workqueue: introduce WORK_OFFQ_FLAG_*
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
b5490077
TH
536 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued cwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 539 *
8930caba
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
541 * can be used to set the cwq, cpu or clear work->data. These functions
542 * should only be called while the work is owned - ie. while the PENDING
543 * bit is set.
7a22ad75
TH
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
8930caba
TH
565static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
7a22ad75 567{
b5490077 568 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 569}
f756d5e2 570
7a22ad75 571static void clear_work_data(struct work_struct *work)
1da177e4 572{
7a22ad75 573 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
574}
575
7a22ad75 576static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 577{
e120153d 578 unsigned long data = atomic_long_read(&work->data);
7a22ad75 579
e120153d
TH
580 if (data & WORK_STRUCT_CWQ)
581 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
582 else
583 return NULL;
4d707b9f
ON
584}
585
7a22ad75 586static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
589 unsigned int cpu;
590
e120153d
TH
591 if (data & WORK_STRUCT_CWQ)
592 return ((struct cpu_workqueue_struct *)
bd7bdd43 593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 594
b5490077 595 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 596 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
597 return NULL;
598
f3421797 599 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 600 return get_gcwq(cpu);
b1f4ec17
ON
601}
602
e22bee78 603/*
3270476a
TH
604 * Policy functions. These define the policies on how the global worker
605 * pools are managed. Unless noted otherwise, these functions assume that
606 * they're being called with gcwq->lock held.
e22bee78
TH
607 */
608
63d95a91 609static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 610{
3270476a 611 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
612}
613
4594bf15 614/*
e22bee78
TH
615 * Need to wake up a worker? Called from anything but currently
616 * running workers.
974271c4
TH
617 *
618 * Note that, because unbound workers never contribute to nr_running, this
619 * function will always return %true for unbound gcwq as long as the
620 * worklist isn't empty.
4594bf15 621 */
63d95a91 622static bool need_more_worker(struct worker_pool *pool)
365970a1 623{
63d95a91 624 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 625}
4594bf15 626
e22bee78 627/* Can I start working? Called from busy but !running workers. */
63d95a91 628static bool may_start_working(struct worker_pool *pool)
e22bee78 629{
63d95a91 630 return pool->nr_idle;
e22bee78
TH
631}
632
633/* Do I need to keep working? Called from currently running workers. */
63d95a91 634static bool keep_working(struct worker_pool *pool)
e22bee78 635{
63d95a91 636 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 637
3270476a 638 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
639}
640
641/* Do we need a new worker? Called from manager. */
63d95a91 642static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 643{
63d95a91 644 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 645}
365970a1 646
e22bee78 647/* Do I need to be the manager? */
63d95a91 648static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 649{
63d95a91 650 return need_to_create_worker(pool) ||
11ebea50 651 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
652}
653
654/* Do we have too many workers and should some go away? */
63d95a91 655static bool too_many_workers(struct worker_pool *pool)
e22bee78 656{
60373152 657 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
658 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
659 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
660
661 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
662}
663
4d707b9f 664/*
e22bee78
TH
665 * Wake up functions.
666 */
667
7e11629d 668/* Return the first worker. Safe with preemption disabled */
63d95a91 669static struct worker *first_worker(struct worker_pool *pool)
7e11629d 670{
63d95a91 671 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
672 return NULL;
673
63d95a91 674 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
675}
676
677/**
678 * wake_up_worker - wake up an idle worker
63d95a91 679 * @pool: worker pool to wake worker from
7e11629d 680 *
63d95a91 681 * Wake up the first idle worker of @pool.
7e11629d
TH
682 *
683 * CONTEXT:
684 * spin_lock_irq(gcwq->lock).
685 */
63d95a91 686static void wake_up_worker(struct worker_pool *pool)
7e11629d 687{
63d95a91 688 struct worker *worker = first_worker(pool);
7e11629d
TH
689
690 if (likely(worker))
691 wake_up_process(worker->task);
692}
693
d302f017 694/**
e22bee78
TH
695 * wq_worker_waking_up - a worker is waking up
696 * @task: task waking up
697 * @cpu: CPU @task is waking up to
698 *
699 * This function is called during try_to_wake_up() when a worker is
700 * being awoken.
701 *
702 * CONTEXT:
703 * spin_lock_irq(rq->lock)
704 */
705void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706{
707 struct worker *worker = kthread_data(task);
708
2d64672e 709 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 710 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
711}
712
713/**
714 * wq_worker_sleeping - a worker is going to sleep
715 * @task: task going to sleep
716 * @cpu: CPU in question, must be the current CPU number
717 *
718 * This function is called during schedule() when a busy worker is
719 * going to sleep. Worker on the same cpu can be woken up by
720 * returning pointer to its task.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 *
725 * RETURNS:
726 * Worker task on @cpu to wake up, %NULL if none.
727 */
728struct task_struct *wq_worker_sleeping(struct task_struct *task,
729 unsigned int cpu)
730{
731 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 732 struct worker_pool *pool = worker->pool;
63d95a91 733 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 734
2d64672e 735 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
736 return NULL;
737
738 /* this can only happen on the local cpu */
739 BUG_ON(cpu != raw_smp_processor_id());
740
741 /*
742 * The counterpart of the following dec_and_test, implied mb,
743 * worklist not empty test sequence is in insert_work().
744 * Please read comment there.
745 *
628c78e7
TH
746 * NOT_RUNNING is clear. This means that we're bound to and
747 * running on the local cpu w/ rq lock held and preemption
748 * disabled, which in turn means that none else could be
749 * manipulating idle_list, so dereferencing idle_list without gcwq
750 * lock is safe.
e22bee78 751 */
bd7bdd43 752 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 753 to_wakeup = first_worker(pool);
e22bee78
TH
754 return to_wakeup ? to_wakeup->task : NULL;
755}
756
757/**
758 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 759 * @worker: self
d302f017
TH
760 * @flags: flags to set
761 * @wakeup: wakeup an idle worker if necessary
762 *
e22bee78
TH
763 * Set @flags in @worker->flags and adjust nr_running accordingly. If
764 * nr_running becomes zero and @wakeup is %true, an idle worker is
765 * woken up.
d302f017 766 *
cb444766
TH
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
d302f017
TH
769 */
770static inline void worker_set_flags(struct worker *worker, unsigned int flags,
771 bool wakeup)
772{
bd7bdd43 773 struct worker_pool *pool = worker->pool;
e22bee78 774
cb444766
TH
775 WARN_ON_ONCE(worker->task != current);
776
e22bee78
TH
777 /*
778 * If transitioning into NOT_RUNNING, adjust nr_running and
779 * wake up an idle worker as necessary if requested by
780 * @wakeup.
781 */
782 if ((flags & WORKER_NOT_RUNNING) &&
783 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 784 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
785
786 if (wakeup) {
787 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 788 !list_empty(&pool->worklist))
63d95a91 789 wake_up_worker(pool);
e22bee78
TH
790 } else
791 atomic_dec(nr_running);
792 }
793
d302f017
TH
794 worker->flags |= flags;
795}
796
797/**
e22bee78 798 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 799 * @worker: self
d302f017
TH
800 * @flags: flags to clear
801 *
e22bee78 802 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 803 *
cb444766
TH
804 * CONTEXT:
805 * spin_lock_irq(gcwq->lock)
d302f017
TH
806 */
807static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808{
63d95a91 809 struct worker_pool *pool = worker->pool;
e22bee78
TH
810 unsigned int oflags = worker->flags;
811
cb444766
TH
812 WARN_ON_ONCE(worker->task != current);
813
d302f017 814 worker->flags &= ~flags;
e22bee78 815
42c025f3
TH
816 /*
817 * If transitioning out of NOT_RUNNING, increment nr_running. Note
818 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
819 * of multiple flags, not a single flag.
820 */
e22bee78
TH
821 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
822 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 823 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
824}
825
c8e55f36
TH
826/**
827 * busy_worker_head - return the busy hash head for a work
828 * @gcwq: gcwq of interest
829 * @work: work to be hashed
830 *
831 * Return hash head of @gcwq for @work.
832 *
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock).
835 *
836 * RETURNS:
837 * Pointer to the hash head.
838 */
839static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
840 struct work_struct *work)
841{
842 const int base_shift = ilog2(sizeof(struct work_struct));
843 unsigned long v = (unsigned long)work;
844
845 /* simple shift and fold hash, do we need something better? */
846 v >>= base_shift;
847 v += v >> BUSY_WORKER_HASH_ORDER;
848 v &= BUSY_WORKER_HASH_MASK;
849
850 return &gcwq->busy_hash[v];
851}
852
8cca0eea
TH
853/**
854 * __find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @bwh: hash head as returned by busy_worker_head()
857 * @work: work to find worker for
858 *
859 * Find a worker which is executing @work on @gcwq. @bwh should be
860 * the hash head obtained by calling busy_worker_head() with the same
861 * work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to worker which is executing @work if found, NULL
868 * otherwise.
869 */
870static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
871 struct hlist_head *bwh,
872 struct work_struct *work)
873{
874 struct worker *worker;
875 struct hlist_node *tmp;
876
877 hlist_for_each_entry(worker, tmp, bwh, hentry)
878 if (worker->current_work == work)
879 return worker;
880 return NULL;
881}
882
883/**
884 * find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. This function is
889 * identical to __find_worker_executing_work() except that this
890 * function calculates @bwh itself.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
4d707b9f 898 */
8cca0eea
TH
899static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
900 struct work_struct *work)
4d707b9f 901{
8cca0eea
TH
902 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
903 work);
4d707b9f
ON
904}
905
bf4ede01
TH
906/**
907 * move_linked_works - move linked works to a list
908 * @work: start of series of works to be scheduled
909 * @head: target list to append @work to
910 * @nextp: out paramter for nested worklist walking
911 *
912 * Schedule linked works starting from @work to @head. Work series to
913 * be scheduled starts at @work and includes any consecutive work with
914 * WORK_STRUCT_LINKED set in its predecessor.
915 *
916 * If @nextp is not NULL, it's updated to point to the next work of
917 * the last scheduled work. This allows move_linked_works() to be
918 * nested inside outer list_for_each_entry_safe().
919 *
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
922 */
923static void move_linked_works(struct work_struct *work, struct list_head *head,
924 struct work_struct **nextp)
925{
926 struct work_struct *n;
927
928 /*
929 * Linked worklist will always end before the end of the list,
930 * use NULL for list head.
931 */
932 list_for_each_entry_safe_from(work, n, NULL, entry) {
933 list_move_tail(&work->entry, head);
934 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
935 break;
936 }
937
938 /*
939 * If we're already inside safe list traversal and have moved
940 * multiple works to the scheduled queue, the next position
941 * needs to be updated.
942 */
943 if (nextp)
944 *nextp = n;
945}
946
947static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
948{
949 struct work_struct *work = list_first_entry(&cwq->delayed_works,
950 struct work_struct, entry);
951
952 trace_workqueue_activate_work(work);
953 move_linked_works(work, &cwq->pool->worklist, NULL);
954 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
955 cwq->nr_active++;
956}
957
958/**
959 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
960 * @cwq: cwq of interest
961 * @color: color of work which left the queue
962 * @delayed: for a delayed work
963 *
964 * A work either has completed or is removed from pending queue,
965 * decrement nr_in_flight of its cwq and handle workqueue flushing.
966 *
967 * CONTEXT:
968 * spin_lock_irq(gcwq->lock).
969 */
970static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
971 bool delayed)
972{
973 /* ignore uncolored works */
974 if (color == WORK_NO_COLOR)
975 return;
976
977 cwq->nr_in_flight[color]--;
978
979 if (!delayed) {
980 cwq->nr_active--;
981 if (!list_empty(&cwq->delayed_works)) {
982 /* one down, submit a delayed one */
983 if (cwq->nr_active < cwq->max_active)
984 cwq_activate_first_delayed(cwq);
985 }
986 }
987
988 /* is flush in progress and are we at the flushing tip? */
989 if (likely(cwq->flush_color != color))
990 return;
991
992 /* are there still in-flight works? */
993 if (cwq->nr_in_flight[color])
994 return;
995
996 /* this cwq is done, clear flush_color */
997 cwq->flush_color = -1;
998
999 /*
1000 * If this was the last cwq, wake up the first flusher. It
1001 * will handle the rest.
1002 */
1003 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1004 complete(&cwq->wq->first_flusher->done);
1005}
1006
1007/*
1008 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
1009 * so this work can't be re-armed in any way.
1010 */
1011static int try_to_grab_pending(struct work_struct *work)
1012{
1013 struct global_cwq *gcwq;
1014 int ret = -1;
1015
1016 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1017 return 0;
1018
1019 /*
1020 * The queueing is in progress, or it is already queued. Try to
1021 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1022 */
1023 gcwq = get_work_gcwq(work);
1024 if (!gcwq)
1025 return ret;
1026
1027 spin_lock_irq(&gcwq->lock);
1028 if (!list_empty(&work->entry)) {
1029 /*
1030 * This work is queued, but perhaps we locked the wrong gcwq.
1031 * In that case we must see the new value after rmb(), see
1032 * insert_work()->wmb().
