workqueue: sanity check pool->cpu in wq_worker_sleeping()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
60f5a4bc 164 struct completion *detach_completion; /* all workers detached */
e19e397a 165
7cda9aae 166 struct ida worker_ida; /* worker IDs for task name */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
822d8405
TH
367 * @pool: worker_pool to iterate workers of
368 *
92f9c5c4 369 * This must be called with @pool->attach_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
da028469
LJ
374#define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
762}
763
4d707b9f 764/*
e22bee78
TH
765 * Wake up functions.
766 */
767
1037de36
LJ
768/* Return the first idle worker. Safe with preemption disabled */
769static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
772 return NULL;
773
63d95a91 774 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
775}
776
777/**
778 * wake_up_worker - wake up an idle worker
63d95a91 779 * @pool: worker pool to wake worker from
7e11629d 780 *
63d95a91 781 * Wake up the first idle worker of @pool.
7e11629d
TH
782 *
783 * CONTEXT:
d565ed63 784 * spin_lock_irq(pool->lock).
7e11629d 785 */
63d95a91 786static void wake_up_worker(struct worker_pool *pool)
7e11629d 787{
1037de36 788 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792}
793
d302f017 794/**
e22bee78
TH
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
d84ff051 805void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
806{
807 struct worker *worker = kthread_data(task);
808
36576000 809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 810 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 811 atomic_inc(&worker->pool->nr_running);
36576000 812 }
e22bee78
TH
813}
814
815/**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
d185af30 827 * Return:
e22bee78
TH
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
d84ff051 830struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 833 struct worker_pool *pool;
e22bee78 834
111c225a
TH
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
2d64672e 840 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
841 return NULL;
842
111c225a 843 pool = worker->pool;
111c225a 844
e22bee78 845 /* this can only happen on the local cpu */
92b69f50 846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 847 return NULL;
e22bee78
TH
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
628c78e7
TH
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
d565ed63 857 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 858 * lock is safe.
e22bee78 859 */
e19e397a
TH
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
1037de36 862 to_wakeup = first_idle_worker(pool);
e22bee78
TH
863 return to_wakeup ? to_wakeup->task : NULL;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 868 * @worker: self
d302f017
TH
869 * @flags: flags to set
870 * @wakeup: wakeup an idle worker if necessary
871 *
e22bee78
TH
872 * Set @flags in @worker->flags and adjust nr_running accordingly. If
873 * nr_running becomes zero and @wakeup is %true, an idle worker is
874 * woken up.
d302f017 875 *
cb444766 876 * CONTEXT:
d565ed63 877 * spin_lock_irq(pool->lock)
d302f017
TH
878 */
879static inline void worker_set_flags(struct worker *worker, unsigned int flags,
880 bool wakeup)
881{
bd7bdd43 882 struct worker_pool *pool = worker->pool;
e22bee78 883
cb444766
TH
884 WARN_ON_ONCE(worker->task != current);
885
e22bee78
TH
886 /*
887 * If transitioning into NOT_RUNNING, adjust nr_running and
888 * wake up an idle worker as necessary if requested by
889 * @wakeup.
890 */
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 893 if (wakeup) {
e19e397a 894 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 895 !list_empty(&pool->worklist))
63d95a91 896 wake_up_worker(pool);
e22bee78 897 } else
e19e397a 898 atomic_dec(&pool->nr_running);
e22bee78
TH
899 }
900
d302f017
TH
901 worker->flags |= flags;
902}
903
904/**
e22bee78 905 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 906 * @worker: self
d302f017
TH
907 * @flags: flags to clear
908 *
e22bee78 909 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 910 *
cb444766 911 * CONTEXT:
d565ed63 912 * spin_lock_irq(pool->lock)
d302f017
TH
913 */
914static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
915{
63d95a91 916 struct worker_pool *pool = worker->pool;
e22bee78
TH
917 unsigned int oflags = worker->flags;
918
cb444766
TH
919 WARN_ON_ONCE(worker->task != current);
920
d302f017 921 worker->flags &= ~flags;
e22bee78 922
42c025f3
TH
923 /*
924 * If transitioning out of NOT_RUNNING, increment nr_running. Note
925 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
926 * of multiple flags, not a single flag.
927 */
e22bee78
TH
928 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
929 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 930 atomic_inc(&pool->nr_running);
d302f017
TH
931}
932
8cca0eea
TH
933/**
934 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 935 * @pool: pool of interest
8cca0eea
TH
936 * @work: work to find worker for
937 *
c9e7cf27
TH
938 * Find a worker which is executing @work on @pool by searching
939 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
940 * to match, its current execution should match the address of @work and
941 * its work function. This is to avoid unwanted dependency between
942 * unrelated work executions through a work item being recycled while still
943 * being executed.
944 *
945 * This is a bit tricky. A work item may be freed once its execution
946 * starts and nothing prevents the freed area from being recycled for
947 * another work item. If the same work item address ends up being reused
948 * before the original execution finishes, workqueue will identify the
949 * recycled work item as currently executing and make it wait until the
950 * current execution finishes, introducing an unwanted dependency.
951 *
c5aa87bb
TH
952 * This function checks the work item address and work function to avoid
953 * false positives. Note that this isn't complete as one may construct a
954 * work function which can introduce dependency onto itself through a
955 * recycled work item. Well, if somebody wants to shoot oneself in the
956 * foot that badly, there's only so much we can do, and if such deadlock
957 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
958 *
959 * CONTEXT:
d565ed63 960 * spin_lock_irq(pool->lock).
8cca0eea 961 *
d185af30
YB
962 * Return:
963 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 964 * otherwise.
4d707b9f 965 */
c9e7cf27 966static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 967 struct work_struct *work)
4d707b9f 968{
42f8570f 969 struct worker *worker;
42f8570f 970
b67bfe0d 971 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
972 (unsigned long)work)
973 if (worker->current_work == work &&
974 worker->current_func == work->func)
42f8570f
SL
975 return worker;
976
977 return NULL;
4d707b9f
ON
978}
979
bf4ede01
TH
980/**
981 * move_linked_works - move linked works to a list
982 * @work: start of series of works to be scheduled
983 * @head: target list to append @work to
984 * @nextp: out paramter for nested worklist walking
985 *
986 * Schedule linked works starting from @work to @head. Work series to
987 * be scheduled starts at @work and includes any consecutive work with
988 * WORK_STRUCT_LINKED set in its predecessor.
989 *
990 * If @nextp is not NULL, it's updated to point to the next work of
991 * the last scheduled work. This allows move_linked_works() to be
992 * nested inside outer list_for_each_entry_safe().
993 *
994 * CONTEXT:
d565ed63 995 * spin_lock_irq(pool->lock).
bf4ede01
TH
996 */
997static void move_linked_works(struct work_struct *work, struct list_head *head,
998 struct work_struct **nextp)
999{
1000 struct work_struct *n;
1001
1002 /*
1003 * Linked worklist will always end before the end of the list,
1004 * use NULL for list head.
1005 */
1006 list_for_each_entry_safe_from(work, n, NULL, entry) {
1007 list_move_tail(&work->entry, head);
1008 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1009 break;
1010 }
1011
1012 /*
1013 * If we're already inside safe list traversal and have moved
1014 * multiple works to the scheduled queue, the next position
1015 * needs to be updated.
1016 */
1017 if (nextp)
1018 *nextp = n;
1019}
1020
8864b4e5
TH
1021/**
1022 * get_pwq - get an extra reference on the specified pool_workqueue
1023 * @pwq: pool_workqueue to get
1024 *
1025 * Obtain an extra reference on @pwq. The caller should guarantee that
1026 * @pwq has positive refcnt and be holding the matching pool->lock.
1027 */
1028static void get_pwq(struct pool_workqueue *pwq)
1029{
1030 lockdep_assert_held(&pwq->pool->lock);
1031 WARN_ON_ONCE(pwq->refcnt <= 0);
1032 pwq->refcnt++;
1033}
1034
1035/**
1036 * put_pwq - put a pool_workqueue reference
1037 * @pwq: pool_workqueue to put
1038 *
1039 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1040 * destruction. The caller should be holding the matching pool->lock.
1041 */
1042static void put_pwq(struct pool_workqueue *pwq)
1043{
1044 lockdep_assert_held(&pwq->pool->lock);
1045 if (likely(--pwq->refcnt))
1046 return;
1047 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1048 return;
1049 /*
1050 * @pwq can't be released under pool->lock, bounce to
1051 * pwq_unbound_release_workfn(). This never recurses on the same
1052 * pool->lock as this path is taken only for unbound workqueues and
1053 * the release work item is scheduled on a per-cpu workqueue. To
1054 * avoid lockdep warning, unbound pool->locks are given lockdep
1055 * subclass of 1 in get_unbound_pool().
1056 */
1057 schedule_work(&pwq->unbound_release_work);
1058}
1059
dce90d47
TH
1060/**
1061 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1062 * @pwq: pool_workqueue to put (can be %NULL)
1063 *
1064 * put_pwq() with locking. This function also allows %NULL @pwq.
1065 */
1066static void put_pwq_unlocked(struct pool_workqueue *pwq)
1067{
1068 if (pwq) {
1069 /*
1070 * As both pwqs and pools are sched-RCU protected, the
1071 * following lock operations are safe.
1072 */
1073 spin_lock_irq(&pwq->pool->lock);
1074 put_pwq(pwq);
1075 spin_unlock_irq(&pwq->pool->lock);
1076 }
1077}
1078
112202d9 1079static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1080{
112202d9 1081 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1082
1083 trace_workqueue_activate_work(work);
112202d9 1084 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1085 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1086 pwq->nr_active++;
bf4ede01
TH
1087}
1088
112202d9 1089static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1090{
112202d9 1091 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1092 struct work_struct, entry);
1093
112202d9 1094 pwq_activate_delayed_work(work);
3aa62497
LJ
1095}
1096
bf4ede01 1097/**
112202d9
TH
1098 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1099 * @pwq: pwq of interest
bf4ede01 1100 * @color: color of work which left the queue
bf4ede01
TH
1101 *
1102 * A work either has completed or is removed from pending queue,
112202d9 1103 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1104 *
1105 * CONTEXT:
d565ed63 1106 * spin_lock_irq(pool->lock).
bf4ede01 1107 */
112202d9 1108static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1109{
8864b4e5 1110 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1111 if (color == WORK_NO_COLOR)
8864b4e5 1112 goto out_put;
bf4ede01 1113
112202d9 1114 pwq->nr_in_flight[color]--;
bf4ede01 1115
112202d9
TH
1116 pwq->nr_active--;
1117 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1118 /* one down, submit a delayed one */
112202d9
TH
1119 if (pwq->nr_active < pwq->max_active)
1120 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1121 }
1122
1123 /* is flush in progress and are we at the flushing tip? */
112202d9 1124 if (likely(pwq->flush_color != color))
8864b4e5 1125 goto out_put;
bf4ede01
TH
1126
1127 /* are there still in-flight works? */
112202d9 1128 if (pwq->nr_in_flight[color])
8864b4e5 1129 goto out_put;
bf4ede01 1130
112202d9
TH
1131 /* this pwq is done, clear flush_color */
1132 pwq->flush_color = -1;
bf4ede01
TH
1133
1134 /*
112202d9 1135 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1136 * will handle the rest.
