workqueue: perform non-reentrancy test when queueing to unbound workqueues too
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c9e7cf27
TH
148 /* workers are chained either in busy_hash or idle_list */
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
34a06bd6 152 struct mutex manager_arb; /* manager arbitration */
24647570 153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 154 struct ida worker_ida; /* L: for worker IDs */
e19e397a 155
7a4e344c 156 struct workqueue_attrs *attrs; /* I: worker attributes */
29c91e99
TH
157 struct hlist_node hash_node; /* R: unbound_pool_hash node */
158 int refcnt; /* refcnt for unbound pools */
7a4e344c 159
e19e397a
TH
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
8b03ae3c
TH
172} ____cacheline_aligned_in_smp;
173
1da177e4 174/*
112202d9
TH
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
1da177e4 179 */
112202d9 180struct pool_workqueue {
bd7bdd43 181 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 182 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
8864b4e5 185 int refcnt; /* L: reference count */
73f53c4a
TH
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
1e19ffc6 188 int nr_active; /* L: nr of active works */
a0a1a5fd 189 int max_active; /* L: max active works */
1e19ffc6 190 struct list_head delayed_works; /* L: delayed works */
75ccf595 191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 192 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
e904e6c2 202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 203
73f53c4a
TH
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
1da177e4
LT
213/*
214 * The externally visible workqueue abstraction is an array of
215 * per-CPU workqueues:
216 */
217struct workqueue_struct {
9c5a2ba7 218 unsigned int flags; /* W: WQ_* flags */
420c0ddb 219 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 220 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 221 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
222
223 struct mutex flush_mutex; /* protects wq flushing */
224 int work_color; /* F: current work color */
225 int flush_color; /* F: current flush color */
112202d9 226 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
227 struct wq_flusher *first_flusher; /* F: first flusher */
228 struct list_head flusher_queue; /* F: flush waiters */
229 struct list_head flusher_overflow; /* F: flush overflow list */
230
493a1724 231 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
232 struct worker *rescuer; /* I: rescue worker */
233
9c5a2ba7 234 int nr_drainers; /* W: drain in progress */
112202d9 235 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 236#ifdef CONFIG_LOCKDEP
4690c4ab 237 struct lockdep_map lockdep_map;
4e6045f1 238#endif
b196be89 239 char name[]; /* I: workqueue name */
1da177e4
LT
240};
241
e904e6c2
TH
242static struct kmem_cache *pwq_cache;
243
29c91e99
TH
244/* hash of all unbound pools keyed by pool->attrs */
245static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
246
247static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
248
d320c038 249struct workqueue_struct *system_wq __read_mostly;
d320c038 250EXPORT_SYMBOL_GPL(system_wq);
044c782c 251struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 252EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 253struct workqueue_struct *system_long_wq __read_mostly;
d320c038 254EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 255struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 256EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 257struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 258EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 259
97bd2347
TH
260#define CREATE_TRACE_POINTS
261#include <trace/events/workqueue.h>
262
76af4d93
TH
263#define assert_rcu_or_wq_lock() \
264 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
265 lockdep_is_held(&workqueue_lock), \
266 "sched RCU or workqueue lock should be held")
267
f02ae73a
TH
268#define for_each_cpu_worker_pool(pool, cpu) \
269 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
270 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 271 (pool)++)
4ce62e9e 272
b67bfe0d
SL
273#define for_each_busy_worker(worker, i, pool) \
274 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 275
17116969
TH
276/**
277 * for_each_pool - iterate through all worker_pools in the system
278 * @pool: iteration cursor
279 * @id: integer used for iteration
fa1b54e6
TH
280 *
281 * This must be called either with workqueue_lock held or sched RCU read
282 * locked. If the pool needs to be used beyond the locking in effect, the
283 * caller is responsible for guaranteeing that the pool stays online.
284 *
285 * The if/else clause exists only for the lockdep assertion and can be
286 * ignored.
17116969
TH
287 */
288#define for_each_pool(pool, id) \
fa1b54e6
TH
289 idr_for_each_entry(&worker_pool_idr, pool, id) \
290 if (({ assert_rcu_or_wq_lock(); false; })) { } \
291 else
17116969 292
49e3cf44
TH
293/**
294 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
295 * @pwq: iteration cursor
296 * @wq: the target workqueue
76af4d93
TH
297 *
298 * This must be called either with workqueue_lock held or sched RCU read
299 * locked. If the pwq needs to be used beyond the locking in effect, the
300 * caller is responsible for guaranteeing that the pwq stays online.
301 *
302 * The if/else clause exists only for the lockdep assertion and can be
303 * ignored.
49e3cf44
TH
304 */
305#define for_each_pwq(pwq, wq) \
76af4d93
TH
306 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
307 if (({ assert_rcu_or_wq_lock(); false; })) { } \
308 else
f3421797 309
dc186ad7
TG
310#ifdef CONFIG_DEBUG_OBJECTS_WORK
311
312static struct debug_obj_descr work_debug_descr;
313
99777288
SG
314static void *work_debug_hint(void *addr)
315{
316 return ((struct work_struct *) addr)->func;
317}
318
dc186ad7
TG
319/*
320 * fixup_init is called when:
321 * - an active object is initialized
322 */
323static int work_fixup_init(void *addr, enum debug_obj_state state)
324{
325 struct work_struct *work = addr;
326
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
334 }
335}
336
337/*
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
341 */
342static int work_fixup_activate(void *addr, enum debug_obj_state state)
343{
344 struct work_struct *work = addr;
345
346 switch (state) {
347
348 case ODEBUG_STATE_NOTAVAILABLE:
349 /*
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
353 */
22df02bb 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
358 }
359 WARN_ON_ONCE(1);
360 return 0;
361
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
364
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_free is called when:
372 * - an active object is freed
373 */
374static int work_fixup_free(void *addr, enum debug_obj_state state)
375{
376 struct work_struct *work = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386}
387
388static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
99777288 390 .debug_hint = work_debug_hint,
dc186ad7
TG
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
394};
395
396static inline void debug_work_activate(struct work_struct *work)
397{
398 debug_object_activate(work, &work_debug_descr);
399}
400
401static inline void debug_work_deactivate(struct work_struct *work)
402{
403 debug_object_deactivate(work, &work_debug_descr);
404}
405
406void __init_work(struct work_struct *work, int onstack)
407{
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
412}
413EXPORT_SYMBOL_GPL(__init_work);
414
415void destroy_work_on_stack(struct work_struct *work)
416{
417 debug_object_free(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(destroy_work_on_stack);
420
421#else
422static inline void debug_work_activate(struct work_struct *work) { }
423static inline void debug_work_deactivate(struct work_struct *work) { }
424#endif
425
95402b38
GS
426/* Serializes the accesses to the list of workqueues. */
427static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 428static LIST_HEAD(workqueues);
a0a1a5fd 429static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 430
e22bee78 431/*
e19e397a
TH
432 * The CPU and unbound standard worker pools. The unbound ones have
433 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 434 */
e19e397a 435static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 436 cpu_worker_pools);
f3421797 437
fa1b54e6
TH
438/*
439 * idr of all pools. Modifications are protected by workqueue_lock. Read
440 * accesses are protected by sched-RCU protected.
441 */
9daf9e67
TH
442static DEFINE_IDR(worker_pool_idr);
443
c34056a3 444static int worker_thread(void *__worker);
1da177e4 445
9daf9e67
TH
446/* allocate ID and assign it to @pool */
447static int worker_pool_assign_id(struct worker_pool *pool)
448{
449 int ret;
450
fa1b54e6
TH
451 do {
452 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
453 return -ENOMEM;
9daf9e67 454
fa1b54e6
TH
455 spin_lock_irq(&workqueue_lock);
456 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
457 spin_unlock_irq(&workqueue_lock);
458 } while (ret == -EAGAIN);
9daf9e67 459
fa1b54e6 460 return ret;
7c3eed5c
TH
461}
462
76af4d93
TH
463/**
464 * first_pwq - return the first pool_workqueue of the specified workqueue
465 * @wq: the target workqueue
466 *
467 * This must be called either with workqueue_lock held or sched RCU read
468 * locked. If the pwq needs to be used beyond the locking in effect, the
469 * caller is responsible for guaranteeing that the pwq stays online.
470 */
7fb98ea7 471static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 472{
76af4d93
TH
473 assert_rcu_or_wq_lock();
474 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
475 pwqs_node);
b1f4ec17
ON
476}
477
73f53c4a
TH
478static unsigned int work_color_to_flags(int color)
479{
480 return color << WORK_STRUCT_COLOR_SHIFT;
481}
482
483static int get_work_color(struct work_struct *work)
484{
485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
487}
488
489static int work_next_color(int color)
490{
491 return (color + 1) % WORK_NR_COLORS;
492}
1da177e4 493
14441960 494/*
112202d9
TH
495 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
496 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 497 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 498 *
112202d9
TH
499 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
500 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
501 * work->data. These functions should only be called while the work is
502 * owned - ie. while the PENDING bit is set.
7a22ad75 503 *
112202d9 504 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 505 * corresponding to a work. Pool is available once the work has been
112202d9 506 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 507 * available only while the work item is queued.
7a22ad75 508 *
bbb68dfa
TH
509 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
510 * canceled. While being canceled, a work item may have its PENDING set
511 * but stay off timer and worklist for arbitrarily long and nobody should
512 * try to steal the PENDING bit.
14441960 513 */
7a22ad75
TH
514static inline void set_work_data(struct work_struct *work, unsigned long data,
515 unsigned long flags)
365970a1 516{
6183c009 517 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
518 atomic_long_set(&work->data, data | flags | work_static(work));
519}
365970a1 520
112202d9 521static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
522 unsigned long extra_flags)
523{
112202d9
TH
524 set_work_data(work, (unsigned long)pwq,
525 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
526}
527
4468a00f
LJ
528static void set_work_pool_and_keep_pending(struct work_struct *work,
529 int pool_id)
530{
531 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
532 WORK_STRUCT_PENDING);
533}
534
7c3eed5c
TH
535static void set_work_pool_and_clear_pending(struct work_struct *work,
536 int pool_id)
7a22ad75 537{
23657bb1
TH
538 /*
539 * The following wmb is paired with the implied mb in
540 * test_and_set_bit(PENDING) and ensures all updates to @work made
541 * here are visible to and precede any updates by the next PENDING
542 * owner.
543 */
544 smp_wmb();
7c3eed5c 545 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 546}
f756d5e2 547
7a22ad75 548static void clear_work_data(struct work_struct *work)
1da177e4 549{
7c3eed5c
TH
550 smp_wmb(); /* see set_work_pool_and_clear_pending() */
551 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
552}
553
112202d9 554static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 555{
e120153d 556 unsigned long data = atomic_long_read(&work->data);
7a22ad75 557
112202d9 558 if (data & WORK_STRUCT_PWQ)
e120153d
TH
559 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
560 else
561 return NULL;
4d707b9f
ON
562}
563
7c3eed5c
TH
564/**
565 * get_work_pool - return the worker_pool a given work was associated with
566 * @work: the work item of interest
567 *
568 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
569 *
570 * Pools are created and destroyed under workqueue_lock, and allows read
571 * access under sched-RCU read lock. As such, this function should be
572 * called under workqueue_lock or with preemption disabled.
573 *
574 * All fields of the returned pool are accessible as long as the above
575 * mentioned locking is in effect. If the returned pool needs to be used
576 * beyond the critical section, the caller is responsible for ensuring the
577 * returned pool is and stays online.
7c3eed5c
TH
578 */
579static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 580{
e120153d 581 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 582 int pool_id;
7a22ad75 583
fa1b54e6
TH
584 assert_rcu_or_wq_lock();
585
112202d9
TH
586 if (data & WORK_STRUCT_PWQ)
587 return ((struct pool_workqueue *)
7c3eed5c 588 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 589
7c3eed5c
TH
590 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
591 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
592 return NULL;
593
fa1b54e6 594 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
595}
596
597/**
598 * get_work_pool_id - return the worker pool ID a given work is associated with
599 * @work: the work item of interest
600 *
601 * Return the worker_pool ID @work was last associated with.
602 * %WORK_OFFQ_POOL_NONE if none.
603 */
604static int get_work_pool_id(struct work_struct *work)
605{
54d5b7d0
LJ
606 unsigned long data = atomic_long_read(&work->data);
607
112202d9
TH
608 if (data & WORK_STRUCT_PWQ)
609 return ((struct pool_workqueue *)
54d5b7d0 610 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 611
54d5b7d0 612 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
613}
614
bbb68dfa
TH
615static void mark_work_canceling(struct work_struct *work)
616{
7c3eed5c 617 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 618
7c3eed5c
TH
619 pool_id <<= WORK_OFFQ_POOL_SHIFT;
620 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
621}
622
623static bool work_is_canceling(struct work_struct *work)
624{
625 unsigned long data = atomic_long_read(&work->data);
626
112202d9 627 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
628}
629
e22bee78 630/*
3270476a
TH
631 * Policy functions. These define the policies on how the global worker
632 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 633 * they're being called with pool->lock held.
e22bee78
TH
634 */
635
63d95a91 636static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 637{
e19e397a 638 return !atomic_read(&pool->nr_running);
a848e3b6
ON
639}
640
4594bf15 641/*
e22bee78
TH
642 * Need to wake up a worker? Called from anything but currently
643 * running workers.
974271c4
TH
644 *
645 * Note that, because unbound workers never contribute to nr_running, this
706026c2 646 * function will always return %true for unbound pools as long as the
974271c4 647 * worklist isn't empty.
4594bf15 648 */
63d95a91 649static bool need_more_worker(struct worker_pool *pool)
365970a1 650{
63d95a91 651 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 652}
4594bf15 653
e22bee78 654/* Can I start working? Called from busy but !running workers. */
63d95a91 655static bool may_start_working(struct worker_pool *pool)
e22bee78 656{
63d95a91 657 return pool->nr_idle;
e22bee78
TH
658}
659
660/* Do I need to keep working? Called from currently running workers. */
63d95a91 661static bool keep_working(struct worker_pool *pool)
e22bee78 662{
e19e397a
TH
663 return !list_empty(&pool->worklist) &&
664 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
665}
666
667/* Do we need a new worker? Called from manager. */
63d95a91 668static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 671}
365970a1 672
e22bee78 673/* Do I need to be the manager? */
63d95a91 674static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_to_create_worker(pool) ||
11ebea50 677 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
678}
679
680/* Do we have too many workers and should some go away? */
63d95a91 681static bool too_many_workers(struct worker_pool *pool)
e22bee78 682{
34a06bd6 683 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 686
ea1abd61
LJ
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
e22bee78 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
695}
696
4d707b9f 697/*
e22bee78
TH
698 * Wake up functions.
699 */
700
7e11629d 701/* Return the first worker. Safe with preemption disabled */
63d95a91 702static struct worker *first_worker(struct worker_pool *pool)
7e11629d 703{
63d95a91 704 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
705 return NULL;
706
63d95a91 707 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
708}
709
710/**
711 * wake_up_worker - wake up an idle worker
63d95a91 712 * @pool: worker pool to wake worker from
7e11629d 713 *
63d95a91 714 * Wake up the first idle worker of @pool.
7e11629d
TH
715 *
716 * CONTEXT:
d565ed63 717 * spin_lock_irq(pool->lock).
7e11629d 718 */
63d95a91 719static void wake_up_worker(struct worker_pool *pool)
7e11629d 720{
63d95a91 721 struct worker *worker = first_worker(pool);
7e11629d
TH
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725}
726
d302f017 727/**
e22bee78
TH
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
d84ff051 738void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
739{
740 struct worker *worker = kthread_data(task);
741
36576000 742 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 743 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 744 atomic_inc(&worker->pool->nr_running);
36576000 745 }
e22bee78
TH
746}
747
748/**
749 * wq_worker_sleeping - a worker is going to sleep
750 * @task: task going to sleep
751 * @cpu: CPU in question, must be the current CPU number
752 *
753 * This function is called during schedule() when a busy worker is
754 * going to sleep. Worker on the same cpu can be woken up by
755 * returning pointer to its task.
756 *
757 * CONTEXT:
758 * spin_lock_irq(rq->lock)
759 *
760 * RETURNS:
761 * Worker task on @cpu to wake up, %NULL if none.
762 */
d84ff051 763struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
764{
765 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 766 struct worker_pool *pool;
e22bee78 767
111c225a
TH
768 /*
769 * Rescuers, which may not have all the fields set up like normal
770 * workers, also reach here, let's not access anything before
771 * checking NOT_RUNNING.
