 /* CPU may go down again inbetween, clear UNBOUND only on success */
1653 if (worker_maybe_bind_and_lock(worker))
1654 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1655
ea1abd61
LJ
1656 /* rebind complete, become available again */
1657 list_add(&worker->entry, &worker->pool->idle_list);
1658 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1659}
1660
e22bee78 1661/*
25511a47 1662 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1663 * the associated cpu which is coming back online. This is scheduled by
1664 * cpu up but can race with other cpu hotplug operations and may be
1665 * executed twice without intervening cpu down.
e22bee78 1666 */
25511a47 1667static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1668{
1669 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1670 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1671
eab6d828
LJ
1672 if (worker_maybe_bind_and_lock(worker))
1673 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1674
1675 spin_unlock_irq(&gcwq->lock);
1676}
1677
25511a47
TH
1678/**
1679 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1680 * @gcwq: gcwq of interest
1681 *
1682 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1683 * is different for idle and busy ones.
1684 *
ea1abd61
LJ
1685 * Idle ones will be removed from the idle_list and woken up. They will
1686 * add themselves back after completing rebind. This ensures that the
1687 * idle_list doesn't contain any unbound workers when re-bound busy workers
1688 * try to perform local wake-ups for concurrency management.
25511a47 1689 *
ea1abd61
LJ
1690 * Busy workers can rebind after they finish their current work items.
1691 * Queueing the rebind work item at the head of the scheduled list is
1692 * enough. Note that nr_running will be properly bumped as busy workers
1693 * rebind.
25511a47 1694 *
ea1abd61
LJ
1695 * On return, all non-manager workers are scheduled for rebind - see
1696 * manage_workers() for the manager special case. Any idle worker
1697 * including the manager will not appear on @idle_list until rebind is
1698 * complete, making local wake-ups safe.
25511a47
TH
1699 */
1700static void rebind_workers(struct global_cwq *gcwq)
25511a47 1701{
25511a47 1702 struct worker_pool *pool;
ea1abd61 1703 struct worker *worker, *n;
25511a47
TH
1704 struct hlist_node *pos;
1705 int i;
1706
1707 lockdep_assert_held(&gcwq->lock);
1708
1709 for_each_worker_pool(pool, gcwq)
b2eb83d1 1710 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1711
5f7dabfd 1712 /* dequeue and kick idle ones */
25511a47 1713 for_each_worker_pool(pool, gcwq) {
ea1abd61 1714 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1715 /*
1716 * idle workers should be off @pool->idle_list
1717 * until rebind is complete to avoid receiving
1718 * premature local wake-ups.
1719 */
1720 list_del_init(&worker->entry);
25511a47 1721
5f7dabfd
LJ
1722 /*
1723 * worker_thread() will see the above dequeuing
1724 * and call idle_worker_rebind().
1725 */
25511a47
TH
1726 wake_up_process(worker->task);
1727 }
25511a47 1728
c9e7cf27
TH
1729 /* rebind busy workers */
1730 for_each_busy_worker(worker, i, pos, pool) {
1731 struct work_struct *rebind_work = &worker->rebind_work;
1732 struct workqueue_struct *wq;
25511a47 1733
c9e7cf27
TH
1734 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1735 work_data_bits(rebind_work)))
1736 continue;
25511a47 1737
c9e7cf27 1738 debug_work_activate(rebind_work);
90beca5d 1739
c9e7cf27
TH
1740 /*
1741 * wq doesn't really matter but let's keep
1742 * @worker->pool and @cwq->pool consistent for
1743 * sanity.
1744 */
1745 if (std_worker_pool_pri(worker->pool))
1746 wq = system_highpri_wq;
1747 else
1748 wq = system_wq;
1749
1750 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1751 worker->scheduled.next,
1752 work_color_to_flags(WORK_NO_COLOR));
1753 }
ec58815a 1754 }
25511a47
TH
1755}
1756
c34056a3
TH
1757static struct worker *alloc_worker(void)
1758{
1759 struct worker *worker;
1760
1761 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1762 if (worker) {
1763 INIT_LIST_HEAD(&worker->entry);
affee4b2 1764 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1765 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1766 /* on creation a worker is in !idle && prep state */
1767 worker->flags = WORKER_PREP;
c8e55f36 1768 }
c34056a3
TH
1769 return worker;
1770}
1771
1772/**
1773 * create_worker - create a new workqueue worker
63d95a91 1774 * @pool: pool the new worker will belong to
c34056a3 1775 *
63d95a91 1776 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1777 * can be started by calling start_worker() or destroyed using
1778 * destroy_worker().
1779 *
1780 * CONTEXT:
1781 * Might sleep. Does GFP_KERNEL allocations.
1782 *
1783 * RETURNS:
1784 * Pointer to the newly created worker.
1785 */
bc2ae0f5 1786static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1787{
63d95a91 1788 struct global_cwq *gcwq = pool->gcwq;
e34cdddb 1789 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1790 struct worker *worker = NULL;
f3421797 1791 int id = -1;
c34056a3 1792
8b03ae3c 1793 spin_lock_irq(&gcwq->lock);
bd7bdd43 1794 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1795 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1796 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1797 goto fail;
8b03ae3c 1798 spin_lock_irq(&gcwq->lock);
c34056a3 1799 }
8b03ae3c 1800 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1801
1802 worker = alloc_worker();
1803 if (!worker)
1804 goto fail;
1805
bd7bdd43 1806 worker->pool = pool;
c34056a3
TH
1807 worker->id = id;
1808
bc2ae0f5 1809 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1810 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1811 worker, cpu_to_node(gcwq->cpu),
1812 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1813 else
1814 worker->task = kthread_create(worker_thread, worker,
3270476a 1815 "kworker/u:%d%s", id, pri);
c34056a3
TH
1816 if (IS_ERR(worker->task))
1817 goto fail;
1818
e34cdddb 1819 if (std_worker_pool_pri(pool))
3270476a
TH
1820 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1821
db7bccf4 1822 /*
bc2ae0f5 1823 * Determine CPU binding of the new worker depending on
24647570 1824 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1825 * flag remains stable across this function. See the comments
1826 * above the flag definition for details.
1827 *
1828 * As an unbound worker may later become a regular one if CPU comes
1829 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1830 */
24647570 1831 if (!(pool->flags & POOL_DISASSOCIATED)) {
8b03ae3c 1832 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1833 } else {
db7bccf4 1834 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1835 worker->flags |= WORKER_UNBOUND;
f3421797 1836 }
c34056a3
TH
1837
1838 return worker;
1839fail:
1840 if (id >= 0) {
8b03ae3c 1841 spin_lock_irq(&gcwq->lock);
bd7bdd43 1842 ida_remove(&pool->worker_ida, id);
8b03ae3c 1843 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1844 }
1845 kfree(worker);
1846 return NULL;
1847}
1848
1849/**
1850 * start_worker - start a newly created worker
1851 * @worker: worker to start
1852 *
c8e55f36 1853 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1854 *
1855 * CONTEXT:
8b03ae3c 1856 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1857 */
1858static void start_worker(struct worker *worker)
1859{
cb444766 1860 worker->flags |= WORKER_STARTED;
bd7bdd43 1861 worker->pool->nr_workers++;
c8e55f36 1862 worker_enter_idle(worker);
c34056a3
TH
1863 wake_up_process(worker->task);
1864}
1865
1866/**
1867 * destroy_worker - destroy a workqueue worker
1868 * @worker: worker to be destroyed
1869 *
c8e55f36
TH
1870 * Destroy @worker and adjust @gcwq stats accordingly.
1871 *
1872 * CONTEXT:
1873 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1874 */
1875static void destroy_worker(struct worker *worker)
1876{
bd7bdd43
TH
1877 struct worker_pool *pool = worker->pool;
1878 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1879 int id = worker->id;
1880
1881 /* sanity check frenzy */
1882 BUG_ON(worker->current_work);
affee4b2 1883 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1884
c8e55f36 1885 if (worker->flags & WORKER_STARTED)
bd7bdd43 1886 pool->nr_workers--;
c8e55f36 1887 if (worker->flags & WORKER_IDLE)
bd7bdd43 1888 pool->nr_idle--;
c8e55f36
TH
1889
1890 list_del_init(&worker->entry);
cb444766 1891 worker->flags |= WORKER_DIE;
c8e55f36
TH
1892
1893 spin_unlock_irq(&gcwq->lock);
1894
c34056a3
TH
1895 kthread_stop(worker->task);
1896 kfree(worker);
1897
8b03ae3c 1898 spin_lock_irq(&gcwq->lock);
bd7bdd43 1899 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1900}
1901
63d95a91 1902static void idle_worker_timeout(unsigned long __pool)
e22bee78 1903{
63d95a91
TH
1904 struct worker_pool *pool = (void *)__pool;
1905 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1906
1907 spin_lock_irq(&gcwq->lock);
1908
63d95a91 1909 if (too_many_workers(pool)) {
e22bee78
TH
1910 struct worker *worker;
1911 unsigned long expires;
1912
1913 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1914 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1915 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1916
1917 if (time_before(jiffies, expires))
63d95a91 1918 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1919 else {
1920 /* it's been idle for too long, wake up manager */
11ebea50 1921 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1922 wake_up_worker(pool);
d5abe669 1923 }
e22bee78
TH
1924 }
1925
1926 spin_unlock_irq(&gcwq->lock);
1927}
d5abe669 1928
e22bee78
TH
1929static bool send_mayday(struct work_struct *work)
1930{
1931 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1932 struct workqueue_struct *wq = cwq->wq;
f3421797 1933 unsigned int cpu;
e22bee78
TH
1934
1935 if (!(wq->flags & WQ_RESCUER))
1936 return false;
1937
1938 /* mayday mayday mayday */
bd7bdd43 1939 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1940 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1941 if (cpu == WORK_CPU_UNBOUND)
1942 cpu = 0;
f2e005aa 1943 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1944 wake_up_process(wq->rescuer->task);
1945 return true;
1946}
1947
63d95a91 1948static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1949{
63d95a91
TH
1950 struct worker_pool *pool = (void *)__pool;
1951 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1952 struct work_struct *work;
1953
1954 spin_lock_irq(&gcwq->lock);
1955
63d95a91 1956 if (need_to_create_worker(pool)) {
e22bee78
TH
1957 /*
1958 * We've been trying to create a new worker but
1959 * haven't been successful. We might be hitting an
1960 * allocation deadlock. Send distress signals to
1961 * rescuers.
