workqueue: move pwq_pool_locking outside of get/put_unbound_pool()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 62 *
bc3a1afc
TH
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
24647570 65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 78 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 79
a9ab775b
TH
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
81 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 82
e34cdddb 83 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 84
29c91e99 85 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 86 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
d565ed63 114 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 115 *
d565ed63
TH
116 * X: During normal operation, modification requires pool->lock and should
117 * be done only from local cpu. Either disabling preemption on local
118 * cpu or grabbing pool->lock is enough for read access. If
119 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
822d8405
TH
121 * MG: pool->manager_mutex and pool->lock protected. Writes require both
122 * locks. Reads can happen under either lock.
123 *
68e13a67 124 * PL: wq_pool_mutex protected.
5bcab335 125 *
68e13a67 126 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 127 *
3c25a55d
LJ
128 * WQ: wq->mutex protected.
129 *
b5927605 130 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
131 *
132 * MD: wq_mayday_lock protected.
1da177e4 133 */
1da177e4 134
2eaebdb3 135/* struct worker is defined in workqueue_internal.h */
c34056a3 136
bd7bdd43 137struct worker_pool {
d565ed63 138 spinlock_t lock; /* the pool lock */
d84ff051 139 int cpu; /* I: the associated cpu */
9daf9e67 140 int id; /* I: pool ID */
11ebea50 141 unsigned int flags; /* X: flags */
bd7bdd43
TH
142
143 struct list_head worklist; /* L: list of pending works */
144 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
145
146 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
147 int nr_idle; /* L: currently idle ones */
148
149 struct list_head idle_list; /* X: list of idle workers */
150 struct timer_list idle_timer; /* L: worker idle timeout */
151 struct timer_list mayday_timer; /* L: SOS timer for workers */
152
c5aa87bb 153 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
154 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
155 /* L: hash of busy workers */
156
bc3a1afc 157 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 158 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 159 struct mutex manager_mutex; /* manager exclusion */
822d8405 160 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 161
7a4e344c 162 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
163 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
164 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 165
e19e397a
TH
166 /*
167 * The current concurrency level. As it's likely to be accessed
168 * from other CPUs during try_to_wake_up(), put it in a separate
169 * cacheline.
170 */
171 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
172
173 /*
174 * Destruction of pool is sched-RCU protected to allow dereferences
175 * from get_work_pool().
176 */
177 struct rcu_head rcu;
8b03ae3c
TH
178} ____cacheline_aligned_in_smp;
179
1da177e4 180/*
112202d9
TH
181 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
182 * of work_struct->data are used for flags and the remaining high bits
183 * point to the pwq; thus, pwqs need to be aligned at two's power of the
184 * number of flag bits.
1da177e4 185 */
112202d9 186struct pool_workqueue {
bd7bdd43 187 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 188 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
189 int work_color; /* L: current color */
190 int flush_color; /* L: flushing color */
8864b4e5 191 int refcnt; /* L: reference count */
73f53c4a
TH
192 int nr_in_flight[WORK_NR_COLORS];
193 /* L: nr of in_flight works */
1e19ffc6 194 int nr_active; /* L: nr of active works */
a0a1a5fd 195 int max_active; /* L: max active works */
1e19ffc6 196 struct list_head delayed_works; /* L: delayed works */
3c25a55d 197 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 198 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
199
200 /*
201 * Release of unbound pwq is punted to system_wq. See put_pwq()
202 * and pwq_unbound_release_workfn() for details. pool_workqueue
203 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 204 * determined without grabbing wq->mutex.
8864b4e5
TH
205 */
206 struct work_struct unbound_release_work;
207 struct rcu_head rcu;
e904e6c2 208} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 209
73f53c4a
TH
210/*
211 * Structure used to wait for workqueue flush.
212 */
213struct wq_flusher {
3c25a55d
LJ
214 struct list_head list; /* WQ: list of flushers */
215 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
216 struct completion done; /* flush completion */
217};
218
226223ab
TH
219struct wq_device;
220
1da177e4 221/*
c5aa87bb
TH
222 * The externally visible workqueue. It relays the issued work items to
223 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
224 */
225struct workqueue_struct {
87fc741e 226 unsigned int flags; /* WQ: WQ_* flags */
420c0ddb 227 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
3c25a55d 228 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 229 struct list_head list; /* PL: list of all workqueues */
73f53c4a 230
3c25a55d
LJ
231 struct mutex mutex; /* protects this wq */
232 int work_color; /* WQ: current work color */
233 int flush_color; /* WQ: current flush color */
112202d9 234 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
235 struct wq_flusher *first_flusher; /* WQ: first flusher */
236 struct list_head flusher_queue; /* WQ: flush waiters */
237 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 238
2e109a28 239 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
240 struct worker *rescuer; /* I: rescue worker */
241
87fc741e 242 int nr_drainers; /* WQ: drain in progress */
a357fc03 243 int saved_max_active; /* WQ: saved pwq max_active */
226223ab
TH
244
245#ifdef CONFIG_SYSFS
246 struct wq_device *wq_dev; /* I: for sysfs interface */
247#endif
4e6045f1 248#ifdef CONFIG_LOCKDEP
4690c4ab 249 struct lockdep_map lockdep_map;
4e6045f1 250#endif
b196be89 251 char name[]; /* I: workqueue name */
1da177e4
LT
252};
253
e904e6c2
TH
254static struct kmem_cache *pwq_cache;
255
68e13a67 256static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 257static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 258
68e13a67
LJ
259static LIST_HEAD(workqueues); /* PL: list of all workqueues */
260static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
261
262/* the per-cpu worker pools */
263static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
264 cpu_worker_pools);
265
68e13a67 266static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 267
68e13a67 268/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
269static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
270
c5aa87bb 271/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
272static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
273
d320c038 274struct workqueue_struct *system_wq __read_mostly;
d320c038 275EXPORT_SYMBOL_GPL(system_wq);
044c782c 276struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 277EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 278struct workqueue_struct *system_long_wq __read_mostly;
d320c038 279EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 280struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 281EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 282struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 283EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 284
7d19c5ce
TH
285static int worker_thread(void *__worker);
286static void copy_workqueue_attrs(struct workqueue_attrs *to,
287 const struct workqueue_attrs *from);
288
97bd2347
TH
289#define CREATE_TRACE_POINTS
290#include <trace/events/workqueue.h>
291
68e13a67 292#define assert_rcu_or_pool_mutex() \
5bcab335 293 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
294 lockdep_is_held(&wq_pool_mutex), \
295 "sched RCU or wq_pool_mutex should be held")
5bcab335 296
b09f4fd3 297#define assert_rcu_or_wq_mutex(wq) \
76af4d93 298 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 299 lockdep_is_held(&wq->mutex), \
b09f4fd3 300 "sched RCU or wq->mutex should be held")
76af4d93 301
822d8405
TH
302#ifdef CONFIG_LOCKDEP
303#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
304 WARN_ONCE(debug_locks && \
305 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
306 !lockdep_is_held(&(pool)->lock), \
307 "pool->manager_mutex or ->lock should be held")
308#else
309#define assert_manager_or_pool_lock(pool) do { } while (0)
310#endif
311
f02ae73a
TH
312#define for_each_cpu_worker_pool(pool, cpu) \
313 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
314 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 315 (pool)++)
4ce62e9e 316
17116969
TH
317/**
318 * for_each_pool - iterate through all worker_pools in the system
319 * @pool: iteration cursor
611c92a0 320 * @pi: integer used for iteration
fa1b54e6 321 *
68e13a67
LJ
322 * This must be called either with wq_pool_mutex held or sched RCU read
323 * locked. If the pool needs to be used beyond the locking in effect, the
324 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
325 *
326 * The if/else clause exists only for the lockdep assertion and can be
327 * ignored.
17116969 328 */
611c92a0
TH
329#define for_each_pool(pool, pi) \
330 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 331 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 332 else
17116969 333
822d8405
TH
334/**
335 * for_each_pool_worker - iterate through all workers of a worker_pool
336 * @worker: iteration cursor
337 * @wi: integer used for iteration
338 * @pool: worker_pool to iterate workers of
339 *
340 * This must be called with either @pool->manager_mutex or ->lock held.
341 *
342 * The if/else clause exists only for the lockdep assertion and can be
343 * ignored.
344 */
345#define for_each_pool_worker(worker, wi, pool) \
346 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
347 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
348 else
349
49e3cf44
TH
350/**
351 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
352 * @pwq: iteration cursor
353 * @wq: the target workqueue
76af4d93 354 *
b09f4fd3 355 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
356 * If the pwq needs to be used beyond the locking in effect, the caller is
357 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
358 *
359 * The if/else clause exists only for the lockdep assertion and can be
360 * ignored.
49e3cf44
TH
361 */
362#define for_each_pwq(pwq, wq) \
76af4d93 363 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 364 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 365 else
f3421797 366
dc186ad7
TG
367#ifdef CONFIG_DEBUG_OBJECTS_WORK
368
369static struct debug_obj_descr work_debug_descr;
370
99777288
SG
371static void *work_debug_hint(void *addr)
372{
373 return ((struct work_struct *) addr)->func;
374}
375
dc186ad7
TG
376/*
377 * fixup_init is called when:
378 * - an active object is initialized
379 */
380static int work_fixup_init(void *addr, enum debug_obj_state state)
381{
382 struct work_struct *work = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 cancel_work_sync(work);
387 debug_object_init(work, &work_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394/*
395 * fixup_activate is called when:
396 * - an active object is activated
397 * - an unknown object is activated (might be a statically initialized object)
398 */
399static int work_fixup_activate(void *addr, enum debug_obj_state state)
400{
401 struct work_struct *work = addr;
402
403 switch (state) {
404
405 case ODEBUG_STATE_NOTAVAILABLE:
406 /*
407 * This is not really a fixup. The work struct was
408 * statically initialized. We just make sure that it
409 * is tracked in the object tracker.
410 */
22df02bb 411 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
412 debug_object_init(work, &work_debug_descr);
413 debug_object_activate(work, &work_debug_descr);
414 return 0;
415 }
416 WARN_ON_ONCE(1);
417 return 0;
418
419 case ODEBUG_STATE_ACTIVE:
420 WARN_ON(1);
421
422 default:
423 return 0;
424 }
425}
426
427/*
428 * fixup_free is called when:
429 * - an active object is freed
430 */
431static int work_fixup_free(void *addr, enum debug_obj_state state)
432{
433 struct work_struct *work = addr;
434
435 switch (state) {
436 case ODEBUG_STATE_ACTIVE:
437 cancel_work_sync(work);
438 debug_object_free(work, &work_debug_descr);
439 return 1;
440 default:
441 return 0;
442 }
443}
444
445static struct debug_obj_descr work_debug_descr = {
446 .name = "work_struct",
99777288 447 .debug_hint = work_debug_hint,
dc186ad7
TG
448 .fixup_init = work_fixup_init,
449 .fixup_activate = work_fixup_activate,
450 .fixup_free = work_fixup_free,
451};
452
453static inline void debug_work_activate(struct work_struct *work)
454{
455 debug_object_activate(work, &work_debug_descr);
456}
457
458static inline void debug_work_deactivate(struct work_struct *work)
459{
460 debug_object_deactivate(work, &work_debug_descr);
461}
462
463void __init_work(struct work_struct *work, int onstack)
464{
465 if (onstack)
466 debug_object_init_on_stack(work, &work_debug_descr);
467 else
468 debug_object_init(work, &work_debug_descr);
469}
470EXPORT_SYMBOL_GPL(__init_work);
471
472void destroy_work_on_stack(struct work_struct *work)
473{
474 debug_object_free(work, &work_debug_descr);
475}
476EXPORT_SYMBOL_GPL(destroy_work_on_stack);
477
478#else
479static inline void debug_work_activate(struct work_struct *work) { }
480static inline void debug_work_deactivate(struct work_struct *work) { }
481#endif
482
9daf9e67
TH
483/* allocate ID and assign it to @pool */
484static int worker_pool_assign_id(struct worker_pool *pool)
485{
486 int ret;
487
68e13a67 488 lockdep_assert_held(&wq_pool_mutex);
5bcab335 489
fa1b54e6
TH
490 do {
491 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
492 return -ENOMEM;
fa1b54e6 493 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 494 } while (ret == -EAGAIN);
9daf9e67 495
fa1b54e6 496 return ret;
7c3eed5c
TH
497}
498
76af4d93
TH
499/**
500 * first_pwq - return the first pool_workqueue of the specified workqueue
501 * @wq: the target workqueue
502 *
b09f4fd3 503 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
504 * If the pwq needs to be used beyond the locking in effect, the caller is
505 * responsible for guaranteeing that the pwq stays online.
76af4d93 506 */
7fb98ea7 507static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 508{
b09f4fd3 509 assert_rcu_or_wq_mutex(wq);
76af4d93
TH
510 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
511 pwqs_node);
b1f4ec17
ON
512}
513
73f53c4a
TH
514static unsigned int work_color_to_flags(int color)
515{
516 return color << WORK_STRUCT_COLOR_SHIFT;
517}
518
519static int get_work_color(struct work_struct *work)
520{
521 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
522 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
523}
524
525static int work_next_color(int color)
526{
527 return (color + 1) % WORK_NR_COLORS;
528}
1da177e4 529
14441960 530/*
112202d9
TH
531 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
532 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 533 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 534 *
112202d9
TH
535 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
536 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
537 * work->data. These functions should only be called while the work is
538 * owned - ie. while the PENDING bit is set.
7a22ad75 539 *
112202d9 540 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 541 * corresponding to a work. Pool is available once the work has been
112202d9 542 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 543 * available only while the work item is queued.
7a22ad75 544 *
bbb68dfa
TH
545 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
546 * canceled. While being canceled, a work item may have its PENDING set
547 * but stay off timer and worklist for arbitrarily long and nobody should
548 * try to steal the PENDING bit.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
6183c009 553 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
112202d9 557static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
558 unsigned long extra_flags)
559{
112202d9
TH
560 set_work_data(work, (unsigned long)pwq,
561 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
562}
563
4468a00f
LJ
564static void set_work_pool_and_keep_pending(struct work_struct *work,
565 int pool_id)
566{
567 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
568 WORK_STRUCT_PENDING);
569}
570
7c3eed5c
TH
571static void set_work_pool_and_clear_pending(struct work_struct *work,
572 int pool_id)
7a22ad75 573{
23657bb1
TH
574 /*
575 * The following wmb is paired with the implied mb in
576 * test_and_set_bit(PENDING) and ensures all updates to @work made
577 * here are visible to and precede any updates by the next PENDING
578 * owner.
579 */
580 smp_wmb();
7c3eed5c 581 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 582}
f756d5e2 583
7a22ad75 584static void clear_work_data(struct work_struct *work)
1da177e4 585{
7c3eed5c
TH
586 smp_wmb(); /* see set_work_pool_and_clear_pending() */
587 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
588}
589
112202d9 590static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 591{
e120153d 592 unsigned long data = atomic_long_read(&work->data);
7a22ad75 593
112202d9 594 if (data & WORK_STRUCT_PWQ)
e120153d
TH
595 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
596 else
597 return NULL;
4d707b9f
ON
598}
599
7c3eed5c
TH
600/**
601 * get_work_pool - return the worker_pool a given work was associated with
602 * @work: the work item of interest
603 *
604 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 605 *
68e13a67
LJ
606 * Pools are created and destroyed under wq_pool_mutex, and allows read
607 * access under sched-RCU read lock. As such, this function should be
608 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
609 *
610 * All fields of the returned pool are accessible as long as the above
611 * mentioned locking is in effect. If the returned pool needs to be used
612 * beyond the critical section, the caller is responsible for ensuring the
613 * returned pool is and stays online.
7c3eed5c
TH
614 */
615static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 616{
e120153d 617 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 618 int pool_id;
7a22ad75 619
68e13a67 620 assert_rcu_or_pool_mutex();
fa1b54e6 621
112202d9
TH
622 if (data & WORK_STRUCT_PWQ)
623 return ((struct pool_workqueue *)
7c3eed5c 624 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 625
7c3eed5c
TH
626 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
627 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
628 return NULL;
629
fa1b54e6 630 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
631}
632
633/**
634 * get_work_pool_id - return the worker pool ID a given work is associated with
635 * @work: the work item of interest
636 *
637 * Return the worker_pool ID @work was last associated with.
638 * %WORK_OFFQ_POOL_NONE if none.
639 */
640static int get_work_pool_id(struct work_struct *work)
641{
54d5b7d0
LJ
642 unsigned long data = atomic_long_read(&work->data);
643
112202d9
TH
644 if (data & WORK_STRUCT_PWQ)
645 return ((struct pool_workqueue *)
54d5b7d0 646 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 647
54d5b7d0 648 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
649}
650
bbb68dfa
TH
651static void mark_work_canceling(struct work_struct *work)
652{
7c3eed5c 653 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 654
7c3eed5c
TH
655 pool_id <<= WORK_OFFQ_POOL_SHIFT;
656 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
657}
658
659static bool work_is_canceling(struct work_struct *work)
660{
661 unsigned long data = atomic_long_read(&work->data);
662
112202d9 663 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
664}
665
e22bee78 666/*
3270476a
TH
667 * Policy functions. These define the policies on how the global worker
668 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 669 * they're being called with pool->lock held.
e22bee78
TH
670 */
671
63d95a91 672static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 673{
e19e397a 674 return !atomic_read(&pool->nr_running);
a848e3b6
ON
675}
676
4594bf15 677/*
e22bee78
TH
678 * Need to wake up a worker? Called from anything but currently
679 * running workers.
974271c4
TH
680 *
681 * Note that, because unbound workers never contribute to nr_running, this
706026c2 682 * function will always return %true for unbound pools as long as the
974271c4 683 * worklist isn't empty.