772 */
2d64672e 773 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
774 return NULL;
775
111c225a 776 pool = worker->pool;
111c225a 777
e22bee78 778 /* this can only happen on the local cpu */
6183c009
TH
779 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
780 return NULL;
e22bee78
TH
781
782 /*
783 * The counterpart of the following dec_and_test, implied mb,
784 * worklist not empty test sequence is in insert_work().
785 * Please read comment there.
786 *
628c78e7
TH
787 * NOT_RUNNING is clear. This means that we're bound to and
788 * running on the local cpu w/ rq lock held and preemption
789 * disabled, which in turn means that none else could be
d565ed63 790 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 791 * lock is safe.
e22bee78 792 */
e19e397a
TH
793 if (atomic_dec_and_test(&pool->nr_running) &&
794 !list_empty(&pool->worklist))
63d95a91 795 to_wakeup = first_worker(pool);
e22bee78
TH
796 return to_wakeup ? to_wakeup->task : NULL;
797}
798
799/**
800 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 801 * @worker: self
d302f017
TH
802 * @flags: flags to set
803 * @wakeup: wakeup an idle worker if necessary
804 *
e22bee78
TH
805 * Set @flags in @worker->flags and adjust nr_running accordingly. If
806 * nr_running becomes zero and @wakeup is %true, an idle worker is
807 * woken up.
d302f017 808 *
cb444766 809 * CONTEXT:
d565ed63 810 * spin_lock_irq(pool->lock)
d302f017
TH
811 */
812static inline void worker_set_flags(struct worker *worker, unsigned int flags,
813 bool wakeup)
814{
bd7bdd43 815 struct worker_pool *pool = worker->pool;
e22bee78 816
cb444766
TH
817 WARN_ON_ONCE(worker->task != current);
818
e22bee78
TH
819 /*
820 * If transitioning into NOT_RUNNING, adjust nr_running and
821 * wake up an idle worker as necessary if requested by
822 * @wakeup.
823 */
824 if ((flags & WORKER_NOT_RUNNING) &&
825 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 826 if (wakeup) {
e19e397a 827 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 828 !list_empty(&pool->worklist))
63d95a91 829 wake_up_worker(pool);
e22bee78 830 } else
e19e397a 831 atomic_dec(&pool->nr_running);
e22bee78
TH
832 }
833
d302f017
TH
834 worker->flags |= flags;
835}
836
837/**
e22bee78 838 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 839 * @worker: self
d302f017
TH
840 * @flags: flags to clear
841 *
e22bee78 842 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 843 *
cb444766 844 * CONTEXT:
d565ed63 845 * spin_lock_irq(pool->lock)
d302f017
TH
846 */
847static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
848{
63d95a91 849 struct worker_pool *pool = worker->pool;
e22bee78
TH
850 unsigned int oflags = worker->flags;
851
cb444766
TH
852 WARN_ON_ONCE(worker->task != current);
853
d302f017 854 worker->flags &= ~flags;
e22bee78 855
42c025f3
TH
856 /*
857 * If transitioning out of NOT_RUNNING, increment nr_running. Note
858 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
859 * of multiple flags, not a single flag.
860 */
e22bee78
TH
861 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
862 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 863 atomic_inc(&pool->nr_running);
d302f017
TH
864}
865
8cca0eea
TH
866/**
867 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 868 * @pool: pool of interest
8cca0eea
TH
869 * @work: work to find worker for
870 *
c9e7cf27
TH
871 * Find a worker which is executing @work on @pool by searching
872 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
873 * to match, its current execution should match the address of @work and
874 * its work function. This is to avoid unwanted dependency between
875 * unrelated work executions through a work item being recycled while still
876 * being executed.
877 *
878 * This is a bit tricky. A work item may be freed once its execution
879 * starts and nothing prevents the freed area from being recycled for
880 * another work item. If the same work item address ends up being reused
881 * before the original execution finishes, workqueue will identify the
882 * recycled work item as currently executing and make it wait until the
883 * current execution finishes, introducing an unwanted dependency.
884 *
885 * This function checks the work item address, work function and workqueue
886 * to avoid false positives. Note that this isn't complete as one may
887 * construct a work function which can introduce dependency onto itself
888 * through a recycled work item. Well, if somebody wants to shoot oneself
889 * in the foot that badly, there's only so much we can do, and if such
890 * deadlock actually occurs, it should be easy to locate the culprit work
891 * function.
8cca0eea
TH
892 *
893 * CONTEXT:
d565ed63 894 * spin_lock_irq(pool->lock).
8cca0eea
TH
895 *
896 * RETURNS:
897 * Pointer to worker which is executing @work if found, NULL
898 * otherwise.
4d707b9f 899 */
c9e7cf27 900static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 901 struct work_struct *work)
4d707b9f 902{
42f8570f 903 struct worker *worker;
42f8570f 904
b67bfe0d 905 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
906 (unsigned long)work)
907 if (worker->current_work == work &&
908 worker->current_func == work->func)
42f8570f
SL
909 return worker;
910
911 return NULL;
4d707b9f
ON
912}
913
bf4ede01
TH
914/**
915 * move_linked_works - move linked works to a list
916 * @work: start of series of works to be scheduled
917 * @head: target list to append @work to
918 * @nextp: out paramter for nested worklist walking
919 *
920 * Schedule linked works starting from @work to @head. Work series to
921 * be scheduled starts at @work and includes any consecutive work with
922 * WORK_STRUCT_LINKED set in its predecessor.
923 *
924 * If @nextp is not NULL, it's updated to point to the next work of
925 * the last scheduled work. This allows move_linked_works() to be
926 * nested inside outer list_for_each_entry_safe().
927 *
928 * CONTEXT:
d565ed63 929 * spin_lock_irq(pool->lock).
bf4ede01
TH
930 */
931static void move_linked_works(struct work_struct *work, struct list_head *head,
932 struct work_struct **nextp)
933{
934 struct work_struct *n;
935
936 /*
937 * Linked worklist will always end before the end of the list,
938 * use NULL for list head.
939 */
940 list_for_each_entry_safe_from(work, n, NULL, entry) {
941 list_move_tail(&work->entry, head);
942 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
943 break;
944 }
945
946 /*
947 * If we're already inside safe list traversal and have moved
948 * multiple works to the scheduled queue, the next position
949 * needs to be updated.
950 */
951 if (nextp)
952 *nextp = n;
953}
954
8864b4e5
TH
955/**
956 * get_pwq - get an extra reference on the specified pool_workqueue
957 * @pwq: pool_workqueue to get
958 *
959 * Obtain an extra reference on @pwq. The caller should guarantee that
960 * @pwq has positive refcnt and be holding the matching pool->lock.
961 */
962static void get_pwq(struct pool_workqueue *pwq)
963{
964 lockdep_assert_held(&pwq->pool->lock);
965 WARN_ON_ONCE(pwq->refcnt <= 0);
966 pwq->refcnt++;
967}
968
969/**
970 * put_pwq - put a pool_workqueue reference
971 * @pwq: pool_workqueue to put
972 *
973 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
974 * destruction. The caller should be holding the matching pool->lock.
975 */
976static void put_pwq(struct pool_workqueue *pwq)
977{
978 lockdep_assert_held(&pwq->pool->lock);
979 if (likely(--pwq->refcnt))
980 return;
981 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
982 return;
983 /*
984 * @pwq can't be released under pool->lock, bounce to
985 * pwq_unbound_release_workfn(). This never recurses on the same
986 * pool->lock as this path is taken only for unbound workqueues and
987 * the release work item is scheduled on a per-cpu workqueue. To
988 * avoid lockdep warning, unbound pool->locks are given lockdep
989 * subclass of 1 in get_unbound_pool().
990 */
991 schedule_work(&pwq->unbound_release_work);
992}
993
112202d9 994static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 995{
112202d9 996 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
997
998 trace_workqueue_activate_work(work);
112202d9 999 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1000 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1001 pwq->nr_active++;
bf4ede01
TH
1002}
1003
112202d9 1004static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1005{
112202d9 1006 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1007 struct work_struct, entry);
1008
112202d9 1009 pwq_activate_delayed_work(work);
3aa62497
LJ
1010}
1011
bf4ede01 1012/**
112202d9
TH
1013 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1014 * @pwq: pwq of interest
bf4ede01 1015 * @color: color of work which left the queue
bf4ede01
TH
1016 *
1017 * A work either has completed or is removed from pending queue,
112202d9 1018 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1019 *
1020 * CONTEXT:
d565ed63 1021 * spin_lock_irq(pool->lock).
bf4ede01 1022 */
112202d9 1023static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1024{
8864b4e5 1025 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1026 if (color == WORK_NO_COLOR)
8864b4e5 1027 goto out_put;
bf4ede01 1028
112202d9 1029 pwq->nr_in_flight[color]--;
bf4ede01 1030
112202d9
TH
1031 pwq->nr_active--;
1032 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1033 /* one down, submit a delayed one */
112202d9
TH
1034 if (pwq->nr_active < pwq->max_active)
1035 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1036 }
1037
1038 /* is flush in progress and are we at the flushing tip? */
112202d9 1039 if (likely(pwq->flush_color != color))
8864b4e5 1040 goto out_put;
bf4ede01
TH
1041
1042 /* are there still in-flight works? */
112202d9 1043 if (pwq->nr_in_flight[color])
8864b4e5 1044 goto out_put;
bf4ede01 1045
112202d9
TH
1046 /* this pwq is done, clear flush_color */
1047 pwq->flush_color = -1;
bf4ede01
TH
1048
1049 /*
112202d9 1050 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1051 * will handle the rest.
1052 */
112202d9
TH
1053 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1054 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1055out_put:
1056 put_pwq(pwq);
bf4ede01
TH
1057}
1058
36e227d2 1059/**
bbb68dfa 1060 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1061 * @work: work item to steal
1062 * @is_dwork: @work is a delayed_work
bbb68dfa 1063 * @flags: place to store irq state
36e227d2
TH
1064 *
1065 * Try to grab PENDING bit of @work. This function can handle @work in any
1066 * stable state - idle, on timer or on worklist. Return values are
1067 *
1068 * 1 if @work was pending and we successfully stole PENDING
1069 * 0 if @work was idle and we claimed PENDING
1070 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1071 * -ENOENT if someone else is canceling @work, this state may persist
1072 * for arbitrarily long
36e227d2 1073 *
bbb68dfa 1074 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1075 * interrupted while holding PENDING and @work off queue, irq must be
1076 * disabled on entry. This, combined with delayed_work->timer being
1077 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1078 *
1079 * On successful return, >= 0, irq is disabled and the caller is
1080 * responsible for releasing it using local_irq_restore(*@flags).
1081 *
e0aecdd8 1082 * This function is safe to call from any context including IRQ handler.
bf4ede01 1083 */
bbb68dfa
TH
1084static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1085 unsigned long *flags)
bf4ede01 1086{
d565ed63 1087 struct worker_pool *pool;
112202d9 1088 struct pool_workqueue *pwq;
bf4ede01 1089
bbb68dfa
TH
1090 local_irq_save(*flags);
1091
36e227d2
TH
1092 /* try to steal the timer if it exists */
1093 if (is_dwork) {
1094 struct delayed_work *dwork = to_delayed_work(work);
1095
e0aecdd8
TH
1096 /*
1097 * dwork->timer is irqsafe. If del_timer() fails, it's
1098 * guaranteed that the timer is not queued anywhere and not
1099 * running on the local CPU.
1100 */
36e227d2
TH
1101 if (likely(del_timer(&dwork->timer)))
1102 return 1;
1103 }
1104
1105 /* try to claim PENDING the normal way */
bf4ede01
TH
1106 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1107 return 0;
1108
1109 /*
1110 * The queueing is in progress, or it is already queued. Try to
1111 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1112 */
d565ed63
TH
1113 pool = get_work_pool(work);
1114 if (!pool)
bbb68dfa 1115 goto fail;
bf4ede01 1116
d565ed63 1117 spin_lock(&pool->lock);
0b3dae68 1118 /*
112202d9
TH
1119 * work->data is guaranteed to point to pwq only while the work
1120 * item is queued on pwq->wq, and both updating work->data to point
1121 * to pwq on queueing and to pool on dequeueing are done under
1122 * pwq->pool->lock. This in turn guarantees that, if work->data
1123 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1124 * item is currently queued on that pool.
1125 */
112202d9
TH
1126 pwq = get_work_pwq(work);
1127 if (pwq && pwq->pool == pool) {
16062836
TH
1128 debug_work_deactivate(work);
1129
1130 /*
1131 * A delayed work item cannot be grabbed directly because
1132 * it might have linked NO_COLOR work items which, if left
112202d9 1133 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1134 * management later on and cause stall. Make sure the work
1135 * item is activated before grabbing.
1136 */
1137 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1138 pwq_activate_delayed_work(work);
16062836
TH
1139
1140 list_del_init(&work->entry);
112202d9 1141 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1142
112202d9 1143 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1144 set_work_pool_and_keep_pending(work, pool->id);
1145
1146 spin_unlock(&pool->lock);
1147 return 1;
bf4ede01 1148 }
d565ed63 1149 spin_unlock(&pool->lock);
bbb68dfa
TH
1150fail:
1151 local_irq_restore(*flags);
1152 if (work_is_canceling(work))
1153 return -ENOENT;
1154 cpu_relax();
36e227d2 1155 return -EAGAIN;
bf4ede01
TH
1156}
1157
4690c4ab 1158/**
706026c2 1159 * insert_work - insert a work into a pool
112202d9 1160 * @pwq: pwq @work belongs to
4690c4ab
TH
1161 * @work: work to insert
1162 * @head: insertion point
1163 * @extra_flags: extra WORK_STRUCT_* flags to set
1164 *
112202d9 1165 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1166 * work_struct flags.
4690c4ab
TH
1167 *
1168 * CONTEXT:
d565ed63 1169 * spin_lock_irq(pool->lock).
4690c4ab 1170 */
112202d9
TH
1171static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1172 struct list_head *head, unsigned int extra_flags)
b89deed3 1173{
112202d9 1174 struct worker_pool *pool = pwq->pool;
e22bee78 1175
4690c4ab 1176 /* we own @work, set data and link */
112202d9 1177 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1178 list_add_tail(&work->entry, head);
8864b4e5 1179 get_pwq(pwq);
e22bee78
TH
1180
1181 /*
1182 * Ensure either worker_sched_deactivated() sees the above
1183 * list_add_tail() or we see zero nr_running to avoid workers
1184 * lying around lazily while there are works to be processed.
1185 */
1186 smp_mb();
1187
63d95a91
TH
1188 if (__need_more_worker(pool))
1189 wake_up_worker(pool);
b89deed3
ON
1190}
1191
c8efcc25
TH
1192/*
1193 * Test whether @work is being queued from another work executing on the
8d03ecfe 1194 * same workqueue.
c8efcc25
TH
1195 */
1196static bool is_chained_work(struct workqueue_struct *wq)
1197{
8d03ecfe
TH
1198 struct worker *worker;
1199
1200 worker = current_wq_worker();
1201 /*
1202 * Return %true iff I'm a worker execuing a work item on @wq. If
1203 * I'm @worker, it's safe to dereference it without locking.
1204 */
112202d9 1205 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1206}
1207
d84ff051 1208static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1209 struct work_struct *work)
1210{
112202d9 1211 struct pool_workqueue *pwq;
c9178087 1212 struct worker_pool *last_pool;
1e19ffc6 1213 struct list_head *worklist;
8a2e8e5d 1214 unsigned int work_flags;
b75cac93 1215 unsigned int req_cpu = cpu;
8930caba
TH
1216
1217 /*
1218 * While a work item is PENDING && off queue, a task trying to
1219 * steal the PENDING will busy-loop waiting for it to either get
1220 * queued or lose PENDING. Grabbing PENDING and queueing should
1221 * happen with IRQ disabled.
1222 */
1223 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1224
dc186ad7 1225 debug_work_activate(work);
1e19ffc6 1226
c8efcc25 1227 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1228 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1229 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1230 return;
1231
c9178087 1232 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1233 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1234 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1235 cpu = raw_smp_processor_id();
7fb98ea7 1236 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1237 } else {
1238 pwq = first_pwq(wq);
1239 }
dbf2576e 1240
c9178087
TH
1241 /*
1242 * If @work was previously on a different pool, it might still be
1243 * running there, in which case the work needs to be queued on that
1244 * pool to guarantee non-reentrancy.