1962 */
63d95a91 1963 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1964 send_mayday(work);
1da177e4 1965 }
e22bee78
TH
1966
1967 spin_unlock_irq(&gcwq->lock);
1968
63d95a91 1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1970}
1971
e22bee78
TH
1972/**
1973 * maybe_create_worker - create a new worker if necessary
63d95a91 1974 * @pool: pool to create a new worker for
e22bee78 1975 *
63d95a91 1976 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1977 * have at least one idle worker on return from this function. If
1978 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1979 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1980 * possible allocation deadlock.
1981 *
1982 * On return, need_to_create_worker() is guaranteed to be false and
1983 * may_start_working() true.
1984 *
1985 * LOCKING:
1986 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1987 * multiple times. Does GFP_KERNEL allocations. Called only from
1988 * manager.
1989 *
1990 * RETURNS:
1991 * false if no action was taken and gcwq->lock stayed locked, true
1992 * otherwise.
1993 */
63d95a91 1994static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1995__releases(&gcwq->lock)
1996__acquires(&gcwq->lock)
1da177e4 1997{
63d95a91
TH
1998 struct global_cwq *gcwq = pool->gcwq;
1999
2000 if (!need_to_create_worker(pool))
e22bee78
TH
2001 return false;
2002restart:
9f9c2364
TH
2003 spin_unlock_irq(&gcwq->lock);
2004
e22bee78 2005 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2006 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2007
2008 while (true) {
2009 struct worker *worker;
2010
bc2ae0f5 2011 worker = create_worker(pool);
e22bee78 2012 if (worker) {
63d95a91 2013 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2014 spin_lock_irq(&gcwq->lock);
2015 start_worker(worker);
63d95a91 2016 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2017 return true;
2018 }
2019
63d95a91 2020 if (!need_to_create_worker(pool))
e22bee78 2021 break;
1da177e4 2022
e22bee78
TH
2023 __set_current_state(TASK_INTERRUPTIBLE);
2024 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2025
63d95a91 2026 if (!need_to_create_worker(pool))
e22bee78
TH
2027 break;
2028 }
2029
63d95a91 2030 del_timer_sync(&pool->mayday_timer);
e22bee78 2031 spin_lock_irq(&gcwq->lock);
63d95a91 2032 if (need_to_create_worker(pool))
e22bee78
TH
2033 goto restart;
2034 return true;
2035}
2036
2037/**
2038 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2039 * @pool: pool to destroy workers for
e22bee78 2040 *
63d95a91 2041 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2042 * IDLE_WORKER_TIMEOUT.
2043 *
2044 * LOCKING:
2045 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2046 * multiple times. Called only from manager.
2047 *
2048 * RETURNS:
2049 * false if no action was taken and gcwq->lock stayed locked, true
2050 * otherwise.
2051 */
63d95a91 2052static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2053{
2054 bool ret = false;
1da177e4 2055
63d95a91 2056 while (too_many_workers(pool)) {
e22bee78
TH
2057 struct worker *worker;
2058 unsigned long expires;
3af24433 2059
63d95a91 2060 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2061 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2062
e22bee78 2063 if (time_before(jiffies, expires)) {
63d95a91 2064 mod_timer(&pool->idle_timer, expires);
3af24433 2065 break;
e22bee78 2066 }
1da177e4 2067
e22bee78
TH
2068 destroy_worker(worker);
2069 ret = true;
1da177e4 2070 }
1e19ffc6 2071
e22bee78 2072 return ret;
1e19ffc6
TH
2073}
2074
73f53c4a 2075/**
e22bee78
TH
2076 * manage_workers - manage worker pool
2077 * @worker: self
73f53c4a 2078 *
e22bee78
TH
2079 * Assume the manager role and manage gcwq worker pool @worker belongs
2080 * to. At any given time, there can be only zero or one manager per
2081 * gcwq. The exclusion is handled automatically by this function.
2082 *
2083 * The caller can safely start processing works on false return. On
2084 * true return, it's guaranteed that need_to_create_worker() is false
2085 * and may_start_working() is true.
73f53c4a
TH
2086 *
2087 * CONTEXT:
e22bee78
TH
2088 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2089 * multiple times. Does GFP_KERNEL allocations.
2090 *
2091 * RETURNS:
2092 * false if no action was taken and gcwq->lock stayed locked, true if
2093 * some action was taken.
73f53c4a 2094 */
e22bee78 2095static bool manage_workers(struct worker *worker)
73f53c4a 2096{
63d95a91 2097 struct worker_pool *pool = worker->pool;
e22bee78 2098 bool ret = false;
73f53c4a 2099
ee378aa4 2100 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2101 return ret;
1e19ffc6 2102
552a37e9 2103 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2104
ee378aa4
LJ
2105 /*
2106 * To simplify both worker management and CPU hotplug, hold off
2107 * management while hotplug is in progress. CPU hotplug path can't
2108 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2109 * lead to idle worker depletion (all become busy thinking someone
2110 * else is managing) which in turn can result in deadlock under
b2eb83d1 2111 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2112 * manager against CPU hotplug.
2113 *
b2eb83d1 2114 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2115 * progress. trylock first without dropping @gcwq->lock.
2116 */
b2eb83d1 2117 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2118 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2119 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2120 /*
2121 * CPU hotplug could have happened while we were waiting
b2eb83d1 2122 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2123 * because manager isn't either on idle or busy list, and
2124 * @gcwq's state and ours could have deviated.
2125 *
b2eb83d1 2126 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2127 * simply try to bind. It will succeed or fail depending
2128 * on @gcwq's current state. Try it and adjust
2129 * %WORKER_UNBOUND accordingly.
2130 */
2131 if (worker_maybe_bind_and_lock(worker))
2132 worker->flags &= ~WORKER_UNBOUND;
2133 else
2134 worker->flags |= WORKER_UNBOUND;
73f53c4a 2135
ee378aa4
LJ
2136 ret = true;
2137 }
73f53c4a 2138
11ebea50 2139 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2140
2141 /*
e22bee78
TH
2142 * Destroy and then create so that may_start_working() is true
2143 * on return.
73f53c4a 2144 */
63d95a91
TH
2145 ret |= maybe_destroy_workers(pool);
2146 ret |= maybe_create_worker(pool);
e22bee78 2147
552a37e9 2148 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2149 mutex_unlock(&pool->assoc_mutex);
e22bee78 2150 return ret;
73f53c4a
TH
2151}
2152
a62428c0
TH
2153/**
2154 * process_one_work - process single work
c34056a3 2155 * @worker: self
a62428c0
TH
2156 * @work: work to process
2157 *
2158 * Process @work. This function contains all the logics necessary to
2159 * process a single work including synchronization against and
2160 * interaction with other workers on the same cpu, queueing and
2161 * flushing. As long as context requirement is met, any worker can
2162 * call this function to process a work.
2163 *
2164 * CONTEXT:
8b03ae3c 2165 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2166 */
c34056a3 2167static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2168__releases(&gcwq->lock)
2169__acquires(&gcwq->lock)
a62428c0 2170{
7e11629d 2171 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2172 struct worker_pool *pool = worker->pool;
2173 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2174 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2175 int work_color;
7e11629d 2176 struct worker *collision;
a62428c0
TH
2177#ifdef CONFIG_LOCKDEP
2178 /*
2179 * It is permissible to free the struct work_struct from
2180 * inside the function that is called from it, this we need to
2181 * take into account for lockdep too. To avoid bogus "held
2182 * lock freed" warnings as well as problems when looking into
2183 * work->lockdep_map, make a copy and use that here.
2184 */
4d82a1de
PZ
2185 struct lockdep_map lockdep_map;
2186
2187 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2188#endif
6fec10a1
TH
2189 /*
2190 * Ensure we're on the correct CPU. DISASSOCIATED test is
2191 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2192 * unbound or a disassociated pool.
6fec10a1 2193 */
5f7dabfd 2194 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2195 !(pool->flags & POOL_DISASSOCIATED) &&
25511a47
TH
2196 raw_smp_processor_id() != gcwq->cpu);
2197
7e11629d
TH
2198 /*
2199 * A single work shouldn't be executed concurrently by
2200 * multiple workers on a single cpu. Check whether anyone is
2201 * already processing the work. If so, defer the work to the
2202 * currently executing one.
2203 */
c9e7cf27 2204 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2205 if (unlikely(collision)) {
2206 move_linked_works(work, &collision->scheduled, NULL);
2207 return;
2208 }
2209
8930caba 2210 /* claim and dequeue */
a62428c0 2211 debug_work_deactivate(work);
c9e7cf27 2212 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2213 worker->current_work = work;
a2c1c57b 2214 worker->current_func = work->func;
8cca0eea 2215 worker->current_cwq = cwq;
73f53c4a 2216 work_color = get_work_color(work);
7a22ad75 2217
a62428c0
TH
2218 list_del_init(&work->entry);
2219
fb0e7beb
TH
2220 /*
2221 * CPU intensive works don't participate in concurrency
2222 * management. They're the scheduler's responsibility.