1033 */
1034 smp_rmb();
1035 if (gcwq == get_work_gcwq(work)) {
1036 debug_work_deactivate(work);
1037 list_del_init(&work->entry);
1038 cwq_dec_nr_in_flight(get_work_cwq(work),
1039 get_work_color(work),
1040 *work_data_bits(work) & WORK_STRUCT_DELAYED);
1041 ret = 1;
1042 }
1043 }
1044 spin_unlock_irq(&gcwq->lock);
1045
1046 return ret;
1047}
1048
4690c4ab 1049/**
7e11629d 1050 * insert_work - insert a work into gcwq
4690c4ab
TH
1051 * @cwq: cwq @work belongs to
1052 * @work: work to insert
1053 * @head: insertion point
1054 * @extra_flags: extra WORK_STRUCT_* flags to set
1055 *
7e11629d
TH
1056 * Insert @work which belongs to @cwq into @gcwq after @head.
1057 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1058 *
1059 * CONTEXT:
8b03ae3c 1060 * spin_lock_irq(gcwq->lock).
4690c4ab 1061 */
b89deed3 1062static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1063 struct work_struct *work, struct list_head *head,
1064 unsigned int extra_flags)
b89deed3 1065{
63d95a91 1066 struct worker_pool *pool = cwq->pool;
e22bee78 1067
4690c4ab 1068 /* we own @work, set data and link */
7a22ad75 1069 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1070
6e84d644
ON
1071 /*
1072 * Ensure that we get the right work->data if we see the
1073 * result of list_add() below, see try_to_grab_pending().
1074 */
1075 smp_wmb();
4690c4ab 1076
1a4d9b0a 1077 list_add_tail(&work->entry, head);
e22bee78
TH
1078
1079 /*
1080 * Ensure either worker_sched_deactivated() sees the above
1081 * list_add_tail() or we see zero nr_running to avoid workers
1082 * lying around lazily while there are works to be processed.
1083 */
1084 smp_mb();
1085
63d95a91
TH
1086 if (__need_more_worker(pool))
1087 wake_up_worker(pool);
b89deed3
ON
1088}
1089
c8efcc25
TH
1090/*
1091 * Test whether @work is being queued from another work executing on the
1092 * same workqueue. This is rather expensive and should only be used from
1093 * cold paths.
1094 */
1095static bool is_chained_work(struct workqueue_struct *wq)
1096{
1097 unsigned long flags;
1098 unsigned int cpu;
1099
1100 for_each_gcwq_cpu(cpu) {
1101 struct global_cwq *gcwq = get_gcwq(cpu);
1102 struct worker *worker;
1103 struct hlist_node *pos;
1104 int i;
1105
1106 spin_lock_irqsave(&gcwq->lock, flags);
1107 for_each_busy_worker(worker, i, pos, gcwq) {
1108 if (worker->task != current)
1109 continue;
1110 spin_unlock_irqrestore(&gcwq->lock, flags);
1111 /*
1112 * I'm @worker, no locking necessary. See if @work
1113 * is headed to the same workqueue.
1114 */
1115 return worker->current_cwq->wq == wq;
1116 }
1117 spin_unlock_irqrestore(&gcwq->lock, flags);
1118 }
1119 return false;
1120}
1121
4690c4ab 1122static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1123 struct work_struct *work)
1124{
502ca9d8
TH
1125 struct global_cwq *gcwq;
1126 struct cpu_workqueue_struct *cwq;
1e19ffc6 1127 struct list_head *worklist;
8a2e8e5d 1128 unsigned int work_flags;
8930caba
TH
1129
1130 /*
1131 * While a work item is PENDING && off queue, a task trying to
1132 * steal the PENDING will busy-loop waiting for it to either get
1133 * queued or lose PENDING. Grabbing PENDING and queueing should
1134 * happen with IRQ disabled.
1135 */
1136 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1137
dc186ad7 1138 debug_work_activate(work);
1e19ffc6 1139
c8efcc25 1140 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1141 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1142 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1143 return;
1144
c7fc77f7
TH
1145 /* determine gcwq to use */
1146 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1147 struct global_cwq *last_gcwq;
1148
57469821 1149 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1150 cpu = raw_smp_processor_id();
1151
18aa9eff
TH
1152 /*
1153 * It's multi cpu. If @wq is non-reentrant and @work
1154 * was previously on a different cpu, it might still
1155 * be running there, in which case the work needs to
1156 * be queued on that cpu to guarantee non-reentrance.
1157 */
502ca9d8 1158 gcwq = get_gcwq(cpu);
18aa9eff
TH
1159 if (wq->flags & WQ_NON_REENTRANT &&
1160 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1161 struct worker *worker;
1162
8930caba 1163 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1164
1165 worker = find_worker_executing_work(last_gcwq, work);
1166
1167 if (worker && worker->current_cwq->wq == wq)
1168 gcwq = last_gcwq;
1169 else {
1170 /* meh... not running there, queue here */
8930caba
TH
1171 spin_unlock(&last_gcwq->lock);
1172 spin_lock(&gcwq->lock);
18aa9eff 1173 }
8930caba
TH
1174 } else {
1175 spin_lock(&gcwq->lock);
1176 }
f3421797
TH
1177 } else {
1178 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1179 spin_lock(&gcwq->lock);
502ca9d8
TH
1180 }
1181
1182 /* gcwq determined, get cwq and queue */
1183 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1184 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1185
f5b2552b 1186 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1187 spin_unlock(&gcwq->lock);
f5b2552b
DC
1188 return;
1189 }
1e19ffc6 1190
73f53c4a 1191 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1192 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1193
1194 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1195 trace_workqueue_activate_work(work);
1e19ffc6 1196 cwq->nr_active++;
3270476a 1197 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1198 } else {
1199 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1200 worklist = &cwq->delayed_works;
8a2e8e5d 1201 }
1e19ffc6 1202
8a2e8e5d 1203 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1204
8930caba 1205 spin_unlock(&gcwq->lock);
1da177e4
LT
1206}
1207
c1a220e7
ZR
1208/**
1209 * queue_work_on - queue work on specific cpu
1210 * @cpu: CPU number to execute work on
1211 * @wq: workqueue to use
1212 * @work: work to queue
1213 *
d4283e93 1214 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1215 *
1216 * We queue the work to a specific CPU, the caller must ensure it
1217 * can't go away.
1218 */
d4283e93
TH
1219bool queue_work_on(int cpu, struct workqueue_struct *wq,
1220 struct work_struct *work)
c1a220e7 1221{
d4283e93 1222 bool ret = false;
8930caba
TH
1223 unsigned long flags;
1224
1225 local_irq_save(flags);
c1a220e7 1226
22df02bb 1227 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1228 __queue_work(cpu, wq, work);
d4283e93 1229 ret = true;
c1a220e7 1230 }
8930caba
TH
1231
1232 local_irq_restore(flags);
c1a220e7
ZR
1233 return ret;
1234}
1235EXPORT_SYMBOL_GPL(queue_work_on);
1236
0fcb78c2 1237/**
0a13c00e 1238 * queue_work - queue work on a workqueue
0fcb78c2 1239 * @wq: workqueue to use
0a13c00e 1240 * @work: work to queue
0fcb78c2 1241 *
d4283e93 1242 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1243 *
1244 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1245 * it can be processed by another CPU.
0fcb78c2 1246 */
d4283e93 1247bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1248{
57469821 1249 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1250}
1251EXPORT_SYMBOL_GPL(queue_work);
1252
d8e794df 1253void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1254{
1255 struct delayed_work *dwork = (struct delayed_work *)__data;
1256 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1257
8930caba 1258 local_irq_disable();
57469821 1259 __queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
8930caba 1260 local_irq_enable();
1da177e4 1261}
d8e794df 1262EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1263
0fcb78c2
REB
1264/**
1265 * queue_delayed_work_on - queue work on specific CPU after delay
1266 * @cpu: CPU number to execute work on
1267 * @wq: workqueue to use
af9997e4 1268 * @dwork: work to queue
0fcb78c2
REB
1269 * @delay: number of jiffies to wait before queueing
1270 *
715f1300
TH
1271 * Returns %false if @work was already on a queue, %true otherwise. If
1272 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1273 * execution.
0fcb78c2 1274 */
d4283e93
TH
1275bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1276 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1277{
52bad64d
DH
1278 struct timer_list *timer = &dwork->timer;
1279 struct work_struct *work = &dwork->work;
d4283e93 1280 bool ret = false;
8930caba
TH
1281 unsigned long flags;
1282
715f1300
TH
1283 if (!delay)
1284 return queue_work_on(cpu, wq, &dwork->work);
1285
8930caba
TH
1286 /* read the comment in __queue_work() */
1287 local_irq_save(flags);
7a6bc1cd 1288
22df02bb 1289 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1290 unsigned int lcpu;
7a22ad75 1291
d8e794df
TH
1292 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1293 timer->data != (unsigned long)dwork);
7a6bc1cd
VP
1294 BUG_ON(timer_pending(timer));
1295 BUG_ON(!list_empty(&work->entry));
1296
8a3e77cc
AL
1297 timer_stats_timer_set_start_info(&dwork->timer);
1298
7a22ad75
TH
1299 /*
1300 * This stores cwq for the moment, for the timer_fn.
1301 * Note that the work's gcwq is preserved to allow
1302 * reentrance detection for delayed works.
1303 */
c7fc77f7
TH
1304 if (!(wq->flags & WQ_UNBOUND)) {
1305 struct global_cwq *gcwq = get_work_gcwq(work);
1306
1307 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1308 lcpu = gcwq->cpu;
1309 else
1310 lcpu = raw_smp_processor_id();
1311 } else
1312 lcpu = WORK_CPU_UNBOUND;
1313
7a22ad75 1314 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1315
7a6bc1cd 1316 timer->expires = jiffies + delay;
63bc0362 1317
57469821 1318 if (unlikely(cpu != WORK_CPU_UNBOUND))
63bc0362
ON
1319 add_timer_on(timer, cpu);
1320 else
1321 add_timer(timer);
d4283e93 1322 ret = true;
7a6bc1cd 1323 }
8930caba
TH
1324
1325 local_irq_restore(flags);
7a6bc1cd
VP
1326 return ret;
1327}
ae90dd5d 1328EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1329
0a13c00e
TH
1330/**
1331 * queue_delayed_work - queue work on a workqueue after delay
1332 * @wq: workqueue to use
1333 * @dwork: delayable work to queue
1334 * @delay: number of jiffies to wait before queueing
1335 *
715f1300 1336 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1337 */
d4283e93 1338bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1339 struct delayed_work *dwork, unsigned long delay)
1340{
57469821 1341 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1342}
1343EXPORT_SYMBOL_GPL(queue_delayed_work);
1344
c8e55f36
TH
1345/**
1346 * worker_enter_idle - enter idle state
1347 * @worker: worker which is entering idle state
1348 *
1349 * @worker is entering idle state. Update stats and idle timer if
1350 * necessary.
1351 *
1352 * LOCKING:
1353 * spin_lock_irq(gcwq->lock).
1354 */
1355static void worker_enter_idle(struct worker *worker)
1da177e4 1356{
bd7bdd43
TH
1357 struct worker_pool *pool = worker->pool;
1358 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1359
1360 BUG_ON(worker->flags & WORKER_IDLE);
1361 BUG_ON(!list_empty(&worker->entry) &&
1362 (worker->hentry.next || worker->hentry.pprev));
1363
cb444766
TH
1364 /* can't use worker_set_flags(), also called from start_worker() */
1365 worker->flags |= WORKER_IDLE;
bd7bdd43 1366 pool->nr_idle++;
e22bee78 1367 worker->last_active = jiffies;
c8e55f36
TH
1368
1369 /* idle_list is LIFO */
bd7bdd43 1370 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1371
628c78e7
TH
1372 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1373 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1374
544ecf31 1375 /*
628c78e7
TH
1376 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1377 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1378 * nr_running, the warning may trigger spuriously. Check iff
1379 * unbind is not in progress.
544ecf31 1380 */
628c78e7 1381 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1382 pool->nr_workers == pool->nr_idle &&
63d95a91 1383 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1384}
1385
1386/**
1387 * worker_leave_idle - leave idle state
1388 * @worker: worker which is leaving idle state
1389 *
1390 * @worker is leaving idle state. Update stats.
1391 *
1392 * LOCKING:
1393 * spin_lock_irq(gcwq->lock).
1394 */
1395static void worker_leave_idle(struct worker *worker)
1396{
bd7bdd43 1397 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1398
1399 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1400 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1401 pool->nr_idle--;
c8e55f36
TH
1402 list_del_init(&worker->entry);
1403}
1404
e22bee78
TH
1405/**
1406 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1407 * @worker: self
1408 *
1409 * Works which are scheduled while the cpu is online must at least be
1410 * scheduled to a worker which is bound to the cpu so that if they are
1411 * flushed from cpu callbacks while cpu is going down, they are
1412 * guaranteed to execute on the cpu.
1413 *
1414 * This function is to be used by rogue workers and rescuers to bind
1415 * themselves to the target cpu and may race with cpu going down or
1416 * coming online. kthread_bind() can't be used because it may put the
1417 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1418 * verbatim as it's best effort and blocking and gcwq may be
1419 * [dis]associated in the meantime.
1420 *
f2d5a0ee
TH
1421 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1422 * binding against %GCWQ_DISASSOCIATED which is set during
1423 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1424 * enters idle state or fetches works without dropping lock, it can
1425 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1426 *
1427 * CONTEXT:
1428 * Might sleep. Called without any lock but returns with gcwq->lock
1429 * held.
