workqueue: rename manager_mutex to attach_mutex
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36 74 /* worker flags */
c8e55f36
TH
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 77 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 81
a9ab775b
TH
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
29c91e99 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 89
e22bee78
TH
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
3233cdbd
TH
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
e22bee78
TH
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give -20.
102 */
103 RESCUER_NICE_LEVEL = -20,
3270476a 104 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
105
106 WQ_NAME_LEN = 24,
c8e55f36 107};
1da177e4
LT
108
109/*
4690c4ab
TH
110 * Structure fields follow one of the following exclusion rules.
111 *
e41e704b
TH
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
4690c4ab 114 *
e22bee78
TH
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
d565ed63 118 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 119 *
d565ed63
TH
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 124 *
92f9c5c4 125 * A: pool->attach_mutex protected.
822d8405 126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
163 struct mutex attach_mutex; /* attach/detach exclusion */
164 struct list_head workers; /* A: attached workers */
60f5a4bc 165 struct completion *detach_completion; /* all workers detached */
e19e397a 166
7cda9aae
LJ
167 struct ida worker_ida; /* worker IDs for task name */
168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 234 struct list_head list; /* PL: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
265};
266
e904e6c2
TH
267static struct kmem_cache *pwq_cache;
268
bce90380
TH
269static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
d55262c4
TH
273static bool wq_disable_numa;
274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
cee22a15
VK
276/* see the comment above the definition of WQ_POWER_EFFICIENT */
277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278static bool wq_power_efficient = true;
279#else
280static bool wq_power_efficient;
281#endif
282
283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
bce90380
TH
285static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
4c16bd32
TH
287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
68e13a67 290static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 291static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 292
68e13a67
LJ
293static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
295
296/* the per-cpu worker pools */
297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
68e13a67 300static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 301
68e13a67 302/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
c5aa87bb 305/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
8a2b7538
TH
308/* I: attributes used when instantiating ordered pools on demand */
309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
d320c038 311struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 312EXPORT_SYMBOL(system_wq);
044c782c 313struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 314EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 315struct workqueue_struct *system_long_wq __read_mostly;
d320c038 316EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 317struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 318EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 319struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 320EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
321struct workqueue_struct *system_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 325
7d19c5ce
TH
326static int worker_thread(void *__worker);
327static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
97bd2347
TH
330#define CREATE_TRACE_POINTS
331#include <trace/events/workqueue.h>
332
68e13a67 333#define assert_rcu_or_pool_mutex() \
5bcab335 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
5bcab335 337
b09f4fd3 338#define assert_rcu_or_wq_mutex(wq) \
76af4d93 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 340 lockdep_is_held(&wq->mutex), \
b09f4fd3 341 "sched RCU or wq->mutex should be held")
76af4d93 342
f02ae73a
TH
343#define for_each_cpu_worker_pool(pool, cpu) \
344 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
345 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 346 (pool)++)
4ce62e9e 347
17116969
TH
348/**
349 * for_each_pool - iterate through all worker_pools in the system
350 * @pool: iteration cursor
611c92a0 351 * @pi: integer used for iteration
fa1b54e6 352 *
68e13a67
LJ
353 * This must be called either with wq_pool_mutex held or sched RCU read
354 * locked. If the pool needs to be used beyond the locking in effect, the
355 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
356 *
357 * The if/else clause exists only for the lockdep assertion and can be
358 * ignored.
17116969 359 */
611c92a0
TH
360#define for_each_pool(pool, pi) \
361 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 362 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 363 else
17116969 364
822d8405
TH
365/**
366 * for_each_pool_worker - iterate through all workers of a worker_pool
367 * @worker: iteration cursor
822d8405
TH
368 * @pool: worker_pool to iterate workers of
369 *
92f9c5c4 370 * This must be called with @pool->attach_mutex.
822d8405
TH
371 *
372 * The if/else clause exists only for the lockdep assertion and can be
373 * ignored.
374 */
da028469
LJ
375#define for_each_pool_worker(worker, pool) \
376 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 377 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
378 else
379
49e3cf44
TH
380/**
381 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
382 * @pwq: iteration cursor
383 * @wq: the target workqueue
76af4d93 384 *
b09f4fd3 385 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
386 * If the pwq needs to be used beyond the locking in effect, the caller is
387 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
49e3cf44
TH
391 */
392#define for_each_pwq(pwq, wq) \
76af4d93 393 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 394 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 395 else
f3421797 396
dc186ad7
TG
397#ifdef CONFIG_DEBUG_OBJECTS_WORK
398
399static struct debug_obj_descr work_debug_descr;
400
99777288
SG
401static void *work_debug_hint(void *addr)
402{
403 return ((struct work_struct *) addr)->func;
404}
405
dc186ad7
TG
406/*
407 * fixup_init is called when:
408 * - an active object is initialized
409 */
410static int work_fixup_init(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_init(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424/*
425 * fixup_activate is called when:
426 * - an active object is activated
427 * - an unknown object is activated (might be a statically initialized object)
428 */
429static int work_fixup_activate(void *addr, enum debug_obj_state state)
430{
431 struct work_struct *work = addr;
432
433 switch (state) {
434
435 case ODEBUG_STATE_NOTAVAILABLE:
436 /*
437 * This is not really a fixup. The work struct was
438 * statically initialized. We just make sure that it
439 * is tracked in the object tracker.
440 */
22df02bb 441 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
442 debug_object_init(work, &work_debug_descr);
443 debug_object_activate(work, &work_debug_descr);
444 return 0;
445 }
446 WARN_ON_ONCE(1);
447 return 0;
448
449 case ODEBUG_STATE_ACTIVE:
450 WARN_ON(1);
451
452 default:
453 return 0;
454 }
455}
456
457/*
458 * fixup_free is called when:
459 * - an active object is freed
460 */
461static int work_fixup_free(void *addr, enum debug_obj_state state)
462{
463 struct work_struct *work = addr;
464
465 switch (state) {
466 case ODEBUG_STATE_ACTIVE:
467 cancel_work_sync(work);
468 debug_object_free(work, &work_debug_descr);
469 return 1;
470 default:
471 return 0;
472 }
473}
474
475static struct debug_obj_descr work_debug_descr = {
476 .name = "work_struct",
99777288 477 .debug_hint = work_debug_hint,
dc186ad7
TG
478 .fixup_init = work_fixup_init,
479 .fixup_activate = work_fixup_activate,
480 .fixup_free = work_fixup_free,
481};
482
483static inline void debug_work_activate(struct work_struct *work)
484{
485 debug_object_activate(work, &work_debug_descr);
486}
487
488static inline void debug_work_deactivate(struct work_struct *work)
489{
490 debug_object_deactivate(work, &work_debug_descr);
491}
492
493void __init_work(struct work_struct *work, int onstack)
494{
495 if (onstack)
496 debug_object_init_on_stack(work, &work_debug_descr);
497 else
498 debug_object_init(work, &work_debug_descr);
499}
500EXPORT_SYMBOL_GPL(__init_work);
501
502void destroy_work_on_stack(struct work_struct *work)
503{
504 debug_object_free(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(destroy_work_on_stack);
507
ea2e64f2
TG
508void destroy_delayed_work_on_stack(struct delayed_work *work)
509{
510 destroy_timer_on_stack(&work->timer);
511 debug_object_free(&work->work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
514
dc186ad7
TG
515#else
516static inline void debug_work_activate(struct work_struct *work) { }
517static inline void debug_work_deactivate(struct work_struct *work) { }
518#endif
519
4e8b22bd
LB
520/**
521 * worker_pool_assign_id - allocate ID and assing it to @pool
522 * @pool: the pool pointer of interest
523 *
524 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
525 * successfully, -errno on failure.
526 */
9daf9e67
TH
527static int worker_pool_assign_id(struct worker_pool *pool)
528{
529 int ret;
530
68e13a67 531 lockdep_assert_held(&wq_pool_mutex);
5bcab335 532
4e8b22bd
LB
533 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
534 GFP_KERNEL);
229641a6 535 if (ret >= 0) {
e68035fb 536 pool->id = ret;
229641a6
TH
537 return 0;
538 }
fa1b54e6 539 return ret;
7c3eed5c
TH
540}
541
df2d5ae4
TH
542/**
543 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
544 * @wq: the target workqueue
545 * @node: the node ID
546 *
547 * This must be called either with pwq_lock held or sched RCU read locked.
548 * If the pwq needs to be used beyond the locking in effect, the caller is
549 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
550 *
551 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
552 */
553static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
554 int node)
555{
556 assert_rcu_or_wq_mutex(wq);
557 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
558}
559
73f53c4a
TH
560static unsigned int work_color_to_flags(int color)
561{
562 return color << WORK_STRUCT_COLOR_SHIFT;
563}
564
565static int get_work_color(struct work_struct *work)
566{
567 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
568 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
569}
570
571static int work_next_color(int color)
572{
573 return (color + 1) % WORK_NR_COLORS;
574}
1da177e4 575
14441960 576/*
112202d9
TH
577 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
578 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 579 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 580 *
112202d9
TH
581 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
582 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
583 * work->data. These functions should only be called while the work is
584 * owned - ie. while the PENDING bit is set.
7a22ad75 585 *
112202d9 586 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 587 * corresponding to a work. Pool is available once the work has been
112202d9 588 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 589 * available only while the work item is queued.
7a22ad75 590 *
bbb68dfa
TH
591 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
592 * canceled. While being canceled, a work item may have its PENDING set
593 * but stay off timer and worklist for arbitrarily long and nobody should
594 * try to steal the PENDING bit.
14441960 595 */
7a22ad75
TH
596static inline void set_work_data(struct work_struct *work, unsigned long data,
597 unsigned long flags)
365970a1 598{
6183c009 599 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
600 atomic_long_set(&work->data, data | flags | work_static(work));
601}
365970a1 602
112202d9 603static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
604 unsigned long extra_flags)
605{
112202d9
TH
606 set_work_data(work, (unsigned long)pwq,
607 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
608}
609
4468a00f
LJ
610static void set_work_pool_and_keep_pending(struct work_struct *work,
611 int pool_id)
612{
613 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
614 WORK_STRUCT_PENDING);
615}
616
7c3eed5c
TH
617static void set_work_pool_and_clear_pending(struct work_struct *work,
618 int pool_id)
7a22ad75 619{
23657bb1
TH
620 /*
621 * The following wmb is paired with the implied mb in
622 * test_and_set_bit(PENDING) and ensures all updates to @work made
623 * here are visible to and precede any updates by the next PENDING
624 * owner.
625 */
626 smp_wmb();
7c3eed5c 627 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 628}
f756d5e2 629
7a22ad75 630static void clear_work_data(struct work_struct *work)
1da177e4 631{
7c3eed5c
TH
632 smp_wmb(); /* see set_work_pool_and_clear_pending() */
633 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
634}
635
112202d9 636static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 637{
e120153d 638 unsigned long data = atomic_long_read(&work->data);
7a22ad75 639
112202d9 640 if (data & WORK_STRUCT_PWQ)
e120153d
TH
641 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
642 else
643 return NULL;
4d707b9f
ON
644}
645
7c3eed5c
TH
646/**
647 * get_work_pool - return the worker_pool a given work was associated with
648 * @work: the work item of interest
649 *
68e13a67
LJ
650 * Pools are created and destroyed under wq_pool_mutex, and allows read
651 * access under sched-RCU read lock. As such, this function should be
652 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
653 *
654 * All fields of the returned pool are accessible as long as the above
655 * mentioned locking is in effect. If the returned pool needs to be used
656 * beyond the critical section, the caller is responsible for ensuring the
657 * returned pool is and stays online.
d185af30
YB
658 *
659 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
660 */
661static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 662{
e120153d 663 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 664 int pool_id;
7a22ad75 665
68e13a67 666 assert_rcu_or_pool_mutex();
fa1b54e6 667
112202d9
TH
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
7c3eed5c 670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 671
7c3eed5c
TH
672 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
673 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
674 return NULL;
675
fa1b54e6 676 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
677}
678
679/**
680 * get_work_pool_id - return the worker pool ID a given work is associated with
681 * @work: the work item of interest
682 *
d185af30 683 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
684 * %WORK_OFFQ_POOL_NONE if none.
685 */
686static int get_work_pool_id(struct work_struct *work)
687{
54d5b7d0
LJ
688 unsigned long data = atomic_long_read(&work->data);
689
112202d9
TH
690 if (data & WORK_STRUCT_PWQ)
691 return ((struct pool_workqueue *)
54d5b7d0 692 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 693
54d5b7d0 694 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
695}
696
bbb68dfa
TH
697static void mark_work_canceling(struct work_struct *work)
698{
7c3eed5c 699 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 700
7c3eed5c
TH
701 pool_id <<= WORK_OFFQ_POOL_SHIFT;
702 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
703}
704
705static bool work_is_canceling(struct work_struct *work)
706{
707 unsigned long data = atomic_long_read(&work->data);
708
112202d9 709 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
710}
711
e22bee78 712/*
3270476a
TH
713 * Policy functions. These define the policies on how the global worker
714 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 715 * they're being called with pool->lock held.
e22bee78
TH
716 */
717
63d95a91 718static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 719{
e19e397a 720 return !atomic_read(&pool->nr_running);
a848e3b6
ON
721}
722
4594bf15 723/*
e22bee78
TH
724 * Need to wake up a worker? Called from anything but currently
725 * running workers.
974271c4
TH
726 *
727 * Note that, because unbound workers never contribute to nr_running, this
706026c2 728 * function will always return %true for unbound pools as long as the
974271c4 729 * worklist isn't empty.
4594bf15 730 */
63d95a91 731static bool need_more_worker(struct worker_pool *pool)
365970a1 732{
63d95a91 733 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 734}
4594bf15 735
e22bee78 736/* Can I start working? Called from busy but !running workers. */
63d95a91 737static bool may_start_working(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return pool->nr_idle;
e22bee78
TH
740}
741
742/* Do I need to keep working? Called from currently running workers. */
63d95a91 743static bool keep_working(struct worker_pool *pool)
e22bee78 744{
e19e397a
TH
745 return !list_empty(&pool->worklist) &&
746 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
747}
748
749/* Do we need a new worker? Called from manager. */
63d95a91 750static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 751{
63d95a91 752 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 753}
365970a1 754
e22bee78 755/* Do we have too many workers and should some go away? */
63d95a91 756static bool too_many_workers(struct worker_pool *pool)
e22bee78 757{
34a06bd6 758 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
759 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
760 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 761
ea1abd61
LJ
762 /*
763 * nr_idle and idle_list may disagree if idle rebinding is in
764 * progress. Never return %true if idle_list is empty.
765 */
766 if (list_empty(&pool->idle_list))
767 return false;
768
e22bee78 769 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
770}
771
4d707b9f 772/*
e22bee78
TH
773 * Wake up functions.
774 */
775
7e11629d 776/* Return the first worker. Safe with preemption disabled */
63d95a91 777static struct worker *first_worker(struct worker_pool *pool)
7e11629d 778{
63d95a91 779 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
780 return NULL;
781
63d95a91 782 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
783}
784
785/**
786 * wake_up_worker - wake up an idle worker
63d95a91 787 * @pool: worker pool to wake worker from
7e11629d 788 *
63d95a91 789 * Wake up the first idle worker of @pool.
7e11629d
TH
790 *
791 * CONTEXT:
d565ed63 792 * spin_lock_irq(pool->lock).
7e11629d 793 */
63d95a91 794static void wake_up_worker(struct worker_pool *pool)
7e11629d 795{
63d95a91 796 struct worker *worker = first_worker(pool);
7e11629d
TH
797
798 if (likely(worker))
799 wake_up_process(worker->task);
800}
801
d302f017 802/**
e22bee78
TH
803 * wq_worker_waking_up - a worker is waking up
804 * @task: task waking up
805 * @cpu: CPU @task is waking up to
806 *
807 * This function is called during try_to_wake_up() when a worker is
808 * being awoken.
809 *
810 * CONTEXT:
811 * spin_lock_irq(rq->lock)
812 */
d84ff051 813void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
814{
815 struct worker *worker = kthread_data(task);
816
36576000 817 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 818 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 819 atomic_inc(&worker->pool->nr_running);
36576000 820 }
e22bee78
TH
821}
822
823/**
824 * wq_worker_sleeping - a worker is going to sleep
825 * @task: task going to sleep
826 * @cpu: CPU in question, must be the current CPU number
827 *
828 * This function is called during schedule() when a busy worker is
829 * going to sleep. Worker on the same cpu can be woken up by
830 * returning pointer to its task.
831 *
832 * CONTEXT:
833 * spin_lock_irq(rq->lock)
834 *
d185af30 835 * Return:
e22bee78
TH
836 * Worker task on @cpu to wake up, %NULL if none.
837 */
d84ff051 838struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
839{
840 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 841 struct worker_pool *pool;
e22bee78 842
111c225a
TH
843 /*
844 * Rescuers, which may not have all the fields set up like normal
845 * workers, also reach here, let's not access anything before
846 * checking NOT_RUNNING.
847 */
2d64672e 848 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
849 return NULL;
850
111c225a 851 pool = worker->pool;
111c225a 852
e22bee78 853 /* this can only happen on the local cpu */
6183c009
TH
854 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
855 return NULL;
e22bee78
TH
856
857 /*
858 * The counterpart of the following dec_and_test, implied mb,
859 * worklist not empty test sequence is in insert_work().
860 * Please read comment there.
861 *
628c78e7
TH
862 * NOT_RUNNING is clear. This means that we're bound to and
863 * running on the local cpu w/ rq lock held and preemption
864 * disabled, which in turn means that none else could be
d565ed63 865 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 866 * lock is safe.
e22bee78 867 */
e19e397a
TH
868 if (atomic_dec_and_test(&pool->nr_running) &&
869 !list_empty(&pool->worklist))
63d95a91 870 to_wakeup = first_worker(pool);
e22bee78
TH
871 return to_wakeup ? to_wakeup->task : NULL;
872}
873
874/**
875 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 876 * @worker: self
d302f017
TH
877 * @flags: flags to set
878 * @wakeup: wakeup an idle worker if necessary
879 *
e22bee78
TH
880 * Set @flags in @worker->flags and adjust nr_running accordingly. If
881 * nr_running becomes zero and @wakeup is %true, an idle worker is
882 * woken up.
d302f017 883 *
cb444766 884 * CONTEXT:
d565ed63 885 * spin_lock_irq(pool->lock)
d302f017
TH
886 */
887static inline void worker_set_flags(struct worker *worker, unsigned int flags,
888 bool wakeup)
889{
bd7bdd43 890 struct worker_pool *pool = worker->pool;
e22bee78 891
cb444766
TH
892 WARN_ON_ONCE(worker->task != current);
893
e22bee78
TH
894 /*
895 * If transitioning into NOT_RUNNING, adjust nr_running and
896 * wake up an idle worker as necessary if requested by
897 * @wakeup.
898 */
899 if ((flags & WORKER_NOT_RUNNING) &&
900 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 901 if (wakeup) {
e19e397a 902 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 903 !list_empty(&pool->worklist))
63d95a91 904 wake_up_worker(pool);
e22bee78 905 } else
e19e397a 906 atomic_dec(&pool->nr_running);
e22bee78
TH
907 }
908
d302f017
TH
909 worker->flags |= flags;
910}
911
912/**
e22bee78 913 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017
TH
915 * @flags: flags to clear
916 *
e22bee78 917 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017
TH
921 */
922static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
923{
63d95a91 924 struct worker_pool *pool = worker->pool;
e22bee78
TH
925 unsigned int oflags = worker->flags;
926
cb444766
TH
927 WARN_ON_ONCE(worker->task != current);
928
d302f017 929 worker->flags &= ~flags;
e22bee78 930
42c025f3
TH
931 /*
932 * If transitioning out of NOT_RUNNING, increment nr_running. Note
933 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
934 * of multiple flags, not a single flag.