1137 */
112202d9
TH
1138 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1139 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1140out_put:
1141 put_pwq(pwq);
bf4ede01
TH
1142}
1143
36e227d2 1144/**
bbb68dfa 1145 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1146 * @work: work item to steal
1147 * @is_dwork: @work is a delayed_work
bbb68dfa 1148 * @flags: place to store irq state
36e227d2
TH
1149 *
1150 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1151 * stable state - idle, on timer or on worklist.
36e227d2 1152 *
d185af30 1153 * Return:
36e227d2
TH
1154 * 1 if @work was pending and we successfully stole PENDING
1155 * 0 if @work was idle and we claimed PENDING
1156 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1157 * -ENOENT if someone else is canceling @work, this state may persist
1158 * for arbitrarily long
36e227d2 1159 *
d185af30 1160 * Note:
bbb68dfa 1161 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1162 * interrupted while holding PENDING and @work off queue, irq must be
1163 * disabled on entry. This, combined with delayed_work->timer being
1164 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1165 *
1166 * On successful return, >= 0, irq is disabled and the caller is
1167 * responsible for releasing it using local_irq_restore(*@flags).
1168 *
e0aecdd8 1169 * This function is safe to call from any context including IRQ handler.
bf4ede01 1170 */
bbb68dfa
TH
1171static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1172 unsigned long *flags)
bf4ede01 1173{
d565ed63 1174 struct worker_pool *pool;
112202d9 1175 struct pool_workqueue *pwq;
bf4ede01 1176
bbb68dfa
TH
1177 local_irq_save(*flags);
1178
36e227d2
TH
1179 /* try to steal the timer if it exists */
1180 if (is_dwork) {
1181 struct delayed_work *dwork = to_delayed_work(work);
1182
e0aecdd8
TH
1183 /*
1184 * dwork->timer is irqsafe. If del_timer() fails, it's
1185 * guaranteed that the timer is not queued anywhere and not
1186 * running on the local CPU.
1187 */
36e227d2
TH
1188 if (likely(del_timer(&dwork->timer)))
1189 return 1;
1190 }
1191
1192 /* try to claim PENDING the normal way */
bf4ede01
TH
1193 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1194 return 0;
1195
1196 /*
1197 * The queueing is in progress, or it is already queued. Try to
1198 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1199 */
d565ed63
TH
1200 pool = get_work_pool(work);
1201 if (!pool)
bbb68dfa 1202 goto fail;
bf4ede01 1203
d565ed63 1204 spin_lock(&pool->lock);
0b3dae68 1205 /*
112202d9
TH
1206 * work->data is guaranteed to point to pwq only while the work
1207 * item is queued on pwq->wq, and both updating work->data to point
1208 * to pwq on queueing and to pool on dequeueing are done under
1209 * pwq->pool->lock. This in turn guarantees that, if work->data
1210 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1211 * item is currently queued on that pool.
1212 */
112202d9
TH
1213 pwq = get_work_pwq(work);
1214 if (pwq && pwq->pool == pool) {
16062836
TH
1215 debug_work_deactivate(work);
1216
1217 /*
1218 * A delayed work item cannot be grabbed directly because
1219 * it might have linked NO_COLOR work items which, if left
112202d9 1220 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1221 * management later on and cause stall. Make sure the work
1222 * item is activated before grabbing.
1223 */
1224 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1225 pwq_activate_delayed_work(work);
16062836
TH
1226
1227 list_del_init(&work->entry);
112202d9 1228 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1229
112202d9 1230 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1231 set_work_pool_and_keep_pending(work, pool->id);
1232
1233 spin_unlock(&pool->lock);
1234 return 1;
bf4ede01 1235 }
d565ed63 1236 spin_unlock(&pool->lock);
bbb68dfa
TH
1237fail:
1238 local_irq_restore(*flags);
1239 if (work_is_canceling(work))
1240 return -ENOENT;
1241 cpu_relax();
36e227d2 1242 return -EAGAIN;
bf4ede01
TH
1243}
1244
4690c4ab 1245/**
706026c2 1246 * insert_work - insert a work into a pool
112202d9 1247 * @pwq: pwq @work belongs to
4690c4ab
TH
1248 * @work: work to insert
1249 * @head: insertion point
1250 * @extra_flags: extra WORK_STRUCT_* flags to set
1251 *
112202d9 1252 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1253 * work_struct flags.
4690c4ab
TH
1254 *
1255 * CONTEXT:
d565ed63 1256 * spin_lock_irq(pool->lock).
4690c4ab 1257 */
112202d9
TH
1258static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1259 struct list_head *head, unsigned int extra_flags)
b89deed3 1260{
112202d9 1261 struct worker_pool *pool = pwq->pool;
e22bee78 1262
4690c4ab 1263 /* we own @work, set data and link */
112202d9 1264 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1265 list_add_tail(&work->entry, head);
8864b4e5 1266 get_pwq(pwq);
e22bee78
TH
1267
1268 /*
c5aa87bb
TH
1269 * Ensure either wq_worker_sleeping() sees the above
1270 * list_add_tail() or we see zero nr_running to avoid workers lying
1271 * around lazily while there are works to be processed.
e22bee78
TH
1272 */
1273 smp_mb();
1274
63d95a91
TH
1275 if (__need_more_worker(pool))
1276 wake_up_worker(pool);
b89deed3
ON
1277}
1278
c8efcc25
TH
1279/*
1280 * Test whether @work is being queued from another work executing on the
8d03ecfe 1281 * same workqueue.
c8efcc25
TH
1282 */
1283static bool is_chained_work(struct workqueue_struct *wq)
1284{
8d03ecfe
TH
1285 struct worker *worker;
1286
1287 worker = current_wq_worker();
1288 /*
1289 * Return %true iff I'm a worker execuing a work item on @wq. If
1290 * I'm @worker, it's safe to dereference it without locking.
1291 */
112202d9 1292 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1293}
1294
d84ff051 1295static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1296 struct work_struct *work)
1297{
112202d9 1298 struct pool_workqueue *pwq;
c9178087 1299 struct worker_pool *last_pool;
1e19ffc6 1300 struct list_head *worklist;
8a2e8e5d 1301 unsigned int work_flags;
b75cac93 1302 unsigned int req_cpu = cpu;
8930caba
TH
1303
1304 /*
1305 * While a work item is PENDING && off queue, a task trying to
1306 * steal the PENDING will busy-loop waiting for it to either get
1307 * queued or lose PENDING. Grabbing PENDING and queueing should
1308 * happen with IRQ disabled.
1309 */
1310 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1311
dc186ad7 1312 debug_work_activate(work);
1e19ffc6 1313
9ef28a73 1314 /* if draining, only works from the same workqueue are allowed */
618b01eb 1315 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1316 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1317 return;
9e8cd2f5 1318retry:
df2d5ae4
TH
1319 if (req_cpu == WORK_CPU_UNBOUND)
1320 cpu = raw_smp_processor_id();
1321
c9178087 1322 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1323 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1325 else
1326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1327
c9178087
TH
1328 /*
1329 * If @work was previously on a different pool, it might still be
1330 * running there, in which case the work needs to be queued on that
1331 * pool to guarantee non-reentrancy.
1332 */
1333 last_pool = get_work_pool(work);
1334 if (last_pool && last_pool != pwq->pool) {
1335 struct worker *worker;
18aa9eff 1336
c9178087 1337 spin_lock(&last_pool->lock);
18aa9eff 1338
c9178087 1339 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1340
c9178087
TH
1341 if (worker && worker->current_pwq->wq == wq) {
1342 pwq = worker->current_pwq;
8930caba 1343 } else {
c9178087
TH
1344 /* meh... not running there, queue here */
1345 spin_unlock(&last_pool->lock);
112202d9 1346 spin_lock(&pwq->pool->lock);
8930caba 1347 }
f3421797 1348 } else {
112202d9 1349 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1350 }
1351
9e8cd2f5
TH
1352 /*
1353 * pwq is determined and locked. For unbound pools, we could have
1354 * raced with pwq release and it could already be dead. If its
1355 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1356 * without another pwq replacing it in the numa_pwq_tbl or while
1357 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1358 * make forward-progress.
1359 */
1360 if (unlikely(!pwq->refcnt)) {
1361 if (wq->flags & WQ_UNBOUND) {
1362 spin_unlock(&pwq->pool->lock);
1363 cpu_relax();
1364 goto retry;
1365 }
1366 /* oops */
1367 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1368 wq->name, cpu);
1369 }
1370
112202d9
TH
1371 /* pwq determined, queue */
1372 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1373
f5b2552b 1374 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1375 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1376 return;
1377 }
1e19ffc6 1378
112202d9
TH
1379 pwq->nr_in_flight[pwq->work_color]++;
1380 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1381
112202d9 1382 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1383 trace_workqueue_activate_work(work);
112202d9
TH
1384 pwq->nr_active++;
1385 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1386 } else {
1387 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1388 worklist = &pwq->delayed_works;
8a2e8e5d 1389 }
1e19ffc6 1390
112202d9 1391 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1392
112202d9 1393 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1394}
1395
0fcb78c2 1396/**
c1a220e7
ZR
1397 * queue_work_on - queue work on specific cpu
1398 * @cpu: CPU number to execute work on
0fcb78c2
REB
1399 * @wq: workqueue to use
1400 * @work: work to queue
1401 *
c1a220e7
ZR
1402 * We queue the work to a specific CPU, the caller must ensure it
1403 * can't go away.
d185af30
YB
1404 *
1405 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1406 */
d4283e93
TH
1407bool queue_work_on(int cpu, struct workqueue_struct *wq,
1408 struct work_struct *work)
1da177e4 1409{
d4283e93 1410 bool ret = false;
8930caba 1411 unsigned long flags;
ef1ca236 1412
8930caba 1413 local_irq_save(flags);
c1a220e7 1414
22df02bb 1415 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1416 __queue_work(cpu, wq, work);
d4283e93 1417 ret = true;
c1a220e7 1418 }
ef1ca236 1419
8930caba 1420 local_irq_restore(flags);
1da177e4
LT
1421 return ret;
1422}
ad7b1f84 1423EXPORT_SYMBOL(queue_work_on);
1da177e4 1424
d8e794df 1425void delayed_work_timer_fn(unsigned long __data)
1da177e4 1426{
52bad64d 1427 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1428
e0aecdd8 1429 /* should have been called from irqsafe timer with irq already off */
60c057bc 1430 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1431}
1438ade5 1432EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1433
7beb2edf
TH
1434static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1435 struct delayed_work *dwork, unsigned long delay)
1da177e4 1436{
7beb2edf
TH
1437 struct timer_list *timer = &dwork->timer;
1438 struct work_struct *work = &dwork->work;
7beb2edf
TH
1439
1440 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1441 timer->data != (unsigned long)dwork);
fc4b514f
TH
1442 WARN_ON_ONCE(timer_pending(timer));
1443 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1444
8852aac2
TH
1445 /*
1446 * If @delay is 0, queue @dwork->work immediately. This is for
1447 * both optimization and correctness. The earliest @timer can
1448 * expire is on the closest next tick and delayed_work users depend
1449 * on that there's no such delay when @delay is 0.
