workqueue: fix max_active handling in init_and_link_pwq()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c9e7cf27
TH
148 /* workers are chained either in busy_hash or idle_list */
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
34a06bd6 152 struct mutex manager_arb; /* manager arbitration */
24647570 153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 154 struct ida worker_ida; /* L: for worker IDs */
e19e397a 155
7a4e344c 156 struct workqueue_attrs *attrs; /* I: worker attributes */
29c91e99
TH
157 struct hlist_node hash_node; /* R: unbound_pool_hash node */
158 int refcnt; /* refcnt for unbound pools */
7a4e344c 159
e19e397a
TH
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
8b03ae3c
TH
172} ____cacheline_aligned_in_smp;
173
1da177e4 174/*
112202d9
TH
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
1da177e4 179 */
112202d9 180struct pool_workqueue {
bd7bdd43 181 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 182 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
8864b4e5 185 int refcnt; /* L: reference count */
73f53c4a
TH
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
1e19ffc6 188 int nr_active; /* L: nr of active works */
a0a1a5fd 189 int max_active; /* L: max active works */
1e19ffc6 190 struct list_head delayed_works; /* L: delayed works */
75ccf595 191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 192 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
e904e6c2 202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 203
73f53c4a
TH
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
226223ab
TH
213struct wq_device;
214
1da177e4
LT
215/*
216 * The externally visible workqueue abstraction is an array of
217 * per-CPU workqueues:
218 */
219struct workqueue_struct {
9c5a2ba7 220 unsigned int flags; /* W: WQ_* flags */
420c0ddb 221 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 222 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 223 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
112202d9 228 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
493a1724 233 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
234 struct worker *rescuer; /* I: rescue worker */
235
9c5a2ba7 236 int nr_drainers; /* W: drain in progress */
112202d9 237 int saved_max_active; /* W: saved pwq max_active */
226223ab
TH
238
239#ifdef CONFIG_SYSFS
240 struct wq_device *wq_dev; /* I: for sysfs interface */
241#endif
4e6045f1 242#ifdef CONFIG_LOCKDEP
4690c4ab 243 struct lockdep_map lockdep_map;
4e6045f1 244#endif
b196be89 245 char name[]; /* I: workqueue name */
1da177e4
LT
246};
247
e904e6c2
TH
248static struct kmem_cache *pwq_cache;
249
29c91e99
TH
250/* hash of all unbound pools keyed by pool->attrs */
251static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
252
253static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
254
d320c038 255struct workqueue_struct *system_wq __read_mostly;
d320c038 256EXPORT_SYMBOL_GPL(system_wq);
044c782c 257struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 258EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 259struct workqueue_struct *system_long_wq __read_mostly;
d320c038 260EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 261struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 262EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 263struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 264EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 265
97bd2347
TH
266#define CREATE_TRACE_POINTS
267#include <trace/events/workqueue.h>
268
76af4d93
TH
269#define assert_rcu_or_wq_lock() \
270 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
271 lockdep_is_held(&workqueue_lock), \
272 "sched RCU or workqueue lock should be held")
273
f02ae73a
TH
274#define for_each_cpu_worker_pool(pool, cpu) \
275 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
276 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 277 (pool)++)
4ce62e9e 278
b67bfe0d
SL
279#define for_each_busy_worker(worker, i, pool) \
280 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 281
17116969
TH
282/**
283 * for_each_pool - iterate through all worker_pools in the system
284 * @pool: iteration cursor
285 * @id: integer used for iteration
fa1b54e6
TH
286 *
287 * This must be called either with workqueue_lock held or sched RCU read
288 * locked. If the pool needs to be used beyond the locking in effect, the
289 * caller is responsible for guaranteeing that the pool stays online.
290 *
291 * The if/else clause exists only for the lockdep assertion and can be
292 * ignored.
17116969
TH
293 */
294#define for_each_pool(pool, id) \
fa1b54e6
TH
295 idr_for_each_entry(&worker_pool_idr, pool, id) \
296 if (({ assert_rcu_or_wq_lock(); false; })) { } \
297 else
17116969 298
49e3cf44
TH
299/**
300 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
301 * @pwq: iteration cursor
302 * @wq: the target workqueue
76af4d93
TH
303 *
304 * This must be called either with workqueue_lock held or sched RCU read
305 * locked. If the pwq needs to be used beyond the locking in effect, the
306 * caller is responsible for guaranteeing that the pwq stays online.
307 *
308 * The if/else clause exists only for the lockdep assertion and can be
309 * ignored.
49e3cf44
TH
310 */
311#define for_each_pwq(pwq, wq) \
76af4d93
TH
312 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
313 if (({ assert_rcu_or_wq_lock(); false; })) { } \
314 else
f3421797 315
dc186ad7
TG
316#ifdef CONFIG_DEBUG_OBJECTS_WORK
317
318static struct debug_obj_descr work_debug_descr;
319
99777288
SG
320static void *work_debug_hint(void *addr)
321{
322 return ((struct work_struct *) addr)->func;
323}
324
dc186ad7
TG
325/*
326 * fixup_init is called when:
327 * - an active object is initialized
328 */
329static int work_fixup_init(void *addr, enum debug_obj_state state)
330{
331 struct work_struct *work = addr;
332
333 switch (state) {
334 case ODEBUG_STATE_ACTIVE:
335 cancel_work_sync(work);
336 debug_object_init(work, &work_debug_descr);
337 return 1;
338 default:
339 return 0;
340 }
341}
342
343/*
344 * fixup_activate is called when:
345 * - an active object is activated
346 * - an unknown object is activated (might be a statically initialized object)
347 */
348static int work_fixup_activate(void *addr, enum debug_obj_state state)
349{
350 struct work_struct *work = addr;
351
352 switch (state) {
353
354 case ODEBUG_STATE_NOTAVAILABLE:
355 /*
356 * This is not really a fixup. The work struct was
357 * statically initialized. We just make sure that it
358 * is tracked in the object tracker.
359 */
22df02bb 360 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
361 debug_object_init(work, &work_debug_descr);
362 debug_object_activate(work, &work_debug_descr);
363 return 0;
364 }
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int work_fixup_free(void *addr, enum debug_obj_state state)
381{
382 struct work_struct *work = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 cancel_work_sync(work);
387 debug_object_free(work, &work_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394static struct debug_obj_descr work_debug_descr = {
395 .name = "work_struct",
99777288 396 .debug_hint = work_debug_hint,
dc186ad7
TG
397 .fixup_init = work_fixup_init,
398 .fixup_activate = work_fixup_activate,
399 .fixup_free = work_fixup_free,
400};
401
402static inline void debug_work_activate(struct work_struct *work)
403{
404 debug_object_activate(work, &work_debug_descr);
405}
406
407static inline void debug_work_deactivate(struct work_struct *work)
408{
409 debug_object_deactivate(work, &work_debug_descr);
410}
411
412void __init_work(struct work_struct *work, int onstack)
413{
414 if (onstack)
415 debug_object_init_on_stack(work, &work_debug_descr);
416 else
417 debug_object_init(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(__init_work);
420
421void destroy_work_on_stack(struct work_struct *work)
422{
423 debug_object_free(work, &work_debug_descr);
424}
425EXPORT_SYMBOL_GPL(destroy_work_on_stack);
426
427#else
428static inline void debug_work_activate(struct work_struct *work) { }
429static inline void debug_work_deactivate(struct work_struct *work) { }
430#endif
431
95402b38
GS
432/* Serializes the accesses to the list of workqueues. */
433static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 434static LIST_HEAD(workqueues);
a0a1a5fd 435static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 436
e22bee78 437/*
e19e397a
TH
438 * The CPU and unbound standard worker pools. The unbound ones have
439 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 440 */
e19e397a 441static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 442 cpu_worker_pools);
f3421797 443
fa1b54e6
TH
444/*
445 * idr of all pools. Modifications are protected by workqueue_lock. Read
446 * accesses are protected by sched-RCU protected.
447 */
9daf9e67
TH
448static DEFINE_IDR(worker_pool_idr);
449
c34056a3 450static int worker_thread(void *__worker);
226223ab
TH
451static void copy_workqueue_attrs(struct workqueue_attrs *to,
452 const struct workqueue_attrs *from);
1da177e4 453
9daf9e67
TH
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
fa1b54e6
TH
459 do {
460 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
461 return -ENOMEM;
9daf9e67 462
fa1b54e6
TH
463 spin_lock_irq(&workqueue_lock);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 spin_unlock_irq(&workqueue_lock);
466 } while (ret == -EAGAIN);
9daf9e67 467
fa1b54e6 468 return ret;
7c3eed5c
TH
469}
470
76af4d93
TH
471/**
472 * first_pwq - return the first pool_workqueue of the specified workqueue
473 * @wq: the target workqueue
474 *
475 * This must be called either with workqueue_lock held or sched RCU read
476 * locked. If the pwq needs to be used beyond the locking in effect, the
477 * caller is responsible for guaranteeing that the pwq stays online.
478 */
7fb98ea7 479static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 480{
76af4d93
TH
481 assert_rcu_or_wq_lock();
482 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
483 pwqs_node);
b1f4ec17
ON
484}
485
73f53c4a
TH
486static unsigned int work_color_to_flags(int color)
487{
488 return color << WORK_STRUCT_COLOR_SHIFT;
489}
490
491static int get_work_color(struct work_struct *work)
492{
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495}
496
497static int work_next_color(int color)
498{
499 return (color + 1) % WORK_NR_COLORS;
500}
1da177e4 501
14441960 502/*
112202d9
TH
503 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
504 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 505 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 506 *
112202d9
TH
507 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
508 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
509 * work->data. These functions should only be called while the work is
510 * owned - ie. while the PENDING bit is set.
7a22ad75 511 *
112202d9 512 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 513 * corresponding to a work. Pool is available once the work has been
112202d9 514 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 515 * available only while the work item is queued.
7a22ad75 516 *
bbb68dfa
TH
517 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
518 * canceled. While being canceled, a work item may have its PENDING set
519 * but stay off timer and worklist for arbitrarily long and nobody should
520 * try to steal the PENDING bit.
14441960 521 */
7a22ad75
TH
522static inline void set_work_data(struct work_struct *work, unsigned long data,
523 unsigned long flags)
365970a1 524{
6183c009 525 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
526 atomic_long_set(&work->data, data | flags | work_static(work));
527}
365970a1 528
112202d9 529static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
530 unsigned long extra_flags)
531{
112202d9
TH
532 set_work_data(work, (unsigned long)pwq,
533 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
534}
535
4468a00f
LJ
536static void set_work_pool_and_keep_pending(struct work_struct *work,
537 int pool_id)
538{
539 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
540 WORK_STRUCT_PENDING);
541}
542
7c3eed5c
TH
543static void set_work_pool_and_clear_pending(struct work_struct *work,
544 int pool_id)
7a22ad75 545{
23657bb1
TH
546 /*
547 * The following wmb is paired with the implied mb in
548 * test_and_set_bit(PENDING) and ensures all updates to @work made
549 * here are visible to and precede any updates by the next PENDING
550 * owner.
551 */
552 smp_wmb();
7c3eed5c 553 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 554}
f756d5e2 555
7a22ad75 556static void clear_work_data(struct work_struct *work)
1da177e4 557{
7c3eed5c
TH
558 smp_wmb(); /* see set_work_pool_and_clear_pending() */
559 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
560}
561
112202d9 562static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 563{
e120153d 564 unsigned long data = atomic_long_read(&work->data);
7a22ad75 565
112202d9 566 if (data & WORK_STRUCT_PWQ)
e120153d
TH
567 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
568 else
569 return NULL;
4d707b9f
ON
570}
571
7c3eed5c
TH
572/**
573 * get_work_pool - return the worker_pool a given work was associated with
574 * @work: the work item of interest
575 *
576 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
577 *
578 * Pools are created and destroyed under workqueue_lock, and allows read
579 * access under sched-RCU read lock. As such, this function should be
580 * called under workqueue_lock or with preemption disabled.
581 *
582 * All fields of the returned pool are accessible as long as the above
583 * mentioned locking is in effect. If the returned pool needs to be used
584 * beyond the critical section, the caller is responsible for ensuring the
585 * returned pool is and stays online.
7c3eed5c
TH
586 */
587static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 588{
e120153d 589 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 590 int pool_id;
7a22ad75 591
fa1b54e6
TH
592 assert_rcu_or_wq_lock();
593
112202d9
TH
594 if (data & WORK_STRUCT_PWQ)
595 return ((struct pool_workqueue *)
7c3eed5c 596 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 597
7c3eed5c
TH
598 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
599 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
600 return NULL;
601
fa1b54e6 602 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
54d5b7d0
LJ
614 unsigned long data = atomic_long_read(&work->data);
615
112202d9
TH
616 if (data & WORK_STRUCT_PWQ)
617 return ((struct pool_workqueue *)
54d5b7d0 618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 619
54d5b7d0 620 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
621}
622
bbb68dfa
TH
623static void mark_work_canceling(struct work_struct *work)
624{
7c3eed5c 625 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 626
7c3eed5c
TH
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
112202d9 635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
636}
637
e22bee78 638/*
3270476a
TH
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 641 * they're being called with pool->lock held.
e22bee78
TH
642 */
643
63d95a91 644static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 645{
e19e397a 646 return !atomic_read(&pool->nr_running);
a848e3b6
ON
647}
648
4594bf15 649/*
e22bee78
TH
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
974271c4
TH
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
706026c2 654 * function will always return %true for unbound pools as long as the
974271c4 655 * worklist isn't empty.
4594bf15 656 */
63d95a91 657static bool need_more_worker(struct worker_pool *pool)
365970a1 658{
63d95a91 659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 660}
4594bf15 661
e22bee78 662/* Can I start working? Called from busy but !running workers. */
63d95a91 663static bool may_start_working(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 return pool->nr_idle;
e22bee78
TH
666}
667
668/* Do I need to keep working? Called from currently running workers. */
63d95a91 669static bool keep_working(struct worker_pool *pool)
e22bee78 670{
e19e397a
TH
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
673}
674
675/* Do we need a new worker? Called from manager. */
63d95a91 676static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 677{
63d95a91 678 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 679}
365970a1 680
e22bee78 681/* Do I need to be the manager? */
63d95a91 682static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 683{
63d95a91 684 return need_to_create_worker(pool) ||
11ebea50 685 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
686}
687
688/* Do we have too many workers and should some go away? */
63d95a91 689static bool too_many_workers(struct worker_pool *pool)
e22bee78 690{
34a06bd6 691 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 694
ea1abd61
LJ
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
e22bee78 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
703}
704
4d707b9f 705/*
e22bee78
TH
706 * Wake up functions.
707 */
708
7e11629d 709/* Return the first worker. Safe with preemption disabled */
63d95a91 710static struct worker *first_worker(struct worker_pool *pool)
7e11629d 711{
63d95a91 712 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
713 return NULL;
714
63d95a91 715 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
63d95a91 720 * @pool: worker pool to wake worker from
7e11629d 721 *
63d95a91 722 * Wake up the first idle worker of @pool.
7e11629d
TH
723 *
724 * CONTEXT:
d565ed63 725 * spin_lock_irq(pool->lock).
7e11629d 726 */
63d95a91 727static void wake_up_worker(struct worker_pool *pool)
7e11629d 728{
63d95a91 729 struct worker *worker = first_worker(pool);
7e11629d
TH
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
d302f017 735/**
e22bee78
TH
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
d84ff051 746void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
747{
748 struct worker *worker = kthread_data(task);
749
36576000 750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 751 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 752 atomic_inc(&worker->pool->nr_running);
36576000 753 }
e22bee78
TH
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
d84ff051 771struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
772{
773 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 774 struct worker_pool *pool;
e22bee78 775
111c225a
TH
776 /*
777 * Rescuers, which may not have all the fields set up like normal
778 * workers, also reach here, let's not access anything before
779 * checking NOT_RUNNING.
780 */
2d64672e 781 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
782 return NULL;
783
111c225a 784 pool = worker->pool;
111c225a 785
e22bee78 786 /* this can only happen on the local cpu */
6183c009
TH
787 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
788 return NULL;
e22bee78
TH
789
790 /*
791 * The counterpart of the following dec_and_test, implied mb,
792 * worklist not empty test sequence is in insert_work().
793 * Please read comment there.
794 *
628c78e7
TH
795 * NOT_RUNNING is clear. This means that we're bound to and
796 * running on the local cpu w/ rq lock held and preemption
797 * disabled, which in turn means that none else could be
d565ed63 798 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 799 * lock is safe.
e22bee78 800 */
e19e397a
TH
801 if (atomic_dec_and_test(&pool->nr_running) &&
802 !list_empty(&pool->worklist))
63d95a91 803 to_wakeup = first_worker(pool);
e22bee78
TH
804 return to_wakeup ? to_wakeup->task : NULL;
805}
806
807/**
808 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 809 * @worker: self
d302f017
TH
810 * @flags: flags to set
811 * @wakeup: wakeup an idle worker if necessary
812 *
e22bee78
TH
813 * Set @flags in @worker->flags and adjust nr_running accordingly. If
814 * nr_running becomes zero and @wakeup is %true, an idle worker is
815 * woken up.
d302f017 816 *
cb444766 817 * CONTEXT:
d565ed63 818 * spin_lock_irq(pool->lock)
d302f017
TH
819 */
820static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 bool wakeup)
822{
bd7bdd43 823 struct worker_pool *pool = worker->pool;
e22bee78 824
cb444766
TH
825 WARN_ON_ONCE(worker->task != current);
826
e22bee78
TH
827 /*
828 * If transitioning into NOT_RUNNING, adjust nr_running and
829 * wake up an idle worker as necessary if requested by
830 * @wakeup.