1430 *
1431 * RETURNS:
1432 * %true if the associated gcwq is online (@worker is successfully
1433 * bound), %false if offline.
1434 */
1435static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1436__acquires(&gcwq->lock)
e22bee78 1437{
bd7bdd43 1438 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1439 struct task_struct *task = worker->task;
1440
1441 while (true) {
4e6045f1 1442 /*
e22bee78
TH
1443 * The following call may fail, succeed or succeed
1444 * without actually migrating the task to the cpu if
1445 * it races with cpu hotunplug operation. Verify
1446 * against GCWQ_DISASSOCIATED.
4e6045f1 1447 */
f3421797
TH
1448 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1449 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1450
1451 spin_lock_irq(&gcwq->lock);
1452 if (gcwq->flags & GCWQ_DISASSOCIATED)
1453 return false;
1454 if (task_cpu(task) == gcwq->cpu &&
1455 cpumask_equal(&current->cpus_allowed,
1456 get_cpu_mask(gcwq->cpu)))
1457 return true;
1458 spin_unlock_irq(&gcwq->lock);
1459
5035b20f
TH
1460 /*
1461 * We've raced with CPU hot[un]plug. Give it a breather
1462 * and retry migration. cond_resched() is required here;
1463 * otherwise, we might deadlock against cpu_stop trying to
1464 * bring down the CPU on non-preemptive kernel.
1465 */
e22bee78 1466 cpu_relax();
5035b20f 1467 cond_resched();
e22bee78
TH
1468 }
1469}
1470
25511a47
TH
1471struct idle_rebind {
1472 int cnt; /* # workers to be rebound */
1473 struct completion done; /* all workers rebound */
1474};
1475
1476/*
1477 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1478 * happen synchronously for idle workers. worker_thread() will test
1479 * %WORKER_REBIND before leaving idle and call this function.
1480 */
1481static void idle_worker_rebind(struct worker *worker)
1482{
1483 struct global_cwq *gcwq = worker->pool->gcwq;
1484
1485 /* CPU must be online at this point */
1486 WARN_ON(!worker_maybe_bind_and_lock(worker));
1487 if (!--worker->idle_rebind->cnt)
1488 complete(&worker->idle_rebind->done);
1489 spin_unlock_irq(&worker->pool->gcwq->lock);
1490
1491 /* we did our part, wait for rebind_workers() to finish up */
1492 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1493}
1494
e22bee78 1495/*
25511a47 1496 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1497 * the associated cpu which is coming back online. This is scheduled by
1498 * cpu up but can race with other cpu hotplug operations and may be
1499 * executed twice without intervening cpu down.
e22bee78 1500 */
25511a47 1501static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1502{
1503 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1504 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1505
1506 if (worker_maybe_bind_and_lock(worker))
1507 worker_clr_flags(worker, WORKER_REBIND);
1508
1509 spin_unlock_irq(&gcwq->lock);
1510}
1511
25511a47
TH
1512/**
1513 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1514 * @gcwq: gcwq of interest
1515 *
1516 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1517 * is different for idle and busy ones.
1518 *
1519 * The idle ones should be rebound synchronously and idle rebinding should
1520 * be complete before any worker starts executing work items with
1521 * concurrency management enabled; otherwise, scheduler may oops trying to
1522 * wake up non-local idle worker from wq_worker_sleeping().
1523 *
1524 * This is achieved by repeatedly requesting rebinding until all idle
1525 * workers are known to have been rebound under @gcwq->lock and holding all
1526 * idle workers from becoming busy until idle rebinding is complete.
1527 *
1528 * Once idle workers are rebound, busy workers can be rebound as they
1529 * finish executing their current work items. Queueing the rebind work at
1530 * the head of their scheduled lists is enough. Note that nr_running will
1531 * be properbly bumped as busy workers rebind.
1532 *
1533 * On return, all workers are guaranteed to either be bound or have rebind
1534 * work item scheduled.
1535 */
1536static void rebind_workers(struct global_cwq *gcwq)
1537 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1538{
1539 struct idle_rebind idle_rebind;
1540 struct worker_pool *pool;
1541 struct worker *worker;
1542 struct hlist_node *pos;
1543 int i;
1544
1545 lockdep_assert_held(&gcwq->lock);
1546
1547 for_each_worker_pool(pool, gcwq)
1548 lockdep_assert_held(&pool->manager_mutex);
1549
1550 /*
1551 * Rebind idle workers. Interlocked both ways. We wait for
1552 * workers to rebind via @idle_rebind.done. Workers will wait for
1553 * us to finish up by watching %WORKER_REBIND.
1554 */
1555 init_completion(&idle_rebind.done);
1556retry:
1557 idle_rebind.cnt = 1;
1558 INIT_COMPLETION(idle_rebind.done);
1559
1560 /* set REBIND and kick idle ones, we'll wait for these later */
1561 for_each_worker_pool(pool, gcwq) {
1562 list_for_each_entry(worker, &pool->idle_list, entry) {
1563 if (worker->flags & WORKER_REBIND)
1564 continue;
1565
1566 /* morph UNBOUND to REBIND */
1567 worker->flags &= ~WORKER_UNBOUND;
1568 worker->flags |= WORKER_REBIND;
1569
1570 idle_rebind.cnt++;
1571 worker->idle_rebind = &idle_rebind;
1572
1573 /* worker_thread() will call idle_worker_rebind() */
1574 wake_up_process(worker->task);
1575 }
1576 }
1577
1578 if (--idle_rebind.cnt) {
1579 spin_unlock_irq(&gcwq->lock);
1580 wait_for_completion(&idle_rebind.done);
1581 spin_lock_irq(&gcwq->lock);
1582 /* busy ones might have become idle while waiting, retry */
1583 goto retry;
1584 }
1585
1586 /*
1587 * All idle workers are rebound and waiting for %WORKER_REBIND to
1588 * be cleared inside idle_worker_rebind(). Clear and release.
1589 * Clearing %WORKER_REBIND from this foreign context is safe
1590 * because these workers are still guaranteed to be idle.
1591 */
1592 for_each_worker_pool(pool, gcwq)
1593 list_for_each_entry(worker, &pool->idle_list, entry)
1594 worker->flags &= ~WORKER_REBIND;
1595
1596 wake_up_all(&gcwq->rebind_hold);
1597
1598 /* rebind busy workers */
1599 for_each_busy_worker(worker, i, pos, gcwq) {
1600 struct work_struct *rebind_work = &worker->rebind_work;
1601
1602 /* morph UNBOUND to REBIND */
1603 worker->flags &= ~WORKER_UNBOUND;
1604 worker->flags |= WORKER_REBIND;
1605
1606 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1607 work_data_bits(rebind_work)))
1608 continue;
1609
1610 /* wq doesn't matter, use the default one */
1611 debug_work_activate(rebind_work);
1612 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1613 worker->scheduled.next,
1614 work_color_to_flags(WORK_NO_COLOR));
1615 }
1616}
1617
c34056a3
TH
1618static struct worker *alloc_worker(void)
1619{
1620 struct worker *worker;
1621
1622 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1623 if (worker) {
1624 INIT_LIST_HEAD(&worker->entry);
affee4b2 1625 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1626 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1627 /* on creation a worker is in !idle && prep state */
1628 worker->flags = WORKER_PREP;
c8e55f36 1629 }
c34056a3
TH
1630 return worker;
1631}
1632
1633/**
1634 * create_worker - create a new workqueue worker
63d95a91 1635 * @pool: pool the new worker will belong to
c34056a3 1636 *
63d95a91 1637 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1638 * can be started by calling start_worker() or destroyed using
1639 * destroy_worker().
1640 *
1641 * CONTEXT:
1642 * Might sleep. Does GFP_KERNEL allocations.
1643 *
1644 * RETURNS:
1645 * Pointer to the newly created worker.
1646 */
bc2ae0f5 1647static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1648{
63d95a91 1649 struct global_cwq *gcwq = pool->gcwq;
3270476a 1650 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1651 struct worker *worker = NULL;
f3421797 1652 int id = -1;
c34056a3 1653
8b03ae3c 1654 spin_lock_irq(&gcwq->lock);
bd7bdd43 1655 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1656 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1657 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1658 goto fail;
8b03ae3c 1659 spin_lock_irq(&gcwq->lock);
c34056a3 1660 }
8b03ae3c 1661 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1662
1663 worker = alloc_worker();
1664 if (!worker)
1665 goto fail;
1666
bd7bdd43 1667 worker->pool = pool;
c34056a3
TH
1668 worker->id = id;
1669
bc2ae0f5 1670 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1671 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1672 worker, cpu_to_node(gcwq->cpu),
1673 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1674 else
1675 worker->task = kthread_create(worker_thread, worker,
3270476a 1676 "kworker/u:%d%s", id, pri);
c34056a3
TH
1677 if (IS_ERR(worker->task))
1678 goto fail;
1679
3270476a
TH
1680 if (worker_pool_pri(pool))
1681 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1682
db7bccf4 1683 /*
bc2ae0f5
TH
1684 * Determine CPU binding of the new worker depending on
1685 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1686 * flag remains stable across this function. See the comments
1687 * above the flag definition for details.
1688 *
1689 * As an unbound worker may later become a regular one if CPU comes
1690 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1691 */
bc2ae0f5 1692 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1693 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1694 } else {
db7bccf4 1695 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1696 worker->flags |= WORKER_UNBOUND;
f3421797 1697 }
c34056a3
TH
1698
1699 return worker;
1700fail:
1701 if (id >= 0) {
8b03ae3c 1702 spin_lock_irq(&gcwq->lock);
bd7bdd43 1703 ida_remove(&pool->worker_ida, id);
8b03ae3c 1704 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1705 }
1706 kfree(worker);
1707 return NULL;
1708}
1709
1710/**
1711 * start_worker - start a newly created worker
1712 * @worker: worker to start
1713 *
c8e55f36 1714 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1715 *
1716 * CONTEXT:
8b03ae3c 1717 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1718 */
1719static void start_worker(struct worker *worker)
1720{
cb444766 1721 worker->flags |= WORKER_STARTED;
bd7bdd43 1722 worker->pool->nr_workers++;
c8e55f36 1723 worker_enter_idle(worker);
c34056a3
TH
1724 wake_up_process(worker->task);
1725}
1726
1727/**
1728 * destroy_worker - destroy a workqueue worker
1729 * @worker: worker to be destroyed
1730 *
c8e55f36
TH
1731 * Destroy @worker and adjust @gcwq stats accordingly.
1732 *
1733 * CONTEXT:
1734 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1735 */
1736static void destroy_worker(struct worker *worker)
1737{
bd7bdd43
TH
1738 struct worker_pool *pool = worker->pool;
1739 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1740 int id = worker->id;
1741
1742 /* sanity check frenzy */
1743 BUG_ON(worker->current_work);
affee4b2 1744 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1745
c8e55f36 1746 if (worker->flags & WORKER_STARTED)
bd7bdd43 1747 pool->nr_workers--;
c8e55f36 1748 if (worker->flags & WORKER_IDLE)
bd7bdd43 1749 pool->nr_idle--;
c8e55f36
TH
1750
1751 list_del_init(&worker->entry);
cb444766 1752 worker->flags |= WORKER_DIE;
c8e55f36
TH
1753
1754 spin_unlock_irq(&gcwq->lock);
1755
c34056a3
TH
1756 kthread_stop(worker->task);
1757 kfree(worker);
1758
8b03ae3c 1759 spin_lock_irq(&gcwq->lock);
bd7bdd43 1760 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1761}
1762
63d95a91 1763static void idle_worker_timeout(unsigned long __pool)
e22bee78 1764{
63d95a91
TH
1765 struct worker_pool *pool = (void *)__pool;
1766 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1767
1768 spin_lock_irq(&gcwq->lock);
1769
63d95a91 1770 if (too_many_workers(pool)) {
e22bee78
TH
1771 struct worker *worker;
1772 unsigned long expires;
1773
1774 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1775 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1776 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1777
1778 if (time_before(jiffies, expires))
63d95a91 1779 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1780 else {
1781 /* it's been idle for too long, wake up manager */
11ebea50 1782 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1783 wake_up_worker(pool);
d5abe669 1784 }
e22bee78
TH
1785 }
1786
1787 spin_unlock_irq(&gcwq->lock);
1788}
d5abe669 1789
e22bee78
TH
1790static bool send_mayday(struct work_struct *work)
1791{
1792 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1793 struct workqueue_struct *wq = cwq->wq;
f3421797 1794 unsigned int cpu;
e22bee78
TH
1795
1796 if (!(wq->flags & WQ_RESCUER))
1797 return false;
1798
1799 /* mayday mayday mayday */
bd7bdd43 1800 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1801 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1802 if (cpu == WORK_CPU_UNBOUND)
1803 cpu = 0;
f2e005aa 1804 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1805 wake_up_process(wq->rescuer->task);
1806 return true;
1807}
1808
63d95a91 1809static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1810{
63d95a91
TH
1811 struct worker_pool *pool = (void *)__pool;
1812 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1813 struct work_struct *work;
1814
1815 spin_lock_irq(&gcwq->lock);
1816
63d95a91 1817 if (need_to_create_worker(pool)) {
e22bee78
TH
1818 /*
1819 * We've been trying to create a new worker but
1820 * haven't been successful. We might be hitting an
1821 * allocation deadlock. Send distress signals to
1822 * rescuers.
