workqueue: add worker_pool->id
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
8b03ae3c 111 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 112 *
e22bee78
TH
113 * X: During normal operation, modification requires gcwq->lock and
114 * should be done only from local cpu. Either disabling preemption
115 * on local cpu or grabbing gcwq->lock is enough for read access.
24647570 116 * If POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43
TH
125struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
9daf9e67 127 int id; /* I: pool ID */
11ebea50 128 unsigned int flags; /* X: flags */
bd7bdd43
TH
129
130 struct list_head worklist; /* L: list of pending works */
131 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
132
133 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
134 int nr_idle; /* L: currently idle ones */
135
136 struct list_head idle_list; /* X: list of idle workers */
137 struct timer_list idle_timer; /* L: worker idle timeout */
138 struct timer_list mayday_timer; /* L: SOS timer for workers */
139
24647570 140 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 141 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
142};
143
8b03ae3c 144/*
e22bee78
TH
145 * Global per-cpu workqueue. There's one and only one for each cpu
146 * and all works are queued and processed here regardless of their
147 * target workqueues.
8b03ae3c
TH
148 */
149struct global_cwq {
150 spinlock_t lock; /* the gcwq lock */
151 unsigned int cpu; /* I: the associated cpu */
c8e55f36 152
bd7bdd43 153 /* workers are chained either in busy_hash or pool idle_list */
42f8570f 154 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
c8e55f36
TH
155 /* L: hash of busy workers */
156
e34cdddb 157 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 158 /* normal and highpri pools */
8b03ae3c
TH
159} ____cacheline_aligned_in_smp;
160
1da177e4 161/*
502ca9d8 162 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
163 * work_struct->data are used for flags and thus cwqs need to be
164 * aligned at two's power of the number of flag bits.
1da177e4
LT
165 */
166struct cpu_workqueue_struct {
bd7bdd43 167 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 168 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
169 int work_color; /* L: current color */
170 int flush_color; /* L: flushing color */
171 int nr_in_flight[WORK_NR_COLORS];
172 /* L: nr of in_flight works */
1e19ffc6 173 int nr_active; /* L: nr of active works */
a0a1a5fd 174 int max_active; /* L: max active works */
1e19ffc6 175 struct list_head delayed_works; /* L: delayed works */
0f900049 176};
1da177e4 177
73f53c4a
TH
178/*
179 * Structure used to wait for workqueue flush.
180 */
181struct wq_flusher {
182 struct list_head list; /* F: list of flushers */
183 int flush_color; /* F: flush color waiting for */
184 struct completion done; /* flush completion */
185};
186
f2e005aa
TH
187/*
188 * All cpumasks are assumed to be always set on UP and thus can't be
189 * used to determine whether there's something to be done.
190 */
191#ifdef CONFIG_SMP
192typedef cpumask_var_t mayday_mask_t;
193#define mayday_test_and_set_cpu(cpu, mask) \
194 cpumask_test_and_set_cpu((cpu), (mask))
195#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
196#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 197#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
198#define free_mayday_mask(mask) free_cpumask_var((mask))
199#else
200typedef unsigned long mayday_mask_t;
201#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
202#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
203#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
204#define alloc_mayday_mask(maskp, gfp) true
205#define free_mayday_mask(mask) do { } while (0)
206#endif
1da177e4
LT
207
208/*
209 * The externally visible workqueue abstraction is an array of
210 * per-CPU workqueues:
211 */
212struct workqueue_struct {
9c5a2ba7 213 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
214 union {
215 struct cpu_workqueue_struct __percpu *pcpu;
216 struct cpu_workqueue_struct *single;
217 unsigned long v;
218 } cpu_wq; /* I: cwq's */
4690c4ab 219 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
220
221 struct mutex flush_mutex; /* protects wq flushing */
222 int work_color; /* F: current work color */
223 int flush_color; /* F: current flush color */
224 atomic_t nr_cwqs_to_flush; /* flush in progress */
225 struct wq_flusher *first_flusher; /* F: first flusher */
226 struct list_head flusher_queue; /* F: flush waiters */
227 struct list_head flusher_overflow; /* F: flush overflow list */
228
f2e005aa 229 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
230 struct worker *rescuer; /* I: rescue worker */
231
9c5a2ba7 232 int nr_drainers; /* W: drain in progress */
dcd989cb 233 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 234#ifdef CONFIG_LOCKDEP
4690c4ab 235 struct lockdep_map lockdep_map;
4e6045f1 236#endif
b196be89 237 char name[]; /* I: workqueue name */
1da177e4
LT
238};
239
d320c038 240struct workqueue_struct *system_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_wq);
044c782c 242struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 243EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 244struct workqueue_struct *system_long_wq __read_mostly;
d320c038 245EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 246struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 247EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 248struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 249EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 250
97bd2347
TH
251#define CREATE_TRACE_POINTS
252#include <trace/events/workqueue.h>
253
4ce62e9e 254#define for_each_worker_pool(pool, gcwq) \
3270476a 255 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 256 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 257
db7bccf4 258#define for_each_busy_worker(worker, i, pos, gcwq) \
42f8570f 259 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
db7bccf4 260
f3421797
TH
261static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
263{
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
269 }
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
272 }
273 return WORK_CPU_NONE;
274}
275
276static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
277 struct workqueue_struct *wq)
278{
279 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
280}
281
09884951
TH
282/*
283 * CPU iterators
284 *
285 * An extra gcwq is defined for an invalid cpu number
286 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
287 * specific CPU. The following iterators are similar to
288 * for_each_*_cpu() iterators but also considers the unbound gcwq.
289 *
290 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
291 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
292 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
293 * WORK_CPU_UNBOUND for unbound workqueues
294 */
f3421797
TH
295#define for_each_gcwq_cpu(cpu) \
296 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
297 (cpu) < WORK_CPU_NONE; \
298 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
299
300#define for_each_online_gcwq_cpu(cpu) \
301 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
302 (cpu) < WORK_CPU_NONE; \
303 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
304
305#define for_each_cwq_cpu(cpu, wq) \
306 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
309
dc186ad7
TG
310#ifdef CONFIG_DEBUG_OBJECTS_WORK
311
312static struct debug_obj_descr work_debug_descr;
313
99777288
SG
314static void *work_debug_hint(void *addr)
315{
316 return ((struct work_struct *) addr)->func;
317}
318
dc186ad7
TG
319/*
320 * fixup_init is called when:
321 * - an active object is initialized
322 */
323static int work_fixup_init(void *addr, enum debug_obj_state state)
324{
325 struct work_struct *work = addr;
326
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
334 }
335}
336
337/*
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
341 */
342static int work_fixup_activate(void *addr, enum debug_obj_state state)
343{
344 struct work_struct *work = addr;
345
346 switch (state) {
347
348 case ODEBUG_STATE_NOTAVAILABLE:
349 /*
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
353 */
22df02bb 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
358 }
359 WARN_ON_ONCE(1);
360 return 0;
361
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
364
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_free is called when:
372 * - an active object is freed
373 */
374static int work_fixup_free(void *addr, enum debug_obj_state state)
375{
376 struct work_struct *work = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386}
387
388static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
99777288 390 .debug_hint = work_debug_hint,
dc186ad7
TG
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
394};
395
396static inline void debug_work_activate(struct work_struct *work)
397{
398 debug_object_activate(work, &work_debug_descr);
399}
400
401static inline void debug_work_deactivate(struct work_struct *work)
402{
403 debug_object_deactivate(work, &work_debug_descr);
404}
405
406void __init_work(struct work_struct *work, int onstack)
407{
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
412}
413EXPORT_SYMBOL_GPL(__init_work);
414
415void destroy_work_on_stack(struct work_struct *work)
416{
417 debug_object_free(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(destroy_work_on_stack);
420
421#else
422static inline void debug_work_activate(struct work_struct *work) { }
423static inline void debug_work_deactivate(struct work_struct *work) { }
424#endif
425
95402b38
GS
426/* Serializes the accesses to the list of workqueues. */
427static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 428static LIST_HEAD(workqueues);
a0a1a5fd 429static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 430
e22bee78
TH
431/*
432 * The almighty global cpu workqueues. nr_running is the only field
433 * which is expected to be used frequently by other cpus via
434 * try_to_wake_up(). Put it in a separate cacheline.
435 */
8b03ae3c 436static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 437static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 438
f3421797 439/*
24647570
TH
440 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
441 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
442 * WORKER_UNBOUND set.
f3421797
TH
443 */
444static struct global_cwq unbound_global_cwq;
e34cdddb
TH
445static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
446 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 447};
f3421797 448
9daf9e67
TH
449/* idr of all pools */
450static DEFINE_MUTEX(worker_pool_idr_mutex);
451static DEFINE_IDR(worker_pool_idr);
452
c34056a3 453static int worker_thread(void *__worker);
e2905b29 454static unsigned int work_cpu(struct work_struct *work);
1da177e4 455
e34cdddb 456static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
457{
458 return pool - pool->gcwq->pools;
459}
460
8b03ae3c
TH
461static struct global_cwq *get_gcwq(unsigned int cpu)
462{
f3421797
TH
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
8b03ae3c
TH
467}
468
9daf9e67
TH
469/* allocate ID and assign it to @pool */
470static int worker_pool_assign_id(struct worker_pool *pool)
471{
472 int ret;
473
474 mutex_lock(&worker_pool_idr_mutex);
475 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
476 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
477 mutex_unlock(&worker_pool_idr_mutex);
478
479 return ret;
480}
481
63d95a91 482static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 483{
63d95a91 484 int cpu = pool->gcwq->cpu;
e34cdddb 485 int idx = std_worker_pool_pri(pool);
63d95a91 486
f3421797 487 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 488 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 489 else
4ce62e9e 490 return &unbound_pool_nr_running[idx];
e22bee78
TH
491}
492
1537663f
TH
493static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
494 struct workqueue_struct *wq)
b1f4ec17 495{
f3421797 496 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 497 if (likely(cpu < nr_cpu_ids))
f3421797 498 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
499 } else if (likely(cpu == WORK_CPU_UNBOUND))
500 return wq->cpu_wq.single;
501 return NULL;
b1f4ec17
ON
502}
503
73f53c4a
TH
504static unsigned int work_color_to_flags(int color)
505{
506 return color << WORK_STRUCT_COLOR_SHIFT;
507}
508
509static int get_work_color(struct work_struct *work)
510{
511 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
512 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
513}
514
515static int work_next_color(int color)
516{
517 return (color + 1) % WORK_NR_COLORS;
518}
1da177e4 519
14441960 520/*
b5490077
TH
521 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
522 * contain the pointer to the queued cwq. Once execution starts, the flag
523 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 524 *
bbb68dfa
TH
525 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
526 * and clear_work_data() can be used to set the cwq, cpu or clear
527 * work->data. These functions should only be called while the work is
528 * owned - ie. while the PENDING bit is set.
7a22ad75 529 *
bbb68dfa
TH
530 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
531 * a work. gcwq is available once the work has been queued anywhere after
532 * initialization until it is sync canceled. cwq is available only while
533 * the work item is queued.
7a22ad75 534 *
bbb68dfa
TH
535 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
536 * canceled. While being canceled, a work item may have its PENDING set
537 * but stay off timer and worklist for arbitrarily long and nobody should
538 * try to steal the PENDING bit.
14441960 539 */
7a22ad75
TH
540static inline void set_work_data(struct work_struct *work, unsigned long data,
541 unsigned long flags)
365970a1 542{
4594bf15 543 BUG_ON(!work_pending(work));
7a22ad75
TH
544 atomic_long_set(&work->data, data | flags | work_static(work));
545}
365970a1 546
7a22ad75
TH
547static void set_work_cwq(struct work_struct *work,
548 struct cpu_workqueue_struct *cwq,
549 unsigned long extra_flags)
550{
551 set_work_data(work, (unsigned long)cwq,
e120153d 552 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
553}
554
8930caba
TH
555static void set_work_cpu_and_clear_pending(struct work_struct *work,
556 unsigned int cpu)
7a22ad75 557{
23657bb1
TH
558 /*
559 * The following wmb is paired with the implied mb in
560 * test_and_set_bit(PENDING) and ensures all updates to @work made
561 * here are visible to and precede any updates by the next PENDING
562 * owner.
563 */
564 smp_wmb();
b5490077 565 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 566}
f756d5e2 567
7a22ad75 568static void clear_work_data(struct work_struct *work)
1da177e4 569{
23657bb1 570 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 571 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
572}
573
7a22ad75 574static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 575{
e120153d 576 unsigned long data = atomic_long_read(&work->data);
7a22ad75 577
e120153d
TH
578 if (data & WORK_STRUCT_CWQ)
579 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
580 else
581 return NULL;
4d707b9f
ON
582}
583
7a22ad75 584static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 585{
e120153d 586 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
587 unsigned int cpu;
588
e120153d
TH
589 if (data & WORK_STRUCT_CWQ)
590 return ((struct cpu_workqueue_struct *)
bd7bdd43 591 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 592
b5490077 593 cpu = data >> WORK_OFFQ_CPU_SHIFT;
715b06b8 594 if (cpu == WORK_OFFQ_CPU_NONE)
7a22ad75
TH
595 return NULL;
596
f3421797 597 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 598 return get_gcwq(cpu);
b1f4ec17
ON
599}
600
bbb68dfa
TH
601static void mark_work_canceling(struct work_struct *work)
602{
603 struct global_cwq *gcwq = get_work_gcwq(work);
715b06b8 604 unsigned long cpu = gcwq ? gcwq->cpu : WORK_OFFQ_CPU_NONE;
bbb68dfa
TH
605
606 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
607 WORK_STRUCT_PENDING);
608}
609
610static bool work_is_canceling(struct work_struct *work)
611{
612 unsigned long data = atomic_long_read(&work->data);
613
614 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
615}
616
e22bee78 617/*
3270476a
TH
618 * Policy functions. These define the policies on how the global worker
619 * pools are managed. Unless noted otherwise, these functions assume that
620 * they're being called with gcwq->lock held.
e22bee78
TH
621 */
622
63d95a91 623static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 624{
3270476a 625 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
626}
627
4594bf15 628/*
e22bee78
TH
629 * Need to wake up a worker? Called from anything but currently
630 * running workers.
974271c4
TH
631 *
632 * Note that, because unbound workers never contribute to nr_running, this
633 * function will always return %true for unbound gcwq as long as the
634 * worklist isn't empty.
4594bf15 635 */
63d95a91 636static bool need_more_worker(struct worker_pool *pool)
365970a1 637{
63d95a91 638 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 639}
4594bf15 640
e22bee78 641/* Can I start working? Called from busy but !running workers. */
63d95a91 642static bool may_start_working(struct worker_pool *pool)
e22bee78 643{
63d95a91 644 return pool->nr_idle;
e22bee78
TH
645}
646
647/* Do I need to keep working? Called from currently running workers. */
63d95a91 648static bool keep_working(struct worker_pool *pool)
e22bee78 649{
63d95a91 650 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 651
3270476a 652 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
653}
654
655/* Do we need a new worker? Called from manager. */
63d95a91 656static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 657{
63d95a91 658 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 659}
365970a1 660
e22bee78 661/* Do I need to be the manager? */
63d95a91 662static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 663{
63d95a91 664 return need_to_create_worker(pool) ||
11ebea50 665 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
666}
667
668/* Do we have too many workers and should some go away? */
63d95a91 669static bool too_many_workers(struct worker_pool *pool)
e22bee78 670{
552a37e9 671 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
672 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
673 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 674
ea1abd61
LJ
675 /*
676 * nr_idle and idle_list may disagree if idle rebinding is in
677 * progress. Never return %true if idle_list is empty.