935 */
e22bee78
TH
936 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
937 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 938 atomic_inc(&pool->nr_running);
d302f017
TH
939}
940
8cca0eea
TH
941/**
942 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 943 * @pool: pool of interest
8cca0eea
TH
944 * @work: work to find worker for
945 *
c9e7cf27
TH
946 * Find a worker which is executing @work on @pool by searching
947 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
948 * to match, its current execution should match the address of @work and
949 * its work function. This is to avoid unwanted dependency between
950 * unrelated work executions through a work item being recycled while still
951 * being executed.
952 *
953 * This is a bit tricky. A work item may be freed once its execution
954 * starts and nothing prevents the freed area from being recycled for
955 * another work item. If the same work item address ends up being reused
956 * before the original execution finishes, workqueue will identify the
957 * recycled work item as currently executing and make it wait until the
958 * current execution finishes, introducing an unwanted dependency.
959 *
c5aa87bb
TH
960 * This function checks the work item address and work function to avoid
961 * false positives. Note that this isn't complete as one may construct a
962 * work function which can introduce dependency onto itself through a
963 * recycled work item. Well, if somebody wants to shoot oneself in the
964 * foot that badly, there's only so much we can do, and if such deadlock
965 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
966 *
967 * CONTEXT:
d565ed63 968 * spin_lock_irq(pool->lock).
8cca0eea 969 *
d185af30
YB
970 * Return:
971 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 972 * otherwise.
4d707b9f 973 */
c9e7cf27 974static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 975 struct work_struct *work)
4d707b9f 976{
42f8570f 977 struct worker *worker;
42f8570f 978
b67bfe0d 979 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
980 (unsigned long)work)
981 if (worker->current_work == work &&
982 worker->current_func == work->func)
42f8570f
SL
983 return worker;
984
985 return NULL;
4d707b9f
ON
986}
987
bf4ede01
TH
988/**
989 * move_linked_works - move linked works to a list
990 * @work: start of series of works to be scheduled
991 * @head: target list to append @work to
992 * @nextp: out paramter for nested worklist walking
993 *
994 * Schedule linked works starting from @work to @head. Work series to
995 * be scheduled starts at @work and includes any consecutive work with
996 * WORK_STRUCT_LINKED set in its predecessor.
997 *
998 * If @nextp is not NULL, it's updated to point to the next work of
999 * the last scheduled work. This allows move_linked_works() to be
1000 * nested inside outer list_for_each_entry_safe().
1001 *
1002 * CONTEXT:
d565ed63 1003 * spin_lock_irq(pool->lock).
bf4ede01
TH
1004 */
1005static void move_linked_works(struct work_struct *work, struct list_head *head,
1006 struct work_struct **nextp)
1007{
1008 struct work_struct *n;
1009
1010 /*
1011 * Linked worklist will always end before the end of the list,
1012 * use NULL for list head.
1013 */
1014 list_for_each_entry_safe_from(work, n, NULL, entry) {
1015 list_move_tail(&work->entry, head);
1016 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1017 break;
1018 }
1019
1020 /*
1021 * If we're already inside safe list traversal and have moved
1022 * multiple works to the scheduled queue, the next position
1023 * needs to be updated.
1024 */
1025 if (nextp)
1026 *nextp = n;
1027}
1028
8864b4e5
TH
1029/**
1030 * get_pwq - get an extra reference on the specified pool_workqueue
1031 * @pwq: pool_workqueue to get
1032 *
1033 * Obtain an extra reference on @pwq. The caller should guarantee that
1034 * @pwq has positive refcnt and be holding the matching pool->lock.
1035 */
1036static void get_pwq(struct pool_workqueue *pwq)
1037{
1038 lockdep_assert_held(&pwq->pool->lock);
1039 WARN_ON_ONCE(pwq->refcnt <= 0);
1040 pwq->refcnt++;
1041}
1042
1043/**
1044 * put_pwq - put a pool_workqueue reference
1045 * @pwq: pool_workqueue to put
1046 *
1047 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1048 * destruction. The caller should be holding the matching pool->lock.
1049 */
1050static void put_pwq(struct pool_workqueue *pwq)
1051{
1052 lockdep_assert_held(&pwq->pool->lock);
1053 if (likely(--pwq->refcnt))
1054 return;
1055 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1056 return;
1057 /*
1058 * @pwq can't be released under pool->lock, bounce to
1059 * pwq_unbound_release_workfn(). This never recurses on the same
1060 * pool->lock as this path is taken only for unbound workqueues and
1061 * the release work item is scheduled on a per-cpu workqueue. To
1062 * avoid lockdep warning, unbound pool->locks are given lockdep
1063 * subclass of 1 in get_unbound_pool().
1064 */
1065 schedule_work(&pwq->unbound_release_work);
1066}
1067
dce90d47
TH
1068/**
1069 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1070 * @pwq: pool_workqueue to put (can be %NULL)
1071 *
1072 * put_pwq() with locking. This function also allows %NULL @pwq.
1073 */
1074static void put_pwq_unlocked(struct pool_workqueue *pwq)
1075{
1076 if (pwq) {
1077 /*
1078 * As both pwqs and pools are sched-RCU protected, the
1079 * following lock operations are safe.
1080 */
1081 spin_lock_irq(&pwq->pool->lock);
1082 put_pwq(pwq);
1083 spin_unlock_irq(&pwq->pool->lock);
1084 }
1085}
1086
112202d9 1087static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1088{
112202d9 1089 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1090
1091 trace_workqueue_activate_work(work);
112202d9 1092 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1093 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1094 pwq->nr_active++;
bf4ede01
TH
1095}
1096
112202d9 1097static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1098{
112202d9 1099 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1100 struct work_struct, entry);
1101
112202d9 1102 pwq_activate_delayed_work(work);
3aa62497
LJ
1103}
1104
bf4ede01 1105/**
112202d9
TH
1106 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1107 * @pwq: pwq of interest
bf4ede01 1108 * @color: color of work which left the queue
bf4ede01
TH
1109 *
1110 * A work either has completed or is removed from pending queue,
112202d9 1111 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1112 *
1113 * CONTEXT:
d565ed63 1114 * spin_lock_irq(pool->lock).
bf4ede01 1115 */
112202d9 1116static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1117{
8864b4e5 1118 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1119 if (color == WORK_NO_COLOR)
8864b4e5 1120 goto out_put;
bf4ede01 1121
112202d9 1122 pwq->nr_in_flight[color]--;
bf4ede01 1123
112202d9
TH
1124 pwq->nr_active--;
1125 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1126 /* one down, submit a delayed one */
112202d9
TH
1127 if (pwq->nr_active < pwq->max_active)
1128 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1129 }
1130
1131 /* is flush in progress and are we at the flushing tip? */
112202d9 1132 if (likely(pwq->flush_color != color))
8864b4e5 1133 goto out_put;
bf4ede01
TH
1134
1135 /* are there still in-flight works? */
112202d9 1136 if (pwq->nr_in_flight[color])
8864b4e5 1137 goto out_put;
bf4ede01 1138
112202d9
TH
1139 /* this pwq is done, clear flush_color */
1140 pwq->flush_color = -1;
bf4ede01
TH
1141
1142 /*
112202d9 1143 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1144 * will handle the rest.
1145 */
112202d9
TH
1146 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1147 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1148out_put:
1149 put_pwq(pwq);
bf4ede01
TH
1150}
1151
36e227d2 1152/**
bbb68dfa 1153 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1154 * @work: work item to steal
1155 * @is_dwork: @work is a delayed_work
bbb68dfa 1156 * @flags: place to store irq state
36e227d2
TH
1157 *
1158 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1159 * stable state - idle, on timer or on worklist.
36e227d2 1160 *
d185af30 1161 * Return:
36e227d2
TH
1162 * 1 if @work was pending and we successfully stole PENDING
1163 * 0 if @work was idle and we claimed PENDING
1164 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1165 * -ENOENT if someone else is canceling @work, this state may persist
1166 * for arbitrarily long
36e227d2 1167 *
d185af30 1168 * Note:
bbb68dfa 1169 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1170 * interrupted while holding PENDING and @work off queue, irq must be
1171 * disabled on entry. This, combined with delayed_work->timer being
1172 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1173 *
1174 * On successful return, >= 0, irq is disabled and the caller is
1175 * responsible for releasing it using local_irq_restore(*@flags).
1176 *
e0aecdd8 1177 * This function is safe to call from any context including IRQ handler.
bf4ede01 1178 */
bbb68dfa
TH
1179static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1180 unsigned long *flags)
bf4ede01 1181{
d565ed63 1182 struct worker_pool *pool;
112202d9 1183 struct pool_workqueue *pwq;
bf4ede01 1184
bbb68dfa
TH
1185 local_irq_save(*flags);
1186
36e227d2
TH
1187 /* try to steal the timer if it exists */
1188 if (is_dwork) {
1189 struct delayed_work *dwork = to_delayed_work(work);
1190
e0aecdd8
TH
1191 /*
1192 * dwork->timer is irqsafe. If del_timer() fails, it's
1193 * guaranteed that the timer is not queued anywhere and not
1194 * running on the local CPU.
1195 */
36e227d2
TH
1196 if (likely(del_timer(&dwork->timer)))
1197 return 1;
1198 }
1199
1200 /* try to claim PENDING the normal way */
bf4ede01
TH
1201 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1202 return 0;
1203
1204 /*
1205 * The queueing is in progress, or it is already queued. Try to
1206 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1207 */
d565ed63
TH
1208 pool = get_work_pool(work);
1209 if (!pool)
bbb68dfa 1210 goto fail;
bf4ede01 1211
d565ed63 1212 spin_lock(&pool->lock);
0b3dae68 1213 /*
112202d9
TH
1214 * work->data is guaranteed to point to pwq only while the work
1215 * item is queued on pwq->wq, and both updating work->data to point
1216 * to pwq on queueing and to pool on dequeueing are done under
1217 * pwq->pool->lock. This in turn guarantees that, if work->data
1218 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1219 * item is currently queued on that pool.
1220 */
112202d9
TH
1221 pwq = get_work_pwq(work);
1222 if (pwq && pwq->pool == pool) {
16062836
TH
1223 debug_work_deactivate(work);
1224
1225 /*
1226 * A delayed work item cannot be grabbed directly because
1227 * it might have linked NO_COLOR work items which, if left
112202d9 1228 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1229 * management later on and cause stall. Make sure the work
1230 * item is activated before grabbing.
1231 */
1232 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1233 pwq_activate_delayed_work(work);
16062836
TH
1234
1235 list_del_init(&work->entry);
112202d9 1236 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1237
112202d9 1238 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1239 set_work_pool_and_keep_pending(work, pool->id);
1240
1241 spin_unlock(&pool->lock);
1242 return 1;
bf4ede01 1243 }
d565ed63 1244 spin_unlock(&pool->lock);
bbb68dfa
TH
1245fail:
1246 local_irq_restore(*flags);
1247 if (work_is_canceling(work))
1248 return -ENOENT;
1249 cpu_relax();
36e227d2 1250 return -EAGAIN;
bf4ede01
TH
1251}
1252
4690c4ab 1253/**
706026c2 1254 * insert_work - insert a work into a pool
112202d9 1255 * @pwq: pwq @work belongs to
4690c4ab
TH
1256 * @work: work to insert
1257 * @head: insertion point
1258 * @extra_flags: extra WORK_STRUCT_* flags to set
1259 *
112202d9 1260 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1261 * work_struct flags.
4690c4ab
TH
1262 *
1263 * CONTEXT:
d565ed63 1264 * spin_lock_irq(pool->lock).
4690c4ab 1265 */
112202d9
TH
1266static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1267 struct list_head *head, unsigned int extra_flags)
b89deed3 1268{
112202d9 1269 struct worker_pool *pool = pwq->pool;
e22bee78 1270
4690c4ab 1271 /* we own @work, set data and link */
112202d9 1272 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1273 list_add_tail(&work->entry, head);
8864b4e5 1274 get_pwq(pwq);
e22bee78
TH
1275
1276 /*
c5aa87bb
TH
1277 * Ensure either wq_worker_sleeping() sees the above
1278 * list_add_tail() or we see zero nr_running to avoid workers lying
1279 * around lazily while there are works to be processed.
e22bee78
TH
1280 */
1281 smp_mb();
1282
63d95a91
TH
1283 if (__need_more_worker(pool))
1284 wake_up_worker(pool);
b89deed3
ON
1285}
1286
c8efcc25
TH
1287/*
1288 * Test whether @work is being queued from another work executing on the
8d03ecfe 1289 * same workqueue.
c8efcc25
TH
1290 */
1291static bool is_chained_work(struct workqueue_struct *wq)
1292{
8d03ecfe
TH
1293 struct worker *worker;
1294
1295 worker = current_wq_worker();
1296 /*
1297 * Return %true iff I'm a worker execuing a work item on @wq. If
1298 * I'm @worker, it's safe to dereference it without locking.
1299 */
112202d9 1300 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1301}
1302
d84ff051 1303static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1304 struct work_struct *work)
1305{
112202d9 1306 struct pool_workqueue *pwq;
c9178087 1307 struct worker_pool *last_pool;
1e19ffc6 1308 struct list_head *worklist;
8a2e8e5d 1309 unsigned int work_flags;
b75cac93 1310 unsigned int req_cpu = cpu;
8930caba
TH
1311
1312 /*
1313 * While a work item is PENDING && off queue, a task trying to
1314 * steal the PENDING will busy-loop waiting for it to either get
1315 * queued or lose PENDING. Grabbing PENDING and queueing should
1316 * happen with IRQ disabled.
1317 */
1318 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1319
dc186ad7 1320 debug_work_activate(work);
1e19ffc6 1321
9ef28a73 1322 /* if draining, only works from the same workqueue are allowed */
618b01eb 1323 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1324 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1325 return;
9e8cd2f5 1326retry:
df2d5ae4
TH
1327 if (req_cpu == WORK_CPU_UNBOUND)
1328 cpu = raw_smp_processor_id();
1329
c9178087 1330 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1331 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1332 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1333 else
1334 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1335
c9178087
TH
1336 /*
1337 * If @work was previously on a different pool, it might still be
1338 * running there, in which case the work needs to be queued on that
1339 * pool to guarantee non-reentrancy.
1340 */
1341 last_pool = get_work_pool(work);
1342 if (last_pool && last_pool != pwq->pool) {
1343 struct worker *worker;
18aa9eff 1344
c9178087 1345 spin_lock(&last_pool->lock);
18aa9eff 1346
c9178087 1347 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1348
c9178087
TH
1349 if (worker && worker->current_pwq->wq == wq) {
1350 pwq = worker->current_pwq;
8930caba 1351 } else {
c9178087
TH
1352 /* meh... not running there, queue here */
1353 spin_unlock(&last_pool->lock);
112202d9 1354 spin_lock(&pwq->pool->lock);
8930caba 1355 }
f3421797 1356 } else {
112202d9 1357 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1358 }
1359
9e8cd2f5
TH
1360 /*
1361 * pwq is determined and locked. For unbound pools, we could have
1362 * raced with pwq release and it could already be dead. If its
1363 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1364 * without another pwq replacing it in the numa_pwq_tbl or while
1365 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1366 * make forward-progress.
1367 */
1368 if (unlikely(!pwq->refcnt)) {
1369 if (wq->flags & WQ_UNBOUND) {
1370 spin_unlock(&pwq->pool->lock);
1371 cpu_relax();
1372 goto retry;
1373 }
1374 /* oops */
1375 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1376 wq->name, cpu);
1377 }
1378
112202d9
TH
1379 /* pwq determined, queue */
1380 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1381
f5b2552b 1382 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1383 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1384 return;
1385 }
1e19ffc6 1386
112202d9
TH
1387 pwq->nr_in_flight[pwq->work_color]++;
1388 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1389
112202d9 1390 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1391 trace_workqueue_activate_work(work);
112202d9
TH
1392 pwq->nr_active++;
1393 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1394 } else {
1395 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1396 worklist = &pwq->delayed_works;
8a2e8e5d 1397 }
1e19ffc6 1398
112202d9 1399 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1400
112202d9 1401 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1402}
1403
0fcb78c2 1404/**
c1a220e7
ZR
1405 * queue_work_on - queue work on specific cpu
1406 * @cpu: CPU number to execute work on
0fcb78c2
REB
1407 * @wq: workqueue to use
1408 * @work: work to queue
1409 *
c1a220e7
ZR
1410 * We queue the work to a specific CPU, the caller must ensure it
1411 * can't go away.
d185af30
YB
1412 *
1413 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1414 */
d4283e93
TH
1415bool queue_work_on(int cpu, struct workqueue_struct *wq,
1416 struct work_struct *work)
1da177e4 1417{
d4283e93 1418 bool ret = false;
8930caba 1419 unsigned long flags;
ef1ca236 1420
8930caba 1421 local_irq_save(flags);
c1a220e7 1422
22df02bb 1423 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1424 __queue_work(cpu, wq, work);
d4283e93 1425 ret = true;
c1a220e7 1426 }
ef1ca236 1427
8930caba 1428 local_irq_restore(flags);
1da177e4
LT
1429 return ret;
1430}
ad7b1f84 1431EXPORT_SYMBOL(queue_work_on);
1da177e4 1432
d8e794df 1433void delayed_work_timer_fn(unsigned long __data)
1da177e4 1434{
52bad64d 1435 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1436
e0aecdd8 1437 /* should have been called from irqsafe timer with irq already off */
60c057bc 1438 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1439}
1438ade5 1440EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1441
7beb2edf
TH
1442static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1443 struct delayed_work *dwork, unsigned long delay)
1da177e4 1444{
7beb2edf
TH
1445 struct timer_list *timer = &dwork->timer;
1446 struct work_struct *work = &dwork->work;
7beb2edf
TH
1447
1448 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1449 timer->data != (unsigned long)dwork);
fc4b514f
TH
1450 WARN_ON_ONCE(timer_pending(timer));
1451 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1452
8852aac2
TH
1453 /*
1454 * If @delay is 0, queue @dwork->work immediately. This is for
1455 * both optimization and correctness. The earliest @timer can
1456 * expire is on the closest next tick and delayed_work users depend
1457 * on that there's no such delay when @delay is 0.
1458 */
1459 if (!delay) {
1460 __queue_work(cpu, wq, &dwork->work);
1461 return;
1462 }
1463
7beb2edf 1464 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1465
60c057bc 1466 dwork->wq = wq;
1265057f 1467 dwork->cpu = cpu;
7beb2edf
TH
1468 timer->expires = jiffies + delay;
1469
1470 if (unlikely(cpu != WORK_CPU_UNBOUND))
1471 add_timer_on(timer, cpu);
1472 else
1473 add_timer(timer);
1da177e4
LT
1474}
1475
0fcb78c2
REB
1476/**
1477 * queue_delayed_work_on - queue work on specific CPU after delay
1478 * @cpu: CPU number to execute work on
1479 * @wq: workqueue to use
af9997e4 1480 * @dwork: work to queue
0fcb78c2
REB
1481 * @delay: number of jiffies to wait before queueing
1482 *
d185af30 1483 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1484 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1485 * execution.
