workqueue: reimplement workqueue freeze using max_active
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
1da177e4 37
4690c4ab
TH
38/*
39 * Structure fields follow one of the following exclusion rules.
40 *
41 * I: Set during initialization and read-only afterwards.
42 *
43 * L: cwq->lock protected. Access with cwq->lock held.
44 *
73f53c4a
TH
45 * F: wq->flush_mutex protected.
46 *
4690c4ab
TH
47 * W: workqueue_lock protected.
48 */
49
c34056a3
TH
50struct cpu_workqueue_struct;
51
52struct worker {
53 struct work_struct *current_work; /* L: work being processed */
affee4b2 54 struct list_head scheduled; /* L: scheduled works */
c34056a3
TH
55 struct task_struct *task; /* I: worker task */
56 struct cpu_workqueue_struct *cwq; /* I: the associated cwq */
57 int id; /* I: worker id */
58};
59
1da177e4 60/*
f756d5e2 61 * The per-CPU workqueue (if single thread, we always use the first
0f900049
TH
62 * possible cpu). The lower WORK_STRUCT_FLAG_BITS of
63 * work_struct->data are used for flags and thus cwqs need to be
64 * aligned at two's power of the number of flag bits.
1da177e4
LT
65 */
66struct cpu_workqueue_struct {
67
68 spinlock_t lock;
69
1da177e4
LT
70 struct list_head worklist;
71 wait_queue_head_t more_work;
1537663f 72 unsigned int cpu;
c34056a3 73 struct worker *worker;
1da177e4 74
4690c4ab 75 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
76 int work_color; /* L: current color */
77 int flush_color; /* L: flushing color */
78 int nr_in_flight[WORK_NR_COLORS];
79 /* L: nr of in_flight works */
1e19ffc6 80 int nr_active; /* L: nr of active works */
a0a1a5fd 81 int max_active; /* L: max active works */
1e19ffc6 82 struct list_head delayed_works; /* L: delayed works */
0f900049 83};
1da177e4 84
73f53c4a
TH
85/*
86 * Structure used to wait for workqueue flush.
87 */
88struct wq_flusher {
89 struct list_head list; /* F: list of flushers */
90 int flush_color; /* F: flush color waiting for */
91 struct completion done; /* flush completion */
92};
93
1da177e4
LT
94/*
95 * The externally visible workqueue abstraction is an array of
96 * per-CPU workqueues:
97 */
98struct workqueue_struct {
97e37d7b 99 unsigned int flags; /* I: WQ_* flags */
4690c4ab
TH
100 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
101 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
102
103 struct mutex flush_mutex; /* protects wq flushing */
104 int work_color; /* F: current work color */
105 int flush_color; /* F: current flush color */
106 atomic_t nr_cwqs_to_flush; /* flush in progress */
107 struct wq_flusher *first_flusher; /* F: first flusher */
108 struct list_head flusher_queue; /* F: flush waiters */
109 struct list_head flusher_overflow; /* F: flush overflow list */
110
a0a1a5fd 111 int saved_max_active; /* I: saved cwq max_active */
4690c4ab 112 const char *name; /* I: workqueue name */
4e6045f1 113#ifdef CONFIG_LOCKDEP
4690c4ab 114 struct lockdep_map lockdep_map;
4e6045f1 115#endif
1da177e4
LT
116};
117
dc186ad7
TG
118#ifdef CONFIG_DEBUG_OBJECTS_WORK
119
120static struct debug_obj_descr work_debug_descr;
121
122/*
123 * fixup_init is called when:
124 * - an active object is initialized
125 */
126static int work_fixup_init(void *addr, enum debug_obj_state state)
127{
128 struct work_struct *work = addr;
129
130 switch (state) {
131 case ODEBUG_STATE_ACTIVE:
132 cancel_work_sync(work);
133 debug_object_init(work, &work_debug_descr);
134 return 1;
135 default:
136 return 0;
137 }
138}
139
140/*
141 * fixup_activate is called when:
142 * - an active object is activated
143 * - an unknown object is activated (might be a statically initialized object)
144 */
145static int work_fixup_activate(void *addr, enum debug_obj_state state)
146{
147 struct work_struct *work = addr;
148
149 switch (state) {
150
151 case ODEBUG_STATE_NOTAVAILABLE:
152 /*
153 * This is not really a fixup. The work struct was
154 * statically initialized. We just make sure that it
155 * is tracked in the object tracker.
156 */
22df02bb 157 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
158 debug_object_init(work, &work_debug_descr);
159 debug_object_activate(work, &work_debug_descr);
160 return 0;
161 }
162 WARN_ON_ONCE(1);
163 return 0;
164
165 case ODEBUG_STATE_ACTIVE:
166 WARN_ON(1);
167
168 default:
169 return 0;
170 }
171}
172
173/*
174 * fixup_free is called when:
175 * - an active object is freed
176 */
177static int work_fixup_free(void *addr, enum debug_obj_state state)
178{
179 struct work_struct *work = addr;
180
181 switch (state) {
182 case ODEBUG_STATE_ACTIVE:
183 cancel_work_sync(work);
184 debug_object_free(work, &work_debug_descr);
185 return 1;
186 default:
187 return 0;
188 }
189}
190
191static struct debug_obj_descr work_debug_descr = {
192 .name = "work_struct",
193 .fixup_init = work_fixup_init,
194 .fixup_activate = work_fixup_activate,
195 .fixup_free = work_fixup_free,
196};
197
198static inline void debug_work_activate(struct work_struct *work)
199{
200 debug_object_activate(work, &work_debug_descr);
201}
202
203static inline void debug_work_deactivate(struct work_struct *work)
204{
205 debug_object_deactivate(work, &work_debug_descr);
206}
207
208void __init_work(struct work_struct *work, int onstack)
209{
210 if (onstack)
211 debug_object_init_on_stack(work, &work_debug_descr);
212 else
213 debug_object_init(work, &work_debug_descr);
214}
215EXPORT_SYMBOL_GPL(__init_work);
216
217void destroy_work_on_stack(struct work_struct *work)
218{
219 debug_object_free(work, &work_debug_descr);
220}
221EXPORT_SYMBOL_GPL(destroy_work_on_stack);
222
223#else
224static inline void debug_work_activate(struct work_struct *work) { }
225static inline void debug_work_deactivate(struct work_struct *work) { }
226#endif
227
95402b38
GS
228/* Serializes the accesses to the list of workqueues. */
229static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 230static LIST_HEAD(workqueues);
c34056a3 231static DEFINE_PER_CPU(struct ida, worker_ida);
a0a1a5fd 232static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3
TH
233
234static int worker_thread(void *__worker);
1da177e4 235
3af24433 236static int singlethread_cpu __read_mostly;
1da177e4 237
1537663f
TH
238static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
239 struct workqueue_struct *wq)
b1f4ec17 240{
1537663f 241 return per_cpu_ptr(wq->cpu_wq, cpu);
b1f4ec17
ON
242}
243
1537663f
TH
244static struct cpu_workqueue_struct *target_cwq(unsigned int cpu,
245 struct workqueue_struct *wq)
a848e3b6 246{
1537663f 247 if (unlikely(wq->flags & WQ_SINGLE_THREAD))
a848e3b6 248 cpu = singlethread_cpu;
1537663f 249 return get_cwq(cpu, wq);
a848e3b6
ON
250}
251
73f53c4a
TH
252static unsigned int work_color_to_flags(int color)
253{
254 return color << WORK_STRUCT_COLOR_SHIFT;
255}
256
257static int get_work_color(struct work_struct *work)
258{
259 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
260 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
261}
262
263static int work_next_color(int color)
264{
265 return (color + 1) % WORK_NR_COLORS;
266}
267
4594bf15
DH
268/*
269 * Set the workqueue on which a work item is to be run
270 * - Must *only* be called if the pending flag is set
271 */
ed7c0fee 272static inline void set_wq_data(struct work_struct *work,
4690c4ab
TH
273 struct cpu_workqueue_struct *cwq,
274 unsigned long extra_flags)
365970a1 275{
4594bf15 276 BUG_ON(!work_pending(work));
365970a1 277
4690c4ab 278 atomic_long_set(&work->data, (unsigned long)cwq | work_static(work) |
22df02bb 279 WORK_STRUCT_PENDING | extra_flags);
365970a1
DH
280}
281
4d707b9f
ON
282/*
283 * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
284 */
285static inline void clear_wq_data(struct work_struct *work)
286{
4690c4ab 287 atomic_long_set(&work->data, work_static(work));
4d707b9f
ON
288}
289
64166699 290static inline struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
365970a1 291{
64166699
TH
292 return (void *)(atomic_long_read(&work->data) &
293 WORK_STRUCT_WQ_DATA_MASK);
365970a1
DH
294}
295
4690c4ab
TH
296/**
297 * insert_work - insert a work into cwq
298 * @cwq: cwq @work belongs to
299 * @work: work to insert
300 * @head: insertion point
301 * @extra_flags: extra WORK_STRUCT_* flags to set
302 *
303 * Insert @work into @cwq after @head.