4594bf15 684 */
63d95a91 685static bool need_more_worker(struct worker_pool *pool)
365970a1 686{
63d95a91 687 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 688}
4594bf15 689
e22bee78 690/* Can I start working? Called from busy but !running workers. */
63d95a91 691static bool may_start_working(struct worker_pool *pool)
e22bee78 692{
63d95a91 693 return pool->nr_idle;
e22bee78
TH
694}
695
696/* Do I need to keep working? Called from currently running workers. */
63d95a91 697static bool keep_working(struct worker_pool *pool)
e22bee78 698{
e19e397a
TH
699 return !list_empty(&pool->worklist) &&
700 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
701}
702
703/* Do we need a new worker? Called from manager. */
63d95a91 704static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 705{
63d95a91 706 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 707}
365970a1 708
e22bee78 709/* Do I need to be the manager? */
63d95a91 710static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 711{
63d95a91 712 return need_to_create_worker(pool) ||
11ebea50 713 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
714}
715
716/* Do we have too many workers and should some go away? */
63d95a91 717static bool too_many_workers(struct worker_pool *pool)
e22bee78 718{
34a06bd6 719 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
720 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
721 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 722
ea1abd61
LJ
723 /*
724 * nr_idle and idle_list may disagree if idle rebinding is in
725 * progress. Never return %true if idle_list is empty.
726 */
727 if (list_empty(&pool->idle_list))
728 return false;
729
e22bee78 730 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
731}
732
4d707b9f 733/*
e22bee78
TH
734 * Wake up functions.
735 */
736
7e11629d 737/* Return the first worker. Safe with preemption disabled */
63d95a91 738static struct worker *first_worker(struct worker_pool *pool)
7e11629d 739{
63d95a91 740 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
741 return NULL;
742
63d95a91 743 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
744}
745
746/**
747 * wake_up_worker - wake up an idle worker
63d95a91 748 * @pool: worker pool to wake worker from
7e11629d 749 *
63d95a91 750 * Wake up the first idle worker of @pool.
7e11629d
TH
751 *
752 * CONTEXT:
d565ed63 753 * spin_lock_irq(pool->lock).
7e11629d 754 */
63d95a91 755static void wake_up_worker(struct worker_pool *pool)
7e11629d 756{
63d95a91 757 struct worker *worker = first_worker(pool);
7e11629d
TH
758
759 if (likely(worker))
760 wake_up_process(worker->task);
761}
762
d302f017 763/**
e22bee78
TH
764 * wq_worker_waking_up - a worker is waking up
765 * @task: task waking up
766 * @cpu: CPU @task is waking up to
767 *
768 * This function is called during try_to_wake_up() when a worker is
769 * being awoken.
770 *
771 * CONTEXT:
772 * spin_lock_irq(rq->lock)
773 */
d84ff051 774void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
775{
776 struct worker *worker = kthread_data(task);
777
36576000 778 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 779 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 780 atomic_inc(&worker->pool->nr_running);
36576000 781 }
e22bee78
TH
782}
783
784/**
785 * wq_worker_sleeping - a worker is going to sleep
786 * @task: task going to sleep
787 * @cpu: CPU in question, must be the current CPU number
788 *
789 * This function is called during schedule() when a busy worker is
790 * going to sleep. Worker on the same cpu can be woken up by
791 * returning pointer to its task.
792 *
793 * CONTEXT:
794 * spin_lock_irq(rq->lock)
795 *
796 * RETURNS:
797 * Worker task on @cpu to wake up, %NULL if none.
798 */
d84ff051 799struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
800{
801 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 802 struct worker_pool *pool;
e22bee78 803
111c225a
TH
804 /*
805 * Rescuers, which may not have all the fields set up like normal
806 * workers, also reach here, let's not access anything before
807 * checking NOT_RUNNING.
808 */
2d64672e 809 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
810 return NULL;
811
111c225a 812 pool = worker->pool;
111c225a 813
e22bee78 814 /* this can only happen on the local cpu */
6183c009
TH
815 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
816 return NULL;
e22bee78
TH
817
818 /*
819 * The counterpart of the following dec_and_test, implied mb,
820 * worklist not empty test sequence is in insert_work().
821 * Please read comment there.
822 *
628c78e7
TH
823 * NOT_RUNNING is clear. This means that we're bound to and
824 * running on the local cpu w/ rq lock held and preemption
825 * disabled, which in turn means that none else could be
d565ed63 826 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 827 * lock is safe.
e22bee78 828 */
e19e397a
TH
829 if (atomic_dec_and_test(&pool->nr_running) &&
830 !list_empty(&pool->worklist))
63d95a91 831 to_wakeup = first_worker(pool);
e22bee78
TH
832 return to_wakeup ? to_wakeup->task : NULL;
833}
834
835/**
836 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 837 * @worker: self
d302f017
TH
838 * @flags: flags to set
839 * @wakeup: wakeup an idle worker if necessary
840 *
e22bee78
TH
841 * Set @flags in @worker->flags and adjust nr_running accordingly. If
842 * nr_running becomes zero and @wakeup is %true, an idle worker is
843 * woken up.
d302f017 844 *
cb444766 845 * CONTEXT:
d565ed63 846 * spin_lock_irq(pool->lock)
d302f017
TH
847 */
848static inline void worker_set_flags(struct worker *worker, unsigned int flags,
849 bool wakeup)
850{
bd7bdd43 851 struct worker_pool *pool = worker->pool;
e22bee78 852
cb444766
TH
853 WARN_ON_ONCE(worker->task != current);
854
e22bee78
TH
855 /*
856 * If transitioning into NOT_RUNNING, adjust nr_running and
857 * wake up an idle worker as necessary if requested by
858 * @wakeup.
859 */
860 if ((flags & WORKER_NOT_RUNNING) &&
861 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 862 if (wakeup) {
e19e397a 863 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 864 !list_empty(&pool->worklist))
63d95a91 865 wake_up_worker(pool);
e22bee78 866 } else
e19e397a 867 atomic_dec(&pool->nr_running);
e22bee78
TH
868 }
869
d302f017
TH
870 worker->flags |= flags;
871}
872
873/**
e22bee78 874 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 875 * @worker: self
d302f017
TH
876 * @flags: flags to clear
877 *
e22bee78 878 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 879 *
cb444766 880 * CONTEXT:
d565ed63 881 * spin_lock_irq(pool->lock)
d302f017
TH
882 */
883static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
884{
63d95a91 885 struct worker_pool *pool = worker->pool;
e22bee78
TH
886 unsigned int oflags = worker->flags;
887
cb444766
TH
888 WARN_ON_ONCE(worker->task != current);
889
d302f017 890 worker->flags &= ~flags;
e22bee78 891
42c025f3
TH
892 /*
893 * If transitioning out of NOT_RUNNING, increment nr_running. Note
894 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
895 * of multiple flags, not a single flag.
896 */
e22bee78
TH
897 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
898 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 899 atomic_inc(&pool->nr_running);
d302f017
TH
900}
901
8cca0eea
TH
902/**
903 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 904 * @pool: pool of interest
8cca0eea
TH
905 * @work: work to find worker for
906 *
c9e7cf27
TH
907 * Find a worker which is executing @work on @pool by searching
908 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
909 * to match, its current execution should match the address of @work and
910 * its work function. This is to avoid unwanted dependency between
911 * unrelated work executions through a work item being recycled while still
912 * being executed.
913 *
914 * This is a bit tricky. A work item may be freed once its execution
915 * starts and nothing prevents the freed area from being recycled for
916 * another work item. If the same work item address ends up being reused
917 * before the original execution finishes, workqueue will identify the
918 * recycled work item as currently executing and make it wait until the
919 * current execution finishes, introducing an unwanted dependency.
920 *
c5aa87bb
TH
921 * This function checks the work item address and work function to avoid
922 * false positives. Note that this isn't complete as one may construct a
923 * work function which can introduce dependency onto itself through a
924 * recycled work item. Well, if somebody wants to shoot oneself in the
925 * foot that badly, there's only so much we can do, and if such deadlock
926 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
927 *
928 * CONTEXT:
d565ed63 929 * spin_lock_irq(pool->lock).
8cca0eea
TH
930 *
931 * RETURNS:
932 * Pointer to worker which is executing @work if found, NULL
933 * otherwise.
4d707b9f 934 */
c9e7cf27 935static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 936 struct work_struct *work)
4d707b9f 937{
42f8570f 938 struct worker *worker;
42f8570f 939
b67bfe0d 940 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
941 (unsigned long)work)
942 if (worker->current_work == work &&
943 worker->current_func == work->func)
42f8570f
SL
944 return worker;
945
946 return NULL;
4d707b9f
ON
947}
948
bf4ede01
TH
949/**
950 * move_linked_works - move linked works to a list
951 * @work: start of series of works to be scheduled
952 * @head: target list to append @work to
953 * @nextp: out paramter for nested worklist walking
954 *
955 * Schedule linked works starting from @work to @head. Work series to
956 * be scheduled starts at @work and includes any consecutive work with
957 * WORK_STRUCT_LINKED set in its predecessor.
958 *
959 * If @nextp is not NULL, it's updated to point to the next work of
960 * the last scheduled work. This allows move_linked_works() to be
961 * nested inside outer list_for_each_entry_safe().
962 *
963 * CONTEXT:
d565ed63 964 * spin_lock_irq(pool->lock).
bf4ede01
TH
965 */
966static void move_linked_works(struct work_struct *work, struct list_head *head,
967 struct work_struct **nextp)
968{
969 struct work_struct *n;
970
971 /*
972 * Linked worklist will always end before the end of the list,
973 * use NULL for list head.
974 */
975 list_for_each_entry_safe_from(work, n, NULL, entry) {
976 list_move_tail(&work->entry, head);
977 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
978 break;
979 }
980
981 /*
982 * If we're already inside safe list traversal and have moved
983 * multiple works to the scheduled queue, the next position
984 * needs to be updated.
985 */
986 if (nextp)
987 *nextp = n;
988}
989
8864b4e5
TH
990/**
991 * get_pwq - get an extra reference on the specified pool_workqueue
992 * @pwq: pool_workqueue to get
993 *
994 * Obtain an extra reference on @pwq. The caller should guarantee that
995 * @pwq has positive refcnt and be holding the matching pool->lock.
996 */
997static void get_pwq(struct pool_workqueue *pwq)
998{
999 lockdep_assert_held(&pwq->pool->lock);
1000 WARN_ON_ONCE(pwq->refcnt <= 0);
1001 pwq->refcnt++;
1002}
1003
1004/**
1005 * put_pwq - put a pool_workqueue reference
1006 * @pwq: pool_workqueue to put
1007 *
1008 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1009 * destruction. The caller should be holding the matching pool->lock.
1010 */
1011static void put_pwq(struct pool_workqueue *pwq)
1012{
1013 lockdep_assert_held(&pwq->pool->lock);
1014 if (likely(--pwq->refcnt))
1015 return;
1016 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1017 return;
1018 /*
1019 * @pwq can't be released under pool->lock, bounce to
1020 * pwq_unbound_release_workfn(). This never recurses on the same
1021 * pool->lock as this path is taken only for unbound workqueues and
1022 * the release work item is scheduled on a per-cpu workqueue. To
1023 * avoid lockdep warning, unbound pool->locks are given lockdep
1024 * subclass of 1 in get_unbound_pool().
1025 */
1026 schedule_work(&pwq->unbound_release_work);
1027}
1028
112202d9 1029static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1030{
112202d9 1031 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1032
1033 trace_workqueue_activate_work(work);
112202d9 1034 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1035 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1036 pwq->nr_active++;
bf4ede01
TH
1037}
1038
112202d9 1039static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1040{
112202d9 1041 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1042 struct work_struct, entry);
1043
112202d9 1044 pwq_activate_delayed_work(work);
3aa62497
LJ
1045}
1046
bf4ede01 1047/**
112202d9
TH
1048 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1049 * @pwq: pwq of interest
bf4ede01 1050 * @color: color of work which left the queue
bf4ede01
TH
1051 *
1052 * A work either has completed or is removed from pending queue,
112202d9 1053 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1054 *
1055 * CONTEXT:
d565ed63 1056 * spin_lock_irq(pool->lock).
bf4ede01 1057 */
112202d9 1058static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1059{
8864b4e5 1060 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1061 if (color == WORK_NO_COLOR)
8864b4e5 1062 goto out_put;
bf4ede01 1063
112202d9 1064 pwq->nr_in_flight[color]--;
bf4ede01 1065
112202d9
TH
1066 pwq->nr_active--;
1067 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1068 /* one down, submit a delayed one */
112202d9
TH
1069 if (pwq->nr_active < pwq->max_active)
1070 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1071 }
1072
1073 /* is flush in progress and are we at the flushing tip? */
112202d9 1074 if (likely(pwq->flush_color != color))
8864b4e5 1075 goto out_put;
bf4ede01
TH
1076
1077 /* are there still in-flight works? */
112202d9 1078 if (pwq->nr_in_flight[color])
8864b4e5 1079 goto out_put;
bf4ede01 1080
112202d9
TH
1081 /* this pwq is done, clear flush_color */
1082 pwq->flush_color = -1;
bf4ede01
TH
1083
1084 /*
112202d9 1085 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1086 * will handle the rest.
1087 */
112202d9
TH
1088 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1089 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1090out_put:
1091 put_pwq(pwq);
bf4ede01
TH
1092}
1093
36e227d2 1094/**
bbb68dfa 1095 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1096 * @work: work item to steal
1097 * @is_dwork: @work is a delayed_work
bbb68dfa 1098 * @flags: place to store irq state
36e227d2
TH
1099 *
1100 * Try to grab PENDING bit of @work. This function can handle @work in any
1101 * stable state - idle, on timer or on worklist. Return values are
1102 *
1103 * 1 if @work was pending and we successfully stole PENDING
1104 * 0 if @work was idle and we claimed PENDING
1105 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1106 * -ENOENT if someone else is canceling @work, this state may persist
1107 * for arbitrarily long
36e227d2 1108 *
bbb68dfa 1109 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1110 * interrupted while holding PENDING and @work off queue, irq must be
1111 * disabled on entry. This, combined with delayed_work->timer being
1112 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1113 *
1114 * On successful return, >= 0, irq is disabled and the caller is
1115 * responsible for releasing it using local_irq_restore(*@flags).
1116 *
e0aecdd8 1117 * This function is safe to call from any context including IRQ handler.
bf4ede01 1118 */
bbb68dfa
TH
1119static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1120 unsigned long *flags)
bf4ede01 1121{
d565ed63 1122 struct worker_pool *pool;
112202d9 1123 struct pool_workqueue *pwq;
bf4ede01 1124
bbb68dfa
TH
1125 local_irq_save(*flags);
1126
36e227d2
TH
1127 /* try to steal the timer if it exists */
1128 if (is_dwork) {
1129 struct delayed_work *dwork = to_delayed_work(work);
1130
e0aecdd8
TH
1131 /*
1132 * dwork->timer is irqsafe. If del_timer() fails, it's
1133 * guaranteed that the timer is not queued anywhere and not
1134 * running on the local CPU.
1135 */
36e227d2
TH
1136 if (likely(del_timer(&dwork->timer)))
1137 return 1;
1138 }
1139
1140 /* try to claim PENDING the normal way */
bf4ede01
TH
1141 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1142 return 0;
1143
1144 /*
1145 * The queueing is in progress, or it is already queued. Try to
1146 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1147 */
d565ed63
TH
1148 pool = get_work_pool(work);
1149 if (!pool)
bbb68dfa 1150 goto fail;
bf4ede01 1151
d565ed63 1152 spin_lock(&pool->lock);
0b3dae68 1153 /*
112202d9
TH
1154 * work->data is guaranteed to point to pwq only while the work
1155 * item is queued on pwq->wq, and both updating work->data to point
1156 * to pwq on queueing and to pool on dequeueing are done under
1157 * pwq->pool->lock. This in turn guarantees that, if work->data
1158 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1159 * item is currently queued on that pool.
1160 */
112202d9
TH
1161 pwq = get_work_pwq(work);
1162 if (pwq && pwq->pool == pool) {
16062836
TH
1163 debug_work_deactivate(work);
1164
1165 /*
1166 * A delayed work item cannot be grabbed directly because
1167 * it might have linked NO_COLOR work items which, if left
112202d9 1168 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1169 * management later on and cause stall. Make sure the work
1170 * item is activated before grabbing.
1171 */
1172 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1173 pwq_activate_delayed_work(work);
16062836
TH
1174
1175 list_del_init(&work->entry);
112202d9 1176 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1177
112202d9 1178 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1179 set_work_pool_and_keep_pending(work, pool->id);
1180
1181 spin_unlock(&pool->lock);
1182 return 1;
bf4ede01 1183 }
d565ed63 1184 spin_unlock(&pool->lock);
bbb68dfa
TH
1185fail:
1186 local_irq_restore(*flags);
1187 if (work_is_canceling(work))
1188 return -ENOENT;
1189 cpu_relax();
36e227d2 1190 return -EAGAIN;
bf4ede01
TH
1191}
1192
4690c4ab 1193/**
706026c2 1194 * insert_work - insert a work into a pool
112202d9 1195 * @pwq: pwq @work belongs to
4690c4ab
TH
1196 * @work: work to insert
1197 * @head: insertion point
1198 * @extra_flags: extra WORK_STRUCT_* flags to set
1199 *
112202d9 1200 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1201 * work_struct flags.
4690c4ab
TH
1202 *
1203 * CONTEXT:
d565ed63 1204 * spin_lock_irq(pool->lock).
4690c4ab 1205 */
112202d9
TH
1206static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1207 struct list_head *head, unsigned int extra_flags)
b89deed3 1208{
112202d9 1209 struct worker_pool *pool = pwq->pool;
e22bee78 1210
4690c4ab 1211 /* we own @work, set data and link */
112202d9 1212 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1213 list_add_tail(&work->entry, head);
8864b4e5 1214 get_pwq(pwq);
e22bee78
TH
1215
1216 /*
c5aa87bb
TH
1217 * Ensure either wq_worker_sleeping() sees the above
1218 * list_add_tail() or we see zero nr_running to avoid workers lying
1219 * around lazily while there are works to be processed.
e22bee78
TH
1220 */
1221 smp_mb();
1222
63d95a91
TH
1223 if (__need_more_worker(pool))
1224 wake_up_worker(pool);
b89deed3
ON
1225}
1226
c8efcc25
TH
1227/*
1228 * Test whether @work is being queued from another work executing on the
8d03ecfe 1229 * same workqueue.
c8efcc25
TH
1230 */
1231static bool is_chained_work(struct workqueue_struct *wq)
1232{
8d03ecfe
TH
1233 struct worker *worker;
1234
1235 worker = current_wq_worker();
1236 /*
1237 * Return %true iff I'm a worker execuing a work item on @wq. If
1238 * I'm @worker, it's safe to dereference it without locking.