831 */
832 if ((flags & WORKER_NOT_RUNNING) &&
833 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 834 if (wakeup) {
e19e397a 835 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 836 !list_empty(&pool->worklist))
63d95a91 837 wake_up_worker(pool);
e22bee78 838 } else
e19e397a 839 atomic_dec(&pool->nr_running);
e22bee78
TH
840 }
841
d302f017
TH
842 worker->flags |= flags;
843}
844
845/**
e22bee78 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 847 * @worker: self
d302f017
TH
848 * @flags: flags to clear
849 *
e22bee78 850 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 851 *
cb444766 852 * CONTEXT:
d565ed63 853 * spin_lock_irq(pool->lock)
d302f017
TH
854 */
855static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856{
63d95a91 857 struct worker_pool *pool = worker->pool;
e22bee78
TH
858 unsigned int oflags = worker->flags;
859
cb444766
TH
860 WARN_ON_ONCE(worker->task != current);
861
d302f017 862 worker->flags &= ~flags;
e22bee78 863
42c025f3
TH
864 /*
865 * If transitioning out of NOT_RUNNING, increment nr_running. Note
866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
867 * of multiple flags, not a single flag.
868 */
e22bee78
TH
869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 871 atomic_inc(&pool->nr_running);
d302f017
TH
872}
873
8cca0eea
TH
874/**
875 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 876 * @pool: pool of interest
8cca0eea
TH
877 * @work: work to find worker for
878 *
c9e7cf27
TH
879 * Find a worker which is executing @work on @pool by searching
880 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
881 * to match, its current execution should match the address of @work and
882 * its work function. This is to avoid unwanted dependency between
883 * unrelated work executions through a work item being recycled while still
884 * being executed.
885 *
886 * This is a bit tricky. A work item may be freed once its execution
887 * starts and nothing prevents the freed area from being recycled for
888 * another work item. If the same work item address ends up being reused
889 * before the original execution finishes, workqueue will identify the
890 * recycled work item as currently executing and make it wait until the
891 * current execution finishes, introducing an unwanted dependency.
892 *
893 * This function checks the work item address, work function and workqueue
894 * to avoid false positives. Note that this isn't complete as one may
895 * construct a work function which can introduce dependency onto itself
896 * through a recycled work item. Well, if somebody wants to shoot oneself
897 * in the foot that badly, there's only so much we can do, and if such
898 * deadlock actually occurs, it should be easy to locate the culprit work
899 * function.
8cca0eea
TH
900 *
901 * CONTEXT:
d565ed63 902 * spin_lock_irq(pool->lock).
8cca0eea
TH
903 *
904 * RETURNS:
905 * Pointer to worker which is executing @work if found, NULL
906 * otherwise.
4d707b9f 907 */
c9e7cf27 908static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 909 struct work_struct *work)
4d707b9f 910{
42f8570f 911 struct worker *worker;
42f8570f 912
b67bfe0d 913 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
914 (unsigned long)work)
915 if (worker->current_work == work &&
916 worker->current_func == work->func)
42f8570f
SL
917 return worker;
918
919 return NULL;
4d707b9f
ON
920}
921
bf4ede01
TH
922/**
923 * move_linked_works - move linked works to a list
924 * @work: start of series of works to be scheduled
925 * @head: target list to append @work to
926 * @nextp: out paramter for nested worklist walking
927 *
928 * Schedule linked works starting from @work to @head. Work series to
929 * be scheduled starts at @work and includes any consecutive work with
930 * WORK_STRUCT_LINKED set in its predecessor.
931 *
932 * If @nextp is not NULL, it's updated to point to the next work of
933 * the last scheduled work. This allows move_linked_works() to be
934 * nested inside outer list_for_each_entry_safe().
935 *
936 * CONTEXT:
d565ed63 937 * spin_lock_irq(pool->lock).
bf4ede01
TH
938 */
939static void move_linked_works(struct work_struct *work, struct list_head *head,
940 struct work_struct **nextp)
941{
942 struct work_struct *n;
943
944 /*
945 * Linked worklist will always end before the end of the list,
946 * use NULL for list head.
947 */
948 list_for_each_entry_safe_from(work, n, NULL, entry) {
949 list_move_tail(&work->entry, head);
950 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
951 break;
952 }
953
954 /*
955 * If we're already inside safe list traversal and have moved
956 * multiple works to the scheduled queue, the next position
957 * needs to be updated.
958 */
959 if (nextp)
960 *nextp = n;
961}
962
8864b4e5
TH
963/**
964 * get_pwq - get an extra reference on the specified pool_workqueue
965 * @pwq: pool_workqueue to get
966 *
967 * Obtain an extra reference on @pwq. The caller should guarantee that
968 * @pwq has positive refcnt and be holding the matching pool->lock.
969 */
970static void get_pwq(struct pool_workqueue *pwq)
971{
972 lockdep_assert_held(&pwq->pool->lock);
973 WARN_ON_ONCE(pwq->refcnt <= 0);
974 pwq->refcnt++;
975}
976
977/**
978 * put_pwq - put a pool_workqueue reference
979 * @pwq: pool_workqueue to put
980 *
981 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
982 * destruction. The caller should be holding the matching pool->lock.
983 */
984static void put_pwq(struct pool_workqueue *pwq)
985{
986 lockdep_assert_held(&pwq->pool->lock);
987 if (likely(--pwq->refcnt))
988 return;
989 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
990 return;
991 /*
992 * @pwq can't be released under pool->lock, bounce to
993 * pwq_unbound_release_workfn(). This never recurses on the same
994 * pool->lock as this path is taken only for unbound workqueues and
995 * the release work item is scheduled on a per-cpu workqueue. To
996 * avoid lockdep warning, unbound pool->locks are given lockdep
997 * subclass of 1 in get_unbound_pool().
998 */
999 schedule_work(&pwq->unbound_release_work);
1000}
1001
112202d9 1002static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1003{
112202d9 1004 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1005
1006 trace_workqueue_activate_work(work);
112202d9 1007 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1008 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1009 pwq->nr_active++;
bf4ede01
TH
1010}
1011
112202d9 1012static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1013{
112202d9 1014 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1015 struct work_struct, entry);
1016
112202d9 1017 pwq_activate_delayed_work(work);
3aa62497
LJ
1018}
1019
bf4ede01 1020/**
112202d9
TH
1021 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1022 * @pwq: pwq of interest
bf4ede01 1023 * @color: color of work which left the queue
bf4ede01
TH
1024 *
1025 * A work either has completed or is removed from pending queue,
112202d9 1026 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1027 *
1028 * CONTEXT:
d565ed63 1029 * spin_lock_irq(pool->lock).
bf4ede01 1030 */
112202d9 1031static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1032{
8864b4e5 1033 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1034 if (color == WORK_NO_COLOR)
8864b4e5 1035 goto out_put;
bf4ede01 1036
112202d9 1037 pwq->nr_in_flight[color]--;
bf4ede01 1038
112202d9
TH
1039 pwq->nr_active--;
1040 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1041 /* one down, submit a delayed one */
112202d9
TH
1042 if (pwq->nr_active < pwq->max_active)
1043 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1044 }
1045
1046 /* is flush in progress and are we at the flushing tip? */
112202d9 1047 if (likely(pwq->flush_color != color))
8864b4e5 1048 goto out_put;
bf4ede01
TH
1049
1050 /* are there still in-flight works? */
112202d9 1051 if (pwq->nr_in_flight[color])
8864b4e5 1052 goto out_put;
bf4ede01 1053
112202d9
TH
1054 /* this pwq is done, clear flush_color */
1055 pwq->flush_color = -1;
bf4ede01
TH
1056
1057 /*
112202d9 1058 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1059 * will handle the rest.
1060 */
112202d9
TH
1061 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1062 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1063out_put:
1064 put_pwq(pwq);
bf4ede01
TH
1065}
1066
36e227d2 1067/**
bbb68dfa 1068 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1069 * @work: work item to steal
1070 * @is_dwork: @work is a delayed_work
bbb68dfa 1071 * @flags: place to store irq state
36e227d2
TH
1072 *
1073 * Try to grab PENDING bit of @work. This function can handle @work in any
1074 * stable state - idle, on timer or on worklist. Return values are
1075 *
1076 * 1 if @work was pending and we successfully stole PENDING
1077 * 0 if @work was idle and we claimed PENDING
1078 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1079 * -ENOENT if someone else is canceling @work, this state may persist
1080 * for arbitrarily long
36e227d2 1081 *
bbb68dfa 1082 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1083 * interrupted while holding PENDING and @work off queue, irq must be
1084 * disabled on entry. This, combined with delayed_work->timer being
1085 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1086 *
1087 * On successful return, >= 0, irq is disabled and the caller is
1088 * responsible for releasing it using local_irq_restore(*@flags).
1089 *
e0aecdd8 1090 * This function is safe to call from any context including IRQ handler.
bf4ede01 1091 */
bbb68dfa
TH
1092static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1093 unsigned long *flags)
bf4ede01 1094{
d565ed63 1095 struct worker_pool *pool;
112202d9 1096 struct pool_workqueue *pwq;
bf4ede01 1097
bbb68dfa
TH
1098 local_irq_save(*flags);
1099
36e227d2
TH
1100 /* try to steal the timer if it exists */
1101 if (is_dwork) {
1102 struct delayed_work *dwork = to_delayed_work(work);
1103
e0aecdd8
TH
1104 /*
1105 * dwork->timer is irqsafe. If del_timer() fails, it's
1106 * guaranteed that the timer is not queued anywhere and not
1107 * running on the local CPU.
1108 */
36e227d2
TH
1109 if (likely(del_timer(&dwork->timer)))
1110 return 1;
1111 }
1112
1113 /* try to claim PENDING the normal way */
bf4ede01
TH
1114 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1115 return 0;
1116
1117 /*
1118 * The queueing is in progress, or it is already queued. Try to
1119 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1120 */
d565ed63
TH
1121 pool = get_work_pool(work);
1122 if (!pool)
bbb68dfa 1123 goto fail;
bf4ede01 1124
d565ed63 1125 spin_lock(&pool->lock);
0b3dae68 1126 /*
112202d9
TH
1127 * work->data is guaranteed to point to pwq only while the work
1128 * item is queued on pwq->wq, and both updating work->data to point
1129 * to pwq on queueing and to pool on dequeueing are done under
1130 * pwq->pool->lock. This in turn guarantees that, if work->data
1131 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1132 * item is currently queued on that pool.
1133 */
112202d9
TH
1134 pwq = get_work_pwq(work);
1135 if (pwq && pwq->pool == pool) {
16062836
TH
1136 debug_work_deactivate(work);
1137
1138 /*
1139 * A delayed work item cannot be grabbed directly because
1140 * it might have linked NO_COLOR work items which, if left
112202d9 1141 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1142 * management later on and cause stall. Make sure the work
1143 * item is activated before grabbing.
1144 */
1145 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1146 pwq_activate_delayed_work(work);
16062836
TH
1147
1148 list_del_init(&work->entry);
112202d9 1149 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1150
112202d9 1151 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1152 set_work_pool_and_keep_pending(work, pool->id);
1153
1154 spin_unlock(&pool->lock);
1155 return 1;
bf4ede01 1156 }
d565ed63 1157 spin_unlock(&pool->lock);
bbb68dfa
TH
1158fail:
1159 local_irq_restore(*flags);
1160 if (work_is_canceling(work))
1161 return -ENOENT;
1162 cpu_relax();
36e227d2 1163 return -EAGAIN;
bf4ede01
TH
1164}
1165
4690c4ab 1166/**
706026c2 1167 * insert_work - insert a work into a pool
112202d9 1168 * @pwq: pwq @work belongs to
4690c4ab
TH
1169 * @work: work to insert
1170 * @head: insertion point
1171 * @extra_flags: extra WORK_STRUCT_* flags to set
1172 *
112202d9 1173 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1174 * work_struct flags.
4690c4ab
TH
1175 *
1176 * CONTEXT:
d565ed63 1177 * spin_lock_irq(pool->lock).
4690c4ab 1178 */
112202d9
TH
1179static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1180 struct list_head *head, unsigned int extra_flags)
b89deed3 1181{
112202d9 1182 struct worker_pool *pool = pwq->pool;
e22bee78 1183
4690c4ab 1184 /* we own @work, set data and link */
112202d9 1185 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1186 list_add_tail(&work->entry, head);
8864b4e5 1187 get_pwq(pwq);
e22bee78
TH
1188
1189 /*
1190 * Ensure either worker_sched_deactivated() sees the above
1191 * list_add_tail() or we see zero nr_running to avoid workers
1192 * lying around lazily while there are works to be processed.
1193 */
1194 smp_mb();
1195
63d95a91
TH
1196 if (__need_more_worker(pool))
1197 wake_up_worker(pool);
b89deed3
ON
1198}
1199
c8efcc25
TH
1200/*
1201 * Test whether @work is being queued from another work executing on the
8d03ecfe 1202 * same workqueue.
c8efcc25
TH
1203 */
1204static bool is_chained_work(struct workqueue_struct *wq)
1205{
8d03ecfe
TH
1206 struct worker *worker;
1207
1208 worker = current_wq_worker();
1209 /*
1210 * Return %true iff I'm a worker execuing a work item on @wq. If
1211 * I'm @worker, it's safe to dereference it without locking.
1212 */
112202d9 1213 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1214}
1215
d84ff051 1216static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1217 struct work_struct *work)
1218{
112202d9 1219 struct pool_workqueue *pwq;
c9178087 1220 struct worker_pool *last_pool;
1e19ffc6 1221 struct list_head *worklist;
8a2e8e5d 1222 unsigned int work_flags;
b75cac93 1223 unsigned int req_cpu = cpu;
8930caba
TH
1224
1225 /*
1226 * While a work item is PENDING && off queue, a task trying to
1227 * steal the PENDING will busy-loop waiting for it to either get
1228 * queued or lose PENDING. Grabbing PENDING and queueing should
1229 * happen with IRQ disabled.
1230 */
1231 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1232
dc186ad7 1233 debug_work_activate(work);
1e19ffc6 1234
c8efcc25 1235 /* if dying, only works from the same workqueue are allowed */
618b01eb 1236 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1237 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1238 return;
9e8cd2f5 1239retry:
c9178087 1240 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1241 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1242 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1243 cpu = raw_smp_processor_id();
7fb98ea7 1244 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1245 } else {
1246 pwq = first_pwq(wq);
1247 }
dbf2576e 1248
c9178087
TH
1249 /*
1250 * If @work was previously on a different pool, it might still be
1251 * running there, in which case the work needs to be queued on that
1252 * pool to guarantee non-reentrancy.
1253 */
1254 last_pool = get_work_pool(work);
1255 if (last_pool && last_pool != pwq->pool) {
1256 struct worker *worker;
18aa9eff 1257
c9178087 1258 spin_lock(&last_pool->lock);
18aa9eff 1259
c9178087 1260 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1261
c9178087
TH
1262 if (worker && worker->current_pwq->wq == wq) {
1263 pwq = worker->current_pwq;
8930caba 1264 } else {
c9178087
TH
1265 /* meh... not running there, queue here */
1266 spin_unlock(&last_pool->lock);
112202d9 1267 spin_lock(&pwq->pool->lock);
8930caba 1268 }
f3421797 1269 } else {
112202d9 1270 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1271 }
1272
9e8cd2f5
TH
1273 /*
1274 * pwq is determined and locked. For unbound pools, we could have
1275 * raced with pwq release and it could already be dead. If its
1276 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1277 * without another pwq replacing it as the first pwq or while a
1278 * work item is executing on it, so the retying is guaranteed to
1279 * make forward-progress.
1280 */
1281 if (unlikely(!pwq->refcnt)) {
1282 if (wq->flags & WQ_UNBOUND) {
1283 spin_unlock(&pwq->pool->lock);
1284 cpu_relax();
1285 goto retry;
1286 }
1287 /* oops */
1288 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1289 wq->name, cpu);
1290 }
1291
112202d9
TH
1292 /* pwq determined, queue */
1293 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1294
f5b2552b 1295 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1296 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1297 return;
1298 }
1e19ffc6 1299
112202d9
TH
1300 pwq->nr_in_flight[pwq->work_color]++;
1301 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1302
112202d9 1303 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1304 trace_workqueue_activate_work(work);
112202d9
TH
1305 pwq->nr_active++;
1306 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1307 } else {
1308 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1309 worklist = &pwq->delayed_works;
8a2e8e5d 1310 }
1e19ffc6 1311
112202d9 1312 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1313
112202d9 1314 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1315}
1316
0fcb78c2 1317/**
c1a220e7
ZR
1318 * queue_work_on - queue work on specific cpu
1319 * @cpu: CPU number to execute work on
0fcb78c2
REB
1320 * @wq: workqueue to use
1321 * @work: work to queue
1322 *
d4283e93 1323 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1324 *
c1a220e7
ZR
1325 * We queue the work to a specific CPU, the caller must ensure it
1326 * can't go away.