304 *
305 * CONTEXT:
306 * spin_lock_irq(cwq->lock).
307 */
b89deed3 308static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
309 struct work_struct *work, struct list_head *head,
310 unsigned int extra_flags)
b89deed3 311{
4690c4ab
TH
312 /* we own @work, set data and link */
313 set_wq_data(work, cwq, extra_flags);
314
6e84d644
ON
315 /*
316 * Ensure that we get the right work->data if we see the
317 * result of list_add() below, see try_to_grab_pending().
318 */
319 smp_wmb();
4690c4ab 320
1a4d9b0a 321 list_add_tail(&work->entry, head);
b89deed3
ON
322 wake_up(&cwq->more_work);
323}
324
4690c4ab 325static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
326 struct work_struct *work)
327{
1537663f 328 struct cpu_workqueue_struct *cwq = target_cwq(cpu, wq);
1e19ffc6 329 struct list_head *worklist;
1da177e4
LT
330 unsigned long flags;
331
dc186ad7 332 debug_work_activate(work);
1e19ffc6 333
1da177e4 334 spin_lock_irqsave(&cwq->lock, flags);
4690c4ab 335 BUG_ON(!list_empty(&work->entry));
1e19ffc6 336
73f53c4a 337 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
338
339 if (likely(cwq->nr_active < cwq->max_active)) {
340 cwq->nr_active++;
341 worklist = &cwq->worklist;
342 } else
343 worklist = &cwq->delayed_works;
344
345 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
346
1da177e4
LT
347 spin_unlock_irqrestore(&cwq->lock, flags);
348}
349
0fcb78c2
REB
350/**
351 * queue_work - queue work on a workqueue
352 * @wq: workqueue to use
353 * @work: work to queue
354 *
057647fc 355 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 356 *
00dfcaf7
ON
357 * We queue the work to the CPU on which it was submitted, but if the CPU dies
358 * it can be processed by another CPU.
1da177e4 359 */
7ad5b3a5 360int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 361{
ef1ca236
ON
362 int ret;
363
364 ret = queue_work_on(get_cpu(), wq, work);
365 put_cpu();
366
1da177e4
LT
367 return ret;
368}
ae90dd5d 369EXPORT_SYMBOL_GPL(queue_work);
1da177e4 370
c1a220e7
ZR
371/**
372 * queue_work_on - queue work on specific cpu
373 * @cpu: CPU number to execute work on
374 * @wq: workqueue to use
375 * @work: work to queue
376 *
377 * Returns 0 if @work was already on a queue, non-zero otherwise.
378 *
379 * We queue the work to a specific CPU, the caller must ensure it
380 * can't go away.
381 */
382int
383queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
384{
385 int ret = 0;
386
22df02bb 387 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 388 __queue_work(cpu, wq, work);
c1a220e7
ZR
389 ret = 1;
390 }
391 return ret;
392}
393EXPORT_SYMBOL_GPL(queue_work_on);
394
6d141c3f 395static void delayed_work_timer_fn(unsigned long __data)
1da177e4 396{
52bad64d 397 struct delayed_work *dwork = (struct delayed_work *)__data;
ed7c0fee 398 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
1da177e4 399
4690c4ab 400 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
401}
402
0fcb78c2
REB
403/**
404 * queue_delayed_work - queue work on a workqueue after delay
405 * @wq: workqueue to use
af9997e4 406 * @dwork: delayable work to queue
0fcb78c2
REB
407 * @delay: number of jiffies to wait before queueing
408 *
057647fc 409 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 410 */
7ad5b3a5 411int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 412 struct delayed_work *dwork, unsigned long delay)
1da177e4 413{
52bad64d 414 if (delay == 0)
63bc0362 415 return queue_work(wq, &dwork->work);
1da177e4 416
63bc0362 417 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 418}
ae90dd5d 419EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 420
0fcb78c2
REB
421/**
422 * queue_delayed_work_on - queue work on specific CPU after delay
423 * @cpu: CPU number to execute work on
424 * @wq: workqueue to use
af9997e4 425 * @dwork: work to queue
0fcb78c2
REB
426 * @delay: number of jiffies to wait before queueing
427 *
057647fc 428 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 429 */
7a6bc1cd 430int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 431 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
432{
433 int ret = 0;
52bad64d
DH
434 struct timer_list *timer = &dwork->timer;
435 struct work_struct *work = &dwork->work;
7a6bc1cd 436
22df02bb 437 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7a6bc1cd
VP
438 BUG_ON(timer_pending(timer));
439 BUG_ON(!list_empty(&work->entry));
440
8a3e77cc
AL
441 timer_stats_timer_set_start_info(&dwork->timer);
442
ed7c0fee 443 /* This stores cwq for the moment, for the timer_fn */
1537663f 444 set_wq_data(work, target_cwq(raw_smp_processor_id(), wq), 0);
7a6bc1cd 445 timer->expires = jiffies + delay;
52bad64d 446 timer->data = (unsigned long)dwork;
7a6bc1cd 447 timer->function = delayed_work_timer_fn;
63bc0362
ON
448
449 if (unlikely(cpu >= 0))
450 add_timer_on(timer, cpu);
451 else
452 add_timer(timer);
7a6bc1cd
VP
453 ret = 1;
454 }
455 return ret;
456}
ae90dd5d 457EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 458
c34056a3
TH
459static struct worker *alloc_worker(void)
460{
461 struct worker *worker;
462
463 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
affee4b2
TH
464 if (worker)
465 INIT_LIST_HEAD(&worker->scheduled);
c34056a3
TH
466 return worker;
467}
468
469/**
470 * create_worker - create a new workqueue worker
471 * @cwq: cwq the new worker will belong to
472 * @bind: whether to set affinity to @cpu or not
473 *
474 * Create a new worker which is bound to @cwq. The returned worker
475 * can be started by calling start_worker() or destroyed using
476 * destroy_worker().
477 *
478 * CONTEXT:
479 * Might sleep. Does GFP_KERNEL allocations.
480 *
481 * RETURNS:
482 * Pointer to the newly created worker.
483 */
484static struct worker *create_worker(struct cpu_workqueue_struct *cwq, bool bind)
485{
486 int id = -1;
487 struct worker *worker = NULL;
488
489 spin_lock(&workqueue_lock);
490 while (ida_get_new(&per_cpu(worker_ida, cwq->cpu), &id)) {
491 spin_unlock(&workqueue_lock);
492 if (!ida_pre_get(&per_cpu(worker_ida, cwq->cpu), GFP_KERNEL))
493 goto fail;
494 spin_lock(&workqueue_lock);
495 }
496 spin_unlock(&workqueue_lock);
497
498 worker = alloc_worker();
499 if (!worker)
500 goto fail;
501
502 worker->cwq = cwq;
503 worker->id = id;
504
505 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
506 cwq->cpu, id);
507 if (IS_ERR(worker->task))
508 goto fail;
509
510 if (bind)
511 kthread_bind(worker->task, cwq->cpu);
512
513 return worker;
514fail:
515 if (id >= 0) {
516 spin_lock(&workqueue_lock);
517 ida_remove(&per_cpu(worker_ida, cwq->cpu), id);
518 spin_unlock(&workqueue_lock);
519 }
520 kfree(worker);
521 return NULL;
522}
523
524/**
525 * start_worker - start a newly created worker
526 * @worker: worker to start
527 *
528 * Start @worker.