1823 */
63d95a91 1824 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1825 send_mayday(work);
1da177e4 1826 }
e22bee78
TH
1827
1828 spin_unlock_irq(&gcwq->lock);
1829
63d95a91 1830 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1831}
1832
e22bee78
TH
1833/**
1834 * maybe_create_worker - create a new worker if necessary
63d95a91 1835 * @pool: pool to create a new worker for
e22bee78 1836 *
63d95a91 1837 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1838 * have at least one idle worker on return from this function. If
1839 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1840 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1841 * possible allocation deadlock.
1842 *
1843 * On return, need_to_create_worker() is guaranteed to be false and
1844 * may_start_working() true.
1845 *
1846 * LOCKING:
1847 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1848 * multiple times. Does GFP_KERNEL allocations. Called only from
1849 * manager.
1850 *
1851 * RETURNS:
1852 * false if no action was taken and gcwq->lock stayed locked, true
1853 * otherwise.
1854 */
63d95a91 1855static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1856__releases(&gcwq->lock)
1857__acquires(&gcwq->lock)
1da177e4 1858{
63d95a91
TH
1859 struct global_cwq *gcwq = pool->gcwq;
1860
1861 if (!need_to_create_worker(pool))
e22bee78
TH
1862 return false;
1863restart:
9f9c2364
TH
1864 spin_unlock_irq(&gcwq->lock);
1865
e22bee78 1866 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1867 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1868
1869 while (true) {
1870 struct worker *worker;
1871
bc2ae0f5 1872 worker = create_worker(pool);
e22bee78 1873 if (worker) {
63d95a91 1874 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1875 spin_lock_irq(&gcwq->lock);
1876 start_worker(worker);
63d95a91 1877 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1878 return true;
1879 }
1880
63d95a91 1881 if (!need_to_create_worker(pool))
e22bee78 1882 break;
1da177e4 1883
e22bee78
TH
1884 __set_current_state(TASK_INTERRUPTIBLE);
1885 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1886
63d95a91 1887 if (!need_to_create_worker(pool))
e22bee78
TH
1888 break;
1889 }
1890
63d95a91 1891 del_timer_sync(&pool->mayday_timer);
e22bee78 1892 spin_lock_irq(&gcwq->lock);
63d95a91 1893 if (need_to_create_worker(pool))
e22bee78
TH
1894 goto restart;
1895 return true;
1896}
1897
1898/**
1899 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1900 * @pool: pool to destroy workers for
e22bee78 1901 *
63d95a91 1902 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1903 * IDLE_WORKER_TIMEOUT.
1904 *
1905 * LOCKING:
1906 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1907 * multiple times. Called only from manager.
1908 *
1909 * RETURNS:
1910 * false if no action was taken and gcwq->lock stayed locked, true
1911 * otherwise.
1912 */
63d95a91 1913static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1914{
1915 bool ret = false;
1da177e4 1916
63d95a91 1917 while (too_many_workers(pool)) {
e22bee78
TH
1918 struct worker *worker;
1919 unsigned long expires;
3af24433 1920
63d95a91 1921 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1922 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1923
e22bee78 1924 if (time_before(jiffies, expires)) {
63d95a91 1925 mod_timer(&pool->idle_timer, expires);
3af24433 1926 break;
e22bee78 1927 }
1da177e4 1928
e22bee78
TH
1929 destroy_worker(worker);
1930 ret = true;
1da177e4 1931 }
3af24433 1932
e22bee78
TH
1933 return ret;
1934}
1935
1936/**
1937 * manage_workers - manage worker pool
1938 * @worker: self
1939 *
1940 * Assume the manager role and manage gcwq worker pool @worker belongs
1941 * to. At any given time, there can be only zero or one manager per
1942 * gcwq. The exclusion is handled automatically by this function.
1943 *
1944 * The caller can safely start processing works on false return. On
1945 * true return, it's guaranteed that need_to_create_worker() is false
1946 * and may_start_working() is true.
1947 *
1948 * CONTEXT:
1949 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1950 * multiple times. Does GFP_KERNEL allocations.
1951 *
1952 * RETURNS:
1953 * false if no action was taken and gcwq->lock stayed locked, true if
1954 * some action was taken.
1955 */
1956static bool manage_workers(struct worker *worker)
1957{
63d95a91 1958 struct worker_pool *pool = worker->pool;
e22bee78
TH
1959 bool ret = false;
1960
60373152 1961 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1962 return ret;
1963
11ebea50 1964 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1965
1966 /*
1967 * Destroy and then create so that may_start_working() is true
1968 * on return.
1969 */
63d95a91
TH
1970 ret |= maybe_destroy_workers(pool);
1971 ret |= maybe_create_worker(pool);
e22bee78 1972
60373152 1973 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1974 return ret;
1975}
1976
a62428c0
TH
1977/**
1978 * process_one_work - process single work
c34056a3 1979 * @worker: self
a62428c0
TH
1980 * @work: work to process
1981 *
1982 * Process @work. This function contains all the logics necessary to
1983 * process a single work including synchronization against and
1984 * interaction with other workers on the same cpu, queueing and
1985 * flushing. As long as context requirement is met, any worker can
1986 * call this function to process a work.
1987 *
1988 * CONTEXT:
8b03ae3c 1989 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1990 */
c34056a3 1991static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1992__releases(&gcwq->lock)
1993__acquires(&gcwq->lock)
a62428c0 1994{
7e11629d 1995 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1996 struct worker_pool *pool = worker->pool;
1997 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1998 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1999 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2000 work_func_t f = work->func;
73f53c4a 2001 int work_color;
7e11629d 2002 struct worker *collision;
a62428c0
TH
2003#ifdef CONFIG_LOCKDEP
2004 /*
2005 * It is permissible to free the struct work_struct from
2006 * inside the function that is called from it, this we need to
2007 * take into account for lockdep too. To avoid bogus "held
2008 * lock freed" warnings as well as problems when looking into
2009 * work->lockdep_map, make a copy and use that here.
2010 */
4d82a1de
PZ
2011 struct lockdep_map lockdep_map;
2012
2013 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2014#endif
6fec10a1
TH
2015 /*
2016 * Ensure we're on the correct CPU. DISASSOCIATED test is
2017 * necessary to avoid spurious warnings from rescuers servicing the
2018 * unbound or a disassociated gcwq.
2019 */
25511a47 2020 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2021 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2022 raw_smp_processor_id() != gcwq->cpu);
2023
7e11629d
TH
2024 /*
2025 * A single work shouldn't be executed concurrently by
2026 * multiple workers on a single cpu. Check whether anyone is
2027 * already processing the work. If so, defer the work to the
2028 * currently executing one.
2029 */
2030 collision = __find_worker_executing_work(gcwq, bwh, work);
2031 if (unlikely(collision)) {
2032 move_linked_works(work, &collision->scheduled, NULL);
2033 return;
2034 }
2035
8930caba 2036 /* claim and dequeue */
a62428c0 2037 debug_work_deactivate(work);
c8e55f36 2038 hlist_add_head(&worker->hentry, bwh);
c34056a3 2039 worker->current_work = work;
8cca0eea 2040 worker->current_cwq = cwq;
73f53c4a 2041 work_color = get_work_color(work);
7a22ad75 2042
a62428c0
TH
2043 list_del_init(&work->entry);
2044
fb0e7beb
TH
2045 /*
2046 * CPU intensive works don't participate in concurrency
2047 * management. They're the scheduler's responsibility.
2048 */
2049 if (unlikely(cpu_intensive))
2050 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2051
974271c4
TH
2052 /*
2053 * Unbound gcwq isn't concurrency managed and work items should be
2054 * executed ASAP. Wake up another worker if necessary.
2055 */
63d95a91
TH
2056 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2057 wake_up_worker(pool);
974271c4 2058
8930caba
TH
2059 /*
2060 * Record the last CPU and clear PENDING. The following wmb is
2061 * paired with the implied mb in test_and_set_bit(PENDING) and
2062 * ensures all updates to @work made here are visible to and
2063 * precede any updates by the next PENDING owner. Also, clear
2064 * PENDING inside @gcwq->lock so that PENDING and queued state
2065 * changes happen together while IRQ is disabled.
2066 */
2067 smp_wmb();
2068 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2069
8930caba 2070 spin_unlock_irq(&gcwq->lock);
959d1af8 2071
e159489b 2072 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2073 lock_map_acquire(&lockdep_map);
e36c886a 2074 trace_workqueue_execute_start(work);
a62428c0 2075 f(work);
e36c886a
AV
2076 /*
2077 * While we must be careful to not use "work" after this, the trace
2078 * point will only record its address.
2079 */
2080 trace_workqueue_execute_end(work);
a62428c0
TH
2081 lock_map_release(&lockdep_map);
2082 lock_map_release(&cwq->wq->lockdep_map);
2083
2084 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2085 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2086 "%s/0x%08x/%d\n",
2087 current->comm, preempt_count(), task_pid_nr(current));
2088 printk(KERN_ERR " last function: ");
2089 print_symbol("%s\n", (unsigned long)f);
2090 debug_show_held_locks(current);
2091 dump_stack();
2092 }
2093
8b03ae3c 2094 spin_lock_irq(&gcwq->lock);
a62428c0 2095
fb0e7beb
TH
2096 /* clear cpu intensive status */
2097 if (unlikely(cpu_intensive))
2098 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2099
a62428c0 2100 /* we're done with it, release */
c8e55f36 2101 hlist_del_init(&worker->hentry);
c34056a3 2102 worker->current_work = NULL;
8cca0eea 2103 worker->current_cwq = NULL;
8a2e8e5d 2104 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2105}
2106
affee4b2
TH
2107/**
2108 * process_scheduled_works - process scheduled works
2109 * @worker: self
2110 *
2111 * Process all scheduled works. Please note that the scheduled list
2112 * may change while processing a work, so this function repeatedly
2113 * fetches a work from the top and executes it.
2114 *
2115 * CONTEXT:
8b03ae3c 2116 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2117 * multiple times.
2118 */
2119static void process_scheduled_works(struct worker *worker)
1da177e4 2120{
affee4b2
TH
2121 while (!list_empty(&worker->scheduled)) {
2122 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2123 struct work_struct, entry);
c34056a3 2124 process_one_work(worker, work);
1da177e4 2125 }
1da177e4
LT
2126}
2127
4690c4ab
TH
2128/**
2129 * worker_thread - the worker thread function
c34056a3 2130 * @__worker: self
4690c4ab 2131 *
e22bee78
TH
2132 * The gcwq worker thread function. There's a single dynamic pool of
2133 * these per each cpu. These workers process all works regardless of
2134 * their specific target workqueue. The only exception is works which
2135 * belong to workqueues with a rescuer which will be explained in
2136 * rescuer_thread().
4690c4ab 2137 */
c34056a3 2138static int worker_thread(void *__worker)
1da177e4 2139{
c34056a3 2140 struct worker *worker = __worker;
bd7bdd43
TH
2141 struct worker_pool *pool = worker->pool;
2142 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2143
e22bee78
TH
2144 /* tell the scheduler that this is a workqueue worker */
2145 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2146woke_up:
c8e55f36 2147 spin_lock_irq(&gcwq->lock);
1da177e4 2148
25511a47
TH
2149 /*
2150 * DIE can be set only while idle and REBIND set while busy has
2151 * @worker->rebind_work scheduled. Checking here is enough.
2152 */
2153 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2154 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2155
2156 if (worker->flags & WORKER_DIE) {
2157 worker->task->flags &= ~PF_WQ_WORKER;
2158 return 0;
2159 }
2160
2161 idle_worker_rebind(worker);
2162 goto woke_up;
c8e55f36 2163 }
affee4b2 2164
c8e55f36 2165 worker_leave_idle(worker);
db7bccf4 2166recheck:
e22bee78 2167 /* no more worker necessary? */
63d95a91 2168 if (!need_more_worker(pool))
e22bee78
TH
2169 goto sleep;
2170
2171 /* do we need to manage? */
63d95a91 2172 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2173 goto recheck;
2174
c8e55f36
TH
2175 /*
2176 * ->scheduled list can only be filled while a worker is
2177 * preparing to process a work or actually processing it.
2178 * Make sure nobody diddled with it while I was sleeping.
2179 */
2180 BUG_ON(!list_empty(&worker->scheduled));
2181
e22bee78
TH
2182 /*
2183 * When control reaches this point, we're guaranteed to have
2184 * at least one idle worker or that someone else has already
2185 * assumed the manager role.