1239 */
112202d9 1240 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1241}
1242
d84ff051 1243static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1244 struct work_struct *work)
1245{
112202d9 1246 struct pool_workqueue *pwq;
c9178087 1247 struct worker_pool *last_pool;
1e19ffc6 1248 struct list_head *worklist;
8a2e8e5d 1249 unsigned int work_flags;
b75cac93 1250 unsigned int req_cpu = cpu;
8930caba
TH
1251
1252 /*
1253 * While a work item is PENDING && off queue, a task trying to
1254 * steal the PENDING will busy-loop waiting for it to either get
1255 * queued or lose PENDING. Grabbing PENDING and queueing should
1256 * happen with IRQ disabled.
1257 */
1258 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1259
dc186ad7 1260 debug_work_activate(work);
1e19ffc6 1261
c8efcc25 1262 /* if dying, only works from the same workqueue are allowed */
618b01eb 1263 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1264 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1265 return;
9e8cd2f5 1266retry:
c9178087 1267 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1268 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1269 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1270 cpu = raw_smp_processor_id();
7fb98ea7 1271 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1272 } else {
1273 pwq = first_pwq(wq);
1274 }
dbf2576e 1275
c9178087
TH
1276 /*
1277 * If @work was previously on a different pool, it might still be
1278 * running there, in which case the work needs to be queued on that
1279 * pool to guarantee non-reentrancy.
1280 */
1281 last_pool = get_work_pool(work);
1282 if (last_pool && last_pool != pwq->pool) {
1283 struct worker *worker;
18aa9eff 1284
c9178087 1285 spin_lock(&last_pool->lock);
18aa9eff 1286
c9178087 1287 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1288
c9178087
TH
1289 if (worker && worker->current_pwq->wq == wq) {
1290 pwq = worker->current_pwq;
8930caba 1291 } else {
c9178087
TH
1292 /* meh... not running there, queue here */
1293 spin_unlock(&last_pool->lock);
112202d9 1294 spin_lock(&pwq->pool->lock);
8930caba 1295 }
f3421797 1296 } else {
112202d9 1297 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1298 }
1299
9e8cd2f5
TH
1300 /*
1301 * pwq is determined and locked. For unbound pools, we could have
1302 * raced with pwq release and it could already be dead. If its
1303 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1304 * without another pwq replacing it as the first pwq or while a
1305 * work item is executing on it, so the retying is guaranteed to
1306 * make forward-progress.
1307 */
1308 if (unlikely(!pwq->refcnt)) {
1309 if (wq->flags & WQ_UNBOUND) {
1310 spin_unlock(&pwq->pool->lock);
1311 cpu_relax();
1312 goto retry;
1313 }
1314 /* oops */
1315 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1316 wq->name, cpu);
1317 }
1318
112202d9
TH
1319 /* pwq determined, queue */
1320 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1321
f5b2552b 1322 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1323 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1324 return;
1325 }
1e19ffc6 1326
112202d9
TH
1327 pwq->nr_in_flight[pwq->work_color]++;
1328 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1329
112202d9 1330 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1331 trace_workqueue_activate_work(work);
112202d9
TH
1332 pwq->nr_active++;
1333 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1334 } else {
1335 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1336 worklist = &pwq->delayed_works;
8a2e8e5d 1337 }
1e19ffc6 1338
112202d9 1339 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1340
112202d9 1341 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1342}
1343
0fcb78c2 1344/**
c1a220e7
ZR
1345 * queue_work_on - queue work on specific cpu
1346 * @cpu: CPU number to execute work on
0fcb78c2
REB
1347 * @wq: workqueue to use
1348 * @work: work to queue
1349 *
d4283e93 1350 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1351 *
c1a220e7
ZR
1352 * We queue the work to a specific CPU, the caller must ensure it
1353 * can't go away.
1da177e4 1354 */
d4283e93
TH
1355bool queue_work_on(int cpu, struct workqueue_struct *wq,
1356 struct work_struct *work)
1da177e4 1357{
d4283e93 1358 bool ret = false;
8930caba 1359 unsigned long flags;
ef1ca236 1360
8930caba 1361 local_irq_save(flags);
c1a220e7 1362
22df02bb 1363 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1364 __queue_work(cpu, wq, work);
d4283e93 1365 ret = true;
c1a220e7 1366 }
ef1ca236 1367
8930caba 1368 local_irq_restore(flags);
1da177e4
LT
1369 return ret;
1370}
c1a220e7 1371EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1372
d8e794df 1373void delayed_work_timer_fn(unsigned long __data)
1da177e4 1374{
52bad64d 1375 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1376
e0aecdd8 1377 /* should have been called from irqsafe timer with irq already off */
60c057bc 1378 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1379}
1438ade5 1380EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1381
7beb2edf
TH
1382static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1383 struct delayed_work *dwork, unsigned long delay)
1da177e4 1384{
7beb2edf
TH
1385 struct timer_list *timer = &dwork->timer;
1386 struct work_struct *work = &dwork->work;
7beb2edf
TH
1387
1388 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1389 timer->data != (unsigned long)dwork);
fc4b514f
TH
1390 WARN_ON_ONCE(timer_pending(timer));
1391 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1392
8852aac2
TH
1393 /*
1394 * If @delay is 0, queue @dwork->work immediately. This is for
1395 * both optimization and correctness. The earliest @timer can
1396 * expire is on the closest next tick and delayed_work users depend
1397 * on that there's no such delay when @delay is 0.
1398 */
1399 if (!delay) {
1400 __queue_work(cpu, wq, &dwork->work);
1401 return;
1402 }
1403
7beb2edf 1404 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1405
60c057bc 1406 dwork->wq = wq;
1265057f 1407 dwork->cpu = cpu;
7beb2edf
TH
1408 timer->expires = jiffies + delay;
1409
1410 if (unlikely(cpu != WORK_CPU_UNBOUND))
1411 add_timer_on(timer, cpu);
1412 else
1413 add_timer(timer);
1da177e4
LT
1414}
1415
0fcb78c2
REB
1416/**
1417 * queue_delayed_work_on - queue work on specific CPU after delay
1418 * @cpu: CPU number to execute work on
1419 * @wq: workqueue to use
af9997e4 1420 * @dwork: work to queue
0fcb78c2
REB
1421 * @delay: number of jiffies to wait before queueing
1422 *
715f1300
TH
1423 * Returns %false if @work was already on a queue, %true otherwise. If
1424 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1425 * execution.
0fcb78c2 1426 */
d4283e93
TH
1427bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1428 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1429{
52bad64d 1430 struct work_struct *work = &dwork->work;
d4283e93 1431 bool ret = false;
8930caba 1432 unsigned long flags;
7a6bc1cd 1433
8930caba
TH
1434 /* read the comment in __queue_work() */
1435 local_irq_save(flags);
7a6bc1cd 1436
22df02bb 1437 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1438 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1439 ret = true;
7a6bc1cd 1440 }
8a3e77cc 1441
8930caba 1442 local_irq_restore(flags);
7a6bc1cd
VP
1443 return ret;
1444}
ae90dd5d 1445EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1446
8376fe22
TH
1447/**
1448 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1449 * @cpu: CPU number to execute work on
1450 * @wq: workqueue to use
1451 * @dwork: work to queue
1452 * @delay: number of jiffies to wait before queueing
1453 *
1454 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1455 * modify @dwork's timer so that it expires after @delay. If @delay is
1456 * zero, @work is guaranteed to be scheduled immediately regardless of its
1457 * current state.
1458 *
1459 * Returns %false if @dwork was idle and queued, %true if @dwork was
1460 * pending and its timer was modified.
1461 *
e0aecdd8 1462 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1463 * See try_to_grab_pending() for details.
1464 */
1465bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1466 struct delayed_work *dwork, unsigned long delay)
1467{
1468 unsigned long flags;
1469 int ret;
c7fc77f7 1470
8376fe22
TH
1471 do {
1472 ret = try_to_grab_pending(&dwork->work, true, &flags);
1473 } while (unlikely(ret == -EAGAIN));
63bc0362 1474
8376fe22
TH
1475 if (likely(ret >= 0)) {
1476 __queue_delayed_work(cpu, wq, dwork, delay);
1477 local_irq_restore(flags);
7a6bc1cd 1478 }
8376fe22
TH
1479
1480 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1481 return ret;
1482}
8376fe22
TH
1483EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1484
c8e55f36
TH
1485/**
1486 * worker_enter_idle - enter idle state
1487 * @worker: worker which is entering idle state
1488 *
1489 * @worker is entering idle state. Update stats and idle timer if
1490 * necessary.
1491 *
1492 * LOCKING:
d565ed63 1493 * spin_lock_irq(pool->lock).
c8e55f36
TH
1494 */
1495static void worker_enter_idle(struct worker *worker)
1da177e4 1496{
bd7bdd43 1497 struct worker_pool *pool = worker->pool;
c8e55f36 1498
6183c009
TH
1499 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1500 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1501 (worker->hentry.next || worker->hentry.pprev)))
1502 return;
c8e55f36 1503
cb444766
TH
1504 /* can't use worker_set_flags(), also called from start_worker() */
1505 worker->flags |= WORKER_IDLE;
bd7bdd43 1506 pool->nr_idle++;
e22bee78 1507 worker->last_active = jiffies;
c8e55f36
TH
1508
1509 /* idle_list is LIFO */
bd7bdd43 1510 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1511
628c78e7
TH
1512 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1513 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1514
544ecf31 1515 /*
706026c2 1516 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1517 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1518 * nr_running, the warning may trigger spuriously. Check iff
1519 * unbind is not in progress.
544ecf31 1520 */
24647570 1521 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1522 pool->nr_workers == pool->nr_idle &&
e19e397a 1523 atomic_read(&pool->nr_running));
c8e55f36
TH
1524}
1525
1526/**
1527 * worker_leave_idle - leave idle state
1528 * @worker: worker which is leaving idle state
1529 *
1530 * @worker is leaving idle state. Update stats.
1531 *
1532 * LOCKING:
d565ed63 1533 * spin_lock_irq(pool->lock).
c8e55f36
TH
1534 */
1535static void worker_leave_idle(struct worker *worker)
1536{
bd7bdd43 1537 struct worker_pool *pool = worker->pool;
c8e55f36 1538
6183c009
TH
1539 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1540 return;
d302f017 1541 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1542 pool->nr_idle--;
c8e55f36
TH
1543 list_del_init(&worker->entry);
1544}
1545
e22bee78 1546/**
f36dc67b
LJ
1547 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1548 * @pool: target worker_pool
1549 *
1550 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1551 *
1552 * Works which are scheduled while the cpu is online must at least be
1553 * scheduled to a worker which is bound to the cpu so that if they are
1554 * flushed from cpu callbacks while cpu is going down, they are
1555 * guaranteed to execute on the cpu.
1556 *
f5faa077 1557 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1558 * themselves to the target cpu and may race with cpu going down or
1559 * coming online. kthread_bind() can't be used because it may put the
1560 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1561 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1562 * [dis]associated in the meantime.
1563 *
706026c2 1564 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1565 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1566 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1567 * enters idle state or fetches works without dropping lock, it can
1568 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1569 *
1570 * CONTEXT:
d565ed63 1571 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1572 * held.
1573 *
1574 * RETURNS:
706026c2 1575 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1576 * bound), %false if offline.
1577 */
f36dc67b 1578static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1579__acquires(&pool->lock)
e22bee78 1580{
e22bee78 1581 while (true) {
4e6045f1 1582 /*
e22bee78
TH
1583 * The following call may fail, succeed or succeed
1584 * without actually migrating the task to the cpu if
1585 * it races with cpu hotunplug operation. Verify
24647570 1586 * against POOL_DISASSOCIATED.
4e6045f1 1587 */
24647570 1588 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1589 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1590
d565ed63 1591 spin_lock_irq(&pool->lock);
24647570 1592 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1593 return false;
f5faa077 1594 if (task_cpu(current) == pool->cpu &&
7a4e344c 1595 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1596 return true;
d565ed63 1597 spin_unlock_irq(&pool->lock);
e22bee78 1598
5035b20f
TH
1599 /*
1600 * We've raced with CPU hot[un]plug. Give it a breather
1601 * and retry migration. cond_resched() is required here;
1602 * otherwise, we might deadlock against cpu_stop trying to
1603 * bring down the CPU on non-preemptive kernel.
1604 */
e22bee78 1605 cpu_relax();
5035b20f 1606 cond_resched();
e22bee78
TH
1607 }
1608}
1609
c34056a3
TH
1610static struct worker *alloc_worker(void)
1611{
1612 struct worker *worker;
1613
1614 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1615 if (worker) {
1616 INIT_LIST_HEAD(&worker->entry);
affee4b2 1617 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1618 /* on creation a worker is in !idle && prep state */
1619 worker->flags = WORKER_PREP;
c8e55f36 1620 }
c34056a3
TH
1621 return worker;
1622}
1623
1624/**
1625 * create_worker - create a new workqueue worker
63d95a91 1626 * @pool: pool the new worker will belong to
c34056a3 1627 *
63d95a91 1628 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1629 * can be started by calling start_worker() or destroyed using
1630 * destroy_worker().
1631 *
1632 * CONTEXT:
1633 * Might sleep. Does GFP_KERNEL allocations.
1634 *
1635 * RETURNS:
1636 * Pointer to the newly created worker.
1637 */
bc2ae0f5 1638static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1639{
7a4e344c 1640 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1641 struct worker *worker = NULL;
f3421797 1642 int id = -1;
c34056a3 1643
cd549687
TH
1644 lockdep_assert_held(&pool->manager_mutex);
1645
822d8405
TH
1646 /*
1647 * ID is needed to determine kthread name. Allocate ID first
1648 * without installing the pointer.
1649 */
1650 idr_preload(GFP_KERNEL);
d565ed63 1651 spin_lock_irq(&pool->lock);
822d8405
TH
1652
1653 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1654
d565ed63 1655 spin_unlock_irq(&pool->lock);
822d8405
TH
1656 idr_preload_end();
1657 if (id < 0)
1658 goto fail;
c34056a3
TH
1659
1660 worker = alloc_worker();
1661 if (!worker)
1662 goto fail;
1663
bd7bdd43 1664 worker->pool = pool;
c34056a3
TH
1665 worker->id = id;
1666
29c91e99 1667 if (pool->cpu >= 0)
94dcf29a 1668 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1669 worker, cpu_to_node(pool->cpu),
d84ff051 1670 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1671 else
1672 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1673 "kworker/u%d:%d%s",
1674 pool->id, id, pri);
c34056a3
TH
1675 if (IS_ERR(worker->task))
1676 goto fail;
1677
c5aa87bb
TH
1678 /*
1679 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1680 * online CPUs. It'll be re-applied when any of the CPUs come up.
1681 */
7a4e344c
TH
1682 set_user_nice(worker->task, pool->attrs->nice);
1683 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1684
14a40ffc
TH
1685 /* prevent userland from meddling with cpumask of workqueue workers */
1686 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1687
1688 /*
1689 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1690 * remains stable across this function. See the comments above the
1691 * flag definition for details.
1692 */
1693 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1694 worker->flags |= WORKER_UNBOUND;
c34056a3 1695
822d8405
TH
1696 /* successful, commit the pointer to idr */
1697 spin_lock_irq(&pool->lock);
1698 idr_replace(&pool->worker_idr, worker, worker->id);
1699 spin_unlock_irq(&pool->lock);
1700
c34056a3 1701 return worker;
822d8405 1702
c34056a3
TH
1703fail:
1704 if (id >= 0) {
d565ed63 1705 spin_lock_irq(&pool->lock);
822d8405 1706 idr_remove(&pool->worker_idr, id);
d565ed63 1707 spin_unlock_irq(&pool->lock);
c34056a3
TH
1708 }
1709 kfree(worker);
1710 return NULL;
1711}
1712
1713/**
1714 * start_worker - start a newly created worker
1715 * @worker: worker to start
1716 *
706026c2 1717 * Make the pool aware of @worker and start it.
c34056a3
TH
1718 *
1719 * CONTEXT:
d565ed63 1720 * spin_lock_irq(pool->lock).