678 */
679 if (list_empty(&pool->idle_list))
680 return false;
681
e22bee78 682 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
683}
684
4d707b9f 685/*
e22bee78
TH
686 * Wake up functions.
687 */
688
7e11629d 689/* Return the first worker. Safe with preemption disabled */
63d95a91 690static struct worker *first_worker(struct worker_pool *pool)
7e11629d 691{
63d95a91 692 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
693 return NULL;
694
63d95a91 695 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
696}
697
698/**
699 * wake_up_worker - wake up an idle worker
63d95a91 700 * @pool: worker pool to wake worker from
7e11629d 701 *
63d95a91 702 * Wake up the first idle worker of @pool.
7e11629d
TH
703 *
704 * CONTEXT:
705 * spin_lock_irq(gcwq->lock).
706 */
63d95a91 707static void wake_up_worker(struct worker_pool *pool)
7e11629d 708{
63d95a91 709 struct worker *worker = first_worker(pool);
7e11629d
TH
710
711 if (likely(worker))
712 wake_up_process(worker->task);
713}
714
d302f017 715/**
e22bee78
TH
716 * wq_worker_waking_up - a worker is waking up
717 * @task: task waking up
718 * @cpu: CPU @task is waking up to
719 *
720 * This function is called during try_to_wake_up() when a worker is
721 * being awoken.
722 *
723 * CONTEXT:
724 * spin_lock_irq(rq->lock)
725 */
726void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
727{
728 struct worker *worker = kthread_data(task);
729
36576000
JK
730 if (!(worker->flags & WORKER_NOT_RUNNING)) {
731 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 732 atomic_inc(get_pool_nr_running(worker->pool));
36576000 733 }
e22bee78
TH
734}
735
736/**
737 * wq_worker_sleeping - a worker is going to sleep
738 * @task: task going to sleep
739 * @cpu: CPU in question, must be the current CPU number
740 *
741 * This function is called during schedule() when a busy worker is
742 * going to sleep. Worker on the same cpu can be woken up by
743 * returning pointer to its task.
744 *
745 * CONTEXT:
746 * spin_lock_irq(rq->lock)
747 *
748 * RETURNS:
749 * Worker task on @cpu to wake up, %NULL if none.
750 */
751struct task_struct *wq_worker_sleeping(struct task_struct *task,
752 unsigned int cpu)
753{
754 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
755 struct worker_pool *pool;
756 atomic_t *nr_running;
e22bee78 757
111c225a
TH
758 /*
759 * Rescuers, which may not have all the fields set up like normal
760 * workers, also reach here, let's not access anything before
761 * checking NOT_RUNNING.
762 */
2d64672e 763 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
764 return NULL;
765
111c225a
TH
766 pool = worker->pool;
767 nr_running = get_pool_nr_running(pool);
768
e22bee78
TH
769 /* this can only happen on the local cpu */
770 BUG_ON(cpu != raw_smp_processor_id());
771
772 /*
773 * The counterpart of the following dec_and_test, implied mb,
774 * worklist not empty test sequence is in insert_work().
775 * Please read comment there.
776 *
628c78e7
TH
777 * NOT_RUNNING is clear. This means that we're bound to and
778 * running on the local cpu w/ rq lock held and preemption
779 * disabled, which in turn means that none else could be
780 * manipulating idle_list, so dereferencing idle_list without gcwq
781 * lock is safe.
e22bee78 782 */
bd7bdd43 783 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 784 to_wakeup = first_worker(pool);
e22bee78
TH
785 return to_wakeup ? to_wakeup->task : NULL;
786}
787
788/**
789 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 790 * @worker: self
d302f017
TH
791 * @flags: flags to set
792 * @wakeup: wakeup an idle worker if necessary
793 *
e22bee78
TH
794 * Set @flags in @worker->flags and adjust nr_running accordingly. If
795 * nr_running becomes zero and @wakeup is %true, an idle worker is
796 * woken up.
d302f017 797 *
cb444766
TH
798 * CONTEXT:
799 * spin_lock_irq(gcwq->lock)
d302f017
TH
800 */
801static inline void worker_set_flags(struct worker *worker, unsigned int flags,
802 bool wakeup)
803{
bd7bdd43 804 struct worker_pool *pool = worker->pool;
e22bee78 805
cb444766
TH
806 WARN_ON_ONCE(worker->task != current);
807
e22bee78
TH
808 /*
809 * If transitioning into NOT_RUNNING, adjust nr_running and
810 * wake up an idle worker as necessary if requested by
811 * @wakeup.
812 */
813 if ((flags & WORKER_NOT_RUNNING) &&
814 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 815 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
816
817 if (wakeup) {
818 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 819 !list_empty(&pool->worklist))
63d95a91 820 wake_up_worker(pool);
e22bee78
TH
821 } else
822 atomic_dec(nr_running);
823 }
824
d302f017
TH
825 worker->flags |= flags;
826}
827
828/**
e22bee78 829 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 830 * @worker: self
d302f017
TH
831 * @flags: flags to clear
832 *
e22bee78 833 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 834 *
cb444766
TH
835 * CONTEXT:
836 * spin_lock_irq(gcwq->lock)
d302f017
TH
837 */
838static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
839{
63d95a91 840 struct worker_pool *pool = worker->pool;
e22bee78
TH
841 unsigned int oflags = worker->flags;
842
cb444766
TH
843 WARN_ON_ONCE(worker->task != current);
844
d302f017 845 worker->flags &= ~flags;
e22bee78 846
42c025f3
TH
847 /*
848 * If transitioning out of NOT_RUNNING, increment nr_running. Note
849 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
850 * of multiple flags, not a single flag.
851 */
e22bee78
TH
852 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
853 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 854 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
855}
856
8cca0eea
TH
857/**
858 * find_worker_executing_work - find worker which is executing a work
859 * @gcwq: gcwq of interest
860 * @work: work to find worker for
861 *
a2c1c57b
TH
862 * Find a worker which is executing @work on @gcwq by searching
863 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
864 * to match, its current execution should match the address of @work and
865 * its work function. This is to avoid unwanted dependency between
866 * unrelated work executions through a work item being recycled while still
867 * being executed.
868 *
869 * This is a bit tricky. A work item may be freed once its execution
870 * starts and nothing prevents the freed area from being recycled for
871 * another work item. If the same work item address ends up being reused
872 * before the original execution finishes, workqueue will identify the
873 * recycled work item as currently executing and make it wait until the
874 * current execution finishes, introducing an unwanted dependency.
875 *
876 * This function checks the work item address, work function and workqueue
877 * to avoid false positives. Note that this isn't complete as one may
878 * construct a work function which can introduce dependency onto itself
879 * through a recycled work item. Well, if somebody wants to shoot oneself
880 * in the foot that badly, there's only so much we can do, and if such
881 * deadlock actually occurs, it should be easy to locate the culprit work
882 * function.
8cca0eea
TH
883 *
884 * CONTEXT:
885 * spin_lock_irq(gcwq->lock).
886 *
887 * RETURNS:
888 * Pointer to worker which is executing @work if found, NULL
889 * otherwise.
4d707b9f 890 */
8cca0eea
TH
891static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
892 struct work_struct *work)
4d707b9f 893{
42f8570f
SL
894 struct worker *worker;
895 struct hlist_node *tmp;
896
a2c1c57b
TH
897 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
898 (unsigned long)work)
899 if (worker->current_work == work &&
900 worker->current_func == work->func)
42f8570f
SL
901 return worker;
902
903 return NULL;
4d707b9f
ON
904}
905
bf4ede01
TH
906/**
907 * move_linked_works - move linked works to a list
908 * @work: start of series of works to be scheduled
909 * @head: target list to append @work to
910 * @nextp: out paramter for nested worklist walking
911 *
912 * Schedule linked works starting from @work to @head. Work series to
913 * be scheduled starts at @work and includes any consecutive work with
914 * WORK_STRUCT_LINKED set in its predecessor.
915 *
916 * If @nextp is not NULL, it's updated to point to the next work of
917 * the last scheduled work. This allows move_linked_works() to be
918 * nested inside outer list_for_each_entry_safe().
919 *
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
922 */
923static void move_linked_works(struct work_struct *work, struct list_head *head,
924 struct work_struct **nextp)
925{
926 struct work_struct *n;
927
928 /*
929 * Linked worklist will always end before the end of the list,
930 * use NULL for list head.
931 */
932 list_for_each_entry_safe_from(work, n, NULL, entry) {
933 list_move_tail(&work->entry, head);
934 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
935 break;
936 }
937
938 /*
939 * If we're already inside safe list traversal and have moved
940 * multiple works to the scheduled queue, the next position
941 * needs to be updated.
942 */
943 if (nextp)
944 *nextp = n;
945}
946
3aa62497 947static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 948{
3aa62497 949 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
950
951 trace_workqueue_activate_work(work);
952 move_linked_works(work, &cwq->pool->worklist, NULL);
953 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
954 cwq->nr_active++;
955}
956
3aa62497
LJ
957static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
958{
959 struct work_struct *work = list_first_entry(&cwq->delayed_works,
960 struct work_struct, entry);
961
962 cwq_activate_delayed_work(work);
963}
964
bf4ede01
TH
965/**
966 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
967 * @cwq: cwq of interest
968 * @color: color of work which left the queue
bf4ede01
TH
969 *
970 * A work either has completed or is removed from pending queue,
971 * decrement nr_in_flight of its cwq and handle workqueue flushing.
972 *
973 * CONTEXT:
974 * spin_lock_irq(gcwq->lock).
975 */
b3f9f405 976static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
977{
978 /* ignore uncolored works */
979 if (color == WORK_NO_COLOR)
980 return;
981
982 cwq->nr_in_flight[color]--;
983
b3f9f405
LJ
984 cwq->nr_active--;
985 if (!list_empty(&cwq->delayed_works)) {
986 /* one down, submit a delayed one */
987 if (cwq->nr_active < cwq->max_active)
988 cwq_activate_first_delayed(cwq);
bf4ede01
TH
989 }
990
991 /* is flush in progress and are we at the flushing tip? */
992 if (likely(cwq->flush_color != color))
993 return;
994
995 /* are there still in-flight works? */
996 if (cwq->nr_in_flight[color])
997 return;
998
999 /* this cwq is done, clear flush_color */
1000 cwq->flush_color = -1;
1001
1002 /*
1003 * If this was the last cwq, wake up the first flusher. It
1004 * will handle the rest.
1005 */
1006 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1007 complete(&cwq->wq->first_flusher->done);
1008}
1009
36e227d2 1010/**
bbb68dfa 1011 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1012 * @work: work item to steal
1013 * @is_dwork: @work is a delayed_work
bbb68dfa 1014 * @flags: place to store irq state
36e227d2
TH
1015 *
1016 * Try to grab PENDING bit of @work. This function can handle @work in any
1017 * stable state - idle, on timer or on worklist. Return values are
1018 *
1019 * 1 if @work was pending and we successfully stole PENDING
1020 * 0 if @work was idle and we claimed PENDING
1021 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1022 * -ENOENT if someone else is canceling @work, this state may persist
1023 * for arbitrarily long
36e227d2 1024 *
bbb68dfa 1025 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1026 * interrupted while holding PENDING and @work off queue, irq must be
1027 * disabled on entry. This, combined with delayed_work->timer being
1028 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1029 *
1030 * On successful return, >= 0, irq is disabled and the caller is
1031 * responsible for releasing it using local_irq_restore(*@flags).
1032 *
e0aecdd8 1033 * This function is safe to call from any context including IRQ handler.
bf4ede01 1034 */
bbb68dfa
TH
1035static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1036 unsigned long *flags)
bf4ede01
TH
1037{
1038 struct global_cwq *gcwq;
bf4ede01 1039
bbb68dfa
TH
1040 local_irq_save(*flags);
1041
36e227d2
TH
1042 /* try to steal the timer if it exists */
1043 if (is_dwork) {
1044 struct delayed_work *dwork = to_delayed_work(work);
1045
e0aecdd8
TH
1046 /*
1047 * dwork->timer is irqsafe. If del_timer() fails, it's
1048 * guaranteed that the timer is not queued anywhere and not
1049 * running on the local CPU.
1050 */
36e227d2
TH
1051 if (likely(del_timer(&dwork->timer)))
1052 return 1;
1053 }
1054
1055 /* try to claim PENDING the normal way */
bf4ede01
TH
1056 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1057 return 0;
1058
1059 /*
1060 * The queueing is in progress, or it is already queued. Try to
1061 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1062 */
1063 gcwq = get_work_gcwq(work);
1064 if (!gcwq)
bbb68dfa 1065 goto fail;
bf4ede01 1066
bbb68dfa 1067 spin_lock(&gcwq->lock);
bf4ede01
TH
1068 if (!list_empty(&work->entry)) {
1069 /*
1070 * This work is queued, but perhaps we locked the wrong gcwq.
1071 * In that case we must see the new value after rmb(), see
1072 * insert_work()->wmb().
1073 */
1074 smp_rmb();
1075 if (gcwq == get_work_gcwq(work)) {
1076 debug_work_deactivate(work);
3aa62497
LJ
1077
1078 /*
1079 * A delayed work item cannot be grabbed directly
1080 * because it might have linked NO_COLOR work items
1081 * which, if left on the delayed_list, will confuse
1082 * cwq->nr_active management later on and cause
1083 * stall. Make sure the work item is activated
1084 * before grabbing.
1085 */
1086 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1087 cwq_activate_delayed_work(work);
1088
bf4ede01
TH
1089 list_del_init(&work->entry);
1090 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1091 get_work_color(work));
36e227d2 1092
bbb68dfa 1093 spin_unlock(&gcwq->lock);
36e227d2 1094 return 1;
bf4ede01
TH
1095 }
1096 }
bbb68dfa
TH
1097 spin_unlock(&gcwq->lock);
1098fail:
1099 local_irq_restore(*flags);
1100 if (work_is_canceling(work))
1101 return -ENOENT;
1102 cpu_relax();
36e227d2 1103 return -EAGAIN;
bf4ede01
TH
1104}
1105
4690c4ab 1106/**
7e11629d 1107 * insert_work - insert a work into gcwq
4690c4ab
TH
1108 * @cwq: cwq @work belongs to
1109 * @work: work to insert
1110 * @head: insertion point
1111 * @extra_flags: extra WORK_STRUCT_* flags to set
1112 *
7e11629d
TH
1113 * Insert @work which belongs to @cwq into @gcwq after @head.
1114 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1115 *
1116 * CONTEXT:
8b03ae3c 1117 * spin_lock_irq(gcwq->lock).
4690c4ab 1118 */
b89deed3 1119static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1120 struct work_struct *work, struct list_head *head,
1121 unsigned int extra_flags)
b89deed3 1122{
63d95a91 1123 struct worker_pool *pool = cwq->pool;
e22bee78 1124
4690c4ab 1125 /* we own @work, set data and link */
7a22ad75 1126 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1127
6e84d644
ON
1128 /*
1129 * Ensure that we get the right work->data if we see the
1130 * result of list_add() below, see try_to_grab_pending().
1131 */
1132 smp_wmb();
4690c4ab 1133
1a4d9b0a 1134 list_add_tail(&work->entry, head);
e22bee78
TH
1135
1136 /*
1137 * Ensure either worker_sched_deactivated() sees the above
1138 * list_add_tail() or we see zero nr_running to avoid workers
1139 * lying around lazily while there are works to be processed.