1245 */
1246 last_pool = get_work_pool(work);
1247 if (last_pool && last_pool != pwq->pool) {
1248 struct worker *worker;
18aa9eff 1249
c9178087 1250 spin_lock(&last_pool->lock);
18aa9eff 1251
c9178087 1252 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1253
c9178087
TH
1254 if (worker && worker->current_pwq->wq == wq) {
1255 pwq = worker->current_pwq;
8930caba 1256 } else {
c9178087
TH
1257 /* meh... not running there, queue here */
1258 spin_unlock(&last_pool->lock);
112202d9 1259 spin_lock(&pwq->pool->lock);
8930caba 1260 }
f3421797 1261 } else {
112202d9 1262 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1263 }
1264
112202d9
TH
1265 /* pwq determined, queue */
1266 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1267
f5b2552b 1268 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1269 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1270 return;
1271 }
1e19ffc6 1272
112202d9
TH
1273 pwq->nr_in_flight[pwq->work_color]++;
1274 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1275
112202d9 1276 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1277 trace_workqueue_activate_work(work);
112202d9
TH
1278 pwq->nr_active++;
1279 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1280 } else {
1281 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1282 worklist = &pwq->delayed_works;
8a2e8e5d 1283 }
1e19ffc6 1284
112202d9 1285 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1286
112202d9 1287 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1288}
1289
0fcb78c2 1290/**
c1a220e7
ZR
1291 * queue_work_on - queue work on specific cpu
1292 * @cpu: CPU number to execute work on
0fcb78c2
REB
1293 * @wq: workqueue to use
1294 * @work: work to queue
1295 *
d4283e93 1296 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1297 *
c1a220e7
ZR
1298 * We queue the work to a specific CPU, the caller must ensure it
1299 * can't go away.
1da177e4 1300 */
d4283e93
TH
1301bool queue_work_on(int cpu, struct workqueue_struct *wq,
1302 struct work_struct *work)
1da177e4 1303{
d4283e93 1304 bool ret = false;
8930caba 1305 unsigned long flags;
ef1ca236 1306
8930caba 1307 local_irq_save(flags);
c1a220e7 1308
22df02bb 1309 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1310 __queue_work(cpu, wq, work);
d4283e93 1311 ret = true;
c1a220e7 1312 }
ef1ca236 1313
8930caba 1314 local_irq_restore(flags);
1da177e4
LT
1315 return ret;
1316}
c1a220e7 1317EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1318
c1a220e7 1319/**
0a13c00e 1320 * queue_work - queue work on a workqueue
c1a220e7
ZR
1321 * @wq: workqueue to use
1322 * @work: work to queue
1323 *
d4283e93 1324 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1325 *
0a13c00e
TH
1326 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1327 * it can be processed by another CPU.
c1a220e7 1328 */
d4283e93 1329bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1330{
57469821 1331 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1332}
0a13c00e 1333EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1334
d8e794df 1335void delayed_work_timer_fn(unsigned long __data)
1da177e4 1336{
52bad64d 1337 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1338
e0aecdd8 1339 /* should have been called from irqsafe timer with irq already off */
60c057bc 1340 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1341}
1438ade5 1342EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1343
7beb2edf
TH
1344static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1345 struct delayed_work *dwork, unsigned long delay)
1da177e4 1346{
7beb2edf
TH
1347 struct timer_list *timer = &dwork->timer;
1348 struct work_struct *work = &dwork->work;
7beb2edf
TH
1349
1350 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1351 timer->data != (unsigned long)dwork);
fc4b514f
TH
1352 WARN_ON_ONCE(timer_pending(timer));
1353 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1354
8852aac2
TH
1355 /*
1356 * If @delay is 0, queue @dwork->work immediately. This is for
1357 * both optimization and correctness. The earliest @timer can
1358 * expire is on the closest next tick and delayed_work users depend
1359 * on that there's no such delay when @delay is 0.
1360 */
1361 if (!delay) {
1362 __queue_work(cpu, wq, &dwork->work);
1363 return;
1364 }
1365
7beb2edf 1366 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1367
60c057bc 1368 dwork->wq = wq;
1265057f 1369 dwork->cpu = cpu;
7beb2edf
TH
1370 timer->expires = jiffies + delay;
1371
1372 if (unlikely(cpu != WORK_CPU_UNBOUND))
1373 add_timer_on(timer, cpu);
1374 else
1375 add_timer(timer);
1da177e4
LT
1376}
1377
0fcb78c2
REB
1378/**
1379 * queue_delayed_work_on - queue work on specific CPU after delay
1380 * @cpu: CPU number to execute work on
1381 * @wq: workqueue to use
af9997e4 1382 * @dwork: work to queue
0fcb78c2
REB
1383 * @delay: number of jiffies to wait before queueing
1384 *
715f1300
TH
1385 * Returns %false if @work was already on a queue, %true otherwise. If
1386 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1387 * execution.
0fcb78c2 1388 */
d4283e93
TH
1389bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1390 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1391{
52bad64d 1392 struct work_struct *work = &dwork->work;
d4283e93 1393 bool ret = false;
8930caba 1394 unsigned long flags;
7a6bc1cd 1395
8930caba
TH
1396 /* read the comment in __queue_work() */
1397 local_irq_save(flags);
7a6bc1cd 1398
22df02bb 1399 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1400 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1401 ret = true;
7a6bc1cd 1402 }
8a3e77cc 1403
8930caba 1404 local_irq_restore(flags);
7a6bc1cd
VP
1405 return ret;
1406}
ae90dd5d 1407EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1408
0a13c00e
TH
1409/**
1410 * queue_delayed_work - queue work on a workqueue after delay
1411 * @wq: workqueue to use
1412 * @dwork: delayable work to queue
1413 * @delay: number of jiffies to wait before queueing
1414 *
715f1300 1415 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1416 */
d4283e93 1417bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1418 struct delayed_work *dwork, unsigned long delay)
1419{
57469821 1420 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1421}
1422EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1423
8376fe22
TH
1424/**
1425 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1426 * @cpu: CPU number to execute work on
1427 * @wq: workqueue to use
1428 * @dwork: work to queue
1429 * @delay: number of jiffies to wait before queueing
1430 *
1431 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1432 * modify @dwork's timer so that it expires after @delay. If @delay is
1433 * zero, @work is guaranteed to be scheduled immediately regardless of its
1434 * current state.
1435 *
1436 * Returns %false if @dwork was idle and queued, %true if @dwork was
1437 * pending and its timer was modified.
1438 *
e0aecdd8 1439 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1440 * See try_to_grab_pending() for details.
1441 */
1442bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1443 struct delayed_work *dwork, unsigned long delay)
1444{
1445 unsigned long flags;
1446 int ret;
c7fc77f7 1447
8376fe22
TH
1448 do {
1449 ret = try_to_grab_pending(&dwork->work, true, &flags);
1450 } while (unlikely(ret == -EAGAIN));
63bc0362 1451
8376fe22
TH
1452 if (likely(ret >= 0)) {
1453 __queue_delayed_work(cpu, wq, dwork, delay);
1454 local_irq_restore(flags);
7a6bc1cd 1455 }
8376fe22
TH
1456
1457 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1458 return ret;
1459}
8376fe22
TH
1460EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1461
1462/**
1463 * mod_delayed_work - modify delay of or queue a delayed work
1464 * @wq: workqueue to use
1465 * @dwork: work to queue
1466 * @delay: number of jiffies to wait before queueing
1467 *
1468 * mod_delayed_work_on() on local CPU.
1469 */
1470bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1471 unsigned long delay)
1472{
1473 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1474}
1475EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1476
c8e55f36
TH
1477/**
1478 * worker_enter_idle - enter idle state
1479 * @worker: worker which is entering idle state
1480 *
1481 * @worker is entering idle state. Update stats and idle timer if
1482 * necessary.
1483 *
1484 * LOCKING:
d565ed63 1485 * spin_lock_irq(pool->lock).
c8e55f36
TH
1486 */
1487static void worker_enter_idle(struct worker *worker)
1da177e4 1488{
bd7bdd43 1489 struct worker_pool *pool = worker->pool;
c8e55f36 1490
6183c009
TH
1491 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1492 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1493 (worker->hentry.next || worker->hentry.pprev)))
1494 return;
c8e55f36 1495
cb444766
TH
1496 /* can't use worker_set_flags(), also called from start_worker() */
1497 worker->flags |= WORKER_IDLE;
bd7bdd43 1498 pool->nr_idle++;
e22bee78 1499 worker->last_active = jiffies;
c8e55f36
TH
1500
1501 /* idle_list is LIFO */
bd7bdd43 1502 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1503
628c78e7
TH
1504 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1505 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1506
544ecf31 1507 /*
706026c2 1508 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1509 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1510 * nr_running, the warning may trigger spuriously. Check iff
1511 * unbind is not in progress.
544ecf31 1512 */
24647570 1513 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1514 pool->nr_workers == pool->nr_idle &&
e19e397a 1515 atomic_read(&pool->nr_running));
c8e55f36
TH
1516}
1517
1518/**
1519 * worker_leave_idle - leave idle state
1520 * @worker: worker which is leaving idle state
1521 *
1522 * @worker is leaving idle state. Update stats.
1523 *
1524 * LOCKING:
d565ed63 1525 * spin_lock_irq(pool->lock).
c8e55f36
TH
1526 */
1527static void worker_leave_idle(struct worker *worker)
1528{
bd7bdd43 1529 struct worker_pool *pool = worker->pool;
c8e55f36 1530
6183c009
TH
1531 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1532 return;
d302f017 1533 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1534 pool->nr_idle--;
c8e55f36
TH
1535 list_del_init(&worker->entry);
1536}
1537
e22bee78 1538/**
f36dc67b
LJ
1539 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1540 * @pool: target worker_pool
1541 *
1542 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1543 *
1544 * Works which are scheduled while the cpu is online must at least be
1545 * scheduled to a worker which is bound to the cpu so that if they are
1546 * flushed from cpu callbacks while cpu is going down, they are
1547 * guaranteed to execute on the cpu.
1548 *
f5faa077 1549 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1550 * themselves to the target cpu and may race with cpu going down or
1551 * coming online. kthread_bind() can't be used because it may put the
1552 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1553 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1554 * [dis]associated in the meantime.
1555 *
706026c2 1556 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1557 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1558 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1559 * enters idle state or fetches works without dropping lock, it can
1560 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1561 *
1562 * CONTEXT:
d565ed63 1563 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1564 * held.
1565 *
1566 * RETURNS:
706026c2 1567 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1568 * bound), %false if offline.
1569 */
f36dc67b 1570static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1571__acquires(&pool->lock)
e22bee78 1572{
e22bee78 1573 while (true) {
4e6045f1 1574 /*
e22bee78
TH
1575 * The following call may fail, succeed or succeed
1576 * without actually migrating the task to the cpu if
1577 * it races with cpu hotunplug operation. Verify
24647570 1578 * against POOL_DISASSOCIATED.
4e6045f1 1579 */
24647570 1580 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1581 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1582
d565ed63 1583 spin_lock_irq(&pool->lock);
24647570 1584 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1585 return false;
f5faa077 1586 if (task_cpu(current) == pool->cpu &&
7a4e344c 1587 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1588 return true;
d565ed63 1589 spin_unlock_irq(&pool->lock);
e22bee78 1590
5035b20f
TH
1591 /*
1592 * We've raced with CPU hot[un]plug. Give it a breather
1593 * and retry migration. cond_resched() is required here;
1594 * otherwise, we might deadlock against cpu_stop trying to
1595 * bring down the CPU on non-preemptive kernel.
1596 */
e22bee78 1597 cpu_relax();
5035b20f 1598 cond_resched();
e22bee78
TH
1599 }
1600}
1601
25511a47 1602/*
ea1abd61 1603 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1604 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1605 */
1606static void idle_worker_rebind(struct worker *worker)
1607{
5f7dabfd 1608 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1609 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1610 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1611
ea1abd61
LJ
1612 /* rebind complete, become available again */
1613 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1614 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1615}
1616
e22bee78 1617/*
25511a47 1618 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1619 * the associated cpu which is coming back online. This is scheduled by
1620 * cpu up but can race with other cpu hotplug operations and may be
1621 * executed twice without intervening cpu down.
e22bee78 1622 */
25511a47 1623static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1624{
1625 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1626
f36dc67b 1627 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1628 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1629
d565ed63 1630 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1631}
1632
25511a47 1633/**
94cf58bb
TH
1634 * rebind_workers - rebind all workers of a pool to the associated CPU
1635 * @pool: pool of interest
25511a47 1636 *
94cf58bb 1637 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1638 * is different for idle and busy ones.
1639 *
ea1abd61
LJ
1640 * Idle ones will be removed from the idle_list and woken up. They will
1641 * add themselves back after completing rebind. This ensures that the
1642 * idle_list doesn't contain any unbound workers when re-bound busy workers
1643 * try to perform local wake-ups for concurrency management.
25511a47 1644 *
ea1abd61
LJ
1645 * Busy workers can rebind after they finish their current work items.
1646 * Queueing the rebind work item at the head of the scheduled list is
1647 * enough. Note that nr_running will be properly bumped as busy workers
1648 * rebind.
25511a47 1649 *
ea1abd61
LJ
1650 * On return, all non-manager workers are scheduled for rebind - see
1651 * manage_workers() for the manager special case. Any idle worker
1652 * including the manager will not appear on @idle_list until rebind is
1653 * complete, making local wake-ups safe.
25511a47 1654 */
94cf58bb 1655static void rebind_workers(struct worker_pool *pool)
25511a47 1656{
ea1abd61 1657 struct worker *worker, *n;
25511a47
TH
1658 int i;
1659
94cf58bb
TH
1660 lockdep_assert_held(&pool->assoc_mutex);
1661 lockdep_assert_held(&pool->lock);
25511a47 1662
5f7dabfd 1663 /* dequeue and kick idle ones */
94cf58bb
TH
1664 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1665 /*
1666 * idle workers should be off @pool->idle_list until rebind
1667 * is complete to avoid receiving premature local wake-ups.
1668 */
1669 list_del_init(&worker->entry);
25511a47 1670
94cf58bb
TH
1671 /*
1672 * worker_thread() will see the above dequeuing and call
1673 * idle_worker_rebind().
1674 */
1675 wake_up_process(worker->task);
1676 }
25511a47 1677
94cf58bb 1678 /* rebind busy workers */
b67bfe0d 1679 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1680 struct work_struct *rebind_work = &worker->rebind_work;
1681 struct workqueue_struct *wq;
25511a47 1682
94cf58bb
TH
1683 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1684 work_data_bits(rebind_work)))
1685 continue;
25511a47 1686
94cf58bb 1687 debug_work_activate(rebind_work);
90beca5d 1688
94cf58bb
TH
1689 /*
1690 * wq doesn't really matter but let's keep @worker->pool
112202d9 1691 * and @pwq->pool consistent for sanity.
94cf58bb 1692 */
7a4e344c 1693 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1694 wq = system_highpri_wq;
1695 else
1696 wq = system_wq;
1697
7fb98ea7 1698 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1699 worker->scheduled.next,
1700 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1701 }
25511a47
TH
1702}
1703
c34056a3
TH
1704static struct worker *alloc_worker(void)
1705{
1706 struct worker *worker;
1707
1708 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1709 if (worker) {
1710 INIT_LIST_HEAD(&worker->entry);
affee4b2 1711 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1712 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1713 /* on creation a worker is in !idle && prep state */
1714 worker->flags = WORKER_PREP;
c8e55f36 1715 }
c34056a3
TH
1716 return worker;
1717}
1718
1719/**
1720 * create_worker - create a new workqueue worker
63d95a91 1721 * @pool: pool the new worker will belong to
c34056a3 1722 *
63d95a91 1723 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1724 * can be started by calling start_worker() or destroyed using
1725 * destroy_worker().
1726 *
1727 * CONTEXT:
1728 * Might sleep. Does GFP_KERNEL allocations.
1729 *
1730 * RETURNS:
1731 * Pointer to the newly created worker.