c34056a3
TH
1721 */
1722static void start_worker(struct worker *worker)
1723{
cb444766 1724 worker->flags |= WORKER_STARTED;
bd7bdd43 1725 worker->pool->nr_workers++;
c8e55f36 1726 worker_enter_idle(worker);
c34056a3
TH
1727 wake_up_process(worker->task);
1728}
1729
ebf44d16
TH
1730/**
1731 * create_and_start_worker - create and start a worker for a pool
1732 * @pool: the target pool
1733 *
cd549687 1734 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1735 */
1736static int create_and_start_worker(struct worker_pool *pool)
1737{
1738 struct worker *worker;
1739
cd549687
TH
1740 mutex_lock(&pool->manager_mutex);
1741
ebf44d16
TH
1742 worker = create_worker(pool);
1743 if (worker) {
1744 spin_lock_irq(&pool->lock);
1745 start_worker(worker);
1746 spin_unlock_irq(&pool->lock);
1747 }
1748
cd549687
TH
1749 mutex_unlock(&pool->manager_mutex);
1750
ebf44d16
TH
1751 return worker ? 0 : -ENOMEM;
1752}
1753
c34056a3
TH
1754/**
1755 * destroy_worker - destroy a workqueue worker
1756 * @worker: worker to be destroyed
1757 *
706026c2 1758 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1759 *
1760 * CONTEXT:
d565ed63 1761 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1762 */
1763static void destroy_worker(struct worker *worker)
1764{
bd7bdd43 1765 struct worker_pool *pool = worker->pool;
c34056a3 1766
cd549687
TH
1767 lockdep_assert_held(&pool->manager_mutex);
1768 lockdep_assert_held(&pool->lock);
1769
c34056a3 1770 /* sanity check frenzy */
6183c009
TH
1771 if (WARN_ON(worker->current_work) ||
1772 WARN_ON(!list_empty(&worker->scheduled)))
1773 return;
c34056a3 1774
c8e55f36 1775 if (worker->flags & WORKER_STARTED)
bd7bdd43 1776 pool->nr_workers--;
c8e55f36 1777 if (worker->flags & WORKER_IDLE)
bd7bdd43 1778 pool->nr_idle--;
c8e55f36
TH
1779
1780 list_del_init(&worker->entry);
cb444766 1781 worker->flags |= WORKER_DIE;
c8e55f36 1782
822d8405
TH
1783 idr_remove(&pool->worker_idr, worker->id);
1784
d565ed63 1785 spin_unlock_irq(&pool->lock);
c8e55f36 1786
c34056a3
TH
1787 kthread_stop(worker->task);
1788 kfree(worker);
1789
d565ed63 1790 spin_lock_irq(&pool->lock);
c34056a3
TH
1791}
1792
63d95a91 1793static void idle_worker_timeout(unsigned long __pool)
e22bee78 1794{
63d95a91 1795 struct worker_pool *pool = (void *)__pool;
e22bee78 1796
d565ed63 1797 spin_lock_irq(&pool->lock);
e22bee78 1798
63d95a91 1799 if (too_many_workers(pool)) {
e22bee78
TH
1800 struct worker *worker;
1801 unsigned long expires;
1802
1803 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1804 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1805 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1806
1807 if (time_before(jiffies, expires))
63d95a91 1808 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1809 else {
1810 /* it's been idle for too long, wake up manager */
11ebea50 1811 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1812 wake_up_worker(pool);
d5abe669 1813 }
e22bee78
TH
1814 }
1815
d565ed63 1816 spin_unlock_irq(&pool->lock);
e22bee78 1817}
d5abe669 1818
493a1724 1819static void send_mayday(struct work_struct *work)
e22bee78 1820{
112202d9
TH
1821 struct pool_workqueue *pwq = get_work_pwq(work);
1822 struct workqueue_struct *wq = pwq->wq;
493a1724 1823
2e109a28 1824 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1825
493008a8 1826 if (!wq->rescuer)
493a1724 1827 return;
e22bee78
TH
1828
1829 /* mayday mayday mayday */
493a1724
TH
1830 if (list_empty(&pwq->mayday_node)) {
1831 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1832 wake_up_process(wq->rescuer->task);
493a1724 1833 }
e22bee78
TH
1834}
1835
706026c2 1836static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1837{
63d95a91 1838 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1839 struct work_struct *work;
1840
2e109a28 1841 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1842 spin_lock(&pool->lock);
e22bee78 1843
63d95a91 1844 if (need_to_create_worker(pool)) {
e22bee78
TH
1845 /*
1846 * We've been trying to create a new worker but
1847 * haven't been successful. We might be hitting an
1848 * allocation deadlock. Send distress signals to
1849 * rescuers.
1850 */
63d95a91 1851 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1852 send_mayday(work);
1da177e4 1853 }
e22bee78 1854
493a1724 1855 spin_unlock(&pool->lock);
2e109a28 1856 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1857
63d95a91 1858 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1859}
1860
e22bee78
TH
1861/**
1862 * maybe_create_worker - create a new worker if necessary
63d95a91 1863 * @pool: pool to create a new worker for
e22bee78 1864 *
63d95a91 1865 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1866 * have at least one idle worker on return from this function. If
1867 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1868 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1869 * possible allocation deadlock.
1870 *
c5aa87bb
TH
1871 * On return, need_to_create_worker() is guaranteed to be %false and
1872 * may_start_working() %true.
e22bee78
TH
1873 *
1874 * LOCKING:
d565ed63 1875 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1876 * multiple times. Does GFP_KERNEL allocations. Called only from
1877 * manager.
1878 *
1879 * RETURNS:
c5aa87bb 1880 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1881 * otherwise.
1882 */
63d95a91 1883static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1884__releases(&pool->lock)
1885__acquires(&pool->lock)
1da177e4 1886{
63d95a91 1887 if (!need_to_create_worker(pool))
e22bee78
TH
1888 return false;
1889restart:
d565ed63 1890 spin_unlock_irq(&pool->lock);
9f9c2364 1891
e22bee78 1892 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1893 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1894
1895 while (true) {
1896 struct worker *worker;
1897
bc2ae0f5 1898 worker = create_worker(pool);
e22bee78 1899 if (worker) {
63d95a91 1900 del_timer_sync(&pool->mayday_timer);
d565ed63 1901 spin_lock_irq(&pool->lock);
e22bee78 1902 start_worker(worker);
6183c009
TH
1903 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1904 goto restart;
e22bee78
TH
1905 return true;
1906 }
1907
63d95a91 1908 if (!need_to_create_worker(pool))
e22bee78 1909 break;
1da177e4 1910
e22bee78
TH
1911 __set_current_state(TASK_INTERRUPTIBLE);
1912 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1913
63d95a91 1914 if (!need_to_create_worker(pool))
e22bee78
TH
1915 break;
1916 }
1917
63d95a91 1918 del_timer_sync(&pool->mayday_timer);
d565ed63 1919 spin_lock_irq(&pool->lock);
63d95a91 1920 if (need_to_create_worker(pool))
e22bee78
TH
1921 goto restart;
1922 return true;
1923}
1924
1925/**
1926 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1927 * @pool: pool to destroy workers for
e22bee78 1928 *
63d95a91 1929 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1930 * IDLE_WORKER_TIMEOUT.
1931 *
1932 * LOCKING:
d565ed63 1933 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1934 * multiple times. Called only from manager.
1935 *
1936 * RETURNS:
c5aa87bb 1937 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1938 * otherwise.
1939 */
63d95a91 1940static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1941{
1942 bool ret = false;
1da177e4 1943
63d95a91 1944 while (too_many_workers(pool)) {
e22bee78
TH
1945 struct worker *worker;
1946 unsigned long expires;
3af24433 1947
63d95a91 1948 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1949 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1950
e22bee78 1951 if (time_before(jiffies, expires)) {
63d95a91 1952 mod_timer(&pool->idle_timer, expires);
3af24433 1953 break;
e22bee78 1954 }
1da177e4 1955
e22bee78
TH
1956 destroy_worker(worker);
1957 ret = true;
1da177e4 1958 }
1e19ffc6 1959
e22bee78 1960 return ret;
1e19ffc6
TH
1961}
1962
73f53c4a 1963/**
e22bee78
TH
1964 * manage_workers - manage worker pool
1965 * @worker: self
73f53c4a 1966 *
706026c2 1967 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1968 * to. At any given time, there can be only zero or one manager per
706026c2 1969 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1970 *
1971 * The caller can safely start processing works on false return. On
1972 * true return, it's guaranteed that need_to_create_worker() is false
1973 * and may_start_working() is true.
73f53c4a
TH
1974 *
1975 * CONTEXT:
d565ed63 1976 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1977 * multiple times. Does GFP_KERNEL allocations.
1978 *
1979 * RETURNS:
d565ed63
TH
1980 * spin_lock_irq(pool->lock) which may be released and regrabbed
1981 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 1982 */
e22bee78 1983static bool manage_workers(struct worker *worker)
73f53c4a 1984{
63d95a91 1985 struct worker_pool *pool = worker->pool;
e22bee78 1986 bool ret = false;
73f53c4a 1987
bc3a1afc
TH
1988 /*
1989 * Managership is governed by two mutexes - manager_arb and
1990 * manager_mutex. manager_arb handles arbitration of manager role.
1991 * Anyone who successfully grabs manager_arb wins the arbitration
1992 * and becomes the manager. mutex_trylock() on pool->manager_arb
1993 * failure while holding pool->lock reliably indicates that someone
1994 * else is managing the pool and the worker which failed trylock
1995 * can proceed to executing work items. This means that anyone
1996 * grabbing manager_arb is responsible for actually performing
1997 * manager duties. If manager_arb is grabbed and released without
1998 * actual management, the pool may stall indefinitely.
1999 *
2000 * manager_mutex is used for exclusion of actual management
2001 * operations. The holder of manager_mutex can be sure that none
2002 * of management operations, including creation and destruction of
2003 * workers, won't take place until the mutex is released. Because
2004 * manager_mutex doesn't interfere with manager role arbitration,
2005 * it is guaranteed that the pool's management, while may be
2006 * delayed, won't be disturbed by someone else grabbing
2007 * manager_mutex.
2008 */
34a06bd6 2009 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2010 return ret;
1e19ffc6 2011
ee378aa4 2012 /*
bc3a1afc
TH
2013 * With manager arbitration won, manager_mutex would be free in
2014 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2015 */
bc3a1afc 2016 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2017 spin_unlock_irq(&pool->lock);
bc3a1afc 2018 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2019 ret = true;
2020 }
73f53c4a 2021
11ebea50 2022 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2023
2024 /*
e22bee78
TH
2025 * Destroy and then create so that may_start_working() is true
2026 * on return.
73f53c4a 2027 */
63d95a91
TH
2028 ret |= maybe_destroy_workers(pool);
2029 ret |= maybe_create_worker(pool);
e22bee78 2030
bc3a1afc 2031 mutex_unlock(&pool->manager_mutex);
34a06bd6 2032 mutex_unlock(&pool->manager_arb);
e22bee78 2033 return ret;
73f53c4a
TH
2034}
2035
a62428c0
TH
2036/**
2037 * process_one_work - process single work
c34056a3 2038 * @worker: self
a62428c0
TH
2039 * @work: work to process
2040 *
2041 * Process @work. This function contains all the logics necessary to
2042 * process a single work including synchronization against and
2043 * interaction with other workers on the same cpu, queueing and
2044 * flushing. As long as context requirement is met, any worker can
2045 * call this function to process a work.
2046 *
2047 * CONTEXT:
d565ed63 2048 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2049 */
c34056a3 2050static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2051__releases(&pool->lock)
2052__acquires(&pool->lock)
a62428c0 2053{
112202d9 2054 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2055 struct worker_pool *pool = worker->pool;
112202d9 2056 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2057 int work_color;
7e11629d 2058 struct worker *collision;
a62428c0
TH
2059#ifdef CONFIG_LOCKDEP
2060 /*
2061 * It is permissible to free the struct work_struct from
2062 * inside the function that is called from it, this we need to
2063 * take into account for lockdep too. To avoid bogus "held
2064 * lock freed" warnings as well as problems when looking into
2065 * work->lockdep_map, make a copy and use that here.
2066 */
4d82a1de
PZ
2067 struct lockdep_map lockdep_map;
2068
2069 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2070#endif
6fec10a1
TH
2071 /*
2072 * Ensure we're on the correct CPU. DISASSOCIATED test is
2073 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2074 * unbound or a disassociated pool.
6fec10a1 2075 */
5f7dabfd 2076 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2077 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2078 raw_smp_processor_id() != pool->cpu);
25511a47 2079
7e11629d
TH
2080 /*
2081 * A single work shouldn't be executed concurrently by
2082 * multiple workers on a single cpu. Check whether anyone is
2083 * already processing the work. If so, defer the work to the
2084 * currently executing one.
2085 */
c9e7cf27 2086 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2087 if (unlikely(collision)) {
2088 move_linked_works(work, &collision->scheduled, NULL);
2089 return;
2090 }
2091
8930caba 2092 /* claim and dequeue */
a62428c0 2093 debug_work_deactivate(work);
c9e7cf27 2094 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2095 worker->current_work = work;
a2c1c57b 2096 worker->current_func = work->func;
112202d9 2097 worker->current_pwq = pwq;
73f53c4a 2098 work_color = get_work_color(work);
7a22ad75 2099
a62428c0
TH
2100 list_del_init(&work->entry);
2101
fb0e7beb
TH
2102 /*
2103 * CPU intensive works don't participate in concurrency
2104 * management. They're the scheduler's responsibility.
2105 */
2106 if (unlikely(cpu_intensive))
2107 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2108
974271c4 2109 /*
d565ed63 2110 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2111 * executed ASAP. Wake up another worker if necessary.
2112 */
63d95a91
TH
2113 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2114 wake_up_worker(pool);
974271c4 2115
8930caba 2116 /*
7c3eed5c 2117 * Record the last pool and clear PENDING which should be the last
d565ed63 2118 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2119 * PENDING and queued state changes happen together while IRQ is
2120 * disabled.
8930caba 2121 */
7c3eed5c 2122 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2123
d565ed63 2124 spin_unlock_irq(&pool->lock);
a62428c0 2125
112202d9 2126 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2127 lock_map_acquire(&lockdep_map);
e36c886a 2128 trace_workqueue_execute_start(work);
a2c1c57b 2129 worker->current_func(work);
e36c886a
AV
2130 /*
2131 * While we must be careful to not use "work" after this, the trace
2132 * point will only record its address.
2133 */
2134 trace_workqueue_execute_end(work);
a62428c0 2135 lock_map_release(&lockdep_map);
112202d9 2136 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2137
2138 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2139 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2140 " last function: %pf\n",
a2c1c57b
TH
2141 current->comm, preempt_count(), task_pid_nr(current),
2142 worker->current_func);
a62428c0
TH
2143 debug_show_held_locks(current);
2144 dump_stack();
2145 }
2146
d565ed63 2147 spin_lock_irq(&pool->lock);
a62428c0 2148
fb0e7beb
TH
2149 /* clear cpu intensive status */
2150 if (unlikely(cpu_intensive))
2151 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2152
a62428c0 2153 /* we're done with it, release */
42f8570f 2154 hash_del(&worker->hentry);
c34056a3 2155 worker->current_work = NULL;
a2c1c57b 2156 worker->current_func = NULL;
112202d9
TH
2157 worker->current_pwq = NULL;
2158 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2159}
2160
affee4b2
TH
2161/**
2162 * process_scheduled_works - process scheduled works
2163 * @worker: self
2164 *
2165 * Process all scheduled works. Please note that the scheduled list
2166 * may change while processing a work, so this function repeatedly
2167 * fetches a work from the top and executes it.
2168 *
2169 * CONTEXT:
d565ed63 2170 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2171 * multiple times.
2172 */
2173static void process_scheduled_works(struct worker *worker)
1da177e4 2174{
affee4b2
TH
2175 while (!list_empty(&worker->scheduled)) {
2176 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2177 struct work_struct, entry);
c34056a3 2178 process_one_work(worker, work);
1da177e4 2179 }
1da177e4
LT
2180}
2181
4690c4ab
TH
2182/**
2183 * worker_thread - the worker thread function
c34056a3 2184 * @__worker: self
4690c4ab 2185 *
c5aa87bb
TH
2186 * The worker thread function. All workers belong to a worker_pool -
2187 * either a per-cpu one or dynamic unbound one. These workers process all
2188 * work items regardless of their specific target workqueue. The only
2189 * exception is work items which belong to workqueues with a rescuer which
2190 * will be explained in rescuer_thread().
4690c4ab 2191 */
c34056a3 2192static int worker_thread(void *__worker)
1da177e4 2193{
c34056a3 2194 struct worker *worker = __worker;
bd7bdd43 2195 struct worker_pool *pool = worker->pool;
1da177e4 2196
e22bee78
TH
2197 /* tell the scheduler that this is a workqueue worker */
2198 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2199woke_up:
d565ed63 2200 spin_lock_irq(&pool->lock);
1da177e4 2201
a9ab775b
TH
2202 /* am I supposed to die? */
2203 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2204 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2205 WARN_ON_ONCE(!list_empty(&worker->entry));
2206 worker->task->flags &= ~PF_WQ_WORKER;
2207 return 0;
c8e55f36 2208 }
affee4b2 2209
c8e55f36 2210 worker_leave_idle(worker);
db7bccf4 2211recheck:
e22bee78 2212 /* no more worker necessary? */
63d95a91 2213 if (!need_more_worker(pool))
e22bee78
TH
2214 goto sleep;
2215
2216 /* do we need to manage? */
63d95a91 2217 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2218 goto recheck;
2219
c8e55f36
TH
2220 /*
2221 * ->scheduled list can only be filled while a worker is
2222 * preparing to process a work or actually processing it.
2223 * Make sure nobody diddled with it while I was sleeping.
2224 */
6183c009 2225 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2226
e22bee78 2227 /*
a9ab775b
TH
2228 * Finish PREP stage. We're guaranteed to have at least one idle
2229 * worker or that someone else has already assumed the manager
2230 * role. This is where @worker starts participating in concurrency
2231 * management if applicable and concurrency management is restored
2232 * after being rebound. See rebind_workers() for details.
e22bee78 2233 */
a9ab775b 2234 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2235
2236 do {
c8e55f36 2237 struct work_struct *work =
bd7bdd43 2238 list_first_entry(&pool->worklist,
c8e55f36
TH
2239 struct work_struct, entry);
2240
2241 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2242 /* optimization path, not strictly necessary */
2243 process_one_work(worker, work);
2244 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2245 process_scheduled_works(worker);
c8e55f36
TH
2246 } else {
2247 move_linked_works(work, &worker->scheduled, NULL);
2248 process_scheduled_works(worker);
affee4b2 2249 }
63d95a91 2250 } while (keep_working(pool));
e22bee78
TH
2251
2252 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2253sleep:
63d95a91 2254 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2255 goto recheck;
d313dd85 2256
c8e55f36 2257 /*
d565ed63
TH
2258 * pool->lock is held and there's no work to process and no need to
2259 * manage, sleep. Workers are woken up only while holding
2260 * pool->lock or from local cpu, so setting the current state
2261 * before releasing pool->lock is enough to prevent losing any
2262 * event.
c8e55f36
TH
2263 */
2264 worker_enter_idle(worker);
2265 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2266 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2267 schedule();
2268 goto woke_up;
1da177e4
LT
2269}
2270
e22bee78
TH
2271/**
2272 * rescuer_thread - the rescuer thread function
111c225a 2273 * @__rescuer: self
e22bee78
TH
2274 *
2275 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2276 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2277 *
706026c2 2278 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2279 * worker which uses GFP_KERNEL allocation which has slight chance of
2280 * developing into deadlock if some works currently on the same queue
2281 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2282 * the problem rescuer solves.