1450 */
1451 if (!delay) {
1452 __queue_work(cpu, wq, &dwork->work);
1453 return;
1454 }
1455
7beb2edf 1456 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1457
60c057bc 1458 dwork->wq = wq;
1265057f 1459 dwork->cpu = cpu;
7beb2edf
TH
1460 timer->expires = jiffies + delay;
1461
1462 if (unlikely(cpu != WORK_CPU_UNBOUND))
1463 add_timer_on(timer, cpu);
1464 else
1465 add_timer(timer);
1da177e4
LT
1466}
1467
0fcb78c2
REB
1468/**
1469 * queue_delayed_work_on - queue work on specific CPU after delay
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
af9997e4 1472 * @dwork: work to queue
0fcb78c2
REB
1473 * @delay: number of jiffies to wait before queueing
1474 *
d185af30 1475 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1476 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1477 * execution.
0fcb78c2 1478 */
d4283e93
TH
1479bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1481{
52bad64d 1482 struct work_struct *work = &dwork->work;
d4283e93 1483 bool ret = false;
8930caba 1484 unsigned long flags;
7a6bc1cd 1485
8930caba
TH
1486 /* read the comment in __queue_work() */
1487 local_irq_save(flags);
7a6bc1cd 1488
22df02bb 1489 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1490 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1491 ret = true;
7a6bc1cd 1492 }
8a3e77cc 1493
8930caba 1494 local_irq_restore(flags);
7a6bc1cd
VP
1495 return ret;
1496}
ad7b1f84 1497EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1498
8376fe22
TH
1499/**
1500 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1501 * @cpu: CPU number to execute work on
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1507 * modify @dwork's timer so that it expires after @delay. If @delay is
1508 * zero, @work is guaranteed to be scheduled immediately regardless of its
1509 * current state.
1510 *
d185af30 1511 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1512 * pending and its timer was modified.
1513 *
e0aecdd8 1514 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1515 * See try_to_grab_pending() for details.
1516 */
1517bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
1519{
1520 unsigned long flags;
1521 int ret;
c7fc77f7 1522
8376fe22
TH
1523 do {
1524 ret = try_to_grab_pending(&dwork->work, true, &flags);
1525 } while (unlikely(ret == -EAGAIN));
63bc0362 1526
8376fe22
TH
1527 if (likely(ret >= 0)) {
1528 __queue_delayed_work(cpu, wq, dwork, delay);
1529 local_irq_restore(flags);
7a6bc1cd 1530 }
8376fe22
TH
1531
1532 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1533 return ret;
1534}
8376fe22
TH
1535EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1536
c8e55f36
TH
1537/**
1538 * worker_enter_idle - enter idle state
1539 * @worker: worker which is entering idle state
1540 *
1541 * @worker is entering idle state. Update stats and idle timer if
1542 * necessary.
1543 *
1544 * LOCKING:
d565ed63 1545 * spin_lock_irq(pool->lock).
c8e55f36
TH
1546 */
1547static void worker_enter_idle(struct worker *worker)
1da177e4 1548{
bd7bdd43 1549 struct worker_pool *pool = worker->pool;
c8e55f36 1550
6183c009
TH
1551 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1552 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1553 (worker->hentry.next || worker->hentry.pprev)))
1554 return;
c8e55f36 1555
cb444766
TH
1556 /* can't use worker_set_flags(), also called from start_worker() */
1557 worker->flags |= WORKER_IDLE;
bd7bdd43 1558 pool->nr_idle++;
e22bee78 1559 worker->last_active = jiffies;
c8e55f36
TH
1560
1561 /* idle_list is LIFO */
bd7bdd43 1562 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1563
628c78e7
TH
1564 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1565 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1566
544ecf31 1567 /*
706026c2 1568 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1569 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1570 * nr_running, the warning may trigger spuriously. Check iff
1571 * unbind is not in progress.
544ecf31 1572 */
24647570 1573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1574 pool->nr_workers == pool->nr_idle &&
e19e397a 1575 atomic_read(&pool->nr_running));
c8e55f36
TH
1576}
1577
1578/**
1579 * worker_leave_idle - leave idle state
1580 * @worker: worker which is leaving idle state
1581 *
1582 * @worker is leaving idle state. Update stats.
1583 *
1584 * LOCKING:
d565ed63 1585 * spin_lock_irq(pool->lock).
c8e55f36
TH
1586 */
1587static void worker_leave_idle(struct worker *worker)
1588{
bd7bdd43 1589 struct worker_pool *pool = worker->pool;
c8e55f36 1590
6183c009
TH
1591 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1592 return;
d302f017 1593 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1594 pool->nr_idle--;
c8e55f36
TH
1595 list_del_init(&worker->entry);
1596}
1597
c34056a3
TH
1598static struct worker *alloc_worker(void)
1599{
1600 struct worker *worker;
1601
1602 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1603 if (worker) {
1604 INIT_LIST_HEAD(&worker->entry);
affee4b2 1605 INIT_LIST_HEAD(&worker->scheduled);
da028469 1606 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1607 /* on creation a worker is in !idle && prep state */
1608 worker->flags = WORKER_PREP;
c8e55f36 1609 }
c34056a3
TH
1610 return worker;
1611}
1612
4736cbf7
LJ
1613/**
1614 * worker_attach_to_pool() - attach a worker to a pool
1615 * @worker: worker to be attached
1616 * @pool: the target pool
1617 *
1618 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1619 * cpu-binding of @worker are kept coordinated with the pool across
1620 * cpu-[un]hotplugs.
1621 */
1622static void worker_attach_to_pool(struct worker *worker,
1623 struct worker_pool *pool)
1624{
1625 mutex_lock(&pool->attach_mutex);
1626
1627 /*
1628 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1629 * online CPUs. It'll be re-applied when any of the CPUs come up.
1630 */
1631 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1632
1633 /*
1634 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1635 * stable across this function. See the comments above the
1636 * flag definition for details.
1637 */
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 worker->flags |= WORKER_UNBOUND;
1640
1641 list_add_tail(&worker->node, &pool->workers);
1642
1643 mutex_unlock(&pool->attach_mutex);
1644}
1645
60f5a4bc
LJ
1646/**
1647 * worker_detach_from_pool() - detach a worker from its pool
1648 * @worker: worker which is attached to its pool
1649 * @pool: the pool @worker is attached to
1650 *
4736cbf7
LJ
1651 * Undo the attaching which had been done in worker_attach_to_pool(). The
1652 * caller worker shouldn't access to the pool after detached except it has
1653 * other reference to the pool.
60f5a4bc
LJ
1654 */
1655static void worker_detach_from_pool(struct worker *worker,
1656 struct worker_pool *pool)
1657{
1658 struct completion *detach_completion = NULL;
1659
92f9c5c4 1660 mutex_lock(&pool->attach_mutex);
da028469
LJ
1661 list_del(&worker->node);
1662 if (list_empty(&pool->workers))
60f5a4bc 1663 detach_completion = pool->detach_completion;
92f9c5c4 1664 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1665
b62c0751
LJ
1666 /* clear leftover flags without pool->lock after it is detached */
1667 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1668
60f5a4bc
LJ
1669 if (detach_completion)
1670 complete(detach_completion);
1671}
1672
c34056a3
TH
1673/**
1674 * create_worker - create a new workqueue worker
63d95a91 1675 * @pool: pool the new worker will belong to
c34056a3 1676 *
73eb7fe7
LJ
1677 * Create a new worker which is attached to @pool. The new worker must be
1678 * started by start_worker().
c34056a3
TH
1679 *
1680 * CONTEXT:
1681 * Might sleep. Does GFP_KERNEL allocations.
1682 *
d185af30 1683 * Return:
c34056a3
TH
1684 * Pointer to the newly created worker.
1685 */
bc2ae0f5 1686static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1687{
c34056a3 1688 struct worker *worker = NULL;
f3421797 1689 int id = -1;
e3c916a4 1690 char id_buf[16];
c34056a3 1691
7cda9aae
LJ
1692 /* ID is needed to determine kthread name */
1693 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1694 if (id < 0)
1695 goto fail;
c34056a3
TH
1696
1697 worker = alloc_worker();
1698 if (!worker)
1699 goto fail;
1700
bd7bdd43 1701 worker->pool = pool;
c34056a3
TH
1702 worker->id = id;
1703
29c91e99 1704 if (pool->cpu >= 0)
e3c916a4
TH
1705 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1706 pool->attrs->nice < 0 ? "H" : "");
f3421797 1707 else
e3c916a4
TH
1708 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1709
f3f90ad4 1710 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1711 "kworker/%s", id_buf);
c34056a3
TH
1712 if (IS_ERR(worker->task))
1713 goto fail;
1714
91151228
ON
1715 set_user_nice(worker->task, pool->attrs->nice);
1716
1717 /* prevent userland from meddling with cpumask of workqueue workers */
1718 worker->task->flags |= PF_NO_SETAFFINITY;
1719
da028469 1720 /* successful, attach the worker to the pool */
4736cbf7 1721 worker_attach_to_pool(worker, pool);
822d8405 1722
c34056a3 1723 return worker;
822d8405 1724
c34056a3 1725fail:
9625ab17 1726 if (id >= 0)
7cda9aae 1727 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1728 kfree(worker);
1729 return NULL;
1730}
1731
1732/**
1733 * start_worker - start a newly created worker
1734 * @worker: worker to start
1735 *
706026c2 1736 * Make the pool aware of @worker and start it.
c34056a3
TH
1737 *
1738 * CONTEXT:
d565ed63 1739 * spin_lock_irq(pool->lock).