0fcb78c2 1486 */
d4283e93
TH
1487bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1488 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1489{
52bad64d 1490 struct work_struct *work = &dwork->work;
d4283e93 1491 bool ret = false;
8930caba 1492 unsigned long flags;
7a6bc1cd 1493
8930caba
TH
1494 /* read the comment in __queue_work() */
1495 local_irq_save(flags);
7a6bc1cd 1496
22df02bb 1497 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1498 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1499 ret = true;
7a6bc1cd 1500 }
8a3e77cc 1501
8930caba 1502 local_irq_restore(flags);
7a6bc1cd
VP
1503 return ret;
1504}
ad7b1f84 1505EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1506
8376fe22
TH
1507/**
1508 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1509 * @cpu: CPU number to execute work on
1510 * @wq: workqueue to use
1511 * @dwork: work to queue
1512 * @delay: number of jiffies to wait before queueing
1513 *
1514 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1515 * modify @dwork's timer so that it expires after @delay. If @delay is
1516 * zero, @work is guaranteed to be scheduled immediately regardless of its
1517 * current state.
1518 *
d185af30 1519 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1520 * pending and its timer was modified.
1521 *
e0aecdd8 1522 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1523 * See try_to_grab_pending() for details.
1524 */
1525bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1526 struct delayed_work *dwork, unsigned long delay)
1527{
1528 unsigned long flags;
1529 int ret;
c7fc77f7 1530
8376fe22
TH
1531 do {
1532 ret = try_to_grab_pending(&dwork->work, true, &flags);
1533 } while (unlikely(ret == -EAGAIN));
63bc0362 1534
8376fe22
TH
1535 if (likely(ret >= 0)) {
1536 __queue_delayed_work(cpu, wq, dwork, delay);
1537 local_irq_restore(flags);
7a6bc1cd 1538 }
8376fe22
TH
1539
1540 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1541 return ret;
1542}
8376fe22
TH
1543EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1544
c8e55f36
TH
1545/**
1546 * worker_enter_idle - enter idle state
1547 * @worker: worker which is entering idle state
1548 *
1549 * @worker is entering idle state. Update stats and idle timer if
1550 * necessary.
1551 *
1552 * LOCKING:
d565ed63 1553 * spin_lock_irq(pool->lock).
c8e55f36
TH
1554 */
1555static void worker_enter_idle(struct worker *worker)
1da177e4 1556{
bd7bdd43 1557 struct worker_pool *pool = worker->pool;
c8e55f36 1558
6183c009
TH
1559 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1560 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1561 (worker->hentry.next || worker->hentry.pprev)))
1562 return;
c8e55f36 1563
cb444766
TH
1564 /* can't use worker_set_flags(), also called from start_worker() */
1565 worker->flags |= WORKER_IDLE;
bd7bdd43 1566 pool->nr_idle++;
e22bee78 1567 worker->last_active = jiffies;
c8e55f36
TH
1568
1569 /* idle_list is LIFO */
bd7bdd43 1570 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1571
628c78e7
TH
1572 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1573 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1574
544ecf31 1575 /*
706026c2 1576 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1577 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1578 * nr_running, the warning may trigger spuriously. Check iff
1579 * unbind is not in progress.
544ecf31 1580 */
24647570 1581 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1582 pool->nr_workers == pool->nr_idle &&
e19e397a 1583 atomic_read(&pool->nr_running));
c8e55f36
TH
1584}
1585
1586/**
1587 * worker_leave_idle - leave idle state
1588 * @worker: worker which is leaving idle state
1589 *
1590 * @worker is leaving idle state. Update stats.
1591 *
1592 * LOCKING:
d565ed63 1593 * spin_lock_irq(pool->lock).
c8e55f36
TH
1594 */
1595static void worker_leave_idle(struct worker *worker)
1596{
bd7bdd43 1597 struct worker_pool *pool = worker->pool;
c8e55f36 1598
6183c009
TH
1599 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1600 return;
d302f017 1601 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1602 pool->nr_idle--;
c8e55f36
TH
1603 list_del_init(&worker->entry);
1604}
1605
e22bee78 1606/**
f36dc67b
LJ
1607 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1608 * @pool: target worker_pool
1609 *
1610 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1611 *
1612 * Works which are scheduled while the cpu is online must at least be
1613 * scheduled to a worker which is bound to the cpu so that if they are
1614 * flushed from cpu callbacks while cpu is going down, they are
1615 * guaranteed to execute on the cpu.
1616 *
f5faa077 1617 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1618 * themselves to the target cpu and may race with cpu going down or
1619 * coming online. kthread_bind() can't be used because it may put the
1620 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1621 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1622 * [dis]associated in the meantime.
1623 *
706026c2 1624 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1625 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1626 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1627 * enters idle state or fetches works without dropping lock, it can
1628 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1629 *
1630 * CONTEXT:
d565ed63 1631 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1632 * held.
1633 *
d185af30 1634 * Return:
706026c2 1635 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1636 * bound), %false if offline.
1637 */
f36dc67b 1638static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1639__acquires(&pool->lock)
e22bee78 1640{
e22bee78 1641 while (true) {
4e6045f1 1642 /*
e22bee78
TH
1643 * The following call may fail, succeed or succeed
1644 * without actually migrating the task to the cpu if
1645 * it races with cpu hotunplug operation. Verify
24647570 1646 * against POOL_DISASSOCIATED.
4e6045f1 1647 */
24647570 1648 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1649 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1650
d565ed63 1651 spin_lock_irq(&pool->lock);
24647570 1652 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1653 return false;
f5faa077 1654 if (task_cpu(current) == pool->cpu &&
7a4e344c 1655 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1656 return true;
d565ed63 1657 spin_unlock_irq(&pool->lock);
e22bee78 1658
5035b20f
TH
1659 /*
1660 * We've raced with CPU hot[un]plug. Give it a breather
1661 * and retry migration. cond_resched() is required here;
1662 * otherwise, we might deadlock against cpu_stop trying to
1663 * bring down the CPU on non-preemptive kernel.
1664 */
e22bee78 1665 cpu_relax();
5035b20f 1666 cond_resched();
e22bee78
TH
1667 }
1668}
1669
c34056a3
TH
1670static struct worker *alloc_worker(void)
1671{
1672 struct worker *worker;
1673
1674 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1675 if (worker) {
1676 INIT_LIST_HEAD(&worker->entry);
affee4b2 1677 INIT_LIST_HEAD(&worker->scheduled);
da028469 1678 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1679 /* on creation a worker is in !idle && prep state */
1680 worker->flags = WORKER_PREP;
c8e55f36 1681 }
c34056a3
TH
1682 return worker;
1683}
1684
60f5a4bc
LJ
1685/**
1686 * worker_detach_from_pool() - detach a worker from its pool
1687 * @worker: worker which is attached to its pool
1688 * @pool: the pool @worker is attached to
1689 *
1690 * Undo the attaching which had been done in create_worker(). The caller
1691 * worker shouldn't access to the pool after detached except it has other
1692 * reference to the pool.
1693 */
1694static void worker_detach_from_pool(struct worker *worker,
1695 struct worker_pool *pool)
1696{
1697 struct completion *detach_completion = NULL;
1698
92f9c5c4 1699 mutex_lock(&pool->attach_mutex);
da028469
LJ
1700 list_del(&worker->node);
1701 if (list_empty(&pool->workers))
60f5a4bc 1702 detach_completion = pool->detach_completion;
92f9c5c4 1703 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
1704
1705 if (detach_completion)
1706 complete(detach_completion);
1707}
1708
c34056a3
TH
1709/**
1710 * create_worker - create a new workqueue worker
63d95a91 1711 * @pool: pool the new worker will belong to
c34056a3 1712 *
73eb7fe7
LJ
1713 * Create a new worker which is attached to @pool. The new worker must be
1714 * started by start_worker().
c34056a3
TH
1715 *
1716 * CONTEXT:
1717 * Might sleep. Does GFP_KERNEL allocations.
1718 *
d185af30 1719 * Return:
c34056a3
TH
1720 * Pointer to the newly created worker.
1721 */
bc2ae0f5 1722static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1723{
c34056a3 1724 struct worker *worker = NULL;
f3421797 1725 int id = -1;
e3c916a4 1726 char id_buf[16];
c34056a3 1727
7cda9aae
LJ
1728 /* ID is needed to determine kthread name */
1729 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1730 if (id < 0)
1731 goto fail;
c34056a3
TH
1732
1733 worker = alloc_worker();
1734 if (!worker)
1735 goto fail;
1736
bd7bdd43 1737 worker->pool = pool;
c34056a3
TH
1738 worker->id = id;
1739
29c91e99 1740 if (pool->cpu >= 0)
e3c916a4
TH
1741 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1742 pool->attrs->nice < 0 ? "H" : "");
f3421797 1743 else
e3c916a4
TH
1744 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1745
f3f90ad4 1746 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1747 "kworker/%s", id_buf);
c34056a3
TH
1748 if (IS_ERR(worker->task))
1749 goto fail;
1750
91151228
ON
1751 set_user_nice(worker->task, pool->attrs->nice);
1752
1753 /* prevent userland from meddling with cpumask of workqueue workers */
1754 worker->task->flags |= PF_NO_SETAFFINITY;
1755
92f9c5c4 1756 mutex_lock(&pool->attach_mutex);
4d757c5c 1757
c5aa87bb
TH
1758 /*
1759 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1760 * online CPUs. It'll be re-applied when any of the CPUs come up.
1761 */
7a4e344c 1762 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1763
7a4e344c 1764 /*
92f9c5c4 1765 * The pool->attach_mutex ensures %POOL_DISASSOCIATED
7a4e344c
TH
1766 * remains stable across this function. See the comments above the
1767 * flag definition for details.
1768 */
1769 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1770 worker->flags |= WORKER_UNBOUND;
c34056a3 1771
da028469
LJ
1772 /* successful, attach the worker to the pool */
1773 list_add_tail(&worker->node, &pool->workers);
822d8405 1774
92f9c5c4 1775 mutex_unlock(&pool->attach_mutex);
4d757c5c 1776
c34056a3 1777 return worker;
822d8405 1778
c34056a3 1779fail:
9625ab17 1780 if (id >= 0)
7cda9aae 1781 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1782 kfree(worker);
1783 return NULL;
1784}
1785
1786/**
1787 * start_worker - start a newly created worker
1788 * @worker: worker to start
1789 *
706026c2 1790 * Make the pool aware of @worker and start it.
c34056a3
TH
1791 *
1792 * CONTEXT:
d565ed63 1793 * spin_lock_irq(pool->lock).
c34056a3
TH
1794 */
1795static void start_worker(struct worker *worker)
1796{
bd7bdd43 1797 worker->pool->nr_workers++;
c8e55f36 1798 worker_enter_idle(worker);
c34056a3
TH
1799 wake_up_process(worker->task);
1800}
1801
ebf44d16
TH
1802/**
1803 * create_and_start_worker - create and start a worker for a pool
1804 * @pool: the target pool
1805 *
cd549687 1806 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1807 *
1808 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1809 */
1810static int create_and_start_worker(struct worker_pool *pool)
1811{
1812 struct worker *worker;
1813
1814 worker = create_worker(pool);
1815 if (worker) {
1816 spin_lock_irq(&pool->lock);
1817 start_worker(worker);
1818 spin_unlock_irq(&pool->lock);
1819 }
1820
1821 return worker ? 0 : -ENOMEM;
1822}
1823
c34056a3
TH
1824/**
1825 * destroy_worker - destroy a workqueue worker
1826 * @worker: worker to be destroyed
1827 *
73eb7fe7
LJ
1828 * Destroy @worker and adjust @pool stats accordingly. The worker should
1829 * be idle.
c8e55f36
TH
1830 *
1831 * CONTEXT:
60f5a4bc 1832 * spin_lock_irq(pool->lock).
c34056a3
TH
1833 */
1834static void destroy_worker(struct worker *worker)
1835{
bd7bdd43 1836 struct worker_pool *pool = worker->pool;
c34056a3 1837
cd549687
TH
1838 lockdep_assert_held(&pool->lock);
1839
c34056a3 1840 /* sanity check frenzy */
6183c009 1841 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1842 WARN_ON(!list_empty(&worker->scheduled)) ||
1843 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1844 return;
c34056a3 1845
73eb7fe7
LJ
1846 pool->nr_workers--;
1847 pool->nr_idle--;
c8e55f36
TH
1848
1849 list_del_init(&worker->entry);
cb444766 1850 worker->flags |= WORKER_DIE;
60f5a4bc 1851 wake_up_process(worker->task);
c34056a3
TH
1852}
1853
63d95a91 1854static void idle_worker_timeout(unsigned long __pool)
e22bee78 1855{
63d95a91 1856 struct worker_pool *pool = (void *)__pool;
e22bee78 1857
d565ed63 1858 spin_lock_irq(&pool->lock);
e22bee78 1859
3347fc9f 1860 while (too_many_workers(pool)) {
e22bee78
TH
1861 struct worker *worker;
1862 unsigned long expires;
1863
1864 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1865 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1866 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1867
3347fc9f 1868 if (time_before(jiffies, expires)) {
63d95a91 1869 mod_timer(&pool->idle_timer, expires);
3347fc9f 1870 break;
d5abe669 1871 }
3347fc9f
LJ
1872
1873 destroy_worker(worker);
e22bee78
TH
1874 }
1875
d565ed63 1876 spin_unlock_irq(&pool->lock);
e22bee78 1877}
d5abe669 1878
493a1724 1879static void send_mayday(struct work_struct *work)
e22bee78 1880{
112202d9
TH
1881 struct pool_workqueue *pwq = get_work_pwq(work);
1882 struct workqueue_struct *wq = pwq->wq;
493a1724 1883
2e109a28 1884 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1885
493008a8 1886 if (!wq->rescuer)
493a1724 1887 return;
e22bee78
TH
1888
1889 /* mayday mayday mayday */
493a1724 1890 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1891 /*
1892 * If @pwq is for an unbound wq, its base ref may be put at
1893 * any time due to an attribute change. Pin @pwq until the
1894 * rescuer is done with it.
1895 */
1896 get_pwq(pwq);
493a1724 1897 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1898 wake_up_process(wq->rescuer->task);
493a1724 1899 }
e22bee78
TH
1900}
1901
706026c2 1902static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1903{
63d95a91 1904 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1905 struct work_struct *work;
1906
2e109a28 1907 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1908 spin_lock(&pool->lock);
e22bee78 1909
63d95a91 1910 if (need_to_create_worker(pool)) {
e22bee78
TH
1911 /*
1912 * We've been trying to create a new worker but
1913 * haven't been successful. We might be hitting an
1914 * allocation deadlock. Send distress signals to
1915 * rescuers.
1916 */
63d95a91 1917 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1918 send_mayday(work);
1da177e4 1919 }
e22bee78 1920
493a1724 1921 spin_unlock(&pool->lock);
2e109a28 1922 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1923
63d95a91 1924 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1925}
1926
e22bee78
TH
1927/**
1928 * maybe_create_worker - create a new worker if necessary
63d95a91 1929 * @pool: pool to create a new worker for
e22bee78 1930 *
63d95a91 1931 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1932 * have at least one idle worker on return from this function. If
1933 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1934 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1935 * possible allocation deadlock.
1936 *
c5aa87bb
TH
1937 * On return, need_to_create_worker() is guaranteed to be %false and
1938 * may_start_working() %true.
e22bee78
TH
1939 *
1940 * LOCKING:
d565ed63 1941 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1942 * multiple times. Does GFP_KERNEL allocations. Called only from
1943 * manager.
1944 *
d185af30 1945 * Return:
c5aa87bb 1946 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1947 * otherwise.
1948 */
63d95a91 1949static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1950__releases(&pool->lock)
1951__acquires(&pool->lock)
1da177e4 1952{
63d95a91 1953 if (!need_to_create_worker(pool))
e22bee78
TH
1954 return false;
1955restart:
d565ed63 1956 spin_unlock_irq(&pool->lock);
9f9c2364 1957
e22bee78 1958 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1959 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1960
1961 while (true) {
1962 struct worker *worker;
1963
bc2ae0f5 1964 worker = create_worker(pool);
e22bee78 1965 if (worker) {
63d95a91 1966 del_timer_sync(&pool->mayday_timer);
d565ed63 1967 spin_lock_irq(&pool->lock);
e22bee78 1968 start_worker(worker);
6183c009
TH
1969 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1970 goto restart;
e22bee78
TH
1971 return true;
1972 }
1973
63d95a91 1974 if (!need_to_create_worker(pool))
e22bee78 1975 break;
1da177e4 1976
e22bee78
TH
1977 __set_current_state(TASK_INTERRUPTIBLE);
1978 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1979
63d95a91 1980 if (!need_to_create_worker(pool))
e22bee78
TH
1981 break;
1982 }
1983
63d95a91 1984 del_timer_sync(&pool->mayday_timer);
d565ed63 1985 spin_lock_irq(&pool->lock);
63d95a91 1986 if (need_to_create_worker(pool))
e22bee78
TH
1987 goto restart;
1988 return true;
1989}
1990
73f53c4a 1991/**
e22bee78
TH
1992 * manage_workers - manage worker pool
1993 * @worker: self
73f53c4a 1994 *
706026c2 1995 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1996 * to. At any given time, there can be only zero or one manager per
706026c2 1997 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1998 *
1999 * The caller can safely start processing works on false return. On
2000 * true return, it's guaranteed that need_to_create_worker() is false
2001 * and may_start_working() is true.
73f53c4a
TH
2002 *
2003 * CONTEXT:
d565ed63 2004 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2005 * multiple times. Does GFP_KERNEL allocations.
2006 *
d185af30 2007 * Return:
2d498db9
L
2008 * %false if the pool don't need management and the caller can safely start
2009 * processing works, %true indicates that the function released pool->lock
2010 * and reacquired it to perform some management function and that the
2011 * conditions that the caller verified while holding the lock before
2012 * calling the function might no longer be true.
73f53c4a 2013 */
e22bee78 2014static bool manage_workers(struct worker *worker)
73f53c4a 2015{
63d95a91 2016 struct worker_pool *pool = worker->pool;
e22bee78 2017 bool ret = false;
73f53c4a 2018
bc3a1afc 2019 /*
bc3a1afc
TH
2020 * Anyone who successfully grabs manager_arb wins the arbitration
2021 * and becomes the manager. mutex_trylock() on pool->manager_arb
2022 * failure while holding pool->lock reliably indicates that someone
2023 * else is managing the pool and the worker which failed trylock
2024 * can proceed to executing work items. This means that anyone
2025 * grabbing manager_arb is responsible for actually performing
2026 * manager duties. If manager_arb is grabbed and released without
2027 * actual management, the pool may stall indefinitely.
bc3a1afc 2028 */
34a06bd6 2029 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2030 return ret;
1e19ffc6 2031
63d95a91 2032 ret |= maybe_create_worker(pool);
e22bee78 2033
34a06bd6 2034 mutex_unlock(&pool->manager_arb);
e22bee78 2035 return ret;
73f53c4a
TH
2036}
2037
a62428c0
TH
2038/**
2039 * process_one_work - process single work
c34056a3 2040 * @worker: self
a62428c0
TH
2041 * @work: work to process
2042 *
2043 * Process @work. This function contains all the logics necessary to
2044 * process a single work including synchronization against and
2045 * interaction with other workers on the same cpu, queueing and
2046 * flushing. As long as context requirement is met, any worker can
2047 * call this function to process a work.
2048 *
2049 * CONTEXT:
d565ed63 2050 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2051 */
c34056a3 2052static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2053__releases(&pool->lock)
2054__acquires(&pool->lock)
a62428c0 2055{
112202d9 2056 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2057 struct worker_pool *pool = worker->pool;
112202d9 2058 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2059 int work_color;
7e11629d 2060 struct worker *collision;
a62428c0
TH
2061#ifdef CONFIG_LOCKDEP
2062 /*
2063 * It is permissible to free the struct work_struct from
2064 * inside the function that is called from it, this we need to
2065 * take into account for lockdep too. To avoid bogus "held
2066 * lock freed" warnings as well as problems when looking into
2067 * work->lockdep_map, make a copy and use that here.