529 *
530 * CONTEXT:
531 * spin_lock_irq(cwq->lock).
532 */
533static void start_worker(struct worker *worker)
534{
535 wake_up_process(worker->task);
536}
537
538/**
539 * destroy_worker - destroy a workqueue worker
540 * @worker: worker to be destroyed
541 *
542 * Destroy @worker.
543 */
544static void destroy_worker(struct worker *worker)
545{
546 int cpu = worker->cwq->cpu;
547 int id = worker->id;
548
549 /* sanity check frenzy */
550 BUG_ON(worker->current_work);
affee4b2 551 BUG_ON(!list_empty(&worker->scheduled));
c34056a3
TH
552
553 kthread_stop(worker->task);
554 kfree(worker);
555
556 spin_lock(&workqueue_lock);
557 ida_remove(&per_cpu(worker_ida, cpu), id);
558 spin_unlock(&workqueue_lock);
559}
560
affee4b2
TH
561/**
562 * move_linked_works - move linked works to a list
563 * @work: start of series of works to be scheduled
564 * @head: target list to append @work to
565 * @nextp: out paramter for nested worklist walking
566 *
567 * Schedule linked works starting from @work to @head. Work series to
568 * be scheduled starts at @work and includes any consecutive work with
569 * WORK_STRUCT_LINKED set in its predecessor.
570 *
571 * If @nextp is not NULL, it's updated to point to the next work of
572 * the last scheduled work. This allows move_linked_works() to be
573 * nested inside outer list_for_each_entry_safe().
574 *
575 * CONTEXT:
576 * spin_lock_irq(cwq->lock).
577 */
578static void move_linked_works(struct work_struct *work, struct list_head *head,
579 struct work_struct **nextp)
580{
581 struct work_struct *n;
582
583 /*
584 * Linked worklist will always end before the end of the list,
585 * use NULL for list head.
586 */
587 list_for_each_entry_safe_from(work, n, NULL, entry) {
588 list_move_tail(&work->entry, head);
589 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
590 break;
591 }
592
593 /*
594 * If we're already inside safe list traversal and have moved
595 * multiple works to the scheduled queue, the next position
596 * needs to be updated.
597 */
598 if (nextp)
599 *nextp = n;
600}
601
1e19ffc6
TH
602static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
603{
604 struct work_struct *work = list_first_entry(&cwq->delayed_works,
605 struct work_struct, entry);
606
607 move_linked_works(work, &cwq->worklist, NULL);
608 cwq->nr_active++;
609}
610
73f53c4a
TH
611/**
612 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
613 * @cwq: cwq of interest
614 * @color: color of work which left the queue
615 *
616 * A work either has completed or is removed from pending queue,
617 * decrement nr_in_flight of its cwq and handle workqueue flushing.
618 *
619 * CONTEXT:
620 * spin_lock_irq(cwq->lock).
621 */
622static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
623{
624 /* ignore uncolored works */
625 if (color == WORK_NO_COLOR)
626 return;
627
628 cwq->nr_in_flight[color]--;
1e19ffc6
TH
629 cwq->nr_active--;
630
631 /* one down, submit a delayed one */
632 if (!list_empty(&cwq->delayed_works) &&
633 cwq->nr_active < cwq->max_active)
634 cwq_activate_first_delayed(cwq);
73f53c4a
TH
635
636 /* is flush in progress and are we at the flushing tip? */
637 if (likely(cwq->flush_color != color))
638 return;
639
640 /* are there still in-flight works? */
641 if (cwq->nr_in_flight[color])
642 return;
643
644 /* this cwq is done, clear flush_color */
645 cwq->flush_color = -1;
646
647 /*
648 * If this was the last cwq, wake up the first flusher. It
649 * will handle the rest.
650 */
651 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
652 complete(&cwq->wq->first_flusher->done);
653}
654
a62428c0
TH
655/**
656 * process_one_work - process single work
c34056a3 657 * @worker: self
a62428c0
TH
658 * @work: work to process
659 *
660 * Process @work. This function contains all the logics necessary to
661 * process a single work including synchronization against and
662 * interaction with other workers on the same cpu, queueing and
663 * flushing. As long as context requirement is met, any worker can
664 * call this function to process a work.
665 *
666 * CONTEXT:
667 * spin_lock_irq(cwq->lock) which is released and regrabbed.
668 */
c34056a3 669static void process_one_work(struct worker *worker, struct work_struct *work)
a62428c0 670{
c34056a3 671 struct cpu_workqueue_struct *cwq = worker->cwq;
a62428c0 672 work_func_t f = work->func;
73f53c4a 673 int work_color;
a62428c0
TH
674#ifdef CONFIG_LOCKDEP
675 /*
676 * It is permissible to free the struct work_struct from
677 * inside the function that is called from it, this we need to
678 * take into account for lockdep too. To avoid bogus "held
679 * lock freed" warnings as well as problems when looking into
680 * work->lockdep_map, make a copy and use that here.
681 */
682 struct lockdep_map lockdep_map = work->lockdep_map;
683#endif
684 /* claim and process */
a62428c0 685 debug_work_deactivate(work);
c34056a3 686 worker->current_work = work;
73f53c4a 687 work_color = get_work_color(work);
a62428c0
TH
688 list_del_init(&work->entry);
689
690 spin_unlock_irq(&cwq->lock);
691
692 BUG_ON(get_wq_data(work) != cwq);
693 work_clear_pending(work);
694 lock_map_acquire(&cwq->wq->lockdep_map);
695 lock_map_acquire(&lockdep_map);
696 f(work);
697 lock_map_release(&lockdep_map);
698 lock_map_release(&cwq->wq->lockdep_map);
699
700 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
701 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
702 "%s/0x%08x/%d\n",
703 current->comm, preempt_count(), task_pid_nr(current));
704 printk(KERN_ERR " last function: ");
705 print_symbol("%s\n", (unsigned long)f);
706 debug_show_held_locks(current);
707 dump_stack();
708 }
709
710 spin_lock_irq(&cwq->lock);
711
712 /* we're done with it, release */
c34056a3 713 worker->current_work = NULL;
73f53c4a 714 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
715}
716
affee4b2
TH
717/**
718 * process_scheduled_works - process scheduled works
719 * @worker: self
720 *
721 * Process all scheduled works. Please note that the scheduled list
722 * may change while processing a work, so this function repeatedly
723 * fetches a work from the top and executes it.
724 *
725 * CONTEXT:
726 * spin_lock_irq(cwq->lock) which may be released and regrabbed
727 * multiple times.
728 */
729static void process_scheduled_works(struct worker *worker)
1da177e4 730{
affee4b2
TH
731 while (!list_empty(&worker->scheduled)) {
732 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 733 struct work_struct, entry);
c34056a3 734 process_one_work(worker, work);
1da177e4 735 }
1da177e4
LT
736}
737
4690c4ab
TH
738/**
739 * worker_thread - the worker thread function
c34056a3 740 * @__worker: self
4690c4ab
TH
741 *
742 * The cwq worker thread function.