1140 */
1141 smp_mb();
1142
63d95a91
TH
1143 if (__need_more_worker(pool))
1144 wake_up_worker(pool);
b89deed3
ON
1145}
1146
c8efcc25
TH
1147/*
1148 * Test whether @work is being queued from another work executing on the
1149 * same workqueue. This is rather expensive and should only be used from
1150 * cold paths.
1151 */
1152static bool is_chained_work(struct workqueue_struct *wq)
1153{
1154 unsigned long flags;
1155 unsigned int cpu;
1156
1157 for_each_gcwq_cpu(cpu) {
1158 struct global_cwq *gcwq = get_gcwq(cpu);
1159 struct worker *worker;
1160 struct hlist_node *pos;
1161 int i;
1162
1163 spin_lock_irqsave(&gcwq->lock, flags);
1164 for_each_busy_worker(worker, i, pos, gcwq) {
1165 if (worker->task != current)
1166 continue;
1167 spin_unlock_irqrestore(&gcwq->lock, flags);
1168 /*
1169 * I'm @worker, no locking necessary. See if @work
1170 * is headed to the same workqueue.
1171 */
1172 return worker->current_cwq->wq == wq;
1173 }
1174 spin_unlock_irqrestore(&gcwq->lock, flags);
1175 }
1176 return false;
1177}
1178
4690c4ab 1179static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1180 struct work_struct *work)
1181{
502ca9d8
TH
1182 struct global_cwq *gcwq;
1183 struct cpu_workqueue_struct *cwq;
1e19ffc6 1184 struct list_head *worklist;
8a2e8e5d 1185 unsigned int work_flags;
b75cac93 1186 unsigned int req_cpu = cpu;
8930caba
TH
1187
1188 /*
1189 * While a work item is PENDING && off queue, a task trying to
1190 * steal the PENDING will busy-loop waiting for it to either get
1191 * queued or lose PENDING. Grabbing PENDING and queueing should
1192 * happen with IRQ disabled.
1193 */
1194 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1195
dc186ad7 1196 debug_work_activate(work);
1e19ffc6 1197
c8efcc25 1198 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1199 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1200 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1201 return;
1202
c7fc77f7
TH
1203 /* determine gcwq to use */
1204 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1205 struct global_cwq *last_gcwq;
1206
57469821 1207 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1208 cpu = raw_smp_processor_id();
1209
18aa9eff 1210 /*
dbf2576e
TH
1211 * It's multi cpu. If @work was previously on a different
1212 * cpu, it might still be running there, in which case the
1213 * work needs to be queued on that cpu to guarantee
1214 * non-reentrancy.
18aa9eff 1215 */
502ca9d8 1216 gcwq = get_gcwq(cpu);
dbf2576e
TH
1217 last_gcwq = get_work_gcwq(work);
1218
1219 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1220 struct worker *worker;
1221
8930caba 1222 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1223
1224 worker = find_worker_executing_work(last_gcwq, work);
1225
1226 if (worker && worker->current_cwq->wq == wq)
1227 gcwq = last_gcwq;
1228 else {
1229 /* meh... not running there, queue here */
8930caba
TH
1230 spin_unlock(&last_gcwq->lock);
1231 spin_lock(&gcwq->lock);
18aa9eff 1232 }
8930caba
TH
1233 } else {
1234 spin_lock(&gcwq->lock);
1235 }
f3421797
TH
1236 } else {
1237 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1238 spin_lock(&gcwq->lock);
502ca9d8
TH
1239 }
1240
1241 /* gcwq determined, get cwq and queue */
1242 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1243 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1244
f5b2552b 1245 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1246 spin_unlock(&gcwq->lock);
f5b2552b
DC
1247 return;
1248 }
1e19ffc6 1249
73f53c4a 1250 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1251 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1252
1253 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1254 trace_workqueue_activate_work(work);
1e19ffc6 1255 cwq->nr_active++;
3270476a 1256 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1257 } else {
1258 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1259 worklist = &cwq->delayed_works;
8a2e8e5d 1260 }
1e19ffc6 1261
8a2e8e5d 1262 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1263
8930caba 1264 spin_unlock(&gcwq->lock);
1da177e4
LT
1265}
1266
0fcb78c2 1267/**
c1a220e7
ZR
1268 * queue_work_on - queue work on specific cpu
1269 * @cpu: CPU number to execute work on
0fcb78c2
REB
1270 * @wq: workqueue to use
1271 * @work: work to queue
1272 *
d4283e93 1273 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1274 *
c1a220e7
ZR
1275 * We queue the work to a specific CPU, the caller must ensure it
1276 * can't go away.
1da177e4 1277 */
d4283e93
TH
1278bool queue_work_on(int cpu, struct workqueue_struct *wq,
1279 struct work_struct *work)
1da177e4 1280{
d4283e93 1281 bool ret = false;
8930caba 1282 unsigned long flags;
ef1ca236 1283
8930caba 1284 local_irq_save(flags);
c1a220e7 1285
22df02bb 1286 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1287 __queue_work(cpu, wq, work);
d4283e93 1288 ret = true;
c1a220e7 1289 }
ef1ca236 1290
8930caba 1291 local_irq_restore(flags);
1da177e4
LT
1292 return ret;
1293}
c1a220e7 1294EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1295
c1a220e7 1296/**
0a13c00e 1297 * queue_work - queue work on a workqueue
c1a220e7
ZR
1298 * @wq: workqueue to use
1299 * @work: work to queue
1300 *
d4283e93 1301 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1302 *
0a13c00e
TH
1303 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1304 * it can be processed by another CPU.
c1a220e7 1305 */
d4283e93 1306bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1307{
57469821 1308 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1309}
0a13c00e 1310EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1311
d8e794df 1312void delayed_work_timer_fn(unsigned long __data)
1da177e4 1313{
52bad64d 1314 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1315 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1316
e0aecdd8 1317 /* should have been called from irqsafe timer with irq already off */
1265057f 1318 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1319}
d8e794df 1320EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1321
7beb2edf
TH
1322static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1323 struct delayed_work *dwork, unsigned long delay)
1da177e4 1324{
7beb2edf
TH
1325 struct timer_list *timer = &dwork->timer;
1326 struct work_struct *work = &dwork->work;
1327 unsigned int lcpu;
1328
1329 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1330 timer->data != (unsigned long)dwork);
fc4b514f
TH
1331 WARN_ON_ONCE(timer_pending(timer));
1332 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1333
8852aac2
TH
1334 /*
1335 * If @delay is 0, queue @dwork->work immediately. This is for
1336 * both optimization and correctness. The earliest @timer can
1337 * expire is on the closest next tick and delayed_work users depend
1338 * on that there's no such delay when @delay is 0.
1339 */
1340 if (!delay) {
1341 __queue_work(cpu, wq, &dwork->work);
1342 return;
1343 }
1344
7beb2edf 1345 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1346
7beb2edf
TH
1347 /*
1348 * This stores cwq for the moment, for the timer_fn. Note that the
1349 * work's gcwq is preserved to allow reentrance detection for
1350 * delayed works.
1351 */
1352 if (!(wq->flags & WQ_UNBOUND)) {
1353 struct global_cwq *gcwq = get_work_gcwq(work);
1354
e42986de
JK
1355 /*
1356 * If we cannot get the last gcwq from @work directly,
1357 * select the last CPU such that it avoids unnecessarily
1358 * triggering non-reentrancy check in __queue_work().
1359 */
1360 lcpu = cpu;
1361 if (gcwq)
7beb2edf 1362 lcpu = gcwq->cpu;
e42986de 1363 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1364 lcpu = raw_smp_processor_id();
1365 } else {
1366 lcpu = WORK_CPU_UNBOUND;
1367 }
1368
1369 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1370
1265057f 1371 dwork->cpu = cpu;
7beb2edf
TH
1372 timer->expires = jiffies + delay;
1373
1374 if (unlikely(cpu != WORK_CPU_UNBOUND))
1375 add_timer_on(timer, cpu);
1376 else
1377 add_timer(timer);
1da177e4
LT
1378}
1379
0fcb78c2
REB
1380/**
1381 * queue_delayed_work_on - queue work on specific CPU after delay
1382 * @cpu: CPU number to execute work on
1383 * @wq: workqueue to use
af9997e4 1384 * @dwork: work to queue
0fcb78c2
REB
1385 * @delay: number of jiffies to wait before queueing
1386 *
715f1300
TH
1387 * Returns %false if @work was already on a queue, %true otherwise. If
1388 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1389 * execution.
0fcb78c2 1390 */
d4283e93
TH
1391bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1392 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1393{
52bad64d 1394 struct work_struct *work = &dwork->work;
d4283e93 1395 bool ret = false;
8930caba 1396 unsigned long flags;
7a6bc1cd 1397
8930caba
TH
1398 /* read the comment in __queue_work() */
1399 local_irq_save(flags);
7a6bc1cd 1400
22df02bb 1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1402 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1403 ret = true;
7a6bc1cd 1404 }
8a3e77cc 1405
8930caba 1406 local_irq_restore(flags);
7a6bc1cd
VP
1407 return ret;
1408}
ae90dd5d 1409EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1410
0a13c00e
TH
1411/**
1412 * queue_delayed_work - queue work on a workqueue after delay
1413 * @wq: workqueue to use
1414 * @dwork: delayable work to queue
1415 * @delay: number of jiffies to wait before queueing
1416 *
715f1300 1417 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1418 */
d4283e93 1419bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1420 struct delayed_work *dwork, unsigned long delay)
1421{
57469821 1422 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1423}
1424EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1425
8376fe22
TH
1426/**
1427 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1428 * @cpu: CPU number to execute work on
1429 * @wq: workqueue to use
1430 * @dwork: work to queue
1431 * @delay: number of jiffies to wait before queueing
1432 *
1433 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1434 * modify @dwork's timer so that it expires after @delay. If @delay is
1435 * zero, @work is guaranteed to be scheduled immediately regardless of its
1436 * current state.
1437 *
1438 * Returns %false if @dwork was idle and queued, %true if @dwork was
1439 * pending and its timer was modified.
1440 *
e0aecdd8 1441 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1442 * See try_to_grab_pending() for details.
1443 */
1444bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1445 struct delayed_work *dwork, unsigned long delay)
1446{
1447 unsigned long flags;
1448 int ret;
c7fc77f7 1449
8376fe22
TH
1450 do {
1451 ret = try_to_grab_pending(&dwork->work, true, &flags);
1452 } while (unlikely(ret == -EAGAIN));
63bc0362 1453
8376fe22
TH
1454 if (likely(ret >= 0)) {
1455 __queue_delayed_work(cpu, wq, dwork, delay);
1456 local_irq_restore(flags);
7a6bc1cd 1457 }
8376fe22
TH
1458
1459 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1460 return ret;
1461}
8376fe22
TH
1462EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1463
1464/**
1465 * mod_delayed_work - modify delay of or queue a delayed work
1466 * @wq: workqueue to use
1467 * @dwork: work to queue
1468 * @delay: number of jiffies to wait before queueing
1469 *
1470 * mod_delayed_work_on() on local CPU.
1471 */
1472bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1473 unsigned long delay)
1474{
1475 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1476}
1477EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1478
c8e55f36
TH
1479/**
1480 * worker_enter_idle - enter idle state
1481 * @worker: worker which is entering idle state
1482 *
1483 * @worker is entering idle state. Update stats and idle timer if
1484 * necessary.
1485 *
1486 * LOCKING:
1487 * spin_lock_irq(gcwq->lock).
1488 */
1489static void worker_enter_idle(struct worker *worker)
1da177e4 1490{
bd7bdd43 1491 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1492
1493 BUG_ON(worker->flags & WORKER_IDLE);
1494 BUG_ON(!list_empty(&worker->entry) &&
1495 (worker->hentry.next || worker->hentry.pprev));
1496
cb444766
TH
1497 /* can't use worker_set_flags(), also called from start_worker() */
1498 worker->flags |= WORKER_IDLE;
bd7bdd43 1499 pool->nr_idle++;
e22bee78 1500 worker->last_active = jiffies;
c8e55f36
TH
1501
1502 /* idle_list is LIFO */
bd7bdd43 1503 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1504
628c78e7
TH
1505 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1506 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1507
544ecf31 1508 /*
628c78e7
TH
1509 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1510 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1511 * nr_running, the warning may trigger spuriously. Check iff
1512 * unbind is not in progress.
544ecf31 1513 */
24647570 1514 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1515 pool->nr_workers == pool->nr_idle &&
63d95a91 1516 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1517}
1518
1519/**
1520 * worker_leave_idle - leave idle state
1521 * @worker: worker which is leaving idle state
1522 *
1523 * @worker is leaving idle state. Update stats.
1524 *
1525 * LOCKING:
1526 * spin_lock_irq(gcwq->lock).
1527 */
1528static void worker_leave_idle(struct worker *worker)
1529{
bd7bdd43 1530 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1531
1532 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1533 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1534 pool->nr_idle--;
c8e55f36
TH
1535 list_del_init(&worker->entry);
1536}
1537
e22bee78
TH
1538/**
1539 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1540 * @worker: self
1541 *
1542 * Works which are scheduled while the cpu is online must at least be
1543 * scheduled to a worker which is bound to the cpu so that if they are
1544 * flushed from cpu callbacks while cpu is going down, they are
1545 * guaranteed to execute on the cpu.
1546 *
1547 * This function is to be used by rogue workers and rescuers to bind
1548 * themselves to the target cpu and may race with cpu going down or
1549 * coming online. kthread_bind() can't be used because it may put the
1550 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1551 * verbatim as it's best effort and blocking and gcwq may be
1552 * [dis]associated in the meantime.
1553 *
f2d5a0ee 1554 * This function tries set_cpus_allowed() and locks gcwq and verifies the
24647570 1555 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1556 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1557 * enters idle state or fetches works without dropping lock, it can
1558 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1559 *
1560 * CONTEXT:
1561 * Might sleep. Called without any lock but returns with gcwq->lock
1562 * held.
1563 *
1564 * RETURNS:
1565 * %true if the associated gcwq is online (@worker is successfully
1566 * bound), %false if offline.
1567 */
1568static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1569__acquires(&gcwq->lock)
e22bee78 1570{
24647570
TH
1571 struct worker_pool *pool = worker->pool;
1572 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1573 struct task_struct *task = worker->task;
1574
1575 while (true) {
4e6045f1 1576 /*
e22bee78
TH
1577 * The following call may fail, succeed or succeed
1578 * without actually migrating the task to the cpu if
1579 * it races with cpu hotunplug operation. Verify
24647570 1580 * against POOL_DISASSOCIATED.
4e6045f1 1581 */
24647570 1582 if (!(pool->flags & POOL_DISASSOCIATED))
f3421797 1583 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1584
1585 spin_lock_irq(&gcwq->lock);
24647570 1586 if (pool->flags & POOL_DISASSOCIATED)
e22bee78
TH
1587 return false;
1588 if (task_cpu(task) == gcwq->cpu &&
1589 cpumask_equal(&current->cpus_allowed,
1590 get_cpu_mask(gcwq->cpu)))
1591 return true;
1592 spin_unlock_irq(&gcwq->lock);
1593
5035b20f
TH
1594 /*
1595 * We've raced with CPU hot[un]plug. Give it a breather
1596 * and retry migration. cond_resched() is required here;
1597 * otherwise, we might deadlock against cpu_stop trying to
1598 * bring down the CPU on non-preemptive kernel.