2283 *
706026c2
TH
2284 * When such condition is possible, the pool summons rescuers of all
2285 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2286 * those works so that forward progress can be guaranteed.
2287 *
2288 * This should happen rarely.
2289 */
111c225a 2290static int rescuer_thread(void *__rescuer)
e22bee78 2291{
111c225a
TH
2292 struct worker *rescuer = __rescuer;
2293 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2294 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2295
2296 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2297
2298 /*
2299 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2300 * doesn't participate in concurrency management.
2301 */
2302 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2303repeat:
2304 set_current_state(TASK_INTERRUPTIBLE);
2305
412d32e6
MG
2306 if (kthread_should_stop()) {
2307 __set_current_state(TASK_RUNNING);
111c225a 2308 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2309 return 0;
412d32e6 2310 }
e22bee78 2311
493a1724 2312 /* see whether any pwq is asking for help */
2e109a28 2313 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2314
2315 while (!list_empty(&wq->maydays)) {
2316 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2317 struct pool_workqueue, mayday_node);
112202d9 2318 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2319 struct work_struct *work, *n;
2320
2321 __set_current_state(TASK_RUNNING);
493a1724
TH
2322 list_del_init(&pwq->mayday_node);
2323
2e109a28 2324 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2325
2326 /* migrate to the target cpu if possible */
f36dc67b 2327 worker_maybe_bind_and_lock(pool);
b3104104 2328 rescuer->pool = pool;
e22bee78
TH
2329
2330 /*
2331 * Slurp in all works issued via this workqueue and
2332 * process'em.
2333 */
6183c009 2334 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2335 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2336 if (get_work_pwq(work) == pwq)
e22bee78
TH
2337 move_linked_works(work, scheduled, &n);
2338
2339 process_scheduled_works(rescuer);
7576958a
TH
2340
2341 /*
d565ed63 2342 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2343 * regular worker; otherwise, we end up with 0 concurrency
2344 * and stalling the execution.
2345 */
63d95a91
TH
2346 if (keep_working(pool))
2347 wake_up_worker(pool);
7576958a 2348
b3104104 2349 rescuer->pool = NULL;
493a1724 2350 spin_unlock(&pool->lock);
2e109a28 2351 spin_lock(&wq_mayday_lock);
e22bee78
TH
2352 }
2353
2e109a28 2354 spin_unlock_irq(&wq_mayday_lock);
493a1724 2355
111c225a
TH
2356 /* rescuers should never participate in concurrency management */
2357 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2358 schedule();
2359 goto repeat;
1da177e4
LT
2360}
2361
fc2e4d70
ON
2362struct wq_barrier {
2363 struct work_struct work;
2364 struct completion done;
2365};
2366
2367static void wq_barrier_func(struct work_struct *work)
2368{
2369 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2370 complete(&barr->done);
2371}
2372
4690c4ab
TH
2373/**
2374 * insert_wq_barrier - insert a barrier work
112202d9 2375 * @pwq: pwq to insert barrier into
4690c4ab 2376 * @barr: wq_barrier to insert
affee4b2
TH
2377 * @target: target work to attach @barr to
2378 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2379 *
affee4b2
TH
2380 * @barr is linked to @target such that @barr is completed only after
2381 * @target finishes execution. Please note that the ordering
2382 * guarantee is observed only with respect to @target and on the local
2383 * cpu.
2384 *
2385 * Currently, a queued barrier can't be canceled. This is because
2386 * try_to_grab_pending() can't determine whether the work to be
2387 * grabbed is at the head of the queue and thus can't clear LINKED
2388 * flag of the previous work while there must be a valid next work
2389 * after a work with LINKED flag set.
2390 *
2391 * Note that when @worker is non-NULL, @target may be modified
112202d9 2392 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2393 *
2394 * CONTEXT:
d565ed63 2395 * spin_lock_irq(pool->lock).
4690c4ab 2396 */
112202d9 2397static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2398 struct wq_barrier *barr,
2399 struct work_struct *target, struct worker *worker)
fc2e4d70 2400{
affee4b2
TH
2401 struct list_head *head;
2402 unsigned int linked = 0;
2403
dc186ad7 2404 /*
d565ed63 2405 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2406 * as we know for sure that this will not trigger any of the
2407 * checks and call back into the fixup functions where we
2408 * might deadlock.
2409 */
ca1cab37 2410 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2411 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2412 init_completion(&barr->done);
83c22520 2413
affee4b2
TH
2414 /*
2415 * If @target is currently being executed, schedule the
2416 * barrier to the worker; otherwise, put it after @target.
2417 */
2418 if (worker)
2419 head = worker->scheduled.next;
2420 else {
2421 unsigned long *bits = work_data_bits(target);
2422
2423 head = target->entry.next;
2424 /* there can already be other linked works, inherit and set */
2425 linked = *bits & WORK_STRUCT_LINKED;
2426 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2427 }
2428
dc186ad7 2429 debug_work_activate(&barr->work);
112202d9 2430 insert_work(pwq, &barr->work, head,
affee4b2 2431 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2432}
2433
73f53c4a 2434/**
112202d9 2435 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2436 * @wq: workqueue being flushed
2437 * @flush_color: new flush color, < 0 for no-op
2438 * @work_color: new work color, < 0 for no-op
2439 *
112202d9 2440 * Prepare pwqs for workqueue flushing.
73f53c4a 2441 *
112202d9
TH
2442 * If @flush_color is non-negative, flush_color on all pwqs should be
2443 * -1. If no pwq has in-flight commands at the specified color, all
2444 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2445 * has in flight commands, its pwq->flush_color is set to
2446 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2447 * wakeup logic is armed and %true is returned.
2448 *
2449 * The caller should have initialized @wq->first_flusher prior to
2450 * calling this function with non-negative @flush_color. If
2451 * @flush_color is negative, no flush color update is done and %false
2452 * is returned.
2453 *
112202d9 2454 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2455 * work_color which is previous to @work_color and all will be
2456 * advanced to @work_color.
2457 *
2458 * CONTEXT:
3c25a55d 2459 * mutex_lock(wq->mutex).
73f53c4a
TH
2460 *
2461 * RETURNS:
2462 * %true if @flush_color >= 0 and there's something to flush. %false
2463 * otherwise.
2464 */
112202d9 2465static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2466 int flush_color, int work_color)
1da177e4 2467{
73f53c4a 2468 bool wait = false;
49e3cf44 2469 struct pool_workqueue *pwq;
1da177e4 2470
73f53c4a 2471 if (flush_color >= 0) {
6183c009 2472 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2473 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2474 }
2355b70f 2475
49e3cf44 2476 for_each_pwq(pwq, wq) {
112202d9 2477 struct worker_pool *pool = pwq->pool;
fc2e4d70 2478
b09f4fd3 2479 spin_lock_irq(&pool->lock);
83c22520 2480
73f53c4a 2481 if (flush_color >= 0) {
6183c009 2482 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2483
112202d9
TH
2484 if (pwq->nr_in_flight[flush_color]) {
2485 pwq->flush_color = flush_color;
2486 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2487 wait = true;
2488 }
2489 }
1da177e4 2490
73f53c4a 2491 if (work_color >= 0) {
6183c009 2492 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2493 pwq->work_color = work_color;
73f53c4a 2494 }
1da177e4 2495
b09f4fd3 2496 spin_unlock_irq(&pool->lock);
1da177e4 2497 }
2355b70f 2498
112202d9 2499 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2500 complete(&wq->first_flusher->done);
14441960 2501
73f53c4a 2502 return wait;
1da177e4
LT
2503}
2504
0fcb78c2 2505/**
1da177e4 2506 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2507 * @wq: workqueue to flush
1da177e4 2508 *
c5aa87bb
TH
2509 * This function sleeps until all work items which were queued on entry
2510 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2511 */
7ad5b3a5 2512void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2513{
73f53c4a
TH
2514 struct wq_flusher this_flusher = {
2515 .list = LIST_HEAD_INIT(this_flusher.list),
2516 .flush_color = -1,
2517 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2518 };
2519 int next_color;
1da177e4 2520
3295f0ef
IM
2521 lock_map_acquire(&wq->lockdep_map);
2522 lock_map_release(&wq->lockdep_map);
73f53c4a 2523
3c25a55d 2524 mutex_lock(&wq->mutex);
73f53c4a
TH
2525
2526 /*
2527 * Start-to-wait phase
2528 */
2529 next_color = work_next_color(wq->work_color);
2530
2531 if (next_color != wq->flush_color) {
2532 /*
2533 * Color space is not full. The current work_color
2534 * becomes our flush_color and work_color is advanced
2535 * by one.
2536 */
6183c009 2537 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2538 this_flusher.flush_color = wq->work_color;
2539 wq->work_color = next_color;
2540
2541 if (!wq->first_flusher) {
2542 /* no flush in progress, become the first flusher */
6183c009 2543 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2544
2545 wq->first_flusher = &this_flusher;
2546
112202d9 2547 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2548 wq->work_color)) {
2549 /* nothing to flush, done */
2550 wq->flush_color = next_color;
2551 wq->first_flusher = NULL;
2552 goto out_unlock;
2553 }
2554 } else {
2555 /* wait in queue */
6183c009 2556 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2557 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2558 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2559 }
2560 } else {
2561 /*
2562 * Oops, color space is full, wait on overflow queue.
2563 * The next flush completion will assign us
2564 * flush_color and transfer to flusher_queue.
2565 */
2566 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2567 }
2568
3c25a55d 2569 mutex_unlock(&wq->mutex);
73f53c4a
TH
2570
2571 wait_for_completion(&this_flusher.done);
2572
2573 /*
2574 * Wake-up-and-cascade phase
2575 *
2576 * First flushers are responsible for cascading flushes and
2577 * handling overflow. Non-first flushers can simply return.
2578 */
2579 if (wq->first_flusher != &this_flusher)
2580 return;
2581
3c25a55d 2582 mutex_lock(&wq->mutex);
73f53c4a 2583
4ce48b37
TH
2584 /* we might have raced, check again with mutex held */
2585 if (wq->first_flusher != &this_flusher)
2586 goto out_unlock;
2587
73f53c4a
TH
2588 wq->first_flusher = NULL;
2589
6183c009
TH
2590 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2591 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2592
2593 while (true) {
2594 struct wq_flusher *next, *tmp;
2595
2596 /* complete all the flushers sharing the current flush color */
2597 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2598 if (next->flush_color != wq->flush_color)
2599 break;
2600 list_del_init(&next->list);
2601 complete(&next->done);
2602 }
2603
6183c009
TH
2604 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2605 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2606
2607 /* this flush_color is finished, advance by one */
2608 wq->flush_color = work_next_color(wq->flush_color);
2609
2610 /* one color has been freed, handle overflow queue */
2611 if (!list_empty(&wq->flusher_overflow)) {
2612 /*
2613 * Assign the same color to all overflowed
2614 * flushers, advance work_color and append to
2615 * flusher_queue. This is the start-to-wait
2616 * phase for these overflowed flushers.
2617 */
2618 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2619 tmp->flush_color = wq->work_color;
2620
2621 wq->work_color = work_next_color(wq->work_color);
2622
2623 list_splice_tail_init(&wq->flusher_overflow,
2624 &wq->flusher_queue);
112202d9 2625 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2626 }
2627
2628 if (list_empty(&wq->flusher_queue)) {
6183c009 2629 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2630 break;
2631 }
2632
2633 /*
2634 * Need to flush more colors. Make the next flusher
112202d9 2635 * the new first flusher and arm pwqs.
73f53c4a 2636 */
6183c009
TH
2637 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2638 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2639
2640 list_del_init(&next->list);
2641 wq->first_flusher = next;
2642
112202d9 2643 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2644 break;
2645
2646 /*
2647 * Meh... this color is already done, clear first
2648 * flusher and repeat cascading.
2649 */
2650 wq->first_flusher = NULL;
2651 }
2652
2653out_unlock:
3c25a55d 2654 mutex_unlock(&wq->mutex);
1da177e4 2655}
ae90dd5d 2656EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2657
9c5a2ba7
TH
2658/**
2659 * drain_workqueue - drain a workqueue
2660 * @wq: workqueue to drain
2661 *
2662 * Wait until the workqueue becomes empty. While draining is in progress,
2663 * only chain queueing is allowed. IOW, only currently pending or running
2664 * work items on @wq can queue further work items on it. @wq is flushed
2665 * repeatedly until it becomes empty. The number of flushing is detemined
2666 * by the depth of chaining and should be relatively short. Whine if it
2667 * takes too long.
2668 */
2669void drain_workqueue(struct workqueue_struct *wq)
2670{
2671 unsigned int flush_cnt = 0;
49e3cf44 2672 struct pool_workqueue *pwq;
9c5a2ba7
TH
2673
2674 /*
2675 * __queue_work() needs to test whether there are drainers, is much
2676 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2677 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2678 */
87fc741e 2679 mutex_lock(&wq->mutex);
9c5a2ba7 2680 if (!wq->nr_drainers++)
618b01eb 2681 wq->flags |= __WQ_DRAINING;
87fc741e 2682 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2683reflush:
2684 flush_workqueue(wq);
2685
b09f4fd3 2686 mutex_lock(&wq->mutex);
76af4d93 2687
49e3cf44 2688 for_each_pwq(pwq, wq) {
fa2563e4 2689 bool drained;
9c5a2ba7 2690
b09f4fd3 2691 spin_lock_irq(&pwq->pool->lock);
112202d9 2692 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2693 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2694
2695 if (drained)
9c5a2ba7
TH
2696 continue;
2697
2698 if (++flush_cnt == 10 ||
2699 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2700 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2701 wq->name, flush_cnt);
76af4d93 2702
b09f4fd3 2703 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2704 goto reflush;
2705 }
2706
9c5a2ba7 2707 if (!--wq->nr_drainers)
618b01eb 2708 wq->flags &= ~__WQ_DRAINING;
87fc741e 2709 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2710}
2711EXPORT_SYMBOL_GPL(drain_workqueue);
2712
606a5020 2713static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2714{
affee4b2 2715 struct worker *worker = NULL;
c9e7cf27 2716 struct worker_pool *pool;
112202d9 2717 struct pool_workqueue *pwq;
db700897
ON
2718
2719 might_sleep();
fa1b54e6
TH
2720
2721 local_irq_disable();
c9e7cf27 2722 pool = get_work_pool(work);
fa1b54e6
TH
2723 if (!pool) {
2724 local_irq_enable();
baf59022 2725 return false;
fa1b54e6 2726 }
db700897 2727
fa1b54e6 2728 spin_lock(&pool->lock);
0b3dae68 2729 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2730 pwq = get_work_pwq(work);
2731 if (pwq) {
2732 if (unlikely(pwq->pool != pool))
4690c4ab 2733 goto already_gone;
606a5020 2734 } else {
c9e7cf27 2735 worker = find_worker_executing_work(pool, work);
affee4b2 2736 if (!worker)
4690c4ab 2737 goto already_gone;
112202d9 2738 pwq = worker->current_pwq;
606a5020 2739 }
db700897 2740
112202d9 2741 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2742 spin_unlock_irq(&pool->lock);
7a22ad75 2743
e159489b
TH
2744 /*
2745 * If @max_active is 1 or rescuer is in use, flushing another work
2746 * item on the same workqueue may lead to deadlock. Make sure the
2747 * flusher is not running on the same workqueue by verifying write
2748 * access.
2749 */
493008a8 2750 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2751 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2752 else
112202d9
TH
2753 lock_map_acquire_read(&pwq->wq->lockdep_map);
2754 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2755
401a8d04 2756 return true;
4690c4ab 2757already_gone:
d565ed63 2758 spin_unlock_irq(&pool->lock);
401a8d04 2759 return false;
db700897 2760}
baf59022
TH
2761
2762/**
2763 * flush_work - wait for a work to finish executing the last queueing instance
2764 * @work: the work to flush
2765 *
606a5020
TH
2766 * Wait until @work has finished execution. @work is guaranteed to be idle
2767 * on return if it hasn't been requeued since flush started.
baf59022
TH
2768 *
2769 * RETURNS:
2770 * %true if flush_work() waited for the work to finish execution,
2771 * %false if it was already idle.
2772 */
2773bool flush_work(struct work_struct *work)
2774{
2775 struct wq_barrier barr;
2776
0976dfc1
SB
2777 lock_map_acquire(&work->lockdep_map);
2778 lock_map_release(&work->lockdep_map);
2779
606a5020 2780 if (start_flush_work(work, &barr)) {
401a8d04
TH
2781 wait_for_completion(&barr.done);
2782 destroy_work_on_stack(&barr.work);
2783 return true;
606a5020 2784 } else {
401a8d04 2785 return false;
6e84d644 2786 }
6e84d644 2787}
606a5020 2788EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2789
36e227d2 2790static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2791{
bbb68dfa 2792 unsigned long flags;
1f1f642e
ON
2793 int ret;
2794
2795 do {
bbb68dfa
TH
2796 ret = try_to_grab_pending(work, is_dwork, &flags);
2797 /*
2798 * If someone else is canceling, wait for the same event it
2799 * would be waiting for before retrying.
2800 */
2801 if (unlikely(ret == -ENOENT))
606a5020 2802 flush_work(work);
1f1f642e
ON
2803 } while (unlikely(ret < 0));
2804
bbb68dfa
TH
2805 /* tell other tasks trying to grab @work to back off */
2806 mark_work_canceling(work);
2807 local_irq_restore(flags);
2808
606a5020 2809 flush_work(work);
7a22ad75 2810 clear_work_data(work);
1f1f642e
ON
2811 return ret;
2812}
2813
6e84d644 2814/**
401a8d04
TH
2815 * cancel_work_sync - cancel a work and wait for it to finish
2816 * @work: the work to cancel
6e84d644 2817 *
401a8d04
TH
2818 * Cancel @work and wait for its execution to finish. This function
2819 * can be used even if the work re-queues itself or migrates to
2820 * another workqueue. On return from this function, @work is
2821 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2822 *
401a8d04
TH
2823 * cancel_work_sync(&delayed_work->work) must not be used for
2824 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2825 *
401a8d04 2826 * The caller must ensure that the workqueue on which @work was last
6e84d644 2827 * queued can't be destroyed before this function returns.