1732 */
bc2ae0f5 1733static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1734{
7a4e344c 1735 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1736 struct worker *worker = NULL;
f3421797 1737 int id = -1;
c34056a3 1738
d565ed63 1739 spin_lock_irq(&pool->lock);
bd7bdd43 1740 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1741 spin_unlock_irq(&pool->lock);
bd7bdd43 1742 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1743 goto fail;
d565ed63 1744 spin_lock_irq(&pool->lock);
c34056a3 1745 }
d565ed63 1746 spin_unlock_irq(&pool->lock);
c34056a3
TH
1747
1748 worker = alloc_worker();
1749 if (!worker)
1750 goto fail;
1751
bd7bdd43 1752 worker->pool = pool;
c34056a3
TH
1753 worker->id = id;
1754
29c91e99 1755 if (pool->cpu >= 0)
94dcf29a 1756 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1757 worker, cpu_to_node(pool->cpu),
d84ff051 1758 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1759 else
1760 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1761 "kworker/u%d:%d%s",
1762 pool->id, id, pri);
c34056a3
TH
1763 if (IS_ERR(worker->task))
1764 goto fail;
1765
7a4e344c
TH
1766 set_user_nice(worker->task, pool->attrs->nice);
1767 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1768
db7bccf4 1769 /*
7a4e344c
TH
1770 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1771 * cpumask of workqueue workers. This is an abuse. We need
1772 * %PF_NO_SETAFFINITY.
db7bccf4 1773 */
7a4e344c
TH
1774 worker->task->flags |= PF_THREAD_BOUND;
1775
1776 /*
1777 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1778 * remains stable across this function. See the comments above the
1779 * flag definition for details.
1780 */
1781 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1782 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1783
1784 return worker;
1785fail:
1786 if (id >= 0) {
d565ed63 1787 spin_lock_irq(&pool->lock);
bd7bdd43 1788 ida_remove(&pool->worker_ida, id);
d565ed63 1789 spin_unlock_irq(&pool->lock);
c34056a3
TH
1790 }
1791 kfree(worker);
1792 return NULL;
1793}
1794
1795/**
1796 * start_worker - start a newly created worker
1797 * @worker: worker to start
1798 *
706026c2 1799 * Make the pool aware of @worker and start it.
c34056a3
TH
1800 *
1801 * CONTEXT:
d565ed63 1802 * spin_lock_irq(pool->lock).
c34056a3
TH
1803 */
1804static void start_worker(struct worker *worker)
1805{
cb444766 1806 worker->flags |= WORKER_STARTED;
bd7bdd43 1807 worker->pool->nr_workers++;
c8e55f36 1808 worker_enter_idle(worker);
c34056a3
TH
1809 wake_up_process(worker->task);
1810}
1811
1812/**
1813 * destroy_worker - destroy a workqueue worker
1814 * @worker: worker to be destroyed
1815 *
706026c2 1816 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1817 *
1818 * CONTEXT:
d565ed63 1819 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1820 */
1821static void destroy_worker(struct worker *worker)
1822{
bd7bdd43 1823 struct worker_pool *pool = worker->pool;
c34056a3
TH
1824 int id = worker->id;
1825
1826 /* sanity check frenzy */
6183c009
TH
1827 if (WARN_ON(worker->current_work) ||
1828 WARN_ON(!list_empty(&worker->scheduled)))
1829 return;
c34056a3 1830
c8e55f36 1831 if (worker->flags & WORKER_STARTED)
bd7bdd43 1832 pool->nr_workers--;
c8e55f36 1833 if (worker->flags & WORKER_IDLE)
bd7bdd43 1834 pool->nr_idle--;
c8e55f36
TH
1835
1836 list_del_init(&worker->entry);
cb444766 1837 worker->flags |= WORKER_DIE;
c8e55f36 1838
d565ed63 1839 spin_unlock_irq(&pool->lock);
c8e55f36 1840
c34056a3
TH
1841 kthread_stop(worker->task);
1842 kfree(worker);
1843
d565ed63 1844 spin_lock_irq(&pool->lock);
bd7bdd43 1845 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1846}
1847
63d95a91 1848static void idle_worker_timeout(unsigned long __pool)
e22bee78 1849{
63d95a91 1850 struct worker_pool *pool = (void *)__pool;
e22bee78 1851
d565ed63 1852 spin_lock_irq(&pool->lock);
e22bee78 1853
63d95a91 1854 if (too_many_workers(pool)) {
e22bee78
TH
1855 struct worker *worker;
1856 unsigned long expires;
1857
1858 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1859 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1860 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1861
1862 if (time_before(jiffies, expires))
63d95a91 1863 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1864 else {
1865 /* it's been idle for too long, wake up manager */
11ebea50 1866 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1867 wake_up_worker(pool);
d5abe669 1868 }
e22bee78
TH
1869 }
1870
d565ed63 1871 spin_unlock_irq(&pool->lock);
e22bee78 1872}
d5abe669 1873
493a1724 1874static void send_mayday(struct work_struct *work)
e22bee78 1875{
112202d9
TH
1876 struct pool_workqueue *pwq = get_work_pwq(work);
1877 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1878
1879 lockdep_assert_held(&workqueue_lock);
e22bee78 1880
493008a8 1881 if (!wq->rescuer)
493a1724 1882 return;
e22bee78
TH
1883
1884 /* mayday mayday mayday */
493a1724
TH
1885 if (list_empty(&pwq->mayday_node)) {
1886 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1887 wake_up_process(wq->rescuer->task);
493a1724 1888 }
e22bee78
TH
1889}
1890
706026c2 1891static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1892{
63d95a91 1893 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1894 struct work_struct *work;
1895
493a1724
TH
1896 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1897 spin_lock(&pool->lock);
e22bee78 1898
63d95a91 1899 if (need_to_create_worker(pool)) {
e22bee78
TH
1900 /*
1901 * We've been trying to create a new worker but
1902 * haven't been successful. We might be hitting an
1903 * allocation deadlock. Send distress signals to
1904 * rescuers.
1905 */
63d95a91 1906 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1907 send_mayday(work);
1da177e4 1908 }
e22bee78 1909
493a1724
TH
1910 spin_unlock(&pool->lock);
1911 spin_unlock_irq(&workqueue_lock);
e22bee78 1912
63d95a91 1913 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1914}
1915
e22bee78
TH
1916/**
1917 * maybe_create_worker - create a new worker if necessary
63d95a91 1918 * @pool: pool to create a new worker for
e22bee78 1919 *
63d95a91 1920 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1921 * have at least one idle worker on return from this function. If
1922 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1923 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1924 * possible allocation deadlock.
1925 *
1926 * On return, need_to_create_worker() is guaranteed to be false and
1927 * may_start_working() true.
1928 *
1929 * LOCKING:
d565ed63 1930 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1931 * multiple times. Does GFP_KERNEL allocations. Called only from
1932 * manager.
1933 *
1934 * RETURNS:
d565ed63 1935 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1936 * otherwise.
1937 */
63d95a91 1938static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1939__releases(&pool->lock)
1940__acquires(&pool->lock)
1da177e4 1941{
63d95a91 1942 if (!need_to_create_worker(pool))
e22bee78
TH
1943 return false;
1944restart:
d565ed63 1945 spin_unlock_irq(&pool->lock);
9f9c2364 1946
e22bee78 1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1949
1950 while (true) {
1951 struct worker *worker;
1952
bc2ae0f5 1953 worker = create_worker(pool);
e22bee78 1954 if (worker) {
63d95a91 1955 del_timer_sync(&pool->mayday_timer);
d565ed63 1956 spin_lock_irq(&pool->lock);
e22bee78 1957 start_worker(worker);
6183c009
TH
1958 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1959 goto restart;
e22bee78
TH
1960 return true;
1961 }
1962
63d95a91 1963 if (!need_to_create_worker(pool))
e22bee78 1964 break;
1da177e4 1965
e22bee78
TH
1966 __set_current_state(TASK_INTERRUPTIBLE);
1967 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1968
63d95a91 1969 if (!need_to_create_worker(pool))
e22bee78
TH
1970 break;
1971 }
1972
63d95a91 1973 del_timer_sync(&pool->mayday_timer);
d565ed63 1974 spin_lock_irq(&pool->lock);
63d95a91 1975 if (need_to_create_worker(pool))
e22bee78
TH
1976 goto restart;
1977 return true;
1978}
1979
1980/**
1981 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1982 * @pool: pool to destroy workers for
e22bee78 1983 *
63d95a91 1984 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1985 * IDLE_WORKER_TIMEOUT.
1986 *
1987 * LOCKING:
d565ed63 1988 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1989 * multiple times. Called only from manager.
1990 *
1991 * RETURNS:
d565ed63 1992 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1993 * otherwise.
1994 */
63d95a91 1995static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1996{
1997 bool ret = false;
1da177e4 1998
63d95a91 1999 while (too_many_workers(pool)) {
e22bee78
TH
2000 struct worker *worker;
2001 unsigned long expires;
3af24433 2002
63d95a91 2003 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2004 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2005
e22bee78 2006 if (time_before(jiffies, expires)) {
63d95a91 2007 mod_timer(&pool->idle_timer, expires);
3af24433 2008 break;
e22bee78 2009 }
1da177e4 2010
e22bee78
TH
2011 destroy_worker(worker);
2012 ret = true;
1da177e4 2013 }
1e19ffc6 2014
e22bee78 2015 return ret;
1e19ffc6
TH
2016}
2017
73f53c4a 2018/**
e22bee78
TH
2019 * manage_workers - manage worker pool
2020 * @worker: self
73f53c4a 2021 *
706026c2 2022 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2023 * to. At any given time, there can be only zero or one manager per
706026c2 2024 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2025 *
2026 * The caller can safely start processing works on false return. On
2027 * true return, it's guaranteed that need_to_create_worker() is false
2028 * and may_start_working() is true.
73f53c4a
TH
2029 *
2030 * CONTEXT:
d565ed63 2031 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2032 * multiple times. Does GFP_KERNEL allocations.
2033 *
2034 * RETURNS:
d565ed63
TH
2035 * spin_lock_irq(pool->lock) which may be released and regrabbed
2036 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2037 */
e22bee78 2038static bool manage_workers(struct worker *worker)
73f53c4a 2039{
63d95a91 2040 struct worker_pool *pool = worker->pool;
e22bee78 2041 bool ret = false;
73f53c4a 2042
34a06bd6 2043 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2044 return ret;
1e19ffc6 2045
ee378aa4
LJ
2046 /*
2047 * To simplify both worker management and CPU hotplug, hold off
2048 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2049 * grab @pool->manager_arb to achieve this because that can lead to
2050 * idle worker depletion (all become busy thinking someone else is
2051 * managing) which in turn can result in deadlock under extreme
2052 * circumstances. Use @pool->assoc_mutex to synchronize manager
2053 * against CPU hotplug.
ee378aa4 2054 *
b2eb83d1 2055 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2056 * progress. trylock first without dropping @pool->lock.
ee378aa4 2057 */
b2eb83d1 2058 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2059 spin_unlock_irq(&pool->lock);
b2eb83d1 2060 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2061 /*
2062 * CPU hotplug could have happened while we were waiting
b2eb83d1 2063 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2064 * because manager isn't either on idle or busy list, and
706026c2 2065 * @pool's state and ours could have deviated.
ee378aa4 2066 *
b2eb83d1 2067 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2068 * simply try to bind. It will succeed or fail depending
706026c2 2069 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2070 * %WORKER_UNBOUND accordingly.
2071 */
f36dc67b 2072 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2073 worker->flags &= ~WORKER_UNBOUND;
2074 else
2075 worker->flags |= WORKER_UNBOUND;
73f53c4a 2076
ee378aa4
LJ
2077 ret = true;
2078 }
73f53c4a 2079
11ebea50 2080 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2081
2082 /*
e22bee78
TH
2083 * Destroy and then create so that may_start_working() is true
2084 * on return.
73f53c4a 2085 */
63d95a91
TH
2086 ret |= maybe_destroy_workers(pool);
2087 ret |= maybe_create_worker(pool);
e22bee78 2088
b2eb83d1 2089 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2090 mutex_unlock(&pool->manager_arb);
e22bee78 2091 return ret;
73f53c4a
TH
2092}
2093
a62428c0
TH
2094/**
2095 * process_one_work - process single work
c34056a3 2096 * @worker: self
a62428c0
TH
2097 * @work: work to process
2098 *
2099 * Process @work. This function contains all the logics necessary to
2100 * process a single work including synchronization against and
2101 * interaction with other workers on the same cpu, queueing and
2102 * flushing. As long as context requirement is met, any worker can
2103 * call this function to process a work.
2104 *
2105 * CONTEXT:
d565ed63 2106 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2107 */
c34056a3 2108static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2109__releases(&pool->lock)
2110__acquires(&pool->lock)
a62428c0 2111{
112202d9 2112 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2113 struct worker_pool *pool = worker->pool;
112202d9 2114 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2115 int work_color;
7e11629d 2116 struct worker *collision;
a62428c0
TH
2117#ifdef CONFIG_LOCKDEP
2118 /*
2119 * It is permissible to free the struct work_struct from
2120 * inside the function that is called from it, this we need to
2121 * take into account for lockdep too. To avoid bogus "held
2122 * lock freed" warnings as well as problems when looking into
2123 * work->lockdep_map, make a copy and use that here.
2124 */
4d82a1de
PZ
2125 struct lockdep_map lockdep_map;
2126
2127 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2128#endif
6fec10a1
TH
2129 /*
2130 * Ensure we're on the correct CPU. DISASSOCIATED test is
2131 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2132 * unbound or a disassociated pool.
6fec10a1 2133 */
5f7dabfd 2134 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2135 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2136 raw_smp_processor_id() != pool->cpu);
25511a47 2137
7e11629d
TH
2138 /*
2139 * A single work shouldn't be executed concurrently by
2140 * multiple workers on a single cpu. Check whether anyone is
2141 * already processing the work. If so, defer the work to the
2142 * currently executing one.
2143 */
c9e7cf27 2144 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2145 if (unlikely(collision)) {
2146 move_linked_works(work, &collision->scheduled, NULL);
2147 return;
2148 }
2149
8930caba 2150 /* claim and dequeue */
a62428c0 2151 debug_work_deactivate(work);
c9e7cf27 2152 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2153 worker->current_work = work;
a2c1c57b 2154 worker->current_func = work->func;
112202d9 2155 worker->current_pwq = pwq;
73f53c4a 2156 work_color = get_work_color(work);
7a22ad75 2157
a62428c0
TH
2158 list_del_init(&work->entry);
2159
fb0e7beb
TH
2160 /*
2161 * CPU intensive works don't participate in concurrency
2162 * management. They're the scheduler's responsibility.
2163 */
2164 if (unlikely(cpu_intensive))
2165 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2166
974271c4 2167 /*
d565ed63 2168 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2169 * executed ASAP. Wake up another worker if necessary.
2170 */
63d95a91
TH
2171 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2172 wake_up_worker(pool);
974271c4 2173
8930caba 2174 /*
7c3eed5c 2175 * Record the last pool and clear PENDING which should be the last
d565ed63 2176 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2177 * PENDING and queued state changes happen together while IRQ is
2178 * disabled.
8930caba 2179 */
7c3eed5c 2180 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2181
d565ed63 2182 spin_unlock_irq(&pool->lock);
a62428c0 2183
112202d9 2184 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2185 lock_map_acquire(&lockdep_map);
e36c886a 2186 trace_workqueue_execute_start(work);
a2c1c57b 2187 worker->current_func(work);
e36c886a
AV
2188 /*
2189 * While we must be careful to not use "work" after this, the trace
2190 * point will only record its address.
2191 */
2192 trace_workqueue_execute_end(work);
a62428c0 2193 lock_map_release(&lockdep_map);
112202d9 2194 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2195
2196 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2197 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2198 " last function: %pf\n",
a2c1c57b
TH
2199 current->comm, preempt_count(), task_pid_nr(current),
2200 worker->current_func);
a62428c0
TH
2201 debug_show_held_locks(current);
2202 dump_stack();
2203 }
2204
d565ed63 2205 spin_lock_irq(&pool->lock);
a62428c0 2206
fb0e7beb
TH
2207 /* clear cpu intensive status */
2208 if (unlikely(cpu_intensive))
2209 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2210
a62428c0 2211 /* we're done with it, release */
42f8570f 2212 hash_del(&worker->hentry);
c34056a3 2213 worker->current_work = NULL;
a2c1c57b 2214 worker->current_func = NULL;
112202d9
TH
2215 worker->current_pwq = NULL;
2216 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2217}
2218
affee4b2
TH
2219/**
2220 * process_scheduled_works - process scheduled works
2221 * @worker: self
2222 *
2223 * Process all scheduled works. Please note that the scheduled list
2224 * may change while processing a work, so this function repeatedly
2225 * fetches a work from the top and executes it.
2226 *
2227 * CONTEXT:
d565ed63 2228 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2229 * multiple times.