2223 */
2224 if (unlikely(cpu_intensive))
2225 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2226
974271c4
TH
2227 /*
2228 * Unbound gcwq isn't concurrency managed and work items should be
2229 * executed ASAP. Wake up another worker if necessary.
2230 */
63d95a91
TH
2231 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2232 wake_up_worker(pool);
974271c4 2233
8930caba 2234 /*
7c3eed5c 2235 * Record the last pool and clear PENDING which should be the last
23657bb1
TH
2236 * update to @work. Also, do this inside @gcwq->lock so that
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
8930caba 2239 */
7c3eed5c 2240 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2241
8b03ae3c 2242 spin_unlock_irq(&gcwq->lock);
a62428c0 2243
e159489b 2244 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2245 lock_map_acquire(&lockdep_map);
e36c886a 2246 trace_workqueue_execute_start(work);
a2c1c57b 2247 worker->current_func(work);
e36c886a
AV
2248 /*
2249 * While we must be careful to not use "work" after this, the trace
2250 * point will only record its address.
2251 */
2252 trace_workqueue_execute_end(work);
a62428c0
TH
2253 lock_map_release(&lockdep_map);
2254 lock_map_release(&cwq->wq->lockdep_map);
2255
2256 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2257 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2258 " last function: %pf\n",
a2c1c57b
TH
2259 current->comm, preempt_count(), task_pid_nr(current),
2260 worker->current_func);
a62428c0
TH
2261 debug_show_held_locks(current);
2262 dump_stack();
2263 }
2264
8b03ae3c 2265 spin_lock_irq(&gcwq->lock);
a62428c0 2266
fb0e7beb
TH
2267 /* clear cpu intensive status */
2268 if (unlikely(cpu_intensive))
2269 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2270
a62428c0 2271 /* we're done with it, release */
42f8570f 2272 hash_del(&worker->hentry);
c34056a3 2273 worker->current_work = NULL;
a2c1c57b 2274 worker->current_func = NULL;
8cca0eea 2275 worker->current_cwq = NULL;
b3f9f405 2276 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2277}
2278
affee4b2
TH
2279/**
2280 * process_scheduled_works - process scheduled works
2281 * @worker: self
2282 *
2283 * Process all scheduled works. Please note that the scheduled list
2284 * may change while processing a work, so this function repeatedly
2285 * fetches a work from the top and executes it.
2286 *
2287 * CONTEXT:
8b03ae3c 2288 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2289 * multiple times.
2290 */
2291static void process_scheduled_works(struct worker *worker)
1da177e4 2292{
affee4b2
TH
2293 while (!list_empty(&worker->scheduled)) {
2294 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2295 struct work_struct, entry);
c34056a3 2296 process_one_work(worker, work);
1da177e4 2297 }
1da177e4
LT
2298}
2299
4690c4ab
TH
2300/**
2301 * worker_thread - the worker thread function
c34056a3 2302 * @__worker: self
4690c4ab 2303 *
e22bee78
TH
2304 * The gcwq worker thread function. There's a single dynamic pool of
2305 * these per each cpu. These workers process all works regardless of
2306 * their specific target workqueue. The only exception is works which
2307 * belong to workqueues with a rescuer which will be explained in
2308 * rescuer_thread().
4690c4ab 2309 */
c34056a3 2310static int worker_thread(void *__worker)
1da177e4 2311{
c34056a3 2312 struct worker *worker = __worker;
bd7bdd43
TH
2313 struct worker_pool *pool = worker->pool;
2314 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2315
e22bee78
TH
2316 /* tell the scheduler that this is a workqueue worker */
2317 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2318woke_up:
c8e55f36 2319 spin_lock_irq(&gcwq->lock);
1da177e4 2320
5f7dabfd
LJ
2321 /* we are off idle list if destruction or rebind is requested */
2322 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2323 spin_unlock_irq(&gcwq->lock);
25511a47 2324
5f7dabfd 2325 /* if DIE is set, destruction is requested */
25511a47
TH
2326 if (worker->flags & WORKER_DIE) {
2327 worker->task->flags &= ~PF_WQ_WORKER;
2328 return 0;
2329 }
2330
5f7dabfd 2331 /* otherwise, rebind */
25511a47
TH
2332 idle_worker_rebind(worker);
2333 goto woke_up;
c8e55f36 2334 }
affee4b2 2335
c8e55f36 2336 worker_leave_idle(worker);
db7bccf4 2337recheck:
e22bee78 2338 /* no more worker necessary? */
63d95a91 2339 if (!need_more_worker(pool))
e22bee78
TH
2340 goto sleep;
2341
2342 /* do we need to manage? */
63d95a91 2343 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2344 goto recheck;
2345
c8e55f36
TH
2346 /*
2347 * ->scheduled list can only be filled while a worker is
2348 * preparing to process a work or actually processing it.
2349 * Make sure nobody diddled with it while I was sleeping.
2350 */
2351 BUG_ON(!list_empty(&worker->scheduled));
2352
e22bee78
TH
2353 /*
2354 * When control reaches this point, we're guaranteed to have
2355 * at least one idle worker or that someone else has already
2356 * assumed the manager role.
2357 */
2358 worker_clr_flags(worker, WORKER_PREP);
2359
2360 do {
c8e55f36 2361 struct work_struct *work =
bd7bdd43 2362 list_first_entry(&pool->worklist,
c8e55f36
TH
2363 struct work_struct, entry);
2364
2365 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2366 /* optimization path, not strictly necessary */
2367 process_one_work(worker, work);
2368 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2369 process_scheduled_works(worker);
c8e55f36
TH
2370 } else {
2371 move_linked_works(work, &worker->scheduled, NULL);
2372 process_scheduled_works(worker);
affee4b2 2373 }
63d95a91 2374 } while (keep_working(pool));
e22bee78
TH
2375
2376 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2377sleep:
63d95a91 2378 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2379 goto recheck;
d313dd85 2380
c8e55f36 2381 /*
e22bee78
TH
2382 * gcwq->lock is held and there's no work to process and no
2383 * need to manage, sleep. Workers are woken up only while
2384 * holding gcwq->lock or from local cpu, so setting the
2385 * current state before releasing gcwq->lock is enough to
2386 * prevent losing any event.
c8e55f36
TH
2387 */
2388 worker_enter_idle(worker);
2389 __set_current_state(TASK_INTERRUPTIBLE);
2390 spin_unlock_irq(&gcwq->lock);
2391 schedule();
2392 goto woke_up;
1da177e4
LT
2393}
2394
e22bee78
TH
2395/**
2396 * rescuer_thread - the rescuer thread function
111c225a 2397 * @__rescuer: self
e22bee78
TH
2398 *
2399 * Workqueue rescuer thread function. There's one rescuer for each
2400 * workqueue which has WQ_RESCUER set.
2401 *
2402 * Regular work processing on a gcwq may block trying to create a new
2403 * worker which uses GFP_KERNEL allocation which has slight chance of
2404 * developing into deadlock if some works currently on the same queue
2405 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2406 * the problem rescuer solves.
2407 *
2408 * When such condition is possible, the gcwq summons rescuers of all
2409 * workqueues which have works queued on the gcwq and let them process
2410 * those works so that forward progress can be guaranteed.
2411 *
2412 * This should happen rarely.
2413 */
111c225a 2414static int rescuer_thread(void *__rescuer)
e22bee78 2415{
111c225a
TH
2416 struct worker *rescuer = __rescuer;
2417 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2418 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2419 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2420 unsigned int cpu;
2421
2422 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2423
2424 /*
2425 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2426 * doesn't participate in concurrency management.
2427 */
2428 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2429repeat:
2430 set_current_state(TASK_INTERRUPTIBLE);
2431
412d32e6
MG
2432 if (kthread_should_stop()) {
2433 __set_current_state(TASK_RUNNING);
111c225a 2434 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2435 return 0;
412d32e6 2436 }
e22bee78 2437
f3421797
TH
2438 /*
2439 * See whether any cpu is asking for help. Unbounded
2440 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2441 */
f2e005aa 2442 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2443 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2444 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2445 struct worker_pool *pool = cwq->pool;
2446 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2447 struct work_struct *work, *n;
2448
2449 __set_current_state(TASK_RUNNING);
f2e005aa 2450 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2451
2452 /* migrate to the target cpu if possible */
bd7bdd43 2453 rescuer->pool = pool;
e22bee78
TH
2454 worker_maybe_bind_and_lock(rescuer);
2455
2456 /*
2457 * Slurp in all works issued via this workqueue and
2458 * process'em.
2459 */
2460 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2461 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2462 if (get_work_cwq(work) == cwq)
2463 move_linked_works(work, scheduled, &n);
2464
2465 process_scheduled_works(rescuer);
7576958a
TH
2466
2467 /*
2468 * Leave this gcwq. If keep_working() is %true, notify a
2469 * regular worker; otherwise, we end up with 0 concurrency
2470 * and stalling the execution.
2471 */
63d95a91
TH
2472 if (keep_working(pool))
2473 wake_up_worker(pool);
7576958a 2474
e22bee78
TH
2475 spin_unlock_irq(&gcwq->lock);
2476 }
2477
111c225a
TH
2478 /* rescuers should never participate in concurrency management */
2479 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2480 schedule();
2481 goto repeat;
1da177e4
LT
2482}
2483
fc2e4d70
ON
2484struct wq_barrier {
2485 struct work_struct work;
2486 struct completion done;
2487};
2488
2489static void wq_barrier_func(struct work_struct *work)
2490{
2491 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2492 complete(&barr->done);
2493}
2494
4690c4ab
TH
2495/**
2496 * insert_wq_barrier - insert a barrier work
2497 * @cwq: cwq to insert barrier into
2498 * @barr: wq_barrier to insert
affee4b2
TH
2499 * @target: target work to attach @barr to
2500 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2501 *
affee4b2
TH
2502 * @barr is linked to @target such that @barr is completed only after
2503 * @target finishes execution. Please note that the ordering
2504 * guarantee is observed only with respect to @target and on the local
2505 * cpu.