743 */
c34056a3 744static int worker_thread(void *__worker)
1da177e4 745{
c34056a3
TH
746 struct worker *worker = __worker;
747 struct cpu_workqueue_struct *cwq = worker->cwq;
3af24433 748 DEFINE_WAIT(wait);
1da177e4 749
3af24433 750 for (;;) {
3af24433 751 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
a0a1a5fd 752 if (!kthread_should_stop() &&
14441960 753 list_empty(&cwq->worklist))
1da177e4 754 schedule();
3af24433
ON
755 finish_wait(&cwq->more_work, &wait);
756
14441960 757 if (kthread_should_stop())
3af24433 758 break;
1da177e4 759
c34056a3 760 if (unlikely(!cpumask_equal(&worker->task->cpus_allowed,
1537663f 761 get_cpu_mask(cwq->cpu))))
c34056a3 762 set_cpus_allowed_ptr(worker->task,
1537663f 763 get_cpu_mask(cwq->cpu));
affee4b2
TH
764
765 spin_lock_irq(&cwq->lock);
766
767 while (!list_empty(&cwq->worklist)) {
768 struct work_struct *work =
769 list_first_entry(&cwq->worklist,
770 struct work_struct, entry);
771
772 if (likely(!(*work_data_bits(work) &
773 WORK_STRUCT_LINKED))) {
774 /* optimization path, not strictly necessary */
775 process_one_work(worker, work);
776 if (unlikely(!list_empty(&worker->scheduled)))
777 process_scheduled_works(worker);
778 } else {
779 move_linked_works(work, &worker->scheduled,
780 NULL);
781 process_scheduled_works(worker);
782 }
783 }
784
785 spin_unlock_irq(&cwq->lock);
1da177e4 786 }
3af24433 787
1da177e4
LT
788 return 0;
789}
790
fc2e4d70
ON
791struct wq_barrier {
792 struct work_struct work;
793 struct completion done;
794};
795
796static void wq_barrier_func(struct work_struct *work)
797{
798 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
799 complete(&barr->done);
800}
801
4690c4ab
TH
802/**
803 * insert_wq_barrier - insert a barrier work
804 * @cwq: cwq to insert barrier into
805 * @barr: wq_barrier to insert
affee4b2
TH
806 * @target: target work to attach @barr to
807 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 808 *
affee4b2
TH
809 * @barr is linked to @target such that @barr is completed only after
810 * @target finishes execution. Please note that the ordering
811 * guarantee is observed only with respect to @target and on the local
812 * cpu.
813 *
814 * Currently, a queued barrier can't be canceled. This is because
815 * try_to_grab_pending() can't determine whether the work to be
816 * grabbed is at the head of the queue and thus can't clear LINKED
817 * flag of the previous work while there must be a valid next work
818 * after a work with LINKED flag set.
819 *
820 * Note that when @worker is non-NULL, @target may be modified
821 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
822 *
823 * CONTEXT:
824 * spin_lock_irq(cwq->lock).
825 */
83c22520 826static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
827 struct wq_barrier *barr,
828 struct work_struct *target, struct worker *worker)
fc2e4d70 829{
affee4b2
TH
830 struct list_head *head;
831 unsigned int linked = 0;
832
dc186ad7
TG
833 /*
834 * debugobject calls are safe here even with cwq->lock locked
835 * as we know for sure that this will not trigger any of the
836 * checks and call back into the fixup functions where we
837 * might deadlock.
838 */
839 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 840 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 841 init_completion(&barr->done);
83c22520 842
affee4b2
TH
843 /*
844 * If @target is currently being executed, schedule the
845 * barrier to the worker; otherwise, put it after @target.
846 */
847 if (worker)
848 head = worker->scheduled.next;
849 else {
850 unsigned long *bits = work_data_bits(target);
851
852 head = target->entry.next;
853 /* there can already be other linked works, inherit and set */
854 linked = *bits & WORK_STRUCT_LINKED;
855 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
856 }
857
dc186ad7 858 debug_work_activate(&barr->work);
affee4b2
TH
859 insert_work(cwq, &barr->work, head,
860 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
861}
862
73f53c4a
TH
863/**
864 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
865 * @wq: workqueue being flushed
866 * @flush_color: new flush color, < 0 for no-op
867 * @work_color: new work color, < 0 for no-op
868 *
869 * Prepare cwqs for workqueue flushing.
870 *
871 * If @flush_color is non-negative, flush_color on all cwqs should be
872 * -1. If no cwq has in-flight commands at the specified color, all
873 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
874 * has in flight commands, its cwq->flush_color is set to
875 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
876 * wakeup logic is armed and %true is returned.
877 *
878 * The caller should have initialized @wq->first_flusher prior to
879 * calling this function with non-negative @flush_color. If
880 * @flush_color is negative, no flush color update is done and %false
881 * is returned.
882 *
883 * If @work_color is non-negative, all cwqs should have the same
884 * work_color which is previous to @work_color and all will be
885 * advanced to @work_color.
886 *
887 * CONTEXT:
888 * mutex_lock(wq->flush_mutex).
889 *
890 * RETURNS:
891 * %true if @flush_color >= 0 and there's something to flush. %false
892 * otherwise.
893 */
894static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
895 int flush_color, int work_color)
1da177e4 896{
73f53c4a
TH
897 bool wait = false;
898 unsigned int cpu;
1da177e4 899
73f53c4a
TH
900 if (flush_color >= 0) {
901 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
902 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 903 }
2355b70f 904
73f53c4a
TH
905 for_each_possible_cpu(cpu) {
906 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
907
908 spin_lock_irq(&cwq->lock);
909
910 if (flush_color >= 0) {
911 BUG_ON(cwq->flush_color != -1);
912
913 if (cwq->nr_in_flight[flush_color]) {
914 cwq->flush_color = flush_color;
915 atomic_inc(&wq->nr_cwqs_to_flush);
916 wait = true;
917 }
918 }
919
920 if (work_color >= 0) {
921 BUG_ON(work_color != work_next_color(cwq->work_color));
922 cwq->work_color = work_color;
923 }
924
925 spin_unlock_irq(&cwq->lock);
dc186ad7 926 }
14441960 927
73f53c4a
TH
928 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
929 complete(&wq->first_flusher->done);
930
931 return wait;
1da177e4
LT
932}
933
0fcb78c2 934/**
1da177e4 935 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 936 * @wq: workqueue to flush
1da177e4
LT
937 *
938 * Forces execution of the workqueue and blocks until its completion.
939 * This is typically used in driver shutdown handlers.
940 *
fc2e4d70
ON
941 * We sleep until all works which were queued on entry have been handled,
942 * but we are not livelocked by new incoming ones.
1da177e4 943 */
7ad5b3a5 944void flush_workqueue(struct workqueue_struct *wq)
1da177e4 945{
73f53c4a
TH
946 struct wq_flusher this_flusher = {
947 .list = LIST_HEAD_INIT(this_flusher.list),
948 .flush_color = -1,
949 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
950 };
951 int next_color;
1da177e4 952
3295f0ef
IM
953 lock_map_acquire(&wq->lockdep_map);
954 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
955
956 mutex_lock(&wq->flush_mutex);
957
958 /*
959 * Start-to-wait phase
960 */
961 next_color = work_next_color(wq->work_color);
962
963 if (next_color != wq->flush_color) {
964 /*
965 * Color space is not full. The current work_color
966 * becomes our flush_color and work_color is advanced
967 * by one.
968 */
969 BUG_ON(!list_empty(&wq->flusher_overflow));
970 this_flusher.flush_color = wq->work_color;
971 wq->work_color = next_color;
972
973 if (!wq->first_flusher) {
974 /* no flush in progress, become the first flusher */
975 BUG_ON(wq->flush_color != this_flusher.flush_color);
976
977 wq->first_flusher = &this_flusher;
978
979 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
980 wq->work_color)) {
981 /* nothing to flush, done */
982 wq->flush_color = next_color;
983 wq->first_flusher = NULL;
984 goto out_unlock;
985 }
986 } else {
987 /* wait in queue */
988 BUG_ON(wq->flush_color == this_flusher.flush_color);
989 list_add_tail(&this_flusher.list, &wq->flusher_queue);
990 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
991 }
992 } else {
993 /*
994 * Oops, color space is full, wait on overflow queue.