2230 */
2231static void process_scheduled_works(struct worker *worker)
1da177e4 2232{
affee4b2
TH
2233 while (!list_empty(&worker->scheduled)) {
2234 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2235 struct work_struct, entry);
c34056a3 2236 process_one_work(worker, work);
1da177e4 2237 }
1da177e4
LT
2238}
2239
4690c4ab
TH
2240/**
2241 * worker_thread - the worker thread function
c34056a3 2242 * @__worker: self
4690c4ab 2243 *
706026c2
TH
2244 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2245 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2246 * their specific target workqueue. The only exception is works which
2247 * belong to workqueues with a rescuer which will be explained in
2248 * rescuer_thread().
4690c4ab 2249 */
c34056a3 2250static int worker_thread(void *__worker)
1da177e4 2251{
c34056a3 2252 struct worker *worker = __worker;
bd7bdd43 2253 struct worker_pool *pool = worker->pool;
1da177e4 2254
e22bee78
TH
2255 /* tell the scheduler that this is a workqueue worker */
2256 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2257woke_up:
d565ed63 2258 spin_lock_irq(&pool->lock);
1da177e4 2259
5f7dabfd
LJ
2260 /* we are off idle list if destruction or rebind is requested */
2261 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2262 spin_unlock_irq(&pool->lock);
25511a47 2263
5f7dabfd 2264 /* if DIE is set, destruction is requested */
25511a47
TH
2265 if (worker->flags & WORKER_DIE) {
2266 worker->task->flags &= ~PF_WQ_WORKER;
2267 return 0;
2268 }
2269
5f7dabfd 2270 /* otherwise, rebind */
25511a47
TH
2271 idle_worker_rebind(worker);
2272 goto woke_up;
c8e55f36 2273 }
affee4b2 2274
c8e55f36 2275 worker_leave_idle(worker);
db7bccf4 2276recheck:
e22bee78 2277 /* no more worker necessary? */
63d95a91 2278 if (!need_more_worker(pool))
e22bee78
TH
2279 goto sleep;
2280
2281 /* do we need to manage? */
63d95a91 2282 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2283 goto recheck;
2284
c8e55f36
TH
2285 /*
2286 * ->scheduled list can only be filled while a worker is
2287 * preparing to process a work or actually processing it.
2288 * Make sure nobody diddled with it while I was sleeping.
2289 */
6183c009 2290 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2291
e22bee78
TH
2292 /*
2293 * When control reaches this point, we're guaranteed to have
2294 * at least one idle worker or that someone else has already
2295 * assumed the manager role.
2296 */
2297 worker_clr_flags(worker, WORKER_PREP);
2298
2299 do {
c8e55f36 2300 struct work_struct *work =
bd7bdd43 2301 list_first_entry(&pool->worklist,
c8e55f36
TH
2302 struct work_struct, entry);
2303
2304 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2305 /* optimization path, not strictly necessary */
2306 process_one_work(worker, work);
2307 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2308 process_scheduled_works(worker);
c8e55f36
TH
2309 } else {
2310 move_linked_works(work, &worker->scheduled, NULL);
2311 process_scheduled_works(worker);
affee4b2 2312 }
63d95a91 2313 } while (keep_working(pool));
e22bee78
TH
2314
2315 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2316sleep:
63d95a91 2317 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2318 goto recheck;
d313dd85 2319
c8e55f36 2320 /*
d565ed63
TH
2321 * pool->lock is held and there's no work to process and no need to
2322 * manage, sleep. Workers are woken up only while holding
2323 * pool->lock or from local cpu, so setting the current state
2324 * before releasing pool->lock is enough to prevent losing any
2325 * event.
c8e55f36
TH
2326 */
2327 worker_enter_idle(worker);
2328 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2329 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2330 schedule();
2331 goto woke_up;
1da177e4
LT
2332}
2333
e22bee78
TH
2334/**
2335 * rescuer_thread - the rescuer thread function
111c225a 2336 * @__rescuer: self
e22bee78
TH
2337 *
2338 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2339 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2340 *
706026c2 2341 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2342 * worker which uses GFP_KERNEL allocation which has slight chance of
2343 * developing into deadlock if some works currently on the same queue
2344 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2345 * the problem rescuer solves.
2346 *
706026c2
TH
2347 * When such condition is possible, the pool summons rescuers of all
2348 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2349 * those works so that forward progress can be guaranteed.
2350 *
2351 * This should happen rarely.
2352 */
111c225a 2353static int rescuer_thread(void *__rescuer)
e22bee78 2354{
111c225a
TH
2355 struct worker *rescuer = __rescuer;
2356 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2357 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2358
2359 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2360
2361 /*
2362 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2363 * doesn't participate in concurrency management.
2364 */
2365 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2366repeat:
2367 set_current_state(TASK_INTERRUPTIBLE);
2368
412d32e6
MG
2369 if (kthread_should_stop()) {
2370 __set_current_state(TASK_RUNNING);
111c225a 2371 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2372 return 0;
412d32e6 2373 }
e22bee78 2374
493a1724
TH
2375 /* see whether any pwq is asking for help */
2376 spin_lock_irq(&workqueue_lock);
2377
2378 while (!list_empty(&wq->maydays)) {
2379 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2380 struct pool_workqueue, mayday_node);
112202d9 2381 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2382 struct work_struct *work, *n;
2383
2384 __set_current_state(TASK_RUNNING);
493a1724
TH
2385 list_del_init(&pwq->mayday_node);
2386
2387 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2388
2389 /* migrate to the target cpu if possible */
f36dc67b 2390 worker_maybe_bind_and_lock(pool);
b3104104 2391 rescuer->pool = pool;
e22bee78
TH
2392
2393 /*
2394 * Slurp in all works issued via this workqueue and
2395 * process'em.
2396 */
6183c009 2397 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2398 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2399 if (get_work_pwq(work) == pwq)
e22bee78
TH
2400 move_linked_works(work, scheduled, &n);
2401
2402 process_scheduled_works(rescuer);
7576958a
TH
2403
2404 /*
d565ed63 2405 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2406 * regular worker; otherwise, we end up with 0 concurrency
2407 * and stalling the execution.
2408 */
63d95a91
TH
2409 if (keep_working(pool))
2410 wake_up_worker(pool);
7576958a 2411
b3104104 2412 rescuer->pool = NULL;
493a1724
TH
2413 spin_unlock(&pool->lock);
2414 spin_lock(&workqueue_lock);
e22bee78
TH
2415 }
2416
493a1724
TH
2417 spin_unlock_irq(&workqueue_lock);
2418
111c225a
TH
2419 /* rescuers should never participate in concurrency management */
2420 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2421 schedule();
2422 goto repeat;
1da177e4
LT
2423}
2424
fc2e4d70
ON
2425struct wq_barrier {
2426 struct work_struct work;
2427 struct completion done;
2428};
2429
2430static void wq_barrier_func(struct work_struct *work)
2431{
2432 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2433 complete(&barr->done);
2434}
2435
4690c4ab
TH
2436/**
2437 * insert_wq_barrier - insert a barrier work
112202d9 2438 * @pwq: pwq to insert barrier into
4690c4ab 2439 * @barr: wq_barrier to insert
affee4b2
TH
2440 * @target: target work to attach @barr to
2441 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2442 *
affee4b2
TH
2443 * @barr is linked to @target such that @barr is completed only after
2444 * @target finishes execution. Please note that the ordering
2445 * guarantee is observed only with respect to @target and on the local
2446 * cpu.
2447 *
2448 * Currently, a queued barrier can't be canceled. This is because
2449 * try_to_grab_pending() can't determine whether the work to be
2450 * grabbed is at the head of the queue and thus can't clear LINKED
2451 * flag of the previous work while there must be a valid next work
2452 * after a work with LINKED flag set.
2453 *
2454 * Note that when @worker is non-NULL, @target may be modified
112202d9 2455 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2456 *
2457 * CONTEXT:
d565ed63 2458 * spin_lock_irq(pool->lock).
4690c4ab 2459 */
112202d9 2460static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2461 struct wq_barrier *barr,
2462 struct work_struct *target, struct worker *worker)
fc2e4d70 2463{
affee4b2
TH
2464 struct list_head *head;
2465 unsigned int linked = 0;
2466
dc186ad7 2467 /*
d565ed63 2468 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2469 * as we know for sure that this will not trigger any of the
2470 * checks and call back into the fixup functions where we
2471 * might deadlock.
2472 */
ca1cab37 2473 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2474 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2475 init_completion(&barr->done);
83c22520 2476
affee4b2
TH
2477 /*
2478 * If @target is currently being executed, schedule the
2479 * barrier to the worker; otherwise, put it after @target.
2480 */
2481 if (worker)
2482 head = worker->scheduled.next;
2483 else {
2484 unsigned long *bits = work_data_bits(target);
2485
2486 head = target->entry.next;
2487 /* there can already be other linked works, inherit and set */
2488 linked = *bits & WORK_STRUCT_LINKED;
2489 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2490 }
2491
dc186ad7 2492 debug_work_activate(&barr->work);
112202d9 2493 insert_work(pwq, &barr->work, head,
affee4b2 2494 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2495}
2496
73f53c4a 2497/**
112202d9 2498 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2499 * @wq: workqueue being flushed
2500 * @flush_color: new flush color, < 0 for no-op
2501 * @work_color: new work color, < 0 for no-op
2502 *
112202d9 2503 * Prepare pwqs for workqueue flushing.
73f53c4a 2504 *
112202d9
TH
2505 * If @flush_color is non-negative, flush_color on all pwqs should be
2506 * -1. If no pwq has in-flight commands at the specified color, all
2507 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2508 * has in flight commands, its pwq->flush_color is set to
2509 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2510 * wakeup logic is armed and %true is returned.
2511 *
2512 * The caller should have initialized @wq->first_flusher prior to
2513 * calling this function with non-negative @flush_color. If
2514 * @flush_color is negative, no flush color update is done and %false
2515 * is returned.
2516 *
112202d9 2517 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2518 * work_color which is previous to @work_color and all will be
2519 * advanced to @work_color.
2520 *
2521 * CONTEXT:
2522 * mutex_lock(wq->flush_mutex).
2523 *
2524 * RETURNS:
2525 * %true if @flush_color >= 0 and there's something to flush. %false
2526 * otherwise.
2527 */
112202d9 2528static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2529 int flush_color, int work_color)
1da177e4 2530{
73f53c4a 2531 bool wait = false;
49e3cf44 2532 struct pool_workqueue *pwq;
1da177e4 2533
73f53c4a 2534 if (flush_color >= 0) {
6183c009 2535 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2536 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2537 }
2355b70f 2538
76af4d93
TH
2539 local_irq_disable();
2540
49e3cf44 2541 for_each_pwq(pwq, wq) {
112202d9 2542 struct worker_pool *pool = pwq->pool;
fc2e4d70 2543
76af4d93 2544 spin_lock(&pool->lock);
83c22520 2545
73f53c4a 2546 if (flush_color >= 0) {
6183c009 2547 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2548
112202d9
TH
2549 if (pwq->nr_in_flight[flush_color]) {
2550 pwq->flush_color = flush_color;
2551 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2552 wait = true;
2553 }
2554 }
1da177e4 2555
73f53c4a 2556 if (work_color >= 0) {
6183c009 2557 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2558 pwq->work_color = work_color;
73f53c4a 2559 }
1da177e4 2560
76af4d93 2561 spin_unlock(&pool->lock);
1da177e4 2562 }
2355b70f 2563
76af4d93
TH
2564 local_irq_enable();
2565
112202d9 2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2567 complete(&wq->first_flusher->done);
14441960 2568
73f53c4a 2569 return wait;
1da177e4
LT
2570}
2571
0fcb78c2 2572/**
1da177e4 2573 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2574 * @wq: workqueue to flush
1da177e4
LT
2575 *
2576 * Forces execution of the workqueue and blocks until its completion.
2577 * This is typically used in driver shutdown handlers.
2578 *
fc2e4d70
ON
2579 * We sleep until all works which were queued on entry have been handled,
2580 * but we are not livelocked by new incoming ones.
1da177e4 2581 */
7ad5b3a5 2582void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2583{
73f53c4a
TH
2584 struct wq_flusher this_flusher = {
2585 .list = LIST_HEAD_INIT(this_flusher.list),
2586 .flush_color = -1,
2587 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2588 };
2589 int next_color;
1da177e4 2590
3295f0ef
IM
2591 lock_map_acquire(&wq->lockdep_map);
2592 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2593
2594 mutex_lock(&wq->flush_mutex);
2595
2596 /*
2597 * Start-to-wait phase
2598 */
2599 next_color = work_next_color(wq->work_color);
2600
2601 if (next_color != wq->flush_color) {
2602 /*
2603 * Color space is not full. The current work_color
2604 * becomes our flush_color and work_color is advanced
2605 * by one.
2606 */
6183c009 2607 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2608 this_flusher.flush_color = wq->work_color;
2609 wq->work_color = next_color;
2610
2611 if (!wq->first_flusher) {
2612 /* no flush in progress, become the first flusher */
6183c009 2613 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2614
2615 wq->first_flusher = &this_flusher;
2616
112202d9 2617 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2618 wq->work_color)) {
2619 /* nothing to flush, done */
2620 wq->flush_color = next_color;
2621 wq->first_flusher = NULL;
2622 goto out_unlock;
2623 }
2624 } else {
2625 /* wait in queue */
6183c009 2626 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2627 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2628 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2629 }
2630 } else {
2631 /*
2632 * Oops, color space is full, wait on overflow queue.
2633 * The next flush completion will assign us
2634 * flush_color and transfer to flusher_queue.
2635 */
2636 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637 }
2638
2639 mutex_unlock(&wq->flush_mutex);
2640
2641 wait_for_completion(&this_flusher.done);
2642
2643 /*
2644 * Wake-up-and-cascade phase
2645 *
2646 * First flushers are responsible for cascading flushes and
2647 * handling overflow. Non-first flushers can simply return.
2648 */
2649 if (wq->first_flusher != &this_flusher)
2650 return;
2651
2652 mutex_lock(&wq->flush_mutex);
2653
4ce48b37
TH
2654 /* we might have raced, check again with mutex held */
2655 if (wq->first_flusher != &this_flusher)
2656 goto out_unlock;
2657
73f53c4a
TH
2658 wq->first_flusher = NULL;
2659
6183c009
TH
2660 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2661 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2662
2663 while (true) {
2664 struct wq_flusher *next, *tmp;
2665
2666 /* complete all the flushers sharing the current flush color */
2667 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2668 if (next->flush_color != wq->flush_color)
2669 break;
2670 list_del_init(&next->list);
2671 complete(&next->done);
2672 }
2673
6183c009
TH
2674 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2675 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2676
2677 /* this flush_color is finished, advance by one */
2678 wq->flush_color = work_next_color(wq->flush_color);
2679
2680 /* one color has been freed, handle overflow queue */
2681 if (!list_empty(&wq->flusher_overflow)) {
2682 /*
2683 * Assign the same color to all overflowed
2684 * flushers, advance work_color and append to
2685 * flusher_queue. This is the start-to-wait
2686 * phase for these overflowed flushers.
2687 */
2688 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2689 tmp->flush_color = wq->work_color;
2690
2691 wq->work_color = work_next_color(wq->work_color);
2692
2693 list_splice_tail_init(&wq->flusher_overflow,
2694 &wq->flusher_queue);
112202d9 2695 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2696 }
2697
2698 if (list_empty(&wq->flusher_queue)) {
6183c009 2699 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2700 break;
2701 }
2702
2703 /*
2704 * Need to flush more colors. Make the next flusher
112202d9 2705 * the new first flusher and arm pwqs.
73f53c4a 2706 */
6183c009
TH
2707 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2708 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2709
2710 list_del_init(&next->list);
2711 wq->first_flusher = next;
2712
112202d9 2713 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2714 break;
2715
2716 /*
2717 * Meh... this color is already done, clear first
2718 * flusher and repeat cascading.
2719 */
2720 wq->first_flusher = NULL;
2721 }
2722
2723out_unlock:
2724 mutex_unlock(&wq->flush_mutex);
1da177e4 2725}
ae90dd5d 2726EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2727
9c5a2ba7
TH
2728/**
2729 * drain_workqueue - drain a workqueue
2730 * @wq: workqueue to drain
2731 *
2732 * Wait until the workqueue becomes empty. While draining is in progress,
2733 * only chain queueing is allowed. IOW, only currently pending or running
2734 * work items on @wq can queue further work items on it. @wq is flushed
2735 * repeatedly until it becomes empty. The number of flushing is detemined
2736 * by the depth of chaining and should be relatively short. Whine if it
2737 * takes too long.