c34056a3
TH
1740 */
1741static void start_worker(struct worker *worker)
1742{
bd7bdd43 1743 worker->pool->nr_workers++;
c8e55f36 1744 worker_enter_idle(worker);
c34056a3
TH
1745 wake_up_process(worker->task);
1746}
1747
ebf44d16
TH
1748/**
1749 * create_and_start_worker - create and start a worker for a pool
1750 * @pool: the target pool
1751 *
cd549687 1752 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1753 *
1754 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1755 */
1756static int create_and_start_worker(struct worker_pool *pool)
1757{
1758 struct worker *worker;
1759
1760 worker = create_worker(pool);
1761 if (worker) {
1762 spin_lock_irq(&pool->lock);
1763 start_worker(worker);
1764 spin_unlock_irq(&pool->lock);
1765 }
1766
1767 return worker ? 0 : -ENOMEM;
1768}
1769
c34056a3
TH
1770/**
1771 * destroy_worker - destroy a workqueue worker
1772 * @worker: worker to be destroyed
1773 *
73eb7fe7
LJ
1774 * Destroy @worker and adjust @pool stats accordingly. The worker should
1775 * be idle.
c8e55f36
TH
1776 *
1777 * CONTEXT:
60f5a4bc 1778 * spin_lock_irq(pool->lock).
c34056a3
TH
1779 */
1780static void destroy_worker(struct worker *worker)
1781{
bd7bdd43 1782 struct worker_pool *pool = worker->pool;
c34056a3 1783
cd549687
TH
1784 lockdep_assert_held(&pool->lock);
1785
c34056a3 1786 /* sanity check frenzy */
6183c009 1787 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1788 WARN_ON(!list_empty(&worker->scheduled)) ||
1789 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1790 return;
c34056a3 1791
73eb7fe7
LJ
1792 pool->nr_workers--;
1793 pool->nr_idle--;
5bdfff96 1794
c8e55f36 1795 list_del_init(&worker->entry);
cb444766 1796 worker->flags |= WORKER_DIE;
60f5a4bc 1797 wake_up_process(worker->task);
c34056a3
TH
1798}
1799
63d95a91 1800static void idle_worker_timeout(unsigned long __pool)
e22bee78 1801{
63d95a91 1802 struct worker_pool *pool = (void *)__pool;
e22bee78 1803
d565ed63 1804 spin_lock_irq(&pool->lock);
e22bee78 1805
3347fc9f 1806 while (too_many_workers(pool)) {
e22bee78
TH
1807 struct worker *worker;
1808 unsigned long expires;
1809
1810 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1811 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1812 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1813
3347fc9f 1814 if (time_before(jiffies, expires)) {
63d95a91 1815 mod_timer(&pool->idle_timer, expires);
3347fc9f 1816 break;
d5abe669 1817 }
3347fc9f
LJ
1818
1819 destroy_worker(worker);
e22bee78
TH
1820 }
1821
d565ed63 1822 spin_unlock_irq(&pool->lock);
e22bee78 1823}
d5abe669 1824
493a1724 1825static void send_mayday(struct work_struct *work)
e22bee78 1826{
112202d9
TH
1827 struct pool_workqueue *pwq = get_work_pwq(work);
1828 struct workqueue_struct *wq = pwq->wq;
493a1724 1829
2e109a28 1830 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1831
493008a8 1832 if (!wq->rescuer)
493a1724 1833 return;
e22bee78
TH
1834
1835 /* mayday mayday mayday */
493a1724 1836 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1837 /*
1838 * If @pwq is for an unbound wq, its base ref may be put at
1839 * any time due to an attribute change. Pin @pwq until the
1840 * rescuer is done with it.
1841 */
1842 get_pwq(pwq);
493a1724 1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1844 wake_up_process(wq->rescuer->task);
493a1724 1845 }
e22bee78
TH
1846}
1847
706026c2 1848static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1849{
63d95a91 1850 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1851 struct work_struct *work;
1852
2e109a28 1853 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1854 spin_lock(&pool->lock);
e22bee78 1855
63d95a91 1856 if (need_to_create_worker(pool)) {
e22bee78
TH
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
63d95a91 1863 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1864 send_mayday(work);
1da177e4 1865 }
e22bee78 1866
493a1724 1867 spin_unlock(&pool->lock);
2e109a28 1868 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1869
63d95a91 1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1871}
1872
e22bee78
TH
1873/**
1874 * maybe_create_worker - create a new worker if necessary
63d95a91 1875 * @pool: pool to create a new worker for
e22bee78 1876 *
63d95a91 1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1880 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1881 * possible allocation deadlock.
1882 *
c5aa87bb
TH
1883 * On return, need_to_create_worker() is guaranteed to be %false and
1884 * may_start_working() %true.
e22bee78
TH
1885 *
1886 * LOCKING:
d565ed63 1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
d185af30 1891 * Return:
c5aa87bb 1892 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1893 * otherwise.
1894 */
63d95a91 1895static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1896__releases(&pool->lock)
1897__acquires(&pool->lock)
1da177e4 1898{
63d95a91 1899 if (!need_to_create_worker(pool))
e22bee78
TH
1900 return false;
1901restart:
d565ed63 1902 spin_unlock_irq(&pool->lock);
9f9c2364 1903
e22bee78 1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1906
1907 while (true) {
1908 struct worker *worker;
1909
bc2ae0f5 1910 worker = create_worker(pool);
e22bee78 1911 if (worker) {
63d95a91 1912 del_timer_sync(&pool->mayday_timer);
d565ed63 1913 spin_lock_irq(&pool->lock);
e22bee78 1914 start_worker(worker);
6183c009
TH
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
e22bee78
TH
1917 return true;
1918 }
1919
63d95a91 1920 if (!need_to_create_worker(pool))
e22bee78 1921 break;
1da177e4 1922
e212f361 1923 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1924
63d95a91 1925 if (!need_to_create_worker(pool))
e22bee78
TH
1926 break;
1927 }
1928
63d95a91 1929 del_timer_sync(&pool->mayday_timer);
d565ed63 1930 spin_lock_irq(&pool->lock);
63d95a91 1931 if (need_to_create_worker(pool))
e22bee78
TH
1932 goto restart;
1933 return true;
1934}
1935
73f53c4a 1936/**
e22bee78
TH
1937 * manage_workers - manage worker pool
1938 * @worker: self
73f53c4a 1939 *
706026c2 1940 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1941 * to. At any given time, there can be only zero or one manager per
706026c2 1942 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1943 *
1944 * The caller can safely start processing works on false return. On
1945 * true return, it's guaranteed that need_to_create_worker() is false
1946 * and may_start_working() is true.
73f53c4a
TH
1947 *
1948 * CONTEXT:
d565ed63 1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1950 * multiple times. Does GFP_KERNEL allocations.
1951 *
d185af30 1952 * Return:
2d498db9
L
1953 * %false if the pool don't need management and the caller can safely start
1954 * processing works, %true indicates that the function released pool->lock
1955 * and reacquired it to perform some management function and that the
1956 * conditions that the caller verified while holding the lock before
1957 * calling the function might no longer be true.
73f53c4a 1958 */
e22bee78 1959static bool manage_workers(struct worker *worker)
73f53c4a 1960{
63d95a91 1961 struct worker_pool *pool = worker->pool;
e22bee78 1962 bool ret = false;
73f53c4a 1963
bc3a1afc 1964 /*
bc3a1afc
TH
1965 * Anyone who successfully grabs manager_arb wins the arbitration
1966 * and becomes the manager. mutex_trylock() on pool->manager_arb
1967 * failure while holding pool->lock reliably indicates that someone
1968 * else is managing the pool and the worker which failed trylock
1969 * can proceed to executing work items. This means that anyone
1970 * grabbing manager_arb is responsible for actually performing
1971 * manager duties. If manager_arb is grabbed and released without
1972 * actual management, the pool may stall indefinitely.
bc3a1afc 1973 */
34a06bd6 1974 if (!mutex_trylock(&pool->manager_arb))
e22bee78 1975 return ret;
1e19ffc6 1976
63d95a91 1977 ret |= maybe_create_worker(pool);
e22bee78 1978
34a06bd6 1979 mutex_unlock(&pool->manager_arb);
e22bee78 1980 return ret;
73f53c4a
TH
1981}
1982
a62428c0
TH
1983/**
1984 * process_one_work - process single work
c34056a3 1985 * @worker: self
a62428c0
TH
1986 * @work: work to process
1987 *
1988 * Process @work. This function contains all the logics necessary to
1989 * process a single work including synchronization against and
1990 * interaction with other workers on the same cpu, queueing and
1991 * flushing. As long as context requirement is met, any worker can
1992 * call this function to process a work.
1993 *
1994 * CONTEXT:
d565ed63 1995 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1996 */
c34056a3 1997static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1998__releases(&pool->lock)
1999__acquires(&pool->lock)
a62428c0 2000{
112202d9 2001 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2002 struct worker_pool *pool = worker->pool;
112202d9 2003 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2004 int work_color;
7e11629d 2005 struct worker *collision;
a62428c0
TH
2006#ifdef CONFIG_LOCKDEP
2007 /*
2008 * It is permissible to free the struct work_struct from
2009 * inside the function that is called from it, this we need to
2010 * take into account for lockdep too. To avoid bogus "held
2011 * lock freed" warnings as well as problems when looking into
2012 * work->lockdep_map, make a copy and use that here.
2013 */
4d82a1de
PZ
2014 struct lockdep_map lockdep_map;
2015
2016 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2017#endif
6fec10a1
TH
2018 /*
2019 * Ensure we're on the correct CPU. DISASSOCIATED test is
2020 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2021 * unbound or a disassociated pool.
6fec10a1 2022 */
5f7dabfd 2023 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2024 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2025 raw_smp_processor_id() != pool->cpu);
25511a47 2026
7e11629d
TH
2027 /*
2028 * A single work shouldn't be executed concurrently by
2029 * multiple workers on a single cpu. Check whether anyone is
2030 * already processing the work. If so, defer the work to the
2031 * currently executing one.
2032 */
c9e7cf27 2033 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2034 if (unlikely(collision)) {
2035 move_linked_works(work, &collision->scheduled, NULL);
2036 return;
2037 }
2038
8930caba 2039 /* claim and dequeue */
a62428c0 2040 debug_work_deactivate(work);
c9e7cf27 2041 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2042 worker->current_work = work;
a2c1c57b 2043 worker->current_func = work->func;
112202d9 2044 worker->current_pwq = pwq;
73f53c4a 2045 work_color = get_work_color(work);
7a22ad75 2046
a62428c0
TH
2047 list_del_init(&work->entry);
2048
fb0e7beb
TH
2049 /*
2050 * CPU intensive works don't participate in concurrency
2051 * management. They're the scheduler's responsibility.