1da177e4 1327 */
d4283e93
TH
1328bool queue_work_on(int cpu, struct workqueue_struct *wq,
1329 struct work_struct *work)
1da177e4 1330{
d4283e93 1331 bool ret = false;
8930caba 1332 unsigned long flags;
ef1ca236 1333
8930caba 1334 local_irq_save(flags);
c1a220e7 1335
22df02bb 1336 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1337 __queue_work(cpu, wq, work);
d4283e93 1338 ret = true;
c1a220e7 1339 }
ef1ca236 1340
8930caba 1341 local_irq_restore(flags);
1da177e4
LT
1342 return ret;
1343}
c1a220e7 1344EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1345
c1a220e7 1346/**
0a13c00e 1347 * queue_work - queue work on a workqueue
c1a220e7
ZR
1348 * @wq: workqueue to use
1349 * @work: work to queue
1350 *
d4283e93 1351 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1352 *
0a13c00e
TH
1353 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1354 * it can be processed by another CPU.
c1a220e7 1355 */
d4283e93 1356bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1357{
57469821 1358 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1359}
0a13c00e 1360EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1361
d8e794df 1362void delayed_work_timer_fn(unsigned long __data)
1da177e4 1363{
52bad64d 1364 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1365
e0aecdd8 1366 /* should have been called from irqsafe timer with irq already off */
60c057bc 1367 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1368}
1438ade5 1369EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1370
7beb2edf
TH
1371static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1372 struct delayed_work *dwork, unsigned long delay)
1da177e4 1373{
7beb2edf
TH
1374 struct timer_list *timer = &dwork->timer;
1375 struct work_struct *work = &dwork->work;
7beb2edf
TH
1376
1377 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1378 timer->data != (unsigned long)dwork);
fc4b514f
TH
1379 WARN_ON_ONCE(timer_pending(timer));
1380 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1381
8852aac2
TH
1382 /*
1383 * If @delay is 0, queue @dwork->work immediately. This is for
1384 * both optimization and correctness. The earliest @timer can
1385 * expire is on the closest next tick and delayed_work users depend
1386 * on that there's no such delay when @delay is 0.
1387 */
1388 if (!delay) {
1389 __queue_work(cpu, wq, &dwork->work);
1390 return;
1391 }
1392
7beb2edf 1393 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1394
60c057bc 1395 dwork->wq = wq;
1265057f 1396 dwork->cpu = cpu;
7beb2edf
TH
1397 timer->expires = jiffies + delay;
1398
1399 if (unlikely(cpu != WORK_CPU_UNBOUND))
1400 add_timer_on(timer, cpu);
1401 else
1402 add_timer(timer);
1da177e4
LT
1403}
1404
0fcb78c2
REB
1405/**
1406 * queue_delayed_work_on - queue work on specific CPU after delay
1407 * @cpu: CPU number to execute work on
1408 * @wq: workqueue to use
af9997e4 1409 * @dwork: work to queue
0fcb78c2
REB
1410 * @delay: number of jiffies to wait before queueing
1411 *
715f1300
TH
1412 * Returns %false if @work was already on a queue, %true otherwise. If
1413 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1414 * execution.
0fcb78c2 1415 */
d4283e93
TH
1416bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1417 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1418{
52bad64d 1419 struct work_struct *work = &dwork->work;
d4283e93 1420 bool ret = false;
8930caba 1421 unsigned long flags;
7a6bc1cd 1422
8930caba
TH
1423 /* read the comment in __queue_work() */
1424 local_irq_save(flags);
7a6bc1cd 1425
22df02bb 1426 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1427 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1428 ret = true;
7a6bc1cd 1429 }
8a3e77cc 1430
8930caba 1431 local_irq_restore(flags);
7a6bc1cd
VP
1432 return ret;
1433}
ae90dd5d 1434EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1435
0a13c00e
TH
1436/**
1437 * queue_delayed_work - queue work on a workqueue after delay
1438 * @wq: workqueue to use
1439 * @dwork: delayable work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
715f1300 1442 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1443 */
d4283e93 1444bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1445 struct delayed_work *dwork, unsigned long delay)
1446{
57469821 1447 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1448}
1449EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1450
8376fe22
TH
1451/**
1452 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1453 * @cpu: CPU number to execute work on
1454 * @wq: workqueue to use
1455 * @dwork: work to queue
1456 * @delay: number of jiffies to wait before queueing
1457 *
1458 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1459 * modify @dwork's timer so that it expires after @delay. If @delay is
1460 * zero, @work is guaranteed to be scheduled immediately regardless of its
1461 * current state.
1462 *
1463 * Returns %false if @dwork was idle and queued, %true if @dwork was
1464 * pending and its timer was modified.
1465 *
e0aecdd8 1466 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1467 * See try_to_grab_pending() for details.
1468 */
1469bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1470 struct delayed_work *dwork, unsigned long delay)
1471{
1472 unsigned long flags;
1473 int ret;
c7fc77f7 1474
8376fe22
TH
1475 do {
1476 ret = try_to_grab_pending(&dwork->work, true, &flags);
1477 } while (unlikely(ret == -EAGAIN));
63bc0362 1478
8376fe22
TH
1479 if (likely(ret >= 0)) {
1480 __queue_delayed_work(cpu, wq, dwork, delay);
1481 local_irq_restore(flags);
7a6bc1cd 1482 }
8376fe22
TH
1483
1484 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1485 return ret;
1486}
8376fe22
TH
1487EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1488
1489/**
1490 * mod_delayed_work - modify delay of or queue a delayed work
1491 * @wq: workqueue to use
1492 * @dwork: work to queue
1493 * @delay: number of jiffies to wait before queueing
1494 *
1495 * mod_delayed_work_on() on local CPU.
1496 */
1497bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1498 unsigned long delay)
1499{
1500 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1501}
1502EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1503
c8e55f36
TH
1504/**
1505 * worker_enter_idle - enter idle state
1506 * @worker: worker which is entering idle state
1507 *
1508 * @worker is entering idle state. Update stats and idle timer if
1509 * necessary.
1510 *
1511 * LOCKING:
d565ed63 1512 * spin_lock_irq(pool->lock).
c8e55f36
TH
1513 */
1514static void worker_enter_idle(struct worker *worker)
1da177e4 1515{
bd7bdd43 1516 struct worker_pool *pool = worker->pool;
c8e55f36 1517
6183c009
TH
1518 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1519 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1520 (worker->hentry.next || worker->hentry.pprev)))
1521 return;
c8e55f36 1522
cb444766
TH
1523 /* can't use worker_set_flags(), also called from start_worker() */
1524 worker->flags |= WORKER_IDLE;
bd7bdd43 1525 pool->nr_idle++;
e22bee78 1526 worker->last_active = jiffies;
c8e55f36
TH
1527
1528 /* idle_list is LIFO */
bd7bdd43 1529 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1530
628c78e7
TH
1531 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1532 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1533
544ecf31 1534 /*
706026c2 1535 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1536 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1537 * nr_running, the warning may trigger spuriously. Check iff
1538 * unbind is not in progress.
544ecf31 1539 */
24647570 1540 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1541 pool->nr_workers == pool->nr_idle &&
e19e397a 1542 atomic_read(&pool->nr_running));
c8e55f36
TH
1543}
1544
1545/**
1546 * worker_leave_idle - leave idle state
1547 * @worker: worker which is leaving idle state
1548 *
1549 * @worker is leaving idle state. Update stats.
1550 *
1551 * LOCKING:
d565ed63 1552 * spin_lock_irq(pool->lock).
c8e55f36
TH
1553 */
1554static void worker_leave_idle(struct worker *worker)
1555{
bd7bdd43 1556 struct worker_pool *pool = worker->pool;
c8e55f36 1557
6183c009
TH
1558 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1559 return;
d302f017 1560 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1561 pool->nr_idle--;
c8e55f36
TH
1562 list_del_init(&worker->entry);
1563}
1564
e22bee78 1565/**
f36dc67b
LJ
1566 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1567 * @pool: target worker_pool
1568 *
1569 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1570 *
1571 * Works which are scheduled while the cpu is online must at least be
1572 * scheduled to a worker which is bound to the cpu so that if they are
1573 * flushed from cpu callbacks while cpu is going down, they are
1574 * guaranteed to execute on the cpu.
1575 *
f5faa077 1576 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1577 * themselves to the target cpu and may race with cpu going down or
1578 * coming online. kthread_bind() can't be used because it may put the
1579 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1580 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1581 * [dis]associated in the meantime.
1582 *
706026c2 1583 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1584 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1585 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1586 * enters idle state or fetches works without dropping lock, it can
1587 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1588 *
1589 * CONTEXT:
d565ed63 1590 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1591 * held.
1592 *
1593 * RETURNS:
706026c2 1594 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1595 * bound), %false if offline.
1596 */
f36dc67b 1597static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1598__acquires(&pool->lock)
e22bee78 1599{
e22bee78 1600 while (true) {
4e6045f1 1601 /*
e22bee78
TH
1602 * The following call may fail, succeed or succeed
1603 * without actually migrating the task to the cpu if
1604 * it races with cpu hotunplug operation. Verify
24647570 1605 * against POOL_DISASSOCIATED.
4e6045f1 1606 */
24647570 1607 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1608 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1609
d565ed63 1610 spin_lock_irq(&pool->lock);
24647570 1611 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1612 return false;
f5faa077 1613 if (task_cpu(current) == pool->cpu &&
7a4e344c 1614 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1615 return true;
d565ed63 1616 spin_unlock_irq(&pool->lock);
e22bee78 1617
5035b20f
TH
1618 /*
1619 * We've raced with CPU hot[un]plug. Give it a breather
1620 * and retry migration. cond_resched() is required here;
1621 * otherwise, we might deadlock against cpu_stop trying to
1622 * bring down the CPU on non-preemptive kernel.
1623 */
e22bee78 1624 cpu_relax();
5035b20f 1625 cond_resched();
e22bee78
TH
1626 }
1627}
1628
25511a47 1629/*
ea1abd61 1630 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1631 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1632 */
1633static void idle_worker_rebind(struct worker *worker)
1634{
5f7dabfd 1635 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1636 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1637 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1638
ea1abd61
LJ
1639 /* rebind complete, become available again */
1640 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1641 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1642}
1643
e22bee78 1644/*
25511a47 1645 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1646 * the associated cpu which is coming back online. This is scheduled by
1647 * cpu up but can race with other cpu hotplug operations and may be
1648 * executed twice without intervening cpu down.
e22bee78 1649 */
25511a47 1650static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1651{
1652 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1653
f36dc67b 1654 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1655 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1656
d565ed63 1657 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1658}
1659
25511a47 1660/**
94cf58bb
TH
1661 * rebind_workers - rebind all workers of a pool to the associated CPU
1662 * @pool: pool of interest
25511a47 1663 *
94cf58bb 1664 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1665 * is different for idle and busy ones.
1666 *
ea1abd61
LJ
1667 * Idle ones will be removed from the idle_list and woken up. They will
1668 * add themselves back after completing rebind. This ensures that the
1669 * idle_list doesn't contain any unbound workers when re-bound busy workers
1670 * try to perform local wake-ups for concurrency management.
25511a47 1671 *
ea1abd61
LJ
1672 * Busy workers can rebind after they finish their current work items.
1673 * Queueing the rebind work item at the head of the scheduled list is
1674 * enough. Note that nr_running will be properly bumped as busy workers
1675 * rebind.
25511a47 1676 *
ea1abd61
LJ
1677 * On return, all non-manager workers are scheduled for rebind - see
1678 * manage_workers() for the manager special case. Any idle worker
1679 * including the manager will not appear on @idle_list until rebind is
1680 * complete, making local wake-ups safe.
25511a47 1681 */
94cf58bb 1682static void rebind_workers(struct worker_pool *pool)
25511a47 1683{
ea1abd61 1684 struct worker *worker, *n;
25511a47
TH
1685 int i;
1686
94cf58bb
TH
1687 lockdep_assert_held(&pool->assoc_mutex);
1688 lockdep_assert_held(&pool->lock);
25511a47 1689
5f7dabfd 1690 /* dequeue and kick idle ones */
94cf58bb
TH
1691 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1692 /*
1693 * idle workers should be off @pool->idle_list until rebind
1694 * is complete to avoid receiving premature local wake-ups.
1695 */
1696 list_del_init(&worker->entry);
25511a47 1697
94cf58bb
TH
1698 /*
1699 * worker_thread() will see the above dequeuing and call
1700 * idle_worker_rebind().
1701 */
1702 wake_up_process(worker->task);
1703 }
25511a47 1704
94cf58bb 1705 /* rebind busy workers */
b67bfe0d 1706 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1707 struct work_struct *rebind_work = &worker->rebind_work;
1708 struct workqueue_struct *wq;
25511a47 1709
94cf58bb
TH
1710 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1711 work_data_bits(rebind_work)))
1712 continue;
25511a47 1713
94cf58bb 1714 debug_work_activate(rebind_work);
90beca5d 1715
94cf58bb
TH
1716 /*
1717 * wq doesn't really matter but let's keep @worker->pool
112202d9 1718 * and @pwq->pool consistent for sanity.
94cf58bb 1719 */
7a4e344c 1720 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1721 wq = system_highpri_wq;
1722 else
1723 wq = system_wq;
1724
7fb98ea7 1725 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1726 worker->scheduled.next,
1727 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1728 }
25511a47
TH
1729}
1730
c34056a3
TH
1731static struct worker *alloc_worker(void)
1732{
1733 struct worker *worker;
1734
1735 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1736 if (worker) {
1737 INIT_LIST_HEAD(&worker->entry);
affee4b2 1738 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1739 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1740 /* on creation a worker is in !idle && prep state */
1741 worker->flags = WORKER_PREP;
c8e55f36 1742 }
c34056a3
TH
1743 return worker;
1744}
1745
1746/**
1747 * create_worker - create a new workqueue worker
63d95a91 1748 * @pool: pool the new worker will belong to
c34056a3 1749 *
63d95a91 1750 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1751 * can be started by calling start_worker() or destroyed using
1752 * destroy_worker().
1753 *
1754 * CONTEXT:
1755 * Might sleep. Does GFP_KERNEL allocations.
1756 *
1757 * RETURNS:
1758 * Pointer to the newly created worker.
1759 */
bc2ae0f5 1760static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1761{
7a4e344c 1762 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1763 struct worker *worker = NULL;
f3421797 1764 int id = -1;
c34056a3 1765
d565ed63 1766 spin_lock_irq(&pool->lock);
bd7bdd43 1767 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1768 spin_unlock_irq(&pool->lock);
bd7bdd43 1769 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1770 goto fail;
d565ed63 1771 spin_lock_irq(&pool->lock);
c34056a3 1772 }
d565ed63 1773 spin_unlock_irq(&pool->lock);
c34056a3
TH
1774
1775 worker = alloc_worker();
1776 if (!worker)
1777 goto fail;
1778
bd7bdd43 1779 worker->pool = pool;
c34056a3
TH
1780 worker->id = id;
1781
29c91e99 1782 if (pool->cpu >= 0)
94dcf29a 1783 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1784 worker, cpu_to_node(pool->cpu),
d84ff051 1785 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1786 else
1787 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1788 "kworker/u%d:%d%s",
1789 pool->id, id, pri);
c34056a3
TH
1790 if (IS_ERR(worker->task))
1791 goto fail;
1792
7a4e344c
TH
1793 set_user_nice(worker->task, pool->attrs->nice);
1794 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1795
db7bccf4 1796 /*
7a4e344c
TH
1797 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1798 * cpumask of workqueue workers. This is an abuse. We need
1799 * %PF_NO_SETAFFINITY.
db7bccf4 1800 */
7a4e344c
TH
1801 worker->task->flags |= PF_THREAD_BOUND;
1802
1803 /*
1804 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1805 * remains stable across this function. See the comments above the
1806 * flag definition for details.