2738 */
2739void drain_workqueue(struct workqueue_struct *wq)
2740{
2741 unsigned int flush_cnt = 0;
49e3cf44 2742 struct pool_workqueue *pwq;
9c5a2ba7
TH
2743
2744 /*
2745 * __queue_work() needs to test whether there are drainers, is much
2746 * hotter than drain_workqueue() and already looks at @wq->flags.
2747 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2748 */
e98d5b16 2749 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2750 if (!wq->nr_drainers++)
2751 wq->flags |= WQ_DRAINING;
e98d5b16 2752 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2753reflush:
2754 flush_workqueue(wq);
2755
76af4d93
TH
2756 local_irq_disable();
2757
49e3cf44 2758 for_each_pwq(pwq, wq) {
fa2563e4 2759 bool drained;
9c5a2ba7 2760
76af4d93 2761 spin_lock(&pwq->pool->lock);
112202d9 2762 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2763 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2764
2765 if (drained)
9c5a2ba7
TH
2766 continue;
2767
2768 if (++flush_cnt == 10 ||
2769 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2770 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2771 wq->name, flush_cnt);
76af4d93
TH
2772
2773 local_irq_enable();
9c5a2ba7
TH
2774 goto reflush;
2775 }
2776
76af4d93 2777 spin_lock(&workqueue_lock);
9c5a2ba7
TH
2778 if (!--wq->nr_drainers)
2779 wq->flags &= ~WQ_DRAINING;
76af4d93
TH
2780 spin_unlock(&workqueue_lock);
2781
2782 local_irq_enable();
9c5a2ba7
TH
2783}
2784EXPORT_SYMBOL_GPL(drain_workqueue);
2785
606a5020 2786static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2787{
affee4b2 2788 struct worker *worker = NULL;
c9e7cf27 2789 struct worker_pool *pool;
112202d9 2790 struct pool_workqueue *pwq;
db700897
ON
2791
2792 might_sleep();
fa1b54e6
TH
2793
2794 local_irq_disable();
c9e7cf27 2795 pool = get_work_pool(work);
fa1b54e6
TH
2796 if (!pool) {
2797 local_irq_enable();
baf59022 2798 return false;
fa1b54e6 2799 }
db700897 2800
fa1b54e6 2801 spin_lock(&pool->lock);
0b3dae68 2802 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2803 pwq = get_work_pwq(work);
2804 if (pwq) {
2805 if (unlikely(pwq->pool != pool))
4690c4ab 2806 goto already_gone;
606a5020 2807 } else {
c9e7cf27 2808 worker = find_worker_executing_work(pool, work);
affee4b2 2809 if (!worker)
4690c4ab 2810 goto already_gone;
112202d9 2811 pwq = worker->current_pwq;
606a5020 2812 }
db700897 2813
112202d9 2814 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2815 spin_unlock_irq(&pool->lock);
7a22ad75 2816
e159489b
TH
2817 /*
2818 * If @max_active is 1 or rescuer is in use, flushing another work
2819 * item on the same workqueue may lead to deadlock. Make sure the
2820 * flusher is not running on the same workqueue by verifying write
2821 * access.
2822 */
493008a8 2823 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2824 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2825 else
112202d9
TH
2826 lock_map_acquire_read(&pwq->wq->lockdep_map);
2827 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2828
401a8d04 2829 return true;
4690c4ab 2830already_gone:
d565ed63 2831 spin_unlock_irq(&pool->lock);
401a8d04 2832 return false;
db700897 2833}
baf59022
TH
2834
2835/**
2836 * flush_work - wait for a work to finish executing the last queueing instance
2837 * @work: the work to flush
2838 *
606a5020
TH
2839 * Wait until @work has finished execution. @work is guaranteed to be idle
2840 * on return if it hasn't been requeued since flush started.
baf59022
TH
2841 *
2842 * RETURNS:
2843 * %true if flush_work() waited for the work to finish execution,
2844 * %false if it was already idle.
2845 */
2846bool flush_work(struct work_struct *work)
2847{
2848 struct wq_barrier barr;
2849
0976dfc1
SB
2850 lock_map_acquire(&work->lockdep_map);
2851 lock_map_release(&work->lockdep_map);
2852
606a5020 2853 if (start_flush_work(work, &barr)) {
401a8d04
TH
2854 wait_for_completion(&barr.done);
2855 destroy_work_on_stack(&barr.work);
2856 return true;
606a5020 2857 } else {
401a8d04 2858 return false;
6e84d644 2859 }
6e84d644 2860}
606a5020 2861EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2862
36e227d2 2863static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2864{
bbb68dfa 2865 unsigned long flags;
1f1f642e
ON
2866 int ret;
2867
2868 do {
bbb68dfa
TH
2869 ret = try_to_grab_pending(work, is_dwork, &flags);
2870 /*
2871 * If someone else is canceling, wait for the same event it
2872 * would be waiting for before retrying.
2873 */
2874 if (unlikely(ret == -ENOENT))
606a5020 2875 flush_work(work);
1f1f642e
ON
2876 } while (unlikely(ret < 0));
2877
bbb68dfa
TH
2878 /* tell other tasks trying to grab @work to back off */
2879 mark_work_canceling(work);
2880 local_irq_restore(flags);
2881
606a5020 2882 flush_work(work);
7a22ad75 2883 clear_work_data(work);
1f1f642e
ON
2884 return ret;
2885}
2886
6e84d644 2887/**
401a8d04
TH
2888 * cancel_work_sync - cancel a work and wait for it to finish
2889 * @work: the work to cancel
6e84d644 2890 *
401a8d04
TH
2891 * Cancel @work and wait for its execution to finish. This function
2892 * can be used even if the work re-queues itself or migrates to
2893 * another workqueue. On return from this function, @work is
2894 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2895 *
401a8d04
TH
2896 * cancel_work_sync(&delayed_work->work) must not be used for
2897 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2898 *
401a8d04 2899 * The caller must ensure that the workqueue on which @work was last
6e84d644 2900 * queued can't be destroyed before this function returns.
401a8d04
TH
2901 *
2902 * RETURNS:
2903 * %true if @work was pending, %false otherwise.
6e84d644 2904 */
401a8d04 2905bool cancel_work_sync(struct work_struct *work)
6e84d644 2906{
36e227d2 2907 return __cancel_work_timer(work, false);
b89deed3 2908}
28e53bdd 2909EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2910
6e84d644 2911/**
401a8d04
TH
2912 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2913 * @dwork: the delayed work to flush
6e84d644 2914 *
401a8d04
TH
2915 * Delayed timer is cancelled and the pending work is queued for
2916 * immediate execution. Like flush_work(), this function only
2917 * considers the last queueing instance of @dwork.
1f1f642e 2918 *
401a8d04
TH
2919 * RETURNS:
2920 * %true if flush_work() waited for the work to finish execution,
2921 * %false if it was already idle.
6e84d644 2922 */
401a8d04
TH
2923bool flush_delayed_work(struct delayed_work *dwork)
2924{
8930caba 2925 local_irq_disable();
401a8d04 2926 if (del_timer_sync(&dwork->timer))
60c057bc 2927 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2928 local_irq_enable();
401a8d04
TH
2929 return flush_work(&dwork->work);
2930}
2931EXPORT_SYMBOL(flush_delayed_work);
2932
09383498 2933/**
57b30ae7
TH
2934 * cancel_delayed_work - cancel a delayed work
2935 * @dwork: delayed_work to cancel
09383498 2936 *
57b30ae7
TH
2937 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2938 * and canceled; %false if wasn't pending. Note that the work callback
2939 * function may still be running on return, unless it returns %true and the
2940 * work doesn't re-arm itself. Explicitly flush or use
2941 * cancel_delayed_work_sync() to wait on it.
09383498 2942 *
57b30ae7 2943 * This function is safe to call from any context including IRQ handler.
09383498 2944 */
57b30ae7 2945bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2946{
57b30ae7
TH
2947 unsigned long flags;
2948 int ret;
2949
2950 do {
2951 ret = try_to_grab_pending(&dwork->work, true, &flags);
2952 } while (unlikely(ret == -EAGAIN));
2953
2954 if (unlikely(ret < 0))
2955 return false;
2956
7c3eed5c
TH
2957 set_work_pool_and_clear_pending(&dwork->work,
2958 get_work_pool_id(&dwork->work));
57b30ae7 2959 local_irq_restore(flags);
c0158ca6 2960 return ret;
09383498 2961}
57b30ae7 2962EXPORT_SYMBOL(cancel_delayed_work);
09383498 2963
401a8d04
TH
2964/**
2965 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2966 * @dwork: the delayed work cancel
2967 *
2968 * This is cancel_work_sync() for delayed works.
2969 *
2970 * RETURNS:
2971 * %true if @dwork was pending, %false otherwise.
2972 */
2973bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2974{
36e227d2 2975 return __cancel_work_timer(&dwork->work, true);
6e84d644 2976}
f5a421a4 2977EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2978
0fcb78c2 2979/**
c1a220e7
ZR
2980 * schedule_work_on - put work task on a specific cpu
2981 * @cpu: cpu to put the work task on
2982 * @work: job to be done
2983 *
2984 * This puts a job on a specific cpu
2985 */
d4283e93 2986bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2987{
d320c038 2988 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2989}
2990EXPORT_SYMBOL(schedule_work_on);
2991
0fcb78c2 2992/**
0fcb78c2
REB
2993 * schedule_work - put work task in global workqueue
2994 * @work: job to be done
0fcb78c2 2995 *
d4283e93
TH
2996 * Returns %false if @work was already on the kernel-global workqueue and
2997 * %true otherwise.
5b0f437d
BVA
2998 *
2999 * This puts a job in the kernel-global workqueue if it was not already
3000 * queued and leaves it in the same position on the kernel-global
3001 * workqueue otherwise.
0fcb78c2 3002 */
d4283e93 3003bool schedule_work(struct work_struct *work)
1da177e4 3004{
d320c038 3005 return queue_work(system_wq, work);
1da177e4 3006}
ae90dd5d 3007EXPORT_SYMBOL(schedule_work);
1da177e4 3008
0fcb78c2
REB
3009/**
3010 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3011 * @cpu: cpu to use
52bad64d 3012 * @dwork: job to be done
0fcb78c2
REB
3013 * @delay: number of jiffies to wait
3014 *
3015 * After waiting for a given time this puts a job in the kernel-global
3016 * workqueue on the specified CPU.
3017 */
d4283e93
TH
3018bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3019 unsigned long delay)
1da177e4 3020{
d320c038 3021 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3022}
ae90dd5d 3023EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3024
0fcb78c2
REB
3025/**
3026 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3027 * @dwork: job to be done
3028 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3029 *
3030 * After waiting for a given time this puts a job in the kernel-global
3031 * workqueue.
3032 */
d4283e93 3033bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3034{
d320c038 3035 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3036}
ae90dd5d 3037EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3038
b6136773 3039/**
31ddd871 3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3041 * @func: the function to call
b6136773 3042 *
31ddd871
TH
3043 * schedule_on_each_cpu() executes @func on each online CPU using the
3044 * system workqueue and blocks until all CPUs have completed.
b6136773 3045 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3046 *
3047 * RETURNS:
3048 * 0 on success, -errno on failure.
b6136773 3049 */
65f27f38 3050int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3051{
3052 int cpu;
38f51568 3053 struct work_struct __percpu *works;
15316ba8 3054
b6136773
AM
3055 works = alloc_percpu(struct work_struct);
3056 if (!works)
15316ba8 3057 return -ENOMEM;
b6136773 3058
93981800
TH
3059 get_online_cpus();
3060
15316ba8 3061 for_each_online_cpu(cpu) {
9bfb1839
IM
3062 struct work_struct *work = per_cpu_ptr(works, cpu);
3063
3064 INIT_WORK(work, func);
b71ab8c2 3065 schedule_work_on(cpu, work);
65a64464 3066 }
93981800
TH
3067
3068 for_each_online_cpu(cpu)
3069 flush_work(per_cpu_ptr(works, cpu));
3070
95402b38 3071 put_online_cpus();
b6136773 3072 free_percpu(works);
15316ba8
CL
3073 return 0;
3074}
3075
eef6a7d5
AS
3076/**
3077 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3078 *
3079 * Forces execution of the kernel-global workqueue and blocks until its
3080 * completion.
3081 *
3082 * Think twice before calling this function! It's very easy to get into
3083 * trouble if you don't take great care. Either of the following situations
3084 * will lead to deadlock:
3085 *
3086 * One of the work items currently on the workqueue needs to acquire
3087 * a lock held by your code or its caller.
3088 *
3089 * Your code is running in the context of a work routine.
3090 *
3091 * They will be detected by lockdep when they occur, but the first might not
3092 * occur very often. It depends on what work items are on the workqueue and
3093 * what locks they need, which you have no control over.
3094 *
3095 * In most situations flushing the entire workqueue is overkill; you merely
3096 * need to know that a particular work item isn't queued and isn't running.
3097 * In such cases you should use cancel_delayed_work_sync() or
3098 * cancel_work_sync() instead.
3099 */
1da177e4
LT
3100void flush_scheduled_work(void)
3101{
d320c038 3102 flush_workqueue(system_wq);
1da177e4 3103}
ae90dd5d 3104EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3105
1fa44eca
JB
3106/**
3107 * execute_in_process_context - reliably execute the routine with user context
3108 * @fn: the function to execute
1fa44eca
JB
3109 * @ew: guaranteed storage for the execute work structure (must
3110 * be available when the work executes)
3111 *
3112 * Executes the function immediately if process context is available,
3113 * otherwise schedules the function for delayed execution.
3114 *
3115 * Returns: 0 - function was executed
3116 * 1 - function was scheduled for execution
3117 */
65f27f38 3118int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3119{
3120 if (!in_interrupt()) {
65f27f38 3121 fn(&ew->work);
1fa44eca
JB
3122 return 0;
3123 }
3124
65f27f38 3125 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3126 schedule_work(&ew->work);
3127
3128 return 1;
3129}
3130EXPORT_SYMBOL_GPL(execute_in_process_context);
3131
1da177e4
LT
3132int keventd_up(void)
3133{
d320c038 3134 return system_wq != NULL;
1da177e4
LT
3135}
3136
7a4e344c
TH
3137/**
3138 * free_workqueue_attrs - free a workqueue_attrs
3139 * @attrs: workqueue_attrs to free
3140 *
3141 * Undo alloc_workqueue_attrs().
3142 */
3143void free_workqueue_attrs(struct workqueue_attrs *attrs)
3144{
3145 if (attrs) {
3146 free_cpumask_var(attrs->cpumask);
3147 kfree(attrs);
3148 }
3149}
3150
3151/**
3152 * alloc_workqueue_attrs - allocate a workqueue_attrs
3153 * @gfp_mask: allocation mask to use
3154 *
3155 * Allocate a new workqueue_attrs, initialize with default settings and
3156 * return it. Returns NULL on failure.
3157 */
3158struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3159{
3160 struct workqueue_attrs *attrs;
3161
3162 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3163 if (!attrs)
3164 goto fail;
3165 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3166 goto fail;
3167
3168 cpumask_setall(attrs->cpumask);
3169 return attrs;
3170fail:
3171 free_workqueue_attrs(attrs);
3172 return NULL;
3173}
3174
29c91e99
TH
3175static void copy_workqueue_attrs(struct workqueue_attrs *to,
3176 const struct workqueue_attrs *from)
3177{
3178 to->nice = from->nice;
3179 cpumask_copy(to->cpumask, from->cpumask);
3180}
3181
3182/*
3183 * Hacky implementation of jhash of bitmaps which only considers the
3184 * specified number of bits. We probably want a proper implementation in
3185 * include/linux/jhash.h.