2052 */
2053 if (unlikely(cpu_intensive))
2054 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2055
974271c4 2056 /*
d565ed63 2057 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2058 * executed ASAP. Wake up another worker if necessary.
2059 */
63d95a91
TH
2060 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2061 wake_up_worker(pool);
974271c4 2062
8930caba 2063 /*
7c3eed5c 2064 * Record the last pool and clear PENDING which should be the last
d565ed63 2065 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2066 * PENDING and queued state changes happen together while IRQ is
2067 * disabled.
8930caba 2068 */
7c3eed5c 2069 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2070
d565ed63 2071 spin_unlock_irq(&pool->lock);
a62428c0 2072
112202d9 2073 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2074 lock_map_acquire(&lockdep_map);
e36c886a 2075 trace_workqueue_execute_start(work);
a2c1c57b 2076 worker->current_func(work);
e36c886a
AV
2077 /*
2078 * While we must be careful to not use "work" after this, the trace
2079 * point will only record its address.
2080 */
2081 trace_workqueue_execute_end(work);
a62428c0 2082 lock_map_release(&lockdep_map);
112202d9 2083 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2084
2085 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2086 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2087 " last function: %pf\n",
a2c1c57b
TH
2088 current->comm, preempt_count(), task_pid_nr(current),
2089 worker->current_func);
a62428c0
TH
2090 debug_show_held_locks(current);
2091 dump_stack();
2092 }
2093
b22ce278
TH
2094 /*
2095 * The following prevents a kworker from hogging CPU on !PREEMPT
2096 * kernels, where a requeueing work item waiting for something to
2097 * happen could deadlock with stop_machine as such work item could
2098 * indefinitely requeue itself while all other CPUs are trapped in
2099 * stop_machine.
2100 */
2101 cond_resched();
2102
d565ed63 2103 spin_lock_irq(&pool->lock);
a62428c0 2104
fb0e7beb
TH
2105 /* clear cpu intensive status */
2106 if (unlikely(cpu_intensive))
2107 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2108
a62428c0 2109 /* we're done with it, release */
42f8570f 2110 hash_del(&worker->hentry);
c34056a3 2111 worker->current_work = NULL;
a2c1c57b 2112 worker->current_func = NULL;
112202d9 2113 worker->current_pwq = NULL;
3d1cb205 2114 worker->desc_valid = false;
112202d9 2115 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2116}
2117
affee4b2
TH
2118/**
2119 * process_scheduled_works - process scheduled works
2120 * @worker: self
2121 *
2122 * Process all scheduled works. Please note that the scheduled list
2123 * may change while processing a work, so this function repeatedly
2124 * fetches a work from the top and executes it.
2125 *
2126 * CONTEXT:
d565ed63 2127 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2128 * multiple times.
2129 */
2130static void process_scheduled_works(struct worker *worker)
1da177e4 2131{
affee4b2
TH
2132 while (!list_empty(&worker->scheduled)) {
2133 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2134 struct work_struct, entry);
c34056a3 2135 process_one_work(worker, work);
1da177e4 2136 }
1da177e4
LT
2137}
2138
4690c4ab
TH
2139/**
2140 * worker_thread - the worker thread function
c34056a3 2141 * @__worker: self
4690c4ab 2142 *
c5aa87bb
TH
2143 * The worker thread function. All workers belong to a worker_pool -
2144 * either a per-cpu one or dynamic unbound one. These workers process all
2145 * work items regardless of their specific target workqueue. The only
2146 * exception is work items which belong to workqueues with a rescuer which
2147 * will be explained in rescuer_thread().
d185af30
YB
2148 *
2149 * Return: 0
4690c4ab 2150 */
c34056a3 2151static int worker_thread(void *__worker)
1da177e4 2152{
c34056a3 2153 struct worker *worker = __worker;
bd7bdd43 2154 struct worker_pool *pool = worker->pool;
1da177e4 2155
e22bee78
TH
2156 /* tell the scheduler that this is a workqueue worker */
2157 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2158woke_up:
d565ed63 2159 spin_lock_irq(&pool->lock);
1da177e4 2160
a9ab775b
TH
2161 /* am I supposed to die? */
2162 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2163 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2164 WARN_ON_ONCE(!list_empty(&worker->entry));
2165 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2166
2167 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2168 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2169 worker_detach_from_pool(worker, pool);
2170 kfree(worker);
a9ab775b 2171 return 0;
c8e55f36 2172 }
affee4b2 2173
c8e55f36 2174 worker_leave_idle(worker);
db7bccf4 2175recheck:
e22bee78 2176 /* no more worker necessary? */
63d95a91 2177 if (!need_more_worker(pool))
e22bee78
TH
2178 goto sleep;
2179
2180 /* do we need to manage? */
63d95a91 2181 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2182 goto recheck;
2183
c8e55f36
TH
2184 /*
2185 * ->scheduled list can only be filled while a worker is
2186 * preparing to process a work or actually processing it.
2187 * Make sure nobody diddled with it while I was sleeping.
2188 */
6183c009 2189 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2190
e22bee78 2191 /*
a9ab775b
TH
2192 * Finish PREP stage. We're guaranteed to have at least one idle
2193 * worker or that someone else has already assumed the manager
2194 * role. This is where @worker starts participating in concurrency
2195 * management if applicable and concurrency management is restored
2196 * after being rebound. See rebind_workers() for details.
e22bee78 2197 */
a9ab775b 2198 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2199
2200 do {
c8e55f36 2201 struct work_struct *work =
bd7bdd43 2202 list_first_entry(&pool->worklist,
c8e55f36
TH
2203 struct work_struct, entry);
2204
2205 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2206 /* optimization path, not strictly necessary */
2207 process_one_work(worker, work);
2208 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2209 process_scheduled_works(worker);
c8e55f36
TH
2210 } else {
2211 move_linked_works(work, &worker->scheduled, NULL);
2212 process_scheduled_works(worker);
affee4b2 2213 }
63d95a91 2214 } while (keep_working(pool));
e22bee78
TH
2215
2216 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2217sleep:
c8e55f36 2218 /*
d565ed63
TH
2219 * pool->lock is held and there's no work to process and no need to
2220 * manage, sleep. Workers are woken up only while holding
2221 * pool->lock or from local cpu, so setting the current state
2222 * before releasing pool->lock is enough to prevent losing any
2223 * event.
c8e55f36
TH
2224 */
2225 worker_enter_idle(worker);
2226 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2227 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2228 schedule();
2229 goto woke_up;
1da177e4
LT
2230}
2231
e22bee78
TH
2232/**
2233 * rescuer_thread - the rescuer thread function
111c225a 2234 * @__rescuer: self
e22bee78
TH
2235 *
2236 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2237 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2238 *
706026c2 2239 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2240 * worker which uses GFP_KERNEL allocation which has slight chance of
2241 * developing into deadlock if some works currently on the same queue
2242 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2243 * the problem rescuer solves.
2244 *
706026c2
TH
2245 * When such condition is possible, the pool summons rescuers of all
2246 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2247 * those works so that forward progress can be guaranteed.
2248 *
2249 * This should happen rarely.
d185af30
YB
2250 *
2251 * Return: 0
e22bee78 2252 */
111c225a 2253static int rescuer_thread(void *__rescuer)
e22bee78 2254{
111c225a
TH
2255 struct worker *rescuer = __rescuer;
2256 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2257 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2258 bool should_stop;
e22bee78
TH
2259
2260 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2261
2262 /*
2263 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2264 * doesn't participate in concurrency management.
2265 */
2266 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2267repeat:
2268 set_current_state(TASK_INTERRUPTIBLE);
2269
4d595b86
LJ
2270 /*
2271 * By the time the rescuer is requested to stop, the workqueue
2272 * shouldn't have any work pending, but @wq->maydays may still have
2273 * pwq(s) queued. This can happen by non-rescuer workers consuming
2274 * all the work items before the rescuer got to them. Go through
2275 * @wq->maydays processing before acting on should_stop so that the
2276 * list is always empty on exit.
2277 */
2278 should_stop = kthread_should_stop();
e22bee78 2279
493a1724 2280 /* see whether any pwq is asking for help */
2e109a28 2281 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2282
2283 while (!list_empty(&wq->maydays)) {
2284 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2285 struct pool_workqueue, mayday_node);
112202d9 2286 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2287 struct work_struct *work, *n;
2288
2289 __set_current_state(TASK_RUNNING);
493a1724
TH
2290 list_del_init(&pwq->mayday_node);
2291
2e109a28 2292 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2293
51697d39
LJ
2294 worker_attach_to_pool(rescuer, pool);
2295
2296 spin_lock_irq(&pool->lock);
b3104104 2297 rescuer->pool = pool;
e22bee78
TH
2298
2299 /*
2300 * Slurp in all works issued via this workqueue and
2301 * process'em.
2302 */
6183c009 2303 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2304 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2305 if (get_work_pwq(work) == pwq)
e22bee78
TH
2306 move_linked_works(work, scheduled, &n);
2307
2308 process_scheduled_works(rescuer);
51697d39
LJ
2309 spin_unlock_irq(&pool->lock);
2310
2311 worker_detach_from_pool(rescuer, pool);
2312
2313 spin_lock_irq(&pool->lock);
7576958a 2314
77668c8b
LJ
2315 /*
2316 * Put the reference grabbed by send_mayday(). @pool won't
2317 * go away while we're holding its lock.
2318 */
2319 put_pwq(pwq);
2320
7576958a 2321 /*
d565ed63 2322 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2323 * regular worker; otherwise, we end up with 0 concurrency
2324 * and stalling the execution.
2325 */
63d95a91
TH
2326 if (keep_working(pool))
2327 wake_up_worker(pool);
7576958a 2328
b3104104 2329 rescuer->pool = NULL;
493a1724 2330 spin_unlock(&pool->lock);
2e109a28 2331 spin_lock(&wq_mayday_lock);
e22bee78
TH
2332 }
2333
2e109a28 2334 spin_unlock_irq(&wq_mayday_lock);
493a1724 2335
4d595b86
LJ
2336 if (should_stop) {
2337 __set_current_state(TASK_RUNNING);
2338 rescuer->task->flags &= ~PF_WQ_WORKER;
2339 return 0;
2340 }
2341
111c225a
TH
2342 /* rescuers should never participate in concurrency management */
2343 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2344 schedule();
2345 goto repeat;
1da177e4
LT
2346}
2347
fc2e4d70
ON
2348struct wq_barrier {
2349 struct work_struct work;
2350 struct completion done;
2351};
2352
2353static void wq_barrier_func(struct work_struct *work)
2354{
2355 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2356 complete(&barr->done);
2357}
2358
4690c4ab
TH
2359/**
2360 * insert_wq_barrier - insert a barrier work
112202d9 2361 * @pwq: pwq to insert barrier into
4690c4ab 2362 * @barr: wq_barrier to insert
affee4b2
TH
2363 * @target: target work to attach @barr to
2364 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2365 *
affee4b2
TH
2366 * @barr is linked to @target such that @barr is completed only after
2367 * @target finishes execution. Please note that the ordering
2368 * guarantee is observed only with respect to @target and on the local
2369 * cpu.