1807 */
1808 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1809 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1810
1811 return worker;
1812fail:
1813 if (id >= 0) {
d565ed63 1814 spin_lock_irq(&pool->lock);
bd7bdd43 1815 ida_remove(&pool->worker_ida, id);
d565ed63 1816 spin_unlock_irq(&pool->lock);
c34056a3
TH
1817 }
1818 kfree(worker);
1819 return NULL;
1820}
1821
1822/**
1823 * start_worker - start a newly created worker
1824 * @worker: worker to start
1825 *
706026c2 1826 * Make the pool aware of @worker and start it.
c34056a3
TH
1827 *
1828 * CONTEXT:
d565ed63 1829 * spin_lock_irq(pool->lock).
c34056a3
TH
1830 */
1831static void start_worker(struct worker *worker)
1832{
cb444766 1833 worker->flags |= WORKER_STARTED;
bd7bdd43 1834 worker->pool->nr_workers++;
c8e55f36 1835 worker_enter_idle(worker);
c34056a3
TH
1836 wake_up_process(worker->task);
1837}
1838
1839/**
1840 * destroy_worker - destroy a workqueue worker
1841 * @worker: worker to be destroyed
1842 *
706026c2 1843 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1844 *
1845 * CONTEXT:
d565ed63 1846 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1847 */
1848static void destroy_worker(struct worker *worker)
1849{
bd7bdd43 1850 struct worker_pool *pool = worker->pool;
c34056a3
TH
1851 int id = worker->id;
1852
1853 /* sanity check frenzy */
6183c009
TH
1854 if (WARN_ON(worker->current_work) ||
1855 WARN_ON(!list_empty(&worker->scheduled)))
1856 return;
c34056a3 1857
c8e55f36 1858 if (worker->flags & WORKER_STARTED)
bd7bdd43 1859 pool->nr_workers--;
c8e55f36 1860 if (worker->flags & WORKER_IDLE)
bd7bdd43 1861 pool->nr_idle--;
c8e55f36
TH
1862
1863 list_del_init(&worker->entry);
cb444766 1864 worker->flags |= WORKER_DIE;
c8e55f36 1865
d565ed63 1866 spin_unlock_irq(&pool->lock);
c8e55f36 1867
c34056a3
TH
1868 kthread_stop(worker->task);
1869 kfree(worker);
1870
d565ed63 1871 spin_lock_irq(&pool->lock);
bd7bdd43 1872 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1873}
1874
63d95a91 1875static void idle_worker_timeout(unsigned long __pool)
e22bee78 1876{
63d95a91 1877 struct worker_pool *pool = (void *)__pool;
e22bee78 1878
d565ed63 1879 spin_lock_irq(&pool->lock);
e22bee78 1880
63d95a91 1881 if (too_many_workers(pool)) {
e22bee78
TH
1882 struct worker *worker;
1883 unsigned long expires;
1884
1885 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1886 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1887 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1888
1889 if (time_before(jiffies, expires))
63d95a91 1890 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1891 else {
1892 /* it's been idle for too long, wake up manager */
11ebea50 1893 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1894 wake_up_worker(pool);
d5abe669 1895 }
e22bee78
TH
1896 }
1897
d565ed63 1898 spin_unlock_irq(&pool->lock);
e22bee78 1899}
d5abe669 1900
493a1724 1901static void send_mayday(struct work_struct *work)
e22bee78 1902{
112202d9
TH
1903 struct pool_workqueue *pwq = get_work_pwq(work);
1904 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1905
1906 lockdep_assert_held(&workqueue_lock);
e22bee78 1907
493008a8 1908 if (!wq->rescuer)
493a1724 1909 return;
e22bee78
TH
1910
1911 /* mayday mayday mayday */
493a1724
TH
1912 if (list_empty(&pwq->mayday_node)) {
1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1914 wake_up_process(wq->rescuer->task);
493a1724 1915 }
e22bee78
TH
1916}
1917
706026c2 1918static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1919{
63d95a91 1920 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1921 struct work_struct *work;
1922
493a1724
TH
1923 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1924 spin_lock(&pool->lock);
e22bee78 1925
63d95a91 1926 if (need_to_create_worker(pool)) {
e22bee78
TH
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
63d95a91 1933 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1934 send_mayday(work);
1da177e4 1935 }
e22bee78 1936
493a1724
TH
1937 spin_unlock(&pool->lock);
1938 spin_unlock_irq(&workqueue_lock);
e22bee78 1939
63d95a91 1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1941}
1942
e22bee78
TH
1943/**
1944 * maybe_create_worker - create a new worker if necessary
63d95a91 1945 * @pool: pool to create a new worker for
e22bee78 1946 *
63d95a91 1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1950 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1951 * possible allocation deadlock.
1952 *
1953 * On return, need_to_create_worker() is guaranteed to be false and
1954 * may_start_working() true.
1955 *
1956 * LOCKING:
d565ed63 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
1960 *
1961 * RETURNS:
d565ed63 1962 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1963 * otherwise.
1964 */
63d95a91 1965static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1966__releases(&pool->lock)
1967__acquires(&pool->lock)
1da177e4 1968{
63d95a91 1969 if (!need_to_create_worker(pool))
e22bee78
TH
1970 return false;
1971restart:
d565ed63 1972 spin_unlock_irq(&pool->lock);
9f9c2364 1973
e22bee78 1974 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1975 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1976
1977 while (true) {
1978 struct worker *worker;
1979
bc2ae0f5 1980 worker = create_worker(pool);
e22bee78 1981 if (worker) {
63d95a91 1982 del_timer_sync(&pool->mayday_timer);
d565ed63 1983 spin_lock_irq(&pool->lock);
e22bee78 1984 start_worker(worker);
6183c009
TH
1985 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1986 goto restart;
e22bee78
TH
1987 return true;
1988 }
1989
63d95a91 1990 if (!need_to_create_worker(pool))
e22bee78 1991 break;
1da177e4 1992
e22bee78
TH
1993 __set_current_state(TASK_INTERRUPTIBLE);
1994 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1995
63d95a91 1996 if (!need_to_create_worker(pool))
e22bee78
TH
1997 break;
1998 }
1999
63d95a91 2000 del_timer_sync(&pool->mayday_timer);
d565ed63 2001 spin_lock_irq(&pool->lock);
63d95a91 2002 if (need_to_create_worker(pool))
e22bee78
TH
2003 goto restart;
2004 return true;
2005}
2006
2007/**
2008 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2009 * @pool: pool to destroy workers for
e22bee78 2010 *
63d95a91 2011 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2012 * IDLE_WORKER_TIMEOUT.
2013 *
2014 * LOCKING:
d565ed63 2015 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2016 * multiple times. Called only from manager.
2017 *
2018 * RETURNS:
d565ed63 2019 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2020 * otherwise.
2021 */
63d95a91 2022static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2023{
2024 bool ret = false;
1da177e4 2025
63d95a91 2026 while (too_many_workers(pool)) {
e22bee78
TH
2027 struct worker *worker;
2028 unsigned long expires;
3af24433 2029
63d95a91 2030 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2031 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2032
e22bee78 2033 if (time_before(jiffies, expires)) {
63d95a91 2034 mod_timer(&pool->idle_timer, expires);
3af24433 2035 break;
e22bee78 2036 }
1da177e4 2037
e22bee78
TH
2038 destroy_worker(worker);
2039 ret = true;
1da177e4 2040 }
1e19ffc6 2041
e22bee78 2042 return ret;
1e19ffc6
TH
2043}
2044
73f53c4a 2045/**
e22bee78
TH
2046 * manage_workers - manage worker pool
2047 * @worker: self
73f53c4a 2048 *
706026c2 2049 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2050 * to. At any given time, there can be only zero or one manager per
706026c2 2051 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2052 *
2053 * The caller can safely start processing works on false return. On
2054 * true return, it's guaranteed that need_to_create_worker() is false
2055 * and may_start_working() is true.
73f53c4a
TH
2056 *
2057 * CONTEXT:
d565ed63 2058 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2059 * multiple times. Does GFP_KERNEL allocations.
2060 *
2061 * RETURNS:
d565ed63
TH
2062 * spin_lock_irq(pool->lock) which may be released and regrabbed
2063 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2064 */
e22bee78 2065static bool manage_workers(struct worker *worker)
73f53c4a 2066{
63d95a91 2067 struct worker_pool *pool = worker->pool;
e22bee78 2068 bool ret = false;
73f53c4a 2069
34a06bd6 2070 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2071 return ret;
1e19ffc6 2072
ee378aa4
LJ
2073 /*
2074 * To simplify both worker management and CPU hotplug, hold off
2075 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2076 * grab @pool->manager_arb to achieve this because that can lead to
2077 * idle worker depletion (all become busy thinking someone else is
2078 * managing) which in turn can result in deadlock under extreme
2079 * circumstances. Use @pool->assoc_mutex to synchronize manager
2080 * against CPU hotplug.
ee378aa4 2081 *
b2eb83d1 2082 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2083 * progress. trylock first without dropping @pool->lock.
ee378aa4 2084 */
b2eb83d1 2085 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2086 spin_unlock_irq(&pool->lock);
b2eb83d1 2087 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2088 /*
2089 * CPU hotplug could have happened while we were waiting
b2eb83d1 2090 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2091 * because manager isn't either on idle or busy list, and
706026c2 2092 * @pool's state and ours could have deviated.
ee378aa4 2093 *
b2eb83d1 2094 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2095 * simply try to bind. It will succeed or fail depending
706026c2 2096 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2097 * %WORKER_UNBOUND accordingly.
2098 */
f36dc67b 2099 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2100 worker->flags &= ~WORKER_UNBOUND;
2101 else
2102 worker->flags |= WORKER_UNBOUND;
73f53c4a 2103
ee378aa4
LJ
2104 ret = true;
2105 }
73f53c4a 2106
11ebea50 2107 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2108
2109 /*
e22bee78
TH
2110 * Destroy and then create so that may_start_working() is true
2111 * on return.
73f53c4a 2112 */
63d95a91
TH
2113 ret |= maybe_destroy_workers(pool);
2114 ret |= maybe_create_worker(pool);
e22bee78 2115
b2eb83d1 2116 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2117 mutex_unlock(&pool->manager_arb);
e22bee78 2118 return ret;
73f53c4a
TH
2119}
2120
a62428c0
TH
2121/**
2122 * process_one_work - process single work
c34056a3 2123 * @worker: self
a62428c0
TH
2124 * @work: work to process
2125 *
2126 * Process @work. This function contains all the logics necessary to
2127 * process a single work including synchronization against and
2128 * interaction with other workers on the same cpu, queueing and
2129 * flushing. As long as context requirement is met, any worker can
2130 * call this function to process a work.
2131 *
2132 * CONTEXT:
d565ed63 2133 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2134 */
c34056a3 2135static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2136__releases(&pool->lock)
2137__acquires(&pool->lock)
a62428c0 2138{
112202d9 2139 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2140 struct worker_pool *pool = worker->pool;
112202d9 2141 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2142 int work_color;
7e11629d 2143 struct worker *collision;
a62428c0
TH
2144#ifdef CONFIG_LOCKDEP
2145 /*
2146 * It is permissible to free the struct work_struct from
2147 * inside the function that is called from it, this we need to
2148 * take into account for lockdep too. To avoid bogus "held
2149 * lock freed" warnings as well as problems when looking into
2150 * work->lockdep_map, make a copy and use that here.
2151 */
4d82a1de
PZ
2152 struct lockdep_map lockdep_map;
2153
2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2155#endif
6fec10a1
TH
2156 /*
2157 * Ensure we're on the correct CPU. DISASSOCIATED test is
2158 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2159 * unbound or a disassociated pool.
6fec10a1 2160 */
5f7dabfd 2161 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2162 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2163 raw_smp_processor_id() != pool->cpu);
25511a47 2164
7e11629d
TH
2165 /*
2166 * A single work shouldn't be executed concurrently by
2167 * multiple workers on a single cpu. Check whether anyone is
2168 * already processing the work. If so, defer the work to the
2169 * currently executing one.
2170 */
c9e7cf27 2171 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2172 if (unlikely(collision)) {
2173 move_linked_works(work, &collision->scheduled, NULL);
2174 return;
2175 }
2176
8930caba 2177 /* claim and dequeue */
a62428c0 2178 debug_work_deactivate(work);
c9e7cf27 2179 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2180 worker->current_work = work;
a2c1c57b 2181 worker->current_func = work->func;
112202d9 2182 worker->current_pwq = pwq;
73f53c4a 2183 work_color = get_work_color(work);
7a22ad75 2184
a62428c0
TH
2185 list_del_init(&work->entry);
2186
fb0e7beb
TH
2187 /*
2188 * CPU intensive works don't participate in concurrency
2189 * management. They're the scheduler's responsibility.
2190 */
2191 if (unlikely(cpu_intensive))
2192 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2193
974271c4 2194 /*
d565ed63 2195 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2196 * executed ASAP. Wake up another worker if necessary.
2197 */
63d95a91
TH
2198 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2199 wake_up_worker(pool);
974271c4 2200
8930caba 2201 /*
7c3eed5c 2202 * Record the last pool and clear PENDING which should be the last
d565ed63 2203 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2204 * PENDING and queued state changes happen together while IRQ is
2205 * disabled.
8930caba 2206 */
7c3eed5c 2207 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2208
d565ed63 2209 spin_unlock_irq(&pool->lock);
a62428c0 2210
112202d9 2211 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2212 lock_map_acquire(&lockdep_map);
e36c886a 2213 trace_workqueue_execute_start(work);
a2c1c57b 2214 worker->current_func(work);
e36c886a
AV
2215 /*
2216 * While we must be careful to not use "work" after this, the trace
2217 * point will only record its address.
2218 */
2219 trace_workqueue_execute_end(work);
a62428c0 2220 lock_map_release(&lockdep_map);
112202d9 2221 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2222
2223 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2224 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2225 " last function: %pf\n",
a2c1c57b
TH
2226 current->comm, preempt_count(), task_pid_nr(current),
2227 worker->current_func);
a62428c0
TH
2228 debug_show_held_locks(current);
2229 dump_stack();
2230 }
2231
d565ed63 2232 spin_lock_irq(&pool->lock);
a62428c0 2233
fb0e7beb
TH
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
a62428c0 2238 /* we're done with it, release */
42f8570f 2239 hash_del(&worker->hentry);
c34056a3 2240 worker->current_work = NULL;
a2c1c57b 2241 worker->current_func = NULL;
112202d9
TH
2242 worker->current_pwq = NULL;
2243 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2244}
2245
affee4b2
TH
2246/**
2247 * process_scheduled_works - process scheduled works
2248 * @worker: self
2249 *
2250 * Process all scheduled works. Please note that the scheduled list
2251 * may change while processing a work, so this function repeatedly
2252 * fetches a work from the top and executes it.
2253 *
2254 * CONTEXT:
d565ed63 2255 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2256 * multiple times.
2257 */
2258static void process_scheduled_works(struct worker *worker)
1da177e4 2259{
affee4b2
TH
2260 while (!list_empty(&worker->scheduled)) {
2261 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2262 struct work_struct, entry);
c34056a3 2263 process_one_work(worker, work);
1da177e4 2264 }
1da177e4
LT
2265}
2266
4690c4ab
TH
2267/**
2268 * worker_thread - the worker thread function
c34056a3 2269 * @__worker: self
4690c4ab 2270 *
706026c2
TH
2271 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2272 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2273 * their specific target workqueue. The only exception is works which
2274 * belong to workqueues with a rescuer which will be explained in
2275 * rescuer_thread().
4690c4ab 2276 */
c34056a3 2277static int worker_thread(void *__worker)
1da177e4 2278{
c34056a3 2279 struct worker *worker = __worker;
bd7bdd43 2280 struct worker_pool *pool = worker->pool;
1da177e4 2281
e22bee78
TH
2282 /* tell the scheduler that this is a workqueue worker */
2283 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2284woke_up:
d565ed63 2285 spin_lock_irq(&pool->lock);
1da177e4 2286
5f7dabfd
LJ
2287 /* we are off idle list if destruction or rebind is requested */
2288 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2289 spin_unlock_irq(&pool->lock);
25511a47 2290
5f7dabfd 2291 /* if DIE is set, destruction is requested */
25511a47
TH
2292 if (worker->flags & WORKER_DIE) {
2293 worker->task->flags &= ~PF_WQ_WORKER;
2294 return 0;
2295 }
2296
5f7dabfd 2297 /* otherwise, rebind */
25511a47
TH
2298 idle_worker_rebind(worker);
2299 goto woke_up;
c8e55f36 2300 }
affee4b2 2301
c8e55f36 2302 worker_leave_idle(worker);
db7bccf4 2303recheck:
e22bee78 2304 /* no more worker necessary? */
63d95a91 2305 if (!need_more_worker(pool))
e22bee78
TH
2306 goto sleep;
2307
2308 /* do we need to manage? */
63d95a91 2309 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2310 goto recheck;
2311
c8e55f36
TH
2312 /*
2313 * ->scheduled list can only be filled while a worker is
2314 * preparing to process a work or actually processing it.
2315 * Make sure nobody diddled with it while I was sleeping.
2316 */
6183c009 2317 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2318
e22bee78
TH
2319 /*
2320 * When control reaches this point, we're guaranteed to have
2321 * at least one idle worker or that someone else has already
2322 * assumed the manager role.
2323 */
2324 worker_clr_flags(worker, WORKER_PREP);
2325
2326 do {
c8e55f36 2327 struct work_struct *work =
bd7bdd43 2328 list_first_entry(&pool->worklist,
c8e55f36
TH
2329 struct work_struct, entry);
2330
2331 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 /* optimization path, not strictly necessary */
2333 process_one_work(worker, work);
2334 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2335 process_scheduled_works(worker);
c8e55f36
TH
2336 } else {
2337 move_linked_works(work, &worker->scheduled, NULL);
2338 process_scheduled_works(worker);
affee4b2 2339 }
63d95a91 2340 } while (keep_working(pool));
e22bee78
TH
2341
2342 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2343sleep:
63d95a91 2344 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2345 goto recheck;
d313dd85 2346
c8e55f36 2347 /*
d565ed63
TH
2348 * pool->lock is held and there's no work to process and no need to
2349 * manage, sleep. Workers are woken up only while holding
2350 * pool->lock or from local cpu, so setting the current state
2351 * before releasing pool->lock is enough to prevent losing any
2352 * event.
c8e55f36
TH
2353 */
2354 worker_enter_idle(worker);
2355 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2356 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2357 schedule();
2358 goto woke_up;
1da177e4
LT
2359}
2360
e22bee78
TH
2361/**
2362 * rescuer_thread - the rescuer thread function
111c225a 2363 * @__rescuer: self
e22bee78
TH
2364 *
2365 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2366 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2367 *
706026c2 2368 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2369 * worker which uses GFP_KERNEL allocation which has slight chance of
2370 * developing into deadlock if some works currently on the same queue
2371 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2372 * the problem rescuer solves.