2506 *
2507 * Currently, a queued barrier can't be canceled. This is because
2508 * try_to_grab_pending() can't determine whether the work to be
2509 * grabbed is at the head of the queue and thus can't clear LINKED
2510 * flag of the previous work while there must be a valid next work
2511 * after a work with LINKED flag set.
2512 *
2513 * Note that when @worker is non-NULL, @target may be modified
2514 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2515 *
2516 * CONTEXT:
8b03ae3c 2517 * spin_lock_irq(gcwq->lock).
4690c4ab 2518 */
83c22520 2519static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2520 struct wq_barrier *barr,
2521 struct work_struct *target, struct worker *worker)
fc2e4d70 2522{
affee4b2
TH
2523 struct list_head *head;
2524 unsigned int linked = 0;
2525
dc186ad7 2526 /*
8b03ae3c 2527 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2528 * as we know for sure that this will not trigger any of the
2529 * checks and call back into the fixup functions where we
2530 * might deadlock.
2531 */
ca1cab37 2532 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2533 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2534 init_completion(&barr->done);
83c22520 2535
affee4b2
TH
2536 /*
2537 * If @target is currently being executed, schedule the
2538 * barrier to the worker; otherwise, put it after @target.
2539 */
2540 if (worker)
2541 head = worker->scheduled.next;
2542 else {
2543 unsigned long *bits = work_data_bits(target);
2544
2545 head = target->entry.next;
2546 /* there can already be other linked works, inherit and set */
2547 linked = *bits & WORK_STRUCT_LINKED;
2548 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2549 }
2550
dc186ad7 2551 debug_work_activate(&barr->work);
affee4b2
TH
2552 insert_work(cwq, &barr->work, head,
2553 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2554}
2555
73f53c4a
TH
2556/**
2557 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2558 * @wq: workqueue being flushed
2559 * @flush_color: new flush color, < 0 for no-op
2560 * @work_color: new work color, < 0 for no-op
2561 *
2562 * Prepare cwqs for workqueue flushing.
2563 *
2564 * If @flush_color is non-negative, flush_color on all cwqs should be
2565 * -1. If no cwq has in-flight commands at the specified color, all
2566 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2567 * has in flight commands, its cwq->flush_color is set to
2568 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2569 * wakeup logic is armed and %true is returned.
2570 *
2571 * The caller should have initialized @wq->first_flusher prior to
2572 * calling this function with non-negative @flush_color. If
2573 * @flush_color is negative, no flush color update is done and %false
2574 * is returned.
2575 *
2576 * If @work_color is non-negative, all cwqs should have the same
2577 * work_color which is previous to @work_color and all will be
2578 * advanced to @work_color.
2579 *
2580 * CONTEXT:
2581 * mutex_lock(wq->flush_mutex).
2582 *
2583 * RETURNS:
2584 * %true if @flush_color >= 0 and there's something to flush. %false
2585 * otherwise.
2586 */
2587static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2588 int flush_color, int work_color)
1da177e4 2589{
73f53c4a
TH
2590 bool wait = false;
2591 unsigned int cpu;
1da177e4 2592
73f53c4a
TH
2593 if (flush_color >= 0) {
2594 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2595 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2596 }
2355b70f 2597
f3421797 2598 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2599 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2600 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2601
8b03ae3c 2602 spin_lock_irq(&gcwq->lock);
83c22520 2603
73f53c4a
TH
2604 if (flush_color >= 0) {
2605 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2606
73f53c4a
TH
2607 if (cwq->nr_in_flight[flush_color]) {
2608 cwq->flush_color = flush_color;
2609 atomic_inc(&wq->nr_cwqs_to_flush);
2610 wait = true;
2611 }
2612 }
1da177e4 2613
73f53c4a
TH
2614 if (work_color >= 0) {
2615 BUG_ON(work_color != work_next_color(cwq->work_color));
2616 cwq->work_color = work_color;
2617 }
1da177e4 2618
8b03ae3c 2619 spin_unlock_irq(&gcwq->lock);
1da177e4 2620 }
2355b70f 2621
73f53c4a
TH
2622 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2623 complete(&wq->first_flusher->done);
14441960 2624
73f53c4a 2625 return wait;
1da177e4
LT
2626}
2627
0fcb78c2 2628/**
1da177e4 2629 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2630 * @wq: workqueue to flush
1da177e4
LT
2631 *
2632 * Forces execution of the workqueue and blocks until its completion.
2633 * This is typically used in driver shutdown handlers.
2634 *
fc2e4d70
ON
2635 * We sleep until all works which were queued on entry have been handled,
2636 * but we are not livelocked by new incoming ones.
1da177e4 2637 */
7ad5b3a5 2638void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2639{
73f53c4a
TH
2640 struct wq_flusher this_flusher = {
2641 .list = LIST_HEAD_INIT(this_flusher.list),
2642 .flush_color = -1,
2643 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2644 };
2645 int next_color;
1da177e4 2646
3295f0ef
IM
2647 lock_map_acquire(&wq->lockdep_map);
2648 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2649
2650 mutex_lock(&wq->flush_mutex);
2651
2652 /*
2653 * Start-to-wait phase
2654 */
2655 next_color = work_next_color(wq->work_color);
2656
2657 if (next_color != wq->flush_color) {
2658 /*
2659 * Color space is not full. The current work_color
2660 * becomes our flush_color and work_color is advanced
2661 * by one.
2662 */
2663 BUG_ON(!list_empty(&wq->flusher_overflow));
2664 this_flusher.flush_color = wq->work_color;
2665 wq->work_color = next_color;
2666
2667 if (!wq->first_flusher) {
2668 /* no flush in progress, become the first flusher */
2669 BUG_ON(wq->flush_color != this_flusher.flush_color);
2670
2671 wq->first_flusher = &this_flusher;
2672
2673 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2674 wq->work_color)) {
2675 /* nothing to flush, done */
2676 wq->flush_color = next_color;
2677 wq->first_flusher = NULL;
2678 goto out_unlock;
2679 }
2680 } else {
2681 /* wait in queue */
2682 BUG_ON(wq->flush_color == this_flusher.flush_color);
2683 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2684 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2685 }
2686 } else {
2687 /*
2688 * Oops, color space is full, wait on overflow queue.
2689 * The next flush completion will assign us
2690 * flush_color and transfer to flusher_queue.
2691 */
2692 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2693 }
2694
2695 mutex_unlock(&wq->flush_mutex);
2696
2697 wait_for_completion(&this_flusher.done);
2698
2699 /*
2700 * Wake-up-and-cascade phase
2701 *
2702 * First flushers are responsible for cascading flushes and
2703 * handling overflow. Non-first flushers can simply return.
2704 */
2705 if (wq->first_flusher != &this_flusher)
2706 return;
2707
2708 mutex_lock(&wq->flush_mutex);
2709
4ce48b37
TH
2710 /* we might have raced, check again with mutex held */
2711 if (wq->first_flusher != &this_flusher)
2712 goto out_unlock;
2713
73f53c4a
TH
2714 wq->first_flusher = NULL;
2715
2716 BUG_ON(!list_empty(&this_flusher.list));
2717 BUG_ON(wq->flush_color != this_flusher.flush_color);
2718
2719 while (true) {
2720 struct wq_flusher *next, *tmp;
2721
2722 /* complete all the flushers sharing the current flush color */
2723 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2724 if (next->flush_color != wq->flush_color)
2725 break;
2726 list_del_init(&next->list);
2727 complete(&next->done);
2728 }
2729
2730 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2731 wq->flush_color != work_next_color(wq->work_color));
2732
2733 /* this flush_color is finished, advance by one */
2734 wq->flush_color = work_next_color(wq->flush_color);
2735
2736 /* one color has been freed, handle overflow queue */
2737 if (!list_empty(&wq->flusher_overflow)) {
2738 /*
2739 * Assign the same color to all overflowed
2740 * flushers, advance work_color and append to
2741 * flusher_queue. This is the start-to-wait
2742 * phase for these overflowed flushers.
2743 */
2744 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2745 tmp->flush_color = wq->work_color;
2746
2747 wq->work_color = work_next_color(wq->work_color);
2748
2749 list_splice_tail_init(&wq->flusher_overflow,
2750 &wq->flusher_queue);
2751 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2752 }
2753
2754 if (list_empty(&wq->flusher_queue)) {
2755 BUG_ON(wq->flush_color != wq->work_color);
2756 break;
2757 }
2758
2759 /*
2760 * Need to flush more colors. Make the next flusher
2761 * the new first flusher and arm cwqs.
2762 */
2763 BUG_ON(wq->flush_color == wq->work_color);
2764 BUG_ON(wq->flush_color != next->flush_color);
2765
2766 list_del_init(&next->list);
2767 wq->first_flusher = next;
2768
2769 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2770 break;
2771
2772 /*
2773 * Meh... this color is already done, clear first
2774 * flusher and repeat cascading.
2775 */
2776 wq->first_flusher = NULL;
2777 }
2778
2779out_unlock:
2780 mutex_unlock(&wq->flush_mutex);
1da177e4 2781}
ae90dd5d 2782EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2783
9c5a2ba7
TH
2784/**
2785 * drain_workqueue - drain a workqueue
2786 * @wq: workqueue to drain
2787 *
2788 * Wait until the workqueue becomes empty. While draining is in progress,
2789 * only chain queueing is allowed. IOW, only currently pending or running
2790 * work items on @wq can queue further work items on it. @wq is flushed
2791 * repeatedly until it becomes empty. The number of flushing is detemined
2792 * by the depth of chaining and should be relatively short. Whine if it
2793 * takes too long.