2370 *
2371 * Currently, a queued barrier can't be canceled. This is because
2372 * try_to_grab_pending() can't determine whether the work to be
2373 * grabbed is at the head of the queue and thus can't clear LINKED
2374 * flag of the previous work while there must be a valid next work
2375 * after a work with LINKED flag set.
2376 *
2377 * Note that when @worker is non-NULL, @target may be modified
112202d9 2378 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2379 *
2380 * CONTEXT:
d565ed63 2381 * spin_lock_irq(pool->lock).
4690c4ab 2382 */
112202d9 2383static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2384 struct wq_barrier *barr,
2385 struct work_struct *target, struct worker *worker)
fc2e4d70 2386{
affee4b2
TH
2387 struct list_head *head;
2388 unsigned int linked = 0;
2389
dc186ad7 2390 /*
d565ed63 2391 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2392 * as we know for sure that this will not trigger any of the
2393 * checks and call back into the fixup functions where we
2394 * might deadlock.
2395 */
ca1cab37 2396 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2397 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2398 init_completion(&barr->done);
83c22520 2399
affee4b2
TH
2400 /*
2401 * If @target is currently being executed, schedule the
2402 * barrier to the worker; otherwise, put it after @target.
2403 */
2404 if (worker)
2405 head = worker->scheduled.next;
2406 else {
2407 unsigned long *bits = work_data_bits(target);
2408
2409 head = target->entry.next;
2410 /* there can already be other linked works, inherit and set */
2411 linked = *bits & WORK_STRUCT_LINKED;
2412 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2413 }
2414
dc186ad7 2415 debug_work_activate(&barr->work);
112202d9 2416 insert_work(pwq, &barr->work, head,
affee4b2 2417 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2418}
2419
73f53c4a 2420/**
112202d9 2421 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2422 * @wq: workqueue being flushed
2423 * @flush_color: new flush color, < 0 for no-op
2424 * @work_color: new work color, < 0 for no-op
2425 *
112202d9 2426 * Prepare pwqs for workqueue flushing.
73f53c4a 2427 *
112202d9
TH
2428 * If @flush_color is non-negative, flush_color on all pwqs should be
2429 * -1. If no pwq has in-flight commands at the specified color, all
2430 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2431 * has in flight commands, its pwq->flush_color is set to
2432 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2433 * wakeup logic is armed and %true is returned.
2434 *
2435 * The caller should have initialized @wq->first_flusher prior to
2436 * calling this function with non-negative @flush_color. If
2437 * @flush_color is negative, no flush color update is done and %false
2438 * is returned.
2439 *
112202d9 2440 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2441 * work_color which is previous to @work_color and all will be
2442 * advanced to @work_color.
2443 *
2444 * CONTEXT:
3c25a55d 2445 * mutex_lock(wq->mutex).
73f53c4a 2446 *
d185af30 2447 * Return:
73f53c4a
TH
2448 * %true if @flush_color >= 0 and there's something to flush. %false
2449 * otherwise.
2450 */
112202d9 2451static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2452 int flush_color, int work_color)
1da177e4 2453{
73f53c4a 2454 bool wait = false;
49e3cf44 2455 struct pool_workqueue *pwq;
1da177e4 2456
73f53c4a 2457 if (flush_color >= 0) {
6183c009 2458 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2459 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2460 }
2355b70f 2461
49e3cf44 2462 for_each_pwq(pwq, wq) {
112202d9 2463 struct worker_pool *pool = pwq->pool;
fc2e4d70 2464
b09f4fd3 2465 spin_lock_irq(&pool->lock);
83c22520 2466
73f53c4a 2467 if (flush_color >= 0) {
6183c009 2468 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2469
112202d9
TH
2470 if (pwq->nr_in_flight[flush_color]) {
2471 pwq->flush_color = flush_color;
2472 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2473 wait = true;
2474 }
2475 }
1da177e4 2476
73f53c4a 2477 if (work_color >= 0) {
6183c009 2478 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2479 pwq->work_color = work_color;
73f53c4a 2480 }
1da177e4 2481
b09f4fd3 2482 spin_unlock_irq(&pool->lock);
1da177e4 2483 }
2355b70f 2484
112202d9 2485 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2486 complete(&wq->first_flusher->done);
14441960 2487
73f53c4a 2488 return wait;
1da177e4
LT
2489}
2490
0fcb78c2 2491/**
1da177e4 2492 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2493 * @wq: workqueue to flush
1da177e4 2494 *
c5aa87bb
TH
2495 * This function sleeps until all work items which were queued on entry
2496 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2497 */
7ad5b3a5 2498void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2499{
73f53c4a
TH
2500 struct wq_flusher this_flusher = {
2501 .list = LIST_HEAD_INIT(this_flusher.list),
2502 .flush_color = -1,
2503 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2504 };
2505 int next_color;
1da177e4 2506
3295f0ef
IM
2507 lock_map_acquire(&wq->lockdep_map);
2508 lock_map_release(&wq->lockdep_map);
73f53c4a 2509
3c25a55d 2510 mutex_lock(&wq->mutex);
73f53c4a
TH
2511
2512 /*
2513 * Start-to-wait phase
2514 */
2515 next_color = work_next_color(wq->work_color);
2516
2517 if (next_color != wq->flush_color) {
2518 /*
2519 * Color space is not full. The current work_color
2520 * becomes our flush_color and work_color is advanced
2521 * by one.
2522 */
6183c009 2523 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2524 this_flusher.flush_color = wq->work_color;
2525 wq->work_color = next_color;
2526
2527 if (!wq->first_flusher) {
2528 /* no flush in progress, become the first flusher */
6183c009 2529 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2530
2531 wq->first_flusher = &this_flusher;
2532
112202d9 2533 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2534 wq->work_color)) {
2535 /* nothing to flush, done */
2536 wq->flush_color = next_color;
2537 wq->first_flusher = NULL;
2538 goto out_unlock;
2539 }
2540 } else {
2541 /* wait in queue */
6183c009 2542 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2543 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2544 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2545 }
2546 } else {
2547 /*
2548 * Oops, color space is full, wait on overflow queue.
2549 * The next flush completion will assign us
2550 * flush_color and transfer to flusher_queue.
2551 */
2552 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2553 }
2554
3c25a55d 2555 mutex_unlock(&wq->mutex);
73f53c4a
TH
2556
2557 wait_for_completion(&this_flusher.done);
2558
2559 /*
2560 * Wake-up-and-cascade phase
2561 *
2562 * First flushers are responsible for cascading flushes and
2563 * handling overflow. Non-first flushers can simply return.
2564 */
2565 if (wq->first_flusher != &this_flusher)
2566 return;
2567
3c25a55d 2568 mutex_lock(&wq->mutex);
73f53c4a 2569
4ce48b37
TH
2570 /* we might have raced, check again with mutex held */
2571 if (wq->first_flusher != &this_flusher)
2572 goto out_unlock;
2573
73f53c4a
TH
2574 wq->first_flusher = NULL;
2575
6183c009
TH
2576 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2577 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2578
2579 while (true) {
2580 struct wq_flusher *next, *tmp;
2581
2582 /* complete all the flushers sharing the current flush color */
2583 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2584 if (next->flush_color != wq->flush_color)
2585 break;
2586 list_del_init(&next->list);
2587 complete(&next->done);
2588 }
2589
6183c009
TH
2590 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2591 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2592
2593 /* this flush_color is finished, advance by one */
2594 wq->flush_color = work_next_color(wq->flush_color);
2595
2596 /* one color has been freed, handle overflow queue */
2597 if (!list_empty(&wq->flusher_overflow)) {
2598 /*
2599 * Assign the same color to all overflowed
2600 * flushers, advance work_color and append to
2601 * flusher_queue. This is the start-to-wait
2602 * phase for these overflowed flushers.
2603 */
2604 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2605 tmp->flush_color = wq->work_color;
2606
2607 wq->work_color = work_next_color(wq->work_color);
2608
2609 list_splice_tail_init(&wq->flusher_overflow,
2610 &wq->flusher_queue);
112202d9 2611 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2612 }
2613
2614 if (list_empty(&wq->flusher_queue)) {
6183c009 2615 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2616 break;
2617 }
2618
2619 /*
2620 * Need to flush more colors. Make the next flusher
112202d9 2621 * the new first flusher and arm pwqs.
73f53c4a 2622 */
6183c009
TH
2623 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2624 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2625
2626 list_del_init(&next->list);
2627 wq->first_flusher = next;
2628
112202d9 2629 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2630 break;
2631
2632 /*
2633 * Meh... this color is already done, clear first
2634 * flusher and repeat cascading.
2635 */
2636 wq->first_flusher = NULL;
2637 }
2638
2639out_unlock:
3c25a55d 2640 mutex_unlock(&wq->mutex);
1da177e4 2641}
ae90dd5d 2642EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2643
9c5a2ba7
TH
2644/**
2645 * drain_workqueue - drain a workqueue
2646 * @wq: workqueue to drain
2647 *
2648 * Wait until the workqueue becomes empty. While draining is in progress,
2649 * only chain queueing is allowed. IOW, only currently pending or running
2650 * work items on @wq can queue further work items on it. @wq is flushed
2651 * repeatedly until it becomes empty. The number of flushing is detemined
2652 * by the depth of chaining and should be relatively short. Whine if it
2653 * takes too long.