401a8d04
TH
2828 *
2829 * RETURNS:
2830 * %true if @work was pending, %false otherwise.
6e84d644 2831 */
401a8d04 2832bool cancel_work_sync(struct work_struct *work)
6e84d644 2833{
36e227d2 2834 return __cancel_work_timer(work, false);
b89deed3 2835}
28e53bdd 2836EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2837
6e84d644 2838/**
401a8d04
TH
2839 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2840 * @dwork: the delayed work to flush
6e84d644 2841 *
401a8d04
TH
2842 * Delayed timer is cancelled and the pending work is queued for
2843 * immediate execution. Like flush_work(), this function only
2844 * considers the last queueing instance of @dwork.
1f1f642e 2845 *
401a8d04
TH
2846 * RETURNS:
2847 * %true if flush_work() waited for the work to finish execution,
2848 * %false if it was already idle.
6e84d644 2849 */
401a8d04
TH
2850bool flush_delayed_work(struct delayed_work *dwork)
2851{
8930caba 2852 local_irq_disable();
401a8d04 2853 if (del_timer_sync(&dwork->timer))
60c057bc 2854 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2855 local_irq_enable();
401a8d04
TH
2856 return flush_work(&dwork->work);
2857}
2858EXPORT_SYMBOL(flush_delayed_work);
2859
09383498 2860/**
57b30ae7
TH
2861 * cancel_delayed_work - cancel a delayed work
2862 * @dwork: delayed_work to cancel
09383498 2863 *
57b30ae7
TH
2864 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2865 * and canceled; %false if wasn't pending. Note that the work callback
2866 * function may still be running on return, unless it returns %true and the
2867 * work doesn't re-arm itself. Explicitly flush or use
2868 * cancel_delayed_work_sync() to wait on it.
09383498 2869 *
57b30ae7 2870 * This function is safe to call from any context including IRQ handler.
09383498 2871 */
57b30ae7 2872bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2873{
57b30ae7
TH
2874 unsigned long flags;
2875 int ret;
2876
2877 do {
2878 ret = try_to_grab_pending(&dwork->work, true, &flags);
2879 } while (unlikely(ret == -EAGAIN));
2880
2881 if (unlikely(ret < 0))
2882 return false;
2883
7c3eed5c
TH
2884 set_work_pool_and_clear_pending(&dwork->work,
2885 get_work_pool_id(&dwork->work));
57b30ae7 2886 local_irq_restore(flags);
c0158ca6 2887 return ret;
09383498 2888}
57b30ae7 2889EXPORT_SYMBOL(cancel_delayed_work);
09383498 2890
401a8d04
TH
2891/**
2892 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2893 * @dwork: the delayed work cancel
2894 *
2895 * This is cancel_work_sync() for delayed works.
2896 *
2897 * RETURNS:
2898 * %true if @dwork was pending, %false otherwise.
2899 */
2900bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2901{
36e227d2 2902 return __cancel_work_timer(&dwork->work, true);
6e84d644 2903}
f5a421a4 2904EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2905
b6136773 2906/**
31ddd871 2907 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2908 * @func: the function to call
b6136773 2909 *
31ddd871
TH
2910 * schedule_on_each_cpu() executes @func on each online CPU using the
2911 * system workqueue and blocks until all CPUs have completed.
b6136773 2912 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2913 *
2914 * RETURNS:
2915 * 0 on success, -errno on failure.
b6136773 2916 */
65f27f38 2917int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2918{
2919 int cpu;
38f51568 2920 struct work_struct __percpu *works;
15316ba8 2921
b6136773
AM
2922 works = alloc_percpu(struct work_struct);
2923 if (!works)
15316ba8 2924 return -ENOMEM;
b6136773 2925
93981800
TH
2926 get_online_cpus();
2927
15316ba8 2928 for_each_online_cpu(cpu) {
9bfb1839
IM
2929 struct work_struct *work = per_cpu_ptr(works, cpu);
2930
2931 INIT_WORK(work, func);
b71ab8c2 2932 schedule_work_on(cpu, work);
65a64464 2933 }
93981800
TH
2934
2935 for_each_online_cpu(cpu)
2936 flush_work(per_cpu_ptr(works, cpu));
2937
95402b38 2938 put_online_cpus();
b6136773 2939 free_percpu(works);
15316ba8
CL
2940 return 0;
2941}
2942
eef6a7d5
AS
2943/**
2944 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2945 *
2946 * Forces execution of the kernel-global workqueue and blocks until its
2947 * completion.
2948 *
2949 * Think twice before calling this function! It's very easy to get into
2950 * trouble if you don't take great care. Either of the following situations
2951 * will lead to deadlock:
2952 *
2953 * One of the work items currently on the workqueue needs to acquire
2954 * a lock held by your code or its caller.
2955 *
2956 * Your code is running in the context of a work routine.
2957 *
2958 * They will be detected by lockdep when they occur, but the first might not
2959 * occur very often. It depends on what work items are on the workqueue and
2960 * what locks they need, which you have no control over.
2961 *
2962 * In most situations flushing the entire workqueue is overkill; you merely
2963 * need to know that a particular work item isn't queued and isn't running.
2964 * In such cases you should use cancel_delayed_work_sync() or
2965 * cancel_work_sync() instead.
2966 */
1da177e4
LT
2967void flush_scheduled_work(void)
2968{
d320c038 2969 flush_workqueue(system_wq);
1da177e4 2970}
ae90dd5d 2971EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2972
1fa44eca
JB
2973/**
2974 * execute_in_process_context - reliably execute the routine with user context
2975 * @fn: the function to execute
1fa44eca
JB
2976 * @ew: guaranteed storage for the execute work structure (must
2977 * be available when the work executes)
2978 *
2979 * Executes the function immediately if process context is available,
2980 * otherwise schedules the function for delayed execution.
2981 *
2982 * Returns: 0 - function was executed
2983 * 1 - function was scheduled for execution
2984 */
65f27f38 2985int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2986{
2987 if (!in_interrupt()) {
65f27f38 2988 fn(&ew->work);
1fa44eca
JB
2989 return 0;
2990 }
2991
65f27f38 2992 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2993 schedule_work(&ew->work);
2994
2995 return 1;
2996}
2997EXPORT_SYMBOL_GPL(execute_in_process_context);
2998
226223ab
TH
2999#ifdef CONFIG_SYSFS
3000/*
3001 * Workqueues with WQ_SYSFS flag set is visible to userland via
3002 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3003 * following attributes.
3004 *
3005 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3006 * max_active RW int : maximum number of in-flight work items
3007 *
3008 * Unbound workqueues have the following extra attributes.
3009 *
3010 * id RO int : the associated pool ID
3011 * nice RW int : nice value of the workers
3012 * cpumask RW mask : bitmask of allowed CPUs for the workers
3013 */
3014struct wq_device {
3015 struct workqueue_struct *wq;
3016 struct device dev;
3017};
3018
3019static struct workqueue_struct *dev_to_wq(struct device *dev)
3020{
3021 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3022
3023 return wq_dev->wq;
3024}
3025
3026static ssize_t wq_per_cpu_show(struct device *dev,
3027 struct device_attribute *attr, char *buf)
3028{
3029 struct workqueue_struct *wq = dev_to_wq(dev);
3030
3031 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3032}
3033
3034static ssize_t wq_max_active_show(struct device *dev,
3035 struct device_attribute *attr, char *buf)
3036{
3037 struct workqueue_struct *wq = dev_to_wq(dev);
3038
3039 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3040}
3041
3042static ssize_t wq_max_active_store(struct device *dev,
3043 struct device_attribute *attr,
3044 const char *buf, size_t count)
3045{
3046 struct workqueue_struct *wq = dev_to_wq(dev);
3047 int val;
3048
3049 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3050 return -EINVAL;
3051
3052 workqueue_set_max_active(wq, val);
3053 return count;
3054}
3055
3056static struct device_attribute wq_sysfs_attrs[] = {
3057 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3058 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3059 __ATTR_NULL,
3060};
3061
3062static ssize_t wq_pool_id_show(struct device *dev,
3063 struct device_attribute *attr, char *buf)
3064{
3065 struct workqueue_struct *wq = dev_to_wq(dev);
3066 struct worker_pool *pool;
3067 int written;
3068
3069 rcu_read_lock_sched();
3070 pool = first_pwq(wq)->pool;
3071 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3072 rcu_read_unlock_sched();
3073
3074 return written;
3075}
3076
3077static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3078 char *buf)
3079{
3080 struct workqueue_struct *wq = dev_to_wq(dev);
3081 int written;
3082
3083 rcu_read_lock_sched();
3084 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3085 first_pwq(wq)->pool->attrs->nice);
3086 rcu_read_unlock_sched();
3087
3088 return written;
3089}
3090
3091/* prepare workqueue_attrs for sysfs store operations */
3092static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3093{
3094 struct workqueue_attrs *attrs;
3095
3096 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3097 if (!attrs)
3098 return NULL;
3099
3100 rcu_read_lock_sched();
3101 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3102 rcu_read_unlock_sched();
3103 return attrs;
3104}
3105
3106static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3107 const char *buf, size_t count)
3108{
3109 struct workqueue_struct *wq = dev_to_wq(dev);
3110 struct workqueue_attrs *attrs;
3111 int ret;
3112
3113 attrs = wq_sysfs_prep_attrs(wq);
3114 if (!attrs)
3115 return -ENOMEM;
3116
3117 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3118 attrs->nice >= -20 && attrs->nice <= 19)
3119 ret = apply_workqueue_attrs(wq, attrs);
3120 else
3121 ret = -EINVAL;
3122
3123 free_workqueue_attrs(attrs);
3124 return ret ?: count;
3125}
3126
3127static ssize_t wq_cpumask_show(struct device *dev,
3128 struct device_attribute *attr, char *buf)
3129{
3130 struct workqueue_struct *wq = dev_to_wq(dev);
3131 int written;
3132
3133 rcu_read_lock_sched();
3134 written = cpumask_scnprintf(buf, PAGE_SIZE,
3135 first_pwq(wq)->pool->attrs->cpumask);
3136 rcu_read_unlock_sched();
3137
3138 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3139 return written;
3140}
3141
3142static ssize_t wq_cpumask_store(struct device *dev,
3143 struct device_attribute *attr,
3144 const char *buf, size_t count)
3145{
3146 struct workqueue_struct *wq = dev_to_wq(dev);
3147 struct workqueue_attrs *attrs;
3148 int ret;
3149
3150 attrs = wq_sysfs_prep_attrs(wq);
3151 if (!attrs)
3152 return -ENOMEM;
3153
3154 ret = cpumask_parse(buf, attrs->cpumask);
3155 if (!ret)
3156 ret = apply_workqueue_attrs(wq, attrs);
3157
3158 free_workqueue_attrs(attrs);
3159 return ret ?: count;
3160}
3161
3162static struct device_attribute wq_sysfs_unbound_attrs[] = {
3163 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3164 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3165 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3166 __ATTR_NULL,
3167};
3168
3169static struct bus_type wq_subsys = {
3170 .name = "workqueue",
3171 .dev_attrs = wq_sysfs_attrs,
3172};
3173
3174static int __init wq_sysfs_init(void)
3175{
3176 return subsys_virtual_register(&wq_subsys, NULL);
3177}
3178core_initcall(wq_sysfs_init);
3179
3180static void wq_device_release(struct device *dev)
3181{
3182 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3183
3184 kfree(wq_dev);
3185}
3186
3187/**
3188 * workqueue_sysfs_register - make a workqueue visible in sysfs
3189 * @wq: the workqueue to register
3190 *
3191 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3192 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3193 * which is the preferred method.
3194 *
3195 * Workqueue user should use this function directly iff it wants to apply
3196 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3197 * apply_workqueue_attrs() may race against userland updating the
3198 * attributes.
3199 *
3200 * Returns 0 on success, -errno on failure.
3201 */
3202int workqueue_sysfs_register(struct workqueue_struct *wq)
3203{
3204 struct wq_device *wq_dev;
3205 int ret;
3206
3207 /*
3208 * Adjusting max_active or creating new pwqs by applyting
3209 * attributes breaks ordering guarantee. Disallow exposing ordered
3210 * workqueues.
3211 */
3212 if (WARN_ON(wq->flags & __WQ_ORDERED))
3213 return -EINVAL;
3214
3215 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3216 if (!wq_dev)
3217 return -ENOMEM;
3218
3219 wq_dev->wq = wq;
3220 wq_dev->dev.bus = &wq_subsys;
3221 wq_dev->dev.init_name = wq->name;
3222 wq_dev->dev.release = wq_device_release;
3223
3224 /*
3225 * unbound_attrs are created separately. Suppress uevent until
3226 * everything is ready.
3227 */
3228 dev_set_uevent_suppress(&wq_dev->dev, true);
3229
3230 ret = device_register(&wq_dev->dev);
3231 if (ret) {
3232 kfree(wq_dev);
3233 wq->wq_dev = NULL;
3234 return ret;
3235 }
3236
3237 if (wq->flags & WQ_UNBOUND) {
3238 struct device_attribute *attr;
3239
3240 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3241 ret = device_create_file(&wq_dev->dev, attr);
3242 if (ret) {
3243 device_unregister(&wq_dev->dev);
3244 wq->wq_dev = NULL;
3245 return ret;
3246 }
3247 }
3248 }
3249
3250 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3251 return 0;
3252}
3253
3254/**
3255 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3256 * @wq: the workqueue to unregister
3257 *
3258 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3259 */
3260static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3261{
3262 struct wq_device *wq_dev = wq->wq_dev;
3263
3264 if (!wq->wq_dev)
3265 return;
3266
3267 wq->wq_dev = NULL;
3268 device_unregister(&wq_dev->dev);
3269}
3270#else /* CONFIG_SYSFS */
3271static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3272#endif /* CONFIG_SYSFS */
3273
7a4e344c
TH
3274/**
3275 * free_workqueue_attrs - free a workqueue_attrs
3276 * @attrs: workqueue_attrs to free
3277 *
3278 * Undo alloc_workqueue_attrs().
3279 */
3280void free_workqueue_attrs(struct workqueue_attrs *attrs)
3281{
3282 if (attrs) {
3283 free_cpumask_var(attrs->cpumask);
3284 kfree(attrs);
3285 }
3286}
3287
3288/**
3289 * alloc_workqueue_attrs - allocate a workqueue_attrs
3290 * @gfp_mask: allocation mask to use
3291 *
3292 * Allocate a new workqueue_attrs, initialize with default settings and
3293 * return it. Returns NULL on failure.
3294 */
3295struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3296{
3297 struct workqueue_attrs *attrs;
3298
3299 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3300 if (!attrs)
3301 goto fail;
3302 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3303 goto fail;
3304
13e2e556 3305 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3306 return attrs;
3307fail:
3308 free_workqueue_attrs(attrs);
3309 return NULL;
3310}
3311
29c91e99
TH
3312static void copy_workqueue_attrs(struct workqueue_attrs *to,
3313 const struct workqueue_attrs *from)
3314{
3315 to->nice = from->nice;
3316 cpumask_copy(to->cpumask, from->cpumask);
3317}
3318
29c91e99
TH
3319/* hash value of the content of @attr */
3320static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3321{
3322 u32 hash = 0;
3323
3324 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3325 hash = jhash(cpumask_bits(attrs->cpumask),
3326 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3327 return hash;
3328}
3329
3330/* content equality test */
3331static bool wqattrs_equal(const struct workqueue_attrs *a,
3332 const struct workqueue_attrs *b)
3333{
3334 if (a->nice != b->nice)
3335 return false;
3336 if (!cpumask_equal(a->cpumask, b->cpumask))
3337 return false;
3338 return true;
3339}
3340
7a4e344c
TH
3341/**
3342 * init_worker_pool - initialize a newly zalloc'd worker_pool
3343 * @pool: worker_pool to initialize
3344 *
3345 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3346 * Returns 0 on success, -errno on failure. Even on failure, all fields
3347 * inside @pool proper are initialized and put_unbound_pool() can be called
3348 * on @pool safely to release it.
7a4e344c
TH
3349 */
3350static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3351{
3352 spin_lock_init(&pool->lock);
29c91e99
TH
3353 pool->id = -1;
3354 pool->cpu = -1;
4e1a1f9a
TH
3355 pool->flags |= POOL_DISASSOCIATED;
3356 INIT_LIST_HEAD(&pool->worklist);
3357 INIT_LIST_HEAD(&pool->idle_list);
3358 hash_init(pool->busy_hash);
3359
3360 init_timer_deferrable(&pool->idle_timer);
3361 pool->idle_timer.function = idle_worker_timeout;
3362 pool->idle_timer.data = (unsigned long)pool;
3363
3364 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3365 (unsigned long)pool);
3366
3367 mutex_init(&pool->manager_arb);
bc3a1afc 3368 mutex_init(&pool->manager_mutex);
822d8405 3369 idr_init(&pool->worker_idr);
7a4e344c 3370
29c91e99
TH
3371 INIT_HLIST_NODE(&pool->hash_node);
3372 pool->refcnt = 1;
3373
3374 /* shouldn't fail above this point */
7a4e344c
TH
3375 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3376 if (!pool->attrs)
3377 return -ENOMEM;
3378 return 0;
4e1a1f9a
TH
3379}
3380
29c91e99
TH
3381static void rcu_free_pool(struct rcu_head *rcu)
3382{
3383 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3384
822d8405 3385 idr_destroy(&pool->worker_idr);
29c91e99
TH
3386 free_workqueue_attrs(pool->attrs);
3387 kfree(pool);
3388}
3389
3390/**
3391 * put_unbound_pool - put a worker_pool
3392 * @pool: worker_pool to put
3393 *
3394 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3395 * safe manner. get_unbound_pool() calls this function on its failure path
3396 * and this function should be able to release pools which went through,
3397 * successfully or not, init_worker_pool().
a892cacc
TH
3398 *
3399 * Should be called with wq_pool_mutex held.