2068 */
4d82a1de
PZ
2069 struct lockdep_map lockdep_map;
2070
2071 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2072#endif
6fec10a1
TH
2073 /*
2074 * Ensure we're on the correct CPU. DISASSOCIATED test is
2075 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2076 * unbound or a disassociated pool.
6fec10a1 2077 */
5f7dabfd 2078 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2079 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2080 raw_smp_processor_id() != pool->cpu);
25511a47 2081
7e11629d
TH
2082 /*
2083 * A single work shouldn't be executed concurrently by
2084 * multiple workers on a single cpu. Check whether anyone is
2085 * already processing the work. If so, defer the work to the
2086 * currently executing one.
2087 */
c9e7cf27 2088 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2089 if (unlikely(collision)) {
2090 move_linked_works(work, &collision->scheduled, NULL);
2091 return;
2092 }
2093
8930caba 2094 /* claim and dequeue */
a62428c0 2095 debug_work_deactivate(work);
c9e7cf27 2096 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2097 worker->current_work = work;
a2c1c57b 2098 worker->current_func = work->func;
112202d9 2099 worker->current_pwq = pwq;
73f53c4a 2100 work_color = get_work_color(work);
7a22ad75 2101
a62428c0
TH
2102 list_del_init(&work->entry);
2103
fb0e7beb
TH
2104 /*
2105 * CPU intensive works don't participate in concurrency
2106 * management. They're the scheduler's responsibility.
2107 */
2108 if (unlikely(cpu_intensive))
2109 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2110
974271c4 2111 /*
d565ed63 2112 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2113 * executed ASAP. Wake up another worker if necessary.
2114 */
63d95a91
TH
2115 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2116 wake_up_worker(pool);
974271c4 2117
8930caba 2118 /*
7c3eed5c 2119 * Record the last pool and clear PENDING which should be the last
d565ed63 2120 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2121 * PENDING and queued state changes happen together while IRQ is
2122 * disabled.
8930caba 2123 */
7c3eed5c 2124 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2125
d565ed63 2126 spin_unlock_irq(&pool->lock);
a62428c0 2127
112202d9 2128 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2129 lock_map_acquire(&lockdep_map);
e36c886a 2130 trace_workqueue_execute_start(work);
a2c1c57b 2131 worker->current_func(work);
e36c886a
AV
2132 /*
2133 * While we must be careful to not use "work" after this, the trace
2134 * point will only record its address.
2135 */
2136 trace_workqueue_execute_end(work);
a62428c0 2137 lock_map_release(&lockdep_map);
112202d9 2138 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2139
2140 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2141 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2142 " last function: %pf\n",
a2c1c57b
TH
2143 current->comm, preempt_count(), task_pid_nr(current),
2144 worker->current_func);
a62428c0
TH
2145 debug_show_held_locks(current);
2146 dump_stack();
2147 }
2148
b22ce278
TH
2149 /*
2150 * The following prevents a kworker from hogging CPU on !PREEMPT
2151 * kernels, where a requeueing work item waiting for something to
2152 * happen could deadlock with stop_machine as such work item could
2153 * indefinitely requeue itself while all other CPUs are trapped in
2154 * stop_machine.
2155 */
2156 cond_resched();
2157
d565ed63 2158 spin_lock_irq(&pool->lock);
a62428c0 2159
fb0e7beb
TH
2160 /* clear cpu intensive status */
2161 if (unlikely(cpu_intensive))
2162 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2163
a62428c0 2164 /* we're done with it, release */
42f8570f 2165 hash_del(&worker->hentry);
c34056a3 2166 worker->current_work = NULL;
a2c1c57b 2167 worker->current_func = NULL;
112202d9 2168 worker->current_pwq = NULL;
3d1cb205 2169 worker->desc_valid = false;
112202d9 2170 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2171}
2172
affee4b2
TH
2173/**
2174 * process_scheduled_works - process scheduled works
2175 * @worker: self
2176 *
2177 * Process all scheduled works. Please note that the scheduled list
2178 * may change while processing a work, so this function repeatedly
2179 * fetches a work from the top and executes it.
2180 *
2181 * CONTEXT:
d565ed63 2182 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2183 * multiple times.
2184 */
2185static void process_scheduled_works(struct worker *worker)
1da177e4 2186{
affee4b2
TH
2187 while (!list_empty(&worker->scheduled)) {
2188 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2189 struct work_struct, entry);
c34056a3 2190 process_one_work(worker, work);
1da177e4 2191 }
1da177e4
LT
2192}
2193
4690c4ab
TH
2194/**
2195 * worker_thread - the worker thread function
c34056a3 2196 * @__worker: self
4690c4ab 2197 *
c5aa87bb
TH
2198 * The worker thread function. All workers belong to a worker_pool -
2199 * either a per-cpu one or dynamic unbound one. These workers process all
2200 * work items regardless of their specific target workqueue. The only
2201 * exception is work items which belong to workqueues with a rescuer which
2202 * will be explained in rescuer_thread().
d185af30
YB
2203 *
2204 * Return: 0
4690c4ab 2205 */
c34056a3 2206static int worker_thread(void *__worker)
1da177e4 2207{
c34056a3 2208 struct worker *worker = __worker;
bd7bdd43 2209 struct worker_pool *pool = worker->pool;
1da177e4 2210
e22bee78
TH
2211 /* tell the scheduler that this is a workqueue worker */
2212 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2213woke_up:
d565ed63 2214 spin_lock_irq(&pool->lock);
1da177e4 2215
a9ab775b
TH
2216 /* am I supposed to die? */
2217 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2218 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2219 WARN_ON_ONCE(!list_empty(&worker->entry));
2220 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2221
2222 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2223 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2224 worker_detach_from_pool(worker, pool);
2225 kfree(worker);
a9ab775b 2226 return 0;
c8e55f36 2227 }
affee4b2 2228
c8e55f36 2229 worker_leave_idle(worker);
db7bccf4 2230recheck:
e22bee78 2231 /* no more worker necessary? */
63d95a91 2232 if (!need_more_worker(pool))
e22bee78
TH
2233 goto sleep;
2234
2235 /* do we need to manage? */
63d95a91 2236 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2237 goto recheck;
2238
c8e55f36
TH
2239 /*
2240 * ->scheduled list can only be filled while a worker is
2241 * preparing to process a work or actually processing it.
2242 * Make sure nobody diddled with it while I was sleeping.
2243 */
6183c009 2244 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2245
e22bee78 2246 /*
a9ab775b
TH
2247 * Finish PREP stage. We're guaranteed to have at least one idle
2248 * worker or that someone else has already assumed the manager
2249 * role. This is where @worker starts participating in concurrency
2250 * management if applicable and concurrency management is restored
2251 * after being rebound. See rebind_workers() for details.
e22bee78 2252 */
a9ab775b 2253 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2254
2255 do {
c8e55f36 2256 struct work_struct *work =
bd7bdd43 2257 list_first_entry(&pool->worklist,
c8e55f36
TH
2258 struct work_struct, entry);
2259
2260 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2261 /* optimization path, not strictly necessary */
2262 process_one_work(worker, work);
2263 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2264 process_scheduled_works(worker);
c8e55f36
TH
2265 } else {
2266 move_linked_works(work, &worker->scheduled, NULL);
2267 process_scheduled_works(worker);
affee4b2 2268 }
63d95a91 2269 } while (keep_working(pool));
e22bee78
TH
2270
2271 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2272sleep:
c8e55f36 2273 /*
d565ed63
TH
2274 * pool->lock is held and there's no work to process and no need to
2275 * manage, sleep. Workers are woken up only while holding
2276 * pool->lock or from local cpu, so setting the current state
2277 * before releasing pool->lock is enough to prevent losing any
2278 * event.
c8e55f36
TH
2279 */
2280 worker_enter_idle(worker);
2281 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2282 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2283 schedule();
2284 goto woke_up;
1da177e4
LT
2285}
2286
e22bee78
TH
2287/**
2288 * rescuer_thread - the rescuer thread function
111c225a 2289 * @__rescuer: self
e22bee78
TH
2290 *
2291 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2292 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2293 *
706026c2 2294 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2295 * worker which uses GFP_KERNEL allocation which has slight chance of
2296 * developing into deadlock if some works currently on the same queue
2297 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2298 * the problem rescuer solves.
2299 *
706026c2
TH
2300 * When such condition is possible, the pool summons rescuers of all
2301 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2302 * those works so that forward progress can be guaranteed.
2303 *
2304 * This should happen rarely.
d185af30
YB
2305 *
2306 * Return: 0
e22bee78 2307 */
111c225a 2308static int rescuer_thread(void *__rescuer)
e22bee78 2309{
111c225a
TH
2310 struct worker *rescuer = __rescuer;
2311 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2312 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2313 bool should_stop;
e22bee78
TH
2314
2315 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2316
2317 /*
2318 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2319 * doesn't participate in concurrency management.
2320 */
2321 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2322repeat:
2323 set_current_state(TASK_INTERRUPTIBLE);
2324
4d595b86
LJ
2325 /*
2326 * By the time the rescuer is requested to stop, the workqueue
2327 * shouldn't have any work pending, but @wq->maydays may still have
2328 * pwq(s) queued. This can happen by non-rescuer workers consuming
2329 * all the work items before the rescuer got to them. Go through
2330 * @wq->maydays processing before acting on should_stop so that the
2331 * list is always empty on exit.
2332 */
2333 should_stop = kthread_should_stop();
e22bee78 2334
493a1724 2335 /* see whether any pwq is asking for help */
2e109a28 2336 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2337
2338 while (!list_empty(&wq->maydays)) {
2339 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2340 struct pool_workqueue, mayday_node);
112202d9 2341 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2342 struct work_struct *work, *n;
2343
2344 __set_current_state(TASK_RUNNING);
493a1724
TH
2345 list_del_init(&pwq->mayday_node);
2346
2e109a28 2347 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2348
2349 /* migrate to the target cpu if possible */
f36dc67b 2350 worker_maybe_bind_and_lock(pool);
b3104104 2351 rescuer->pool = pool;
e22bee78
TH
2352
2353 /*
2354 * Slurp in all works issued via this workqueue and
2355 * process'em.
2356 */
6183c009 2357 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2358 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2359 if (get_work_pwq(work) == pwq)
e22bee78
TH
2360 move_linked_works(work, scheduled, &n);
2361
2362 process_scheduled_works(rescuer);
7576958a 2363
77668c8b
LJ
2364 /*
2365 * Put the reference grabbed by send_mayday(). @pool won't
2366 * go away while we're holding its lock.
2367 */
2368 put_pwq(pwq);
2369
7576958a 2370 /*
d565ed63 2371 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2372 * regular worker; otherwise, we end up with 0 concurrency
2373 * and stalling the execution.
2374 */
63d95a91
TH
2375 if (keep_working(pool))
2376 wake_up_worker(pool);
7576958a 2377
b3104104 2378 rescuer->pool = NULL;
493a1724 2379 spin_unlock(&pool->lock);
2e109a28 2380 spin_lock(&wq_mayday_lock);
e22bee78
TH
2381 }
2382
2e109a28 2383 spin_unlock_irq(&wq_mayday_lock);
493a1724 2384
4d595b86
LJ
2385 if (should_stop) {
2386 __set_current_state(TASK_RUNNING);
2387 rescuer->task->flags &= ~PF_WQ_WORKER;
2388 return 0;
2389 }
2390
111c225a
TH
2391 /* rescuers should never participate in concurrency management */
2392 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2393 schedule();
2394 goto repeat;
1da177e4
LT
2395}
2396
fc2e4d70
ON
2397struct wq_barrier {
2398 struct work_struct work;
2399 struct completion done;
2400};
2401
2402static void wq_barrier_func(struct work_struct *work)
2403{
2404 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2405 complete(&barr->done);
2406}
2407
4690c4ab
TH
2408/**
2409 * insert_wq_barrier - insert a barrier work
112202d9 2410 * @pwq: pwq to insert barrier into
4690c4ab 2411 * @barr: wq_barrier to insert
affee4b2
TH
2412 * @target: target work to attach @barr to
2413 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2414 *
affee4b2
TH
2415 * @barr is linked to @target such that @barr is completed only after
2416 * @target finishes execution. Please note that the ordering
2417 * guarantee is observed only with respect to @target and on the local
2418 * cpu.
2419 *
2420 * Currently, a queued barrier can't be canceled. This is because
2421 * try_to_grab_pending() can't determine whether the work to be
2422 * grabbed is at the head of the queue and thus can't clear LINKED
2423 * flag of the previous work while there must be a valid next work
2424 * after a work with LINKED flag set.
2425 *
2426 * Note that when @worker is non-NULL, @target may be modified
112202d9 2427 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2428 *
2429 * CONTEXT:
d565ed63 2430 * spin_lock_irq(pool->lock).
4690c4ab 2431 */
112202d9 2432static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2433 struct wq_barrier *barr,
2434 struct work_struct *target, struct worker *worker)
fc2e4d70 2435{
affee4b2
TH
2436 struct list_head *head;
2437 unsigned int linked = 0;
2438
dc186ad7 2439 /*
d565ed63 2440 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2441 * as we know for sure that this will not trigger any of the
2442 * checks and call back into the fixup functions where we
2443 * might deadlock.
2444 */
ca1cab37 2445 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2446 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2447 init_completion(&barr->done);
83c22520 2448
affee4b2
TH
2449 /*
2450 * If @target is currently being executed, schedule the
2451 * barrier to the worker; otherwise, put it after @target.
2452 */
2453 if (worker)
2454 head = worker->scheduled.next;
2455 else {
2456 unsigned long *bits = work_data_bits(target);
2457
2458 head = target->entry.next;
2459 /* there can already be other linked works, inherit and set */
2460 linked = *bits & WORK_STRUCT_LINKED;
2461 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2462 }
2463
dc186ad7 2464 debug_work_activate(&barr->work);
112202d9 2465 insert_work(pwq, &barr->work, head,
affee4b2 2466 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2467}
2468
73f53c4a 2469/**
112202d9 2470 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2471 * @wq: workqueue being flushed
2472 * @flush_color: new flush color, < 0 for no-op
2473 * @work_color: new work color, < 0 for no-op
2474 *
112202d9 2475 * Prepare pwqs for workqueue flushing.
73f53c4a 2476 *
112202d9
TH
2477 * If @flush_color is non-negative, flush_color on all pwqs should be
2478 * -1. If no pwq has in-flight commands at the specified color, all
2479 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2480 * has in flight commands, its pwq->flush_color is set to
2481 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2482 * wakeup logic is armed and %true is returned.
2483 *
2484 * The caller should have initialized @wq->first_flusher prior to
2485 * calling this function with non-negative @flush_color. If
2486 * @flush_color is negative, no flush color update is done and %false
2487 * is returned.
2488 *
112202d9 2489 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2490 * work_color which is previous to @work_color and all will be
2491 * advanced to @work_color.
2492 *
2493 * CONTEXT:
3c25a55d 2494 * mutex_lock(wq->mutex).
73f53c4a 2495 *
d185af30 2496 * Return:
73f53c4a
TH
2497 * %true if @flush_color >= 0 and there's something to flush. %false
2498 * otherwise.
2499 */
112202d9 2500static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2501 int flush_color, int work_color)
1da177e4 2502{
73f53c4a 2503 bool wait = false;
49e3cf44 2504 struct pool_workqueue *pwq;
1da177e4 2505
73f53c4a 2506 if (flush_color >= 0) {
6183c009 2507 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2508 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2509 }
2355b70f 2510
49e3cf44 2511 for_each_pwq(pwq, wq) {
112202d9 2512 struct worker_pool *pool = pwq->pool;
fc2e4d70 2513
b09f4fd3 2514 spin_lock_irq(&pool->lock);
83c22520 2515
73f53c4a 2516 if (flush_color >= 0) {
6183c009 2517 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2518
112202d9
TH
2519 if (pwq->nr_in_flight[flush_color]) {
2520 pwq->flush_color = flush_color;
2521 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2522 wait = true;
2523 }
2524 }
1da177e4 2525
73f53c4a 2526 if (work_color >= 0) {
6183c009 2527 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2528 pwq->work_color = work_color;
73f53c4a 2529 }
1da177e4 2530
b09f4fd3 2531 spin_unlock_irq(&pool->lock);
1da177e4 2532 }
2355b70f 2533
112202d9 2534 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2535 complete(&wq->first_flusher->done);
14441960 2536
73f53c4a 2537 return wait;
1da177e4
LT
2538}
2539
0fcb78c2 2540/**
1da177e4 2541 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2542 * @wq: workqueue to flush
1da177e4 2543 *
c5aa87bb
TH
2544 * This function sleeps until all work items which were queued on entry
2545 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2546 */
7ad5b3a5 2547void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2548{
73f53c4a
TH
2549 struct wq_flusher this_flusher = {
2550 .list = LIST_HEAD_INIT(this_flusher.list),
2551 .flush_color = -1,
2552 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2553 };
2554 int next_color;
1da177e4 2555
3295f0ef
IM
2556 lock_map_acquire(&wq->lockdep_map);
2557 lock_map_release(&wq->lockdep_map);
73f53c4a 2558
3c25a55d 2559 mutex_lock(&wq->mutex);
73f53c4a
TH
2560
2561 /*
2562 * Start-to-wait phase
2563 */
2564 next_color = work_next_color(wq->work_color);
2565
2566 if (next_color != wq->flush_color) {
2567 /*
2568 * Color space is not full. The current work_color
2569 * becomes our flush_color and work_color is advanced
2570 * by one.
2571 */
6183c009 2572 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2573 this_flusher.flush_color = wq->work_color;
2574 wq->work_color = next_color;
2575
2576 if (!wq->first_flusher) {
2577 /* no flush in progress, become the first flusher */
6183c009 2578 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2579
2580 wq->first_flusher = &this_flusher;
2581
112202d9 2582 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2583 wq->work_color)) {
2584 /* nothing to flush, done */
2585 wq->flush_color = next_color;
2586 wq->first_flusher = NULL;
2587 goto out_unlock;
2588 }
2589 } else {
2590 /* wait in queue */
6183c009 2591 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2592 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2593 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2594 }
2595 } else {
2596 /*
2597 * Oops, color space is full, wait on overflow queue.
2598 * The next flush completion will assign us
2599 * flush_color and transfer to flusher_queue.
2600 */
2601 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2602 }
2603
3c25a55d 2604 mutex_unlock(&wq->mutex);
73f53c4a
TH
2605
2606 wait_for_completion(&this_flusher.done);
2607
2608 /*
2609 * Wake-up-and-cascade phase
2610 *
2611 * First flushers are responsible for cascading flushes and
2612 * handling overflow. Non-first flushers can simply return.
2613 */
2614 if (wq->first_flusher != &this_flusher)
2615 return;
2616
3c25a55d 2617 mutex_lock(&wq->mutex);
73f53c4a 2618
4ce48b37
TH
2619 /* we might have raced, check again with mutex held */
2620 if (wq->first_flusher != &this_flusher)
2621 goto out_unlock;
2622
73f53c4a
TH
2623 wq->first_flusher = NULL;
2624
6183c009
TH
2625 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2626 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2627
2628 while (true) {
2629 struct wq_flusher *next, *tmp;
2630
2631 /* complete all the flushers sharing the current flush color */
2632 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2633 if (next->flush_color != wq->flush_color)
2634 break;
2635 list_del_init(&next->list);
2636 complete(&next->done);
2637 }
2638
6183c009
TH
2639 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2640 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2641
2642 /* this flush_color is finished, advance by one */
2643 wq->flush_color = work_next_color(wq->flush_color);
2644
2645 /* one color has been freed, handle overflow queue */
2646 if (!list_empty(&wq->flusher_overflow)) {
2647 /*
2648 * Assign the same color to all overflowed
2649 * flushers, advance work_color and append to
2650 * flusher_queue. This is the start-to-wait
2651 * phase for these overflowed flushers.