2654 */
2655void drain_workqueue(struct workqueue_struct *wq)
2656{
2657 unsigned int flush_cnt = 0;
49e3cf44 2658 struct pool_workqueue *pwq;
9c5a2ba7
TH
2659
2660 /*
2661 * __queue_work() needs to test whether there are drainers, is much
2662 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2663 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2664 */
87fc741e 2665 mutex_lock(&wq->mutex);
9c5a2ba7 2666 if (!wq->nr_drainers++)
618b01eb 2667 wq->flags |= __WQ_DRAINING;
87fc741e 2668 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2669reflush:
2670 flush_workqueue(wq);
2671
b09f4fd3 2672 mutex_lock(&wq->mutex);
76af4d93 2673
49e3cf44 2674 for_each_pwq(pwq, wq) {
fa2563e4 2675 bool drained;
9c5a2ba7 2676
b09f4fd3 2677 spin_lock_irq(&pwq->pool->lock);
112202d9 2678 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2679 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2680
2681 if (drained)
9c5a2ba7
TH
2682 continue;
2683
2684 if (++flush_cnt == 10 ||
2685 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2686 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2687 wq->name, flush_cnt);
76af4d93 2688
b09f4fd3 2689 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2690 goto reflush;
2691 }
2692
9c5a2ba7 2693 if (!--wq->nr_drainers)
618b01eb 2694 wq->flags &= ~__WQ_DRAINING;
87fc741e 2695 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2696}
2697EXPORT_SYMBOL_GPL(drain_workqueue);
2698
606a5020 2699static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2700{
affee4b2 2701 struct worker *worker = NULL;
c9e7cf27 2702 struct worker_pool *pool;
112202d9 2703 struct pool_workqueue *pwq;
db700897
ON
2704
2705 might_sleep();
fa1b54e6
TH
2706
2707 local_irq_disable();
c9e7cf27 2708 pool = get_work_pool(work);
fa1b54e6
TH
2709 if (!pool) {
2710 local_irq_enable();
baf59022 2711 return false;
fa1b54e6 2712 }
db700897 2713
fa1b54e6 2714 spin_lock(&pool->lock);
0b3dae68 2715 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2716 pwq = get_work_pwq(work);
2717 if (pwq) {
2718 if (unlikely(pwq->pool != pool))
4690c4ab 2719 goto already_gone;
606a5020 2720 } else {
c9e7cf27 2721 worker = find_worker_executing_work(pool, work);
affee4b2 2722 if (!worker)
4690c4ab 2723 goto already_gone;
112202d9 2724 pwq = worker->current_pwq;
606a5020 2725 }
db700897 2726
112202d9 2727 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2728 spin_unlock_irq(&pool->lock);
7a22ad75 2729
e159489b
TH
2730 /*
2731 * If @max_active is 1 or rescuer is in use, flushing another work
2732 * item on the same workqueue may lead to deadlock. Make sure the
2733 * flusher is not running on the same workqueue by verifying write
2734 * access.
2735 */
493008a8 2736 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2737 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2738 else
112202d9
TH
2739 lock_map_acquire_read(&pwq->wq->lockdep_map);
2740 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2741
401a8d04 2742 return true;
4690c4ab 2743already_gone:
d565ed63 2744 spin_unlock_irq(&pool->lock);
401a8d04 2745 return false;
db700897 2746}
baf59022
TH
2747
2748/**
2749 * flush_work - wait for a work to finish executing the last queueing instance
2750 * @work: the work to flush
2751 *
606a5020
TH
2752 * Wait until @work has finished execution. @work is guaranteed to be idle
2753 * on return if it hasn't been requeued since flush started.
baf59022 2754 *
d185af30 2755 * Return:
baf59022
TH
2756 * %true if flush_work() waited for the work to finish execution,
2757 * %false if it was already idle.
2758 */
2759bool flush_work(struct work_struct *work)
2760{
12997d1a
BH
2761 struct wq_barrier barr;
2762
0976dfc1
SB
2763 lock_map_acquire(&work->lockdep_map);
2764 lock_map_release(&work->lockdep_map);
2765
12997d1a
BH
2766 if (start_flush_work(work, &barr)) {
2767 wait_for_completion(&barr.done);
2768 destroy_work_on_stack(&barr.work);
2769 return true;
2770 } else {
2771 return false;
2772 }
6e84d644 2773}
606a5020 2774EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2775
36e227d2 2776static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2777{
bbb68dfa 2778 unsigned long flags;
1f1f642e
ON
2779 int ret;
2780
2781 do {
bbb68dfa
TH
2782 ret = try_to_grab_pending(work, is_dwork, &flags);
2783 /*
2784 * If someone else is canceling, wait for the same event it
2785 * would be waiting for before retrying.
2786 */
2787 if (unlikely(ret == -ENOENT))
606a5020 2788 flush_work(work);
1f1f642e
ON
2789 } while (unlikely(ret < 0));
2790
bbb68dfa
TH
2791 /* tell other tasks trying to grab @work to back off */
2792 mark_work_canceling(work);
2793 local_irq_restore(flags);
2794
606a5020 2795 flush_work(work);
7a22ad75 2796 clear_work_data(work);
1f1f642e
ON
2797 return ret;
2798}
2799
6e84d644 2800/**
401a8d04
TH
2801 * cancel_work_sync - cancel a work and wait for it to finish
2802 * @work: the work to cancel
6e84d644 2803 *
401a8d04
TH
2804 * Cancel @work and wait for its execution to finish. This function
2805 * can be used even if the work re-queues itself or migrates to
2806 * another workqueue. On return from this function, @work is
2807 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2808 *
401a8d04
TH
2809 * cancel_work_sync(&delayed_work->work) must not be used for
2810 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2811 *
401a8d04 2812 * The caller must ensure that the workqueue on which @work was last
6e84d644 2813 * queued can't be destroyed before this function returns.
401a8d04 2814 *
d185af30 2815 * Return:
401a8d04 2816 * %true if @work was pending, %false otherwise.
6e84d644 2817 */
401a8d04 2818bool cancel_work_sync(struct work_struct *work)
6e84d644 2819{
36e227d2 2820 return __cancel_work_timer(work, false);
b89deed3 2821}
28e53bdd 2822EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2823
6e84d644 2824/**
401a8d04
TH
2825 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2826 * @dwork: the delayed work to flush
6e84d644 2827 *
401a8d04
TH
2828 * Delayed timer is cancelled and the pending work is queued for
2829 * immediate execution. Like flush_work(), this function only
2830 * considers the last queueing instance of @dwork.
1f1f642e 2831 *
d185af30 2832 * Return:
401a8d04
TH
2833 * %true if flush_work() waited for the work to finish execution,
2834 * %false if it was already idle.
6e84d644 2835 */
401a8d04
TH
2836bool flush_delayed_work(struct delayed_work *dwork)
2837{
8930caba 2838 local_irq_disable();
401a8d04 2839 if (del_timer_sync(&dwork->timer))
60c057bc 2840 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2841 local_irq_enable();
401a8d04
TH
2842 return flush_work(&dwork->work);
2843}
2844EXPORT_SYMBOL(flush_delayed_work);
2845
09383498 2846/**
57b30ae7
TH
2847 * cancel_delayed_work - cancel a delayed work
2848 * @dwork: delayed_work to cancel
09383498 2849 *
d185af30
YB
2850 * Kill off a pending delayed_work.
2851 *
2852 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2853 * pending.
2854 *
2855 * Note:
2856 * The work callback function may still be running on return, unless
2857 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2858 * use cancel_delayed_work_sync() to wait on it.
09383498 2859 *
57b30ae7 2860 * This function is safe to call from any context including IRQ handler.
09383498 2861 */
57b30ae7 2862bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2863{
57b30ae7
TH
2864 unsigned long flags;
2865 int ret;
2866
2867 do {
2868 ret = try_to_grab_pending(&dwork->work, true, &flags);
2869 } while (unlikely(ret == -EAGAIN));
2870
2871 if (unlikely(ret < 0))
2872 return false;
2873
7c3eed5c
TH
2874 set_work_pool_and_clear_pending(&dwork->work,
2875 get_work_pool_id(&dwork->work));
57b30ae7 2876 local_irq_restore(flags);
c0158ca6 2877 return ret;
09383498 2878}
57b30ae7 2879EXPORT_SYMBOL(cancel_delayed_work);
09383498 2880
401a8d04
TH
2881/**
2882 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2883 * @dwork: the delayed work cancel
2884 *
2885 * This is cancel_work_sync() for delayed works.
2886 *
d185af30 2887 * Return:
401a8d04
TH
2888 * %true if @dwork was pending, %false otherwise.
2889 */
2890bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2891{
36e227d2 2892 return __cancel_work_timer(&dwork->work, true);
6e84d644 2893}
f5a421a4 2894EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2895
b6136773 2896/**
31ddd871 2897 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2898 * @func: the function to call
b6136773 2899 *
31ddd871
TH
2900 * schedule_on_each_cpu() executes @func on each online CPU using the
2901 * system workqueue and blocks until all CPUs have completed.
b6136773 2902 * schedule_on_each_cpu() is very slow.
31ddd871 2903 *
d185af30 2904 * Return:
31ddd871 2905 * 0 on success, -errno on failure.
b6136773 2906 */
65f27f38 2907int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2908{
2909 int cpu;
38f51568 2910 struct work_struct __percpu *works;
15316ba8 2911
b6136773
AM
2912 works = alloc_percpu(struct work_struct);
2913 if (!works)
15316ba8 2914 return -ENOMEM;
b6136773 2915
93981800
TH
2916 get_online_cpus();
2917
15316ba8 2918 for_each_online_cpu(cpu) {
9bfb1839
IM
2919 struct work_struct *work = per_cpu_ptr(works, cpu);
2920
2921 INIT_WORK(work, func);
b71ab8c2 2922 schedule_work_on(cpu, work);
65a64464 2923 }
93981800
TH
2924
2925 for_each_online_cpu(cpu)
2926 flush_work(per_cpu_ptr(works, cpu));
2927
95402b38 2928 put_online_cpus();
b6136773 2929 free_percpu(works);
15316ba8
CL
2930 return 0;
2931}
2932
eef6a7d5
AS
2933/**
2934 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2935 *
2936 * Forces execution of the kernel-global workqueue and blocks until its
2937 * completion.
2938 *
2939 * Think twice before calling this function! It's very easy to get into
2940 * trouble if you don't take great care. Either of the following situations
2941 * will lead to deadlock:
2942 *
2943 * One of the work items currently on the workqueue needs to acquire
2944 * a lock held by your code or its caller.
2945 *
2946 * Your code is running in the context of a work routine.
2947 *
2948 * They will be detected by lockdep when they occur, but the first might not
2949 * occur very often. It depends on what work items are on the workqueue and
2950 * what locks they need, which you have no control over.
2951 *
2952 * In most situations flushing the entire workqueue is overkill; you merely
2953 * need to know that a particular work item isn't queued and isn't running.
2954 * In such cases you should use cancel_delayed_work_sync() or
2955 * cancel_work_sync() instead.
2956 */
1da177e4
LT
2957void flush_scheduled_work(void)
2958{
d320c038 2959 flush_workqueue(system_wq);
1da177e4 2960}
ae90dd5d 2961EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2962
1fa44eca
JB
2963/**
2964 * execute_in_process_context - reliably execute the routine with user context
2965 * @fn: the function to execute
1fa44eca
JB
2966 * @ew: guaranteed storage for the execute work structure (must
2967 * be available when the work executes)
2968 *
2969 * Executes the function immediately if process context is available,
2970 * otherwise schedules the function for delayed execution.