2794 */
2795void drain_workqueue(struct workqueue_struct *wq)
2796{
2797 unsigned int flush_cnt = 0;
2798 unsigned int cpu;
2799
2800 /*
2801 * __queue_work() needs to test whether there are drainers, is much
2802 * hotter than drain_workqueue() and already looks at @wq->flags.
2803 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2804 */
2805 spin_lock(&workqueue_lock);
2806 if (!wq->nr_drainers++)
2807 wq->flags |= WQ_DRAINING;
2808 spin_unlock(&workqueue_lock);
2809reflush:
2810 flush_workqueue(wq);
2811
2812 for_each_cwq_cpu(cpu, wq) {
2813 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2814 bool drained;
9c5a2ba7 2815
bd7bdd43 2816 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2817 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2818 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2819
2820 if (drained)
9c5a2ba7
TH
2821 continue;
2822
2823 if (++flush_cnt == 10 ||
2824 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2825 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2826 wq->name, flush_cnt);
9c5a2ba7
TH
2827 goto reflush;
2828 }
2829
2830 spin_lock(&workqueue_lock);
2831 if (!--wq->nr_drainers)
2832 wq->flags &= ~WQ_DRAINING;
2833 spin_unlock(&workqueue_lock);
2834}
2835EXPORT_SYMBOL_GPL(drain_workqueue);
2836
606a5020 2837static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2838{
affee4b2 2839 struct worker *worker = NULL;
c9e7cf27 2840 struct worker_pool *pool;
8b03ae3c 2841 struct global_cwq *gcwq;
db700897 2842 struct cpu_workqueue_struct *cwq;
db700897
ON
2843
2844 might_sleep();
c9e7cf27
TH
2845 pool = get_work_pool(work);
2846 if (!pool)
baf59022 2847 return false;
c9e7cf27 2848 gcwq = pool->gcwq;
db700897 2849
8b03ae3c 2850 spin_lock_irq(&gcwq->lock);
db700897
ON
2851 if (!list_empty(&work->entry)) {
2852 /*
2853 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2854 * If it was re-queued to a different gcwq under us, we
2855 * are not going to wait.
db700897
ON
2856 */
2857 smp_rmb();
7a22ad75 2858 cwq = get_work_cwq(work);
bd7bdd43 2859 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2860 goto already_gone;
606a5020 2861 } else {
c9e7cf27 2862 worker = find_worker_executing_work(pool, work);
affee4b2 2863 if (!worker)
4690c4ab 2864 goto already_gone;
7a22ad75 2865 cwq = worker->current_cwq;
606a5020 2866 }
db700897 2867
baf59022 2868 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2869 spin_unlock_irq(&gcwq->lock);
7a22ad75 2870
e159489b
TH
2871 /*
2872 * If @max_active is 1 or rescuer is in use, flushing another work
2873 * item on the same workqueue may lead to deadlock. Make sure the
2874 * flusher is not running on the same workqueue by verifying write
2875 * access.
2876 */
2877 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2878 lock_map_acquire(&cwq->wq->lockdep_map);
2879 else
2880 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2881 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2882
401a8d04 2883 return true;
4690c4ab 2884already_gone:
8b03ae3c 2885 spin_unlock_irq(&gcwq->lock);
401a8d04 2886 return false;
db700897 2887}
baf59022
TH
2888
2889/**
2890 * flush_work - wait for a work to finish executing the last queueing instance
2891 * @work: the work to flush
2892 *
606a5020
TH
2893 * Wait until @work has finished execution. @work is guaranteed to be idle
2894 * on return if it hasn't been requeued since flush started.
baf59022
TH
2895 *
2896 * RETURNS:
2897 * %true if flush_work() waited for the work to finish execution,
2898 * %false if it was already idle.
2899 */
2900bool flush_work(struct work_struct *work)
2901{
2902 struct wq_barrier barr;
2903
0976dfc1
SB
2904 lock_map_acquire(&work->lockdep_map);
2905 lock_map_release(&work->lockdep_map);
2906
606a5020 2907 if (start_flush_work(work, &barr)) {
401a8d04
TH
2908 wait_for_completion(&barr.done);
2909 destroy_work_on_stack(&barr.work);
2910 return true;
606a5020 2911 } else {
401a8d04 2912 return false;
6e84d644 2913 }
6e84d644 2914}
606a5020 2915EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2916
36e227d2 2917static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2918{
bbb68dfa 2919 unsigned long flags;
1f1f642e
ON
2920 int ret;
2921
2922 do {
bbb68dfa
TH
2923 ret = try_to_grab_pending(work, is_dwork, &flags);
2924 /*
2925 * If someone else is canceling, wait for the same event it
2926 * would be waiting for before retrying.
2927 */
2928 if (unlikely(ret == -ENOENT))
606a5020 2929 flush_work(work);
1f1f642e
ON
2930 } while (unlikely(ret < 0));
2931
bbb68dfa
TH
2932 /* tell other tasks trying to grab @work to back off */
2933 mark_work_canceling(work);
2934 local_irq_restore(flags);
2935
606a5020 2936 flush_work(work);
7a22ad75 2937 clear_work_data(work);
1f1f642e
ON
2938 return ret;
2939}
2940
6e84d644 2941/**
401a8d04
TH
2942 * cancel_work_sync - cancel a work and wait for it to finish
2943 * @work: the work to cancel
6e84d644 2944 *
401a8d04
TH
2945 * Cancel @work and wait for its execution to finish. This function
2946 * can be used even if the work re-queues itself or migrates to
2947 * another workqueue. On return from this function, @work is
2948 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2949 *
401a8d04
TH
2950 * cancel_work_sync(&delayed_work->work) must not be used for
2951 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2952 *
401a8d04 2953 * The caller must ensure that the workqueue on which @work was last
6e84d644 2954 * queued can't be destroyed before this function returns.
401a8d04
TH
2955 *
2956 * RETURNS:
2957 * %true if @work was pending, %false otherwise.
6e84d644 2958 */
401a8d04 2959bool cancel_work_sync(struct work_struct *work)
6e84d644 2960{
36e227d2 2961 return __cancel_work_timer(work, false);
b89deed3 2962}
28e53bdd 2963EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2964
6e84d644 2965/**
401a8d04
TH
2966 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2967 * @dwork: the delayed work to flush
6e84d644 2968 *
401a8d04
TH
2969 * Delayed timer is cancelled and the pending work is queued for
2970 * immediate execution. Like flush_work(), this function only
2971 * considers the last queueing instance of @dwork.
1f1f642e 2972 *
401a8d04
TH
2973 * RETURNS:
2974 * %true if flush_work() waited for the work to finish execution,
2975 * %false if it was already idle.
6e84d644 2976 */
401a8d04
TH
2977bool flush_delayed_work(struct delayed_work *dwork)
2978{
8930caba 2979 local_irq_disable();
401a8d04 2980 if (del_timer_sync(&dwork->timer))
1265057f 2981 __queue_work(dwork->cpu,
401a8d04 2982 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2983 local_irq_enable();
401a8d04
TH
2984 return flush_work(&dwork->work);
2985}
2986EXPORT_SYMBOL(flush_delayed_work);
2987
09383498 2988/**
57b30ae7
TH
2989 * cancel_delayed_work - cancel a delayed work
2990 * @dwork: delayed_work to cancel
09383498 2991 *
57b30ae7
TH
2992 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2993 * and canceled; %false if wasn't pending. Note that the work callback
2994 * function may still be running on return, unless it returns %true and the
2995 * work doesn't re-arm itself. Explicitly flush or use
2996 * cancel_delayed_work_sync() to wait on it.
09383498 2997 *
57b30ae7 2998 * This function is safe to call from any context including IRQ handler.
09383498 2999 */
57b30ae7 3000bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3001{
57b30ae7
TH
3002 unsigned long flags;
3003 int ret;
3004
3005 do {
3006 ret = try_to_grab_pending(&dwork->work, true, &flags);
3007 } while (unlikely(ret == -EAGAIN));
3008
3009 if (unlikely(ret < 0))
3010 return false;
3011
7c3eed5c
TH
3012 set_work_pool_and_clear_pending(&dwork->work,
3013 get_work_pool_id(&dwork->work));
57b30ae7 3014 local_irq_restore(flags);
c0158ca6 3015 return ret;
09383498 3016}
57b30ae7 3017EXPORT_SYMBOL(cancel_delayed_work);
09383498 3018
401a8d04
TH
3019/**
3020 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3021 * @dwork: the delayed work cancel
3022 *
3023 * This is cancel_work_sync() for delayed works.
3024 *
3025 * RETURNS:
3026 * %true if @dwork was pending, %false otherwise.
3027 */
3028bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3029{
36e227d2 3030 return __cancel_work_timer(&dwork->work, true);
6e84d644 3031}
f5a421a4 3032EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3033
0fcb78c2 3034/**
c1a220e7
ZR
3035 * schedule_work_on - put work task on a specific cpu
3036 * @cpu: cpu to put the work task on
3037 * @work: job to be done
3038 *
3039 * This puts a job on a specific cpu
3040 */
d4283e93 3041bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3042{
d320c038 3043 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3044}
3045EXPORT_SYMBOL(schedule_work_on);
3046
0fcb78c2 3047/**
0fcb78c2
REB
3048 * schedule_work - put work task in global workqueue
3049 * @work: job to be done
0fcb78c2 3050 *
d4283e93
TH
3051 * Returns %false if @work was already on the kernel-global workqueue and
3052 * %true otherwise.