995 * The next flush completion will assign us
996 * flush_color and transfer to flusher_queue.
997 */
998 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
999 }
1000
1001 mutex_unlock(&wq->flush_mutex);
1002
1003 wait_for_completion(&this_flusher.done);
1004
1005 /*
1006 * Wake-up-and-cascade phase
1007 *
1008 * First flushers are responsible for cascading flushes and
1009 * handling overflow. Non-first flushers can simply return.
1010 */
1011 if (wq->first_flusher != &this_flusher)
1012 return;
1013
1014 mutex_lock(&wq->flush_mutex);
1015
1016 wq->first_flusher = NULL;
1017
1018 BUG_ON(!list_empty(&this_flusher.list));
1019 BUG_ON(wq->flush_color != this_flusher.flush_color);
1020
1021 while (true) {
1022 struct wq_flusher *next, *tmp;
1023
1024 /* complete all the flushers sharing the current flush color */
1025 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
1026 if (next->flush_color != wq->flush_color)
1027 break;
1028 list_del_init(&next->list);
1029 complete(&next->done);
1030 }
1031
1032 BUG_ON(!list_empty(&wq->flusher_overflow) &&
1033 wq->flush_color != work_next_color(wq->work_color));
1034
1035 /* this flush_color is finished, advance by one */
1036 wq->flush_color = work_next_color(wq->flush_color);
1037
1038 /* one color has been freed, handle overflow queue */
1039 if (!list_empty(&wq->flusher_overflow)) {
1040 /*
1041 * Assign the same color to all overflowed
1042 * flushers, advance work_color and append to
1043 * flusher_queue. This is the start-to-wait
1044 * phase for these overflowed flushers.
1045 */
1046 list_for_each_entry(tmp, &wq->flusher_overflow, list)
1047 tmp->flush_color = wq->work_color;
1048
1049 wq->work_color = work_next_color(wq->work_color);
1050
1051 list_splice_tail_init(&wq->flusher_overflow,
1052 &wq->flusher_queue);
1053 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1054 }
1055
1056 if (list_empty(&wq->flusher_queue)) {
1057 BUG_ON(wq->flush_color != wq->work_color);
1058 break;
1059 }
1060
1061 /*
1062 * Need to flush more colors. Make the next flusher
1063 * the new first flusher and arm cwqs.
1064 */
1065 BUG_ON(wq->flush_color == wq->work_color);
1066 BUG_ON(wq->flush_color != next->flush_color);
1067
1068 list_del_init(&next->list);
1069 wq->first_flusher = next;
1070
1071 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
1072 break;
1073
1074 /*
1075 * Meh... this color is already done, clear first
1076 * flusher and repeat cascading.
1077 */
1078 wq->first_flusher = NULL;
1079 }
1080
1081out_unlock:
1082 mutex_unlock(&wq->flush_mutex);
1da177e4 1083}
ae90dd5d 1084EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 1085
db700897
ON
1086/**
1087 * flush_work - block until a work_struct's callback has terminated
1088 * @work: the work which is to be flushed
1089 *
a67da70d
ON
1090 * Returns false if @work has already terminated.
1091 *
db700897
ON
1092 * It is expected that, prior to calling flush_work(), the caller has
1093 * arranged for the work to not be requeued, otherwise it doesn't make
1094 * sense to use this function.
1095 */
1096int flush_work(struct work_struct *work)
1097{
affee4b2 1098 struct worker *worker = NULL;
db700897 1099 struct cpu_workqueue_struct *cwq;
db700897
ON
1100 struct wq_barrier barr;
1101
1102 might_sleep();
1103 cwq = get_wq_data(work);
1104 if (!cwq)
1105 return 0;
1106
3295f0ef
IM
1107 lock_map_acquire(&cwq->wq->lockdep_map);
1108 lock_map_release(&cwq->wq->lockdep_map);
a67da70d 1109
db700897
ON
1110 spin_lock_irq(&cwq->lock);
1111 if (!list_empty(&work->entry)) {
1112 /*
1113 * See the comment near try_to_grab_pending()->smp_rmb().
1114 * If it was re-queued under us we are not going to wait.
1115 */
1116 smp_rmb();
1117 if (unlikely(cwq != get_wq_data(work)))
4690c4ab 1118 goto already_gone;
db700897 1119 } else {
affee4b2
TH
1120 if (cwq->worker && cwq->worker->current_work == work)
1121 worker = cwq->worker;
1122 if (!worker)
4690c4ab 1123 goto already_gone;
db700897 1124 }
db700897 1125
affee4b2 1126 insert_wq_barrier(cwq, &barr, work, worker);
4690c4ab 1127 spin_unlock_irq(&cwq->lock);
db700897 1128 wait_for_completion(&barr.done);
dc186ad7 1129 destroy_work_on_stack(&barr.work);
db700897 1130 return 1;
4690c4ab
TH
1131already_gone:
1132 spin_unlock_irq(&cwq->lock);
1133 return 0;
db700897
ON
1134}
1135EXPORT_SYMBOL_GPL(flush_work);
1136
6e84d644 1137/*
1f1f642e 1138 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
1139 * so this work can't be re-armed in any way.
1140 */
1141static int try_to_grab_pending(struct work_struct *work)
1142{
1143 struct cpu_workqueue_struct *cwq;
1f1f642e 1144 int ret = -1;
6e84d644 1145
22df02bb 1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 1147 return 0;
6e84d644
ON
1148
1149 /*
1150 * The queueing is in progress, or it is already queued. Try to
1151 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1152 */
1153
1154 cwq = get_wq_data(work);
1155 if (!cwq)
1156 return ret;
1157
1158 spin_lock_irq(&cwq->lock);
1159 if (!list_empty(&work->entry)) {
1160 /*
1161 * This work is queued, but perhaps we locked the wrong cwq.
1162 * In that case we must see the new value after rmb(), see
1163 * insert_work()->wmb().
1164 */
1165 smp_rmb();
1166 if (cwq == get_wq_data(work)) {
dc186ad7 1167 debug_work_deactivate(work);
6e84d644 1168 list_del_init(&work->entry);
73f53c4a 1169 cwq_dec_nr_in_flight(cwq, get_work_color(work));
6e84d644
ON
1170 ret = 1;
1171 }
1172 }
1173 spin_unlock_irq(&cwq->lock);
1174
1175 return ret;
1176}
1177
1178static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
b89deed3
ON
1179 struct work_struct *work)
1180{
1181 struct wq_barrier barr;
affee4b2 1182 struct worker *worker;
b89deed3
ON
1183
1184 spin_lock_irq(&cwq->lock);
affee4b2
TH
1185
1186 worker = NULL;
c34056a3 1187 if (unlikely(cwq->worker && cwq->worker->current_work == work)) {
affee4b2
TH
1188 worker = cwq->worker;
1189 insert_wq_barrier(cwq, &barr, work, worker);
b89deed3 1190 }
affee4b2 1191
b89deed3
ON
1192 spin_unlock_irq(&cwq->lock);
1193
affee4b2 1194 if (unlikely(worker)) {
b89deed3 1195 wait_for_completion(&barr.done);
dc186ad7
TG
1196 destroy_work_on_stack(&barr.work);
1197 }
b89deed3
ON
1198}
1199
6e84d644 1200static void wait_on_work(struct work_struct *work)
b89deed3
ON
1201{
1202 struct cpu_workqueue_struct *cwq;
28e53bdd 1203 struct workqueue_struct *wq;
b1f4ec17 1204 int cpu;
b89deed3 1205
f293ea92
ON
1206 might_sleep();
1207
3295f0ef
IM
1208 lock_map_acquire(&work->lockdep_map);
1209 lock_map_release(&work->lockdep_map);
4e6045f1 1210
b89deed3 1211 cwq = get_wq_data(work);
b89deed3 1212 if (!cwq)
3af24433 1213 return;
b89deed3 1214
28e53bdd 1215 wq = cwq->wq;
28e53bdd 1216
1537663f 1217 for_each_possible_cpu(cpu)
4690c4ab 1218 wait_on_cpu_work(get_cwq(cpu, wq), work);
6e84d644
ON
1219}
1220
1f1f642e
ON
1221static int __cancel_work_timer(struct work_struct *work,
1222 struct timer_list* timer)
1223{
1224 int ret;
1225
1226 do {
1227 ret = (timer && likely(del_timer(timer)));
1228 if (!ret)
1229 ret = try_to_grab_pending(work);
1230 wait_on_work(work);
1231 } while (unlikely(ret < 0));
1232
4d707b9f 1233 clear_wq_data(work);
1f1f642e
ON
1234 return ret;
1235}
1236
6e84d644
ON
1237/**
1238 * cancel_work_sync - block until a work_struct's callback has terminated
1239 * @work: the work which is to be flushed
1240 *
1f1f642e
ON
1241 * Returns true if @work was pending.