2373 *
706026c2
TH
2374 * When such condition is possible, the pool summons rescuers of all
2375 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2376 * those works so that forward progress can be guaranteed.
2377 *
2378 * This should happen rarely.
2379 */
111c225a 2380static int rescuer_thread(void *__rescuer)
e22bee78 2381{
111c225a
TH
2382 struct worker *rescuer = __rescuer;
2383 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2384 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2385
2386 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2387
2388 /*
2389 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2390 * doesn't participate in concurrency management.
2391 */
2392 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2393repeat:
2394 set_current_state(TASK_INTERRUPTIBLE);
2395
412d32e6
MG
2396 if (kthread_should_stop()) {
2397 __set_current_state(TASK_RUNNING);
111c225a 2398 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2399 return 0;
412d32e6 2400 }
e22bee78 2401
493a1724
TH
2402 /* see whether any pwq is asking for help */
2403 spin_lock_irq(&workqueue_lock);
2404
2405 while (!list_empty(&wq->maydays)) {
2406 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2407 struct pool_workqueue, mayday_node);
112202d9 2408 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2409 struct work_struct *work, *n;
2410
2411 __set_current_state(TASK_RUNNING);
493a1724
TH
2412 list_del_init(&pwq->mayday_node);
2413
2414 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2415
2416 /* migrate to the target cpu if possible */
f36dc67b 2417 worker_maybe_bind_and_lock(pool);
b3104104 2418 rescuer->pool = pool;
e22bee78
TH
2419
2420 /*
2421 * Slurp in all works issued via this workqueue and
2422 * process'em.
2423 */
6183c009 2424 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2425 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2426 if (get_work_pwq(work) == pwq)
e22bee78
TH
2427 move_linked_works(work, scheduled, &n);
2428
2429 process_scheduled_works(rescuer);
7576958a
TH
2430
2431 /*
d565ed63 2432 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2433 * regular worker; otherwise, we end up with 0 concurrency
2434 * and stalling the execution.
2435 */
63d95a91
TH
2436 if (keep_working(pool))
2437 wake_up_worker(pool);
7576958a 2438
b3104104 2439 rescuer->pool = NULL;
493a1724
TH
2440 spin_unlock(&pool->lock);
2441 spin_lock(&workqueue_lock);
e22bee78
TH
2442 }
2443
493a1724
TH
2444 spin_unlock_irq(&workqueue_lock);
2445
111c225a
TH
2446 /* rescuers should never participate in concurrency management */
2447 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2448 schedule();
2449 goto repeat;
1da177e4
LT
2450}
2451
fc2e4d70
ON
2452struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
4690c4ab
TH
2463/**
2464 * insert_wq_barrier - insert a barrier work
112202d9 2465 * @pwq: pwq to insert barrier into
4690c4ab 2466 * @barr: wq_barrier to insert
affee4b2
TH
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2469 *
affee4b2
TH
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
112202d9 2482 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2483 *
2484 * CONTEXT:
d565ed63 2485 * spin_lock_irq(pool->lock).
4690c4ab 2486 */
112202d9 2487static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
fc2e4d70 2490{
affee4b2
TH
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
dc186ad7 2494 /*
d565ed63 2495 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
ca1cab37 2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2502 init_completion(&barr->done);
83c22520 2503
affee4b2
TH
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
dc186ad7 2519 debug_work_activate(&barr->work);
112202d9 2520 insert_work(pwq, &barr->work, head,
affee4b2 2521 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2522}
2523
73f53c4a 2524/**
112202d9 2525 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
112202d9 2530 * Prepare pwqs for workqueue flushing.
73f53c4a 2531 *
112202d9
TH
2532 * If @flush_color is non-negative, flush_color on all pwqs should be
2533 * -1. If no pwq has in-flight commands at the specified color, all
2534 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2535 * has in flight commands, its pwq->flush_color is set to
2536 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
112202d9 2544 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
112202d9 2555static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2556 int flush_color, int work_color)
1da177e4 2557{
73f53c4a 2558 bool wait = false;
49e3cf44 2559 struct pool_workqueue *pwq;
1da177e4 2560
73f53c4a 2561 if (flush_color >= 0) {
6183c009 2562 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2563 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2564 }
2355b70f 2565
76af4d93
TH
2566 local_irq_disable();
2567
49e3cf44 2568 for_each_pwq(pwq, wq) {
112202d9 2569 struct worker_pool *pool = pwq->pool;
fc2e4d70 2570
76af4d93 2571 spin_lock(&pool->lock);
83c22520 2572
73f53c4a 2573 if (flush_color >= 0) {
6183c009 2574 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2575
112202d9
TH
2576 if (pwq->nr_in_flight[flush_color]) {
2577 pwq->flush_color = flush_color;
2578 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2579 wait = true;
2580 }
2581 }
1da177e4 2582
73f53c4a 2583 if (work_color >= 0) {
6183c009 2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2585 pwq->work_color = work_color;
73f53c4a 2586 }
1da177e4 2587
76af4d93 2588 spin_unlock(&pool->lock);
1da177e4 2589 }
2355b70f 2590
76af4d93
TH
2591 local_irq_enable();
2592
112202d9 2593 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2594 complete(&wq->first_flusher->done);
14441960 2595
73f53c4a 2596 return wait;
1da177e4
LT
2597}
2598
0fcb78c2 2599/**
1da177e4 2600 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2601 * @wq: workqueue to flush
1da177e4
LT
2602 *
2603 * Forces execution of the workqueue and blocks until its completion.
2604 * This is typically used in driver shutdown handlers.
2605 *
fc2e4d70
ON
2606 * We sleep until all works which were queued on entry have been handled,
2607 * but we are not livelocked by new incoming ones.
1da177e4 2608 */
7ad5b3a5 2609void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2610{
73f53c4a
TH
2611 struct wq_flusher this_flusher = {
2612 .list = LIST_HEAD_INIT(this_flusher.list),
2613 .flush_color = -1,
2614 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2615 };
2616 int next_color;
1da177e4 2617
3295f0ef
IM
2618 lock_map_acquire(&wq->lockdep_map);
2619 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2620
2621 mutex_lock(&wq->flush_mutex);
2622
2623 /*
2624 * Start-to-wait phase
2625 */
2626 next_color = work_next_color(wq->work_color);
2627
2628 if (next_color != wq->flush_color) {
2629 /*
2630 * Color space is not full. The current work_color
2631 * becomes our flush_color and work_color is advanced
2632 * by one.
2633 */
6183c009 2634 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2635 this_flusher.flush_color = wq->work_color;
2636 wq->work_color = next_color;
2637
2638 if (!wq->first_flusher) {
2639 /* no flush in progress, become the first flusher */
6183c009 2640 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2641
2642 wq->first_flusher = &this_flusher;
2643
112202d9 2644 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2645 wq->work_color)) {
2646 /* nothing to flush, done */
2647 wq->flush_color = next_color;
2648 wq->first_flusher = NULL;
2649 goto out_unlock;
2650 }
2651 } else {
2652 /* wait in queue */
6183c009 2653 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2654 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2655 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2656 }
2657 } else {
2658 /*
2659 * Oops, color space is full, wait on overflow queue.
2660 * The next flush completion will assign us
2661 * flush_color and transfer to flusher_queue.
2662 */
2663 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2664 }
2665
2666 mutex_unlock(&wq->flush_mutex);
2667
2668 wait_for_completion(&this_flusher.done);
2669
2670 /*
2671 * Wake-up-and-cascade phase
2672 *
2673 * First flushers are responsible for cascading flushes and
2674 * handling overflow. Non-first flushers can simply return.
2675 */
2676 if (wq->first_flusher != &this_flusher)
2677 return;
2678
2679 mutex_lock(&wq->flush_mutex);
2680
4ce48b37
TH
2681 /* we might have raced, check again with mutex held */
2682 if (wq->first_flusher != &this_flusher)
2683 goto out_unlock;
2684
73f53c4a
TH
2685 wq->first_flusher = NULL;
2686
6183c009
TH
2687 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2688 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2689
2690 while (true) {
2691 struct wq_flusher *next, *tmp;
2692
2693 /* complete all the flushers sharing the current flush color */
2694 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2695 if (next->flush_color != wq->flush_color)
2696 break;
2697 list_del_init(&next->list);
2698 complete(&next->done);
2699 }
2700
6183c009
TH
2701 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2702 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2703
2704 /* this flush_color is finished, advance by one */
2705 wq->flush_color = work_next_color(wq->flush_color);
2706
2707 /* one color has been freed, handle overflow queue */
2708 if (!list_empty(&wq->flusher_overflow)) {
2709 /*
2710 * Assign the same color to all overflowed
2711 * flushers, advance work_color and append to
2712 * flusher_queue. This is the start-to-wait
2713 * phase for these overflowed flushers.
2714 */
2715 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2716 tmp->flush_color = wq->work_color;
2717
2718 wq->work_color = work_next_color(wq->work_color);
2719
2720 list_splice_tail_init(&wq->flusher_overflow,
2721 &wq->flusher_queue);
112202d9 2722 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2723 }
2724
2725 if (list_empty(&wq->flusher_queue)) {
6183c009 2726 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2727 break;
2728 }
2729
2730 /*
2731 * Need to flush more colors. Make the next flusher
112202d9 2732 * the new first flusher and arm pwqs.
73f53c4a 2733 */
6183c009
TH
2734 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2735 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2736
2737 list_del_init(&next->list);
2738 wq->first_flusher = next;
2739
112202d9 2740 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2741 break;
2742
2743 /*
2744 * Meh... this color is already done, clear first
2745 * flusher and repeat cascading.
2746 */
2747 wq->first_flusher = NULL;
2748 }
2749
2750out_unlock:
2751 mutex_unlock(&wq->flush_mutex);
1da177e4 2752}
ae90dd5d 2753EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2754
9c5a2ba7
TH
2755/**
2756 * drain_workqueue - drain a workqueue
2757 * @wq: workqueue to drain
2758 *
2759 * Wait until the workqueue becomes empty. While draining is in progress,
2760 * only chain queueing is allowed. IOW, only currently pending or running
2761 * work items on @wq can queue further work items on it. @wq is flushed
2762 * repeatedly until it becomes empty. The number of flushing is detemined
2763 * by the depth of chaining and should be relatively short. Whine if it
2764 * takes too long.
2765 */
2766void drain_workqueue(struct workqueue_struct *wq)
2767{
2768 unsigned int flush_cnt = 0;
49e3cf44 2769 struct pool_workqueue *pwq;
9c5a2ba7
TH
2770
2771 /*
2772 * __queue_work() needs to test whether there are drainers, is much
2773 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2774 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2775 */
e98d5b16 2776 spin_lock_irq(&workqueue_lock);
9c5a2ba7 2777 if (!wq->nr_drainers++)
618b01eb 2778 wq->flags |= __WQ_DRAINING;
e98d5b16 2779 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2780reflush:
2781 flush_workqueue(wq);
2782
76af4d93
TH
2783 local_irq_disable();
2784
49e3cf44 2785 for_each_pwq(pwq, wq) {
fa2563e4 2786 bool drained;
9c5a2ba7 2787
76af4d93 2788 spin_lock(&pwq->pool->lock);
112202d9 2789 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2790 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2791
2792 if (drained)
9c5a2ba7
TH
2793 continue;
2794
2795 if (++flush_cnt == 10 ||
2796 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2797 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2798 wq->name, flush_cnt);
76af4d93
TH
2799
2800 local_irq_enable();
9c5a2ba7
TH
2801 goto reflush;
2802 }
2803
76af4d93 2804 spin_lock(&workqueue_lock);
9c5a2ba7 2805 if (!--wq->nr_drainers)
618b01eb 2806 wq->flags &= ~__WQ_DRAINING;
76af4d93
TH
2807 spin_unlock(&workqueue_lock);
2808
2809 local_irq_enable();
9c5a2ba7
TH
2810}
2811EXPORT_SYMBOL_GPL(drain_workqueue);
2812
606a5020 2813static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2814{
affee4b2 2815 struct worker *worker = NULL;
c9e7cf27 2816 struct worker_pool *pool;
112202d9 2817 struct pool_workqueue *pwq;
db700897
ON
2818
2819 might_sleep();
fa1b54e6
TH
2820
2821 local_irq_disable();
c9e7cf27 2822 pool = get_work_pool(work);
fa1b54e6
TH
2823 if (!pool) {
2824 local_irq_enable();
baf59022 2825 return false;
fa1b54e6 2826 }
db700897 2827
fa1b54e6 2828 spin_lock(&pool->lock);
0b3dae68 2829 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2830 pwq = get_work_pwq(work);
2831 if (pwq) {
2832 if (unlikely(pwq->pool != pool))
4690c4ab 2833 goto already_gone;
606a5020 2834 } else {
c9e7cf27 2835 worker = find_worker_executing_work(pool, work);
affee4b2 2836 if (!worker)
4690c4ab 2837 goto already_gone;
112202d9 2838 pwq = worker->current_pwq;
606a5020 2839 }
db700897 2840
112202d9 2841 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2842 spin_unlock_irq(&pool->lock);
7a22ad75 2843
e159489b
TH
2844 /*
2845 * If @max_active is 1 or rescuer is in use, flushing another work
2846 * item on the same workqueue may lead to deadlock. Make sure the
2847 * flusher is not running on the same workqueue by verifying write
2848 * access.
2849 */
493008a8 2850 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2851 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2852 else
112202d9
TH
2853 lock_map_acquire_read(&pwq->wq->lockdep_map);
2854 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2855
401a8d04 2856 return true;
4690c4ab 2857already_gone:
d565ed63 2858 spin_unlock_irq(&pool->lock);
401a8d04 2859 return false;
db700897 2860}
baf59022
TH
2861
2862/**
2863 * flush_work - wait for a work to finish executing the last queueing instance
2864 * @work: the work to flush
2865 *
606a5020
TH
2866 * Wait until @work has finished execution. @work is guaranteed to be idle
2867 * on return if it hasn't been requeued since flush started.
baf59022
TH
2868 *
2869 * RETURNS:
2870 * %true if flush_work() waited for the work to finish execution,
2871 * %false if it was already idle.
2872 */
2873bool flush_work(struct work_struct *work)
2874{
2875 struct wq_barrier barr;
2876
0976dfc1
SB
2877 lock_map_acquire(&work->lockdep_map);
2878 lock_map_release(&work->lockdep_map);
2879
606a5020 2880 if (start_flush_work(work, &barr)) {
401a8d04
TH
2881 wait_for_completion(&barr.done);
2882 destroy_work_on_stack(&barr.work);
2883 return true;
606a5020 2884 } else {
401a8d04 2885 return false;
6e84d644 2886 }
6e84d644 2887}
606a5020 2888EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2889
36e227d2 2890static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2891{
bbb68dfa 2892 unsigned long flags;
1f1f642e
ON
2893 int ret;
2894
2895 do {
bbb68dfa
TH
2896 ret = try_to_grab_pending(work, is_dwork, &flags);
2897 /*
2898 * If someone else is canceling, wait for the same event it
2899 * would be waiting for before retrying.
2900 */
2901 if (unlikely(ret == -ENOENT))
606a5020 2902 flush_work(work);
1f1f642e
ON
2903 } while (unlikely(ret < 0));
2904
bbb68dfa
TH
2905 /* tell other tasks trying to grab @work to back off */
2906 mark_work_canceling(work);
2907 local_irq_restore(flags);
2908
606a5020 2909 flush_work(work);
7a22ad75 2910 clear_work_data(work);
1f1f642e
ON
2911 return ret;
2912}
2913
6e84d644 2914/**
401a8d04
TH
2915 * cancel_work_sync - cancel a work and wait for it to finish
2916 * @work: the work to cancel
6e84d644 2917 *
401a8d04
TH
2918 * Cancel @work and wait for its execution to finish. This function
2919 * can be used even if the work re-queues itself or migrates to
2920 * another workqueue. On return from this function, @work is
2921 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2922 *
401a8d04
TH
2923 * cancel_work_sync(&delayed_work->work) must not be used for
2924 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2925 *
401a8d04 2926 * The caller must ensure that the workqueue on which @work was last
6e84d644 2927 * queued can't be destroyed before this function returns.
401a8d04
TH
2928 *
2929 * RETURNS:
2930 * %true if @work was pending, %false otherwise.
6e84d644 2931 */
401a8d04 2932bool cancel_work_sync(struct work_struct *work)
6e84d644 2933{
36e227d2 2934 return __cancel_work_timer(work, false);
b89deed3 2935}
28e53bdd 2936EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2937
6e84d644 2938/**
401a8d04
TH
2939 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2940 * @dwork: the delayed work to flush
6e84d644 2941 *
401a8d04
TH
2942 * Delayed timer is cancelled and the pending work is queued for
2943 * immediate execution. Like flush_work(), this function only
2944 * considers the last queueing instance of @dwork.