1599 */
e22bee78 1600 cpu_relax();
5035b20f 1601 cond_resched();
e22bee78
TH
1602 }
1603}
1604
25511a47 1605/*
ea1abd61 1606 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1607 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1608 */
1609static void idle_worker_rebind(struct worker *worker)
1610{
1611 struct global_cwq *gcwq = worker->pool->gcwq;
1612
5f7dabfd
LJ
1613 /* CPU may go down again inbetween, clear UNBOUND only on success */
1614 if (worker_maybe_bind_and_lock(worker))
1615 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1616
ea1abd61
LJ
1617 /* rebind complete, become available again */
1618 list_add(&worker->entry, &worker->pool->idle_list);
1619 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1620}
1621
e22bee78 1622/*
25511a47 1623 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1624 * the associated cpu which is coming back online. This is scheduled by
1625 * cpu up but can race with other cpu hotplug operations and may be
1626 * executed twice without intervening cpu down.
e22bee78 1627 */
25511a47 1628static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1629{
1630 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1631 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1632
eab6d828
LJ
1633 if (worker_maybe_bind_and_lock(worker))
1634 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1635
1636 spin_unlock_irq(&gcwq->lock);
1637}
1638
25511a47
TH
1639/**
1640 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1641 * @gcwq: gcwq of interest
1642 *
1643 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1644 * is different for idle and busy ones.
1645 *
ea1abd61
LJ
1646 * Idle ones will be removed from the idle_list and woken up. They will
1647 * add themselves back after completing rebind. This ensures that the
1648 * idle_list doesn't contain any unbound workers when re-bound busy workers
1649 * try to perform local wake-ups for concurrency management.
25511a47 1650 *
ea1abd61
LJ
1651 * Busy workers can rebind after they finish their current work items.
1652 * Queueing the rebind work item at the head of the scheduled list is
1653 * enough. Note that nr_running will be properly bumped as busy workers
1654 * rebind.
25511a47 1655 *
ea1abd61
LJ
1656 * On return, all non-manager workers are scheduled for rebind - see
1657 * manage_workers() for the manager special case. Any idle worker
1658 * including the manager will not appear on @idle_list until rebind is
1659 * complete, making local wake-ups safe.
25511a47
TH
1660 */
1661static void rebind_workers(struct global_cwq *gcwq)
25511a47 1662{
25511a47 1663 struct worker_pool *pool;
ea1abd61 1664 struct worker *worker, *n;
25511a47
TH
1665 struct hlist_node *pos;
1666 int i;
1667
1668 lockdep_assert_held(&gcwq->lock);
1669
1670 for_each_worker_pool(pool, gcwq)
b2eb83d1 1671 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1672
5f7dabfd 1673 /* dequeue and kick idle ones */
25511a47 1674 for_each_worker_pool(pool, gcwq) {
ea1abd61 1675 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1676 /*
1677 * idle workers should be off @pool->idle_list
1678 * until rebind is complete to avoid receiving
1679 * premature local wake-ups.
1680 */
1681 list_del_init(&worker->entry);
25511a47 1682
5f7dabfd
LJ
1683 /*
1684 * worker_thread() will see the above dequeuing
1685 * and call idle_worker_rebind().
1686 */
25511a47
TH
1687 wake_up_process(worker->task);
1688 }
1689 }
1690
ea1abd61 1691 /* rebind busy workers */
25511a47
TH
1692 for_each_busy_worker(worker, i, pos, gcwq) {
1693 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1694 struct workqueue_struct *wq;
25511a47
TH
1695
1696 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1697 work_data_bits(rebind_work)))
1698 continue;
1699
25511a47 1700 debug_work_activate(rebind_work);
90beca5d 1701
e2b6a6d5
JK
1702 /*
1703 * wq doesn't really matter but let's keep @worker->pool
1704 * and @cwq->pool consistent for sanity.
1705 */
e34cdddb 1706 if (std_worker_pool_pri(worker->pool))
e2b6a6d5
JK
1707 wq = system_highpri_wq;
1708 else
1709 wq = system_wq;
ec58815a 1710
e2b6a6d5
JK
1711 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1712 worker->scheduled.next,
1713 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1714 }
25511a47
TH
1715}
1716
c34056a3
TH
1717static struct worker *alloc_worker(void)
1718{
1719 struct worker *worker;
1720
1721 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1722 if (worker) {
1723 INIT_LIST_HEAD(&worker->entry);
affee4b2 1724 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1725 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1726 /* on creation a worker is in !idle && prep state */
1727 worker->flags = WORKER_PREP;
c8e55f36 1728 }
c34056a3
TH
1729 return worker;
1730}
1731
1732/**
1733 * create_worker - create a new workqueue worker
63d95a91 1734 * @pool: pool the new worker will belong to
c34056a3 1735 *
63d95a91 1736 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1737 * can be started by calling start_worker() or destroyed using
1738 * destroy_worker().
1739 *
1740 * CONTEXT:
1741 * Might sleep. Does GFP_KERNEL allocations.
1742 *
1743 * RETURNS:
1744 * Pointer to the newly created worker.
1745 */
bc2ae0f5 1746static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1747{
63d95a91 1748 struct global_cwq *gcwq = pool->gcwq;
e34cdddb 1749 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1750 struct worker *worker = NULL;
f3421797 1751 int id = -1;
c34056a3 1752
8b03ae3c 1753 spin_lock_irq(&gcwq->lock);
bd7bdd43 1754 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1755 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1756 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1757 goto fail;
8b03ae3c 1758 spin_lock_irq(&gcwq->lock);
c34056a3 1759 }
8b03ae3c 1760 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1761
1762 worker = alloc_worker();
1763 if (!worker)
1764 goto fail;
1765
bd7bdd43 1766 worker->pool = pool;
c34056a3
TH
1767 worker->id = id;
1768
bc2ae0f5 1769 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1770 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1771 worker, cpu_to_node(gcwq->cpu),
1772 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1773 else
1774 worker->task = kthread_create(worker_thread, worker,
3270476a 1775 "kworker/u:%d%s", id, pri);
c34056a3
TH
1776 if (IS_ERR(worker->task))
1777 goto fail;
1778
e34cdddb 1779 if (std_worker_pool_pri(pool))
3270476a
TH
1780 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1781
db7bccf4 1782 /*
bc2ae0f5 1783 * Determine CPU binding of the new worker depending on
24647570 1784 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1785 * flag remains stable across this function. See the comments
1786 * above the flag definition for details.
1787 *
1788 * As an unbound worker may later become a regular one if CPU comes
1789 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1790 */
24647570 1791 if (!(pool->flags & POOL_DISASSOCIATED)) {
8b03ae3c 1792 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1793 } else {
db7bccf4 1794 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1795 worker->flags |= WORKER_UNBOUND;
f3421797 1796 }
c34056a3
TH
1797
1798 return worker;
1799fail:
1800 if (id >= 0) {
8b03ae3c 1801 spin_lock_irq(&gcwq->lock);
bd7bdd43 1802 ida_remove(&pool->worker_ida, id);
8b03ae3c 1803 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1804 }
1805 kfree(worker);
1806 return NULL;
1807}
1808
1809/**
1810 * start_worker - start a newly created worker
1811 * @worker: worker to start
1812 *
c8e55f36 1813 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1814 *
1815 * CONTEXT:
8b03ae3c 1816 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1817 */
1818static void start_worker(struct worker *worker)
1819{
cb444766 1820 worker->flags |= WORKER_STARTED;
bd7bdd43 1821 worker->pool->nr_workers++;
c8e55f36 1822 worker_enter_idle(worker);
c34056a3
TH
1823 wake_up_process(worker->task);
1824}
1825
1826/**
1827 * destroy_worker - destroy a workqueue worker
1828 * @worker: worker to be destroyed
1829 *
c8e55f36
TH
1830 * Destroy @worker and adjust @gcwq stats accordingly.
1831 *
1832 * CONTEXT:
1833 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1834 */
1835static void destroy_worker(struct worker *worker)
1836{
bd7bdd43
TH
1837 struct worker_pool *pool = worker->pool;
1838 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1839 int id = worker->id;
1840
1841 /* sanity check frenzy */
1842 BUG_ON(worker->current_work);
affee4b2 1843 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1844
c8e55f36 1845 if (worker->flags & WORKER_STARTED)
bd7bdd43 1846 pool->nr_workers--;
c8e55f36 1847 if (worker->flags & WORKER_IDLE)
bd7bdd43 1848 pool->nr_idle--;
c8e55f36
TH
1849
1850 list_del_init(&worker->entry);
cb444766 1851 worker->flags |= WORKER_DIE;
c8e55f36
TH
1852
1853 spin_unlock_irq(&gcwq->lock);
1854
c34056a3
TH
1855 kthread_stop(worker->task);
1856 kfree(worker);
1857
8b03ae3c 1858 spin_lock_irq(&gcwq->lock);
bd7bdd43 1859 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1860}
1861
63d95a91 1862static void idle_worker_timeout(unsigned long __pool)
e22bee78 1863{
63d95a91
TH
1864 struct worker_pool *pool = (void *)__pool;
1865 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1866
1867 spin_lock_irq(&gcwq->lock);
1868
63d95a91 1869 if (too_many_workers(pool)) {
e22bee78
TH
1870 struct worker *worker;
1871 unsigned long expires;
1872
1873 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1874 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1875 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1876
1877 if (time_before(jiffies, expires))
63d95a91 1878 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1879 else {
1880 /* it's been idle for too long, wake up manager */
11ebea50 1881 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1882 wake_up_worker(pool);
d5abe669 1883 }
e22bee78
TH
1884 }
1885
1886 spin_unlock_irq(&gcwq->lock);
1887}
d5abe669 1888
e22bee78
TH
1889static bool send_mayday(struct work_struct *work)
1890{
1891 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1892 struct workqueue_struct *wq = cwq->wq;
f3421797 1893 unsigned int cpu;
e22bee78
TH
1894
1895 if (!(wq->flags & WQ_RESCUER))
1896 return false;
1897
1898 /* mayday mayday mayday */
bd7bdd43 1899 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1900 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1901 if (cpu == WORK_CPU_UNBOUND)
1902 cpu = 0;
f2e005aa 1903 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1904 wake_up_process(wq->rescuer->task);
1905 return true;
1906}
1907
63d95a91 1908static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1909{
63d95a91
TH
1910 struct worker_pool *pool = (void *)__pool;
1911 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1912 struct work_struct *work;
1913
1914 spin_lock_irq(&gcwq->lock);
1915
63d95a91 1916 if (need_to_create_worker(pool)) {
e22bee78
TH
1917 /*
1918 * We've been trying to create a new worker but
1919 * haven't been successful. We might be hitting an
1920 * allocation deadlock. Send distress signals to
1921 * rescuers.
1922 */
63d95a91 1923 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1924 send_mayday(work);
1da177e4 1925 }
e22bee78
TH
1926
1927 spin_unlock_irq(&gcwq->lock);
1928
63d95a91 1929 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1930}
1931
e22bee78
TH
1932/**
1933 * maybe_create_worker - create a new worker if necessary
63d95a91 1934 * @pool: pool to create a new worker for
e22bee78 1935 *
63d95a91 1936 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1937 * have at least one idle worker on return from this function. If
1938 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1939 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1940 * possible allocation deadlock.
1941 *
1942 * On return, need_to_create_worker() is guaranteed to be false and
1943 * may_start_working() true.
1944 *
1945 * LOCKING:
1946 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1947 * multiple times. Does GFP_KERNEL allocations. Called only from
1948 * manager.
1949 *
1950 * RETURNS:
1951 * false if no action was taken and gcwq->lock stayed locked, true
1952 * otherwise.
1953 */
63d95a91 1954static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1955__releases(&gcwq->lock)
1956__acquires(&gcwq->lock)
1da177e4 1957{
63d95a91
TH
1958 struct global_cwq *gcwq = pool->gcwq;
1959
1960 if (!need_to_create_worker(pool))
e22bee78
TH
1961 return false;
1962restart:
9f9c2364
TH
1963 spin_unlock_irq(&gcwq->lock);
1964
e22bee78 1965 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1966 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1967
1968 while (true) {
1969 struct worker *worker;
1970
bc2ae0f5 1971 worker = create_worker(pool);
e22bee78 1972 if (worker) {
63d95a91 1973 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1974 spin_lock_irq(&gcwq->lock);
1975 start_worker(worker);
63d95a91 1976 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1977 return true;
1978 }
1979
63d95a91 1980 if (!need_to_create_worker(pool))
e22bee78 1981 break;
1da177e4 1982
e22bee78
TH
1983 __set_current_state(TASK_INTERRUPTIBLE);
1984 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1985
63d95a91 1986 if (!need_to_create_worker(pool))
e22bee78
TH
1987 break;
1988 }
1989
63d95a91 1990 del_timer_sync(&pool->mayday_timer);
e22bee78 1991 spin_lock_irq(&gcwq->lock);
63d95a91 1992 if (need_to_create_worker(pool))
e22bee78
TH
1993 goto restart;
1994 return true;
1995}
1996
1997/**
1998 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1999 * @pool: pool to destroy workers for
e22bee78 2000 *
63d95a91 2001 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2002 * IDLE_WORKER_TIMEOUT.
2003 *
2004 * LOCKING:
2005 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2006 * multiple times. Called only from manager.
2007 *
2008 * RETURNS:
2009 * false if no action was taken and gcwq->lock stayed locked, true
2010 * otherwise.
2011 */
63d95a91 2012static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2013{
2014 bool ret = false;
1da177e4 2015
63d95a91 2016 while (too_many_workers(pool)) {
e22bee78
TH
2017 struct worker *worker;
2018 unsigned long expires;
3af24433 2019
63d95a91 2020 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2021 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2022
e22bee78 2023 if (time_before(jiffies, expires)) {
63d95a91 2024 mod_timer(&pool->idle_timer, expires);
3af24433 2025 break;
e22bee78 2026 }
1da177e4 2027
e22bee78
TH
2028 destroy_worker(worker);
2029 ret = true;
1da177e4 2030 }
1e19ffc6 2031
e22bee78 2032 return ret;
1e19ffc6
TH
2033}
2034
73f53c4a 2035/**
e22bee78
TH
2036 * manage_workers - manage worker pool
2037 * @worker: self
73f53c4a 2038 *
e22bee78
TH
2039 * Assume the manager role and manage gcwq worker pool @worker belongs
2040 * to. At any given time, there can be only zero or one manager per
2041 * gcwq. The exclusion is handled automatically by this function.
2042 *
2043 * The caller can safely start processing works on false return. On
2044 * true return, it's guaranteed that need_to_create_worker() is false
2045 * and may_start_working() is true.
73f53c4a
TH
2046 *
2047 * CONTEXT:
e22bee78
TH
2048 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2049 * multiple times. Does GFP_KERNEL allocations.
2050 *
2051 * RETURNS:
2052 * false if no action was taken and gcwq->lock stayed locked, true if
2053 * some action was taken.
73f53c4a 2054 */
e22bee78 2055static bool manage_workers(struct worker *worker)
73f53c4a 2056{
63d95a91 2057 struct worker_pool *pool = worker->pool;
e22bee78 2058 bool ret = false;
73f53c4a 2059
ee378aa4 2060 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2061 return ret;
1e19ffc6 2062
552a37e9 2063 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2064
ee378aa4
LJ
2065 /*
2066 * To simplify both worker management and CPU hotplug, hold off
2067 * management while hotplug is in progress. CPU hotplug path can't
2068 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2069 * lead to idle worker depletion (all become busy thinking someone
2070 * else is managing) which in turn can result in deadlock under
b2eb83d1 2071 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2072 * manager against CPU hotplug.