2186 */
2187 worker_clr_flags(worker, WORKER_PREP);
2188
2189 do {
c8e55f36 2190 struct work_struct *work =
bd7bdd43 2191 list_first_entry(&pool->worklist,
c8e55f36
TH
2192 struct work_struct, entry);
2193
2194 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2195 /* optimization path, not strictly necessary */
2196 process_one_work(worker, work);
2197 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2198 process_scheduled_works(worker);
c8e55f36
TH
2199 } else {
2200 move_linked_works(work, &worker->scheduled, NULL);
2201 process_scheduled_works(worker);
affee4b2 2202 }
63d95a91 2203 } while (keep_working(pool));
e22bee78
TH
2204
2205 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2206sleep:
63d95a91 2207 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2208 goto recheck;
d313dd85 2209
c8e55f36 2210 /*
e22bee78
TH
2211 * gcwq->lock is held and there's no work to process and no
2212 * need to manage, sleep. Workers are woken up only while
2213 * holding gcwq->lock or from local cpu, so setting the
2214 * current state before releasing gcwq->lock is enough to
2215 * prevent losing any event.
c8e55f36
TH
2216 */
2217 worker_enter_idle(worker);
2218 __set_current_state(TASK_INTERRUPTIBLE);
2219 spin_unlock_irq(&gcwq->lock);
2220 schedule();
2221 goto woke_up;
1da177e4
LT
2222}
2223
e22bee78
TH
2224/**
2225 * rescuer_thread - the rescuer thread function
2226 * @__wq: the associated workqueue
2227 *
2228 * Workqueue rescuer thread function. There's one rescuer for each
2229 * workqueue which has WQ_RESCUER set.
2230 *
2231 * Regular work processing on a gcwq may block trying to create a new
2232 * worker which uses GFP_KERNEL allocation which has slight chance of
2233 * developing into deadlock if some works currently on the same queue
2234 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2235 * the problem rescuer solves.
2236 *
2237 * When such condition is possible, the gcwq summons rescuers of all
2238 * workqueues which have works queued on the gcwq and let them process
2239 * those works so that forward progress can be guaranteed.
2240 *
2241 * This should happen rarely.
2242 */
2243static int rescuer_thread(void *__wq)
2244{
2245 struct workqueue_struct *wq = __wq;
2246 struct worker *rescuer = wq->rescuer;
2247 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2248 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2249 unsigned int cpu;
2250
2251 set_user_nice(current, RESCUER_NICE_LEVEL);
2252repeat:
2253 set_current_state(TASK_INTERRUPTIBLE);
2254
2255 if (kthread_should_stop())
2256 return 0;
2257
f3421797
TH
2258 /*
2259 * See whether any cpu is asking for help. Unbounded
2260 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2261 */
f2e005aa 2262 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2263 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2264 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2265 struct worker_pool *pool = cwq->pool;
2266 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2267 struct work_struct *work, *n;
2268
2269 __set_current_state(TASK_RUNNING);
f2e005aa 2270 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2271
2272 /* migrate to the target cpu if possible */
bd7bdd43 2273 rescuer->pool = pool;
e22bee78
TH
2274 worker_maybe_bind_and_lock(rescuer);
2275
2276 /*
2277 * Slurp in all works issued via this workqueue and
2278 * process'em.
2279 */
2280 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2281 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2282 if (get_work_cwq(work) == cwq)
2283 move_linked_works(work, scheduled, &n);
2284
2285 process_scheduled_works(rescuer);
7576958a
TH
2286
2287 /*
2288 * Leave this gcwq. If keep_working() is %true, notify a
2289 * regular worker; otherwise, we end up with 0 concurrency
2290 * and stalling the execution.
2291 */
63d95a91
TH
2292 if (keep_working(pool))
2293 wake_up_worker(pool);
7576958a 2294
e22bee78
TH
2295 spin_unlock_irq(&gcwq->lock);
2296 }
2297
2298 schedule();
2299 goto repeat;
1da177e4
LT
2300}
2301
fc2e4d70
ON
2302struct wq_barrier {
2303 struct work_struct work;
2304 struct completion done;
2305};
2306
2307static void wq_barrier_func(struct work_struct *work)
2308{
2309 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2310 complete(&barr->done);
2311}
2312
4690c4ab
TH
2313/**
2314 * insert_wq_barrier - insert a barrier work
2315 * @cwq: cwq to insert barrier into
2316 * @barr: wq_barrier to insert
affee4b2
TH
2317 * @target: target work to attach @barr to
2318 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2319 *
affee4b2
TH
2320 * @barr is linked to @target such that @barr is completed only after
2321 * @target finishes execution. Please note that the ordering
2322 * guarantee is observed only with respect to @target and on the local
2323 * cpu.
2324 *
2325 * Currently, a queued barrier can't be canceled. This is because
2326 * try_to_grab_pending() can't determine whether the work to be
2327 * grabbed is at the head of the queue and thus can't clear LINKED
2328 * flag of the previous work while there must be a valid next work
2329 * after a work with LINKED flag set.
2330 *
2331 * Note that when @worker is non-NULL, @target may be modified
2332 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2333 *
2334 * CONTEXT:
8b03ae3c 2335 * spin_lock_irq(gcwq->lock).
4690c4ab 2336 */
83c22520 2337static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2338 struct wq_barrier *barr,
2339 struct work_struct *target, struct worker *worker)
fc2e4d70 2340{
affee4b2
TH
2341 struct list_head *head;
2342 unsigned int linked = 0;
2343
dc186ad7 2344 /*
8b03ae3c 2345 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2346 * as we know for sure that this will not trigger any of the
2347 * checks and call back into the fixup functions where we
2348 * might deadlock.
2349 */
ca1cab37 2350 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2351 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2352 init_completion(&barr->done);
83c22520 2353
affee4b2
TH
2354 /*
2355 * If @target is currently being executed, schedule the
2356 * barrier to the worker; otherwise, put it after @target.
2357 */
2358 if (worker)
2359 head = worker->scheduled.next;
2360 else {
2361 unsigned long *bits = work_data_bits(target);
2362
2363 head = target->entry.next;
2364 /* there can already be other linked works, inherit and set */
2365 linked = *bits & WORK_STRUCT_LINKED;
2366 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2367 }
2368
dc186ad7 2369 debug_work_activate(&barr->work);
affee4b2
TH
2370 insert_work(cwq, &barr->work, head,
2371 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2372}
2373
73f53c4a
TH
2374/**
2375 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2376 * @wq: workqueue being flushed
2377 * @flush_color: new flush color, < 0 for no-op
2378 * @work_color: new work color, < 0 for no-op
2379 *
2380 * Prepare cwqs for workqueue flushing.
2381 *
2382 * If @flush_color is non-negative, flush_color on all cwqs should be
2383 * -1. If no cwq has in-flight commands at the specified color, all
2384 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2385 * has in flight commands, its cwq->flush_color is set to
2386 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2387 * wakeup logic is armed and %true is returned.
2388 *
2389 * The caller should have initialized @wq->first_flusher prior to
2390 * calling this function with non-negative @flush_color. If
2391 * @flush_color is negative, no flush color update is done and %false
2392 * is returned.
2393 *
2394 * If @work_color is non-negative, all cwqs should have the same
2395 * work_color which is previous to @work_color and all will be
2396 * advanced to @work_color.
2397 *
2398 * CONTEXT:
2399 * mutex_lock(wq->flush_mutex).
2400 *
2401 * RETURNS:
2402 * %true if @flush_color >= 0 and there's something to flush. %false
2403 * otherwise.
2404 */
2405static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2406 int flush_color, int work_color)
1da177e4 2407{
73f53c4a
TH
2408 bool wait = false;
2409 unsigned int cpu;
1da177e4 2410
73f53c4a
TH
2411 if (flush_color >= 0) {
2412 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2413 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2414 }
2355b70f 2415
f3421797 2416 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2417 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2418 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2419
8b03ae3c 2420 spin_lock_irq(&gcwq->lock);
83c22520 2421
73f53c4a
TH
2422 if (flush_color >= 0) {
2423 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2424
73f53c4a
TH
2425 if (cwq->nr_in_flight[flush_color]) {
2426 cwq->flush_color = flush_color;
2427 atomic_inc(&wq->nr_cwqs_to_flush);
2428 wait = true;
2429 }
2430 }
1da177e4 2431
73f53c4a
TH
2432 if (work_color >= 0) {
2433 BUG_ON(work_color != work_next_color(cwq->work_color));
2434 cwq->work_color = work_color;
2435 }
1da177e4 2436
8b03ae3c 2437 spin_unlock_irq(&gcwq->lock);
1da177e4 2438 }
2355b70f 2439
73f53c4a
TH
2440 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2441 complete(&wq->first_flusher->done);
14441960 2442
73f53c4a 2443 return wait;
1da177e4
LT
2444}
2445
0fcb78c2 2446/**
1da177e4 2447 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2448 * @wq: workqueue to flush
1da177e4
LT
2449 *
2450 * Forces execution of the workqueue and blocks until its completion.
2451 * This is typically used in driver shutdown handlers.
2452 *
fc2e4d70
ON
2453 * We sleep until all works which were queued on entry have been handled,
2454 * but we are not livelocked by new incoming ones.
1da177e4 2455 */
7ad5b3a5 2456void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2457{
73f53c4a
TH
2458 struct wq_flusher this_flusher = {
2459 .list = LIST_HEAD_INIT(this_flusher.list),
2460 .flush_color = -1,
2461 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2462 };
2463 int next_color;
1da177e4 2464
3295f0ef
IM
2465 lock_map_acquire(&wq->lockdep_map);
2466 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2467
2468 mutex_lock(&wq->flush_mutex);
2469
2470 /*
2471 * Start-to-wait phase
2472 */
2473 next_color = work_next_color(wq->work_color);
2474
2475 if (next_color != wq->flush_color) {
2476 /*
2477 * Color space is not full. The current work_color
2478 * becomes our flush_color and work_color is advanced
2479 * by one.
2480 */
2481 BUG_ON(!list_empty(&wq->flusher_overflow));
2482 this_flusher.flush_color = wq->work_color;
2483 wq->work_color = next_color;
2484
2485 if (!wq->first_flusher) {
2486 /* no flush in progress, become the first flusher */
2487 BUG_ON(wq->flush_color != this_flusher.flush_color);
2488
2489 wq->first_flusher = &this_flusher;
2490
2491 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2492 wq->work_color)) {
2493 /* nothing to flush, done */
2494 wq->flush_color = next_color;
2495 wq->first_flusher = NULL;
2496 goto out_unlock;
2497 }
2498 } else {
2499 /* wait in queue */
2500 BUG_ON(wq->flush_color == this_flusher.flush_color);
2501 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2502 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2503 }
2504 } else {
2505 /*
2506 * Oops, color space is full, wait on overflow queue.
2507 * The next flush completion will assign us
2508 * flush_color and transfer to flusher_queue.
2509 */
2510 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2511 }
2512
2513 mutex_unlock(&wq->flush_mutex);
2514
2515 wait_for_completion(&this_flusher.done);
2516
2517 /*
2518 * Wake-up-and-cascade phase
2519 *
2520 * First flushers are responsible for cascading flushes and
2521 * handling overflow. Non-first flushers can simply return.
2522 */
2523 if (wq->first_flusher != &this_flusher)
2524 return;
2525
2526 mutex_lock(&wq->flush_mutex);
2527
4ce48b37
TH
2528 /* we might have raced, check again with mutex held */
2529 if (wq->first_flusher != &this_flusher)
2530 goto out_unlock;
2531
73f53c4a
TH
2532 wq->first_flusher = NULL;
2533
2534 BUG_ON(!list_empty(&this_flusher.list));
2535 BUG_ON(wq->flush_color != this_flusher.flush_color);
2536
2537 while (true) {
2538 struct wq_flusher *next, *tmp;
2539
2540 /* complete all the flushers sharing the current flush color */
2541 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2542 if (next->flush_color != wq->flush_color)
2543 break;
2544 list_del_init(&next->list);
2545 complete(&next->done);
2546 }
2547
2548 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2549 wq->flush_color != work_next_color(wq->work_color));
2550
2551 /* this flush_color is finished, advance by one */
2552 wq->flush_color = work_next_color(wq->flush_color);
2553
2554 /* one color has been freed, handle overflow queue */
2555 if (!list_empty(&wq->flusher_overflow)) {
2556 /*
2557 * Assign the same color to all overflowed
2558 * flushers, advance work_color and append to
2559 * flusher_queue. This is the start-to-wait
2560 * phase for these overflowed flushers.
2561 */
2562 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2563 tmp->flush_color = wq->work_color;
2564
2565 wq->work_color = work_next_color(wq->work_color);
2566
2567 list_splice_tail_init(&wq->flusher_overflow,
2568 &wq->flusher_queue);
2569 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2570 }
2571
2572 if (list_empty(&wq->flusher_queue)) {
2573 BUG_ON(wq->flush_color != wq->work_color);
2574 break;
2575 }
2576
2577 /*
2578 * Need to flush more colors. Make the next flusher
2579 * the new first flusher and arm cwqs.
2580 */
2581 BUG_ON(wq->flush_color == wq->work_color);
2582 BUG_ON(wq->flush_color != next->flush_color);
2583
2584 list_del_init(&next->list);
2585 wq->first_flusher = next;
2586
2587 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2588 break;
2589
2590 /*
2591 * Meh... this color is already done, clear first
2592 * flusher and repeat cascading.
2593 */
2594 wq->first_flusher = NULL;
2595 }
2596
2597out_unlock:
2598 mutex_unlock(&wq->flush_mutex);
1da177e4 2599}
ae90dd5d 2600EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2601
9c5a2ba7
TH
2602/**
2603 * drain_workqueue - drain a workqueue
2604 * @wq: workqueue to drain
2605 *
2606 * Wait until the workqueue becomes empty. While draining is in progress,
2607 * only chain queueing is allowed. IOW, only currently pending or running
2608 * work items on @wq can queue further work items on it. @wq is flushed
2609 * repeatedly until it becomes empty. The number of flushing is detemined
2610 * by the depth of chaining and should be relatively short. Whine if it
2611 * takes too long.