1f1f642e 2945 *
401a8d04
TH
2946 * RETURNS:
2947 * %true if flush_work() waited for the work to finish execution,
2948 * %false if it was already idle.
6e84d644 2949 */
401a8d04
TH
2950bool flush_delayed_work(struct delayed_work *dwork)
2951{
8930caba 2952 local_irq_disable();
401a8d04 2953 if (del_timer_sync(&dwork->timer))
60c057bc 2954 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2955 local_irq_enable();
401a8d04
TH
2956 return flush_work(&dwork->work);
2957}
2958EXPORT_SYMBOL(flush_delayed_work);
2959
09383498 2960/**
57b30ae7
TH
2961 * cancel_delayed_work - cancel a delayed work
2962 * @dwork: delayed_work to cancel
09383498 2963 *
57b30ae7
TH
2964 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2965 * and canceled; %false if wasn't pending. Note that the work callback
2966 * function may still be running on return, unless it returns %true and the
2967 * work doesn't re-arm itself. Explicitly flush or use
2968 * cancel_delayed_work_sync() to wait on it.
09383498 2969 *
57b30ae7 2970 * This function is safe to call from any context including IRQ handler.
09383498 2971 */
57b30ae7 2972bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2973{
57b30ae7
TH
2974 unsigned long flags;
2975 int ret;
2976
2977 do {
2978 ret = try_to_grab_pending(&dwork->work, true, &flags);
2979 } while (unlikely(ret == -EAGAIN));
2980
2981 if (unlikely(ret < 0))
2982 return false;
2983
7c3eed5c
TH
2984 set_work_pool_and_clear_pending(&dwork->work,
2985 get_work_pool_id(&dwork->work));
57b30ae7 2986 local_irq_restore(flags);
c0158ca6 2987 return ret;
09383498 2988}
57b30ae7 2989EXPORT_SYMBOL(cancel_delayed_work);
09383498 2990
401a8d04
TH
2991/**
2992 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2993 * @dwork: the delayed work cancel
2994 *
2995 * This is cancel_work_sync() for delayed works.
2996 *
2997 * RETURNS:
2998 * %true if @dwork was pending, %false otherwise.
2999 */
3000bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3001{
36e227d2 3002 return __cancel_work_timer(&dwork->work, true);
6e84d644 3003}
f5a421a4 3004EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3005
0fcb78c2 3006/**
c1a220e7
ZR
3007 * schedule_work_on - put work task on a specific cpu
3008 * @cpu: cpu to put the work task on
3009 * @work: job to be done
3010 *
3011 * This puts a job on a specific cpu
3012 */
d4283e93 3013bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3014{
d320c038 3015 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3016}
3017EXPORT_SYMBOL(schedule_work_on);
3018
0fcb78c2 3019/**
0fcb78c2
REB
3020 * schedule_work - put work task in global workqueue
3021 * @work: job to be done
0fcb78c2 3022 *
d4283e93
TH
3023 * Returns %false if @work was already on the kernel-global workqueue and
3024 * %true otherwise.
5b0f437d
BVA
3025 *
3026 * This puts a job in the kernel-global workqueue if it was not already
3027 * queued and leaves it in the same position on the kernel-global
3028 * workqueue otherwise.
0fcb78c2 3029 */
d4283e93 3030bool schedule_work(struct work_struct *work)
1da177e4 3031{
d320c038 3032 return queue_work(system_wq, work);
1da177e4 3033}
ae90dd5d 3034EXPORT_SYMBOL(schedule_work);
1da177e4 3035
0fcb78c2
REB
3036/**
3037 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3038 * @cpu: cpu to use
52bad64d 3039 * @dwork: job to be done
0fcb78c2
REB
3040 * @delay: number of jiffies to wait
3041 *
3042 * After waiting for a given time this puts a job in the kernel-global
3043 * workqueue on the specified CPU.
3044 */
d4283e93
TH
3045bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3046 unsigned long delay)
1da177e4 3047{
d320c038 3048 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3049}
ae90dd5d 3050EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3051
0fcb78c2
REB
3052/**
3053 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3054 * @dwork: job to be done
3055 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3056 *
3057 * After waiting for a given time this puts a job in the kernel-global
3058 * workqueue.
3059 */
d4283e93 3060bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3061{
d320c038 3062 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3063}
ae90dd5d 3064EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3065
b6136773 3066/**
31ddd871 3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3068 * @func: the function to call
b6136773 3069 *
31ddd871
TH
3070 * schedule_on_each_cpu() executes @func on each online CPU using the
3071 * system workqueue and blocks until all CPUs have completed.
b6136773 3072 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3073 *
3074 * RETURNS:
3075 * 0 on success, -errno on failure.
b6136773 3076 */
65f27f38 3077int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3078{
3079 int cpu;
38f51568 3080 struct work_struct __percpu *works;
15316ba8 3081
b6136773
AM
3082 works = alloc_percpu(struct work_struct);
3083 if (!works)
15316ba8 3084 return -ENOMEM;
b6136773 3085
93981800
TH
3086 get_online_cpus();
3087
15316ba8 3088 for_each_online_cpu(cpu) {
9bfb1839
IM
3089 struct work_struct *work = per_cpu_ptr(works, cpu);
3090
3091 INIT_WORK(work, func);
b71ab8c2 3092 schedule_work_on(cpu, work);
65a64464 3093 }
93981800
TH
3094
3095 for_each_online_cpu(cpu)
3096 flush_work(per_cpu_ptr(works, cpu));
3097
95402b38 3098 put_online_cpus();
b6136773 3099 free_percpu(works);
15316ba8
CL
3100 return 0;
3101}
3102
eef6a7d5
AS
3103/**
3104 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3105 *
3106 * Forces execution of the kernel-global workqueue and blocks until its
3107 * completion.
3108 *
3109 * Think twice before calling this function! It's very easy to get into
3110 * trouble if you don't take great care. Either of the following situations
3111 * will lead to deadlock:
3112 *
3113 * One of the work items currently on the workqueue needs to acquire
3114 * a lock held by your code or its caller.
3115 *
3116 * Your code is running in the context of a work routine.
3117 *
3118 * They will be detected by lockdep when they occur, but the first might not
3119 * occur very often. It depends on what work items are on the workqueue and
3120 * what locks they need, which you have no control over.
3121 *
3122 * In most situations flushing the entire workqueue is overkill; you merely
3123 * need to know that a particular work item isn't queued and isn't running.
3124 * In such cases you should use cancel_delayed_work_sync() or
3125 * cancel_work_sync() instead.
3126 */
1da177e4
LT
3127void flush_scheduled_work(void)
3128{
d320c038 3129 flush_workqueue(system_wq);
1da177e4 3130}
ae90dd5d 3131EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3132
1fa44eca
JB
3133/**
3134 * execute_in_process_context - reliably execute the routine with user context
3135 * @fn: the function to execute
1fa44eca
JB
3136 * @ew: guaranteed storage for the execute work structure (must
3137 * be available when the work executes)
3138 *
3139 * Executes the function immediately if process context is available,
3140 * otherwise schedules the function for delayed execution.
3141 *
3142 * Returns: 0 - function was executed
3143 * 1 - function was scheduled for execution
3144 */
65f27f38 3145int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3146{
3147 if (!in_interrupt()) {
65f27f38 3148 fn(&ew->work);
1fa44eca
JB
3149 return 0;
3150 }
3151
65f27f38 3152 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3153 schedule_work(&ew->work);
3154
3155 return 1;
3156}
3157EXPORT_SYMBOL_GPL(execute_in_process_context);
3158
1da177e4
LT
3159int keventd_up(void)
3160{
d320c038 3161 return system_wq != NULL;
1da177e4
LT
3162}
3163
226223ab
TH
3164#ifdef CONFIG_SYSFS
3165/*
3166 * Workqueues with WQ_SYSFS flag set is visible to userland via
3167 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3168 * following attributes.
3169 *
3170 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3171 * max_active RW int : maximum number of in-flight work items
3172 *
3173 * Unbound workqueues have the following extra attributes.
3174 *
3175 * id RO int : the associated pool ID
3176 * nice RW int : nice value of the workers
3177 * cpumask RW mask : bitmask of allowed CPUs for the workers
3178 */
3179struct wq_device {
3180 struct workqueue_struct *wq;
3181 struct device dev;
3182};
3183
3184static struct workqueue_struct *dev_to_wq(struct device *dev)
3185{
3186 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3187
3188 return wq_dev->wq;
3189}
3190
3191static ssize_t wq_per_cpu_show(struct device *dev,
3192 struct device_attribute *attr, char *buf)
3193{
3194 struct workqueue_struct *wq = dev_to_wq(dev);
3195
3196 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3197}
3198
3199static ssize_t wq_max_active_show(struct device *dev,
3200 struct device_attribute *attr, char *buf)
3201{
3202 struct workqueue_struct *wq = dev_to_wq(dev);
3203
3204 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3205}
3206
3207static ssize_t wq_max_active_store(struct device *dev,
3208 struct device_attribute *attr,
3209 const char *buf, size_t count)
3210{
3211 struct workqueue_struct *wq = dev_to_wq(dev);
3212 int val;
3213
3214 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3215 return -EINVAL;
3216
3217 workqueue_set_max_active(wq, val);
3218 return count;
3219}
3220
3221static struct device_attribute wq_sysfs_attrs[] = {
3222 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3223 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3224 __ATTR_NULL,
3225};
3226
3227static ssize_t wq_pool_id_show(struct device *dev,
3228 struct device_attribute *attr, char *buf)
3229{
3230 struct workqueue_struct *wq = dev_to_wq(dev);
3231 struct worker_pool *pool;
3232 int written;
3233
3234 rcu_read_lock_sched();
3235 pool = first_pwq(wq)->pool;
3236 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3237 rcu_read_unlock_sched();
3238
3239 return written;
3240}
3241
3242static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3243 char *buf)
3244{
3245 struct workqueue_struct *wq = dev_to_wq(dev);
3246 int written;
3247
3248 rcu_read_lock_sched();
3249 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3250 first_pwq(wq)->pool->attrs->nice);
3251 rcu_read_unlock_sched();
3252
3253 return written;
3254}
3255
3256/* prepare workqueue_attrs for sysfs store operations */
3257static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3258{
3259 struct workqueue_attrs *attrs;
3260
3261 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3262 if (!attrs)
3263 return NULL;
3264
3265 rcu_read_lock_sched();
3266 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3267 rcu_read_unlock_sched();
3268 return attrs;
3269}
3270
3271static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3272 const char *buf, size_t count)
3273{
3274 struct workqueue_struct *wq = dev_to_wq(dev);
3275 struct workqueue_attrs *attrs;
3276 int ret;
3277
3278 attrs = wq_sysfs_prep_attrs(wq);
3279 if (!attrs)
3280 return -ENOMEM;
3281
3282 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3283 attrs->nice >= -20 && attrs->nice <= 19)
3284 ret = apply_workqueue_attrs(wq, attrs);
3285 else
3286 ret = -EINVAL;
3287
3288 free_workqueue_attrs(attrs);
3289 return ret ?: count;
3290}
3291
3292static ssize_t wq_cpumask_show(struct device *dev,
3293 struct device_attribute *attr, char *buf)
3294{
3295 struct workqueue_struct *wq = dev_to_wq(dev);
3296 int written;
3297
3298 rcu_read_lock_sched();
3299 written = cpumask_scnprintf(buf, PAGE_SIZE,
3300 first_pwq(wq)->pool->attrs->cpumask);
3301 rcu_read_unlock_sched();
3302
3303 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3304 return written;
3305}
3306
3307static ssize_t wq_cpumask_store(struct device *dev,
3308 struct device_attribute *attr,
3309 const char *buf, size_t count)
3310{
3311 struct workqueue_struct *wq = dev_to_wq(dev);
3312 struct workqueue_attrs *attrs;
3313 int ret;
3314
3315 attrs = wq_sysfs_prep_attrs(wq);
3316 if (!attrs)
3317 return -ENOMEM;
3318
3319 ret = cpumask_parse(buf, attrs->cpumask);
3320 if (!ret)
3321 ret = apply_workqueue_attrs(wq, attrs);
3322
3323 free_workqueue_attrs(attrs);
3324 return ret ?: count;
3325}
3326
3327static struct device_attribute wq_sysfs_unbound_attrs[] = {
3328 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3329 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3330 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3331 __ATTR_NULL,
3332};
3333
3334static struct bus_type wq_subsys = {
3335 .name = "workqueue",
3336 .dev_attrs = wq_sysfs_attrs,
3337};
3338
3339static int __init wq_sysfs_init(void)
3340{
3341 return subsys_virtual_register(&wq_subsys, NULL);
3342}
3343core_initcall(wq_sysfs_init);
3344
3345static void wq_device_release(struct device *dev)
3346{
3347 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3348
3349 kfree(wq_dev);
3350}
3351
3352/**
3353 * workqueue_sysfs_register - make a workqueue visible in sysfs
3354 * @wq: the workqueue to register
3355 *
3356 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3357 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3358 * which is the preferred method.
3359 *
3360 * Workqueue user should use this function directly iff it wants to apply
3361 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3362 * apply_workqueue_attrs() may race against userland updating the
3363 * attributes.
3364 *
3365 * Returns 0 on success, -errno on failure.
3366 */
3367int workqueue_sysfs_register(struct workqueue_struct *wq)
3368{
3369 struct wq_device *wq_dev;
3370 int ret;
3371
3372 /*
3373 * Adjusting max_active or creating new pwqs by applyting
3374 * attributes breaks ordering guarantee. Disallow exposing ordered
3375 * workqueues.
3376 */
3377 if (WARN_ON(wq->flags & __WQ_ORDERED))
3378 return -EINVAL;
3379
3380 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3381 if (!wq_dev)
3382 return -ENOMEM;
3383
3384 wq_dev->wq = wq;
3385 wq_dev->dev.bus = &wq_subsys;
3386 wq_dev->dev.init_name = wq->name;
3387 wq_dev->dev.release = wq_device_release;
3388
3389 /*
3390 * unbound_attrs are created separately. Suppress uevent until
3391 * everything is ready.
3392 */
3393 dev_set_uevent_suppress(&wq_dev->dev, true);
3394
3395 ret = device_register(&wq_dev->dev);
3396 if (ret) {
3397 kfree(wq_dev);
3398 wq->wq_dev = NULL;
3399 return ret;
3400 }
3401
3402 if (wq->flags & WQ_UNBOUND) {
3403 struct device_attribute *attr;
3404
3405 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3406 ret = device_create_file(&wq_dev->dev, attr);
3407 if (ret) {
3408 device_unregister(&wq_dev->dev);
3409 wq->wq_dev = NULL;
3410 return ret;
3411 }
3412 }
3413 }
3414
3415 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3416 return 0;
3417}
3418
3419/**
3420 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3421 * @wq: the workqueue to unregister
3422 *
3423 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3424 */
3425static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3426{
3427 struct wq_device *wq_dev = wq->wq_dev;
3428
3429 if (!wq->wq_dev)
3430 return;
3431
3432 wq->wq_dev = NULL;
3433 device_unregister(&wq_dev->dev);
3434}
3435#else /* CONFIG_SYSFS */
3436static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3437#endif /* CONFIG_SYSFS */
3438
7a4e344c
TH
3439/**
3440 * free_workqueue_attrs - free a workqueue_attrs
3441 * @attrs: workqueue_attrs to free
3442 *
3443 * Undo alloc_workqueue_attrs().
3444 */
3445void free_workqueue_attrs(struct workqueue_attrs *attrs)
3446{
3447 if (attrs) {
3448 free_cpumask_var(attrs->cpumask);
3449 kfree(attrs);
3450 }
3451}
3452
3453/**
3454 * alloc_workqueue_attrs - allocate a workqueue_attrs
3455 * @gfp_mask: allocation mask to use
3456 *
3457 * Allocate a new workqueue_attrs, initialize with default settings and
3458 * return it. Returns NULL on failure.
3459 */
3460struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3461{
3462 struct workqueue_attrs *attrs;
3463
3464 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3465 if (!attrs)
3466 goto fail;
3467 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3468 goto fail;
3469
3470 cpumask_setall(attrs->cpumask);
3471 return attrs;
3472fail:
3473 free_workqueue_attrs(attrs);
3474 return NULL;
3475}
3476
29c91e99
TH
3477static void copy_workqueue_attrs(struct workqueue_attrs *to,
3478 const struct workqueue_attrs *from)
3479{
3480 to->nice = from->nice;
3481 cpumask_copy(to->cpumask, from->cpumask);
3482}
3483
3484/*
3485 * Hacky implementation of jhash of bitmaps which only considers the
3486 * specified number of bits. We probably want a proper implementation in
3487 * include/linux/jhash.h.