1242 *
6e84d644
ON
1243 * cancel_work_sync() will cancel the work if it is queued. If the work's
1244 * callback appears to be running, cancel_work_sync() will block until it
1245 * has completed.
1246 *
1247 * It is possible to use this function if the work re-queues itself. It can
1248 * cancel the work even if it migrates to another workqueue, however in that
1249 * case it only guarantees that work->func() has completed on the last queued
1250 * workqueue.
1251 *
1252 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
1253 * pending, otherwise it goes into a busy-wait loop until the timer expires.
1254 *
1255 * The caller must ensure that workqueue_struct on which this work was last
1256 * queued can't be destroyed before this function returns.
1257 */
1f1f642e 1258int cancel_work_sync(struct work_struct *work)
6e84d644 1259{
1f1f642e 1260 return __cancel_work_timer(work, NULL);
b89deed3 1261}
28e53bdd 1262EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 1263
6e84d644 1264/**
f5a421a4 1265 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
1266 * @dwork: the delayed work struct
1267 *
1f1f642e
ON
1268 * Returns true if @dwork was pending.
1269 *
6e84d644
ON
1270 * It is possible to use this function if @dwork rearms itself via queue_work()
1271 * or queue_delayed_work(). See also the comment for cancel_work_sync().
1272 */
1f1f642e 1273int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 1274{
1f1f642e 1275 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 1276}
f5a421a4 1277EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 1278
6e84d644 1279static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 1280
0fcb78c2
REB
1281/**
1282 * schedule_work - put work task in global workqueue
1283 * @work: job to be done
1284 *
5b0f437d
BVA
1285 * Returns zero if @work was already on the kernel-global workqueue and
1286 * non-zero otherwise.
1287 *
1288 * This puts a job in the kernel-global workqueue if it was not already
1289 * queued and leaves it in the same position on the kernel-global
1290 * workqueue otherwise.
0fcb78c2 1291 */
7ad5b3a5 1292int schedule_work(struct work_struct *work)
1da177e4
LT
1293{
1294 return queue_work(keventd_wq, work);
1295}
ae90dd5d 1296EXPORT_SYMBOL(schedule_work);
1da177e4 1297
c1a220e7
ZR
1298/*
1299 * schedule_work_on - put work task on a specific cpu
1300 * @cpu: cpu to put the work task on
1301 * @work: job to be done
1302 *
1303 * This puts a job on a specific cpu
1304 */
1305int schedule_work_on(int cpu, struct work_struct *work)
1306{
1307 return queue_work_on(cpu, keventd_wq, work);
1308}
1309EXPORT_SYMBOL(schedule_work_on);
1310
0fcb78c2
REB
1311/**
1312 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
1313 * @dwork: job to be done
1314 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
1315 *
1316 * After waiting for a given time this puts a job in the kernel-global
1317 * workqueue.
1318 */
7ad5b3a5 1319int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 1320 unsigned long delay)
1da177e4 1321{
52bad64d 1322 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 1323}
ae90dd5d 1324EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 1325
8c53e463
LT
1326/**
1327 * flush_delayed_work - block until a dwork_struct's callback has terminated
1328 * @dwork: the delayed work which is to be flushed
1329 *
1330 * Any timeout is cancelled, and any pending work is run immediately.
1331 */
1332void flush_delayed_work(struct delayed_work *dwork)
1333{
1334 if (del_timer_sync(&dwork->timer)) {
4690c4ab
TH
1335 __queue_work(get_cpu(), get_wq_data(&dwork->work)->wq,
1336 &dwork->work);
8c53e463
LT
1337 put_cpu();
1338 }
1339 flush_work(&dwork->work);
1340}
1341EXPORT_SYMBOL(flush_delayed_work);
1342
0fcb78c2
REB
1343/**
1344 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
1345 * @cpu: cpu to use
52bad64d 1346 * @dwork: job to be done
0fcb78c2
REB
1347 * @delay: number of jiffies to wait
1348 *
1349 * After waiting for a given time this puts a job in the kernel-global
1350 * workqueue on the specified CPU.
1351 */
1da177e4 1352int schedule_delayed_work_on(int cpu,
52bad64d 1353 struct delayed_work *dwork, unsigned long delay)
1da177e4 1354{
52bad64d 1355 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 1356}
ae90dd5d 1357EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 1358
b6136773
AM
1359/**
1360 * schedule_on_each_cpu - call a function on each online CPU from keventd
1361 * @func: the function to call
b6136773
AM
1362 *
1363 * Returns zero on success.
1364 * Returns -ve errno on failure.
1365 *
b6136773
AM
1366 * schedule_on_each_cpu() is very slow.
1367 */
65f27f38 1368int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
1369{
1370 int cpu;
65a64464 1371 int orig = -1;
b6136773 1372 struct work_struct *works;
15316ba8 1373
b6136773
AM
1374 works = alloc_percpu(struct work_struct);
1375 if (!works)
15316ba8 1376 return -ENOMEM;
b6136773 1377
93981800
TH
1378 get_online_cpus();
1379
65a64464 1380 /*
93981800
TH
1381 * When running in keventd don't schedule a work item on
1382 * itself. Can just call directly because the work queue is
1383 * already bound. This also is faster.
65a64464 1384 */
93981800 1385 if (current_is_keventd())
65a64464 1386 orig = raw_smp_processor_id();
65a64464 1387
15316ba8 1388 for_each_online_cpu(cpu) {
9bfb1839
IM
1389 struct work_struct *work = per_cpu_ptr(works, cpu);
1390
1391 INIT_WORK(work, func);
65a64464 1392 if (cpu != orig)
93981800 1393 schedule_work_on(cpu, work);
65a64464 1394 }
93981800
TH
1395 if (orig >= 0)
1396 func(per_cpu_ptr(works, orig));
1397
1398 for_each_online_cpu(cpu)
1399 flush_work(per_cpu_ptr(works, cpu));
1400
95402b38 1401 put_online_cpus();
b6136773 1402 free_percpu(works);
15316ba8
CL
1403 return 0;
1404}
1405
eef6a7d5
AS
1406/**
1407 * flush_scheduled_work - ensure that any scheduled work has run to completion.
1408 *
1409 * Forces execution of the kernel-global workqueue and blocks until its
1410 * completion.
1411 *
1412 * Think twice before calling this function! It's very easy to get into
1413 * trouble if you don't take great care. Either of the following situations
1414 * will lead to deadlock:
1415 *
1416 * One of the work items currently on the workqueue needs to acquire
1417 * a lock held by your code or its caller.
1418 *
1419 * Your code is running in the context of a work routine.
1420 *
1421 * They will be detected by lockdep when they occur, but the first might not
1422 * occur very often. It depends on what work items are on the workqueue and
1423 * what locks they need, which you have no control over.
1424 *
1425 * In most situations flushing the entire workqueue is overkill; you merely
1426 * need to know that a particular work item isn't queued and isn't running.