2073 *
b2eb83d1 2074 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2075 * progress. trylock first without dropping @gcwq->lock.
2076 */
b2eb83d1 2077 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2078 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2079 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2080 /*
2081 * CPU hotplug could have happened while we were waiting
b2eb83d1 2082 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2083 * because manager isn't either on idle or busy list, and
2084 * @gcwq's state and ours could have deviated.
2085 *
b2eb83d1 2086 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2087 * simply try to bind. It will succeed or fail depending
2088 * on @gcwq's current state. Try it and adjust
2089 * %WORKER_UNBOUND accordingly.
2090 */
2091 if (worker_maybe_bind_and_lock(worker))
2092 worker->flags &= ~WORKER_UNBOUND;
2093 else
2094 worker->flags |= WORKER_UNBOUND;
73f53c4a 2095
ee378aa4
LJ
2096 ret = true;
2097 }
73f53c4a 2098
11ebea50 2099 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2100
2101 /*
e22bee78
TH
2102 * Destroy and then create so that may_start_working() is true
2103 * on return.
73f53c4a 2104 */
63d95a91
TH
2105 ret |= maybe_destroy_workers(pool);
2106 ret |= maybe_create_worker(pool);
e22bee78 2107
552a37e9 2108 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2109 mutex_unlock(&pool->assoc_mutex);
e22bee78 2110 return ret;
73f53c4a
TH
2111}
2112
a62428c0
TH
2113/**
2114 * process_one_work - process single work
c34056a3 2115 * @worker: self
a62428c0
TH
2116 * @work: work to process
2117 *
2118 * Process @work. This function contains all the logics necessary to
2119 * process a single work including synchronization against and
2120 * interaction with other workers on the same cpu, queueing and
2121 * flushing. As long as context requirement is met, any worker can
2122 * call this function to process a work.
2123 *
2124 * CONTEXT:
8b03ae3c 2125 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2126 */
c34056a3 2127static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2128__releases(&gcwq->lock)
2129__acquires(&gcwq->lock)
a62428c0 2130{
7e11629d 2131 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2132 struct worker_pool *pool = worker->pool;
2133 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2134 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2135 int work_color;
7e11629d 2136 struct worker *collision;
a62428c0
TH
2137#ifdef CONFIG_LOCKDEP
2138 /*
2139 * It is permissible to free the struct work_struct from
2140 * inside the function that is called from it, this we need to
2141 * take into account for lockdep too. To avoid bogus "held
2142 * lock freed" warnings as well as problems when looking into
2143 * work->lockdep_map, make a copy and use that here.
2144 */
4d82a1de
PZ
2145 struct lockdep_map lockdep_map;
2146
2147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2148#endif
6fec10a1
TH
2149 /*
2150 * Ensure we're on the correct CPU. DISASSOCIATED test is
2151 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2152 * unbound or a disassociated pool.
6fec10a1 2153 */
5f7dabfd 2154 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2155 !(pool->flags & POOL_DISASSOCIATED) &&
25511a47
TH
2156 raw_smp_processor_id() != gcwq->cpu);
2157
7e11629d
TH
2158 /*
2159 * A single work shouldn't be executed concurrently by
2160 * multiple workers on a single cpu. Check whether anyone is
2161 * already processing the work. If so, defer the work to the
2162 * currently executing one.
2163 */
42f8570f 2164 collision = find_worker_executing_work(gcwq, work);
7e11629d
TH
2165 if (unlikely(collision)) {
2166 move_linked_works(work, &collision->scheduled, NULL);
2167 return;
2168 }
2169
8930caba 2170 /* claim and dequeue */
a62428c0 2171 debug_work_deactivate(work);
023f27d3 2172 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2173 worker->current_work = work;
a2c1c57b 2174 worker->current_func = work->func;
8cca0eea 2175 worker->current_cwq = cwq;
73f53c4a 2176 work_color = get_work_color(work);
7a22ad75 2177
a62428c0
TH
2178 list_del_init(&work->entry);
2179
fb0e7beb
TH
2180 /*
2181 * CPU intensive works don't participate in concurrency
2182 * management. They're the scheduler's responsibility.
2183 */
2184 if (unlikely(cpu_intensive))
2185 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2186
974271c4
TH
2187 /*
2188 * Unbound gcwq isn't concurrency managed and work items should be
2189 * executed ASAP. Wake up another worker if necessary.
2190 */
63d95a91
TH
2191 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2192 wake_up_worker(pool);
974271c4 2193
8930caba 2194 /*
23657bb1
TH
2195 * Record the last CPU and clear PENDING which should be the last
2196 * update to @work. Also, do this inside @gcwq->lock so that
2197 * PENDING and queued state changes happen together while IRQ is
2198 * disabled.
8930caba 2199 */
8930caba 2200 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2201
8b03ae3c 2202 spin_unlock_irq(&gcwq->lock);
a62428c0 2203
e159489b 2204 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2205 lock_map_acquire(&lockdep_map);
e36c886a 2206 trace_workqueue_execute_start(work);
a2c1c57b 2207 worker->current_func(work);
e36c886a
AV
2208 /*
2209 * While we must be careful to not use "work" after this, the trace
2210 * point will only record its address.
2211 */
2212 trace_workqueue_execute_end(work);
a62428c0
TH
2213 lock_map_release(&lockdep_map);
2214 lock_map_release(&cwq->wq->lockdep_map);
2215
2216 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2217 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2218 " last function: %pf\n",
a2c1c57b
TH
2219 current->comm, preempt_count(), task_pid_nr(current),
2220 worker->current_func);
a62428c0
TH
2221 debug_show_held_locks(current);
2222 dump_stack();
2223 }
2224
8b03ae3c 2225 spin_lock_irq(&gcwq->lock);
a62428c0 2226
fb0e7beb
TH
2227 /* clear cpu intensive status */
2228 if (unlikely(cpu_intensive))
2229 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2230
a62428c0 2231 /* we're done with it, release */
42f8570f 2232 hash_del(&worker->hentry);
c34056a3 2233 worker->current_work = NULL;
a2c1c57b 2234 worker->current_func = NULL;
8cca0eea 2235 worker->current_cwq = NULL;
b3f9f405 2236 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2237}
2238
affee4b2
TH
2239/**
2240 * process_scheduled_works - process scheduled works
2241 * @worker: self
2242 *
2243 * Process all scheduled works. Please note that the scheduled list
2244 * may change while processing a work, so this function repeatedly
2245 * fetches a work from the top and executes it.
2246 *
2247 * CONTEXT:
8b03ae3c 2248 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2249 * multiple times.
2250 */
2251static void process_scheduled_works(struct worker *worker)
1da177e4 2252{
affee4b2
TH
2253 while (!list_empty(&worker->scheduled)) {
2254 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2255 struct work_struct, entry);
c34056a3 2256 process_one_work(worker, work);
1da177e4 2257 }
1da177e4
LT
2258}
2259
4690c4ab
TH
2260/**
2261 * worker_thread - the worker thread function
c34056a3 2262 * @__worker: self
4690c4ab 2263 *
e22bee78
TH
2264 * The gcwq worker thread function. There's a single dynamic pool of
2265 * these per each cpu. These workers process all works regardless of
2266 * their specific target workqueue. The only exception is works which
2267 * belong to workqueues with a rescuer which will be explained in
2268 * rescuer_thread().
4690c4ab 2269 */
c34056a3 2270static int worker_thread(void *__worker)
1da177e4 2271{
c34056a3 2272 struct worker *worker = __worker;
bd7bdd43
TH
2273 struct worker_pool *pool = worker->pool;
2274 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2275
e22bee78
TH
2276 /* tell the scheduler that this is a workqueue worker */
2277 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2278woke_up:
c8e55f36 2279 spin_lock_irq(&gcwq->lock);
1da177e4 2280
5f7dabfd
LJ
2281 /* we are off idle list if destruction or rebind is requested */
2282 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2283 spin_unlock_irq(&gcwq->lock);
25511a47 2284
5f7dabfd 2285 /* if DIE is set, destruction is requested */
25511a47
TH
2286 if (worker->flags & WORKER_DIE) {
2287 worker->task->flags &= ~PF_WQ_WORKER;
2288 return 0;
2289 }
2290
5f7dabfd 2291 /* otherwise, rebind */
25511a47
TH
2292 idle_worker_rebind(worker);
2293 goto woke_up;
c8e55f36 2294 }
affee4b2 2295
c8e55f36 2296 worker_leave_idle(worker);
db7bccf4 2297recheck:
e22bee78 2298 /* no more worker necessary? */
63d95a91 2299 if (!need_more_worker(pool))
e22bee78
TH
2300 goto sleep;
2301
2302 /* do we need to manage? */
63d95a91 2303 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2304 goto recheck;
2305
c8e55f36
TH
2306 /*
2307 * ->scheduled list can only be filled while a worker is
2308 * preparing to process a work or actually processing it.
2309 * Make sure nobody diddled with it while I was sleeping.
2310 */
2311 BUG_ON(!list_empty(&worker->scheduled));
2312
e22bee78
TH
2313 /*
2314 * When control reaches this point, we're guaranteed to have
2315 * at least one idle worker or that someone else has already
2316 * assumed the manager role.
2317 */
2318 worker_clr_flags(worker, WORKER_PREP);
2319
2320 do {
c8e55f36 2321 struct work_struct *work =
bd7bdd43 2322 list_first_entry(&pool->worklist,
c8e55f36
TH
2323 struct work_struct, entry);
2324
2325 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2326 /* optimization path, not strictly necessary */
2327 process_one_work(worker, work);
2328 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2329 process_scheduled_works(worker);
c8e55f36
TH
2330 } else {
2331 move_linked_works(work, &worker->scheduled, NULL);
2332 process_scheduled_works(worker);
affee4b2 2333 }
63d95a91 2334 } while (keep_working(pool));
e22bee78
TH
2335
2336 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2337sleep:
63d95a91 2338 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2339 goto recheck;
d313dd85 2340
c8e55f36 2341 /*
e22bee78
TH
2342 * gcwq->lock is held and there's no work to process and no
2343 * need to manage, sleep. Workers are woken up only while
2344 * holding gcwq->lock or from local cpu, so setting the
2345 * current state before releasing gcwq->lock is enough to
2346 * prevent losing any event.
c8e55f36
TH
2347 */
2348 worker_enter_idle(worker);
2349 __set_current_state(TASK_INTERRUPTIBLE);
2350 spin_unlock_irq(&gcwq->lock);
2351 schedule();
2352 goto woke_up;
1da177e4
LT
2353}
2354
e22bee78
TH
2355/**
2356 * rescuer_thread - the rescuer thread function
111c225a 2357 * @__rescuer: self
e22bee78
TH
2358 *
2359 * Workqueue rescuer thread function. There's one rescuer for each
2360 * workqueue which has WQ_RESCUER set.
2361 *
2362 * Regular work processing on a gcwq may block trying to create a new
2363 * worker which uses GFP_KERNEL allocation which has slight chance of
2364 * developing into deadlock if some works currently on the same queue
2365 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2366 * the problem rescuer solves.
2367 *
2368 * When such condition is possible, the gcwq summons rescuers of all
2369 * workqueues which have works queued on the gcwq and let them process
2370 * those works so that forward progress can be guaranteed.
2371 *
2372 * This should happen rarely.
2373 */
111c225a 2374static int rescuer_thread(void *__rescuer)
e22bee78 2375{
111c225a
TH
2376 struct worker *rescuer = __rescuer;
2377 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2378 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2379 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2380 unsigned int cpu;
2381
2382 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2383
2384 /*
2385 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2386 * doesn't participate in concurrency management.
2387 */
2388 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2389repeat:
2390 set_current_state(TASK_INTERRUPTIBLE);
2391
412d32e6
MG
2392 if (kthread_should_stop()) {
2393 __set_current_state(TASK_RUNNING);
111c225a 2394 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2395 return 0;
412d32e6 2396 }
e22bee78 2397
f3421797
TH
2398 /*
2399 * See whether any cpu is asking for help. Unbounded
2400 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2401 */
f2e005aa 2402 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2403 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2404 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2405 struct worker_pool *pool = cwq->pool;
2406 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2407 struct work_struct *work, *n;
2408
2409 __set_current_state(TASK_RUNNING);
f2e005aa 2410 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2411
2412 /* migrate to the target cpu if possible */
bd7bdd43 2413 rescuer->pool = pool;
e22bee78
TH
2414 worker_maybe_bind_and_lock(rescuer);
2415
2416 /*
2417 * Slurp in all works issued via this workqueue and
2418 * process'em.
2419 */
2420 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2421 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2422 if (get_work_cwq(work) == cwq)
2423 move_linked_works(work, scheduled, &n);
2424
2425 process_scheduled_works(rescuer);
7576958a
TH
2426
2427 /*
2428 * Leave this gcwq. If keep_working() is %true, notify a
2429 * regular worker; otherwise, we end up with 0 concurrency
2430 * and stalling the execution.
2431 */
63d95a91
TH
2432 if (keep_working(pool))
2433 wake_up_worker(pool);
7576958a 2434
e22bee78
TH
2435 spin_unlock_irq(&gcwq->lock);
2436 }
2437
111c225a
TH
2438 /* rescuers should never participate in concurrency management */
2439 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2440 schedule();
2441 goto repeat;
1da177e4
LT
2442}
2443
fc2e4d70
ON
2444struct wq_barrier {
2445 struct work_struct work;
2446 struct completion done;
2447};
2448
2449static void wq_barrier_func(struct work_struct *work)
2450{
2451 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2452 complete(&barr->done);
2453}
2454
4690c4ab
TH
2455/**
2456 * insert_wq_barrier - insert a barrier work
2457 * @cwq: cwq to insert barrier into
2458 * @barr: wq_barrier to insert
affee4b2
TH
2459 * @target: target work to attach @barr to
2460 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2461 *
affee4b2
TH
2462 * @barr is linked to @target such that @barr is completed only after
2463 * @target finishes execution. Please note that the ordering
2464 * guarantee is observed only with respect to @target and on the local
2465 * cpu.
2466 *
2467 * Currently, a queued barrier can't be canceled. This is because
2468 * try_to_grab_pending() can't determine whether the work to be
2469 * grabbed is at the head of the queue and thus can't clear LINKED
2470 * flag of the previous work while there must be a valid next work
2471 * after a work with LINKED flag set.
2472 *
2473 * Note that when @worker is non-NULL, @target may be modified
2474 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2475 *
2476 * CONTEXT:
8b03ae3c 2477 * spin_lock_irq(gcwq->lock).
4690c4ab 2478 */
83c22520 2479static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2480 struct wq_barrier *barr,
2481 struct work_struct *target, struct worker *worker)
fc2e4d70 2482{
affee4b2
TH
2483 struct list_head *head;
2484 unsigned int linked = 0;
2485
dc186ad7 2486 /*
8b03ae3c 2487 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2488 * as we know for sure that this will not trigger any of the
2489 * checks and call back into the fixup functions where we
2490 * might deadlock.
2491 */
ca1cab37 2492 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2493 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2494 init_completion(&barr->done);
83c22520 2495
affee4b2
TH
2496 /*
2497 * If @target is currently being executed, schedule the
2498 * barrier to the worker; otherwise, put it after @target.