2652 */
2653 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2654 tmp->flush_color = wq->work_color;
2655
2656 wq->work_color = work_next_color(wq->work_color);
2657
2658 list_splice_tail_init(&wq->flusher_overflow,
2659 &wq->flusher_queue);
112202d9 2660 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2661 }
2662
2663 if (list_empty(&wq->flusher_queue)) {
6183c009 2664 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2665 break;
2666 }
2667
2668 /*
2669 * Need to flush more colors. Make the next flusher
112202d9 2670 * the new first flusher and arm pwqs.
73f53c4a 2671 */
6183c009
TH
2672 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2673 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2674
2675 list_del_init(&next->list);
2676 wq->first_flusher = next;
2677
112202d9 2678 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2679 break;
2680
2681 /*
2682 * Meh... this color is already done, clear first
2683 * flusher and repeat cascading.
2684 */
2685 wq->first_flusher = NULL;
2686 }
2687
2688out_unlock:
3c25a55d 2689 mutex_unlock(&wq->mutex);
1da177e4 2690}
ae90dd5d 2691EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2692
9c5a2ba7
TH
2693/**
2694 * drain_workqueue - drain a workqueue
2695 * @wq: workqueue to drain
2696 *
2697 * Wait until the workqueue becomes empty. While draining is in progress,
2698 * only chain queueing is allowed. IOW, only currently pending or running
2699 * work items on @wq can queue further work items on it. @wq is flushed
2700 * repeatedly until it becomes empty. The number of flushing is detemined
2701 * by the depth of chaining and should be relatively short. Whine if it
2702 * takes too long.
2703 */
2704void drain_workqueue(struct workqueue_struct *wq)
2705{
2706 unsigned int flush_cnt = 0;
49e3cf44 2707 struct pool_workqueue *pwq;
9c5a2ba7
TH
2708
2709 /*
2710 * __queue_work() needs to test whether there are drainers, is much
2711 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2712 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2713 */
87fc741e 2714 mutex_lock(&wq->mutex);
9c5a2ba7 2715 if (!wq->nr_drainers++)
618b01eb 2716 wq->flags |= __WQ_DRAINING;
87fc741e 2717 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2718reflush:
2719 flush_workqueue(wq);
2720
b09f4fd3 2721 mutex_lock(&wq->mutex);
76af4d93 2722
49e3cf44 2723 for_each_pwq(pwq, wq) {
fa2563e4 2724 bool drained;
9c5a2ba7 2725
b09f4fd3 2726 spin_lock_irq(&pwq->pool->lock);
112202d9 2727 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2728 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2729
2730 if (drained)
9c5a2ba7
TH
2731 continue;
2732
2733 if (++flush_cnt == 10 ||
2734 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2735 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2736 wq->name, flush_cnt);
76af4d93 2737
b09f4fd3 2738 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2739 goto reflush;
2740 }
2741
9c5a2ba7 2742 if (!--wq->nr_drainers)
618b01eb 2743 wq->flags &= ~__WQ_DRAINING;
87fc741e 2744 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2745}
2746EXPORT_SYMBOL_GPL(drain_workqueue);
2747
606a5020 2748static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2749{
affee4b2 2750 struct worker *worker = NULL;
c9e7cf27 2751 struct worker_pool *pool;
112202d9 2752 struct pool_workqueue *pwq;
db700897
ON
2753
2754 might_sleep();
fa1b54e6
TH
2755
2756 local_irq_disable();
c9e7cf27 2757 pool = get_work_pool(work);
fa1b54e6
TH
2758 if (!pool) {
2759 local_irq_enable();
baf59022 2760 return false;
fa1b54e6 2761 }
db700897 2762
fa1b54e6 2763 spin_lock(&pool->lock);
0b3dae68 2764 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2765 pwq = get_work_pwq(work);
2766 if (pwq) {
2767 if (unlikely(pwq->pool != pool))
4690c4ab 2768 goto already_gone;
606a5020 2769 } else {
c9e7cf27 2770 worker = find_worker_executing_work(pool, work);
affee4b2 2771 if (!worker)
4690c4ab 2772 goto already_gone;
112202d9 2773 pwq = worker->current_pwq;
606a5020 2774 }
db700897 2775
112202d9 2776 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2777 spin_unlock_irq(&pool->lock);
7a22ad75 2778
e159489b
TH
2779 /*
2780 * If @max_active is 1 or rescuer is in use, flushing another work
2781 * item on the same workqueue may lead to deadlock. Make sure the
2782 * flusher is not running on the same workqueue by verifying write
2783 * access.
2784 */
493008a8 2785 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2786 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2787 else
112202d9
TH
2788 lock_map_acquire_read(&pwq->wq->lockdep_map);
2789 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2790
401a8d04 2791 return true;
4690c4ab 2792already_gone:
d565ed63 2793 spin_unlock_irq(&pool->lock);
401a8d04 2794 return false;
db700897 2795}
baf59022
TH
2796
2797/**
2798 * flush_work - wait for a work to finish executing the last queueing instance
2799 * @work: the work to flush
2800 *
606a5020
TH
2801 * Wait until @work has finished execution. @work is guaranteed to be idle
2802 * on return if it hasn't been requeued since flush started.
baf59022 2803 *
d185af30 2804 * Return:
baf59022
TH
2805 * %true if flush_work() waited for the work to finish execution,
2806 * %false if it was already idle.
2807 */
2808bool flush_work(struct work_struct *work)
2809{
12997d1a
BH
2810 struct wq_barrier barr;
2811
0976dfc1
SB
2812 lock_map_acquire(&work->lockdep_map);
2813 lock_map_release(&work->lockdep_map);
2814
12997d1a
BH
2815 if (start_flush_work(work, &barr)) {
2816 wait_for_completion(&barr.done);
2817 destroy_work_on_stack(&barr.work);
2818 return true;
2819 } else {
2820 return false;
2821 }
6e84d644 2822}
606a5020 2823EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2824
36e227d2 2825static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2826{
bbb68dfa 2827 unsigned long flags;
1f1f642e
ON
2828 int ret;
2829
2830 do {
bbb68dfa
TH
2831 ret = try_to_grab_pending(work, is_dwork, &flags);
2832 /*
2833 * If someone else is canceling, wait for the same event it
2834 * would be waiting for before retrying.
2835 */
2836 if (unlikely(ret == -ENOENT))
606a5020 2837 flush_work(work);
1f1f642e
ON
2838 } while (unlikely(ret < 0));
2839
bbb68dfa
TH
2840 /* tell other tasks trying to grab @work to back off */
2841 mark_work_canceling(work);
2842 local_irq_restore(flags);
2843
606a5020 2844 flush_work(work);
7a22ad75 2845 clear_work_data(work);
1f1f642e
ON
2846 return ret;
2847}
2848
6e84d644 2849/**
401a8d04
TH
2850 * cancel_work_sync - cancel a work and wait for it to finish
2851 * @work: the work to cancel
6e84d644 2852 *
401a8d04
TH
2853 * Cancel @work and wait for its execution to finish. This function
2854 * can be used even if the work re-queues itself or migrates to
2855 * another workqueue. On return from this function, @work is
2856 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2857 *
401a8d04
TH
2858 * cancel_work_sync(&delayed_work->work) must not be used for
2859 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2860 *
401a8d04 2861 * The caller must ensure that the workqueue on which @work was last
6e84d644 2862 * queued can't be destroyed before this function returns.
401a8d04 2863 *
d185af30 2864 * Return:
401a8d04 2865 * %true if @work was pending, %false otherwise.
6e84d644 2866 */
401a8d04 2867bool cancel_work_sync(struct work_struct *work)
6e84d644 2868{
36e227d2 2869 return __cancel_work_timer(work, false);
b89deed3 2870}
28e53bdd 2871EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2872
6e84d644 2873/**
401a8d04
TH
2874 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2875 * @dwork: the delayed work to flush
6e84d644 2876 *
401a8d04
TH
2877 * Delayed timer is cancelled and the pending work is queued for
2878 * immediate execution. Like flush_work(), this function only
2879 * considers the last queueing instance of @dwork.
1f1f642e 2880 *
d185af30 2881 * Return:
401a8d04
TH
2882 * %true if flush_work() waited for the work to finish execution,
2883 * %false if it was already idle.
6e84d644 2884 */
401a8d04
TH
2885bool flush_delayed_work(struct delayed_work *dwork)
2886{
8930caba 2887 local_irq_disable();
401a8d04 2888 if (del_timer_sync(&dwork->timer))
60c057bc 2889 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2890 local_irq_enable();
401a8d04
TH
2891 return flush_work(&dwork->work);
2892}
2893EXPORT_SYMBOL(flush_delayed_work);
2894
09383498 2895/**
57b30ae7
TH
2896 * cancel_delayed_work - cancel a delayed work
2897 * @dwork: delayed_work to cancel
09383498 2898 *
d185af30
YB
2899 * Kill off a pending delayed_work.
2900 *
2901 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2902 * pending.
2903 *
2904 * Note:
2905 * The work callback function may still be running on return, unless
2906 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2907 * use cancel_delayed_work_sync() to wait on it.
09383498 2908 *
57b30ae7 2909 * This function is safe to call from any context including IRQ handler.
09383498 2910 */
57b30ae7 2911bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2912{
57b30ae7
TH
2913 unsigned long flags;
2914 int ret;
2915
2916 do {
2917 ret = try_to_grab_pending(&dwork->work, true, &flags);
2918 } while (unlikely(ret == -EAGAIN));
2919
2920 if (unlikely(ret < 0))
2921 return false;
2922
7c3eed5c
TH
2923 set_work_pool_and_clear_pending(&dwork->work,
2924 get_work_pool_id(&dwork->work));
57b30ae7 2925 local_irq_restore(flags);
c0158ca6 2926 return ret;
09383498 2927}
57b30ae7 2928EXPORT_SYMBOL(cancel_delayed_work);
09383498 2929
401a8d04
TH
2930/**
2931 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2932 * @dwork: the delayed work cancel
2933 *
2934 * This is cancel_work_sync() for delayed works.
2935 *
d185af30 2936 * Return:
401a8d04
TH
2937 * %true if @dwork was pending, %false otherwise.
2938 */
2939bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2940{
36e227d2 2941 return __cancel_work_timer(&dwork->work, true);
6e84d644 2942}
f5a421a4 2943EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2944
b6136773 2945/**
31ddd871 2946 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2947 * @func: the function to call
b6136773 2948 *
31ddd871
TH
2949 * schedule_on_each_cpu() executes @func on each online CPU using the
2950 * system workqueue and blocks until all CPUs have completed.
b6136773 2951 * schedule_on_each_cpu() is very slow.
31ddd871 2952 *
d185af30 2953 * Return:
31ddd871 2954 * 0 on success, -errno on failure.
b6136773 2955 */
65f27f38 2956int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2957{
2958 int cpu;
38f51568 2959 struct work_struct __percpu *works;
15316ba8 2960
b6136773
AM
2961 works = alloc_percpu(struct work_struct);
2962 if (!works)
15316ba8 2963 return -ENOMEM;
b6136773 2964
93981800
TH
2965 get_online_cpus();
2966
15316ba8 2967 for_each_online_cpu(cpu) {
9bfb1839
IM
2968 struct work_struct *work = per_cpu_ptr(works, cpu);
2969
2970 INIT_WORK(work, func);
b71ab8c2 2971 schedule_work_on(cpu, work);
65a64464 2972 }
93981800
TH
2973
2974 for_each_online_cpu(cpu)
2975 flush_work(per_cpu_ptr(works, cpu));
2976
95402b38 2977 put_online_cpus();
b6136773 2978 free_percpu(works);
15316ba8
CL
2979 return 0;
2980}
2981
eef6a7d5
AS
2982/**
2983 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2984 *
2985 * Forces execution of the kernel-global workqueue and blocks until its
2986 * completion.
2987 *
2988 * Think twice before calling this function! It's very easy to get into
2989 * trouble if you don't take great care. Either of the following situations
2990 * will lead to deadlock:
2991 *
2992 * One of the work items currently on the workqueue needs to acquire
2993 * a lock held by your code or its caller.
2994 *
2995 * Your code is running in the context of a work routine.
2996 *
2997 * They will be detected by lockdep when they occur, but the first might not
2998 * occur very often. It depends on what work items are on the workqueue and
2999 * what locks they need, which you have no control over.
3000 *
3001 * In most situations flushing the entire workqueue is overkill; you merely
3002 * need to know that a particular work item isn't queued and isn't running.
3003 * In such cases you should use cancel_delayed_work_sync() or
3004 * cancel_work_sync() instead.
3005 */
1da177e4
LT
3006void flush_scheduled_work(void)
3007{
d320c038 3008 flush_workqueue(system_wq);
1da177e4 3009}
ae90dd5d 3010EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3011
1fa44eca
JB
3012/**
3013 * execute_in_process_context - reliably execute the routine with user context
3014 * @fn: the function to execute
1fa44eca
JB
3015 * @ew: guaranteed storage for the execute work structure (must
3016 * be available when the work executes)
3017 *
3018 * Executes the function immediately if process context is available,
3019 * otherwise schedules the function for delayed execution.
3020 *
d185af30 3021 * Return: 0 - function was executed
1fa44eca
JB
3022 * 1 - function was scheduled for execution
3023 */
65f27f38 3024int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3025{
3026 if (!in_interrupt()) {
65f27f38 3027 fn(&ew->work);
1fa44eca
JB
3028 return 0;
3029 }
3030
65f27f38 3031 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3032 schedule_work(&ew->work);
3033
3034 return 1;
3035}
3036EXPORT_SYMBOL_GPL(execute_in_process_context);
3037
226223ab
TH
3038#ifdef CONFIG_SYSFS
3039/*
3040 * Workqueues with WQ_SYSFS flag set is visible to userland via
3041 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3042 * following attributes.
3043 *
3044 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3045 * max_active RW int : maximum number of in-flight work items
3046 *
3047 * Unbound workqueues have the following extra attributes.
3048 *
3049 * id RO int : the associated pool ID
3050 * nice RW int : nice value of the workers
3051 * cpumask RW mask : bitmask of allowed CPUs for the workers
3052 */
3053struct wq_device {
3054 struct workqueue_struct *wq;
3055 struct device dev;
3056};
3057
3058static struct workqueue_struct *dev_to_wq(struct device *dev)
3059{
3060 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3061
3062 return wq_dev->wq;
3063}
3064
1a6661da
GKH
3065static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3066 char *buf)
226223ab
TH
3067{
3068 struct workqueue_struct *wq = dev_to_wq(dev);
3069
3070 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3071}
1a6661da 3072static DEVICE_ATTR_RO(per_cpu);
226223ab 3073
1a6661da
GKH
3074static ssize_t max_active_show(struct device *dev,
3075 struct device_attribute *attr, char *buf)
226223ab
TH
3076{
3077 struct workqueue_struct *wq = dev_to_wq(dev);
3078
3079 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3080}
3081
1a6661da
GKH
3082static ssize_t max_active_store(struct device *dev,
3083 struct device_attribute *attr, const char *buf,
3084 size_t count)
226223ab
TH
3085{
3086 struct workqueue_struct *wq = dev_to_wq(dev);
3087 int val;
3088
3089 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3090 return -EINVAL;
3091
3092 workqueue_set_max_active(wq, val);
3093 return count;
3094}
1a6661da 3095static DEVICE_ATTR_RW(max_active);
226223ab 3096
1a6661da
GKH
3097static struct attribute *wq_sysfs_attrs[] = {
3098 &dev_attr_per_cpu.attr,
3099 &dev_attr_max_active.attr,
3100 NULL,
226223ab 3101};
1a6661da 3102ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3103
d55262c4
TH
3104static ssize_t wq_pool_ids_show(struct device *dev,
3105 struct device_attribute *attr, char *buf)
226223ab
TH
3106{
3107 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3108 const char *delim = "";
3109 int node, written = 0;
226223ab
TH
3110
3111 rcu_read_lock_sched();
d55262c4
TH
3112 for_each_node(node) {
3113 written += scnprintf(buf + written, PAGE_SIZE - written,
3114 "%s%d:%d", delim, node,
3115 unbound_pwq_by_node(wq, node)->pool->id);
3116 delim = " ";
3117 }
3118 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3119 rcu_read_unlock_sched();
3120
3121 return written;
3122}
3123
3124static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3125 char *buf)
3126{
3127 struct workqueue_struct *wq = dev_to_wq(dev);
3128 int written;
3129
6029a918
TH
3130 mutex_lock(&wq->mutex);
3131 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3132 mutex_unlock(&wq->mutex);
226223ab
TH
3133
3134 return written;
3135}
3136
3137/* prepare workqueue_attrs for sysfs store operations */
3138static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3139{
3140 struct workqueue_attrs *attrs;
3141
3142 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3143 if (!attrs)
3144 return NULL;
3145
6029a918
TH
3146 mutex_lock(&wq->mutex);
3147 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3148 mutex_unlock(&wq->mutex);
226223ab
TH
3149 return attrs;
3150}
3151
3152static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3153 const char *buf, size_t count)
3154{
3155 struct workqueue_struct *wq = dev_to_wq(dev);
3156 struct workqueue_attrs *attrs;
3157 int ret;
3158
3159 attrs = wq_sysfs_prep_attrs(wq);
3160 if (!attrs)
3161 return -ENOMEM;
3162
3163 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3164 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3165 ret = apply_workqueue_attrs(wq, attrs);
3166 else
3167 ret = -EINVAL;
3168
3169 free_workqueue_attrs(attrs);
3170 return ret ?: count;
3171}
3172
3173static ssize_t wq_cpumask_show(struct device *dev,
3174 struct device_attribute *attr, char *buf)
3175{
3176 struct workqueue_struct *wq = dev_to_wq(dev);
3177 int written;
3178
6029a918
TH
3179 mutex_lock(&wq->mutex);
3180 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3181 mutex_unlock(&wq->mutex);
226223ab
TH
3182
3183 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3184 return written;
3185}
3186
3187static ssize_t wq_cpumask_store(struct device *dev,
3188 struct device_attribute *attr,
3189 const char *buf, size_t count)
3190{
3191 struct workqueue_struct *wq = dev_to_wq(dev);
3192 struct workqueue_attrs *attrs;
3193 int ret;
3194
3195 attrs = wq_sysfs_prep_attrs(wq);
3196 if (!attrs)
3197 return -ENOMEM;
3198
3199 ret = cpumask_parse(buf, attrs->cpumask);
3200 if (!ret)
3201 ret = apply_workqueue_attrs(wq, attrs);
3202
3203 free_workqueue_attrs(attrs);
3204 return ret ?: count;
3205}
3206
d55262c4
TH
3207static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3208 char *buf)
3209{
3210 struct workqueue_struct *wq = dev_to_wq(dev);
3211 int written;
3212
3213 mutex_lock(&wq->mutex);
3214 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3215 !wq->unbound_attrs->no_numa);
3216 mutex_unlock(&wq->mutex);
3217
3218 return written;
3219}
3220
3221static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3222 const char *buf, size_t count)
3223{
3224 struct workqueue_struct *wq = dev_to_wq(dev);
3225 struct workqueue_attrs *attrs;
3226 int v, ret;
3227
3228 attrs = wq_sysfs_prep_attrs(wq);
3229 if (!attrs)
3230 return -ENOMEM;
3231
3232 ret = -EINVAL;
3233 if (sscanf(buf, "%d", &v) == 1) {
3234 attrs->no_numa = !v;
3235 ret = apply_workqueue_attrs(wq, attrs);
3236 }
3237
3238 free_workqueue_attrs(attrs);
3239 return ret ?: count;
3240}
3241
226223ab 3242static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3243 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3244 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3245 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3246 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3247 __ATTR_NULL,
3248};
3249
3250static struct bus_type wq_subsys = {
3251 .name = "workqueue",
1a6661da 3252 .dev_groups = wq_sysfs_groups,
226223ab
TH
3253};
3254
3255static int __init wq_sysfs_init(void)
3256{
3257 return subsys_virtual_register(&wq_subsys, NULL);
3258}
3259core_initcall(wq_sysfs_init);
3260
3261static void wq_device_release(struct device *dev)
3262{
3263 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3264
3265 kfree(wq_dev);
3266}
3267
3268/**
3269 * workqueue_sysfs_register - make a workqueue visible in sysfs
3270 * @wq: the workqueue to register
3271 *
3272 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3273 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3274 * which is the preferred method.