29c91e99
TH
3400 */
3401static void put_unbound_pool(struct worker_pool *pool)
3402{
3403 struct worker *worker;
3404
a892cacc
TH
3405 lockdep_assert_held(&wq_pool_mutex);
3406
3407 if (--pool->refcnt)
29c91e99 3408 return;
29c91e99
TH
3409
3410 /* sanity checks */
3411 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3412 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3413 return;
29c91e99
TH
3414
3415 /* release id and unhash */
3416 if (pool->id >= 0)
3417 idr_remove(&worker_pool_idr, pool->id);
3418 hash_del(&pool->hash_node);
3419
c5aa87bb
TH
3420 /*
3421 * Become the manager and destroy all workers. Grabbing
3422 * manager_arb prevents @pool's workers from blocking on
3423 * manager_mutex.
3424 */
29c91e99 3425 mutex_lock(&pool->manager_arb);
cd549687 3426 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3427 spin_lock_irq(&pool->lock);
3428
3429 while ((worker = first_worker(pool)))
3430 destroy_worker(worker);
3431 WARN_ON(pool->nr_workers || pool->nr_idle);
3432
3433 spin_unlock_irq(&pool->lock);
cd549687 3434 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3435 mutex_unlock(&pool->manager_arb);
3436
3437 /* shut down the timers */
3438 del_timer_sync(&pool->idle_timer);
3439 del_timer_sync(&pool->mayday_timer);
3440
3441 /* sched-RCU protected to allow dereferences from get_work_pool() */
3442 call_rcu_sched(&pool->rcu, rcu_free_pool);
3443}
3444
3445/**
3446 * get_unbound_pool - get a worker_pool with the specified attributes
3447 * @attrs: the attributes of the worker_pool to get
3448 *
3449 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3450 * reference count and return it. If there already is a matching
3451 * worker_pool, it will be used; otherwise, this function attempts to
3452 * create a new one. On failure, returns NULL.
a892cacc
TH
3453 *
3454 * Should be called with wq_pool_mutex held.
29c91e99
TH
3455 */
3456static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3457{
29c91e99
TH
3458 u32 hash = wqattrs_hash(attrs);
3459 struct worker_pool *pool;
29c91e99 3460
a892cacc 3461 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3462
3463 /* do we already have a matching pool? */
29c91e99
TH
3464 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3465 if (wqattrs_equal(pool->attrs, attrs)) {
3466 pool->refcnt++;
3467 goto out_unlock;
3468 }
3469 }
29c91e99
TH
3470
3471 /* nope, create a new one */
3472 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3473 if (!pool || init_worker_pool(pool) < 0)
3474 goto fail;
3475
12ee4fc6
LJ
3476 if (workqueue_freezing)
3477 pool->flags |= POOL_FREEZING;
3478
8864b4e5 3479 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3480 copy_workqueue_attrs(pool->attrs, attrs);
3481
3482 if (worker_pool_assign_id(pool) < 0)
3483 goto fail;
3484
3485 /* create and start the initial worker */
ebf44d16 3486 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3487 goto fail;
3488
29c91e99 3489 /* install */
29c91e99
TH
3490 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3491out_unlock:
29c91e99
TH
3492 return pool;
3493fail:
29c91e99
TH
3494 if (pool)
3495 put_unbound_pool(pool);
3496 return NULL;
3497}
3498
8864b4e5
TH
3499static void rcu_free_pwq(struct rcu_head *rcu)
3500{
3501 kmem_cache_free(pwq_cache,
3502 container_of(rcu, struct pool_workqueue, rcu));
3503}
3504
3505/*
3506 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3507 * and needs to be destroyed.
3508 */
3509static void pwq_unbound_release_workfn(struct work_struct *work)
3510{
3511 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3512 unbound_release_work);
3513 struct workqueue_struct *wq = pwq->wq;
3514 struct worker_pool *pool = pwq->pool;
bc0caf09 3515 bool is_last;
8864b4e5
TH
3516
3517 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3518 return;
3519
75ccf595 3520 /*
3c25a55d 3521 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3522 * necessary on release but do it anyway. It's easier to verify
3523 * and consistent with the linking path.
3524 */
3c25a55d 3525 mutex_lock(&wq->mutex);
8864b4e5 3526 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3527 is_last = list_empty(&wq->pwqs);
3c25a55d 3528 mutex_unlock(&wq->mutex);
8864b4e5 3529
a892cacc 3530 mutex_lock(&wq_pool_mutex);
8864b4e5 3531 put_unbound_pool(pool);
a892cacc
TH
3532 mutex_unlock(&wq_pool_mutex);
3533
8864b4e5
TH
3534 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3535
3536 /*
3537 * If we're the last pwq going away, @wq is already dead and no one
3538 * is gonna access it anymore. Free it.
3539 */
bc0caf09 3540 if (is_last)
8864b4e5
TH
3541 kfree(wq);
3542}
3543
0fbd95aa 3544/**
699ce097 3545 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3546 * @pwq: target pool_workqueue
0fbd95aa 3547 *
699ce097
TH
3548 * If @pwq isn't freezing, set @pwq->max_active to the associated
3549 * workqueue's saved_max_active and activate delayed work items
3550 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3551 */
699ce097 3552static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3553{
699ce097
TH
3554 struct workqueue_struct *wq = pwq->wq;
3555 bool freezable = wq->flags & WQ_FREEZABLE;
3556
3557 /* for @wq->saved_max_active */
a357fc03 3558 lockdep_assert_held(&wq->mutex);
699ce097
TH
3559
3560 /* fast exit for non-freezable wqs */
3561 if (!freezable && pwq->max_active == wq->saved_max_active)
3562 return;
3563
a357fc03 3564 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3565
3566 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3567 pwq->max_active = wq->saved_max_active;
0fbd95aa 3568
699ce097
TH
3569 while (!list_empty(&pwq->delayed_works) &&
3570 pwq->nr_active < pwq->max_active)
3571 pwq_activate_first_delayed(pwq);
951a078a
LJ
3572
3573 /*
3574 * Need to kick a worker after thawed or an unbound wq's
3575 * max_active is bumped. It's a slow path. Do it always.
3576 */
3577 wake_up_worker(pwq->pool);
699ce097
TH
3578 } else {
3579 pwq->max_active = 0;
3580 }
3581
a357fc03 3582 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3583}
3584
d2c1d404
TH
3585static void init_and_link_pwq(struct pool_workqueue *pwq,
3586 struct workqueue_struct *wq,
9e8cd2f5
TH
3587 struct worker_pool *pool,
3588 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3589{
3590 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3591
3592 pwq->pool = pool;
3593 pwq->wq = wq;
3594 pwq->flush_color = -1;
8864b4e5 3595 pwq->refcnt = 1;
d2c1d404
TH
3596 INIT_LIST_HEAD(&pwq->delayed_works);
3597 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3598 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3599
3c25a55d 3600 mutex_lock(&wq->mutex);
75ccf595 3601
983ca25e
TH
3602 /*
3603 * Set the matching work_color. This is synchronized with
3c25a55d 3604 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3605 */
9e8cd2f5
TH
3606 if (p_last_pwq)
3607 *p_last_pwq = first_pwq(wq);
75ccf595 3608 pwq->work_color = wq->work_color;
983ca25e
TH
3609
3610 /* sync max_active to the current setting */
3611 pwq_adjust_max_active(pwq);
3612
3613 /* link in @pwq */
9e8cd2f5 3614 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
a357fc03 3615
3c25a55d 3616 mutex_unlock(&wq->mutex);
d2c1d404
TH
3617}
3618
9e8cd2f5
TH
3619/**
3620 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3621 * @wq: the target workqueue
3622 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3623 *
3624 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3625 * current attributes, a new pwq is created and made the first pwq which
3626 * will serve all new work items. Older pwqs are released as in-flight
3627 * work items finish. Note that a work item which repeatedly requeues
3628 * itself back-to-back will stay on its current pwq.
3629 *
3630 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3631 * failure.
3632 */
3633int apply_workqueue_attrs(struct workqueue_struct *wq,
3634 const struct workqueue_attrs *attrs)
3635{
13e2e556
TH
3636 struct workqueue_attrs *new_attrs;
3637 struct pool_workqueue *pwq = NULL, *last_pwq;
9e8cd2f5 3638 struct worker_pool *pool;
4862125b 3639 int ret;
9e8cd2f5 3640
8719dcea 3641 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3642 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3643 return -EINVAL;
3644
8719dcea
TH
3645 /* creating multiple pwqs breaks ordering guarantee */
3646 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3647 return -EINVAL;
3648
13e2e556
TH
3649 /* make a copy of @attrs and sanitize it */
3650 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3651 if (!new_attrs)
3652 goto enomem;
3653
3654 copy_workqueue_attrs(new_attrs, attrs);
3655 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3656
a892cacc
TH
3657 mutex_lock(&wq_pool_mutex);
3658
9e8cd2f5 3659 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
a892cacc
TH
3660 if (!pwq) {
3661 mutex_unlock(&wq_pool_mutex);
13e2e556 3662 goto enomem;
a892cacc 3663 }
9e8cd2f5 3664
13e2e556 3665 pool = get_unbound_pool(new_attrs);
a892cacc
TH
3666 if (!pool) {
3667 mutex_unlock(&wq_pool_mutex);
13e2e556 3668 goto enomem;
a892cacc
TH
3669 }
3670
3671 mutex_unlock(&wq_pool_mutex);
9e8cd2f5
TH
3672
3673 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3674 if (last_pwq) {
3675 spin_lock_irq(&last_pwq->pool->lock);
3676 put_pwq(last_pwq);
3677 spin_unlock_irq(&last_pwq->pool->lock);
3678 }
3679
4862125b
TH
3680 ret = 0;
3681 /* fall through */
3682out_free:
3683 free_workqueue_attrs(new_attrs);
3684 return ret;
13e2e556
TH
3685
3686enomem:
3687 kmem_cache_free(pwq_cache, pwq);
4862125b
TH
3688 ret = -ENOMEM;
3689 goto out_free;
9e8cd2f5
TH
3690}
3691
30cdf249 3692static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3693{
49e3cf44 3694 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3695 int cpu;
3696
3697 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3698 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3699 if (!wq->cpu_pwqs)
30cdf249
TH
3700 return -ENOMEM;
3701
3702 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3703 struct pool_workqueue *pwq =
3704 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3705 struct worker_pool *cpu_pools =
f02ae73a 3706 per_cpu(cpu_worker_pools, cpu);
f3421797 3707
9e8cd2f5 3708 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3709 }
9e8cd2f5 3710 return 0;
30cdf249 3711 } else {
9e8cd2f5 3712 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3713 }
0f900049
TH
3714}
3715
f3421797
TH
3716static int wq_clamp_max_active(int max_active, unsigned int flags,
3717 const char *name)
b71ab8c2 3718{
f3421797
TH
3719 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3720
3721 if (max_active < 1 || max_active > lim)
044c782c
VI
3722 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3723 max_active, name, 1, lim);
b71ab8c2 3724
f3421797 3725 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3726}
3727
b196be89 3728struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3729 unsigned int flags,
3730 int max_active,
3731 struct lock_class_key *key,
b196be89 3732 const char *lock_name, ...)
1da177e4 3733{
b196be89 3734 va_list args, args1;
1da177e4 3735 struct workqueue_struct *wq;
49e3cf44 3736 struct pool_workqueue *pwq;
b196be89
TH
3737 size_t namelen;
3738
3739 /* determine namelen, allocate wq and format name */
3740 va_start(args, lock_name);
3741 va_copy(args1, args);
3742 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3743
3744 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3745 if (!wq)
d2c1d404 3746 return NULL;
b196be89
TH
3747
3748 vsnprintf(wq->name, namelen, fmt, args1);
3749 va_end(args);
3750 va_end(args1);
1da177e4 3751
d320c038 3752 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3753 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3754
b196be89 3755 /* init wq */
97e37d7b 3756 wq->flags = flags;
a0a1a5fd 3757 wq->saved_max_active = max_active;
3c25a55d 3758 mutex_init(&wq->mutex);
112202d9 3759 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3760 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3761 INIT_LIST_HEAD(&wq->flusher_queue);
3762 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3763 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3764
eb13ba87 3765 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3766 INIT_LIST_HEAD(&wq->list);
3af24433 3767
30cdf249 3768 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3769 goto err_free_wq;
1537663f 3770
493008a8
TH
3771 /*
3772 * Workqueues which may be used during memory reclaim should
3773 * have a rescuer to guarantee forward progress.
3774 */
3775 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3776 struct worker *rescuer;
3777
d2c1d404 3778 rescuer = alloc_worker();
e22bee78 3779 if (!rescuer)
d2c1d404 3780 goto err_destroy;
e22bee78 3781
111c225a
TH
3782 rescuer->rescue_wq = wq;
3783 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3784 wq->name);
d2c1d404
TH
3785 if (IS_ERR(rescuer->task)) {
3786 kfree(rescuer);
3787 goto err_destroy;
3788 }
e22bee78 3789
d2c1d404 3790 wq->rescuer = rescuer;
14a40ffc 3791 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3792 wake_up_process(rescuer->task);
3af24433
ON
3793 }
3794
226223ab
TH
3795 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3796 goto err_destroy;
3797
a0a1a5fd 3798 /*
68e13a67
LJ
3799 * wq_pool_mutex protects global freeze state and workqueues list.
3800 * Grab it, adjust max_active and add the new @wq to workqueues
3801 * list.
a0a1a5fd 3802 */
68e13a67 3803 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3804
a357fc03 3805 mutex_lock(&wq->mutex);
699ce097
TH
3806 for_each_pwq(pwq, wq)
3807 pwq_adjust_max_active(pwq);
a357fc03 3808 mutex_unlock(&wq->mutex);
a0a1a5fd 3809
1537663f 3810 list_add(&wq->list, &workqueues);
a0a1a5fd 3811
68e13a67 3812 mutex_unlock(&wq_pool_mutex);
1537663f 3813
3af24433 3814 return wq;
d2c1d404
TH
3815
3816err_free_wq:
3817 kfree(wq);
3818 return NULL;
3819err_destroy:
3820 destroy_workqueue(wq);
4690c4ab 3821 return NULL;
3af24433 3822}
d320c038 3823EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3824
3af24433
ON
3825/**
3826 * destroy_workqueue - safely terminate a workqueue
3827 * @wq: target workqueue
3828 *
3829 * Safely destroy a workqueue. All work currently pending will be done first.
3830 */
3831void destroy_workqueue(struct workqueue_struct *wq)
3832{
49e3cf44 3833 struct pool_workqueue *pwq;
3af24433 3834
9c5a2ba7
TH
3835 /* drain it before proceeding with destruction */
3836 drain_workqueue(wq);
c8efcc25 3837
6183c009 3838 /* sanity checks */
b09f4fd3 3839 mutex_lock(&wq->mutex);
49e3cf44 3840 for_each_pwq(pwq, wq) {
6183c009
TH
3841 int i;
3842
76af4d93
TH
3843 for (i = 0; i < WORK_NR_COLORS; i++) {
3844 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3845 mutex_unlock(&wq->mutex);
6183c009 3846 return;
76af4d93
TH
3847 }
3848 }
3849
8864b4e5
TH
3850 if (WARN_ON(pwq->refcnt > 1) ||
3851 WARN_ON(pwq->nr_active) ||
76af4d93 3852 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3853 mutex_unlock(&wq->mutex);
6183c009 3854 return;
76af4d93 3855 }
6183c009 3856 }
b09f4fd3 3857 mutex_unlock(&wq->mutex);
6183c009 3858
a0a1a5fd
TH
3859 /*
3860 * wq list is used to freeze wq, remove from list after
3861 * flushing is complete in case freeze races us.
3862 */
68e13a67 3863 mutex_lock(&wq_pool_mutex);
d2c1d404 3864 list_del_init(&wq->list);
68e13a67 3865 mutex_unlock(&wq_pool_mutex);
3af24433 3866
226223ab
TH
3867 workqueue_sysfs_unregister(wq);
3868
493008a8 3869 if (wq->rescuer) {
e22bee78 3870 kthread_stop(wq->rescuer->task);
8d9df9f0 3871 kfree(wq->rescuer);
493008a8 3872 wq->rescuer = NULL;
e22bee78
TH
3873 }
3874
8864b4e5
TH
3875 if (!(wq->flags & WQ_UNBOUND)) {
3876 /*
3877 * The base ref is never dropped on per-cpu pwqs. Directly
3878 * free the pwqs and wq.
3879 */
3880 free_percpu(wq->cpu_pwqs);
3881 kfree(wq);
3882 } else {
3883 /*
3884 * We're the sole accessor of @wq at this point. Directly
3885 * access the first pwq and put the base ref. As both pwqs
3886 * and pools are sched-RCU protected, the lock operations
3887 * are safe. @wq will be freed when the last pwq is
3888 * released.
3889 */
29c91e99
TH
3890 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3891 pwqs_node);
8864b4e5
TH
3892 spin_lock_irq(&pwq->pool->lock);
3893 put_pwq(pwq);
3894 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3895 }
3af24433
ON
3896}
3897EXPORT_SYMBOL_GPL(destroy_workqueue);
3898
dcd989cb
TH
3899/**
3900 * workqueue_set_max_active - adjust max_active of a workqueue
3901 * @wq: target workqueue
3902 * @max_active: new max_active value.
3903 *
3904 * Set max_active of @wq to @max_active.
3905 *
3906 * CONTEXT:
3907 * Don't call from IRQ context.
3908 */
3909void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3910{
49e3cf44 3911 struct pool_workqueue *pwq;
dcd989cb 3912
8719dcea
TH
3913 /* disallow meddling with max_active for ordered workqueues */
3914 if (WARN_ON(wq->flags & __WQ_ORDERED))
3915 return;
3916
f3421797 3917 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3918
a357fc03 3919 mutex_lock(&wq->mutex);
dcd989cb
TH
3920
3921 wq->saved_max_active = max_active;
3922
699ce097
TH
3923 for_each_pwq(pwq, wq)
3924 pwq_adjust_max_active(pwq);
93981800 3925
a357fc03 3926 mutex_unlock(&wq->mutex);
15316ba8 3927}
dcd989cb 3928EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3929
e6267616
TH
3930/**
3931 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3932 *
3933 * Determine whether %current is a workqueue rescuer. Can be used from
3934 * work functions to determine whether it's being run off the rescuer task.