2499 */
2500 if (worker)
2501 head = worker->scheduled.next;
2502 else {
2503 unsigned long *bits = work_data_bits(target);
2504
2505 head = target->entry.next;
2506 /* there can already be other linked works, inherit and set */
2507 linked = *bits & WORK_STRUCT_LINKED;
2508 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2509 }
2510
dc186ad7 2511 debug_work_activate(&barr->work);
affee4b2
TH
2512 insert_work(cwq, &barr->work, head,
2513 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2514}
2515
73f53c4a
TH
2516/**
2517 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2518 * @wq: workqueue being flushed
2519 * @flush_color: new flush color, < 0 for no-op
2520 * @work_color: new work color, < 0 for no-op
2521 *
2522 * Prepare cwqs for workqueue flushing.
2523 *
2524 * If @flush_color is non-negative, flush_color on all cwqs should be
2525 * -1. If no cwq has in-flight commands at the specified color, all
2526 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2527 * has in flight commands, its cwq->flush_color is set to
2528 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2529 * wakeup logic is armed and %true is returned.
2530 *
2531 * The caller should have initialized @wq->first_flusher prior to
2532 * calling this function with non-negative @flush_color. If
2533 * @flush_color is negative, no flush color update is done and %false
2534 * is returned.
2535 *
2536 * If @work_color is non-negative, all cwqs should have the same
2537 * work_color which is previous to @work_color and all will be
2538 * advanced to @work_color.
2539 *
2540 * CONTEXT:
2541 * mutex_lock(wq->flush_mutex).
2542 *
2543 * RETURNS:
2544 * %true if @flush_color >= 0 and there's something to flush. %false
2545 * otherwise.
2546 */
2547static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2548 int flush_color, int work_color)
1da177e4 2549{
73f53c4a
TH
2550 bool wait = false;
2551 unsigned int cpu;
1da177e4 2552
73f53c4a
TH
2553 if (flush_color >= 0) {
2554 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2555 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2556 }
2355b70f 2557
f3421797 2558 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2559 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2560 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2561
8b03ae3c 2562 spin_lock_irq(&gcwq->lock);
83c22520 2563
73f53c4a
TH
2564 if (flush_color >= 0) {
2565 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2566
73f53c4a
TH
2567 if (cwq->nr_in_flight[flush_color]) {
2568 cwq->flush_color = flush_color;
2569 atomic_inc(&wq->nr_cwqs_to_flush);
2570 wait = true;
2571 }
2572 }
1da177e4 2573
73f53c4a
TH
2574 if (work_color >= 0) {
2575 BUG_ON(work_color != work_next_color(cwq->work_color));
2576 cwq->work_color = work_color;
2577 }
1da177e4 2578
8b03ae3c 2579 spin_unlock_irq(&gcwq->lock);
1da177e4 2580 }
2355b70f 2581
73f53c4a
TH
2582 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2583 complete(&wq->first_flusher->done);
14441960 2584
73f53c4a 2585 return wait;
1da177e4
LT
2586}
2587
0fcb78c2 2588/**
1da177e4 2589 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2590 * @wq: workqueue to flush
1da177e4
LT
2591 *
2592 * Forces execution of the workqueue and blocks until its completion.
2593 * This is typically used in driver shutdown handlers.
2594 *
fc2e4d70
ON
2595 * We sleep until all works which were queued on entry have been handled,
2596 * but we are not livelocked by new incoming ones.
1da177e4 2597 */
7ad5b3a5 2598void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2599{
73f53c4a
TH
2600 struct wq_flusher this_flusher = {
2601 .list = LIST_HEAD_INIT(this_flusher.list),
2602 .flush_color = -1,
2603 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2604 };
2605 int next_color;
1da177e4 2606
3295f0ef
IM
2607 lock_map_acquire(&wq->lockdep_map);
2608 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2609
2610 mutex_lock(&wq->flush_mutex);
2611
2612 /*
2613 * Start-to-wait phase
2614 */
2615 next_color = work_next_color(wq->work_color);
2616
2617 if (next_color != wq->flush_color) {
2618 /*
2619 * Color space is not full. The current work_color
2620 * becomes our flush_color and work_color is advanced
2621 * by one.
2622 */
2623 BUG_ON(!list_empty(&wq->flusher_overflow));
2624 this_flusher.flush_color = wq->work_color;
2625 wq->work_color = next_color;
2626
2627 if (!wq->first_flusher) {
2628 /* no flush in progress, become the first flusher */
2629 BUG_ON(wq->flush_color != this_flusher.flush_color);
2630
2631 wq->first_flusher = &this_flusher;
2632
2633 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2634 wq->work_color)) {
2635 /* nothing to flush, done */
2636 wq->flush_color = next_color;
2637 wq->first_flusher = NULL;
2638 goto out_unlock;
2639 }
2640 } else {
2641 /* wait in queue */
2642 BUG_ON(wq->flush_color == this_flusher.flush_color);
2643 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2644 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2645 }
2646 } else {
2647 /*
2648 * Oops, color space is full, wait on overflow queue.
2649 * The next flush completion will assign us
2650 * flush_color and transfer to flusher_queue.
2651 */
2652 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2653 }
2654
2655 mutex_unlock(&wq->flush_mutex);
2656
2657 wait_for_completion(&this_flusher.done);
2658
2659 /*
2660 * Wake-up-and-cascade phase
2661 *
2662 * First flushers are responsible for cascading flushes and
2663 * handling overflow. Non-first flushers can simply return.
2664 */
2665 if (wq->first_flusher != &this_flusher)
2666 return;
2667
2668 mutex_lock(&wq->flush_mutex);
2669
4ce48b37
TH
2670 /* we might have raced, check again with mutex held */
2671 if (wq->first_flusher != &this_flusher)
2672 goto out_unlock;
2673
73f53c4a
TH
2674 wq->first_flusher = NULL;
2675
2676 BUG_ON(!list_empty(&this_flusher.list));
2677 BUG_ON(wq->flush_color != this_flusher.flush_color);
2678
2679 while (true) {
2680 struct wq_flusher *next, *tmp;
2681
2682 /* complete all the flushers sharing the current flush color */
2683 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2684 if (next->flush_color != wq->flush_color)
2685 break;
2686 list_del_init(&next->list);
2687 complete(&next->done);
2688 }
2689
2690 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2691 wq->flush_color != work_next_color(wq->work_color));
2692
2693 /* this flush_color is finished, advance by one */
2694 wq->flush_color = work_next_color(wq->flush_color);
2695
2696 /* one color has been freed, handle overflow queue */
2697 if (!list_empty(&wq->flusher_overflow)) {
2698 /*
2699 * Assign the same color to all overflowed
2700 * flushers, advance work_color and append to
2701 * flusher_queue. This is the start-to-wait
2702 * phase for these overflowed flushers.
2703 */
2704 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2705 tmp->flush_color = wq->work_color;
2706
2707 wq->work_color = work_next_color(wq->work_color);
2708
2709 list_splice_tail_init(&wq->flusher_overflow,
2710 &wq->flusher_queue);
2711 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2712 }
2713
2714 if (list_empty(&wq->flusher_queue)) {
2715 BUG_ON(wq->flush_color != wq->work_color);
2716 break;
2717 }
2718
2719 /*
2720 * Need to flush more colors. Make the next flusher
2721 * the new first flusher and arm cwqs.
2722 */
2723 BUG_ON(wq->flush_color == wq->work_color);
2724 BUG_ON(wq->flush_color != next->flush_color);
2725
2726 list_del_init(&next->list);
2727 wq->first_flusher = next;
2728
2729 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2730 break;
2731
2732 /*
2733 * Meh... this color is already done, clear first
2734 * flusher and repeat cascading.
2735 */
2736 wq->first_flusher = NULL;
2737 }
2738
2739out_unlock:
2740 mutex_unlock(&wq->flush_mutex);
1da177e4 2741}
ae90dd5d 2742EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2743
9c5a2ba7
TH
2744/**
2745 * drain_workqueue - drain a workqueue
2746 * @wq: workqueue to drain
2747 *
2748 * Wait until the workqueue becomes empty. While draining is in progress,
2749 * only chain queueing is allowed. IOW, only currently pending or running
2750 * work items on @wq can queue further work items on it. @wq is flushed
2751 * repeatedly until it becomes empty. The number of flushing is detemined
2752 * by the depth of chaining and should be relatively short. Whine if it
2753 * takes too long.
2754 */
2755void drain_workqueue(struct workqueue_struct *wq)
2756{
2757 unsigned int flush_cnt = 0;
2758 unsigned int cpu;
2759
2760 /*
2761 * __queue_work() needs to test whether there are drainers, is much
2762 * hotter than drain_workqueue() and already looks at @wq->flags.
2763 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2764 */
2765 spin_lock(&workqueue_lock);
2766 if (!wq->nr_drainers++)
2767 wq->flags |= WQ_DRAINING;
2768 spin_unlock(&workqueue_lock);
2769reflush:
2770 flush_workqueue(wq);
2771
2772 for_each_cwq_cpu(cpu, wq) {
2773 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2774 bool drained;
9c5a2ba7 2775
bd7bdd43 2776 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2777 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2778 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2779
2780 if (drained)
9c5a2ba7
TH
2781 continue;
2782
2783 if (++flush_cnt == 10 ||
2784 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2785 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2786 wq->name, flush_cnt);
9c5a2ba7
TH
2787 goto reflush;
2788 }
2789
2790 spin_lock(&workqueue_lock);
2791 if (!--wq->nr_drainers)
2792 wq->flags &= ~WQ_DRAINING;
2793 spin_unlock(&workqueue_lock);
2794}
2795EXPORT_SYMBOL_GPL(drain_workqueue);
2796
606a5020 2797static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2798{
affee4b2 2799 struct worker *worker = NULL;
8b03ae3c 2800 struct global_cwq *gcwq;
db700897 2801 struct cpu_workqueue_struct *cwq;
db700897
ON
2802
2803 might_sleep();
7a22ad75
TH
2804 gcwq = get_work_gcwq(work);
2805 if (!gcwq)
baf59022 2806 return false;
db700897 2807
8b03ae3c 2808 spin_lock_irq(&gcwq->lock);
db700897
ON
2809 if (!list_empty(&work->entry)) {
2810 /*
2811 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2812 * If it was re-queued to a different gcwq under us, we
2813 * are not going to wait.
db700897
ON
2814 */
2815 smp_rmb();
7a22ad75 2816 cwq = get_work_cwq(work);
bd7bdd43 2817 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2818 goto already_gone;
606a5020 2819 } else {
7a22ad75 2820 worker = find_worker_executing_work(gcwq, work);
affee4b2 2821 if (!worker)
4690c4ab 2822 goto already_gone;
7a22ad75 2823 cwq = worker->current_cwq;
606a5020 2824 }
db700897 2825
baf59022 2826 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2827 spin_unlock_irq(&gcwq->lock);
7a22ad75 2828
e159489b
TH
2829 /*
2830 * If @max_active is 1 or rescuer is in use, flushing another work
2831 * item on the same workqueue may lead to deadlock. Make sure the
2832 * flusher is not running on the same workqueue by verifying write
2833 * access.
2834 */
2835 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2836 lock_map_acquire(&cwq->wq->lockdep_map);
2837 else
2838 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2839 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2840
401a8d04 2841 return true;
4690c4ab 2842already_gone:
8b03ae3c 2843 spin_unlock_irq(&gcwq->lock);
401a8d04 2844 return false;
db700897 2845}
baf59022
TH
2846
2847/**
2848 * flush_work - wait for a work to finish executing the last queueing instance
2849 * @work: the work to flush
2850 *
606a5020
TH
2851 * Wait until @work has finished execution. @work is guaranteed to be idle
2852 * on return if it hasn't been requeued since flush started.
baf59022
TH
2853 *
2854 * RETURNS:
2855 * %true if flush_work() waited for the work to finish execution,
2856 * %false if it was already idle.
2857 */
2858bool flush_work(struct work_struct *work)
2859{
2860 struct wq_barrier barr;
2861
0976dfc1
SB
2862 lock_map_acquire(&work->lockdep_map);
2863 lock_map_release(&work->lockdep_map);
2864
606a5020 2865 if (start_flush_work(work, &barr)) {
401a8d04
TH
2866 wait_for_completion(&barr.done);
2867 destroy_work_on_stack(&barr.work);
2868 return true;
606a5020 2869 } else {
401a8d04 2870 return false;
6e84d644 2871 }
6e84d644 2872}
606a5020 2873EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2874
36e227d2 2875static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2876{
bbb68dfa 2877 unsigned long flags;
1f1f642e
ON
2878 int ret;
2879
2880 do {
bbb68dfa
TH
2881 ret = try_to_grab_pending(work, is_dwork, &flags);
2882 /*
2883 * If someone else is canceling, wait for the same event it
2884 * would be waiting for before retrying.
2885 */
2886 if (unlikely(ret == -ENOENT))
606a5020 2887 flush_work(work);
1f1f642e
ON
2888 } while (unlikely(ret < 0));
2889
bbb68dfa
TH
2890 /* tell other tasks trying to grab @work to back off */
2891 mark_work_canceling(work);
2892 local_irq_restore(flags);
2893
606a5020 2894 flush_work(work);
7a22ad75 2895 clear_work_data(work);
1f1f642e
ON
2896 return ret;
2897}
2898
6e84d644 2899/**
401a8d04
TH
2900 * cancel_work_sync - cancel a work and wait for it to finish
2901 * @work: the work to cancel
6e84d644 2902 *
401a8d04
TH
2903 * Cancel @work and wait for its execution to finish. This function
2904 * can be used even if the work re-queues itself or migrates to
2905 * another workqueue. On return from this function, @work is
2906 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2907 *
401a8d04
TH
2908 * cancel_work_sync(&delayed_work->work) must not be used for
2909 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2910 *
401a8d04 2911 * The caller must ensure that the workqueue on which @work was last
6e84d644 2912 * queued can't be destroyed before this function returns.
401a8d04
TH
2913 *
2914 * RETURNS:
2915 * %true if @work was pending, %false otherwise.
6e84d644 2916 */
401a8d04 2917bool cancel_work_sync(struct work_struct *work)
6e84d644 2918{
36e227d2 2919 return __cancel_work_timer(work, false);
b89deed3 2920}
28e53bdd 2921EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2922
6e84d644 2923/**
401a8d04
TH
2924 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2925 * @dwork: the delayed work to flush
6e84d644 2926 *
401a8d04
TH
2927 * Delayed timer is cancelled and the pending work is queued for
2928 * immediate execution. Like flush_work(), this function only
2929 * considers the last queueing instance of @dwork.
1f1f642e 2930 *
401a8d04
TH
2931 * RETURNS:
2932 * %true if flush_work() waited for the work to finish execution,
2933 * %false if it was already idle.
6e84d644 2934 */
401a8d04
TH
2935bool flush_delayed_work(struct delayed_work *dwork)
2936{
8930caba 2937 local_irq_disable();
401a8d04 2938 if (del_timer_sync(&dwork->timer))
1265057f 2939 __queue_work(dwork->cpu,
401a8d04 2940 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2941 local_irq_enable();
401a8d04
TH
2942 return flush_work(&dwork->work);
2943}
2944EXPORT_SYMBOL(flush_delayed_work);
2945
09383498 2946/**
57b30ae7
TH
2947 * cancel_delayed_work - cancel a delayed work
2948 * @dwork: delayed_work to cancel
09383498 2949 *
57b30ae7
TH
2950 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2951 * and canceled; %false if wasn't pending. Note that the work callback
2952 * function may still be running on return, unless it returns %true and the
2953 * work doesn't re-arm itself. Explicitly flush or use
2954 * cancel_delayed_work_sync() to wait on it.