5b0f437d
BVA
3053 *
3054 * This puts a job in the kernel-global workqueue if it was not already
3055 * queued and leaves it in the same position on the kernel-global
3056 * workqueue otherwise.
0fcb78c2 3057 */
d4283e93 3058bool schedule_work(struct work_struct *work)
1da177e4 3059{
d320c038 3060 return queue_work(system_wq, work);
1da177e4 3061}
ae90dd5d 3062EXPORT_SYMBOL(schedule_work);
1da177e4 3063
0fcb78c2
REB
3064/**
3065 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3066 * @cpu: cpu to use
52bad64d 3067 * @dwork: job to be done
0fcb78c2
REB
3068 * @delay: number of jiffies to wait
3069 *
3070 * After waiting for a given time this puts a job in the kernel-global
3071 * workqueue on the specified CPU.
3072 */
d4283e93
TH
3073bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3074 unsigned long delay)
1da177e4 3075{
d320c038 3076 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3077}
ae90dd5d 3078EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3079
0fcb78c2
REB
3080/**
3081 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3082 * @dwork: job to be done
3083 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3084 *
3085 * After waiting for a given time this puts a job in the kernel-global
3086 * workqueue.
3087 */
d4283e93 3088bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3089{
d320c038 3090 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3091}
ae90dd5d 3092EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3093
b6136773 3094/**
31ddd871 3095 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3096 * @func: the function to call
b6136773 3097 *
31ddd871
TH
3098 * schedule_on_each_cpu() executes @func on each online CPU using the
3099 * system workqueue and blocks until all CPUs have completed.
b6136773 3100 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3101 *
3102 * RETURNS:
3103 * 0 on success, -errno on failure.
b6136773 3104 */
65f27f38 3105int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3106{
3107 int cpu;
38f51568 3108 struct work_struct __percpu *works;
15316ba8 3109
b6136773
AM
3110 works = alloc_percpu(struct work_struct);
3111 if (!works)
15316ba8 3112 return -ENOMEM;
b6136773 3113
93981800
TH
3114 get_online_cpus();
3115
15316ba8 3116 for_each_online_cpu(cpu) {
9bfb1839
IM
3117 struct work_struct *work = per_cpu_ptr(works, cpu);
3118
3119 INIT_WORK(work, func);
b71ab8c2 3120 schedule_work_on(cpu, work);
65a64464 3121 }
93981800
TH
3122
3123 for_each_online_cpu(cpu)
3124 flush_work(per_cpu_ptr(works, cpu));
3125
95402b38 3126 put_online_cpus();
b6136773 3127 free_percpu(works);
15316ba8
CL
3128 return 0;
3129}
3130
eef6a7d5
AS
3131/**
3132 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3133 *
3134 * Forces execution of the kernel-global workqueue and blocks until its
3135 * completion.
3136 *
3137 * Think twice before calling this function! It's very easy to get into
3138 * trouble if you don't take great care. Either of the following situations
3139 * will lead to deadlock:
3140 *
3141 * One of the work items currently on the workqueue needs to acquire
3142 * a lock held by your code or its caller.
3143 *
3144 * Your code is running in the context of a work routine.
3145 *
3146 * They will be detected by lockdep when they occur, but the first might not
3147 * occur very often. It depends on what work items are on the workqueue and
3148 * what locks they need, which you have no control over.
3149 *
3150 * In most situations flushing the entire workqueue is overkill; you merely
3151 * need to know that a particular work item isn't queued and isn't running.
3152 * In such cases you should use cancel_delayed_work_sync() or
3153 * cancel_work_sync() instead.
3154 */
1da177e4
LT
3155void flush_scheduled_work(void)
3156{
d320c038 3157 flush_workqueue(system_wq);
1da177e4 3158}
ae90dd5d 3159EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3160
1fa44eca
JB
3161/**
3162 * execute_in_process_context - reliably execute the routine with user context
3163 * @fn: the function to execute
1fa44eca
JB
3164 * @ew: guaranteed storage for the execute work structure (must
3165 * be available when the work executes)
3166 *
3167 * Executes the function immediately if process context is available,
3168 * otherwise schedules the function for delayed execution.
3169 *
3170 * Returns: 0 - function was executed
3171 * 1 - function was scheduled for execution
3172 */
65f27f38 3173int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3174{
3175 if (!in_interrupt()) {
65f27f38 3176 fn(&ew->work);
1fa44eca
JB
3177 return 0;
3178 }
3179
65f27f38 3180 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3181 schedule_work(&ew->work);
3182
3183 return 1;
3184}
3185EXPORT_SYMBOL_GPL(execute_in_process_context);
3186
1da177e4
LT
3187int keventd_up(void)
3188{
d320c038 3189 return system_wq != NULL;
1da177e4
LT
3190}
3191
bdbc5dd7 3192static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3193{
65a64464 3194 /*
0f900049
TH
3195 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3196 * Make sure that the alignment isn't lower than that of
3197 * unsigned long long.
65a64464 3198 */
0f900049
TH
3199 const size_t size = sizeof(struct cpu_workqueue_struct);
3200 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3201 __alignof__(unsigned long long));
65a64464 3202
e06ffa1e 3203 if (!(wq->flags & WQ_UNBOUND))
f3421797 3204 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3205 else {
f3421797
TH
3206 void *ptr;
3207
3208 /*
3209 * Allocate enough room to align cwq and put an extra
3210 * pointer at the end pointing back to the originally
3211 * allocated pointer which will be used for free.
3212 */
3213 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3214 if (ptr) {
3215 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3216 *(void **)(wq->cpu_wq.single + 1) = ptr;
3217 }
bdbc5dd7 3218 }
f3421797 3219
0415b00d 3220 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3221 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3222 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3223}
3224
bdbc5dd7 3225static void free_cwqs(struct workqueue_struct *wq)
0f900049 3226{
e06ffa1e 3227 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3228 free_percpu(wq->cpu_wq.pcpu);
3229 else if (wq->cpu_wq.single) {
3230 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3231 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3232 }
0f900049
TH
3233}
3234
f3421797
TH
3235static int wq_clamp_max_active(int max_active, unsigned int flags,
3236 const char *name)
b71ab8c2 3237{
f3421797
TH
3238 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3239
3240 if (max_active < 1 || max_active > lim)
044c782c
VI
3241 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3242 max_active, name, 1, lim);
b71ab8c2 3243
f3421797 3244 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3245}
3246
b196be89 3247struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3248 unsigned int flags,
3249 int max_active,
3250 struct lock_class_key *key,
b196be89 3251 const char *lock_name, ...)
1da177e4 3252{
b196be89 3253 va_list args, args1;
1da177e4 3254 struct workqueue_struct *wq;
c34056a3 3255 unsigned int cpu;
b196be89
TH
3256 size_t namelen;
3257
3258 /* determine namelen, allocate wq and format name */
3259 va_start(args, lock_name);
3260 va_copy(args1, args);
3261 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3262
3263 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3264 if (!wq)
3265 goto err;
3266
3267 vsnprintf(wq->name, namelen, fmt, args1);
3268 va_end(args);
3269 va_end(args1);
1da177e4 3270
6370a6ad
TH
3271 /*
3272 * Workqueues which may be used during memory reclaim should
3273 * have a rescuer to guarantee forward progress.
3274 */
3275 if (flags & WQ_MEM_RECLAIM)
3276 flags |= WQ_RESCUER;
3277
d320c038 3278 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3279 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3280
b196be89 3281 /* init wq */
97e37d7b 3282 wq->flags = flags;
a0a1a5fd 3283 wq->saved_max_active = max_active;
73f53c4a
TH
3284 mutex_init(&wq->flush_mutex);
3285 atomic_set(&wq->nr_cwqs_to_flush, 0);
3286 INIT_LIST_HEAD(&wq->flusher_queue);
3287 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3288
eb13ba87 3289 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3290 INIT_LIST_HEAD(&wq->list);
3af24433 3291
bdbc5dd7
TH
3292 if (alloc_cwqs(wq) < 0)
3293 goto err;
3294
f3421797 3295 for_each_cwq_cpu(cpu, wq) {
1537663f 3296 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3297 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3298 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3299
0f900049 3300 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3301 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3302 cwq->wq = wq;
73f53c4a 3303 cwq->flush_color = -1;
1e19ffc6 3304 cwq->max_active = max_active;
1e19ffc6 3305 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3306 }
1537663f 3307
e22bee78
TH
3308 if (flags & WQ_RESCUER) {
3309 struct worker *rescuer;
3310
f2e005aa 3311 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3312 goto err;
3313
3314 wq->rescuer = rescuer = alloc_worker();
3315 if (!rescuer)
3316 goto err;
3317
111c225a
TH
3318 rescuer->rescue_wq = wq;
3319 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3320 wq->name);
e22bee78
TH
3321 if (IS_ERR(rescuer->task))
3322 goto err;
3323
e22bee78
TH
3324 rescuer->task->flags |= PF_THREAD_BOUND;
3325 wake_up_process(rescuer->task);
3af24433
ON
3326 }
3327
a0a1a5fd
TH
3328 /*
3329 * workqueue_lock protects global freeze state and workqueues
3330 * list. Grab it, set max_active accordingly and add the new
3331 * workqueue to workqueues list.
3332 */
1537663f 3333 spin_lock(&workqueue_lock);
a0a1a5fd 3334
58a69cb4 3335 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3336 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3337 get_cwq(cpu, wq)->max_active = 0;
3338
1537663f 3339 list_add(&wq->list, &workqueues);
a0a1a5fd 3340
1537663f
TH
3341 spin_unlock(&workqueue_lock);
3342
3af24433 3343 return wq;
4690c4ab
TH
3344err:
3345 if (wq) {
bdbc5dd7 3346 free_cwqs(wq);
f2e005aa 3347 free_mayday_mask(wq->mayday_mask);
e22bee78 3348 kfree(wq->rescuer);
4690c4ab
TH
3349 kfree(wq);
3350 }
3351 return NULL;
3af24433 3352}
d320c038 3353EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3354
3af24433
ON
3355/**
3356 * destroy_workqueue - safely terminate a workqueue
3357 * @wq: target workqueue
3358 *
3359 * Safely destroy a workqueue. All work currently pending will be done first.