3935 */
3936bool current_is_workqueue_rescuer(void)
3937{
3938 struct worker *worker = current_wq_worker();
3939
6a092dfd 3940 return worker && worker->rescue_wq;
e6267616
TH
3941}
3942
eef6a7d5 3943/**
dcd989cb
TH
3944 * workqueue_congested - test whether a workqueue is congested
3945 * @cpu: CPU in question
3946 * @wq: target workqueue
eef6a7d5 3947 *
dcd989cb
TH
3948 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3949 * no synchronization around this function and the test result is
3950 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3951 *
dcd989cb
TH
3952 * RETURNS:
3953 * %true if congested, %false otherwise.
eef6a7d5 3954 */
d84ff051 3955bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3956{
7fb98ea7 3957 struct pool_workqueue *pwq;
76af4d93
TH
3958 bool ret;
3959
88109453 3960 rcu_read_lock_sched();
7fb98ea7
TH
3961
3962 if (!(wq->flags & WQ_UNBOUND))
3963 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3964 else
3965 pwq = first_pwq(wq);
dcd989cb 3966
76af4d93 3967 ret = !list_empty(&pwq->delayed_works);
88109453 3968 rcu_read_unlock_sched();
76af4d93
TH
3969
3970 return ret;
1da177e4 3971}
dcd989cb 3972EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3973
dcd989cb
TH
3974/**
3975 * work_busy - test whether a work is currently pending or running
3976 * @work: the work to be tested
3977 *
3978 * Test whether @work is currently pending or running. There is no
3979 * synchronization around this function and the test result is
3980 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3981 *
3982 * RETURNS:
3983 * OR'd bitmask of WORK_BUSY_* bits.
3984 */
3985unsigned int work_busy(struct work_struct *work)
1da177e4 3986{
fa1b54e6 3987 struct worker_pool *pool;
dcd989cb
TH
3988 unsigned long flags;
3989 unsigned int ret = 0;
1da177e4 3990
dcd989cb
TH
3991 if (work_pending(work))
3992 ret |= WORK_BUSY_PENDING;
1da177e4 3993
fa1b54e6
TH
3994 local_irq_save(flags);
3995 pool = get_work_pool(work);
038366c5 3996 if (pool) {
fa1b54e6 3997 spin_lock(&pool->lock);
038366c5
LJ
3998 if (find_worker_executing_work(pool, work))
3999 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4000 spin_unlock(&pool->lock);
038366c5 4001 }
fa1b54e6 4002 local_irq_restore(flags);
1da177e4 4003
dcd989cb 4004 return ret;
1da177e4 4005}
dcd989cb 4006EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4007
db7bccf4
TH
4008/*
4009 * CPU hotplug.
4010 *
e22bee78 4011 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4012 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4013 * pool which make migrating pending and scheduled works very
e22bee78 4014 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4015 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4016 * blocked draining impractical.
4017 *
24647570 4018 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4019 * running as an unbound one and allowing it to be reattached later if the
4020 * cpu comes back online.
db7bccf4 4021 */
1da177e4 4022
706026c2 4023static void wq_unbind_fn(struct work_struct *work)
3af24433 4024{
38db41d9 4025 int cpu = smp_processor_id();
4ce62e9e 4026 struct worker_pool *pool;
db7bccf4 4027 struct worker *worker;
a9ab775b 4028 int wi;
3af24433 4029
f02ae73a 4030 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4031 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4032
bc3a1afc 4033 mutex_lock(&pool->manager_mutex);
94cf58bb 4034 spin_lock_irq(&pool->lock);
3af24433 4035
94cf58bb 4036 /*
bc3a1afc 4037 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4038 * unbound and set DISASSOCIATED. Before this, all workers
4039 * except for the ones which are still executing works from
4040 * before the last CPU down must be on the cpu. After
4041 * this, they may become diasporas.
4042 */
a9ab775b 4043 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4044 worker->flags |= WORKER_UNBOUND;
06ba38a9 4045
24647570 4046 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4047
94cf58bb 4048 spin_unlock_irq(&pool->lock);
bc3a1afc 4049 mutex_unlock(&pool->manager_mutex);
94cf58bb 4050 }
628c78e7 4051
e22bee78 4052 /*
403c821d 4053 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4054 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4055 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4056 */
e22bee78 4057 schedule();
06ba38a9 4058
e22bee78 4059 /*
628c78e7
TH
4060 * Sched callbacks are disabled now. Zap nr_running. After this,
4061 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4062 * are always true as long as the worklist is not empty. Pools on
4063 * @cpu now behave as unbound (in terms of concurrency management)
4064 * pools which are served by workers tied to the CPU.
628c78e7
TH
4065 *
4066 * On return from this function, the current worker would trigger
4067 * unbound chain execution of pending work items if other workers
4068 * didn't already.
e22bee78 4069 */
f02ae73a 4070 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4071 atomic_set(&pool->nr_running, 0);
3af24433 4072}
3af24433 4073
bd7c089e
TH
4074/**
4075 * rebind_workers - rebind all workers of a pool to the associated CPU
4076 * @pool: pool of interest
4077 *
a9ab775b 4078 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4079 */
4080static void rebind_workers(struct worker_pool *pool)
4081{
a9ab775b
TH
4082 struct worker *worker;
4083 int wi;
bd7c089e
TH
4084
4085 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4086
a9ab775b
TH
4087 /*
4088 * Restore CPU affinity of all workers. As all idle workers should
4089 * be on the run-queue of the associated CPU before any local
4090 * wake-ups for concurrency management happen, restore CPU affinty
4091 * of all workers first and then clear UNBOUND. As we're called
4092 * from CPU_ONLINE, the following shouldn't fail.
4093 */
4094 for_each_pool_worker(worker, wi, pool)
4095 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4096 pool->attrs->cpumask) < 0);
bd7c089e 4097
a9ab775b 4098 spin_lock_irq(&pool->lock);
bd7c089e 4099
a9ab775b
TH
4100 for_each_pool_worker(worker, wi, pool) {
4101 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4102
4103 /*
a9ab775b
TH
4104 * A bound idle worker should actually be on the runqueue
4105 * of the associated CPU for local wake-ups targeting it to
4106 * work. Kick all idle workers so that they migrate to the
4107 * associated CPU. Doing this in the same loop as
4108 * replacing UNBOUND with REBOUND is safe as no worker will
4109 * be bound before @pool->lock is released.
bd7c089e 4110 */
a9ab775b
TH
4111 if (worker_flags & WORKER_IDLE)
4112 wake_up_process(worker->task);
bd7c089e 4113
a9ab775b
TH
4114 /*
4115 * We want to clear UNBOUND but can't directly call
4116 * worker_clr_flags() or adjust nr_running. Atomically
4117 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4118 * @worker will clear REBOUND using worker_clr_flags() when
4119 * it initiates the next execution cycle thus restoring
4120 * concurrency management. Note that when or whether
4121 * @worker clears REBOUND doesn't affect correctness.
4122 *
4123 * ACCESS_ONCE() is necessary because @worker->flags may be
4124 * tested without holding any lock in
4125 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4126 * fail incorrectly leading to premature concurrency
4127 * management operations.
4128 */
4129 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4130 worker_flags |= WORKER_REBOUND;
4131 worker_flags &= ~WORKER_UNBOUND;
4132 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4133 }
a9ab775b
TH
4134
4135 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4136}
4137
7dbc725e
TH
4138/**
4139 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4140 * @pool: unbound pool of interest
4141 * @cpu: the CPU which is coming up
4142 *
4143 * An unbound pool may end up with a cpumask which doesn't have any online
4144 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4145 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4146 * online CPU before, cpus_allowed of all its workers should be restored.
4147 */
4148static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4149{
4150 static cpumask_t cpumask;
4151 struct worker *worker;
4152 int wi;
4153
4154 lockdep_assert_held(&pool->manager_mutex);
4155
4156 /* is @cpu allowed for @pool? */
4157 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4158 return;
4159
4160 /* is @cpu the only online CPU? */
4161 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4162 if (cpumask_weight(&cpumask) != 1)
4163 return;
4164
4165 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4166 for_each_pool_worker(worker, wi, pool)
4167 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4168 pool->attrs->cpumask) < 0);
4169}
4170
8db25e78
TH
4171/*
4172 * Workqueues should be brought up before normal priority CPU notifiers.
4173 * This will be registered high priority CPU notifier.
4174 */
9fdf9b73 4175static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4176 unsigned long action,
4177 void *hcpu)
3af24433 4178{
d84ff051 4179 int cpu = (unsigned long)hcpu;
4ce62e9e 4180 struct worker_pool *pool;
7dbc725e 4181 int pi;
3ce63377 4182
8db25e78 4183 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4184 case CPU_UP_PREPARE:
f02ae73a 4185 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4186 if (pool->nr_workers)
4187 continue;
ebf44d16 4188 if (create_and_start_worker(pool) < 0)
3ce63377 4189 return NOTIFY_BAD;
3af24433 4190 }
8db25e78 4191 break;
3af24433 4192
db7bccf4
TH
4193 case CPU_DOWN_FAILED:
4194 case CPU_ONLINE:
68e13a67 4195 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4196
4197 for_each_pool(pool, pi) {
bc3a1afc 4198 mutex_lock(&pool->manager_mutex);
94cf58bb 4199
7dbc725e
TH
4200 if (pool->cpu == cpu) {
4201 spin_lock_irq(&pool->lock);
4202 pool->flags &= ~POOL_DISASSOCIATED;
4203 spin_unlock_irq(&pool->lock);
a9ab775b 4204
7dbc725e
TH
4205 rebind_workers(pool);
4206 } else if (pool->cpu < 0) {
4207 restore_unbound_workers_cpumask(pool, cpu);
4208 }
94cf58bb 4209
bc3a1afc 4210 mutex_unlock(&pool->manager_mutex);
94cf58bb 4211 }
7dbc725e 4212
68e13a67 4213 mutex_unlock(&wq_pool_mutex);
db7bccf4 4214 break;
00dfcaf7 4215 }
65758202
TH
4216 return NOTIFY_OK;
4217}
4218
4219/*
4220 * Workqueues should be brought down after normal priority CPU notifiers.
4221 * This will be registered as low priority CPU notifier.
4222 */
9fdf9b73 4223static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4224 unsigned long action,
4225 void *hcpu)
4226{
d84ff051 4227 int cpu = (unsigned long)hcpu;
8db25e78
TH
4228 struct work_struct unbind_work;
4229
65758202
TH
4230 switch (action & ~CPU_TASKS_FROZEN) {
4231 case CPU_DOWN_PREPARE:
8db25e78 4232 /* unbinding should happen on the local CPU */
706026c2 4233 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4234 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4235 flush_work(&unbind_work);
4236 break;
65758202
TH
4237 }
4238 return NOTIFY_OK;
4239}
4240
2d3854a3 4241#ifdef CONFIG_SMP
8ccad40d 4242
2d3854a3 4243struct work_for_cpu {
ed48ece2 4244 struct work_struct work;
2d3854a3
RR
4245 long (*fn)(void *);
4246 void *arg;
4247 long ret;
4248};
4249
ed48ece2 4250static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4251{
ed48ece2
TH
4252 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4253
2d3854a3
RR
4254 wfc->ret = wfc->fn(wfc->arg);
4255}
4256
4257/**
4258 * work_on_cpu - run a function in user context on a particular cpu
4259 * @cpu: the cpu to run on
4260 * @fn: the function to run
4261 * @arg: the function arg
4262 *
31ad9081
RR
4263 * This will return the value @fn returns.
4264 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4265 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4266 */
d84ff051 4267long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4268{
ed48ece2 4269 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4270
ed48ece2
TH
4271 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4272 schedule_work_on(cpu, &wfc.work);
4273 flush_work(&wfc.work);
2d3854a3
RR
4274 return wfc.ret;
4275}
4276EXPORT_SYMBOL_GPL(work_on_cpu);
4277#endif /* CONFIG_SMP */
4278
a0a1a5fd
TH
4279#ifdef CONFIG_FREEZER
4280
4281/**
4282 * freeze_workqueues_begin - begin freezing workqueues
4283 *
58a69cb4 4284 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4285 * workqueues will queue new works to their delayed_works list instead of
706026c2 4286 * pool->worklist.
a0a1a5fd
TH
4287 *
4288 * CONTEXT:
a357fc03 4289 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4290 */
4291void freeze_workqueues_begin(void)
4292{
17116969 4293 struct worker_pool *pool;
24b8a847
TH
4294 struct workqueue_struct *wq;
4295 struct pool_workqueue *pwq;
611c92a0 4296 int pi;
a0a1a5fd 4297
68e13a67 4298 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4299
6183c009 4300 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4301 workqueue_freezing = true;
4302
24b8a847 4303 /* set FREEZING */
611c92a0 4304 for_each_pool(pool, pi) {
5bcab335 4305 spin_lock_irq(&pool->lock);
17116969
TH
4306 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4307 pool->flags |= POOL_FREEZING;
5bcab335 4308 spin_unlock_irq(&pool->lock);
24b8a847 4309 }
a0a1a5fd 4310
24b8a847 4311 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4312 mutex_lock(&wq->mutex);
699ce097
TH
4313 for_each_pwq(pwq, wq)
4314 pwq_adjust_max_active(pwq);
a357fc03 4315 mutex_unlock(&wq->mutex);
a0a1a5fd 4316 }
5bcab335 4317
68e13a67 4318 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4319}
4320
4321/**
58a69cb4 4322 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4323 *
4324 * Check whether freezing is complete. This function must be called
4325 * between freeze_workqueues_begin() and thaw_workqueues().
4326 *
4327 * CONTEXT:
68e13a67 4328 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4329 *
4330 * RETURNS:
58a69cb4
TH
4331 * %true if some freezable workqueues are still busy. %false if freezing
4332 * is complete.
a0a1a5fd
TH
4333 */
4334bool freeze_workqueues_busy(void)
4335{
a0a1a5fd 4336 bool busy = false;
24b8a847
TH
4337 struct workqueue_struct *wq;
4338 struct pool_workqueue *pwq;
a0a1a5fd 4339
68e13a67 4340 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4341
6183c009 4342 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4343
24b8a847
TH
4344 list_for_each_entry(wq, &workqueues, list) {
4345 if (!(wq->flags & WQ_FREEZABLE))
4346 continue;
a0a1a5fd
TH
4347 /*
4348 * nr_active is monotonically decreasing. It's safe
4349 * to peek without lock.
4350 */
88109453 4351 rcu_read_lock_sched();
24b8a847 4352 for_each_pwq(pwq, wq) {
6183c009 4353 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4354 if (pwq->nr_active) {
a0a1a5fd 4355 busy = true;
88109453 4356 rcu_read_unlock_sched();
a0a1a5fd
TH
4357 goto out_unlock;
4358 }
4359 }
88109453 4360 rcu_read_unlock_sched();
a0a1a5fd
TH
4361 }
4362out_unlock:
68e13a67 4363 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4364 return busy;
4365}
4366
4367/**
4368 * thaw_workqueues - thaw workqueues
4369 *
4370 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4371 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4372 *
4373 * CONTEXT:
a357fc03 4374 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4375 */
4376void thaw_workqueues(void)
4377{
24b8a847
TH
4378 struct workqueue_struct *wq;
4379 struct pool_workqueue *pwq;
4380 struct worker_pool *pool;
611c92a0 4381 int pi;
a0a1a5fd 4382
68e13a67 4383 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4384
4385 if (!workqueue_freezing)
4386 goto out_unlock;
4387
24b8a847 4388 /* clear FREEZING */
611c92a0 4389 for_each_pool(pool, pi) {
5bcab335 4390 spin_lock_irq(&pool->lock);
24b8a847
TH
4391 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4392 pool->flags &= ~POOL_FREEZING;
5bcab335 4393 spin_unlock_irq(&pool->lock);
24b8a847 4394 }
8b03ae3c 4395
24b8a847
TH
4396 /* restore max_active and repopulate worklist */
4397 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4398 mutex_lock(&wq->mutex);
699ce097
TH
4399 for_each_pwq(pwq, wq)
4400 pwq_adjust_max_active(pwq);
a357fc03 4401 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4402 }
4403
4404 workqueue_freezing = false;
4405out_unlock:
68e13a67 4406 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4407}
4408#endif /* CONFIG_FREEZER */
4409
6ee0578b 4410static int __init init_workqueues(void)
1da177e4 4411{
7a4e344c
TH
4412 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4413 int i, cpu;
c34056a3 4414
7c3eed5c
TH
4415 /* make sure we have enough bits for OFFQ pool ID */
4416 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4417 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4418
e904e6c2
TH
4419 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4420
4421 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4422
65758202 4423 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4424 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4425
706026c2 4426 /* initialize CPU pools */
29c91e99 4427 for_each_possible_cpu(cpu) {
4ce62e9e 4428 struct worker_pool *pool;
8b03ae3c 4429
7a4e344c 4430 i = 0;
f02ae73a 4431 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4432 BUG_ON(init_worker_pool(pool));
ec22ca5e 4433 pool->cpu = cpu;
29c91e99 4434 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4435 pool->attrs->nice = std_nice[i++];
4436
9daf9e67 4437 /* alloc pool ID */
68e13a67 4438 mutex_lock(&wq_pool_mutex);
9daf9e67 4439 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4440 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4441 }
8b03ae3c
TH
4442 }
4443
e22bee78 4444 /* create the initial worker */
29c91e99 4445 for_each_online_cpu(cpu) {
4ce62e9e 4446 struct worker_pool *pool;
e22bee78 4447
f02ae73a 4448 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4449 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4450 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4451 }
e22bee78
TH
4452 }
4453
29c91e99
TH
4454 /* create default unbound wq attrs */
4455 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4456 struct workqueue_attrs *attrs;
4457
4458 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4459 attrs->nice = std_nice[i];
29c91e99
TH
4460 unbound_std_wq_attrs[i] = attrs;
4461 }
4462
d320c038 4463 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4464 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4465 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4466 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4467 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4468 system_freezable_wq = alloc_workqueue("events_freezable",
4469 WQ_FREEZABLE, 0);
1aabe902 4470 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4471 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4472 return 0;
1da177e4 4473}
6ee0578b 4474early_initcall(init_workqueues);