09383498 2955 *
57b30ae7 2956 * This function is safe to call from any context including IRQ handler.
09383498 2957 */
57b30ae7 2958bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2959{
57b30ae7
TH
2960 unsigned long flags;
2961 int ret;
2962
2963 do {
2964 ret = try_to_grab_pending(&dwork->work, true, &flags);
2965 } while (unlikely(ret == -EAGAIN));
2966
2967 if (unlikely(ret < 0))
2968 return false;
2969
2970 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2971 local_irq_restore(flags);
c0158ca6 2972 return ret;
09383498 2973}
57b30ae7 2974EXPORT_SYMBOL(cancel_delayed_work);
09383498 2975
401a8d04
TH
2976/**
2977 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2978 * @dwork: the delayed work cancel
2979 *
2980 * This is cancel_work_sync() for delayed works.
2981 *
2982 * RETURNS:
2983 * %true if @dwork was pending, %false otherwise.
2984 */
2985bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2986{
36e227d2 2987 return __cancel_work_timer(&dwork->work, true);
6e84d644 2988}
f5a421a4 2989EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2990
0fcb78c2 2991/**
c1a220e7
ZR
2992 * schedule_work_on - put work task on a specific cpu
2993 * @cpu: cpu to put the work task on
2994 * @work: job to be done
2995 *
2996 * This puts a job on a specific cpu
2997 */
d4283e93 2998bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2999{
d320c038 3000 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3001}
3002EXPORT_SYMBOL(schedule_work_on);
3003
0fcb78c2 3004/**
0fcb78c2
REB
3005 * schedule_work - put work task in global workqueue
3006 * @work: job to be done
0fcb78c2 3007 *
d4283e93
TH
3008 * Returns %false if @work was already on the kernel-global workqueue and
3009 * %true otherwise.
5b0f437d
BVA
3010 *
3011 * This puts a job in the kernel-global workqueue if it was not already
3012 * queued and leaves it in the same position on the kernel-global
3013 * workqueue otherwise.
0fcb78c2 3014 */
d4283e93 3015bool schedule_work(struct work_struct *work)
1da177e4 3016{
d320c038 3017 return queue_work(system_wq, work);
1da177e4 3018}
ae90dd5d 3019EXPORT_SYMBOL(schedule_work);
1da177e4 3020
0fcb78c2
REB
3021/**
3022 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3023 * @cpu: cpu to use
52bad64d 3024 * @dwork: job to be done
0fcb78c2
REB
3025 * @delay: number of jiffies to wait
3026 *
3027 * After waiting for a given time this puts a job in the kernel-global
3028 * workqueue on the specified CPU.
3029 */
d4283e93
TH
3030bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3031 unsigned long delay)
1da177e4 3032{
d320c038 3033 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3034}
ae90dd5d 3035EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3036
0fcb78c2
REB
3037/**
3038 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3039 * @dwork: job to be done
3040 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3041 *
3042 * After waiting for a given time this puts a job in the kernel-global
3043 * workqueue.
3044 */
d4283e93 3045bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3046{
d320c038 3047 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3048}
ae90dd5d 3049EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3050
b6136773 3051/**
31ddd871 3052 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3053 * @func: the function to call
b6136773 3054 *
31ddd871
TH
3055 * schedule_on_each_cpu() executes @func on each online CPU using the
3056 * system workqueue and blocks until all CPUs have completed.
b6136773 3057 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3058 *
3059 * RETURNS:
3060 * 0 on success, -errno on failure.
b6136773 3061 */
65f27f38 3062int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3063{
3064 int cpu;
38f51568 3065 struct work_struct __percpu *works;
15316ba8 3066
b6136773
AM
3067 works = alloc_percpu(struct work_struct);
3068 if (!works)
15316ba8 3069 return -ENOMEM;
b6136773 3070
93981800
TH
3071 get_online_cpus();
3072
15316ba8 3073 for_each_online_cpu(cpu) {
9bfb1839
IM
3074 struct work_struct *work = per_cpu_ptr(works, cpu);
3075
3076 INIT_WORK(work, func);
b71ab8c2 3077 schedule_work_on(cpu, work);
65a64464 3078 }
93981800
TH
3079
3080 for_each_online_cpu(cpu)
3081 flush_work(per_cpu_ptr(works, cpu));
3082
95402b38 3083 put_online_cpus();
b6136773 3084 free_percpu(works);
15316ba8
CL
3085 return 0;
3086}
3087
eef6a7d5
AS
3088/**
3089 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3090 *
3091 * Forces execution of the kernel-global workqueue and blocks until its
3092 * completion.
3093 *
3094 * Think twice before calling this function! It's very easy to get into
3095 * trouble if you don't take great care. Either of the following situations
3096 * will lead to deadlock:
3097 *
3098 * One of the work items currently on the workqueue needs to acquire
3099 * a lock held by your code or its caller.
3100 *
3101 * Your code is running in the context of a work routine.
3102 *
3103 * They will be detected by lockdep when they occur, but the first might not
3104 * occur very often. It depends on what work items are on the workqueue and
3105 * what locks they need, which you have no control over.
3106 *
3107 * In most situations flushing the entire workqueue is overkill; you merely
3108 * need to know that a particular work item isn't queued and isn't running.
3109 * In such cases you should use cancel_delayed_work_sync() or
3110 * cancel_work_sync() instead.
3111 */
1da177e4
LT
3112void flush_scheduled_work(void)
3113{
d320c038 3114 flush_workqueue(system_wq);
1da177e4 3115}
ae90dd5d 3116EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3117
1fa44eca
JB
3118/**
3119 * execute_in_process_context - reliably execute the routine with user context
3120 * @fn: the function to execute
1fa44eca
JB
3121 * @ew: guaranteed storage for the execute work structure (must
3122 * be available when the work executes)
3123 *
3124 * Executes the function immediately if process context is available,
3125 * otherwise schedules the function for delayed execution.
3126 *
3127 * Returns: 0 - function was executed
3128 * 1 - function was scheduled for execution
3129 */
65f27f38 3130int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3131{
3132 if (!in_interrupt()) {
65f27f38 3133 fn(&ew->work);
1fa44eca
JB
3134 return 0;
3135 }
3136
65f27f38 3137 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3138 schedule_work(&ew->work);
3139
3140 return 1;
3141}
3142EXPORT_SYMBOL_GPL(execute_in_process_context);
3143
1da177e4
LT
3144int keventd_up(void)
3145{
d320c038 3146 return system_wq != NULL;
1da177e4
LT
3147}
3148
bdbc5dd7 3149static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3150{
65a64464 3151 /*
0f900049
TH
3152 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3153 * Make sure that the alignment isn't lower than that of
3154 * unsigned long long.
65a64464 3155 */
0f900049
TH
3156 const size_t size = sizeof(struct cpu_workqueue_struct);
3157 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3158 __alignof__(unsigned long long));
65a64464 3159
e06ffa1e 3160 if (!(wq->flags & WQ_UNBOUND))
f3421797 3161 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3162 else {
f3421797
TH
3163 void *ptr;
3164
3165 /*
3166 * Allocate enough room to align cwq and put an extra
3167 * pointer at the end pointing back to the originally
3168 * allocated pointer which will be used for free.
3169 */
3170 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3171 if (ptr) {
3172 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3173 *(void **)(wq->cpu_wq.single + 1) = ptr;
3174 }
bdbc5dd7 3175 }
f3421797 3176
0415b00d 3177 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3178 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3179 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3180}
3181
bdbc5dd7 3182static void free_cwqs(struct workqueue_struct *wq)
0f900049 3183{
e06ffa1e 3184 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3185 free_percpu(wq->cpu_wq.pcpu);
3186 else if (wq->cpu_wq.single) {
3187 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3188 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3189 }
0f900049
TH
3190}
3191
f3421797
TH
3192static int wq_clamp_max_active(int max_active, unsigned int flags,
3193 const char *name)
b71ab8c2 3194{
f3421797
TH
3195 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3196
3197 if (max_active < 1 || max_active > lim)
044c782c
VI
3198 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3199 max_active, name, 1, lim);
b71ab8c2 3200
f3421797 3201 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3202}
3203
b196be89 3204struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3205 unsigned int flags,
3206 int max_active,
3207 struct lock_class_key *key,
b196be89 3208 const char *lock_name, ...)
1da177e4 3209{
b196be89 3210 va_list args, args1;
1da177e4 3211 struct workqueue_struct *wq;
c34056a3 3212 unsigned int cpu;
b196be89
TH
3213 size_t namelen;
3214
3215 /* determine namelen, allocate wq and format name */
3216 va_start(args, lock_name);
3217 va_copy(args1, args);
3218 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3219
3220 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3221 if (!wq)
3222 goto err;
3223
3224 vsnprintf(wq->name, namelen, fmt, args1);
3225 va_end(args);
3226 va_end(args1);
1da177e4 3227
6370a6ad
TH
3228 /*
3229 * Workqueues which may be used during memory reclaim should
3230 * have a rescuer to guarantee forward progress.
3231 */
3232 if (flags & WQ_MEM_RECLAIM)
3233 flags |= WQ_RESCUER;
3234
d320c038 3235 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3236 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3237
b196be89 3238 /* init wq */
97e37d7b 3239 wq->flags = flags;
a0a1a5fd 3240 wq->saved_max_active = max_active;
73f53c4a
TH
3241 mutex_init(&wq->flush_mutex);
3242 atomic_set(&wq->nr_cwqs_to_flush, 0);
3243 INIT_LIST_HEAD(&wq->flusher_queue);
3244 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3245
eb13ba87 3246 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3247 INIT_LIST_HEAD(&wq->list);
3af24433 3248
bdbc5dd7
TH
3249 if (alloc_cwqs(wq) < 0)
3250 goto err;
3251
f3421797 3252 for_each_cwq_cpu(cpu, wq) {
1537663f 3253 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3254 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3255 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3256
0f900049 3257 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3258 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3259 cwq->wq = wq;
73f53c4a 3260 cwq->flush_color = -1;
1e19ffc6 3261 cwq->max_active = max_active;
1e19ffc6 3262 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3263 }
1537663f 3264
e22bee78
TH
3265 if (flags & WQ_RESCUER) {
3266 struct worker *rescuer;
3267
f2e005aa 3268 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3269 goto err;
3270
3271 wq->rescuer = rescuer = alloc_worker();
3272 if (!rescuer)
3273 goto err;
3274
111c225a
TH
3275 rescuer->rescue_wq = wq;
3276 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3277 wq->name);
e22bee78
TH
3278 if (IS_ERR(rescuer->task))
3279 goto err;
3280
e22bee78
TH
3281 rescuer->task->flags |= PF_THREAD_BOUND;
3282 wake_up_process(rescuer->task);
3af24433
ON
3283 }
3284
a0a1a5fd
TH
3285 /*
3286 * workqueue_lock protects global freeze state and workqueues
3287 * list. Grab it, set max_active accordingly and add the new
3288 * workqueue to workqueues list.
3289 */
1537663f 3290 spin_lock(&workqueue_lock);
a0a1a5fd 3291
58a69cb4 3292 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3293 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3294 get_cwq(cpu, wq)->max_active = 0;
3295
1537663f 3296 list_add(&wq->list, &workqueues);
a0a1a5fd 3297
1537663f
TH
3298 spin_unlock(&workqueue_lock);
3299
3af24433 3300 return wq;
4690c4ab
TH
3301err:
3302 if (wq) {
bdbc5dd7 3303 free_cwqs(wq);
f2e005aa 3304 free_mayday_mask(wq->mayday_mask);
e22bee78 3305 kfree(wq->rescuer);
4690c4ab
TH
3306 kfree(wq);
3307 }
3308 return NULL;
3af24433 3309}
d320c038 3310EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3311
3af24433
ON
3312/**
3313 * destroy_workqueue - safely terminate a workqueue
3314 * @wq: target workqueue
3315 *
3316 * Safely destroy a workqueue. All work currently pending will be done first.
3317 */
3318void destroy_workqueue(struct workqueue_struct *wq)
3319{
c8e55f36 3320 unsigned int cpu;
3af24433 3321
9c5a2ba7
TH
3322 /* drain it before proceeding with destruction */
3323 drain_workqueue(wq);
c8efcc25 3324
a0a1a5fd
TH
3325 /*
3326 * wq list is used to freeze wq, remove from list after
3327 * flushing is complete in case freeze races us.
3328 */
95402b38 3329 spin_lock(&workqueue_lock);
b1f4ec17 3330 list_del(&wq->list);
95402b38 3331 spin_unlock(&workqueue_lock);
3af24433 3332
e22bee78 3333 /* sanity check */
f3421797 3334 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3335 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3336 int i;
3337
73f53c4a
TH
3338 for (i = 0; i < WORK_NR_COLORS; i++)
3339 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3340 BUG_ON(cwq->nr_active);
3341 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3342 }
9b41ea72 3343
e22bee78
TH
3344 if (wq->flags & WQ_RESCUER) {
3345 kthread_stop(wq->rescuer->task);
f2e005aa 3346 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3347 kfree(wq->rescuer);
e22bee78
TH
3348 }
3349
bdbc5dd7 3350 free_cwqs(wq);
3af24433
ON
3351 kfree(wq);
3352}
3353EXPORT_SYMBOL_GPL(destroy_workqueue);
3354
9f4bd4cd
LJ
3355/**
3356 * cwq_set_max_active - adjust max_active of a cwq
3357 * @cwq: target cpu_workqueue_struct
3358 * @max_active: new max_active value.
3359 *
3360 * Set @cwq->max_active to @max_active and activate delayed works if
3361 * increased.
3362 *
3363 * CONTEXT:
3364 * spin_lock_irq(gcwq->lock).
3365 */
3366static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3367{
3368 cwq->max_active = max_active;
3369
3370 while (!list_empty(&cwq->delayed_works) &&
3371 cwq->nr_active < cwq->max_active)
3372 cwq_activate_first_delayed(cwq);
3373}
3374
dcd989cb
TH
3375/**
3376 * workqueue_set_max_active - adjust max_active of a workqueue
3377 * @wq: target workqueue
3378 * @max_active: new max_active value.
3379 *
3380 * Set max_active of @wq to @max_active.
3381 *
3382 * CONTEXT:
3383 * Don't call from IRQ context.
3384 */
3385void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3386{
3387 unsigned int cpu;
3388
f3421797 3389 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3390
3391 spin_lock(&workqueue_lock);
3392
3393 wq->saved_max_active = max_active;
3394
f3421797 3395 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3396 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3397 struct worker_pool *pool = cwq->pool;
3398 struct global_cwq *gcwq = pool->gcwq;
dcd989cb
TH
3399
3400 spin_lock_irq(&gcwq->lock);
3401
58a69cb4 3402 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3403 !(pool->flags & POOL_FREEZING))
3404 cwq_set_max_active(cwq, max_active);
9bfb1839 3405
dcd989cb 3406 spin_unlock_irq(&gcwq->lock);
65a64464 3407 }
93981800 3408
dcd989cb 3409 spin_unlock(&workqueue_lock);
15316ba8 3410}
dcd989cb 3411EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3412
eef6a7d5 3413/**
dcd989cb
TH
3414 * workqueue_congested - test whether a workqueue is congested
3415 * @cpu: CPU in question
3416 * @wq: target workqueue
eef6a7d5 3417 *
dcd989cb
TH
3418 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3419 * no synchronization around this function and the test result is
3420 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3421 *
dcd989cb
TH
3422 * RETURNS:
3423 * %true if congested, %false otherwise.
eef6a7d5 3424 */
dcd989cb 3425bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3426{
dcd989cb
TH
3427 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3428
3429 return !list_empty(&cwq->delayed_works);
1da177e4 3430}
dcd989cb 3431EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3432
1fa44eca 3433/**
dcd989cb
TH
3434 * work_cpu - return the last known associated cpu for @work
3435 * @work: the work of interest
1fa44eca 3436 *
dcd989cb 3437 * RETURNS:
bdbc5dd7 3438 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3439 */
e2905b29 3440static unsigned int work_cpu(struct work_struct *work)
1fa44eca 3441{
dcd989cb 3442 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3443
bdbc5dd7 3444 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3445}
1fa44eca 3446
dcd989cb
TH
3447/**
3448 * work_busy - test whether a work is currently pending or running
3449 * @work: the work to be tested
3450 *
3451 * Test whether @work is currently pending or running. There is no
3452 * synchronization around this function and the test result is
3453 * unreliable and only useful as advisory hints or for debugging.