3488 */
3489static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3490{
3491 int nr_longs = bits / BITS_PER_LONG;
3492 int nr_leftover = bits % BITS_PER_LONG;
3493 unsigned long leftover = 0;
3494
3495 if (nr_longs)
3496 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3497 if (nr_leftover) {
3498 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3499 hash = jhash(&leftover, sizeof(long), hash);
3500 }
3501 return hash;
3502}
3503
3504/* hash value of the content of @attr */
3505static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3506{
3507 u32 hash = 0;
3508
3509 hash = jhash_1word(attrs->nice, hash);
3510 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3511 return hash;
3512}
3513
3514/* content equality test */
3515static bool wqattrs_equal(const struct workqueue_attrs *a,
3516 const struct workqueue_attrs *b)
3517{
3518 if (a->nice != b->nice)
3519 return false;
3520 if (!cpumask_equal(a->cpumask, b->cpumask))
3521 return false;
3522 return true;
3523}
3524
7a4e344c
TH
3525/**
3526 * init_worker_pool - initialize a newly zalloc'd worker_pool
3527 * @pool: worker_pool to initialize
3528 *
3529 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3530 * Returns 0 on success, -errno on failure. Even on failure, all fields
3531 * inside @pool proper are initialized and put_unbound_pool() can be called
3532 * on @pool safely to release it.
7a4e344c
TH
3533 */
3534static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3535{
3536 spin_lock_init(&pool->lock);
29c91e99
TH
3537 pool->id = -1;
3538 pool->cpu = -1;
4e1a1f9a
TH
3539 pool->flags |= POOL_DISASSOCIATED;
3540 INIT_LIST_HEAD(&pool->worklist);
3541 INIT_LIST_HEAD(&pool->idle_list);
3542 hash_init(pool->busy_hash);
3543
3544 init_timer_deferrable(&pool->idle_timer);
3545 pool->idle_timer.function = idle_worker_timeout;
3546 pool->idle_timer.data = (unsigned long)pool;
3547
3548 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3549 (unsigned long)pool);
3550
3551 mutex_init(&pool->manager_arb);
3552 mutex_init(&pool->assoc_mutex);
3553 ida_init(&pool->worker_ida);
7a4e344c 3554
29c91e99
TH
3555 INIT_HLIST_NODE(&pool->hash_node);
3556 pool->refcnt = 1;
3557
3558 /* shouldn't fail above this point */
7a4e344c
TH
3559 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3560 if (!pool->attrs)
3561 return -ENOMEM;
3562 return 0;
4e1a1f9a
TH
3563}
3564
29c91e99
TH
3565static void rcu_free_pool(struct rcu_head *rcu)
3566{
3567 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3568
3569 ida_destroy(&pool->worker_ida);
3570 free_workqueue_attrs(pool->attrs);
3571 kfree(pool);
3572}
3573
3574/**
3575 * put_unbound_pool - put a worker_pool
3576 * @pool: worker_pool to put
3577 *
3578 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3579 * safe manner.
3580 */
3581static void put_unbound_pool(struct worker_pool *pool)
3582{
3583 struct worker *worker;
3584
3585 spin_lock_irq(&workqueue_lock);
3586 if (--pool->refcnt) {
3587 spin_unlock_irq(&workqueue_lock);
3588 return;
3589 }
3590
3591 /* sanity checks */
3592 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3593 WARN_ON(!list_empty(&pool->worklist))) {
3594 spin_unlock_irq(&workqueue_lock);
3595 return;
3596 }
3597
3598 /* release id and unhash */
3599 if (pool->id >= 0)
3600 idr_remove(&worker_pool_idr, pool->id);
3601 hash_del(&pool->hash_node);
3602
3603 spin_unlock_irq(&workqueue_lock);
3604
3605 /* lock out manager and destroy all workers */
3606 mutex_lock(&pool->manager_arb);
3607 spin_lock_irq(&pool->lock);
3608
3609 while ((worker = first_worker(pool)))
3610 destroy_worker(worker);
3611 WARN_ON(pool->nr_workers || pool->nr_idle);
3612
3613 spin_unlock_irq(&pool->lock);
3614 mutex_unlock(&pool->manager_arb);
3615
3616 /* shut down the timers */
3617 del_timer_sync(&pool->idle_timer);
3618 del_timer_sync(&pool->mayday_timer);
3619
3620 /* sched-RCU protected to allow dereferences from get_work_pool() */
3621 call_rcu_sched(&pool->rcu, rcu_free_pool);
3622}
3623
3624/**
3625 * get_unbound_pool - get a worker_pool with the specified attributes
3626 * @attrs: the attributes of the worker_pool to get
3627 *
3628 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3629 * reference count and return it. If there already is a matching
3630 * worker_pool, it will be used; otherwise, this function attempts to
3631 * create a new one. On failure, returns NULL.
3632 */
3633static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3634{
3635 static DEFINE_MUTEX(create_mutex);
3636 u32 hash = wqattrs_hash(attrs);
3637 struct worker_pool *pool;
3638 struct worker *worker;
3639
3640 mutex_lock(&create_mutex);
3641
3642 /* do we already have a matching pool? */
3643 spin_lock_irq(&workqueue_lock);
3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645 if (wqattrs_equal(pool->attrs, attrs)) {
3646 pool->refcnt++;
3647 goto out_unlock;
3648 }
3649 }
3650 spin_unlock_irq(&workqueue_lock);
3651
3652 /* nope, create a new one */
3653 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3654 if (!pool || init_worker_pool(pool) < 0)
3655 goto fail;
3656
8864b4e5 3657 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3658 copy_workqueue_attrs(pool->attrs, attrs);
3659
3660 if (worker_pool_assign_id(pool) < 0)
3661 goto fail;
3662
3663 /* create and start the initial worker */
3664 worker = create_worker(pool);
3665 if (!worker)
3666 goto fail;
3667
3668 spin_lock_irq(&pool->lock);
3669 start_worker(worker);
3670 spin_unlock_irq(&pool->lock);
3671
3672 /* install */
3673 spin_lock_irq(&workqueue_lock);
3674 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3675out_unlock:
3676 spin_unlock_irq(&workqueue_lock);
3677 mutex_unlock(&create_mutex);
3678 return pool;
3679fail:
3680 mutex_unlock(&create_mutex);
3681 if (pool)
3682 put_unbound_pool(pool);
3683 return NULL;
3684}
3685
8864b4e5
TH
3686static void rcu_free_pwq(struct rcu_head *rcu)
3687{
3688 kmem_cache_free(pwq_cache,
3689 container_of(rcu, struct pool_workqueue, rcu));
3690}
3691
3692/*
3693 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3694 * and needs to be destroyed.
3695 */
3696static void pwq_unbound_release_workfn(struct work_struct *work)
3697{
3698 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3699 unbound_release_work);
3700 struct workqueue_struct *wq = pwq->wq;
3701 struct worker_pool *pool = pwq->pool;
3702
3703 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3704 return;
3705
75ccf595
TH
3706 /*
3707 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3708 * necessary on release but do it anyway. It's easier to verify
3709 * and consistent with the linking path.
3710 */
3711 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3712 spin_lock_irq(&workqueue_lock);
3713 list_del_rcu(&pwq->pwqs_node);
3714 spin_unlock_irq(&workqueue_lock);
75ccf595 3715 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3716
3717 put_unbound_pool(pool);
3718 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3719
3720 /*
3721 * If we're the last pwq going away, @wq is already dead and no one
3722 * is gonna access it anymore. Free it.
3723 */
3724 if (list_empty(&wq->pwqs))
3725 kfree(wq);
3726}
3727
0fbd95aa 3728/**
699ce097 3729 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3730 * @pwq: target pool_workqueue
0fbd95aa 3731 *
699ce097
TH
3732 * If @pwq isn't freezing, set @pwq->max_active to the associated
3733 * workqueue's saved_max_active and activate delayed work items
3734 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3735 */
699ce097 3736static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3737{
699ce097
TH
3738 struct workqueue_struct *wq = pwq->wq;
3739 bool freezable = wq->flags & WQ_FREEZABLE;
3740
3741 /* for @wq->saved_max_active */
3742 lockdep_assert_held(&workqueue_lock);
3743
3744 /* fast exit for non-freezable wqs */
3745 if (!freezable && pwq->max_active == wq->saved_max_active)
3746 return;
3747
3748 spin_lock(&pwq->pool->lock);
3749
3750 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3751 pwq->max_active = wq->saved_max_active;
0fbd95aa 3752
699ce097
TH
3753 while (!list_empty(&pwq->delayed_works) &&
3754 pwq->nr_active < pwq->max_active)
3755 pwq_activate_first_delayed(pwq);
3756 } else {
3757 pwq->max_active = 0;
3758 }
3759
3760 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3761}
3762
d2c1d404
TH
3763static void init_and_link_pwq(struct pool_workqueue *pwq,
3764 struct workqueue_struct *wq,
9e8cd2f5
TH
3765 struct worker_pool *pool,
3766 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3767{
3768 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3769
3770 pwq->pool = pool;
3771 pwq->wq = wq;
3772 pwq->flush_color = -1;
8864b4e5 3773 pwq->refcnt = 1;
d2c1d404
TH
3774 INIT_LIST_HEAD(&pwq->delayed_works);
3775 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3776 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3777
75ccf595
TH
3778 mutex_lock(&wq->flush_mutex);
3779 spin_lock_irq(&workqueue_lock);
3780
983ca25e
TH
3781 /*
3782 * Set the matching work_color. This is synchronized with
3783 * flush_mutex to avoid confusing flush_workqueue().
3784 */
9e8cd2f5
TH
3785 if (p_last_pwq)
3786 *p_last_pwq = first_pwq(wq);
75ccf595 3787 pwq->work_color = wq->work_color;
983ca25e
TH
3788
3789 /* sync max_active to the current setting */
3790 pwq_adjust_max_active(pwq);
3791
3792 /* link in @pwq */
9e8cd2f5 3793 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3794
3795 spin_unlock_irq(&workqueue_lock);
3796 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3797}
3798
9e8cd2f5
TH
3799/**
3800 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3801 * @wq: the target workqueue
3802 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3803 *
3804 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3805 * current attributes, a new pwq is created and made the first pwq which
3806 * will serve all new work items. Older pwqs are released as in-flight
3807 * work items finish. Note that a work item which repeatedly requeues
3808 * itself back-to-back will stay on its current pwq.
3809 *
3810 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3811 * failure.
3812 */
3813int apply_workqueue_attrs(struct workqueue_struct *wq,
3814 const struct workqueue_attrs *attrs)
3815{
3816 struct pool_workqueue *pwq, *last_pwq;
3817 struct worker_pool *pool;
3818
8719dcea 3819 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3820 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3821 return -EINVAL;
3822
8719dcea
TH
3823 /* creating multiple pwqs breaks ordering guarantee */
3824 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3825 return -EINVAL;
3826
9e8cd2f5
TH
3827 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3828 if (!pwq)
3829 return -ENOMEM;
3830
3831 pool = get_unbound_pool(attrs);
3832 if (!pool) {
3833 kmem_cache_free(pwq_cache, pwq);
3834 return -ENOMEM;
3835 }
3836
3837 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3838 if (last_pwq) {
3839 spin_lock_irq(&last_pwq->pool->lock);
3840 put_pwq(last_pwq);
3841 spin_unlock_irq(&last_pwq->pool->lock);
3842 }
3843
3844 return 0;
3845}
3846
30cdf249 3847static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3848{
49e3cf44 3849 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3850 int cpu;
3851
3852 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3853 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3854 if (!wq->cpu_pwqs)
30cdf249
TH
3855 return -ENOMEM;
3856
3857 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3858 struct pool_workqueue *pwq =
3859 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3860 struct worker_pool *cpu_pools =
f02ae73a 3861 per_cpu(cpu_worker_pools, cpu);
f3421797 3862
9e8cd2f5 3863 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3864 }
9e8cd2f5 3865 return 0;
30cdf249 3866 } else {
9e8cd2f5 3867 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3868 }
0f900049
TH
3869}
3870
f3421797
TH
3871static int wq_clamp_max_active(int max_active, unsigned int flags,
3872 const char *name)
b71ab8c2 3873{
f3421797
TH
3874 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3875
3876 if (max_active < 1 || max_active > lim)
044c782c
VI
3877 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3878 max_active, name, 1, lim);
b71ab8c2 3879
f3421797 3880 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3881}
3882
b196be89 3883struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3884 unsigned int flags,
3885 int max_active,
3886 struct lock_class_key *key,
b196be89 3887 const char *lock_name, ...)
1da177e4 3888{
b196be89 3889 va_list args, args1;
1da177e4 3890 struct workqueue_struct *wq;
49e3cf44 3891 struct pool_workqueue *pwq;
b196be89
TH
3892 size_t namelen;
3893
3894 /* determine namelen, allocate wq and format name */
3895 va_start(args, lock_name);
3896 va_copy(args1, args);
3897 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3898
3899 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3900 if (!wq)
d2c1d404 3901 return NULL;
b196be89
TH
3902
3903 vsnprintf(wq->name, namelen, fmt, args1);
3904 va_end(args);
3905 va_end(args1);
1da177e4 3906
d320c038 3907 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3908 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3909
b196be89 3910 /* init wq */
97e37d7b 3911 wq->flags = flags;
a0a1a5fd 3912 wq->saved_max_active = max_active;
73f53c4a 3913 mutex_init(&wq->flush_mutex);
112202d9 3914 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3915 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3916 INIT_LIST_HEAD(&wq->flusher_queue);
3917 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3918 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3919
eb13ba87 3920 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3921 INIT_LIST_HEAD(&wq->list);
3af24433 3922
30cdf249 3923 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3924 goto err_free_wq;
1537663f 3925
493008a8
TH
3926 /*
3927 * Workqueues which may be used during memory reclaim should
3928 * have a rescuer to guarantee forward progress.
3929 */
3930 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3931 struct worker *rescuer;
3932
d2c1d404 3933 rescuer = alloc_worker();
e22bee78 3934 if (!rescuer)
d2c1d404 3935 goto err_destroy;
e22bee78 3936
111c225a
TH
3937 rescuer->rescue_wq = wq;
3938 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3939 wq->name);
d2c1d404
TH
3940 if (IS_ERR(rescuer->task)) {
3941 kfree(rescuer);
3942 goto err_destroy;
3943 }
e22bee78 3944
d2c1d404 3945 wq->rescuer = rescuer;
e22bee78
TH
3946 rescuer->task->flags |= PF_THREAD_BOUND;
3947 wake_up_process(rescuer->task);
3af24433
ON
3948 }
3949
226223ab
TH
3950 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3951 goto err_destroy;
3952
a0a1a5fd 3953 /*
699ce097
TH
3954 * workqueue_lock protects global freeze state and workqueues list.
3955 * Grab it, adjust max_active and add the new workqueue to
3956 * workqueues list.
a0a1a5fd 3957 */
e98d5b16 3958 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3959
699ce097
TH
3960 for_each_pwq(pwq, wq)
3961 pwq_adjust_max_active(pwq);
a0a1a5fd 3962
1537663f 3963 list_add(&wq->list, &workqueues);
a0a1a5fd 3964
e98d5b16 3965 spin_unlock_irq(&workqueue_lock);
1537663f 3966
3af24433 3967 return wq;
d2c1d404
TH
3968
3969err_free_wq:
3970 kfree(wq);
3971 return NULL;
3972err_destroy:
3973 destroy_workqueue(wq);
4690c4ab 3974 return NULL;
3af24433 3975}
d320c038 3976EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3977
3af24433
ON
3978/**
3979 * destroy_workqueue - safely terminate a workqueue
3980 * @wq: target workqueue
3981 *
3982 * Safely destroy a workqueue. All work currently pending will be done first.
3983 */
3984void destroy_workqueue(struct workqueue_struct *wq)
3985{
49e3cf44 3986 struct pool_workqueue *pwq;
3af24433 3987
9c5a2ba7
TH
3988 /* drain it before proceeding with destruction */
3989 drain_workqueue(wq);
c8efcc25 3990
76af4d93
TH
3991 spin_lock_irq(&workqueue_lock);
3992
6183c009 3993 /* sanity checks */
49e3cf44 3994 for_each_pwq(pwq, wq) {
6183c009
TH
3995 int i;
3996
76af4d93
TH
3997 for (i = 0; i < WORK_NR_COLORS; i++) {
3998 if (WARN_ON(pwq->nr_in_flight[i])) {
3999 spin_unlock_irq(&workqueue_lock);
6183c009 4000 return;
76af4d93
TH
4001 }
4002 }
4003
8864b4e5
TH
4004 if (WARN_ON(pwq->refcnt > 1) ||
4005 WARN_ON(pwq->nr_active) ||
76af4d93
TH
4006 WARN_ON(!list_empty(&pwq->delayed_works))) {
4007 spin_unlock_irq(&workqueue_lock);
6183c009 4008 return;
76af4d93 4009 }
6183c009
TH
4010 }
4011
a0a1a5fd
TH
4012 /*
4013 * wq list is used to freeze wq, remove from list after
4014 * flushing is complete in case freeze races us.
4015 */
d2c1d404 4016 list_del_init(&wq->list);
76af4d93 4017
e98d5b16 4018 spin_unlock_irq(&workqueue_lock);
3af24433 4019
226223ab
TH
4020 workqueue_sysfs_unregister(wq);
4021
493008a8 4022 if (wq->rescuer) {
e22bee78 4023 kthread_stop(wq->rescuer->task);
8d9df9f0 4024 kfree(wq->rescuer);
493008a8 4025 wq->rescuer = NULL;
e22bee78
TH
4026 }
4027
8864b4e5
TH
4028 if (!(wq->flags & WQ_UNBOUND)) {
4029 /*
4030 * The base ref is never dropped on per-cpu pwqs. Directly
4031 * free the pwqs and wq.