2612 */
2613void drain_workqueue(struct workqueue_struct *wq)
2614{
2615 unsigned int flush_cnt = 0;
2616 unsigned int cpu;
2617
2618 /*
2619 * __queue_work() needs to test whether there are drainers, is much
2620 * hotter than drain_workqueue() and already looks at @wq->flags.
2621 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2622 */
2623 spin_lock(&workqueue_lock);
2624 if (!wq->nr_drainers++)
2625 wq->flags |= WQ_DRAINING;
2626 spin_unlock(&workqueue_lock);
2627reflush:
2628 flush_workqueue(wq);
2629
2630 for_each_cwq_cpu(cpu, wq) {
2631 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2632 bool drained;
9c5a2ba7 2633
bd7bdd43 2634 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2635 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2636 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2637
2638 if (drained)
9c5a2ba7
TH
2639 continue;
2640
2641 if (++flush_cnt == 10 ||
2642 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2643 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2644 wq->name, flush_cnt);
2645 goto reflush;
2646 }
2647
2648 spin_lock(&workqueue_lock);
2649 if (!--wq->nr_drainers)
2650 wq->flags &= ~WQ_DRAINING;
2651 spin_unlock(&workqueue_lock);
2652}
2653EXPORT_SYMBOL_GPL(drain_workqueue);
2654
baf59022
TH
2655static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2656 bool wait_executing)
db700897 2657{
affee4b2 2658 struct worker *worker = NULL;
8b03ae3c 2659 struct global_cwq *gcwq;
db700897 2660 struct cpu_workqueue_struct *cwq;
db700897
ON
2661
2662 might_sleep();
7a22ad75
TH
2663 gcwq = get_work_gcwq(work);
2664 if (!gcwq)
baf59022 2665 return false;
db700897 2666
8b03ae3c 2667 spin_lock_irq(&gcwq->lock);
db700897
ON
2668 if (!list_empty(&work->entry)) {
2669 /*
2670 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2671 * If it was re-queued to a different gcwq under us, we
2672 * are not going to wait.
db700897
ON
2673 */
2674 smp_rmb();
7a22ad75 2675 cwq = get_work_cwq(work);
bd7bdd43 2676 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2677 goto already_gone;
baf59022 2678 } else if (wait_executing) {
7a22ad75 2679 worker = find_worker_executing_work(gcwq, work);
affee4b2 2680 if (!worker)
4690c4ab 2681 goto already_gone;
7a22ad75 2682 cwq = worker->current_cwq;
baf59022
TH
2683 } else
2684 goto already_gone;
db700897 2685
baf59022 2686 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2687 spin_unlock_irq(&gcwq->lock);
7a22ad75 2688
e159489b
TH
2689 /*
2690 * If @max_active is 1 or rescuer is in use, flushing another work
2691 * item on the same workqueue may lead to deadlock. Make sure the
2692 * flusher is not running on the same workqueue by verifying write
2693 * access.
2694 */
2695 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2696 lock_map_acquire(&cwq->wq->lockdep_map);
2697 else
2698 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2699 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2700
401a8d04 2701 return true;
4690c4ab 2702already_gone:
8b03ae3c 2703 spin_unlock_irq(&gcwq->lock);
401a8d04 2704 return false;
db700897 2705}
baf59022
TH
2706
2707/**
2708 * flush_work - wait for a work to finish executing the last queueing instance
2709 * @work: the work to flush
2710 *
2711 * Wait until @work has finished execution. This function considers
2712 * only the last queueing instance of @work. If @work has been
2713 * enqueued across different CPUs on a non-reentrant workqueue or on
2714 * multiple workqueues, @work might still be executing on return on
2715 * some of the CPUs from earlier queueing.
2716 *
2717 * If @work was queued only on a non-reentrant, ordered or unbound
2718 * workqueue, @work is guaranteed to be idle on return if it hasn't
2719 * been requeued since flush started.
2720 *
2721 * RETURNS:
2722 * %true if flush_work() waited for the work to finish execution,
2723 * %false if it was already idle.
2724 */
2725bool flush_work(struct work_struct *work)
2726{
2727 struct wq_barrier barr;
2728
0976dfc1
SB
2729 lock_map_acquire(&work->lockdep_map);
2730 lock_map_release(&work->lockdep_map);
2731
baf59022
TH
2732 if (start_flush_work(work, &barr, true)) {
2733 wait_for_completion(&barr.done);
2734 destroy_work_on_stack(&barr.work);
2735 return true;
2736 } else
2737 return false;
2738}
db700897
ON
2739EXPORT_SYMBOL_GPL(flush_work);
2740
401a8d04
TH
2741static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2742{
2743 struct wq_barrier barr;
2744 struct worker *worker;
2745
2746 spin_lock_irq(&gcwq->lock);
2747
2748 worker = find_worker_executing_work(gcwq, work);
2749 if (unlikely(worker))
2750 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2751
2752 spin_unlock_irq(&gcwq->lock);
2753
2754 if (unlikely(worker)) {
2755 wait_for_completion(&barr.done);
2756 destroy_work_on_stack(&barr.work);
2757 return true;
2758 } else
2759 return false;
2760}
2761
2762static bool wait_on_work(struct work_struct *work)
2763{
2764 bool ret = false;
2765 int cpu;
2766
2767 might_sleep();
2768
2769 lock_map_acquire(&work->lockdep_map);
2770 lock_map_release(&work->lockdep_map);
2771
2772 for_each_gcwq_cpu(cpu)
2773 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2774 return ret;
2775}
2776
09383498
TH
2777/**
2778 * flush_work_sync - wait until a work has finished execution
2779 * @work: the work to flush
2780 *
2781 * Wait until @work has finished execution. On return, it's
2782 * guaranteed that all queueing instances of @work which happened
2783 * before this function is called are finished. In other words, if
2784 * @work hasn't been requeued since this function was called, @work is
2785 * guaranteed to be idle on return.
2786 *
2787 * RETURNS:
2788 * %true if flush_work_sync() waited for the work to finish execution,
2789 * %false if it was already idle.
2790 */
2791bool flush_work_sync(struct work_struct *work)
2792{
2793 struct wq_barrier barr;
2794 bool pending, waited;
2795
2796 /* we'll wait for executions separately, queue barr only if pending */
2797 pending = start_flush_work(work, &barr, false);
2798
2799 /* wait for executions to finish */
2800 waited = wait_on_work(work);
2801
2802 /* wait for the pending one */
2803 if (pending) {
2804 wait_for_completion(&barr.done);
2805 destroy_work_on_stack(&barr.work);
2806 }
2807
2808 return pending || waited;
2809}
2810EXPORT_SYMBOL_GPL(flush_work_sync);
2811
401a8d04 2812static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2813 struct timer_list* timer)
2814{
2815 int ret;
2816
2817 do {
2818 ret = (timer && likely(del_timer(timer)));
2819 if (!ret)
2820 ret = try_to_grab_pending(work);
2821 wait_on_work(work);
2822 } while (unlikely(ret < 0));
2823
7a22ad75 2824 clear_work_data(work);
1f1f642e
ON
2825 return ret;
2826}
2827
6e84d644 2828/**
401a8d04
TH
2829 * cancel_work_sync - cancel a work and wait for it to finish
2830 * @work: the work to cancel
6e84d644 2831 *
401a8d04
TH
2832 * Cancel @work and wait for its execution to finish. This function
2833 * can be used even if the work re-queues itself or migrates to
2834 * another workqueue. On return from this function, @work is
2835 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2836 *
401a8d04
TH
2837 * cancel_work_sync(&delayed_work->work) must not be used for
2838 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2839 *
401a8d04 2840 * The caller must ensure that the workqueue on which @work was last
6e84d644 2841 * queued can't be destroyed before this function returns.
401a8d04
TH
2842 *
2843 * RETURNS:
2844 * %true if @work was pending, %false otherwise.
6e84d644 2845 */
401a8d04 2846bool cancel_work_sync(struct work_struct *work)
6e84d644 2847{
1f1f642e 2848 return __cancel_work_timer(work, NULL);
b89deed3 2849}
28e53bdd 2850EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2851
6e84d644 2852/**
401a8d04
TH
2853 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2854 * @dwork: the delayed work to flush
6e84d644 2855 *
401a8d04
TH
2856 * Delayed timer is cancelled and the pending work is queued for
2857 * immediate execution. Like flush_work(), this function only
2858 * considers the last queueing instance of @dwork.
1f1f642e 2859 *
401a8d04
TH
2860 * RETURNS:
2861 * %true if flush_work() waited for the work to finish execution,
2862 * %false if it was already idle.
6e84d644 2863 */
401a8d04
TH
2864bool flush_delayed_work(struct delayed_work *dwork)
2865{
8930caba 2866 local_irq_disable();
401a8d04 2867 if (del_timer_sync(&dwork->timer))
57469821 2868 __queue_work(WORK_CPU_UNBOUND,
401a8d04 2869 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2870 local_irq_enable();
401a8d04
TH
2871 return flush_work(&dwork->work);
2872}
2873EXPORT_SYMBOL(flush_delayed_work);
2874
09383498
TH
2875/**
2876 * flush_delayed_work_sync - wait for a dwork to finish
2877 * @dwork: the delayed work to flush
2878 *
2879 * Delayed timer is cancelled and the pending work is queued for
2880 * execution immediately. Other than timer handling, its behavior
2881 * is identical to flush_work_sync().
2882 *
2883 * RETURNS:
2884 * %true if flush_work_sync() waited for the work to finish execution,
2885 * %false if it was already idle.
2886 */
2887bool flush_delayed_work_sync(struct delayed_work *dwork)
2888{
8930caba 2889 local_irq_disable();
09383498 2890 if (del_timer_sync(&dwork->timer))
57469821 2891 __queue_work(WORK_CPU_UNBOUND,
09383498 2892 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2893 local_irq_enable();
09383498
TH
2894 return flush_work_sync(&dwork->work);
2895}
2896EXPORT_SYMBOL(flush_delayed_work_sync);
2897
401a8d04
TH
2898/**
2899 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2900 * @dwork: the delayed work cancel
2901 *
2902 * This is cancel_work_sync() for delayed works.
2903 *
2904 * RETURNS:
2905 * %true if @dwork was pending, %false otherwise.
2906 */
2907bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2908{
1f1f642e 2909 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2910}
f5a421a4 2911EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2912
d4283e93 2913/**
0a13c00e
TH
2914 * schedule_work_on - put work task on a specific cpu
2915 * @cpu: cpu to put the work task on
2916 * @work: job to be done
2917 *
2918 * This puts a job on a specific cpu
2919 */
d4283e93 2920bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
2921{
2922 return queue_work_on(cpu, system_wq, work);
2923}
2924EXPORT_SYMBOL(schedule_work_on);
2925
0fcb78c2
REB
2926/**
2927 * schedule_work - put work task in global workqueue
2928 * @work: job to be done
2929 *
d4283e93
TH
2930 * Returns %false if @work was already on the kernel-global workqueue and
2931 * %true otherwise.
5b0f437d
BVA
2932 *
2933 * This puts a job in the kernel-global workqueue if it was not already
2934 * queued and leaves it in the same position on the kernel-global
2935 * workqueue otherwise.
0fcb78c2 2936 */
d4283e93 2937bool schedule_work(struct work_struct *work)
1da177e4 2938{
d320c038 2939 return queue_work(system_wq, work);
1da177e4 2940}
ae90dd5d 2941EXPORT_SYMBOL(schedule_work);
1da177e4 2942
0a13c00e
TH
2943/**
2944 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2945 * @cpu: cpu to use
2946 * @dwork: job to be done
2947 * @delay: number of jiffies to wait
c1a220e7 2948 *
0a13c00e
TH
2949 * After waiting for a given time this puts a job in the kernel-global
2950 * workqueue on the specified CPU.
c1a220e7 2951 */
d4283e93
TH
2952bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2953 unsigned long delay)
c1a220e7 2954{
0a13c00e 2955 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 2956}
0a13c00e 2957EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 2958
0fcb78c2
REB
2959/**
2960 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2961 * @dwork: job to be done
2962 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2963 *
2964 * After waiting for a given time this puts a job in the kernel-global
2965 * workqueue.
2966 */
d4283e93 2967bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2968{
d320c038 2969 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2970}
ae90dd5d 2971EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2972
b6136773 2973/**
31ddd871 2974 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2975 * @func: the function to call
b6136773 2976 *
31ddd871
TH
2977 * schedule_on_each_cpu() executes @func on each online CPU using the
2978 * system workqueue and blocks until all CPUs have completed.
b6136773 2979 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2980 *
2981 * RETURNS:
2982 * 0 on success, -errno on failure.
b6136773 2983 */
65f27f38 2984int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2985{
2986 int cpu;
38f51568 2987 struct work_struct __percpu *works;
15316ba8 2988
b6136773
AM
2989 works = alloc_percpu(struct work_struct);
2990 if (!works)
15316ba8 2991 return -ENOMEM;
b6136773 2992
93981800
TH
2993 get_online_cpus();
2994
15316ba8 2995 for_each_online_cpu(cpu) {
9bfb1839
IM
2996 struct work_struct *work = per_cpu_ptr(works, cpu);
2997
2998 INIT_WORK(work, func);
b71ab8c2 2999 schedule_work_on(cpu, work);
65a64464 3000 }
93981800
TH
3001
3002 for_each_online_cpu(cpu)
3003 flush_work(per_cpu_ptr(works, cpu));
3004
95402b38 3005 put_online_cpus();
b6136773 3006 free_percpu(works);
15316ba8
CL
3007 return 0;
3008}
3009
eef6a7d5
AS
3010/**
3011 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3012 *
3013 * Forces execution of the kernel-global workqueue and blocks until its
3014 * completion.