3186 */
3187static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3188{
3189 int nr_longs = bits / BITS_PER_LONG;
3190 int nr_leftover = bits % BITS_PER_LONG;
3191 unsigned long leftover = 0;
3192
3193 if (nr_longs)
3194 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3195 if (nr_leftover) {
3196 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3197 hash = jhash(&leftover, sizeof(long), hash);
3198 }
3199 return hash;
3200}
3201
3202/* hash value of the content of @attr */
3203static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3204{
3205 u32 hash = 0;
3206
3207 hash = jhash_1word(attrs->nice, hash);
3208 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3209 return hash;
3210}
3211
3212/* content equality test */
3213static bool wqattrs_equal(const struct workqueue_attrs *a,
3214 const struct workqueue_attrs *b)
3215{
3216 if (a->nice != b->nice)
3217 return false;
3218 if (!cpumask_equal(a->cpumask, b->cpumask))
3219 return false;
3220 return true;
3221}
3222
7a4e344c
TH
3223/**
3224 * init_worker_pool - initialize a newly zalloc'd worker_pool
3225 * @pool: worker_pool to initialize
3226 *
3227 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3228 * Returns 0 on success, -errno on failure. Even on failure, all fields
3229 * inside @pool proper are initialized and put_unbound_pool() can be called
3230 * on @pool safely to release it.
7a4e344c
TH
3231 */
3232static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3233{
3234 spin_lock_init(&pool->lock);
29c91e99
TH
3235 pool->id = -1;
3236 pool->cpu = -1;
4e1a1f9a
TH
3237 pool->flags |= POOL_DISASSOCIATED;
3238 INIT_LIST_HEAD(&pool->worklist);
3239 INIT_LIST_HEAD(&pool->idle_list);
3240 hash_init(pool->busy_hash);
3241
3242 init_timer_deferrable(&pool->idle_timer);
3243 pool->idle_timer.function = idle_worker_timeout;
3244 pool->idle_timer.data = (unsigned long)pool;
3245
3246 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3247 (unsigned long)pool);
3248
3249 mutex_init(&pool->manager_arb);
3250 mutex_init(&pool->assoc_mutex);
3251 ida_init(&pool->worker_ida);
7a4e344c 3252
29c91e99
TH
3253 INIT_HLIST_NODE(&pool->hash_node);
3254 pool->refcnt = 1;
3255
3256 /* shouldn't fail above this point */
7a4e344c
TH
3257 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3258 if (!pool->attrs)
3259 return -ENOMEM;
3260 return 0;
4e1a1f9a
TH
3261}
3262
29c91e99
TH
3263static void rcu_free_pool(struct rcu_head *rcu)
3264{
3265 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3266
3267 ida_destroy(&pool->worker_ida);
3268 free_workqueue_attrs(pool->attrs);
3269 kfree(pool);
3270}
3271
3272/**
3273 * put_unbound_pool - put a worker_pool
3274 * @pool: worker_pool to put
3275 *
3276 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3277 * safe manner.
3278 */
3279static void put_unbound_pool(struct worker_pool *pool)
3280{
3281 struct worker *worker;
3282
3283 spin_lock_irq(&workqueue_lock);
3284 if (--pool->refcnt) {
3285 spin_unlock_irq(&workqueue_lock);
3286 return;
3287 }
3288
3289 /* sanity checks */
3290 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3291 WARN_ON(!list_empty(&pool->worklist))) {
3292 spin_unlock_irq(&workqueue_lock);
3293 return;
3294 }
3295
3296 /* release id and unhash */
3297 if (pool->id >= 0)
3298 idr_remove(&worker_pool_idr, pool->id);
3299 hash_del(&pool->hash_node);
3300
3301 spin_unlock_irq(&workqueue_lock);
3302
3303 /* lock out manager and destroy all workers */
3304 mutex_lock(&pool->manager_arb);
3305 spin_lock_irq(&pool->lock);
3306
3307 while ((worker = first_worker(pool)))
3308 destroy_worker(worker);
3309 WARN_ON(pool->nr_workers || pool->nr_idle);
3310
3311 spin_unlock_irq(&pool->lock);
3312 mutex_unlock(&pool->manager_arb);
3313
3314 /* shut down the timers */
3315 del_timer_sync(&pool->idle_timer);
3316 del_timer_sync(&pool->mayday_timer);
3317
3318 /* sched-RCU protected to allow dereferences from get_work_pool() */
3319 call_rcu_sched(&pool->rcu, rcu_free_pool);
3320}
3321
3322/**
3323 * get_unbound_pool - get a worker_pool with the specified attributes
3324 * @attrs: the attributes of the worker_pool to get
3325 *
3326 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3327 * reference count and return it. If there already is a matching
3328 * worker_pool, it will be used; otherwise, this function attempts to
3329 * create a new one. On failure, returns NULL.
3330 */
3331static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3332{
3333 static DEFINE_MUTEX(create_mutex);
3334 u32 hash = wqattrs_hash(attrs);
3335 struct worker_pool *pool;
3336 struct worker *worker;
3337
3338 mutex_lock(&create_mutex);
3339
3340 /* do we already have a matching pool? */
3341 spin_lock_irq(&workqueue_lock);
3342 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3343 if (wqattrs_equal(pool->attrs, attrs)) {
3344 pool->refcnt++;
3345 goto out_unlock;
3346 }
3347 }
3348 spin_unlock_irq(&workqueue_lock);
3349
3350 /* nope, create a new one */
3351 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3352 if (!pool || init_worker_pool(pool) < 0)
3353 goto fail;
3354
8864b4e5 3355 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3356 copy_workqueue_attrs(pool->attrs, attrs);
3357
3358 if (worker_pool_assign_id(pool) < 0)
3359 goto fail;
3360
3361 /* create and start the initial worker */
3362 worker = create_worker(pool);
3363 if (!worker)
3364 goto fail;
3365
3366 spin_lock_irq(&pool->lock);
3367 start_worker(worker);
3368 spin_unlock_irq(&pool->lock);
3369
3370 /* install */
3371 spin_lock_irq(&workqueue_lock);
3372 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3373out_unlock:
3374 spin_unlock_irq(&workqueue_lock);
3375 mutex_unlock(&create_mutex);
3376 return pool;
3377fail:
3378 mutex_unlock(&create_mutex);
3379 if (pool)
3380 put_unbound_pool(pool);
3381 return NULL;
3382}
3383
8864b4e5
TH
3384static void rcu_free_pwq(struct rcu_head *rcu)
3385{
3386 kmem_cache_free(pwq_cache,
3387 container_of(rcu, struct pool_workqueue, rcu));
3388}
3389
3390/*
3391 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3392 * and needs to be destroyed.
3393 */
3394static void pwq_unbound_release_workfn(struct work_struct *work)
3395{
3396 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3397 unbound_release_work);
3398 struct workqueue_struct *wq = pwq->wq;
3399 struct worker_pool *pool = pwq->pool;
3400
3401 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3402 return;
3403
75ccf595
TH
3404 /*
3405 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3406 * necessary on release but do it anyway. It's easier to verify
3407 * and consistent with the linking path.
3408 */
3409 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3410 spin_lock_irq(&workqueue_lock);
3411 list_del_rcu(&pwq->pwqs_node);
3412 spin_unlock_irq(&workqueue_lock);
75ccf595 3413 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3414
3415 put_unbound_pool(pool);
3416 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3417
3418 /*
3419 * If we're the last pwq going away, @wq is already dead and no one
3420 * is gonna access it anymore. Free it.
3421 */
3422 if (list_empty(&wq->pwqs))
3423 kfree(wq);
3424}
3425
d2c1d404
TH
3426static void init_and_link_pwq(struct pool_workqueue *pwq,
3427 struct workqueue_struct *wq,
3428 struct worker_pool *pool)
3429{
3430 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3431
3432 pwq->pool = pool;
3433 pwq->wq = wq;
3434 pwq->flush_color = -1;
8864b4e5 3435 pwq->refcnt = 1;
d2c1d404
TH
3436 pwq->max_active = wq->saved_max_active;
3437 INIT_LIST_HEAD(&pwq->delayed_works);
3438 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3439 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3440
75ccf595
TH
3441 /*
3442 * Link @pwq and set the matching work_color. This is synchronized
3443 * with flush_mutex to avoid confusing flush_workqueue().
3444 */
3445 mutex_lock(&wq->flush_mutex);
3446 spin_lock_irq(&workqueue_lock);
3447
3448 pwq->work_color = wq->work_color;
d2c1d404 3449 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3450
3451 spin_unlock_irq(&workqueue_lock);
3452 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3453}
3454
30cdf249 3455static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3456{
49e3cf44 3457 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3458 int cpu;
3459
3460 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3461 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3462 if (!wq->cpu_pwqs)
30cdf249
TH
3463 return -ENOMEM;
3464
3465 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3466 struct pool_workqueue *pwq =
3467 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3468 struct worker_pool *cpu_pools =
f02ae73a 3469 per_cpu(cpu_worker_pools, cpu);
f3421797 3470
d2c1d404 3471 init_and_link_pwq(pwq, wq, &cpu_pools[highpri]);
30cdf249
TH
3472 }
3473 } else {
3474 struct pool_workqueue *pwq;
d2c1d404 3475 struct worker_pool *pool;
30cdf249
TH
3476
3477 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3478 if (!pwq)
3479 return -ENOMEM;
3480
d2c1d404
TH
3481 pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
3482 if (!pool) {
29c91e99
TH
3483 kmem_cache_free(pwq_cache, pwq);
3484 return -ENOMEM;
3485 }
3486
d2c1d404 3487 init_and_link_pwq(pwq, wq, pool);
30cdf249
TH
3488 }
3489
3490 return 0;
0f900049
TH
3491}
3492
f3421797
TH
3493static int wq_clamp_max_active(int max_active, unsigned int flags,
3494 const char *name)
b71ab8c2 3495{
f3421797
TH
3496 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3497
3498 if (max_active < 1 || max_active > lim)
044c782c
VI
3499 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3500 max_active, name, 1, lim);
b71ab8c2 3501
f3421797 3502 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3503}
3504
b196be89 3505struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3506 unsigned int flags,
3507 int max_active,
3508 struct lock_class_key *key,
b196be89 3509 const char *lock_name, ...)
1da177e4 3510{
b196be89 3511 va_list args, args1;
1da177e4 3512 struct workqueue_struct *wq;
49e3cf44 3513 struct pool_workqueue *pwq;
b196be89
TH
3514 size_t namelen;
3515
3516 /* determine namelen, allocate wq and format name */
3517 va_start(args, lock_name);
3518 va_copy(args1, args);
3519 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3520
3521 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3522 if (!wq)
d2c1d404 3523 return NULL;
b196be89
TH
3524
3525 vsnprintf(wq->name, namelen, fmt, args1);
3526 va_end(args);
3527 va_end(args1);
1da177e4 3528
d320c038 3529 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3530 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3531
b196be89 3532 /* init wq */
97e37d7b 3533 wq->flags = flags;
a0a1a5fd 3534 wq->saved_max_active = max_active;
73f53c4a 3535 mutex_init(&wq->flush_mutex);
112202d9 3536 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3537 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3538 INIT_LIST_HEAD(&wq->flusher_queue);
3539 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3540 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3541
eb13ba87 3542 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3543 INIT_LIST_HEAD(&wq->list);
3af24433 3544
30cdf249 3545 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3546 goto err_free_wq;
1537663f 3547
493008a8
TH
3548 /*
3549 * Workqueues which may be used during memory reclaim should
3550 * have a rescuer to guarantee forward progress.
3551 */
3552 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3553 struct worker *rescuer;
3554
d2c1d404 3555 rescuer = alloc_worker();
e22bee78 3556 if (!rescuer)
d2c1d404 3557 goto err_destroy;
e22bee78 3558
111c225a
TH
3559 rescuer->rescue_wq = wq;
3560 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3561 wq->name);
d2c1d404
TH
3562 if (IS_ERR(rescuer->task)) {
3563 kfree(rescuer);
3564 goto err_destroy;
3565 }
e22bee78 3566
d2c1d404 3567 wq->rescuer = rescuer;
e22bee78
TH
3568 rescuer->task->flags |= PF_THREAD_BOUND;
3569 wake_up_process(rescuer->task);
3af24433
ON
3570 }
3571
a0a1a5fd
TH
3572 /*
3573 * workqueue_lock protects global freeze state and workqueues
3574 * list. Grab it, set max_active accordingly and add the new
3575 * workqueue to workqueues list.
3576 */
e98d5b16 3577 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3578
58a69cb4 3579 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3580 for_each_pwq(pwq, wq)
3581 pwq->max_active = 0;
a0a1a5fd 3582
1537663f 3583 list_add(&wq->list, &workqueues);
a0a1a5fd 3584
e98d5b16 3585 spin_unlock_irq(&workqueue_lock);
1537663f 3586
3af24433 3587 return wq;
d2c1d404
TH
3588
3589err_free_wq:
3590 kfree(wq);
3591 return NULL;
3592err_destroy:
3593 destroy_workqueue(wq);
4690c4ab 3594 return NULL;
3af24433 3595}
d320c038 3596EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3597
3af24433
ON
3598/**
3599 * destroy_workqueue - safely terminate a workqueue
3600 * @wq: target workqueue
3601 *
3602 * Safely destroy a workqueue. All work currently pending will be done first.
3603 */
3604void destroy_workqueue(struct workqueue_struct *wq)
3605{
49e3cf44 3606 struct pool_workqueue *pwq;
3af24433 3607
9c5a2ba7
TH
3608 /* drain it before proceeding with destruction */
3609 drain_workqueue(wq);
c8efcc25 3610
76af4d93
TH
3611 spin_lock_irq(&workqueue_lock);
3612
6183c009 3613 /* sanity checks */
49e3cf44 3614 for_each_pwq(pwq, wq) {
6183c009
TH
3615 int i;
3616
76af4d93
TH
3617 for (i = 0; i < WORK_NR_COLORS; i++) {
3618 if (WARN_ON(pwq->nr_in_flight[i])) {
3619 spin_unlock_irq(&workqueue_lock);
6183c009 3620 return;
76af4d93
TH
3621 }
3622 }
3623
8864b4e5
TH
3624 if (WARN_ON(pwq->refcnt > 1) ||
3625 WARN_ON(pwq->nr_active) ||
76af4d93
TH
3626 WARN_ON(!list_empty(&pwq->delayed_works))) {
3627 spin_unlock_irq(&workqueue_lock);
6183c009 3628 return;
76af4d93 3629 }
6183c009
TH
3630 }
3631
a0a1a5fd
TH
3632 /*
3633 * wq list is used to freeze wq, remove from list after
3634 * flushing is complete in case freeze races us.
3635 */
d2c1d404 3636 list_del_init(&wq->list);
76af4d93 3637
e98d5b16 3638 spin_unlock_irq(&workqueue_lock);
3af24433 3639
493008a8 3640 if (wq->rescuer) {
e22bee78 3641 kthread_stop(wq->rescuer->task);
8d9df9f0 3642 kfree(wq->rescuer);
493008a8 3643 wq->rescuer = NULL;
e22bee78
TH
3644 }
3645
8864b4e5
TH
3646 if (!(wq->flags & WQ_UNBOUND)) {
3647 /*
3648 * The base ref is never dropped on per-cpu pwqs. Directly
3649 * free the pwqs and wq.
3650 */
3651 free_percpu(wq->cpu_pwqs);
3652 kfree(wq);
3653 } else {
3654 /*
3655 * We're the sole accessor of @wq at this point. Directly
3656 * access the first pwq and put the base ref. As both pwqs
3657 * and pools are sched-RCU protected, the lock operations
3658 * are safe. @wq will be freed when the last pwq is
3659 * released.
3660 */
29c91e99
TH
3661 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3662 pwqs_node);
8864b4e5
TH
3663 spin_lock_irq(&pwq->pool->lock);
3664 put_pwq(pwq);
3665 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3666 }
3af24433
ON
3667}
3668EXPORT_SYMBOL_GPL(destroy_workqueue);
3669
9f4bd4cd 3670/**
112202d9
TH
3671 * pwq_set_max_active - adjust max_active of a pwq
3672 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3673 * @max_active: new max_active value.
3674 *
112202d9 3675 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3676 * increased.
3677 *
3678 * CONTEXT:
d565ed63 3679 * spin_lock_irq(pool->lock).
9f4bd4cd 3680 */
112202d9 3681static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3682{
112202d9 3683 pwq->max_active = max_active;
9f4bd4cd 3684
112202d9
TH
3685 while (!list_empty(&pwq->delayed_works) &&
3686 pwq->nr_active < pwq->max_active)
3687 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3688}
3689
dcd989cb
TH
3690/**
3691 * workqueue_set_max_active - adjust max_active of a workqueue
3692 * @wq: target workqueue
3693 * @max_active: new max_active value.
3694 *
3695 * Set max_active of @wq to @max_active.
3696 *
3697 * CONTEXT:
3698 * Don't call from IRQ context.