1427 * In such cases you should use cancel_delayed_work_sync() or
1428 * cancel_work_sync() instead.
1429 */
1da177e4
LT
1430void flush_scheduled_work(void)
1431{
1432 flush_workqueue(keventd_wq);
1433}
ae90dd5d 1434EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 1435
1fa44eca
JB
1436/**
1437 * execute_in_process_context - reliably execute the routine with user context
1438 * @fn: the function to execute
1fa44eca
JB
1439 * @ew: guaranteed storage for the execute work structure (must
1440 * be available when the work executes)
1441 *
1442 * Executes the function immediately if process context is available,
1443 * otherwise schedules the function for delayed execution.
1444 *
1445 * Returns: 0 - function was executed
1446 * 1 - function was scheduled for execution
1447 */
65f27f38 1448int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
1449{
1450 if (!in_interrupt()) {
65f27f38 1451 fn(&ew->work);
1fa44eca
JB
1452 return 0;
1453 }
1454
65f27f38 1455 INIT_WORK(&ew->work, fn);
1fa44eca
JB
1456 schedule_work(&ew->work);
1457
1458 return 1;
1459}
1460EXPORT_SYMBOL_GPL(execute_in_process_context);
1461
1da177e4
LT
1462int keventd_up(void)
1463{
1464 return keventd_wq != NULL;
1465}
1466
1467int current_is_keventd(void)
1468{
1469 struct cpu_workqueue_struct *cwq;
d243769d 1470 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
1da177e4
LT
1471 int ret = 0;
1472
1473 BUG_ON(!keventd_wq);
1474
1537663f 1475 cwq = get_cwq(cpu, keventd_wq);
c34056a3 1476 if (current == cwq->worker->task)
1da177e4
LT
1477 ret = 1;
1478
1479 return ret;
1480
1481}
1482
0f900049
TH
1483static struct cpu_workqueue_struct *alloc_cwqs(void)
1484{
1485 /*
1486 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
1487 * Make sure that the alignment isn't lower than that of
1488 * unsigned long long.
1489 */
1490 const size_t size = sizeof(struct cpu_workqueue_struct);
1491 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
1492 __alignof__(unsigned long long));
1493 struct cpu_workqueue_struct *cwqs;
1494#ifndef CONFIG_SMP
1495 void *ptr;
1496
1497 /*
1498 * On UP, percpu allocator doesn't honor alignment parameter
1499 * and simply uses arch-dependent default. Allocate enough
1500 * room to align cwq and put an extra pointer at the end
1501 * pointing back to the originally allocated pointer which
1502 * will be used for free.
1503 *
1504 * FIXME: This really belongs to UP percpu code. Update UP
1505 * percpu code to honor alignment and remove this ugliness.
1506 */
1507 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
1508 cwqs = PTR_ALIGN(ptr, align);
1509 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
1510#else
1511 /* On SMP, percpu allocator can do it itself */
1512 cwqs = __alloc_percpu(size, align);
1513#endif
1514 /* just in case, make sure it's actually aligned */
1515 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
1516 return cwqs;
1517}
1518
1519static void free_cwqs(struct cpu_workqueue_struct *cwqs)
1520{
1521#ifndef CONFIG_SMP
1522 /* on UP, the pointer to free is stored right after the cwq */
1523 if (cwqs)
1524 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
1525#else
1526 free_percpu(cwqs);
1527#endif
1528}
1529
4e6045f1 1530struct workqueue_struct *__create_workqueue_key(const char *name,
97e37d7b 1531 unsigned int flags,
1e19ffc6 1532 int max_active,
eb13ba87
JB
1533 struct lock_class_key *key,
1534 const char *lock_name)
1da177e4 1535{
1537663f 1536 bool singlethread = flags & WQ_SINGLE_THREAD;
1da177e4 1537 struct workqueue_struct *wq;
c34056a3
TH
1538 bool failed = false;
1539 unsigned int cpu;
1da177e4 1540
1e19ffc6
TH
1541 max_active = clamp_val(max_active, 1, INT_MAX);
1542
3af24433
ON
1543 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1544 if (!wq)
4690c4ab 1545 goto err;
3af24433 1546
0f900049 1547 wq->cpu_wq = alloc_cwqs();
4690c4ab
TH
1548 if (!wq->cpu_wq)
1549 goto err;
3af24433 1550
97e37d7b 1551 wq->flags = flags;
a0a1a5fd 1552 wq->saved_max_active = max_active;
73f53c4a
TH
1553 mutex_init(&wq->flush_mutex);
1554 atomic_set(&wq->nr_cwqs_to_flush, 0);
1555 INIT_LIST_HEAD(&wq->flusher_queue);
1556 INIT_LIST_HEAD(&wq->flusher_overflow);
3af24433 1557 wq->name = name;
eb13ba87 1558 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 1559 INIT_LIST_HEAD(&wq->list);
3af24433 1560
1537663f
TH
1561 cpu_maps_update_begin();
1562 /*
1563 * We must initialize cwqs for each possible cpu even if we
1564 * are going to call destroy_workqueue() finally. Otherwise
1565 * cpu_up() can hit the uninitialized cwq once we drop the
1566 * lock.
1567 */
1568 for_each_possible_cpu(cpu) {
1569 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1570
0f900049 1571 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
1537663f 1572 cwq->cpu = cpu;
c34056a3 1573 cwq->wq = wq;
73f53c4a 1574 cwq->flush_color = -1;
1e19ffc6 1575 cwq->max_active = max_active;
1537663f
TH
1576 spin_lock_init(&cwq->lock);
1577 INIT_LIST_HEAD(&cwq->worklist);
1e19ffc6 1578 INIT_LIST_HEAD(&cwq->delayed_works);
1537663f
TH
1579 init_waitqueue_head(&cwq->more_work);
1580
c34056a3 1581 if (failed)
1537663f 1582 continue;
c34056a3
TH
1583 cwq->worker = create_worker(cwq,
1584 cpu_online(cpu) && !singlethread);
1585 if (cwq->worker)
1586 start_worker(cwq->worker);
1537663f 1587 else
c34056a3 1588 failed = true;
3af24433
ON
1589 }
1590
a0a1a5fd
TH
1591 /*
1592 * workqueue_lock protects global freeze state and workqueues
1593 * list. Grab it, set max_active accordingly and add the new
1594 * workqueue to workqueues list.
1595 */
1537663f 1596 spin_lock(&workqueue_lock);
a0a1a5fd
TH
1597
1598 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
1599 for_each_possible_cpu(cpu)
1600 get_cwq(cpu, wq)->max_active = 0;
1601
1537663f 1602 list_add(&wq->list, &workqueues);
a0a1a5fd 1603
1537663f
TH
1604 spin_unlock(&workqueue_lock);
1605
1606 cpu_maps_update_done();
1607
c34056a3 1608 if (failed) {
3af24433
ON
1609 destroy_workqueue(wq);
1610 wq = NULL;
1611 }
1612 return wq;
4690c4ab
TH
1613err:
1614 if (wq) {
0f900049 1615 free_cwqs(wq->cpu_wq);
4690c4ab
TH
1616 kfree(wq);
1617 }
1618 return NULL;
3af24433 1619}
4e6045f1 1620EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 1621
3af24433
ON
1622/**
1623 * destroy_workqueue - safely terminate a workqueue
1624 * @wq: target workqueue
1625 *
1626 * Safely destroy a workqueue. All work currently pending will be done first.
1627 */
1628void destroy_workqueue(struct workqueue_struct *wq)
1629{
b1f4ec17 1630 int cpu;
3af24433 1631
a0a1a5fd
TH
1632 flush_workqueue(wq);
1633
1634 /*
1635 * wq list is used to freeze wq, remove from list after
1636 * flushing is complete in case freeze races us.