3360 */
3361void destroy_workqueue(struct workqueue_struct *wq)
3362{
c8e55f36 3363 unsigned int cpu;
3af24433 3364
9c5a2ba7
TH
3365 /* drain it before proceeding with destruction */
3366 drain_workqueue(wq);
c8efcc25 3367
a0a1a5fd
TH
3368 /*
3369 * wq list is used to freeze wq, remove from list after
3370 * flushing is complete in case freeze races us.
3371 */
95402b38 3372 spin_lock(&workqueue_lock);
b1f4ec17 3373 list_del(&wq->list);
95402b38 3374 spin_unlock(&workqueue_lock);
3af24433 3375
e22bee78 3376 /* sanity check */
f3421797 3377 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3378 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3379 int i;
3380
73f53c4a
TH
3381 for (i = 0; i < WORK_NR_COLORS; i++)
3382 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3383 BUG_ON(cwq->nr_active);
3384 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3385 }
9b41ea72 3386
e22bee78
TH
3387 if (wq->flags & WQ_RESCUER) {
3388 kthread_stop(wq->rescuer->task);
f2e005aa 3389 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3390 kfree(wq->rescuer);
e22bee78
TH
3391 }
3392
bdbc5dd7 3393 free_cwqs(wq);
3af24433
ON
3394 kfree(wq);
3395}
3396EXPORT_SYMBOL_GPL(destroy_workqueue);
3397
9f4bd4cd
LJ
3398/**
3399 * cwq_set_max_active - adjust max_active of a cwq
3400 * @cwq: target cpu_workqueue_struct
3401 * @max_active: new max_active value.
3402 *
3403 * Set @cwq->max_active to @max_active and activate delayed works if
3404 * increased.
3405 *
3406 * CONTEXT:
3407 * spin_lock_irq(gcwq->lock).
3408 */
3409static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3410{
3411 cwq->max_active = max_active;
3412
3413 while (!list_empty(&cwq->delayed_works) &&
3414 cwq->nr_active < cwq->max_active)
3415 cwq_activate_first_delayed(cwq);
3416}
3417
dcd989cb
TH
3418/**
3419 * workqueue_set_max_active - adjust max_active of a workqueue
3420 * @wq: target workqueue
3421 * @max_active: new max_active value.
3422 *
3423 * Set max_active of @wq to @max_active.
3424 *
3425 * CONTEXT:
3426 * Don't call from IRQ context.
3427 */
3428void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3429{
3430 unsigned int cpu;
3431
f3421797 3432 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3433
3434 spin_lock(&workqueue_lock);
3435
3436 wq->saved_max_active = max_active;
3437
f3421797 3438 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3439 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3440 struct worker_pool *pool = cwq->pool;
3441 struct global_cwq *gcwq = pool->gcwq;
dcd989cb
TH
3442
3443 spin_lock_irq(&gcwq->lock);
3444
58a69cb4 3445 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3446 !(pool->flags & POOL_FREEZING))
3447 cwq_set_max_active(cwq, max_active);
9bfb1839 3448
dcd989cb 3449 spin_unlock_irq(&gcwq->lock);
65a64464 3450 }
93981800 3451
dcd989cb 3452 spin_unlock(&workqueue_lock);
15316ba8 3453}
dcd989cb 3454EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3455
eef6a7d5 3456/**
dcd989cb
TH
3457 * workqueue_congested - test whether a workqueue is congested
3458 * @cpu: CPU in question
3459 * @wq: target workqueue
eef6a7d5 3460 *
dcd989cb
TH
3461 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3462 * no synchronization around this function and the test result is
3463 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3464 *
dcd989cb
TH
3465 * RETURNS:
3466 * %true if congested, %false otherwise.
eef6a7d5 3467 */
dcd989cb 3468bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3469{
dcd989cb
TH
3470 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3471
3472 return !list_empty(&cwq->delayed_works);
1da177e4 3473}
dcd989cb 3474EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3475
dcd989cb
TH
3476/**
3477 * work_busy - test whether a work is currently pending or running
3478 * @work: the work to be tested
3479 *
3480 * Test whether @work is currently pending or running. There is no
3481 * synchronization around this function and the test result is
3482 * unreliable and only useful as advisory hints or for debugging.
3483 * Especially for reentrant wqs, the pending state might hide the
3484 * running state.
3485 *
3486 * RETURNS:
3487 * OR'd bitmask of WORK_BUSY_* bits.
3488 */
3489unsigned int work_busy(struct work_struct *work)
1da177e4 3490{
c9e7cf27
TH
3491 struct worker_pool *pool = get_work_pool(work);
3492 struct global_cwq *gcwq;
dcd989cb
TH
3493 unsigned long flags;
3494 unsigned int ret = 0;
1da177e4 3495
c9e7cf27 3496 if (!pool)
999767be 3497 return 0;
c9e7cf27 3498 gcwq = pool->gcwq;
1da177e4 3499
dcd989cb 3500 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3501
dcd989cb
TH
3502 if (work_pending(work))
3503 ret |= WORK_BUSY_PENDING;
c9e7cf27 3504 if (find_worker_executing_work(pool, work))
dcd989cb 3505 ret |= WORK_BUSY_RUNNING;
1da177e4 3506
dcd989cb 3507 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3508
dcd989cb 3509 return ret;
1da177e4 3510}
dcd989cb 3511EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3512
db7bccf4
TH
3513/*
3514 * CPU hotplug.
3515 *
e22bee78
TH
3516 * There are two challenges in supporting CPU hotplug. Firstly, there
3517 * are a lot of assumptions on strong associations among work, cwq and
3518 * gcwq which make migrating pending and scheduled works very
3519 * difficult to implement without impacting hot paths. Secondly,
3520 * gcwqs serve mix of short, long and very long running works making
3521 * blocked draining impractical.
3522 *
24647570 3523 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3524 * running as an unbound one and allowing it to be reattached later if the
3525 * cpu comes back online.
db7bccf4 3526 */
1da177e4 3527
60373152 3528/* claim manager positions of all pools */
b2eb83d1 3529static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3530{
3531 struct worker_pool *pool;
3532
3533 for_each_worker_pool(pool, gcwq)
b2eb83d1 3534 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3535 spin_lock_irq(&gcwq->lock);
60373152
TH
3536}
3537
3538/* release manager positions */
b2eb83d1 3539static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3540{
3541 struct worker_pool *pool;
3542
8db25e78 3543 spin_unlock_irq(&gcwq->lock);
60373152 3544 for_each_worker_pool(pool, gcwq)
b2eb83d1 3545 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3546}
3547
628c78e7 3548static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3549{
628c78e7 3550 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3551 struct worker_pool *pool;
db7bccf4
TH
3552 struct worker *worker;
3553 struct hlist_node *pos;
3554 int i;
3af24433 3555
db7bccf4
TH
3556 BUG_ON(gcwq->cpu != smp_processor_id());
3557
b2eb83d1 3558 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3559
f2d5a0ee
TH
3560 /*
3561 * We've claimed all manager positions. Make all workers unbound
3562 * and set DISASSOCIATED. Before this, all workers except for the
3563 * ones which are still executing works from before the last CPU
3564 * down must be on the cpu. After this, they may become diasporas.
3565 */
c9e7cf27 3566 for_each_worker_pool(pool, gcwq) {
4ce62e9e 3567 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3568 worker->flags |= WORKER_UNBOUND;
3af24433 3569
c9e7cf27
TH
3570 for_each_busy_worker(worker, i, pos, pool)
3571 worker->flags |= WORKER_UNBOUND;
06ba38a9 3572
24647570 3573 pool->flags |= POOL_DISASSOCIATED;
c9e7cf27 3574 }
f2d5a0ee 3575
b2eb83d1 3576 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3577
e22bee78 3578 /*
403c821d 3579 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3580 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3581 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3582 */
e22bee78 3583 schedule();
06ba38a9 3584
e22bee78 3585 /*
628c78e7
TH
3586 * Sched callbacks are disabled now. Zap nr_running. After this,
3587 * nr_running stays zero and need_more_worker() and keep_working()
3588 * are always true as long as the worklist is not empty. @gcwq now
3589 * behaves as unbound (in terms of concurrency management) gcwq
3590 * which is served by workers tied to the CPU.
3591 *
3592 * On return from this function, the current worker would trigger
3593 * unbound chain execution of pending work items if other workers
3594 * didn't already.
e22bee78 3595 */
4ce62e9e
TH
3596 for_each_worker_pool(pool, gcwq)
3597 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3598}
3af24433 3599
8db25e78
TH
3600/*
3601 * Workqueues should be brought up before normal priority CPU notifiers.
3602 * This will be registered high priority CPU notifier.