3015 *
3016 * Think twice before calling this function! It's very easy to get into
3017 * trouble if you don't take great care. Either of the following situations
3018 * will lead to deadlock:
3019 *
3020 * One of the work items currently on the workqueue needs to acquire
3021 * a lock held by your code or its caller.
3022 *
3023 * Your code is running in the context of a work routine.
3024 *
3025 * They will be detected by lockdep when they occur, but the first might not
3026 * occur very often. It depends on what work items are on the workqueue and
3027 * what locks they need, which you have no control over.
3028 *
3029 * In most situations flushing the entire workqueue is overkill; you merely
3030 * need to know that a particular work item isn't queued and isn't running.
3031 * In such cases you should use cancel_delayed_work_sync() or
3032 * cancel_work_sync() instead.
3033 */
1da177e4
LT
3034void flush_scheduled_work(void)
3035{
d320c038 3036 flush_workqueue(system_wq);
1da177e4 3037}
ae90dd5d 3038EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3039
1fa44eca
JB
3040/**
3041 * execute_in_process_context - reliably execute the routine with user context
3042 * @fn: the function to execute
1fa44eca
JB
3043 * @ew: guaranteed storage for the execute work structure (must
3044 * be available when the work executes)
3045 *
3046 * Executes the function immediately if process context is available,
3047 * otherwise schedules the function for delayed execution.
3048 *
3049 * Returns: 0 - function was executed
3050 * 1 - function was scheduled for execution
3051 */
65f27f38 3052int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3053{
3054 if (!in_interrupt()) {
65f27f38 3055 fn(&ew->work);
1fa44eca
JB
3056 return 0;
3057 }
3058
65f27f38 3059 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3060 schedule_work(&ew->work);
3061
3062 return 1;
3063}
3064EXPORT_SYMBOL_GPL(execute_in_process_context);
3065
1da177e4
LT
3066int keventd_up(void)
3067{
d320c038 3068 return system_wq != NULL;
1da177e4
LT
3069}
3070
bdbc5dd7 3071static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3072{
65a64464 3073 /*
0f900049
TH
3074 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3075 * Make sure that the alignment isn't lower than that of
3076 * unsigned long long.
65a64464 3077 */
0f900049
TH
3078 const size_t size = sizeof(struct cpu_workqueue_struct);
3079 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3080 __alignof__(unsigned long long));
65a64464 3081
e06ffa1e 3082 if (!(wq->flags & WQ_UNBOUND))
f3421797 3083 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3084 else {
f3421797
TH
3085 void *ptr;
3086
3087 /*
3088 * Allocate enough room to align cwq and put an extra
3089 * pointer at the end pointing back to the originally
3090 * allocated pointer which will be used for free.
3091 */
3092 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3093 if (ptr) {
3094 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3095 *(void **)(wq->cpu_wq.single + 1) = ptr;
3096 }
bdbc5dd7 3097 }
f3421797 3098
0415b00d 3099 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3100 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3101 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3102}
3103
bdbc5dd7 3104static void free_cwqs(struct workqueue_struct *wq)
0f900049 3105{
e06ffa1e 3106 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3107 free_percpu(wq->cpu_wq.pcpu);
3108 else if (wq->cpu_wq.single) {
3109 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3110 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3111 }
0f900049
TH
3112}
3113
f3421797
TH
3114static int wq_clamp_max_active(int max_active, unsigned int flags,
3115 const char *name)
b71ab8c2 3116{
f3421797
TH
3117 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3118
3119 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3120 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3121 "is out of range, clamping between %d and %d\n",
f3421797 3122 max_active, name, 1, lim);
b71ab8c2 3123
f3421797 3124 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3125}
3126
b196be89 3127struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3128 unsigned int flags,
3129 int max_active,
3130 struct lock_class_key *key,
b196be89 3131 const char *lock_name, ...)
1da177e4 3132{
b196be89 3133 va_list args, args1;
1da177e4 3134 struct workqueue_struct *wq;
c34056a3 3135 unsigned int cpu;
b196be89
TH
3136 size_t namelen;
3137
3138 /* determine namelen, allocate wq and format name */
3139 va_start(args, lock_name);
3140 va_copy(args1, args);
3141 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3142
3143 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3144 if (!wq)
3145 goto err;
3146
3147 vsnprintf(wq->name, namelen, fmt, args1);
3148 va_end(args);
3149 va_end(args1);
1da177e4 3150
6370a6ad
TH
3151 /*
3152 * Workqueues which may be used during memory reclaim should
3153 * have a rescuer to guarantee forward progress.
3154 */
3155 if (flags & WQ_MEM_RECLAIM)
3156 flags |= WQ_RESCUER;
3157
d320c038 3158 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3159 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3160
b196be89 3161 /* init wq */
97e37d7b 3162 wq->flags = flags;
a0a1a5fd 3163 wq->saved_max_active = max_active;
73f53c4a
TH
3164 mutex_init(&wq->flush_mutex);
3165 atomic_set(&wq->nr_cwqs_to_flush, 0);
3166 INIT_LIST_HEAD(&wq->flusher_queue);
3167 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3168
eb13ba87 3169 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3170 INIT_LIST_HEAD(&wq->list);
3af24433 3171
bdbc5dd7
TH
3172 if (alloc_cwqs(wq) < 0)
3173 goto err;
3174
f3421797 3175 for_each_cwq_cpu(cpu, wq) {
1537663f 3176 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3177 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3178 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3179
0f900049 3180 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3181 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3182 cwq->wq = wq;
73f53c4a 3183 cwq->flush_color = -1;
1e19ffc6 3184 cwq->max_active = max_active;
1e19ffc6 3185 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3186 }
1537663f 3187
e22bee78
TH
3188 if (flags & WQ_RESCUER) {
3189 struct worker *rescuer;
3190
f2e005aa 3191 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3192 goto err;
3193
3194 wq->rescuer = rescuer = alloc_worker();
3195 if (!rescuer)
3196 goto err;
3197
b196be89
TH
3198 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3199 wq->name);
e22bee78
TH
3200 if (IS_ERR(rescuer->task))
3201 goto err;
3202
e22bee78
TH
3203 rescuer->task->flags |= PF_THREAD_BOUND;
3204 wake_up_process(rescuer->task);
3af24433
ON
3205 }
3206
a0a1a5fd
TH
3207 /*
3208 * workqueue_lock protects global freeze state and workqueues
3209 * list. Grab it, set max_active accordingly and add the new
3210 * workqueue to workqueues list.
3211 */
1537663f 3212 spin_lock(&workqueue_lock);
a0a1a5fd 3213
58a69cb4 3214 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3215 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3216 get_cwq(cpu, wq)->max_active = 0;
3217
1537663f 3218 list_add(&wq->list, &workqueues);
a0a1a5fd 3219
1537663f
TH
3220 spin_unlock(&workqueue_lock);
3221
3af24433 3222 return wq;
4690c4ab
TH
3223err:
3224 if (wq) {
bdbc5dd7 3225 free_cwqs(wq);
f2e005aa 3226 free_mayday_mask(wq->mayday_mask);
e22bee78 3227 kfree(wq->rescuer);
4690c4ab
TH
3228 kfree(wq);
3229 }
3230 return NULL;
3af24433 3231}
d320c038 3232EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3233
3af24433
ON
3234/**
3235 * destroy_workqueue - safely terminate a workqueue
3236 * @wq: target workqueue
3237 *
3238 * Safely destroy a workqueue. All work currently pending will be done first.
3239 */
3240void destroy_workqueue(struct workqueue_struct *wq)
3241{
c8e55f36 3242 unsigned int cpu;
3af24433 3243
9c5a2ba7
TH
3244 /* drain it before proceeding with destruction */
3245 drain_workqueue(wq);
c8efcc25 3246
a0a1a5fd
TH
3247 /*
3248 * wq list is used to freeze wq, remove from list after
3249 * flushing is complete in case freeze races us.
3250 */
95402b38 3251 spin_lock(&workqueue_lock);
b1f4ec17 3252 list_del(&wq->list);
95402b38 3253 spin_unlock(&workqueue_lock);
3af24433 3254
e22bee78 3255 /* sanity check */
f3421797 3256 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3257 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3258 int i;
3259
73f53c4a
TH
3260 for (i = 0; i < WORK_NR_COLORS; i++)
3261 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3262 BUG_ON(cwq->nr_active);
3263 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3264 }
9b41ea72 3265
e22bee78
TH
3266 if (wq->flags & WQ_RESCUER) {
3267 kthread_stop(wq->rescuer->task);
f2e005aa 3268 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3269 kfree(wq->rescuer);
e22bee78
TH
3270 }
3271
bdbc5dd7 3272 free_cwqs(wq);
3af24433
ON
3273 kfree(wq);
3274}
3275EXPORT_SYMBOL_GPL(destroy_workqueue);
3276
dcd989cb
TH
3277/**
3278 * workqueue_set_max_active - adjust max_active of a workqueue
3279 * @wq: target workqueue
3280 * @max_active: new max_active value.
3281 *
3282 * Set max_active of @wq to @max_active.
3283 *
3284 * CONTEXT:
3285 * Don't call from IRQ context.
3286 */
3287void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3288{
3289 unsigned int cpu;
3290
f3421797 3291 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3292
3293 spin_lock(&workqueue_lock);
3294
3295 wq->saved_max_active = max_active;
3296
f3421797 3297 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3298 struct global_cwq *gcwq = get_gcwq(cpu);
3299
3300 spin_lock_irq(&gcwq->lock);
3301
58a69cb4 3302 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3303 !(gcwq->flags & GCWQ_FREEZING))
3304 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3305
dcd989cb 3306 spin_unlock_irq(&gcwq->lock);
65a64464 3307 }
93981800 3308
dcd989cb 3309 spin_unlock(&workqueue_lock);
15316ba8 3310}
dcd989cb 3311EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3312
eef6a7d5 3313/**
dcd989cb
TH
3314 * workqueue_congested - test whether a workqueue is congested
3315 * @cpu: CPU in question
3316 * @wq: target workqueue
eef6a7d5 3317 *
dcd989cb
TH
3318 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3319 * no synchronization around this function and the test result is
3320 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3321 *
dcd989cb
TH
3322 * RETURNS:
3323 * %true if congested, %false otherwise.
eef6a7d5 3324 */
dcd989cb 3325bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3326{
dcd989cb
TH
3327 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3328
3329 return !list_empty(&cwq->delayed_works);
1da177e4 3330}
dcd989cb 3331EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3332
1fa44eca 3333/**
dcd989cb
TH
3334 * work_cpu - return the last known associated cpu for @work
3335 * @work: the work of interest
1fa44eca 3336 *
dcd989cb 3337 * RETURNS:
bdbc5dd7 3338 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3339 */
dcd989cb 3340unsigned int work_cpu(struct work_struct *work)
1fa44eca 3341{
dcd989cb 3342 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3343
bdbc5dd7 3344 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3345}
dcd989cb 3346EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3347
dcd989cb
TH
3348/**
3349 * work_busy - test whether a work is currently pending or running
3350 * @work: the work to be tested
3351 *
3352 * Test whether @work is currently pending or running. There is no
3353 * synchronization around this function and the test result is
3354 * unreliable and only useful as advisory hints or for debugging.
3355 * Especially for reentrant wqs, the pending state might hide the
3356 * running state.
3357 *
3358 * RETURNS:
3359 * OR'd bitmask of WORK_BUSY_* bits.
3360 */
3361unsigned int work_busy(struct work_struct *work)
1da177e4 3362{
dcd989cb
TH
3363 struct global_cwq *gcwq = get_work_gcwq(work);
3364 unsigned long flags;
3365 unsigned int ret = 0;
1da177e4 3366
dcd989cb
TH
3367 if (!gcwq)
3368 return false;
1da177e4 3369
dcd989cb 3370 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3371
dcd989cb
TH
3372 if (work_pending(work))
3373 ret |= WORK_BUSY_PENDING;
3374 if (find_worker_executing_work(gcwq, work))
3375 ret |= WORK_BUSY_RUNNING;
1da177e4 3376
dcd989cb 3377 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3378
dcd989cb 3379 return ret;
1da177e4 3380}
dcd989cb 3381EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3382
db7bccf4
TH
3383/*
3384 * CPU hotplug.
3385 *
e22bee78
TH
3386 * There are two challenges in supporting CPU hotplug. Firstly, there
3387 * are a lot of assumptions on strong associations among work, cwq and
3388 * gcwq which make migrating pending and scheduled works very
3389 * difficult to implement without impacting hot paths. Secondly,
3390 * gcwqs serve mix of short, long and very long running works making
3391 * blocked draining impractical.