3275 *
3276 * Workqueue user should use this function directly iff it wants to apply
3277 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3278 * apply_workqueue_attrs() may race against userland updating the
3279 * attributes.
3280 *
d185af30 3281 * Return: 0 on success, -errno on failure.
226223ab
TH
3282 */
3283int workqueue_sysfs_register(struct workqueue_struct *wq)
3284{
3285 struct wq_device *wq_dev;
3286 int ret;
3287
3288 /*
3289 * Adjusting max_active or creating new pwqs by applyting
3290 * attributes breaks ordering guarantee. Disallow exposing ordered
3291 * workqueues.
3292 */
3293 if (WARN_ON(wq->flags & __WQ_ORDERED))
3294 return -EINVAL;
3295
3296 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3297 if (!wq_dev)
3298 return -ENOMEM;
3299
3300 wq_dev->wq = wq;
3301 wq_dev->dev.bus = &wq_subsys;
3302 wq_dev->dev.init_name = wq->name;
3303 wq_dev->dev.release = wq_device_release;
3304
3305 /*
3306 * unbound_attrs are created separately. Suppress uevent until
3307 * everything is ready.
3308 */
3309 dev_set_uevent_suppress(&wq_dev->dev, true);
3310
3311 ret = device_register(&wq_dev->dev);
3312 if (ret) {
3313 kfree(wq_dev);
3314 wq->wq_dev = NULL;
3315 return ret;
3316 }
3317
3318 if (wq->flags & WQ_UNBOUND) {
3319 struct device_attribute *attr;
3320
3321 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3322 ret = device_create_file(&wq_dev->dev, attr);
3323 if (ret) {
3324 device_unregister(&wq_dev->dev);
3325 wq->wq_dev = NULL;
3326 return ret;
3327 }
3328 }
3329 }
3330
3331 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3332 return 0;
3333}
3334
3335/**
3336 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3337 * @wq: the workqueue to unregister
3338 *
3339 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3340 */
3341static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3342{
3343 struct wq_device *wq_dev = wq->wq_dev;
3344
3345 if (!wq->wq_dev)
3346 return;
3347
3348 wq->wq_dev = NULL;
3349 device_unregister(&wq_dev->dev);
3350}
3351#else /* CONFIG_SYSFS */
3352static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3353#endif /* CONFIG_SYSFS */
3354
7a4e344c
TH
3355/**
3356 * free_workqueue_attrs - free a workqueue_attrs
3357 * @attrs: workqueue_attrs to free
3358 *
3359 * Undo alloc_workqueue_attrs().
3360 */
3361void free_workqueue_attrs(struct workqueue_attrs *attrs)
3362{
3363 if (attrs) {
3364 free_cpumask_var(attrs->cpumask);
3365 kfree(attrs);
3366 }
3367}
3368
3369/**
3370 * alloc_workqueue_attrs - allocate a workqueue_attrs
3371 * @gfp_mask: allocation mask to use
3372 *
3373 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3374 * return it.
3375 *
3376 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3377 */
3378struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3379{
3380 struct workqueue_attrs *attrs;
3381
3382 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3383 if (!attrs)
3384 goto fail;
3385 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3386 goto fail;
3387
13e2e556 3388 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3389 return attrs;
3390fail:
3391 free_workqueue_attrs(attrs);
3392 return NULL;
3393}
3394
29c91e99
TH
3395static void copy_workqueue_attrs(struct workqueue_attrs *to,
3396 const struct workqueue_attrs *from)
3397{
3398 to->nice = from->nice;
3399 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3400 /*
3401 * Unlike hash and equality test, this function doesn't ignore
3402 * ->no_numa as it is used for both pool and wq attrs. Instead,
3403 * get_unbound_pool() explicitly clears ->no_numa after copying.
3404 */
3405 to->no_numa = from->no_numa;
29c91e99
TH
3406}
3407
29c91e99
TH
3408/* hash value of the content of @attr */
3409static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3410{
3411 u32 hash = 0;
3412
3413 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3414 hash = jhash(cpumask_bits(attrs->cpumask),
3415 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3416 return hash;
3417}
3418
3419/* content equality test */
3420static bool wqattrs_equal(const struct workqueue_attrs *a,
3421 const struct workqueue_attrs *b)
3422{
3423 if (a->nice != b->nice)
3424 return false;
3425 if (!cpumask_equal(a->cpumask, b->cpumask))
3426 return false;
3427 return true;
3428}
3429
7a4e344c
TH
3430/**
3431 * init_worker_pool - initialize a newly zalloc'd worker_pool
3432 * @pool: worker_pool to initialize
3433 *
3434 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3435 *
3436 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3437 * inside @pool proper are initialized and put_unbound_pool() can be called
3438 * on @pool safely to release it.
7a4e344c
TH
3439 */
3440static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3441{
3442 spin_lock_init(&pool->lock);
29c91e99
TH
3443 pool->id = -1;
3444 pool->cpu = -1;
f3f90ad4 3445 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3446 pool->flags |= POOL_DISASSOCIATED;
3447 INIT_LIST_HEAD(&pool->worklist);
3448 INIT_LIST_HEAD(&pool->idle_list);
3449 hash_init(pool->busy_hash);
3450
3451 init_timer_deferrable(&pool->idle_timer);
3452 pool->idle_timer.function = idle_worker_timeout;
3453 pool->idle_timer.data = (unsigned long)pool;
3454
3455 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3456 (unsigned long)pool);
3457
3458 mutex_init(&pool->manager_arb);
92f9c5c4 3459 mutex_init(&pool->attach_mutex);
da028469 3460 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3461
7cda9aae 3462 ida_init(&pool->worker_ida);
29c91e99
TH
3463 INIT_HLIST_NODE(&pool->hash_node);
3464 pool->refcnt = 1;
3465
3466 /* shouldn't fail above this point */
7a4e344c
TH
3467 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3468 if (!pool->attrs)
3469 return -ENOMEM;
3470 return 0;
4e1a1f9a
TH
3471}
3472
29c91e99
TH
3473static void rcu_free_pool(struct rcu_head *rcu)
3474{
3475 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3476
7cda9aae 3477 ida_destroy(&pool->worker_ida);
29c91e99
TH
3478 free_workqueue_attrs(pool->attrs);
3479 kfree(pool);
3480}
3481
3482/**
3483 * put_unbound_pool - put a worker_pool
3484 * @pool: worker_pool to put
3485 *
3486 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3487 * safe manner. get_unbound_pool() calls this function on its failure path
3488 * and this function should be able to release pools which went through,
3489 * successfully or not, init_worker_pool().
a892cacc
TH
3490 *
3491 * Should be called with wq_pool_mutex held.
29c91e99
TH
3492 */
3493static void put_unbound_pool(struct worker_pool *pool)
3494{
60f5a4bc 3495 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3496 struct worker *worker;
3497
a892cacc
TH
3498 lockdep_assert_held(&wq_pool_mutex);
3499
3500 if (--pool->refcnt)
29c91e99 3501 return;
29c91e99
TH
3502
3503 /* sanity checks */
3504 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3505 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3506 return;
29c91e99
TH
3507
3508 /* release id and unhash */
3509 if (pool->id >= 0)
3510 idr_remove(&worker_pool_idr, pool->id);
3511 hash_del(&pool->hash_node);
3512
c5aa87bb
TH
3513 /*
3514 * Become the manager and destroy all workers. Grabbing
3515 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3516 * attach_mutex.
c5aa87bb 3517 */
29c91e99 3518 mutex_lock(&pool->manager_arb);
29c91e99 3519
60f5a4bc 3520 spin_lock_irq(&pool->lock);
29c91e99
TH
3521 while ((worker = first_worker(pool)))
3522 destroy_worker(worker);
3523 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3524 spin_unlock_irq(&pool->lock);
60f5a4bc 3525
92f9c5c4 3526 mutex_lock(&pool->attach_mutex);
da028469 3527 if (!list_empty(&pool->workers))
60f5a4bc 3528 pool->detach_completion = &detach_completion;
92f9c5c4 3529 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3530
3531 if (pool->detach_completion)
3532 wait_for_completion(pool->detach_completion);
3533
29c91e99
TH
3534 mutex_unlock(&pool->manager_arb);
3535
3536 /* shut down the timers */
3537 del_timer_sync(&pool->idle_timer);
3538 del_timer_sync(&pool->mayday_timer);
3539
3540 /* sched-RCU protected to allow dereferences from get_work_pool() */
3541 call_rcu_sched(&pool->rcu, rcu_free_pool);
3542}
3543
3544/**
3545 * get_unbound_pool - get a worker_pool with the specified attributes
3546 * @attrs: the attributes of the worker_pool to get
3547 *
3548 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3549 * reference count and return it. If there already is a matching
3550 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3551 * create a new one.
a892cacc
TH
3552 *
3553 * Should be called with wq_pool_mutex held.
d185af30
YB
3554 *
3555 * Return: On success, a worker_pool with the same attributes as @attrs.
3556 * On failure, %NULL.
29c91e99
TH
3557 */
3558static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3559{
29c91e99
TH
3560 u32 hash = wqattrs_hash(attrs);
3561 struct worker_pool *pool;
f3f90ad4 3562 int node;
29c91e99 3563
a892cacc 3564 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3565
3566 /* do we already have a matching pool? */
29c91e99
TH
3567 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3568 if (wqattrs_equal(pool->attrs, attrs)) {
3569 pool->refcnt++;
3570 goto out_unlock;
3571 }
3572 }
29c91e99
TH
3573
3574 /* nope, create a new one */
3575 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3576 if (!pool || init_worker_pool(pool) < 0)
3577 goto fail;
3578
12ee4fc6
LJ
3579 if (workqueue_freezing)
3580 pool->flags |= POOL_FREEZING;
3581
8864b4e5 3582 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3583 copy_workqueue_attrs(pool->attrs, attrs);
3584
2865a8fb
SL
3585 /*
3586 * no_numa isn't a worker_pool attribute, always clear it. See
3587 * 'struct workqueue_attrs' comments for detail.
3588 */
3589 pool->attrs->no_numa = false;
3590
f3f90ad4
TH
3591 /* if cpumask is contained inside a NUMA node, we belong to that node */
3592 if (wq_numa_enabled) {
3593 for_each_node(node) {
3594 if (cpumask_subset(pool->attrs->cpumask,
3595 wq_numa_possible_cpumask[node])) {
3596 pool->node = node;
3597 break;
3598 }
3599 }
3600 }
3601
29c91e99
TH
3602 if (worker_pool_assign_id(pool) < 0)
3603 goto fail;
3604
3605 /* create and start the initial worker */
ebf44d16 3606 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3607 goto fail;
3608
29c91e99 3609 /* install */
29c91e99
TH
3610 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3611out_unlock:
29c91e99
TH
3612 return pool;
3613fail:
29c91e99
TH
3614 if (pool)
3615 put_unbound_pool(pool);
3616 return NULL;
3617}
3618
8864b4e5
TH
3619static void rcu_free_pwq(struct rcu_head *rcu)
3620{
3621 kmem_cache_free(pwq_cache,
3622 container_of(rcu, struct pool_workqueue, rcu));
3623}
3624
3625/*
3626 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3627 * and needs to be destroyed.
3628 */
3629static void pwq_unbound_release_workfn(struct work_struct *work)
3630{
3631 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3632 unbound_release_work);
3633 struct workqueue_struct *wq = pwq->wq;
3634 struct worker_pool *pool = pwq->pool;
bc0caf09 3635 bool is_last;
8864b4e5
TH
3636
3637 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3638 return;
3639
75ccf595 3640 /*
3c25a55d 3641 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3642 * necessary on release but do it anyway. It's easier to verify
3643 * and consistent with the linking path.
3644 */
3c25a55d 3645 mutex_lock(&wq->mutex);
8864b4e5 3646 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3647 is_last = list_empty(&wq->pwqs);
3c25a55d 3648 mutex_unlock(&wq->mutex);
8864b4e5 3649
a892cacc 3650 mutex_lock(&wq_pool_mutex);
8864b4e5 3651 put_unbound_pool(pool);
a892cacc
TH
3652 mutex_unlock(&wq_pool_mutex);
3653
8864b4e5
TH
3654 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3655
3656 /*
3657 * If we're the last pwq going away, @wq is already dead and no one
3658 * is gonna access it anymore. Free it.
3659 */
6029a918
TH
3660 if (is_last) {
3661 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3662 kfree(wq);
6029a918 3663 }
8864b4e5
TH
3664}
3665
0fbd95aa 3666/**
699ce097 3667 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3668 * @pwq: target pool_workqueue
0fbd95aa 3669 *
699ce097
TH
3670 * If @pwq isn't freezing, set @pwq->max_active to the associated
3671 * workqueue's saved_max_active and activate delayed work items
3672 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3673 */
699ce097 3674static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3675{
699ce097
TH
3676 struct workqueue_struct *wq = pwq->wq;
3677 bool freezable = wq->flags & WQ_FREEZABLE;
3678
3679 /* for @wq->saved_max_active */
a357fc03 3680 lockdep_assert_held(&wq->mutex);
699ce097
TH
3681
3682 /* fast exit for non-freezable wqs */
3683 if (!freezable && pwq->max_active == wq->saved_max_active)
3684 return;
3685
a357fc03 3686 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3687
3688 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3689 pwq->max_active = wq->saved_max_active;
0fbd95aa 3690
699ce097
TH
3691 while (!list_empty(&pwq->delayed_works) &&
3692 pwq->nr_active < pwq->max_active)
3693 pwq_activate_first_delayed(pwq);
951a078a
LJ
3694
3695 /*
3696 * Need to kick a worker after thawed or an unbound wq's
3697 * max_active is bumped. It's a slow path. Do it always.
3698 */
3699 wake_up_worker(pwq->pool);
699ce097
TH
3700 } else {
3701 pwq->max_active = 0;
3702 }
3703
a357fc03 3704 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3705}
3706
e50aba9a 3707/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3708static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3709 struct worker_pool *pool)
d2c1d404
TH
3710{
3711 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3712
e50aba9a
TH
3713 memset(pwq, 0, sizeof(*pwq));
3714
d2c1d404
TH
3715 pwq->pool = pool;
3716 pwq->wq = wq;
3717 pwq->flush_color = -1;
8864b4e5 3718 pwq->refcnt = 1;
d2c1d404 3719 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3720 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3721 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3722 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3723}
d2c1d404 3724
f147f29e 3725/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3726static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3727{
3728 struct workqueue_struct *wq = pwq->wq;
3729
3730 lockdep_assert_held(&wq->mutex);
75ccf595 3731
1befcf30
TH
3732 /* may be called multiple times, ignore if already linked */
3733 if (!list_empty(&pwq->pwqs_node))
3734 return;
3735
983ca25e
TH
3736 /*
3737 * Set the matching work_color. This is synchronized with
3c25a55d 3738 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3739 */
75ccf595 3740 pwq->work_color = wq->work_color;
983ca25e
TH
3741
3742 /* sync max_active to the current setting */
3743 pwq_adjust_max_active(pwq);
3744
3745 /* link in @pwq */
9e8cd2f5 3746 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3747}
a357fc03 3748
f147f29e
TH
3749/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3750static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3751 const struct workqueue_attrs *attrs)
3752{
3753 struct worker_pool *pool;
3754 struct pool_workqueue *pwq;
3755
3756 lockdep_assert_held(&wq_pool_mutex);
3757
3758 pool = get_unbound_pool(attrs);
3759 if (!pool)
3760 return NULL;
3761
e50aba9a 3762 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3763 if (!pwq) {
3764 put_unbound_pool(pool);
3765 return NULL;
df2d5ae4 3766 }
6029a918 3767
f147f29e
TH
3768 init_pwq(pwq, wq, pool);
3769 return pwq;
d2c1d404
TH
3770}
3771
4c16bd32
TH
3772/* undo alloc_unbound_pwq(), used only in the error path */
3773static void free_unbound_pwq(struct pool_workqueue *pwq)
3774{
3775 lockdep_assert_held(&wq_pool_mutex);
3776
3777 if (pwq) {
3778 put_unbound_pool(pwq->pool);
cece95df 3779 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3780 }
3781}
3782
3783/**
3784 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3785 * @attrs: the wq_attrs of interest
3786 * @node: the target NUMA node
3787 * @cpu_going_down: if >= 0, the CPU to consider as offline
3788 * @cpumask: outarg, the resulting cpumask
3789 *
3790 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3791 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3792 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3793 *
3794 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3795 * enabled and @node has online CPUs requested by @attrs, the returned
3796 * cpumask is the intersection of the possible CPUs of @node and
3797 * @attrs->cpumask.
3798 *
3799 * The caller is responsible for ensuring that the cpumask of @node stays
3800 * stable.
d185af30
YB
3801 *
3802 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3803 * %false if equal.
4c16bd32
TH
3804 */
3805static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3806 int cpu_going_down, cpumask_t *cpumask)
3807{
d55262c4 3808 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3809 goto use_dfl;
3810
3811 /* does @node have any online CPUs @attrs wants? */
3812 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3813 if (cpu_going_down >= 0)
3814 cpumask_clear_cpu(cpu_going_down, cpumask);
3815
3816 if (cpumask_empty(cpumask))
3817 goto use_dfl;
3818
3819 /* yeap, return possible CPUs in @node that @attrs wants */
3820 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3821 return !cpumask_equal(cpumask, attrs->cpumask);
3822
3823use_dfl:
3824 cpumask_copy(cpumask, attrs->cpumask);
3825 return false;
3826}
3827
1befcf30
TH
3828/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3829static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3830 int node,
3831 struct pool_workqueue *pwq)
3832{
3833 struct pool_workqueue *old_pwq;
3834
3835 lockdep_assert_held(&wq->mutex);
3836
3837 /* link_pwq() can handle duplicate calls */
3838 link_pwq(pwq);
3839
3840 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3841 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3842 return old_pwq;
3843}
3844
9e8cd2f5
TH
3845/**
3846 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3847 * @wq: the target workqueue
3848 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3849 *
4c16bd32
TH
3850 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3851 * machines, this function maps a separate pwq to each NUMA node with
3852 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3853 * NUMA node it was issued on. Older pwqs are released as in-flight work
3854 * items finish. Note that a work item which repeatedly requeues itself
3855 * back-to-back will stay on its current pwq.
9e8cd2f5 3856 *
d185af30
YB
3857 * Performs GFP_KERNEL allocations.