3603 */
9fdf9b73 3604static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3605 unsigned long action,
3606 void *hcpu)
3af24433
ON
3607{
3608 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3609 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3610 struct worker_pool *pool;
3ce63377 3611
8db25e78 3612 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3613 case CPU_UP_PREPARE:
4ce62e9e 3614 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3615 struct worker *worker;
3616
3617 if (pool->nr_workers)
3618 continue;
3619
3620 worker = create_worker(pool);
3621 if (!worker)
3622 return NOTIFY_BAD;
3623
3624 spin_lock_irq(&gcwq->lock);
3625 start_worker(worker);
3626 spin_unlock_irq(&gcwq->lock);
3af24433 3627 }
8db25e78 3628 break;
3af24433 3629
db7bccf4
TH
3630 case CPU_DOWN_FAILED:
3631 case CPU_ONLINE:
b2eb83d1 3632 gcwq_claim_assoc_and_lock(gcwq);
24647570
TH
3633 for_each_worker_pool(pool, gcwq)
3634 pool->flags &= ~POOL_DISASSOCIATED;
25511a47 3635 rebind_workers(gcwq);
b2eb83d1 3636 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3637 break;
00dfcaf7 3638 }
65758202
TH
3639 return NOTIFY_OK;
3640}
3641
3642/*
3643 * Workqueues should be brought down after normal priority CPU notifiers.
3644 * This will be registered as low priority CPU notifier.
3645 */
9fdf9b73 3646static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3647 unsigned long action,
3648 void *hcpu)
3649{
8db25e78
TH
3650 unsigned int cpu = (unsigned long)hcpu;
3651 struct work_struct unbind_work;
3652
65758202
TH
3653 switch (action & ~CPU_TASKS_FROZEN) {
3654 case CPU_DOWN_PREPARE:
8db25e78
TH
3655 /* unbinding should happen on the local CPU */
3656 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3657 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3658 flush_work(&unbind_work);
3659 break;
65758202
TH
3660 }
3661 return NOTIFY_OK;
3662}
3663
2d3854a3 3664#ifdef CONFIG_SMP
8ccad40d 3665
2d3854a3 3666struct work_for_cpu {
ed48ece2 3667 struct work_struct work;
2d3854a3
RR
3668 long (*fn)(void *);
3669 void *arg;
3670 long ret;
3671};
3672
ed48ece2 3673static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3674{
ed48ece2
TH
3675 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3676
2d3854a3
RR
3677 wfc->ret = wfc->fn(wfc->arg);
3678}
3679
3680/**
3681 * work_on_cpu - run a function in user context on a particular cpu
3682 * @cpu: the cpu to run on
3683 * @fn: the function to run
3684 * @arg: the function arg
3685 *
31ad9081
RR
3686 * This will return the value @fn returns.
3687 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3688 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3689 */
3690long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3691{
ed48ece2 3692 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3693
ed48ece2
TH
3694 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3695 schedule_work_on(cpu, &wfc.work);
3696 flush_work(&wfc.work);
2d3854a3
RR
3697 return wfc.ret;
3698}
3699EXPORT_SYMBOL_GPL(work_on_cpu);
3700#endif /* CONFIG_SMP */
3701
a0a1a5fd
TH
3702#ifdef CONFIG_FREEZER
3703
3704/**
3705 * freeze_workqueues_begin - begin freezing workqueues
3706 *
58a69cb4
TH
3707 * Start freezing workqueues. After this function returns, all freezable
3708 * workqueues will queue new works to their frozen_works list instead of
3709 * gcwq->worklist.
a0a1a5fd
TH
3710 *
3711 * CONTEXT:
8b03ae3c 3712 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3713 */
3714void freeze_workqueues_begin(void)
3715{
a0a1a5fd
TH
3716 unsigned int cpu;
3717
3718 spin_lock(&workqueue_lock);
3719
3720 BUG_ON(workqueue_freezing);
3721 workqueue_freezing = true;
3722
f3421797 3723 for_each_gcwq_cpu(cpu) {
8b03ae3c 3724 struct global_cwq *gcwq = get_gcwq(cpu);
35b6bb63 3725 struct worker_pool *pool;
bdbc5dd7 3726 struct workqueue_struct *wq;
8b03ae3c
TH
3727
3728 spin_lock_irq(&gcwq->lock);
3729
35b6bb63
TH
3730 for_each_worker_pool(pool, gcwq) {
3731 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3732 pool->flags |= POOL_FREEZING;
3733 }
db7bccf4 3734
a0a1a5fd
TH
3735 list_for_each_entry(wq, &workqueues, list) {
3736 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3737
58a69cb4 3738 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3739 cwq->max_active = 0;
a0a1a5fd 3740 }
8b03ae3c
TH
3741
3742 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3743 }
3744
3745 spin_unlock(&workqueue_lock);
3746}
3747
3748/**
58a69cb4 3749 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3750 *
3751 * Check whether freezing is complete. This function must be called
3752 * between freeze_workqueues_begin() and thaw_workqueues().
3753 *
3754 * CONTEXT:
3755 * Grabs and releases workqueue_lock.
3756 *
3757 * RETURNS:
58a69cb4
TH
3758 * %true if some freezable workqueues are still busy. %false if freezing
3759 * is complete.
a0a1a5fd
TH
3760 */
3761bool freeze_workqueues_busy(void)
3762{
a0a1a5fd
TH
3763 unsigned int cpu;
3764 bool busy = false;
3765
3766 spin_lock(&workqueue_lock);
3767
3768 BUG_ON(!workqueue_freezing);
3769
f3421797 3770 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3771 struct workqueue_struct *wq;
a0a1a5fd
TH
3772 /*
3773 * nr_active is monotonically decreasing. It's safe
3774 * to peek without lock.
3775 */
3776 list_for_each_entry(wq, &workqueues, list) {
3777 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3778
58a69cb4 3779 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3780 continue;
3781
3782 BUG_ON(cwq->nr_active < 0);
3783 if (cwq->nr_active) {
3784 busy = true;
3785 goto out_unlock;
3786 }
3787 }
3788 }
3789out_unlock:
3790 spin_unlock(&workqueue_lock);
3791 return busy;
3792}
3793
3794/**
3795 * thaw_workqueues - thaw workqueues
3796 *
3797 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3798 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3799 *
3800 * CONTEXT:
8b03ae3c 3801 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3802 */
3803void thaw_workqueues(void)
3804{
a0a1a5fd
TH
3805 unsigned int cpu;
3806
3807 spin_lock(&workqueue_lock);
3808
3809 if (!workqueue_freezing)
3810 goto out_unlock;
3811
f3421797 3812 for_each_gcwq_cpu(cpu) {
8b03ae3c 3813 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3814 struct worker_pool *pool;
bdbc5dd7 3815 struct workqueue_struct *wq;
8b03ae3c
TH
3816
3817 spin_lock_irq(&gcwq->lock);
3818
35b6bb63
TH
3819 for_each_worker_pool(pool, gcwq) {
3820 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3821 pool->flags &= ~POOL_FREEZING;
3822 }
db7bccf4 3823
a0a1a5fd
TH
3824 list_for_each_entry(wq, &workqueues, list) {
3825 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3826
58a69cb4 3827 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3828 continue;
3829
a0a1a5fd 3830 /* restore max_active and repopulate worklist */
9f4bd4cd 3831 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3832 }
8b03ae3c 3833
4ce62e9e
TH
3834 for_each_worker_pool(pool, gcwq)
3835 wake_up_worker(pool);
e22bee78 3836
8b03ae3c 3837 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3838 }
3839
3840 workqueue_freezing = false;
3841out_unlock:
3842 spin_unlock(&workqueue_lock);
3843}
3844#endif /* CONFIG_FREEZER */
3845
6ee0578b 3846static int __init init_workqueues(void)
1da177e4 3847{
c34056a3
TH
3848 unsigned int cpu;
3849
7c3eed5c
TH
3850 /* make sure we have enough bits for OFFQ pool ID */
3851 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3852 WORK_CPU_LAST * NR_STD_WORKER_POOLS);
b5490077 3853
65758202 3854 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3855 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3856
3857 /* initialize gcwqs */
f3421797 3858 for_each_gcwq_cpu(cpu) {
8b03ae3c 3859 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3860 struct worker_pool *pool;
8b03ae3c
TH
3861
3862 spin_lock_init(&gcwq->lock);
3863 gcwq->cpu = cpu;
3864
4ce62e9e
TH
3865 for_each_worker_pool(pool, gcwq) {
3866 pool->gcwq = gcwq;
24647570 3867 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3868 INIT_LIST_HEAD(&pool->worklist);
3869 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3870 hash_init(pool->busy_hash);
e7577c50 3871
4ce62e9e
TH
3872 init_timer_deferrable(&pool->idle_timer);
3873 pool->idle_timer.function = idle_worker_timeout;
3874 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3875
4ce62e9e
TH
3876 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3877 (unsigned long)pool);
3878
b2eb83d1 3879 mutex_init(&pool->assoc_mutex);
4ce62e9e 3880 ida_init(&pool->worker_ida);
9daf9e67
TH
3881
3882 /* alloc pool ID */
3883 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3884 }
8b03ae3c
TH
3885 }
3886
e22bee78 3887 /* create the initial worker */
f3421797 3888 for_each_online_gcwq_cpu(cpu) {
e22bee78 3889 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3890 struct worker_pool *pool;
e22bee78 3891
4ce62e9e
TH
3892 for_each_worker_pool(pool, gcwq) {
3893 struct worker *worker;
3894
24647570
TH
3895 if (cpu != WORK_CPU_UNBOUND)
3896 pool->flags &= ~POOL_DISASSOCIATED;
3897
bc2ae0f5 3898 worker = create_worker(pool);
4ce62e9e
TH
3899 BUG_ON(!worker);
3900 spin_lock_irq(&gcwq->lock);
3901 start_worker(worker);
3902 spin_unlock_irq(&gcwq->lock);
3903 }
e22bee78
TH
3904 }
3905
d320c038 3906 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3907 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3908 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3909 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3910 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3911 system_freezable_wq = alloc_workqueue("events_freezable",
3912 WQ_FREEZABLE, 0);
1aabe902 3913 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3914 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3915 return 0;
1da177e4 3916}
6ee0578b 3917early_initcall(init_workqueues);