3454 * Especially for reentrant wqs, the pending state might hide the
3455 * running state.
3456 *
3457 * RETURNS:
3458 * OR'd bitmask of WORK_BUSY_* bits.
3459 */
3460unsigned int work_busy(struct work_struct *work)
1da177e4 3461{
dcd989cb
TH
3462 struct global_cwq *gcwq = get_work_gcwq(work);
3463 unsigned long flags;
3464 unsigned int ret = 0;
1da177e4 3465
dcd989cb 3466 if (!gcwq)
999767be 3467 return 0;
1da177e4 3468
dcd989cb 3469 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3470
dcd989cb
TH
3471 if (work_pending(work))
3472 ret |= WORK_BUSY_PENDING;
3473 if (find_worker_executing_work(gcwq, work))
3474 ret |= WORK_BUSY_RUNNING;
1da177e4 3475
dcd989cb 3476 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3477
dcd989cb 3478 return ret;
1da177e4 3479}
dcd989cb 3480EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3481
db7bccf4
TH
3482/*
3483 * CPU hotplug.
3484 *
e22bee78
TH
3485 * There are two challenges in supporting CPU hotplug. Firstly, there
3486 * are a lot of assumptions on strong associations among work, cwq and
3487 * gcwq which make migrating pending and scheduled works very
3488 * difficult to implement without impacting hot paths. Secondly,
3489 * gcwqs serve mix of short, long and very long running works making
3490 * blocked draining impractical.
3491 *
24647570 3492 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3493 * running as an unbound one and allowing it to be reattached later if the
3494 * cpu comes back online.
db7bccf4 3495 */
1da177e4 3496
60373152 3497/* claim manager positions of all pools */
b2eb83d1 3498static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3499{
3500 struct worker_pool *pool;
3501
3502 for_each_worker_pool(pool, gcwq)
b2eb83d1 3503 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3504 spin_lock_irq(&gcwq->lock);
60373152
TH
3505}
3506
3507/* release manager positions */
b2eb83d1 3508static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3509{
3510 struct worker_pool *pool;
3511
8db25e78 3512 spin_unlock_irq(&gcwq->lock);
60373152 3513 for_each_worker_pool(pool, gcwq)
b2eb83d1 3514 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3515}
3516
628c78e7 3517static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3518{
628c78e7 3519 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3520 struct worker_pool *pool;
db7bccf4
TH
3521 struct worker *worker;
3522 struct hlist_node *pos;
3523 int i;
3af24433 3524
db7bccf4
TH
3525 BUG_ON(gcwq->cpu != smp_processor_id());
3526
b2eb83d1 3527 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3528
f2d5a0ee
TH
3529 /*
3530 * We've claimed all manager positions. Make all workers unbound
3531 * and set DISASSOCIATED. Before this, all workers except for the
3532 * ones which are still executing works from before the last CPU
3533 * down must be on the cpu. After this, they may become diasporas.
3534 */
60373152 3535 for_each_worker_pool(pool, gcwq)
4ce62e9e 3536 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3537 worker->flags |= WORKER_UNBOUND;
3af24433 3538
db7bccf4 3539 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3540 worker->flags |= WORKER_UNBOUND;
06ba38a9 3541
24647570
TH
3542 for_each_worker_pool(pool, gcwq)
3543 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3544
b2eb83d1 3545 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3546
e22bee78 3547 /*
403c821d 3548 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3549 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3550 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3551 */
e22bee78 3552 schedule();
06ba38a9 3553
e22bee78 3554 /*
628c78e7
TH
3555 * Sched callbacks are disabled now. Zap nr_running. After this,
3556 * nr_running stays zero and need_more_worker() and keep_working()
3557 * are always true as long as the worklist is not empty. @gcwq now
3558 * behaves as unbound (in terms of concurrency management) gcwq
3559 * which is served by workers tied to the CPU.
3560 *
3561 * On return from this function, the current worker would trigger
3562 * unbound chain execution of pending work items if other workers
3563 * didn't already.
e22bee78 3564 */
4ce62e9e
TH
3565 for_each_worker_pool(pool, gcwq)
3566 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3567}
3af24433 3568
8db25e78
TH
3569/*
3570 * Workqueues should be brought up before normal priority CPU notifiers.
3571 * This will be registered high priority CPU notifier.
3572 */
9fdf9b73 3573static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3574 unsigned long action,
3575 void *hcpu)
3af24433
ON
3576{
3577 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3578 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3579 struct worker_pool *pool;
3ce63377 3580
8db25e78 3581 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3582 case CPU_UP_PREPARE:
4ce62e9e 3583 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3584 struct worker *worker;
3585
3586 if (pool->nr_workers)
3587 continue;
3588
3589 worker = create_worker(pool);
3590 if (!worker)
3591 return NOTIFY_BAD;
3592
3593 spin_lock_irq(&gcwq->lock);
3594 start_worker(worker);
3595 spin_unlock_irq(&gcwq->lock);
3af24433 3596 }
8db25e78 3597 break;
3af24433 3598
db7bccf4
TH
3599 case CPU_DOWN_FAILED:
3600 case CPU_ONLINE:
b2eb83d1 3601 gcwq_claim_assoc_and_lock(gcwq);
24647570
TH
3602 for_each_worker_pool(pool, gcwq)
3603 pool->flags &= ~POOL_DISASSOCIATED;
25511a47 3604 rebind_workers(gcwq);
b2eb83d1 3605 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3606 break;
00dfcaf7 3607 }
65758202
TH
3608 return NOTIFY_OK;
3609}
3610
3611/*
3612 * Workqueues should be brought down after normal priority CPU notifiers.
3613 * This will be registered as low priority CPU notifier.
3614 */
9fdf9b73 3615static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3616 unsigned long action,
3617 void *hcpu)
3618{
8db25e78
TH
3619 unsigned int cpu = (unsigned long)hcpu;
3620 struct work_struct unbind_work;
3621
65758202
TH
3622 switch (action & ~CPU_TASKS_FROZEN) {
3623 case CPU_DOWN_PREPARE:
8db25e78
TH
3624 /* unbinding should happen on the local CPU */
3625 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3626 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3627 flush_work(&unbind_work);
3628 break;
65758202
TH
3629 }
3630 return NOTIFY_OK;
3631}
3632
2d3854a3 3633#ifdef CONFIG_SMP
8ccad40d 3634
2d3854a3 3635struct work_for_cpu {
ed48ece2 3636 struct work_struct work;
2d3854a3
RR
3637 long (*fn)(void *);
3638 void *arg;
3639 long ret;
3640};
3641
ed48ece2 3642static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3643{
ed48ece2
TH
3644 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3645
2d3854a3
RR
3646 wfc->ret = wfc->fn(wfc->arg);
3647}
3648
3649/**
3650 * work_on_cpu - run a function in user context on a particular cpu
3651 * @cpu: the cpu to run on
3652 * @fn: the function to run
3653 * @arg: the function arg
3654 *
31ad9081
RR
3655 * This will return the value @fn returns.
3656 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3657 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3658 */
3659long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3660{
ed48ece2 3661 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3662
ed48ece2
TH
3663 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3664 schedule_work_on(cpu, &wfc.work);
3665 flush_work(&wfc.work);
2d3854a3
RR
3666 return wfc.ret;
3667}
3668EXPORT_SYMBOL_GPL(work_on_cpu);
3669#endif /* CONFIG_SMP */
3670
a0a1a5fd
TH
3671#ifdef CONFIG_FREEZER
3672
3673/**
3674 * freeze_workqueues_begin - begin freezing workqueues
3675 *
58a69cb4
TH
3676 * Start freezing workqueues. After this function returns, all freezable
3677 * workqueues will queue new works to their frozen_works list instead of
3678 * gcwq->worklist.
a0a1a5fd
TH
3679 *
3680 * CONTEXT:
8b03ae3c 3681 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3682 */
3683void freeze_workqueues_begin(void)
3684{
a0a1a5fd
TH
3685 unsigned int cpu;
3686
3687 spin_lock(&workqueue_lock);
3688
3689 BUG_ON(workqueue_freezing);
3690 workqueue_freezing = true;
3691
f3421797 3692 for_each_gcwq_cpu(cpu) {
8b03ae3c 3693 struct global_cwq *gcwq = get_gcwq(cpu);
35b6bb63 3694 struct worker_pool *pool;
bdbc5dd7 3695 struct workqueue_struct *wq;
8b03ae3c
TH
3696
3697 spin_lock_irq(&gcwq->lock);
3698
35b6bb63
TH
3699 for_each_worker_pool(pool, gcwq) {
3700 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3701 pool->flags |= POOL_FREEZING;
3702 }
db7bccf4 3703
a0a1a5fd
TH
3704 list_for_each_entry(wq, &workqueues, list) {
3705 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3706
58a69cb4 3707 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3708 cwq->max_active = 0;
a0a1a5fd 3709 }
8b03ae3c
TH
3710
3711 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3712 }
3713
3714 spin_unlock(&workqueue_lock);
3715}
3716
3717/**
58a69cb4 3718 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3719 *
3720 * Check whether freezing is complete. This function must be called
3721 * between freeze_workqueues_begin() and thaw_workqueues().
3722 *
3723 * CONTEXT:
3724 * Grabs and releases workqueue_lock.
3725 *
3726 * RETURNS:
58a69cb4
TH
3727 * %true if some freezable workqueues are still busy. %false if freezing
3728 * is complete.
a0a1a5fd
TH
3729 */
3730bool freeze_workqueues_busy(void)
3731{
a0a1a5fd
TH
3732 unsigned int cpu;
3733 bool busy = false;
3734
3735 spin_lock(&workqueue_lock);
3736
3737 BUG_ON(!workqueue_freezing);
3738
f3421797 3739 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3740 struct workqueue_struct *wq;
a0a1a5fd
TH
3741 /*
3742 * nr_active is monotonically decreasing. It's safe
3743 * to peek without lock.
3744 */
3745 list_for_each_entry(wq, &workqueues, list) {
3746 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3747
58a69cb4 3748 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3749 continue;
3750
3751 BUG_ON(cwq->nr_active < 0);
3752 if (cwq->nr_active) {
3753 busy = true;
3754 goto out_unlock;
3755 }
3756 }
3757 }
3758out_unlock:
3759 spin_unlock(&workqueue_lock);
3760 return busy;
3761}
3762
3763/**
3764 * thaw_workqueues - thaw workqueues
3765 *
3766 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3767 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3768 *
3769 * CONTEXT:
8b03ae3c 3770 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3771 */
3772void thaw_workqueues(void)
3773{
a0a1a5fd
TH
3774 unsigned int cpu;
3775
3776 spin_lock(&workqueue_lock);
3777
3778 if (!workqueue_freezing)
3779 goto out_unlock;
3780
f3421797 3781 for_each_gcwq_cpu(cpu) {
8b03ae3c 3782 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3783 struct worker_pool *pool;
bdbc5dd7 3784 struct workqueue_struct *wq;
8b03ae3c
TH
3785
3786 spin_lock_irq(&gcwq->lock);
3787
35b6bb63
TH
3788 for_each_worker_pool(pool, gcwq) {
3789 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3790 pool->flags &= ~POOL_FREEZING;
3791 }
db7bccf4 3792
a0a1a5fd
TH
3793 list_for_each_entry(wq, &workqueues, list) {
3794 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3795
58a69cb4 3796 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3797 continue;
3798
a0a1a5fd 3799 /* restore max_active and repopulate worklist */
9f4bd4cd 3800 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3801 }
8b03ae3c 3802
4ce62e9e
TH
3803 for_each_worker_pool(pool, gcwq)
3804 wake_up_worker(pool);
e22bee78 3805
8b03ae3c 3806 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3807 }
3808
3809 workqueue_freezing = false;
3810out_unlock:
3811 spin_unlock(&workqueue_lock);
3812}
3813#endif /* CONFIG_FREEZER */
3814
6ee0578b 3815static int __init init_workqueues(void)
1da177e4 3816{
c34056a3
TH
3817 unsigned int cpu;
3818
b5490077
TH
3819 /* make sure we have enough bits for OFFQ CPU number */
3820 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3821 WORK_CPU_LAST);
3822
65758202 3823 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3824 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3825
3826 /* initialize gcwqs */
f3421797 3827 for_each_gcwq_cpu(cpu) {
8b03ae3c 3828 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3829 struct worker_pool *pool;
8b03ae3c
TH
3830
3831 spin_lock_init(&gcwq->lock);
3832 gcwq->cpu = cpu;
3833
42f8570f 3834 hash_init(gcwq->busy_hash);
c8e55f36 3835
4ce62e9e
TH
3836 for_each_worker_pool(pool, gcwq) {
3837 pool->gcwq = gcwq;
24647570 3838 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3839 INIT_LIST_HEAD(&pool->worklist);
3840 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3841
4ce62e9e
TH
3842 init_timer_deferrable(&pool->idle_timer);
3843 pool->idle_timer.function = idle_worker_timeout;
3844 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3845
4ce62e9e
TH
3846 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3847 (unsigned long)pool);
3848
b2eb83d1 3849 mutex_init(&pool->assoc_mutex);
4ce62e9e 3850 ida_init(&pool->worker_ida);
9daf9e67
TH
3851
3852 /* alloc pool ID */
3853 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3854 }
8b03ae3c
TH
3855 }
3856
e22bee78 3857 /* create the initial worker */
f3421797 3858 for_each_online_gcwq_cpu(cpu) {
e22bee78 3859 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3860 struct worker_pool *pool;
e22bee78 3861
4ce62e9e
TH
3862 for_each_worker_pool(pool, gcwq) {
3863 struct worker *worker;
3864
24647570
TH
3865 if (cpu != WORK_CPU_UNBOUND)
3866 pool->flags &= ~POOL_DISASSOCIATED;
3867
bc2ae0f5 3868 worker = create_worker(pool);
4ce62e9e
TH
3869 BUG_ON(!worker);
3870 spin_lock_irq(&gcwq->lock);
3871 start_worker(worker);
3872 spin_unlock_irq(&gcwq->lock);
3873 }
e22bee78
TH
3874 }
3875
d320c038 3876 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3877 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3878 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3879 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3880 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3881 system_freezable_wq = alloc_workqueue("events_freezable",
3882 WQ_FREEZABLE, 0);
1aabe902 3883 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3884 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3885 return 0;
1da177e4 3886}
6ee0578b 3887early_initcall(init_workqueues);