3858 *
3859 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3860 */
3861int apply_workqueue_attrs(struct workqueue_struct *wq,
3862 const struct workqueue_attrs *attrs)
3863{
4c16bd32
TH
3864 struct workqueue_attrs *new_attrs, *tmp_attrs;
3865 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3866 int node, ret;
9e8cd2f5 3867
8719dcea 3868 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3869 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3870 return -EINVAL;
3871
8719dcea
TH
3872 /* creating multiple pwqs breaks ordering guarantee */
3873 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3874 return -EINVAL;
3875
4c16bd32 3876 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3877 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3878 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3879 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3880 goto enomem;
3881
4c16bd32 3882 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3883 copy_workqueue_attrs(new_attrs, attrs);
3884 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3885
4c16bd32
TH
3886 /*
3887 * We may create multiple pwqs with differing cpumasks. Make a
3888 * copy of @new_attrs which will be modified and used to obtain
3889 * pools.
3890 */
3891 copy_workqueue_attrs(tmp_attrs, new_attrs);
3892
3893 /*
3894 * CPUs should stay stable across pwq creations and installations.
3895 * Pin CPUs, determine the target cpumask for each node and create
3896 * pwqs accordingly.
3897 */
3898 get_online_cpus();
3899
a892cacc 3900 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3901
3902 /*
3903 * If something goes wrong during CPU up/down, we'll fall back to
3904 * the default pwq covering whole @attrs->cpumask. Always create
3905 * it even if we don't use it immediately.
3906 */
3907 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3908 if (!dfl_pwq)
3909 goto enomem_pwq;
3910
3911 for_each_node(node) {
3912 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3913 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3914 if (!pwq_tbl[node])
3915 goto enomem_pwq;
3916 } else {
3917 dfl_pwq->refcnt++;
3918 pwq_tbl[node] = dfl_pwq;
3919 }
3920 }
3921
f147f29e 3922 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3923
4c16bd32 3924 /* all pwqs have been created successfully, let's install'em */
f147f29e 3925 mutex_lock(&wq->mutex);
a892cacc 3926
f147f29e 3927 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3928
3929 /* save the previous pwq and install the new one */
f147f29e 3930 for_each_node(node)
4c16bd32
TH
3931 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3932
3933 /* @dfl_pwq might not have been used, ensure it's linked */
3934 link_pwq(dfl_pwq);
3935 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3936
3937 mutex_unlock(&wq->mutex);
9e8cd2f5 3938
4c16bd32
TH
3939 /* put the old pwqs */
3940 for_each_node(node)
3941 put_pwq_unlocked(pwq_tbl[node]);
3942 put_pwq_unlocked(dfl_pwq);
3943
3944 put_online_cpus();
4862125b
TH
3945 ret = 0;
3946 /* fall through */
3947out_free:
4c16bd32 3948 free_workqueue_attrs(tmp_attrs);
4862125b 3949 free_workqueue_attrs(new_attrs);
4c16bd32 3950 kfree(pwq_tbl);
4862125b 3951 return ret;
13e2e556 3952
4c16bd32
TH
3953enomem_pwq:
3954 free_unbound_pwq(dfl_pwq);
3955 for_each_node(node)
3956 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3957 free_unbound_pwq(pwq_tbl[node]);
3958 mutex_unlock(&wq_pool_mutex);
3959 put_online_cpus();
13e2e556 3960enomem:
4862125b
TH
3961 ret = -ENOMEM;
3962 goto out_free;
9e8cd2f5
TH
3963}
3964
4c16bd32
TH
3965/**
3966 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3967 * @wq: the target workqueue
3968 * @cpu: the CPU coming up or going down
3969 * @online: whether @cpu is coming up or going down
3970 *
3971 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3972 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3973 * @wq accordingly.
3974 *
3975 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3976 * falls back to @wq->dfl_pwq which may not be optimal but is always
3977 * correct.
3978 *
3979 * Note that when the last allowed CPU of a NUMA node goes offline for a
3980 * workqueue with a cpumask spanning multiple nodes, the workers which were
3981 * already executing the work items for the workqueue will lose their CPU
3982 * affinity and may execute on any CPU. This is similar to how per-cpu
3983 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3984 * affinity, it's the user's responsibility to flush the work item from
3985 * CPU_DOWN_PREPARE.
3986 */
3987static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3988 bool online)
3989{
3990 int node = cpu_to_node(cpu);
3991 int cpu_off = online ? -1 : cpu;
3992 struct pool_workqueue *old_pwq = NULL, *pwq;
3993 struct workqueue_attrs *target_attrs;
3994 cpumask_t *cpumask;
3995
3996 lockdep_assert_held(&wq_pool_mutex);
3997
3998 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3999 return;
4000
4001 /*
4002 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4003 * Let's use a preallocated one. The following buf is protected by
4004 * CPU hotplug exclusion.
4005 */
4006 target_attrs = wq_update_unbound_numa_attrs_buf;
4007 cpumask = target_attrs->cpumask;
4008
4009 mutex_lock(&wq->mutex);
d55262c4
TH
4010 if (wq->unbound_attrs->no_numa)
4011 goto out_unlock;
4c16bd32
TH
4012
4013 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4014 pwq = unbound_pwq_by_node(wq, node);
4015
4016 /*
4017 * Let's determine what needs to be done. If the target cpumask is
4018 * different from wq's, we need to compare it to @pwq's and create
4019 * a new one if they don't match. If the target cpumask equals
534a3fbb 4020 * wq's, the default pwq should be used.
4c16bd32
TH
4021 */
4022 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4023 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4024 goto out_unlock;
4025 } else {
534a3fbb 4026 goto use_dfl_pwq;
4c16bd32
TH
4027 }
4028
4029 mutex_unlock(&wq->mutex);
4030
4031 /* create a new pwq */
4032 pwq = alloc_unbound_pwq(wq, target_attrs);
4033 if (!pwq) {
2d916033
FF
4034 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4035 wq->name);
77f300b1
DY
4036 mutex_lock(&wq->mutex);
4037 goto use_dfl_pwq;
4c16bd32
TH
4038 }
4039
4040 /*
4041 * Install the new pwq. As this function is called only from CPU
4042 * hotplug callbacks and applying a new attrs is wrapped with
4043 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4044 * inbetween.
4045 */
4046 mutex_lock(&wq->mutex);
4047 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4048 goto out_unlock;
4049
4050use_dfl_pwq:
4051 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4052 get_pwq(wq->dfl_pwq);
4053 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4054 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4055out_unlock:
4056 mutex_unlock(&wq->mutex);
4057 put_pwq_unlocked(old_pwq);
4058}
4059
30cdf249 4060static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4061{
49e3cf44 4062 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4063 int cpu, ret;
30cdf249
TH
4064
4065 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4066 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4067 if (!wq->cpu_pwqs)
30cdf249
TH
4068 return -ENOMEM;
4069
4070 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4071 struct pool_workqueue *pwq =
4072 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4073 struct worker_pool *cpu_pools =
f02ae73a 4074 per_cpu(cpu_worker_pools, cpu);
f3421797 4075
f147f29e
TH
4076 init_pwq(pwq, wq, &cpu_pools[highpri]);
4077
4078 mutex_lock(&wq->mutex);
1befcf30 4079 link_pwq(pwq);
f147f29e 4080 mutex_unlock(&wq->mutex);
30cdf249 4081 }
9e8cd2f5 4082 return 0;
8a2b7538
TH
4083 } else if (wq->flags & __WQ_ORDERED) {
4084 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4085 /* there should only be single pwq for ordering guarantee */
4086 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4087 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4088 "ordering guarantee broken for workqueue %s\n", wq->name);
4089 return ret;
30cdf249 4090 } else {
9e8cd2f5 4091 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4092 }
0f900049
TH
4093}
4094
f3421797
TH
4095static int wq_clamp_max_active(int max_active, unsigned int flags,
4096 const char *name)
b71ab8c2 4097{
f3421797
TH
4098 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4099
4100 if (max_active < 1 || max_active > lim)
044c782c
VI
4101 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4102 max_active, name, 1, lim);
b71ab8c2 4103
f3421797 4104 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4105}
4106
b196be89 4107struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4108 unsigned int flags,
4109 int max_active,
4110 struct lock_class_key *key,
b196be89 4111 const char *lock_name, ...)
1da177e4 4112{
df2d5ae4 4113 size_t tbl_size = 0;
ecf6881f 4114 va_list args;
1da177e4 4115 struct workqueue_struct *wq;
49e3cf44 4116 struct pool_workqueue *pwq;
b196be89 4117
cee22a15
VK
4118 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4119 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4120 flags |= WQ_UNBOUND;
4121
ecf6881f 4122 /* allocate wq and format name */
df2d5ae4
TH
4123 if (flags & WQ_UNBOUND)
4124 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4125
4126 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4127 if (!wq)
d2c1d404 4128 return NULL;
b196be89 4129
6029a918
TH
4130 if (flags & WQ_UNBOUND) {
4131 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4132 if (!wq->unbound_attrs)
4133 goto err_free_wq;
4134 }
4135
ecf6881f
TH
4136 va_start(args, lock_name);
4137 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4138 va_end(args);
1da177e4 4139
d320c038 4140 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4141 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4142
b196be89 4143 /* init wq */
97e37d7b 4144 wq->flags = flags;
a0a1a5fd 4145 wq->saved_max_active = max_active;
3c25a55d 4146 mutex_init(&wq->mutex);
112202d9 4147 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4148 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4149 INIT_LIST_HEAD(&wq->flusher_queue);
4150 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4151 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4152
eb13ba87 4153 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4154 INIT_LIST_HEAD(&wq->list);
3af24433 4155
30cdf249 4156 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4157 goto err_free_wq;
1537663f 4158
493008a8
TH
4159 /*
4160 * Workqueues which may be used during memory reclaim should
4161 * have a rescuer to guarantee forward progress.
4162 */
4163 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4164 struct worker *rescuer;
4165
d2c1d404 4166 rescuer = alloc_worker();
e22bee78 4167 if (!rescuer)
d2c1d404 4168 goto err_destroy;
e22bee78 4169
111c225a
TH
4170 rescuer->rescue_wq = wq;
4171 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4172 wq->name);
d2c1d404
TH
4173 if (IS_ERR(rescuer->task)) {
4174 kfree(rescuer);
4175 goto err_destroy;
4176 }
e22bee78 4177
d2c1d404 4178 wq->rescuer = rescuer;
14a40ffc 4179 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4180 wake_up_process(rescuer->task);
3af24433
ON
4181 }
4182
226223ab
TH
4183 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4184 goto err_destroy;
4185
a0a1a5fd 4186 /*
68e13a67
LJ
4187 * wq_pool_mutex protects global freeze state and workqueues list.
4188 * Grab it, adjust max_active and add the new @wq to workqueues
4189 * list.
a0a1a5fd 4190 */
68e13a67 4191 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4192
a357fc03 4193 mutex_lock(&wq->mutex);
699ce097
TH
4194 for_each_pwq(pwq, wq)
4195 pwq_adjust_max_active(pwq);
a357fc03 4196 mutex_unlock(&wq->mutex);
a0a1a5fd 4197
1537663f 4198 list_add(&wq->list, &workqueues);
a0a1a5fd 4199
68e13a67 4200 mutex_unlock(&wq_pool_mutex);
1537663f 4201
3af24433 4202 return wq;
d2c1d404
TH
4203
4204err_free_wq:
6029a918 4205 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4206 kfree(wq);
4207 return NULL;
4208err_destroy:
4209 destroy_workqueue(wq);
4690c4ab 4210 return NULL;
3af24433 4211}
d320c038 4212EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4213
3af24433
ON
4214/**
4215 * destroy_workqueue - safely terminate a workqueue
4216 * @wq: target workqueue
4217 *
4218 * Safely destroy a workqueue. All work currently pending will be done first.
4219 */
4220void destroy_workqueue(struct workqueue_struct *wq)
4221{
49e3cf44 4222 struct pool_workqueue *pwq;
4c16bd32 4223 int node;
3af24433 4224
9c5a2ba7
TH
4225 /* drain it before proceeding with destruction */
4226 drain_workqueue(wq);
c8efcc25 4227
6183c009 4228 /* sanity checks */
b09f4fd3 4229 mutex_lock(&wq->mutex);
49e3cf44 4230 for_each_pwq(pwq, wq) {
6183c009
TH
4231 int i;
4232
76af4d93
TH
4233 for (i = 0; i < WORK_NR_COLORS; i++) {
4234 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4235 mutex_unlock(&wq->mutex);
6183c009 4236 return;
76af4d93
TH
4237 }
4238 }
4239
5c529597 4240 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4241 WARN_ON(pwq->nr_active) ||
76af4d93 4242 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4243 mutex_unlock(&wq->mutex);
6183c009 4244 return;
76af4d93 4245 }
6183c009 4246 }
b09f4fd3 4247 mutex_unlock(&wq->mutex);
6183c009 4248
a0a1a5fd
TH
4249 /*
4250 * wq list is used to freeze wq, remove from list after
4251 * flushing is complete in case freeze races us.
4252 */
68e13a67 4253 mutex_lock(&wq_pool_mutex);
d2c1d404 4254 list_del_init(&wq->list);
68e13a67 4255 mutex_unlock(&wq_pool_mutex);
3af24433 4256
226223ab
TH
4257 workqueue_sysfs_unregister(wq);
4258
493008a8 4259 if (wq->rescuer) {
e22bee78 4260 kthread_stop(wq->rescuer->task);
8d9df9f0 4261 kfree(wq->rescuer);
493008a8 4262 wq->rescuer = NULL;
e22bee78
TH
4263 }
4264
8864b4e5
TH
4265 if (!(wq->flags & WQ_UNBOUND)) {
4266 /*
4267 * The base ref is never dropped on per-cpu pwqs. Directly
4268 * free the pwqs and wq.
4269 */
4270 free_percpu(wq->cpu_pwqs);
4271 kfree(wq);
4272 } else {
4273 /*
4274 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4275 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4276 * @wq will be freed when the last pwq is released.
8864b4e5 4277 */
4c16bd32
TH
4278 for_each_node(node) {
4279 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4280 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4281 put_pwq_unlocked(pwq);
4282 }
4283
4284 /*
4285 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4286 * put. Don't access it afterwards.
4287 */
4288 pwq = wq->dfl_pwq;
4289 wq->dfl_pwq = NULL;
dce90d47 4290 put_pwq_unlocked(pwq);
29c91e99 4291 }
3af24433
ON
4292}
4293EXPORT_SYMBOL_GPL(destroy_workqueue);
4294
dcd989cb
TH
4295/**
4296 * workqueue_set_max_active - adjust max_active of a workqueue
4297 * @wq: target workqueue
4298 * @max_active: new max_active value.
4299 *
4300 * Set max_active of @wq to @max_active.
4301 *
4302 * CONTEXT:
4303 * Don't call from IRQ context.
4304 */
4305void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4306{
49e3cf44 4307 struct pool_workqueue *pwq;
dcd989cb 4308
8719dcea
TH
4309 /* disallow meddling with max_active for ordered workqueues */
4310 if (WARN_ON(wq->flags & __WQ_ORDERED))
4311 return;
4312
f3421797 4313 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4314
a357fc03 4315 mutex_lock(&wq->mutex);
dcd989cb
TH
4316
4317 wq->saved_max_active = max_active;
4318
699ce097
TH
4319 for_each_pwq(pwq, wq)
4320 pwq_adjust_max_active(pwq);
93981800 4321
a357fc03 4322 mutex_unlock(&wq->mutex);
15316ba8 4323}
dcd989cb 4324EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4325
e6267616
TH
4326/**
4327 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4328 *
4329 * Determine whether %current is a workqueue rescuer. Can be used from
4330 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4331 *
4332 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4333 */
4334bool current_is_workqueue_rescuer(void)
4335{
4336 struct worker *worker = current_wq_worker();
4337
6a092dfd 4338 return worker && worker->rescue_wq;
e6267616
TH
4339}
4340
eef6a7d5 4341/**
dcd989cb
TH
4342 * workqueue_congested - test whether a workqueue is congested
4343 * @cpu: CPU in question
4344 * @wq: target workqueue
eef6a7d5 4345 *
dcd989cb
TH
4346 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4347 * no synchronization around this function and the test result is
4348 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4349 *
d3251859
TH
4350 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4351 * Note that both per-cpu and unbound workqueues may be associated with
4352 * multiple pool_workqueues which have separate congested states. A
4353 * workqueue being congested on one CPU doesn't mean the workqueue is also
4354 * contested on other CPUs / NUMA nodes.
4355 *
d185af30 4356 * Return:
dcd989cb 4357 * %true if congested, %false otherwise.
eef6a7d5 4358 */
d84ff051 4359bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4360{
7fb98ea7 4361 struct pool_workqueue *pwq;
76af4d93
TH
4362 bool ret;
4363
88109453 4364 rcu_read_lock_sched();
7fb98ea7 4365
d3251859
TH
4366 if (cpu == WORK_CPU_UNBOUND)
4367 cpu = smp_processor_id();
4368
7fb98ea7
TH
4369 if (!(wq->flags & WQ_UNBOUND))
4370 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4371 else
df2d5ae4 4372 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4373
76af4d93 4374 ret = !list_empty(&pwq->delayed_works);
88109453 4375 rcu_read_unlock_sched();
76af4d93
TH
4376
4377 return ret;
1da177e4 4378}
dcd989cb 4379EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4380
dcd989cb
TH
4381/**
4382 * work_busy - test whether a work is currently pending or running
4383 * @work: the work to be tested
4384 *
4385 * Test whether @work is currently pending or running. There is no
4386 * synchronization around this function and the test result is
4387 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4388 *
d185af30 4389 * Return:
dcd989cb
TH
4390 * OR'd bitmask of WORK_BUSY_* bits.
4391 */
4392unsigned int work_busy(struct work_struct *work)
1da177e4 4393{
fa1b54e6 4394 struct worker_pool *pool;
dcd989cb
TH
4395 unsigned long flags;
4396 unsigned int ret = 0;
1da177e4 4397
dcd989cb
TH
4398 if (work_pending(work))
4399 ret |= WORK_BUSY_PENDING;
1da177e4 4400
fa1b54e6
TH
4401 local_irq_save(flags);
4402 pool = get_work_pool(work);
038366c5 4403 if (pool) {
fa1b54e6 4404 spin_lock(&pool->lock);
038366c5
LJ
4405 if (find_worker_executing_work(pool, work))
4406 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4407 spin_unlock(&pool->lock);
038366c5 4408 }
fa1b54e6 4409 local_irq_restore(flags);
1da177e4 4410
dcd989cb 4411 return ret;
1da177e4 4412}
dcd989cb 4413EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4414
3d1cb205
TH
4415/**
4416 * set_worker_desc - set description for the current work item
4417 * @fmt: printf-style format string
4418 * @...: arguments for the format string
4419 *
4420 * This function can be called by a running work function to describe what
4421 * the work item is about. If the worker task gets dumped, this
4422 * information will be printed out together to help debugging. The
4423 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4424 */
4425void set_worker_desc(const char *fmt, ...)
4426{
4427 struct worker *worker = current_wq_worker();
4428 va_list args;
4429
4430 if (worker) {
4431 va_start(args, fmt);
4432 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4433 va_end(args);
4434 worker->desc_valid = true;
4435 }
4436}
4437
4438/**
4439 * print_worker_info - print out worker information and description
4440 * @log_lvl: the log level to use when printing
4441 * @task: target task
4442 *
4443 * If @task is a worker and currently executing a work item, print out the
4444 * name of the workqueue being serviced and worker description set with
4445 * set_worker_desc() by the currently executing work item.
4446 *
4447 * This function can be safely called on any task as long as the
4448 * task_struct itself is accessible. While safe, this function isn't
4449 * synchronized and may print out mixups or garbages of limited length.