3392 *
628c78e7
TH
3393 * This is solved by allowing a gcwq to be disassociated from the CPU
3394 * running as an unbound one and allowing it to be reattached later if the
3395 * cpu comes back online.
db7bccf4 3396 */
1da177e4 3397
60373152 3398/* claim manager positions of all pools */
8db25e78 3399static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3400{
3401 struct worker_pool *pool;
3402
3403 for_each_worker_pool(pool, gcwq)
3404 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3405 spin_lock_irq(&gcwq->lock);
60373152
TH
3406}
3407
3408/* release manager positions */
8db25e78 3409static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3410{
3411 struct worker_pool *pool;
3412
8db25e78 3413 spin_unlock_irq(&gcwq->lock);
60373152
TH
3414 for_each_worker_pool(pool, gcwq)
3415 mutex_unlock(&pool->manager_mutex);
3416}
3417
628c78e7 3418static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3419{
628c78e7 3420 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3421 struct worker_pool *pool;
db7bccf4
TH
3422 struct worker *worker;
3423 struct hlist_node *pos;
3424 int i;
3af24433 3425
db7bccf4
TH
3426 BUG_ON(gcwq->cpu != smp_processor_id());
3427
8db25e78 3428 gcwq_claim_management_and_lock(gcwq);
3af24433 3429
f2d5a0ee
TH
3430 /*
3431 * We've claimed all manager positions. Make all workers unbound
3432 * and set DISASSOCIATED. Before this, all workers except for the
3433 * ones which are still executing works from before the last CPU
3434 * down must be on the cpu. After this, they may become diasporas.
3435 */
60373152 3436 for_each_worker_pool(pool, gcwq)
4ce62e9e 3437 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3438 worker->flags |= WORKER_UNBOUND;
3af24433 3439
db7bccf4 3440 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3441 worker->flags |= WORKER_UNBOUND;
06ba38a9 3442
f2d5a0ee
TH
3443 gcwq->flags |= GCWQ_DISASSOCIATED;
3444
8db25e78 3445 gcwq_release_management_and_unlock(gcwq);
628c78e7 3446
e22bee78 3447 /*
403c821d 3448 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3449 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3450 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3451 */
e22bee78 3452 schedule();
06ba38a9 3453
e22bee78 3454 /*
628c78e7
TH
3455 * Sched callbacks are disabled now. Zap nr_running. After this,
3456 * nr_running stays zero and need_more_worker() and keep_working()
3457 * are always true as long as the worklist is not empty. @gcwq now
3458 * behaves as unbound (in terms of concurrency management) gcwq
3459 * which is served by workers tied to the CPU.
3460 *
3461 * On return from this function, the current worker would trigger
3462 * unbound chain execution of pending work items if other workers
3463 * didn't already.
e22bee78 3464 */
4ce62e9e
TH
3465 for_each_worker_pool(pool, gcwq)
3466 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3467}
3af24433 3468
8db25e78
TH
3469/*
3470 * Workqueues should be brought up before normal priority CPU notifiers.
3471 * This will be registered high priority CPU notifier.
3472 */
3473static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3474 unsigned long action,
3475 void *hcpu)
3af24433
ON
3476{
3477 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3478 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3479 struct worker_pool *pool;
3ce63377 3480
8db25e78 3481 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3482 case CPU_UP_PREPARE:
4ce62e9e 3483 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3484 struct worker *worker;
3485
3486 if (pool->nr_workers)
3487 continue;
3488
3489 worker = create_worker(pool);
3490 if (!worker)
3491 return NOTIFY_BAD;
3492
3493 spin_lock_irq(&gcwq->lock);
3494 start_worker(worker);
3495 spin_unlock_irq(&gcwq->lock);
3af24433 3496 }
8db25e78 3497 break;
3af24433 3498
db7bccf4
TH
3499 case CPU_DOWN_FAILED:
3500 case CPU_ONLINE:
8db25e78 3501 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3502 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3503 rebind_workers(gcwq);
8db25e78 3504 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3505 break;
00dfcaf7 3506 }
65758202
TH
3507 return NOTIFY_OK;
3508}
3509
3510/*
3511 * Workqueues should be brought down after normal priority CPU notifiers.
3512 * This will be registered as low priority CPU notifier.
3513 */
3514static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3515 unsigned long action,
3516 void *hcpu)
3517{
8db25e78
TH
3518 unsigned int cpu = (unsigned long)hcpu;
3519 struct work_struct unbind_work;
3520
65758202
TH
3521 switch (action & ~CPU_TASKS_FROZEN) {
3522 case CPU_DOWN_PREPARE:
8db25e78
TH
3523 /* unbinding should happen on the local CPU */
3524 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3525 schedule_work_on(cpu, &unbind_work);
3526 flush_work(&unbind_work);
3527 break;
65758202
TH
3528 }
3529 return NOTIFY_OK;
3530}
3531
2d3854a3 3532#ifdef CONFIG_SMP
8ccad40d 3533
2d3854a3 3534struct work_for_cpu {
6b44003e 3535 struct completion completion;
2d3854a3
RR
3536 long (*fn)(void *);
3537 void *arg;
3538 long ret;
3539};
3540
6b44003e 3541static int do_work_for_cpu(void *_wfc)
2d3854a3 3542{
6b44003e 3543 struct work_for_cpu *wfc = _wfc;
2d3854a3 3544 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3545 complete(&wfc->completion);
3546 return 0;
2d3854a3
RR
3547}
3548
3549/**
3550 * work_on_cpu - run a function in user context on a particular cpu
3551 * @cpu: the cpu to run on
3552 * @fn: the function to run
3553 * @arg: the function arg
3554 *
31ad9081
RR
3555 * This will return the value @fn returns.
3556 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3557 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3558 */
3559long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3560{
6b44003e
AM
3561 struct task_struct *sub_thread;
3562 struct work_for_cpu wfc = {
3563 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3564 .fn = fn,
3565 .arg = arg,
3566 };
3567
3568 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3569 if (IS_ERR(sub_thread))
3570 return PTR_ERR(sub_thread);
3571 kthread_bind(sub_thread, cpu);
3572 wake_up_process(sub_thread);
3573 wait_for_completion(&wfc.completion);
2d3854a3
RR
3574 return wfc.ret;
3575}
3576EXPORT_SYMBOL_GPL(work_on_cpu);
3577#endif /* CONFIG_SMP */
3578
a0a1a5fd
TH
3579#ifdef CONFIG_FREEZER
3580
3581/**
3582 * freeze_workqueues_begin - begin freezing workqueues
3583 *
58a69cb4
TH
3584 * Start freezing workqueues. After this function returns, all freezable
3585 * workqueues will queue new works to their frozen_works list instead of
3586 * gcwq->worklist.
a0a1a5fd
TH
3587 *
3588 * CONTEXT:
8b03ae3c 3589 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3590 */
3591void freeze_workqueues_begin(void)
3592{
a0a1a5fd
TH
3593 unsigned int cpu;
3594
3595 spin_lock(&workqueue_lock);
3596
3597 BUG_ON(workqueue_freezing);
3598 workqueue_freezing = true;
3599
f3421797 3600 for_each_gcwq_cpu(cpu) {
8b03ae3c 3601 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3602 struct workqueue_struct *wq;
8b03ae3c
TH
3603
3604 spin_lock_irq(&gcwq->lock);
3605
db7bccf4
TH
3606 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3607 gcwq->flags |= GCWQ_FREEZING;
3608
a0a1a5fd
TH
3609 list_for_each_entry(wq, &workqueues, list) {
3610 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3611
58a69cb4 3612 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3613 cwq->max_active = 0;
a0a1a5fd 3614 }
8b03ae3c
TH
3615
3616 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3617 }
3618
3619 spin_unlock(&workqueue_lock);
3620}
3621
3622/**
58a69cb4 3623 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3624 *
3625 * Check whether freezing is complete. This function must be called
3626 * between freeze_workqueues_begin() and thaw_workqueues().
3627 *
3628 * CONTEXT:
3629 * Grabs and releases workqueue_lock.
3630 *
3631 * RETURNS:
58a69cb4
TH
3632 * %true if some freezable workqueues are still busy. %false if freezing
3633 * is complete.
a0a1a5fd
TH
3634 */
3635bool freeze_workqueues_busy(void)
3636{
a0a1a5fd
TH
3637 unsigned int cpu;
3638 bool busy = false;
3639
3640 spin_lock(&workqueue_lock);
3641
3642 BUG_ON(!workqueue_freezing);
3643
f3421797 3644 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3645 struct workqueue_struct *wq;
a0a1a5fd
TH
3646 /*
3647 * nr_active is monotonically decreasing. It's safe
3648 * to peek without lock.
3649 */
3650 list_for_each_entry(wq, &workqueues, list) {
3651 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3652
58a69cb4 3653 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3654 continue;
3655
3656 BUG_ON(cwq->nr_active < 0);
3657 if (cwq->nr_active) {
3658 busy = true;
3659 goto out_unlock;
3660 }
3661 }
3662 }
3663out_unlock:
3664 spin_unlock(&workqueue_lock);
3665 return busy;
3666}
3667
3668/**
3669 * thaw_workqueues - thaw workqueues
3670 *
3671 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3672 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3673 *
3674 * CONTEXT:
8b03ae3c 3675 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3676 */
3677void thaw_workqueues(void)
3678{
a0a1a5fd
TH
3679 unsigned int cpu;
3680
3681 spin_lock(&workqueue_lock);
3682
3683 if (!workqueue_freezing)
3684 goto out_unlock;
3685
f3421797 3686 for_each_gcwq_cpu(cpu) {
8b03ae3c 3687 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3688 struct worker_pool *pool;
bdbc5dd7 3689 struct workqueue_struct *wq;
8b03ae3c
TH
3690
3691 spin_lock_irq(&gcwq->lock);
3692
db7bccf4
TH
3693 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3694 gcwq->flags &= ~GCWQ_FREEZING;
3695
a0a1a5fd
TH
3696 list_for_each_entry(wq, &workqueues, list) {
3697 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3698
58a69cb4 3699 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3700 continue;
3701
a0a1a5fd
TH
3702 /* restore max_active and repopulate worklist */
3703 cwq->max_active = wq->saved_max_active;
3704
3705 while (!list_empty(&cwq->delayed_works) &&
3706 cwq->nr_active < cwq->max_active)
3707 cwq_activate_first_delayed(cwq);
a0a1a5fd 3708 }
8b03ae3c 3709
4ce62e9e
TH
3710 for_each_worker_pool(pool, gcwq)
3711 wake_up_worker(pool);
e22bee78 3712
8b03ae3c 3713 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3714 }
3715
3716 workqueue_freezing = false;
3717out_unlock:
3718 spin_unlock(&workqueue_lock);
3719}
3720#endif /* CONFIG_FREEZER */
3721
6ee0578b 3722static int __init init_workqueues(void)
1da177e4 3723{
c34056a3 3724 unsigned int cpu;
c8e55f36 3725 int i;
c34056a3 3726
b5490077
TH
3727 /* make sure we have enough bits for OFFQ CPU number */
3728 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3729 WORK_CPU_LAST);
3730
65758202
TH
3731 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3732 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3733
3734 /* initialize gcwqs */
f3421797 3735 for_each_gcwq_cpu(cpu) {
8b03ae3c 3736 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3737 struct worker_pool *pool;
8b03ae3c
TH
3738
3739 spin_lock_init(&gcwq->lock);
3740 gcwq->cpu = cpu;
477a3c33 3741 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3742
c8e55f36
TH
3743 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3744 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3745
4ce62e9e
TH
3746 for_each_worker_pool(pool, gcwq) {
3747 pool->gcwq = gcwq;
3748 INIT_LIST_HEAD(&pool->worklist);
3749 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3750
4ce62e9e
TH
3751 init_timer_deferrable(&pool->idle_timer);
3752 pool->idle_timer.function = idle_worker_timeout;
3753 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3754
4ce62e9e
TH
3755 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3756 (unsigned long)pool);
3757
60373152 3758 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3759 ida_init(&pool->worker_ida);
3760 }
db7bccf4 3761
25511a47 3762 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3763 }
3764
e22bee78 3765 /* create the initial worker */
f3421797 3766 for_each_online_gcwq_cpu(cpu) {
e22bee78 3767 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3768 struct worker_pool *pool;
e22bee78 3769
477a3c33
TH
3770 if (cpu != WORK_CPU_UNBOUND)
3771 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3772
3773 for_each_worker_pool(pool, gcwq) {
3774 struct worker *worker;
3775
bc2ae0f5 3776 worker = create_worker(pool);
4ce62e9e
TH
3777 BUG_ON(!worker);
3778 spin_lock_irq(&gcwq->lock);
3779 start_worker(worker);
3780 spin_unlock_irq(&gcwq->lock);
3781 }
e22bee78
TH
3782 }
3783
d320c038
TH
3784 system_wq = alloc_workqueue("events", 0, 0);
3785 system_long_wq = alloc_workqueue("events_long", 0, 0);
3786 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3787 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3788 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3789 system_freezable_wq = alloc_workqueue("events_freezable",
3790 WQ_FREEZABLE, 0);
62d3c543
AS
3791 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3792 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3793 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3794 !system_unbound_wq || !system_freezable_wq ||
3795 !system_nrt_freezable_wq);
6ee0578b 3796 return 0;
1da177e4 3797}
6ee0578b 3798early_initcall(init_workqueues);