3699 */
3700void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3701{
49e3cf44 3702 struct pool_workqueue *pwq;
dcd989cb 3703
f3421797 3704 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3705
e98d5b16 3706 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3707
3708 wq->saved_max_active = max_active;
3709
49e3cf44 3710 for_each_pwq(pwq, wq) {
112202d9 3711 struct worker_pool *pool = pwq->pool;
dcd989cb 3712
e98d5b16 3713 spin_lock(&pool->lock);
dcd989cb 3714
58a69cb4 3715 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3716 !(pool->flags & POOL_FREEZING))
112202d9 3717 pwq_set_max_active(pwq, max_active);
9bfb1839 3718
e98d5b16 3719 spin_unlock(&pool->lock);
65a64464 3720 }
93981800 3721
e98d5b16 3722 spin_unlock_irq(&workqueue_lock);
15316ba8 3723}
dcd989cb 3724EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3725
eef6a7d5 3726/**
dcd989cb
TH
3727 * workqueue_congested - test whether a workqueue is congested
3728 * @cpu: CPU in question
3729 * @wq: target workqueue
eef6a7d5 3730 *
dcd989cb
TH
3731 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3732 * no synchronization around this function and the test result is
3733 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3734 *
dcd989cb
TH
3735 * RETURNS:
3736 * %true if congested, %false otherwise.
eef6a7d5 3737 */
d84ff051 3738bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3739{
7fb98ea7 3740 struct pool_workqueue *pwq;
76af4d93
TH
3741 bool ret;
3742
3743 preempt_disable();
7fb98ea7
TH
3744
3745 if (!(wq->flags & WQ_UNBOUND))
3746 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3747 else
3748 pwq = first_pwq(wq);
dcd989cb 3749
76af4d93
TH
3750 ret = !list_empty(&pwq->delayed_works);
3751 preempt_enable();
3752
3753 return ret;
1da177e4 3754}
dcd989cb 3755EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3756
dcd989cb
TH
3757/**
3758 * work_busy - test whether a work is currently pending or running
3759 * @work: the work to be tested
3760 *
3761 * Test whether @work is currently pending or running. There is no
3762 * synchronization around this function and the test result is
3763 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3764 *
3765 * RETURNS:
3766 * OR'd bitmask of WORK_BUSY_* bits.
3767 */
3768unsigned int work_busy(struct work_struct *work)
1da177e4 3769{
fa1b54e6 3770 struct worker_pool *pool;
dcd989cb
TH
3771 unsigned long flags;
3772 unsigned int ret = 0;
1da177e4 3773
dcd989cb
TH
3774 if (work_pending(work))
3775 ret |= WORK_BUSY_PENDING;
1da177e4 3776
fa1b54e6
TH
3777 local_irq_save(flags);
3778 pool = get_work_pool(work);
038366c5 3779 if (pool) {
fa1b54e6 3780 spin_lock(&pool->lock);
038366c5
LJ
3781 if (find_worker_executing_work(pool, work))
3782 ret |= WORK_BUSY_RUNNING;
fa1b54e6 3783 spin_unlock(&pool->lock);
038366c5 3784 }
fa1b54e6 3785 local_irq_restore(flags);
1da177e4 3786
dcd989cb 3787 return ret;
1da177e4 3788}
dcd989cb 3789EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3790
db7bccf4
TH
3791/*
3792 * CPU hotplug.
3793 *
e22bee78 3794 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3795 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3796 * pool which make migrating pending and scheduled works very
e22bee78 3797 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3798 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3799 * blocked draining impractical.
3800 *
24647570 3801 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3802 * running as an unbound one and allowing it to be reattached later if the
3803 * cpu comes back online.
db7bccf4 3804 */
1da177e4 3805
706026c2 3806static void wq_unbind_fn(struct work_struct *work)
3af24433 3807{
38db41d9 3808 int cpu = smp_processor_id();
4ce62e9e 3809 struct worker_pool *pool;
db7bccf4 3810 struct worker *worker;
db7bccf4 3811 int i;
3af24433 3812
f02ae73a 3813 for_each_cpu_worker_pool(pool, cpu) {
6183c009 3814 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3815
94cf58bb
TH
3816 mutex_lock(&pool->assoc_mutex);
3817 spin_lock_irq(&pool->lock);
3af24433 3818
94cf58bb
TH
3819 /*
3820 * We've claimed all manager positions. Make all workers
3821 * unbound and set DISASSOCIATED. Before this, all workers
3822 * except for the ones which are still executing works from
3823 * before the last CPU down must be on the cpu. After
3824 * this, they may become diasporas.
3825 */
4ce62e9e 3826 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3827 worker->flags |= WORKER_UNBOUND;
3af24433 3828
b67bfe0d 3829 for_each_busy_worker(worker, i, pool)
c9e7cf27 3830 worker->flags |= WORKER_UNBOUND;
06ba38a9 3831
24647570 3832 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3833
94cf58bb
TH
3834 spin_unlock_irq(&pool->lock);
3835 mutex_unlock(&pool->assoc_mutex);
3836 }
628c78e7 3837
e22bee78 3838 /*
403c821d 3839 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3840 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3841 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3842 */
e22bee78 3843 schedule();
06ba38a9 3844
e22bee78 3845 /*
628c78e7
TH
3846 * Sched callbacks are disabled now. Zap nr_running. After this,
3847 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3848 * are always true as long as the worklist is not empty. Pools on
3849 * @cpu now behave as unbound (in terms of concurrency management)
3850 * pools which are served by workers tied to the CPU.
628c78e7
TH
3851 *
3852 * On return from this function, the current worker would trigger
3853 * unbound chain execution of pending work items if other workers
3854 * didn't already.
e22bee78 3855 */
f02ae73a 3856 for_each_cpu_worker_pool(pool, cpu)
e19e397a 3857 atomic_set(&pool->nr_running, 0);
3af24433 3858}
3af24433 3859
8db25e78
TH
3860/*
3861 * Workqueues should be brought up before normal priority CPU notifiers.
3862 * This will be registered high priority CPU notifier.
3863 */
9fdf9b73 3864static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3865 unsigned long action,
3866 void *hcpu)
3af24433 3867{
d84ff051 3868 int cpu = (unsigned long)hcpu;
4ce62e9e 3869 struct worker_pool *pool;
3ce63377 3870
8db25e78 3871 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3872 case CPU_UP_PREPARE:
f02ae73a 3873 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
3874 struct worker *worker;
3875
3876 if (pool->nr_workers)
3877 continue;
3878
3879 worker = create_worker(pool);
3880 if (!worker)
3881 return NOTIFY_BAD;
3882
d565ed63 3883 spin_lock_irq(&pool->lock);
3ce63377 3884 start_worker(worker);
d565ed63 3885 spin_unlock_irq(&pool->lock);
3af24433 3886 }
8db25e78 3887 break;
3af24433 3888
db7bccf4
TH
3889 case CPU_DOWN_FAILED:
3890 case CPU_ONLINE:
f02ae73a 3891 for_each_cpu_worker_pool(pool, cpu) {
94cf58bb
TH
3892 mutex_lock(&pool->assoc_mutex);
3893 spin_lock_irq(&pool->lock);
3894
24647570 3895 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3896 rebind_workers(pool);
3897
3898 spin_unlock_irq(&pool->lock);
3899 mutex_unlock(&pool->assoc_mutex);
3900 }
db7bccf4 3901 break;
00dfcaf7 3902 }
65758202
TH
3903 return NOTIFY_OK;
3904}
3905
3906/*
3907 * Workqueues should be brought down after normal priority CPU notifiers.
3908 * This will be registered as low priority CPU notifier.
3909 */
9fdf9b73 3910static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3911 unsigned long action,
3912 void *hcpu)
3913{
d84ff051 3914 int cpu = (unsigned long)hcpu;
8db25e78
TH
3915 struct work_struct unbind_work;
3916
65758202
TH
3917 switch (action & ~CPU_TASKS_FROZEN) {
3918 case CPU_DOWN_PREPARE:
8db25e78 3919 /* unbinding should happen on the local CPU */
706026c2 3920 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3921 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3922 flush_work(&unbind_work);
3923 break;
65758202
TH
3924 }
3925 return NOTIFY_OK;
3926}
3927
2d3854a3 3928#ifdef CONFIG_SMP
8ccad40d 3929
2d3854a3 3930struct work_for_cpu {
ed48ece2 3931 struct work_struct work;
2d3854a3
RR
3932 long (*fn)(void *);
3933 void *arg;
3934 long ret;
3935};
3936
ed48ece2 3937static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3938{
ed48ece2
TH
3939 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3940
2d3854a3
RR
3941 wfc->ret = wfc->fn(wfc->arg);
3942}
3943
3944/**
3945 * work_on_cpu - run a function in user context on a particular cpu
3946 * @cpu: the cpu to run on
3947 * @fn: the function to run
3948 * @arg: the function arg
3949 *
31ad9081
RR
3950 * This will return the value @fn returns.
3951 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3952 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 3953 */
d84ff051 3954long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 3955{
ed48ece2 3956 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3957
ed48ece2
TH
3958 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3959 schedule_work_on(cpu, &wfc.work);
3960 flush_work(&wfc.work);
2d3854a3
RR
3961 return wfc.ret;
3962}
3963EXPORT_SYMBOL_GPL(work_on_cpu);
3964#endif /* CONFIG_SMP */
3965
a0a1a5fd
TH
3966#ifdef CONFIG_FREEZER
3967
3968/**
3969 * freeze_workqueues_begin - begin freezing workqueues
3970 *
58a69cb4
TH
3971 * Start freezing workqueues. After this function returns, all freezable
3972 * workqueues will queue new works to their frozen_works list instead of
706026c2 3973 * pool->worklist.
a0a1a5fd
TH
3974 *
3975 * CONTEXT:
d565ed63 3976 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3977 */
3978void freeze_workqueues_begin(void)
3979{
17116969 3980 struct worker_pool *pool;
24b8a847
TH
3981 struct workqueue_struct *wq;
3982 struct pool_workqueue *pwq;
17116969 3983 int id;
a0a1a5fd 3984
e98d5b16 3985 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3986
6183c009 3987 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3988 workqueue_freezing = true;
3989
24b8a847 3990 /* set FREEZING */
17116969 3991 for_each_pool(pool, id) {
17116969 3992 spin_lock(&pool->lock);
17116969
TH
3993 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3994 pool->flags |= POOL_FREEZING;
24b8a847
TH
3995 spin_unlock(&pool->lock);
3996 }
a0a1a5fd 3997
24b8a847
TH
3998 /* suppress further executions by setting max_active to zero */
3999 list_for_each_entry(wq, &workqueues, list) {
4000 if (!(wq->flags & WQ_FREEZABLE))
4001 continue;
8b03ae3c 4002
24b8a847
TH
4003 for_each_pwq(pwq, wq) {
4004 spin_lock(&pwq->pool->lock);
4005 pwq->max_active = 0;
4006 spin_unlock(&pwq->pool->lock);
a1056305 4007 }
a0a1a5fd
TH
4008 }
4009
e98d5b16 4010 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4011}
4012
4013/**
58a69cb4 4014 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4015 *
4016 * Check whether freezing is complete. This function must be called
4017 * between freeze_workqueues_begin() and thaw_workqueues().
4018 *
4019 * CONTEXT:
4020 * Grabs and releases workqueue_lock.
4021 *
4022 * RETURNS:
58a69cb4
TH
4023 * %true if some freezable workqueues are still busy. %false if freezing
4024 * is complete.
a0a1a5fd
TH
4025 */
4026bool freeze_workqueues_busy(void)
4027{
a0a1a5fd 4028 bool busy = false;
24b8a847
TH
4029 struct workqueue_struct *wq;
4030 struct pool_workqueue *pwq;
a0a1a5fd 4031
e98d5b16 4032 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4033
6183c009 4034 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4035
24b8a847
TH
4036 list_for_each_entry(wq, &workqueues, list) {
4037 if (!(wq->flags & WQ_FREEZABLE))
4038 continue;
a0a1a5fd
TH
4039 /*
4040 * nr_active is monotonically decreasing. It's safe
4041 * to peek without lock.
4042 */
24b8a847 4043 for_each_pwq(pwq, wq) {
6183c009 4044 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4045 if (pwq->nr_active) {
a0a1a5fd
TH
4046 busy = true;
4047 goto out_unlock;
4048 }
4049 }
4050 }
4051out_unlock:
e98d5b16 4052 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4053 return busy;
4054}
4055
4056/**
4057 * thaw_workqueues - thaw workqueues
4058 *
4059 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4060 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4061 *
4062 * CONTEXT:
d565ed63 4063 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4064 */
4065void thaw_workqueues(void)
4066{
24b8a847
TH
4067 struct workqueue_struct *wq;
4068 struct pool_workqueue *pwq;
4069 struct worker_pool *pool;
4070 int id;
a0a1a5fd 4071
e98d5b16 4072 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4073
4074 if (!workqueue_freezing)
4075 goto out_unlock;
4076
24b8a847
TH
4077 /* clear FREEZING */
4078 for_each_pool(pool, id) {
4079 spin_lock(&pool->lock);
4080 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4081 pool->flags &= ~POOL_FREEZING;
4082 spin_unlock(&pool->lock);
4083 }
8b03ae3c 4084
24b8a847
TH
4085 /* restore max_active and repopulate worklist */
4086 list_for_each_entry(wq, &workqueues, list) {
4087 if (!(wq->flags & WQ_FREEZABLE))
4088 continue;
a1056305 4089
24b8a847
TH
4090 for_each_pwq(pwq, wq) {
4091 spin_lock(&pwq->pool->lock);
4092 pwq_set_max_active(pwq, wq->saved_max_active);
4093 spin_unlock(&pwq->pool->lock);
d565ed63 4094 }
a0a1a5fd
TH
4095 }
4096
24b8a847
TH
4097 /* kick workers */
4098 for_each_pool(pool, id) {
4099 spin_lock(&pool->lock);
4100 wake_up_worker(pool);
4101 spin_unlock(&pool->lock);
4102 }
4103
a0a1a5fd
TH
4104 workqueue_freezing = false;
4105out_unlock:
e98d5b16 4106 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4107}
4108#endif /* CONFIG_FREEZER */
4109
6ee0578b 4110static int __init init_workqueues(void)
1da177e4 4111{
7a4e344c
TH
4112 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4113 int i, cpu;
c34056a3 4114
7c3eed5c
TH
4115 /* make sure we have enough bits for OFFQ pool ID */
4116 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4117 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4118
e904e6c2
TH
4119 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4120
4121 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4122
65758202 4123 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4124 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4125
706026c2 4126 /* initialize CPU pools */
29c91e99 4127 for_each_possible_cpu(cpu) {
4ce62e9e 4128 struct worker_pool *pool;
8b03ae3c 4129
7a4e344c 4130 i = 0;
f02ae73a 4131 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4132 BUG_ON(init_worker_pool(pool));
ec22ca5e 4133 pool->cpu = cpu;
29c91e99 4134 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4135 pool->attrs->nice = std_nice[i++];
4136
9daf9e67
TH
4137 /* alloc pool ID */
4138 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4139 }
8b03ae3c
TH
4140 }
4141
e22bee78 4142 /* create the initial worker */
29c91e99 4143 for_each_online_cpu(cpu) {
4ce62e9e 4144 struct worker_pool *pool;
e22bee78 4145
f02ae73a 4146 for_each_cpu_worker_pool(pool, cpu) {
4ce62e9e
TH
4147 struct worker *worker;
4148
29c91e99 4149 pool->flags &= ~POOL_DISASSOCIATED;
24647570 4150
bc2ae0f5 4151 worker = create_worker(pool);
4ce62e9e 4152 BUG_ON(!worker);
d565ed63 4153 spin_lock_irq(&pool->lock);
4ce62e9e 4154 start_worker(worker);
d565ed63 4155 spin_unlock_irq(&pool->lock);
4ce62e9e 4156 }
e22bee78
TH
4157 }
4158
29c91e99
TH
4159 /* create default unbound wq attrs */
4160 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4161 struct workqueue_attrs *attrs;
4162
4163 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4164
4165 attrs->nice = std_nice[i];
4166 cpumask_setall(attrs->cpumask);
4167
4168 unbound_std_wq_attrs[i] = attrs;
4169 }
4170
d320c038 4171 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4172 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4173 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4174 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4175 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4176 system_freezable_wq = alloc_workqueue("events_freezable",
4177 WQ_FREEZABLE, 0);
1aabe902 4178 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4179 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4180 return 0;
1da177e4 4181}
6ee0578b 4182early_initcall(init_workqueues);