4450 */
4451void print_worker_info(const char *log_lvl, struct task_struct *task)
4452{
4453 work_func_t *fn = NULL;
4454 char name[WQ_NAME_LEN] = { };
4455 char desc[WORKER_DESC_LEN] = { };
4456 struct pool_workqueue *pwq = NULL;
4457 struct workqueue_struct *wq = NULL;
4458 bool desc_valid = false;
4459 struct worker *worker;
4460
4461 if (!(task->flags & PF_WQ_WORKER))
4462 return;
4463
4464 /*
4465 * This function is called without any synchronization and @task
4466 * could be in any state. Be careful with dereferences.
4467 */
4468 worker = probe_kthread_data(task);
4469
4470 /*
4471 * Carefully copy the associated workqueue's workfn and name. Keep
4472 * the original last '\0' in case the original contains garbage.
4473 */
4474 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4475 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4476 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4477 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4478
4479 /* copy worker description */
4480 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4481 if (desc_valid)
4482 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4483
4484 if (fn || name[0] || desc[0]) {
2d916033 4485 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4486 if (desc[0])
4487 pr_cont(" (%s)", desc);
4488 pr_cont("\n");
4489 }
4490}
4491
db7bccf4
TH
4492/*
4493 * CPU hotplug.
4494 *
e22bee78 4495 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4496 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4497 * pool which make migrating pending and scheduled works very
e22bee78 4498 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4499 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4500 * blocked draining impractical.
4501 *
24647570 4502 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4503 * running as an unbound one and allowing it to be reattached later if the
4504 * cpu comes back online.
db7bccf4 4505 */
1da177e4 4506
706026c2 4507static void wq_unbind_fn(struct work_struct *work)
3af24433 4508{
38db41d9 4509 int cpu = smp_processor_id();
4ce62e9e 4510 struct worker_pool *pool;
db7bccf4 4511 struct worker *worker;
3af24433 4512
f02ae73a 4513 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4514 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4515
92f9c5c4 4516 mutex_lock(&pool->attach_mutex);
94cf58bb 4517 spin_lock_irq(&pool->lock);
3af24433 4518
94cf58bb 4519 /*
92f9c5c4 4520 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4521 * unbound and set DISASSOCIATED. Before this, all workers
4522 * except for the ones which are still executing works from
4523 * before the last CPU down must be on the cpu. After
4524 * this, they may become diasporas.
4525 */
da028469 4526 for_each_pool_worker(worker, pool)
c9e7cf27 4527 worker->flags |= WORKER_UNBOUND;
06ba38a9 4528
24647570 4529 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4530
94cf58bb 4531 spin_unlock_irq(&pool->lock);
92f9c5c4 4532 mutex_unlock(&pool->attach_mutex);
628c78e7 4533
eb283428
LJ
4534 /*
4535 * Call schedule() so that we cross rq->lock and thus can
4536 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4537 * This is necessary as scheduler callbacks may be invoked
4538 * from other cpus.
4539 */
4540 schedule();
06ba38a9 4541
eb283428
LJ
4542 /*
4543 * Sched callbacks are disabled now. Zap nr_running.
4544 * After this, nr_running stays zero and need_more_worker()
4545 * and keep_working() are always true as long as the
4546 * worklist is not empty. This pool now behaves as an
4547 * unbound (in terms of concurrency management) pool which
4548 * are served by workers tied to the pool.
4549 */
e19e397a 4550 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4551
4552 /*
4553 * With concurrency management just turned off, a busy
4554 * worker blocking could lead to lengthy stalls. Kick off
4555 * unbound chain execution of currently pending work items.
4556 */
4557 spin_lock_irq(&pool->lock);
4558 wake_up_worker(pool);
4559 spin_unlock_irq(&pool->lock);
4560 }
3af24433 4561}
3af24433 4562
bd7c089e
TH
4563/**
4564 * rebind_workers - rebind all workers of a pool to the associated CPU
4565 * @pool: pool of interest
4566 *
a9ab775b 4567 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4568 */
4569static void rebind_workers(struct worker_pool *pool)
4570{
a9ab775b 4571 struct worker *worker;
bd7c089e 4572
92f9c5c4 4573 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4574
a9ab775b
TH
4575 /*
4576 * Restore CPU affinity of all workers. As all idle workers should
4577 * be on the run-queue of the associated CPU before any local
4578 * wake-ups for concurrency management happen, restore CPU affinty
4579 * of all workers first and then clear UNBOUND. As we're called
4580 * from CPU_ONLINE, the following shouldn't fail.
4581 */
da028469 4582 for_each_pool_worker(worker, pool)
a9ab775b
TH
4583 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4584 pool->attrs->cpumask) < 0);
bd7c089e 4585
a9ab775b 4586 spin_lock_irq(&pool->lock);
bd7c089e 4587
da028469 4588 for_each_pool_worker(worker, pool) {
a9ab775b 4589 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4590
4591 /*
a9ab775b
TH
4592 * A bound idle worker should actually be on the runqueue
4593 * of the associated CPU for local wake-ups targeting it to
4594 * work. Kick all idle workers so that they migrate to the
4595 * associated CPU. Doing this in the same loop as
4596 * replacing UNBOUND with REBOUND is safe as no worker will
4597 * be bound before @pool->lock is released.
bd7c089e 4598 */
a9ab775b
TH
4599 if (worker_flags & WORKER_IDLE)
4600 wake_up_process(worker->task);
bd7c089e 4601
a9ab775b
TH
4602 /*
4603 * We want to clear UNBOUND but can't directly call
4604 * worker_clr_flags() or adjust nr_running. Atomically
4605 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4606 * @worker will clear REBOUND using worker_clr_flags() when
4607 * it initiates the next execution cycle thus restoring
4608 * concurrency management. Note that when or whether
4609 * @worker clears REBOUND doesn't affect correctness.
4610 *
4611 * ACCESS_ONCE() is necessary because @worker->flags may be
4612 * tested without holding any lock in
4613 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4614 * fail incorrectly leading to premature concurrency
4615 * management operations.
4616 */
4617 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4618 worker_flags |= WORKER_REBOUND;
4619 worker_flags &= ~WORKER_UNBOUND;
4620 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4621 }
a9ab775b
TH
4622
4623 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4624}
4625
7dbc725e
TH
4626/**
4627 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4628 * @pool: unbound pool of interest
4629 * @cpu: the CPU which is coming up
4630 *
4631 * An unbound pool may end up with a cpumask which doesn't have any online
4632 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4633 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4634 * online CPU before, cpus_allowed of all its workers should be restored.
4635 */
4636static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4637{
4638 static cpumask_t cpumask;
4639 struct worker *worker;
7dbc725e 4640
92f9c5c4 4641 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4642
4643 /* is @cpu allowed for @pool? */
4644 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4645 return;
4646
4647 /* is @cpu the only online CPU? */
4648 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4649 if (cpumask_weight(&cpumask) != 1)
4650 return;
4651
4652 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4653 for_each_pool_worker(worker, pool)
7dbc725e
TH
4654 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4655 pool->attrs->cpumask) < 0);
4656}
4657
8db25e78
TH
4658/*
4659 * Workqueues should be brought up before normal priority CPU notifiers.
4660 * This will be registered high priority CPU notifier.
4661 */
0db0628d 4662static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4663 unsigned long action,
4664 void *hcpu)
3af24433 4665{
d84ff051 4666 int cpu = (unsigned long)hcpu;
4ce62e9e 4667 struct worker_pool *pool;
4c16bd32 4668 struct workqueue_struct *wq;
7dbc725e 4669 int pi;
3ce63377 4670
8db25e78 4671 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4672 case CPU_UP_PREPARE:
f02ae73a 4673 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4674 if (pool->nr_workers)
4675 continue;
ebf44d16 4676 if (create_and_start_worker(pool) < 0)
3ce63377 4677 return NOTIFY_BAD;
3af24433 4678 }
8db25e78 4679 break;
3af24433 4680
db7bccf4
TH
4681 case CPU_DOWN_FAILED:
4682 case CPU_ONLINE:
68e13a67 4683 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4684
4685 for_each_pool(pool, pi) {
92f9c5c4 4686 mutex_lock(&pool->attach_mutex);
94cf58bb 4687
7dbc725e
TH
4688 if (pool->cpu == cpu) {
4689 spin_lock_irq(&pool->lock);
4690 pool->flags &= ~POOL_DISASSOCIATED;
4691 spin_unlock_irq(&pool->lock);
a9ab775b 4692
7dbc725e
TH
4693 rebind_workers(pool);
4694 } else if (pool->cpu < 0) {
4695 restore_unbound_workers_cpumask(pool, cpu);
4696 }
94cf58bb 4697
92f9c5c4 4698 mutex_unlock(&pool->attach_mutex);
94cf58bb 4699 }
7dbc725e 4700
4c16bd32
TH
4701 /* update NUMA affinity of unbound workqueues */
4702 list_for_each_entry(wq, &workqueues, list)
4703 wq_update_unbound_numa(wq, cpu, true);
4704
68e13a67 4705 mutex_unlock(&wq_pool_mutex);
db7bccf4 4706 break;
00dfcaf7 4707 }
65758202
TH
4708 return NOTIFY_OK;
4709}
4710
4711/*
4712 * Workqueues should be brought down after normal priority CPU notifiers.
4713 * This will be registered as low priority CPU notifier.
4714 */
0db0628d 4715static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4716 unsigned long action,
4717 void *hcpu)
4718{
d84ff051 4719 int cpu = (unsigned long)hcpu;
8db25e78 4720 struct work_struct unbind_work;
4c16bd32 4721 struct workqueue_struct *wq;
8db25e78 4722
65758202
TH
4723 switch (action & ~CPU_TASKS_FROZEN) {
4724 case CPU_DOWN_PREPARE:
4c16bd32 4725 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4726 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4727 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4728
4729 /* update NUMA affinity of unbound workqueues */
4730 mutex_lock(&wq_pool_mutex);
4731 list_for_each_entry(wq, &workqueues, list)
4732 wq_update_unbound_numa(wq, cpu, false);
4733 mutex_unlock(&wq_pool_mutex);
4734
4735 /* wait for per-cpu unbinding to finish */
8db25e78 4736 flush_work(&unbind_work);
440a1136 4737 destroy_work_on_stack(&unbind_work);
8db25e78 4738 break;
65758202
TH
4739 }
4740 return NOTIFY_OK;
4741}
4742
2d3854a3 4743#ifdef CONFIG_SMP
8ccad40d 4744
2d3854a3 4745struct work_for_cpu {
ed48ece2 4746 struct work_struct work;
2d3854a3
RR
4747 long (*fn)(void *);
4748 void *arg;
4749 long ret;
4750};
4751
ed48ece2 4752static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4753{
ed48ece2
TH
4754 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4755
2d3854a3
RR
4756 wfc->ret = wfc->fn(wfc->arg);
4757}
4758
4759/**
4760 * work_on_cpu - run a function in user context on a particular cpu
4761 * @cpu: the cpu to run on
4762 * @fn: the function to run
4763 * @arg: the function arg
4764 *
31ad9081 4765 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4766 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4767 *
4768 * Return: The value @fn returns.
2d3854a3 4769 */
d84ff051 4770long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4771{
ed48ece2 4772 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4773
ed48ece2
TH
4774 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4775 schedule_work_on(cpu, &wfc.work);
12997d1a 4776 flush_work(&wfc.work);
440a1136 4777 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4778 return wfc.ret;
4779}
4780EXPORT_SYMBOL_GPL(work_on_cpu);
4781#endif /* CONFIG_SMP */
4782
a0a1a5fd
TH
4783#ifdef CONFIG_FREEZER
4784
4785/**
4786 * freeze_workqueues_begin - begin freezing workqueues
4787 *
58a69cb4 4788 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4789 * workqueues will queue new works to their delayed_works list instead of
706026c2 4790 * pool->worklist.
a0a1a5fd
TH
4791 *
4792 * CONTEXT:
a357fc03 4793 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4794 */
4795void freeze_workqueues_begin(void)
4796{
17116969 4797 struct worker_pool *pool;
24b8a847
TH
4798 struct workqueue_struct *wq;
4799 struct pool_workqueue *pwq;
611c92a0 4800 int pi;
a0a1a5fd 4801
68e13a67 4802 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4803
6183c009 4804 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4805 workqueue_freezing = true;
4806
24b8a847 4807 /* set FREEZING */
611c92a0 4808 for_each_pool(pool, pi) {
5bcab335 4809 spin_lock_irq(&pool->lock);
17116969
TH
4810 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4811 pool->flags |= POOL_FREEZING;
5bcab335 4812 spin_unlock_irq(&pool->lock);
24b8a847 4813 }
a0a1a5fd 4814
24b8a847 4815 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4816 mutex_lock(&wq->mutex);
699ce097
TH
4817 for_each_pwq(pwq, wq)
4818 pwq_adjust_max_active(pwq);
a357fc03 4819 mutex_unlock(&wq->mutex);
a0a1a5fd 4820 }
5bcab335 4821
68e13a67 4822 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4823}
4824
4825/**
58a69cb4 4826 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4827 *
4828 * Check whether freezing is complete. This function must be called
4829 * between freeze_workqueues_begin() and thaw_workqueues().
4830 *
4831 * CONTEXT:
68e13a67 4832 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4833 *
d185af30 4834 * Return:
58a69cb4
TH
4835 * %true if some freezable workqueues are still busy. %false if freezing
4836 * is complete.
a0a1a5fd
TH
4837 */
4838bool freeze_workqueues_busy(void)
4839{
a0a1a5fd 4840 bool busy = false;
24b8a847
TH
4841 struct workqueue_struct *wq;
4842 struct pool_workqueue *pwq;
a0a1a5fd 4843
68e13a67 4844 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4845
6183c009 4846 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4847
24b8a847
TH
4848 list_for_each_entry(wq, &workqueues, list) {
4849 if (!(wq->flags & WQ_FREEZABLE))
4850 continue;
a0a1a5fd
TH
4851 /*
4852 * nr_active is monotonically decreasing. It's safe
4853 * to peek without lock.
4854 */
88109453 4855 rcu_read_lock_sched();
24b8a847 4856 for_each_pwq(pwq, wq) {
6183c009 4857 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4858 if (pwq->nr_active) {
a0a1a5fd 4859 busy = true;
88109453 4860 rcu_read_unlock_sched();
a0a1a5fd
TH
4861 goto out_unlock;
4862 }
4863 }
88109453 4864 rcu_read_unlock_sched();
a0a1a5fd
TH
4865 }
4866out_unlock:
68e13a67 4867 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4868 return busy;
4869}
4870
4871/**
4872 * thaw_workqueues - thaw workqueues
4873 *
4874 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4875 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4876 *
4877 * CONTEXT:
a357fc03 4878 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4879 */
4880void thaw_workqueues(void)
4881{
24b8a847
TH
4882 struct workqueue_struct *wq;
4883 struct pool_workqueue *pwq;
4884 struct worker_pool *pool;
611c92a0 4885 int pi;
a0a1a5fd 4886
68e13a67 4887 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4888
4889 if (!workqueue_freezing)
4890 goto out_unlock;
4891
24b8a847 4892 /* clear FREEZING */
611c92a0 4893 for_each_pool(pool, pi) {
5bcab335 4894 spin_lock_irq(&pool->lock);
24b8a847
TH
4895 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4896 pool->flags &= ~POOL_FREEZING;
5bcab335 4897 spin_unlock_irq(&pool->lock);
24b8a847 4898 }
8b03ae3c 4899
24b8a847
TH
4900 /* restore max_active and repopulate worklist */
4901 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4902 mutex_lock(&wq->mutex);
699ce097
TH
4903 for_each_pwq(pwq, wq)
4904 pwq_adjust_max_active(pwq);
a357fc03 4905 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4906 }
4907
4908 workqueue_freezing = false;
4909out_unlock:
68e13a67 4910 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4911}
4912#endif /* CONFIG_FREEZER */
4913
bce90380
TH
4914static void __init wq_numa_init(void)
4915{
4916 cpumask_var_t *tbl;
4917 int node, cpu;
4918
4919 /* determine NUMA pwq table len - highest node id + 1 */
4920 for_each_node(node)
4921 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4922
4923 if (num_possible_nodes() <= 1)
4924 return;
4925
d55262c4
TH
4926 if (wq_disable_numa) {
4927 pr_info("workqueue: NUMA affinity support disabled\n");
4928 return;
4929 }
4930
4c16bd32
TH
4931 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4932 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4933
bce90380
TH
4934 /*
4935 * We want masks of possible CPUs of each node which isn't readily
4936 * available. Build one from cpu_to_node() which should have been
4937 * fully initialized by now.
4938 */
4939 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4940 BUG_ON(!tbl);
4941
4942 for_each_node(node)
1be0c25d
TH
4943 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4944 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4945
4946 for_each_possible_cpu(cpu) {
4947 node = cpu_to_node(cpu);
4948 if (WARN_ON(node == NUMA_NO_NODE)) {
4949 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4950 /* happens iff arch is bonkers, let's just proceed */
4951 return;
4952 }
4953 cpumask_set_cpu(cpu, tbl[node]);
4954 }
4955
4956 wq_numa_possible_cpumask = tbl;
4957 wq_numa_enabled = true;
4958}
4959
6ee0578b 4960static int __init init_workqueues(void)
1da177e4 4961{
7a4e344c
TH
4962 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4963 int i, cpu;
c34056a3 4964
e904e6c2
TH
4965 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4966
4967 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4968
65758202 4969 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4970 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4971
bce90380
TH
4972 wq_numa_init();
4973
706026c2 4974 /* initialize CPU pools */
29c91e99 4975 for_each_possible_cpu(cpu) {
4ce62e9e 4976 struct worker_pool *pool;
8b03ae3c 4977
7a4e344c 4978 i = 0;
f02ae73a 4979 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4980 BUG_ON(init_worker_pool(pool));
ec22ca5e 4981 pool->cpu = cpu;
29c91e99 4982 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4983 pool->attrs->nice = std_nice[i++];
f3f90ad4 4984 pool->node = cpu_to_node(cpu);
7a4e344c 4985
9daf9e67 4986 /* alloc pool ID */
68e13a67 4987 mutex_lock(&wq_pool_mutex);
9daf9e67 4988 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4989 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4990 }
8b03ae3c
TH
4991 }
4992
e22bee78 4993 /* create the initial worker */
29c91e99 4994 for_each_online_cpu(cpu) {
4ce62e9e 4995 struct worker_pool *pool;
e22bee78 4996
f02ae73a 4997 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4998 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4999 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5000 }
e22bee78
TH
5001 }
5002
8a2b7538 5003 /* create default unbound and ordered wq attrs */
29c91e99
TH
5004 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5005 struct workqueue_attrs *attrs;
5006
5007 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5008 attrs->nice = std_nice[i];
29c91e99 5009 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5010
5011 /*
5012 * An ordered wq should have only one pwq as ordering is
5013 * guaranteed by max_active which is enforced by pwqs.
5014 * Turn off NUMA so that dfl_pwq is used for all nodes.
5015 */
5016 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5017 attrs->nice = std_nice[i];
5018 attrs->no_numa = true;
5019 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5020 }
5021
d320c038 5022 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5023 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5024 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5025 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5026 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5027 system_freezable_wq = alloc_workqueue("events_freezable",
5028 WQ_FREEZABLE, 0);
0668106c
VK
5029 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5030 WQ_POWER_EFFICIENT, 0);
5031 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5032 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5033 0);
1aabe902 5034 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5035 !system_unbound_wq || !system_freezable_wq ||
5036 !system_power_efficient_wq ||
5037 !system_freezable_power_efficient_wq);
6ee0578b 5038 return 0;
1da177e4 5039}
6ee0578b 5040early_initcall(init_workqueues);