4032 */
4033 free_percpu(wq->cpu_pwqs);
4034 kfree(wq);
4035 } else {
4036 /*
4037 * We're the sole accessor of @wq at this point. Directly
4038 * access the first pwq and put the base ref. As both pwqs
4039 * and pools are sched-RCU protected, the lock operations
4040 * are safe. @wq will be freed when the last pwq is
4041 * released.
4042 */
29c91e99
TH
4043 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
4044 pwqs_node);
8864b4e5
TH
4045 spin_lock_irq(&pwq->pool->lock);
4046 put_pwq(pwq);
4047 spin_unlock_irq(&pwq->pool->lock);
29c91e99 4048 }
3af24433
ON
4049}
4050EXPORT_SYMBOL_GPL(destroy_workqueue);
4051
dcd989cb
TH
4052/**
4053 * workqueue_set_max_active - adjust max_active of a workqueue
4054 * @wq: target workqueue
4055 * @max_active: new max_active value.
4056 *
4057 * Set max_active of @wq to @max_active.
4058 *
4059 * CONTEXT:
4060 * Don't call from IRQ context.
4061 */
4062void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4063{
49e3cf44 4064 struct pool_workqueue *pwq;
dcd989cb 4065
8719dcea
TH
4066 /* disallow meddling with max_active for ordered workqueues */
4067 if (WARN_ON(wq->flags & __WQ_ORDERED))
4068 return;
4069
f3421797 4070 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4071
e98d5b16 4072 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
4073
4074 wq->saved_max_active = max_active;
4075
699ce097
TH
4076 for_each_pwq(pwq, wq)
4077 pwq_adjust_max_active(pwq);
93981800 4078
e98d5b16 4079 spin_unlock_irq(&workqueue_lock);
15316ba8 4080}
dcd989cb 4081EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4082
e6267616
TH
4083/**
4084 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4085 *
4086 * Determine whether %current is a workqueue rescuer. Can be used from
4087 * work functions to determine whether it's being run off the rescuer task.
4088 */
4089bool current_is_workqueue_rescuer(void)
4090{
4091 struct worker *worker = current_wq_worker();
4092
4093 return worker && worker == worker->current_pwq->wq->rescuer;
4094}
4095
eef6a7d5 4096/**
dcd989cb
TH
4097 * workqueue_congested - test whether a workqueue is congested
4098 * @cpu: CPU in question
4099 * @wq: target workqueue
eef6a7d5 4100 *
dcd989cb
TH
4101 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4102 * no synchronization around this function and the test result is
4103 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4104 *
dcd989cb
TH
4105 * RETURNS:
4106 * %true if congested, %false otherwise.
eef6a7d5 4107 */
d84ff051 4108bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4109{
7fb98ea7 4110 struct pool_workqueue *pwq;
76af4d93
TH
4111 bool ret;
4112
4113 preempt_disable();
7fb98ea7
TH
4114
4115 if (!(wq->flags & WQ_UNBOUND))
4116 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4117 else
4118 pwq = first_pwq(wq);
dcd989cb 4119
76af4d93
TH
4120 ret = !list_empty(&pwq->delayed_works);
4121 preempt_enable();
4122
4123 return ret;
1da177e4 4124}
dcd989cb 4125EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4126
dcd989cb
TH
4127/**
4128 * work_busy - test whether a work is currently pending or running
4129 * @work: the work to be tested
4130 *
4131 * Test whether @work is currently pending or running. There is no
4132 * synchronization around this function and the test result is
4133 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4134 *
4135 * RETURNS:
4136 * OR'd bitmask of WORK_BUSY_* bits.
4137 */
4138unsigned int work_busy(struct work_struct *work)
1da177e4 4139{
fa1b54e6 4140 struct worker_pool *pool;
dcd989cb
TH
4141 unsigned long flags;
4142 unsigned int ret = 0;
1da177e4 4143
dcd989cb
TH
4144 if (work_pending(work))
4145 ret |= WORK_BUSY_PENDING;
1da177e4 4146
fa1b54e6
TH
4147 local_irq_save(flags);
4148 pool = get_work_pool(work);
038366c5 4149 if (pool) {
fa1b54e6 4150 spin_lock(&pool->lock);
038366c5
LJ
4151 if (find_worker_executing_work(pool, work))
4152 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4153 spin_unlock(&pool->lock);
038366c5 4154 }
fa1b54e6 4155 local_irq_restore(flags);
1da177e4 4156
dcd989cb 4157 return ret;
1da177e4 4158}
dcd989cb 4159EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4160
db7bccf4
TH
4161/*
4162 * CPU hotplug.
4163 *
e22bee78 4164 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4165 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4166 * pool which make migrating pending and scheduled works very
e22bee78 4167 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4168 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4169 * blocked draining impractical.
4170 *
24647570 4171 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4172 * running as an unbound one and allowing it to be reattached later if the
4173 * cpu comes back online.
db7bccf4 4174 */
1da177e4 4175
706026c2 4176static void wq_unbind_fn(struct work_struct *work)
3af24433 4177{
38db41d9 4178 int cpu = smp_processor_id();
4ce62e9e 4179 struct worker_pool *pool;
db7bccf4 4180 struct worker *worker;
db7bccf4 4181 int i;
3af24433 4182
f02ae73a 4183 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4184 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4185
94cf58bb
TH
4186 mutex_lock(&pool->assoc_mutex);
4187 spin_lock_irq(&pool->lock);
3af24433 4188
94cf58bb
TH
4189 /*
4190 * We've claimed all manager positions. Make all workers
4191 * unbound and set DISASSOCIATED. Before this, all workers
4192 * except for the ones which are still executing works from
4193 * before the last CPU down must be on the cpu. After
4194 * this, they may become diasporas.
4195 */
4ce62e9e 4196 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 4197 worker->flags |= WORKER_UNBOUND;
3af24433 4198
b67bfe0d 4199 for_each_busy_worker(worker, i, pool)
c9e7cf27 4200 worker->flags |= WORKER_UNBOUND;
06ba38a9 4201
24647570 4202 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4203
94cf58bb
TH
4204 spin_unlock_irq(&pool->lock);
4205 mutex_unlock(&pool->assoc_mutex);
4206 }
628c78e7 4207
e22bee78 4208 /*
403c821d 4209 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4210 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4211 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4212 */
e22bee78 4213 schedule();
06ba38a9 4214
e22bee78 4215 /*
628c78e7
TH
4216 * Sched callbacks are disabled now. Zap nr_running. After this,
4217 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4218 * are always true as long as the worklist is not empty. Pools on
4219 * @cpu now behave as unbound (in terms of concurrency management)
4220 * pools which are served by workers tied to the CPU.
628c78e7
TH
4221 *
4222 * On return from this function, the current worker would trigger
4223 * unbound chain execution of pending work items if other workers
4224 * didn't already.
e22bee78 4225 */
f02ae73a 4226 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4227 atomic_set(&pool->nr_running, 0);
3af24433 4228}
3af24433 4229
8db25e78
TH
4230/*
4231 * Workqueues should be brought up before normal priority CPU notifiers.
4232 * This will be registered high priority CPU notifier.
4233 */
9fdf9b73 4234static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4235 unsigned long action,
4236 void *hcpu)
3af24433 4237{
d84ff051 4238 int cpu = (unsigned long)hcpu;
4ce62e9e 4239 struct worker_pool *pool;
3ce63377 4240
8db25e78 4241 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4242 case CPU_UP_PREPARE:
f02ae73a 4243 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4244 struct worker *worker;
4245
4246 if (pool->nr_workers)
4247 continue;
4248
4249 worker = create_worker(pool);
4250 if (!worker)
4251 return NOTIFY_BAD;
4252
d565ed63 4253 spin_lock_irq(&pool->lock);
3ce63377 4254 start_worker(worker);
d565ed63 4255 spin_unlock_irq(&pool->lock);
3af24433 4256 }
8db25e78 4257 break;
3af24433 4258
db7bccf4
TH
4259 case CPU_DOWN_FAILED:
4260 case CPU_ONLINE:
f02ae73a 4261 for_each_cpu_worker_pool(pool, cpu) {
94cf58bb
TH
4262 mutex_lock(&pool->assoc_mutex);
4263 spin_lock_irq(&pool->lock);
4264
24647570 4265 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
4266 rebind_workers(pool);
4267
4268 spin_unlock_irq(&pool->lock);
4269 mutex_unlock(&pool->assoc_mutex);
4270 }
db7bccf4 4271 break;
00dfcaf7 4272 }
65758202
TH
4273 return NOTIFY_OK;
4274}
4275
4276/*
4277 * Workqueues should be brought down after normal priority CPU notifiers.
4278 * This will be registered as low priority CPU notifier.
4279 */
9fdf9b73 4280static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4281 unsigned long action,
4282 void *hcpu)
4283{
d84ff051 4284 int cpu = (unsigned long)hcpu;
8db25e78
TH
4285 struct work_struct unbind_work;
4286
65758202
TH
4287 switch (action & ~CPU_TASKS_FROZEN) {
4288 case CPU_DOWN_PREPARE:
8db25e78 4289 /* unbinding should happen on the local CPU */
706026c2 4290 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4291 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4292 flush_work(&unbind_work);
4293 break;
65758202
TH
4294 }
4295 return NOTIFY_OK;
4296}
4297
2d3854a3 4298#ifdef CONFIG_SMP
8ccad40d 4299
2d3854a3 4300struct work_for_cpu {
ed48ece2 4301 struct work_struct work;
2d3854a3
RR
4302 long (*fn)(void *);
4303 void *arg;
4304 long ret;
4305};
4306
ed48ece2 4307static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4308{
ed48ece2
TH
4309 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4310
2d3854a3
RR
4311 wfc->ret = wfc->fn(wfc->arg);
4312}
4313
4314/**
4315 * work_on_cpu - run a function in user context on a particular cpu
4316 * @cpu: the cpu to run on
4317 * @fn: the function to run
4318 * @arg: the function arg
4319 *
31ad9081
RR
4320 * This will return the value @fn returns.
4321 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4322 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4323 */
d84ff051 4324long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4325{
ed48ece2 4326 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4327
ed48ece2
TH
4328 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4329 schedule_work_on(cpu, &wfc.work);
4330 flush_work(&wfc.work);
2d3854a3
RR
4331 return wfc.ret;
4332}
4333EXPORT_SYMBOL_GPL(work_on_cpu);
4334#endif /* CONFIG_SMP */
4335
a0a1a5fd
TH
4336#ifdef CONFIG_FREEZER
4337
4338/**
4339 * freeze_workqueues_begin - begin freezing workqueues
4340 *
58a69cb4
TH
4341 * Start freezing workqueues. After this function returns, all freezable
4342 * workqueues will queue new works to their frozen_works list instead of
706026c2 4343 * pool->worklist.
a0a1a5fd
TH
4344 *
4345 * CONTEXT:
d565ed63 4346 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4347 */
4348void freeze_workqueues_begin(void)
4349{
17116969 4350 struct worker_pool *pool;
24b8a847
TH
4351 struct workqueue_struct *wq;
4352 struct pool_workqueue *pwq;
17116969 4353 int id;
a0a1a5fd 4354
e98d5b16 4355 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4356
6183c009 4357 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4358 workqueue_freezing = true;
4359
24b8a847 4360 /* set FREEZING */
17116969 4361 for_each_pool(pool, id) {
17116969 4362 spin_lock(&pool->lock);
17116969
TH
4363 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4364 pool->flags |= POOL_FREEZING;
24b8a847
TH
4365 spin_unlock(&pool->lock);
4366 }
a0a1a5fd 4367
24b8a847
TH
4368 /* suppress further executions by setting max_active to zero */
4369 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4370 for_each_pwq(pwq, wq)
4371 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4372 }
4373
e98d5b16 4374 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4375}
4376
4377/**
58a69cb4 4378 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4379 *
4380 * Check whether freezing is complete. This function must be called
4381 * between freeze_workqueues_begin() and thaw_workqueues().
4382 *
4383 * CONTEXT:
4384 * Grabs and releases workqueue_lock.
4385 *
4386 * RETURNS:
58a69cb4
TH
4387 * %true if some freezable workqueues are still busy. %false if freezing
4388 * is complete.
a0a1a5fd
TH
4389 */
4390bool freeze_workqueues_busy(void)
4391{
a0a1a5fd 4392 bool busy = false;
24b8a847
TH
4393 struct workqueue_struct *wq;
4394 struct pool_workqueue *pwq;
a0a1a5fd 4395
e98d5b16 4396 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4397
6183c009 4398 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4399
24b8a847
TH
4400 list_for_each_entry(wq, &workqueues, list) {
4401 if (!(wq->flags & WQ_FREEZABLE))
4402 continue;
a0a1a5fd
TH
4403 /*
4404 * nr_active is monotonically decreasing. It's safe
4405 * to peek without lock.
4406 */
24b8a847 4407 for_each_pwq(pwq, wq) {
6183c009 4408 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4409 if (pwq->nr_active) {
a0a1a5fd
TH
4410 busy = true;
4411 goto out_unlock;
4412 }
4413 }
4414 }
4415out_unlock:
e98d5b16 4416 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4417 return busy;
4418}
4419
4420/**
4421 * thaw_workqueues - thaw workqueues
4422 *
4423 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4424 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4425 *
4426 * CONTEXT:
d565ed63 4427 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4428 */
4429void thaw_workqueues(void)
4430{
24b8a847
TH
4431 struct workqueue_struct *wq;
4432 struct pool_workqueue *pwq;
4433 struct worker_pool *pool;
4434 int id;
a0a1a5fd 4435
e98d5b16 4436 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4437
4438 if (!workqueue_freezing)
4439 goto out_unlock;
4440
24b8a847
TH
4441 /* clear FREEZING */
4442 for_each_pool(pool, id) {
4443 spin_lock(&pool->lock);
4444 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4445 pool->flags &= ~POOL_FREEZING;
4446 spin_unlock(&pool->lock);
4447 }
8b03ae3c 4448
24b8a847
TH
4449 /* restore max_active and repopulate worklist */
4450 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4451 for_each_pwq(pwq, wq)
4452 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4453 }
4454
24b8a847
TH
4455 /* kick workers */
4456 for_each_pool(pool, id) {
4457 spin_lock(&pool->lock);
4458 wake_up_worker(pool);
4459 spin_unlock(&pool->lock);
4460 }
4461
a0a1a5fd
TH
4462 workqueue_freezing = false;
4463out_unlock:
e98d5b16 4464 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4465}
4466#endif /* CONFIG_FREEZER */
4467
6ee0578b 4468static int __init init_workqueues(void)
1da177e4 4469{
7a4e344c
TH
4470 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4471 int i, cpu;
c34056a3 4472
7c3eed5c
TH
4473 /* make sure we have enough bits for OFFQ pool ID */
4474 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4475 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4476
e904e6c2
TH
4477 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4478
4479 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4480
65758202 4481 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4482 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4483
706026c2 4484 /* initialize CPU pools */
29c91e99 4485 for_each_possible_cpu(cpu) {
4ce62e9e 4486 struct worker_pool *pool;
8b03ae3c 4487
7a4e344c 4488 i = 0;
f02ae73a 4489 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4490 BUG_ON(init_worker_pool(pool));
ec22ca5e 4491 pool->cpu = cpu;
29c91e99 4492 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4493 pool->attrs->nice = std_nice[i++];
4494
9daf9e67
TH
4495 /* alloc pool ID */
4496 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4497 }
8b03ae3c
TH
4498 }
4499
e22bee78 4500 /* create the initial worker */
29c91e99 4501 for_each_online_cpu(cpu) {
4ce62e9e 4502 struct worker_pool *pool;
e22bee78 4503
f02ae73a 4504 for_each_cpu_worker_pool(pool, cpu) {
4ce62e9e
TH
4505 struct worker *worker;
4506
29c91e99 4507 pool->flags &= ~POOL_DISASSOCIATED;
24647570 4508
bc2ae0f5 4509 worker = create_worker(pool);
4ce62e9e 4510 BUG_ON(!worker);
d565ed63 4511 spin_lock_irq(&pool->lock);
4ce62e9e 4512 start_worker(worker);
d565ed63 4513 spin_unlock_irq(&pool->lock);
4ce62e9e 4514 }
e22bee78
TH
4515 }
4516
29c91e99
TH
4517 /* create default unbound wq attrs */
4518 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4519 struct workqueue_attrs *attrs;
4520
4521 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4522
4523 attrs->nice = std_nice[i];
4524 cpumask_setall(attrs->cpumask);
4525
4526 unbound_std_wq_attrs[i] = attrs;
4527 }
4528
d320c038 4529 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4530 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4531 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4532 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4533 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4534 system_freezable_wq = alloc_workqueue("events_freezable",
4535 WQ_FREEZABLE, 0);
1aabe902 4536 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4537 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4538 return 0;
1da177e4 4539}
6ee0578b 4540early_initcall(init_workqueues);