1637 */
3da1c84c 1638 cpu_maps_update_begin();
95402b38 1639 spin_lock(&workqueue_lock);
b1f4ec17 1640 list_del(&wq->list);
95402b38 1641 spin_unlock(&workqueue_lock);
1537663f 1642 cpu_maps_update_done();
3af24433 1643
73f53c4a
TH
1644 for_each_possible_cpu(cpu) {
1645 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1646 int i;
1647
c34056a3
TH
1648 if (cwq->worker) {
1649 destroy_worker(cwq->worker);
1650 cwq->worker = NULL;
73f53c4a
TH
1651 }
1652
1653 for (i = 0; i < WORK_NR_COLORS; i++)
1654 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
1655 BUG_ON(cwq->nr_active);
1656 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 1657 }
9b41ea72 1658
0f900049 1659 free_cwqs(wq->cpu_wq);
3af24433
ON
1660 kfree(wq);
1661}
1662EXPORT_SYMBOL_GPL(destroy_workqueue);
1663
1664static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1665 unsigned long action,
1666 void *hcpu)
1667{
1668 unsigned int cpu = (unsigned long)hcpu;
1669 struct cpu_workqueue_struct *cwq;
1670 struct workqueue_struct *wq;
1671
8bb78442
RW
1672 action &= ~CPU_TASKS_FROZEN;
1673
3af24433 1674 list_for_each_entry(wq, &workqueues, list) {
1537663f
TH
1675 if (wq->flags & WQ_SINGLE_THREAD)
1676 continue;
3af24433 1677
1537663f 1678 cwq = get_cwq(cpu, wq);
3af24433 1679
1537663f 1680 switch (action) {
3da1c84c 1681 case CPU_POST_DEAD:
73f53c4a 1682 flush_workqueue(wq);
3af24433
ON
1683 break;
1684 }
1da177e4
LT
1685 }
1686
1537663f 1687 return notifier_from_errno(0);
1da177e4 1688}
1da177e4 1689
2d3854a3 1690#ifdef CONFIG_SMP
8ccad40d 1691
2d3854a3 1692struct work_for_cpu {
6b44003e 1693 struct completion completion;
2d3854a3
RR
1694 long (*fn)(void *);
1695 void *arg;
1696 long ret;
1697};
1698
6b44003e 1699static int do_work_for_cpu(void *_wfc)
2d3854a3 1700{
6b44003e 1701 struct work_for_cpu *wfc = _wfc;
2d3854a3 1702 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
1703 complete(&wfc->completion);
1704 return 0;
2d3854a3
RR
1705}
1706
1707/**
1708 * work_on_cpu - run a function in user context on a particular cpu
1709 * @cpu: the cpu to run on
1710 * @fn: the function to run
1711 * @arg: the function arg
1712 *
31ad9081
RR
1713 * This will return the value @fn returns.
1714 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 1715 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
1716 */
1717long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1718{
6b44003e
AM
1719 struct task_struct *sub_thread;
1720 struct work_for_cpu wfc = {
1721 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1722 .fn = fn,
1723 .arg = arg,
1724 };
1725
1726 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1727 if (IS_ERR(sub_thread))
1728 return PTR_ERR(sub_thread);
1729 kthread_bind(sub_thread, cpu);
1730 wake_up_process(sub_thread);
1731 wait_for_completion(&wfc.completion);
2d3854a3
RR
1732 return wfc.ret;
1733}
1734EXPORT_SYMBOL_GPL(work_on_cpu);
1735#endif /* CONFIG_SMP */
1736
a0a1a5fd
TH
1737#ifdef CONFIG_FREEZER
1738
1739/**
1740 * freeze_workqueues_begin - begin freezing workqueues
1741 *
1742 * Start freezing workqueues. After this function returns, all
1743 * freezeable workqueues will queue new works to their frozen_works
1744 * list instead of the cwq ones.
1745 *
1746 * CONTEXT:
1747 * Grabs and releases workqueue_lock and cwq->lock's.
1748 */
1749void freeze_workqueues_begin(void)
1750{
1751 struct workqueue_struct *wq;
1752 unsigned int cpu;
1753
1754 spin_lock(&workqueue_lock);
1755
1756 BUG_ON(workqueue_freezing);
1757 workqueue_freezing = true;
1758
1759 for_each_possible_cpu(cpu) {
1760 list_for_each_entry(wq, &workqueues, list) {
1761 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1762
1763 spin_lock_irq(&cwq->lock);
1764
1765 if (wq->flags & WQ_FREEZEABLE)
1766 cwq->max_active = 0;
1767
1768 spin_unlock_irq(&cwq->lock);
1769 }
1770 }
1771
1772 spin_unlock(&workqueue_lock);
1773}
1774
1775/**
1776 * freeze_workqueues_busy - are freezeable workqueues still busy?
1777 *
1778 * Check whether freezing is complete. This function must be called
1779 * between freeze_workqueues_begin() and thaw_workqueues().
1780 *
1781 * CONTEXT:
1782 * Grabs and releases workqueue_lock.
1783 *
1784 * RETURNS:
1785 * %true if some freezeable workqueues are still busy. %false if
1786 * freezing is complete.
1787 */
1788bool freeze_workqueues_busy(void)
1789{
1790 struct workqueue_struct *wq;
1791 unsigned int cpu;
1792 bool busy = false;
1793
1794 spin_lock(&workqueue_lock);
1795
1796 BUG_ON(!workqueue_freezing);
1797
1798 for_each_possible_cpu(cpu) {
1799 /*
1800 * nr_active is monotonically decreasing. It's safe
1801 * to peek without lock.
1802 */
1803 list_for_each_entry(wq, &workqueues, list) {
1804 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1805
1806 if (!(wq->flags & WQ_FREEZEABLE))
1807 continue;
1808
1809 BUG_ON(cwq->nr_active < 0);
1810 if (cwq->nr_active) {
1811 busy = true;
1812 goto out_unlock;
1813 }
1814 }
1815 }
1816out_unlock:
1817 spin_unlock(&workqueue_lock);
1818 return busy;
1819}
1820
1821/**
1822 * thaw_workqueues - thaw workqueues
1823 *
1824 * Thaw workqueues. Normal queueing is restored and all collected
1825 * frozen works are transferred to their respective cwq worklists.
1826 *
1827 * CONTEXT:
1828 * Grabs and releases workqueue_lock and cwq->lock's.
1829 */
1830void thaw_workqueues(void)
1831{
1832 struct workqueue_struct *wq;
1833 unsigned int cpu;
1834
1835 spin_lock(&workqueue_lock);
1836
1837 if (!workqueue_freezing)
1838 goto out_unlock;
1839
1840 for_each_possible_cpu(cpu) {
1841 list_for_each_entry(wq, &workqueues, list) {
1842 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1843
1844 if (!(wq->flags & WQ_FREEZEABLE))
1845 continue;
1846
1847 spin_lock_irq(&cwq->lock);
1848
1849 /* restore max_active and repopulate worklist */
1850 cwq->max_active = wq->saved_max_active;
1851
1852 while (!list_empty(&cwq->delayed_works) &&
1853 cwq->nr_active < cwq->max_active)
1854 cwq_activate_first_delayed(cwq);
1855
1856 wake_up(&cwq->more_work);
1857
1858 spin_unlock_irq(&cwq->lock);
1859 }
1860 }
1861
1862 workqueue_freezing = false;
1863out_unlock:
1864 spin_unlock(&workqueue_lock);
1865}
1866#endif /* CONFIG_FREEZER */
1867
c12920d1 1868void __init init_workqueues(void)
1da177e4 1869{
c34056a3
TH
1870 unsigned int cpu;
1871
1872 for_each_possible_cpu(cpu)
1873 ida_init(&per_cpu(worker_ida, cpu));
1874
e7577c50 1875 singlethread_cpu = cpumask_first(cpu_possible_mask);
1da177e4
LT
1876 hotcpu_notifier(workqueue_cpu_callback, 0);
1877 keventd_wq = create_workqueue("events");
1878 BUG_ON(!keventd_wq);
1879}