2971 *
d185af30 2972 * Return: 0 - function was executed
1fa44eca
JB
2973 * 1 - function was scheduled for execution
2974 */
65f27f38 2975int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2976{
2977 if (!in_interrupt()) {
65f27f38 2978 fn(&ew->work);
1fa44eca
JB
2979 return 0;
2980 }
2981
65f27f38 2982 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2983 schedule_work(&ew->work);
2984
2985 return 1;
2986}
2987EXPORT_SYMBOL_GPL(execute_in_process_context);
2988
226223ab
TH
2989#ifdef CONFIG_SYSFS
2990/*
2991 * Workqueues with WQ_SYSFS flag set is visible to userland via
2992 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2993 * following attributes.
2994 *
2995 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2996 * max_active RW int : maximum number of in-flight work items
2997 *
2998 * Unbound workqueues have the following extra attributes.
2999 *
3000 * id RO int : the associated pool ID
3001 * nice RW int : nice value of the workers
3002 * cpumask RW mask : bitmask of allowed CPUs for the workers
3003 */
3004struct wq_device {
3005 struct workqueue_struct *wq;
3006 struct device dev;
3007};
3008
3009static struct workqueue_struct *dev_to_wq(struct device *dev)
3010{
3011 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3012
3013 return wq_dev->wq;
3014}
3015
1a6661da
GKH
3016static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3017 char *buf)
226223ab
TH
3018{
3019 struct workqueue_struct *wq = dev_to_wq(dev);
3020
3021 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3022}
1a6661da 3023static DEVICE_ATTR_RO(per_cpu);
226223ab 3024
1a6661da
GKH
3025static ssize_t max_active_show(struct device *dev,
3026 struct device_attribute *attr, char *buf)
226223ab
TH
3027{
3028 struct workqueue_struct *wq = dev_to_wq(dev);
3029
3030 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3031}
3032
1a6661da
GKH
3033static ssize_t max_active_store(struct device *dev,
3034 struct device_attribute *attr, const char *buf,
3035 size_t count)
226223ab
TH
3036{
3037 struct workqueue_struct *wq = dev_to_wq(dev);
3038 int val;
3039
3040 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3041 return -EINVAL;
3042
3043 workqueue_set_max_active(wq, val);
3044 return count;
3045}
1a6661da 3046static DEVICE_ATTR_RW(max_active);
226223ab 3047
1a6661da
GKH
3048static struct attribute *wq_sysfs_attrs[] = {
3049 &dev_attr_per_cpu.attr,
3050 &dev_attr_max_active.attr,
3051 NULL,
226223ab 3052};
1a6661da 3053ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3054
d55262c4
TH
3055static ssize_t wq_pool_ids_show(struct device *dev,
3056 struct device_attribute *attr, char *buf)
226223ab
TH
3057{
3058 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3059 const char *delim = "";
3060 int node, written = 0;
226223ab
TH
3061
3062 rcu_read_lock_sched();
d55262c4
TH
3063 for_each_node(node) {
3064 written += scnprintf(buf + written, PAGE_SIZE - written,
3065 "%s%d:%d", delim, node,
3066 unbound_pwq_by_node(wq, node)->pool->id);
3067 delim = " ";
3068 }
3069 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3070 rcu_read_unlock_sched();
3071
3072 return written;
3073}
3074
3075static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3076 char *buf)
3077{
3078 struct workqueue_struct *wq = dev_to_wq(dev);
3079 int written;
3080
6029a918
TH
3081 mutex_lock(&wq->mutex);
3082 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3083 mutex_unlock(&wq->mutex);
226223ab
TH
3084
3085 return written;
3086}
3087
3088/* prepare workqueue_attrs for sysfs store operations */
3089static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3090{
3091 struct workqueue_attrs *attrs;
3092
3093 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3094 if (!attrs)
3095 return NULL;
3096
6029a918
TH
3097 mutex_lock(&wq->mutex);
3098 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3099 mutex_unlock(&wq->mutex);
226223ab
TH
3100 return attrs;
3101}
3102
3103static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3104 const char *buf, size_t count)
3105{
3106 struct workqueue_struct *wq = dev_to_wq(dev);
3107 struct workqueue_attrs *attrs;
3108 int ret;
3109
3110 attrs = wq_sysfs_prep_attrs(wq);
3111 if (!attrs)
3112 return -ENOMEM;
3113
3114 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3115 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3116 ret = apply_workqueue_attrs(wq, attrs);
3117 else
3118 ret = -EINVAL;
3119
3120 free_workqueue_attrs(attrs);
3121 return ret ?: count;
3122}
3123
3124static ssize_t wq_cpumask_show(struct device *dev,
3125 struct device_attribute *attr, char *buf)
3126{
3127 struct workqueue_struct *wq = dev_to_wq(dev);
3128 int written;
3129
6029a918
TH
3130 mutex_lock(&wq->mutex);
3131 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3132 mutex_unlock(&wq->mutex);
226223ab
TH
3133
3134 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3135 return written;
3136}
3137
3138static ssize_t wq_cpumask_store(struct device *dev,
3139 struct device_attribute *attr,
3140 const char *buf, size_t count)
3141{
3142 struct workqueue_struct *wq = dev_to_wq(dev);
3143 struct workqueue_attrs *attrs;
3144 int ret;
3145
3146 attrs = wq_sysfs_prep_attrs(wq);
3147 if (!attrs)
3148 return -ENOMEM;
3149
3150 ret = cpumask_parse(buf, attrs->cpumask);
3151 if (!ret)
3152 ret = apply_workqueue_attrs(wq, attrs);
3153
3154 free_workqueue_attrs(attrs);
3155 return ret ?: count;
3156}
3157
d55262c4
TH
3158static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3159 char *buf)
3160{
3161 struct workqueue_struct *wq = dev_to_wq(dev);
3162 int written;
3163
3164 mutex_lock(&wq->mutex);
3165 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3166 !wq->unbound_attrs->no_numa);
3167 mutex_unlock(&wq->mutex);
3168
3169 return written;
3170}
3171
3172static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3173 const char *buf, size_t count)
3174{
3175 struct workqueue_struct *wq = dev_to_wq(dev);
3176 struct workqueue_attrs *attrs;
3177 int v, ret;
3178
3179 attrs = wq_sysfs_prep_attrs(wq);
3180 if (!attrs)
3181 return -ENOMEM;
3182
3183 ret = -EINVAL;
3184 if (sscanf(buf, "%d", &v) == 1) {
3185 attrs->no_numa = !v;
3186 ret = apply_workqueue_attrs(wq, attrs);
3187 }
3188
3189 free_workqueue_attrs(attrs);
3190 return ret ?: count;
3191}
3192
226223ab 3193static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3194 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3195 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3196 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3197 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3198 __ATTR_NULL,
3199};
3200
3201static struct bus_type wq_subsys = {
3202 .name = "workqueue",
1a6661da 3203 .dev_groups = wq_sysfs_groups,
226223ab
TH
3204};
3205
3206static int __init wq_sysfs_init(void)
3207{
3208 return subsys_virtual_register(&wq_subsys, NULL);
3209}
3210core_initcall(wq_sysfs_init);
3211
3212static void wq_device_release(struct device *dev)
3213{
3214 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3215
3216 kfree(wq_dev);
3217}
3218
3219/**
3220 * workqueue_sysfs_register - make a workqueue visible in sysfs
3221 * @wq: the workqueue to register
3222 *
3223 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3224 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3225 * which is the preferred method.
3226 *
3227 * Workqueue user should use this function directly iff it wants to apply
3228 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3229 * apply_workqueue_attrs() may race against userland updating the
3230 * attributes.
3231 *
d185af30 3232 * Return: 0 on success, -errno on failure.
226223ab
TH
3233 */
3234int workqueue_sysfs_register(struct workqueue_struct *wq)
3235{
3236 struct wq_device *wq_dev;
3237 int ret;
3238
3239 /*
3240 * Adjusting max_active or creating new pwqs by applyting
3241 * attributes breaks ordering guarantee. Disallow exposing ordered
3242 * workqueues.
3243 */
3244 if (WARN_ON(wq->flags & __WQ_ORDERED))
3245 return -EINVAL;
3246
3247 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3248 if (!wq_dev)
3249 return -ENOMEM;
3250
3251 wq_dev->wq = wq;
3252 wq_dev->dev.bus = &wq_subsys;
3253 wq_dev->dev.init_name = wq->name;
3254 wq_dev->dev.release = wq_device_release;
3255
3256 /*
3257 * unbound_attrs are created separately. Suppress uevent until
3258 * everything is ready.
3259 */
3260 dev_set_uevent_suppress(&wq_dev->dev, true);
3261
3262 ret = device_register(&wq_dev->dev);
3263 if (ret) {
3264 kfree(wq_dev);
3265 wq->wq_dev = NULL;
3266 return ret;
3267 }
3268
3269 if (wq->flags & WQ_UNBOUND) {
3270 struct device_attribute *attr;
3271
3272 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3273 ret = device_create_file(&wq_dev->dev, attr);
3274 if (ret) {
3275 device_unregister(&wq_dev->dev);
3276 wq->wq_dev = NULL;
3277 return ret;
3278 }
3279 }
3280 }
3281
3282 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3283 return 0;
3284}
3285
3286/**
3287 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3288 * @wq: the workqueue to unregister
3289 *
3290 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3291 */
3292static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3293{
3294 struct wq_device *wq_dev = wq->wq_dev;
3295
3296 if (!wq->wq_dev)
3297 return;
3298
3299 wq->wq_dev = NULL;
3300 device_unregister(&wq_dev->dev);
3301}
3302#else /* CONFIG_SYSFS */
3303static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3304#endif /* CONFIG_SYSFS */
3305
7a4e344c
TH
3306/**
3307 * free_workqueue_attrs - free a workqueue_attrs
3308 * @attrs: workqueue_attrs to free
3309 *
3310 * Undo alloc_workqueue_attrs().
3311 */
3312void free_workqueue_attrs(struct workqueue_attrs *attrs)
3313{
3314 if (attrs) {
3315 free_cpumask_var(attrs->cpumask);
3316 kfree(attrs);
3317 }
3318}
3319
3320/**
3321 * alloc_workqueue_attrs - allocate a workqueue_attrs
3322 * @gfp_mask: allocation mask to use
3323 *
3324 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3325 * return it.
3326 *
3327 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3328 */
3329struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3330{
3331 struct workqueue_attrs *attrs;
3332
3333 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3334 if (!attrs)
3335 goto fail;
3336 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3337 goto fail;
3338
13e2e556 3339 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3340 return attrs;
3341fail:
3342 free_workqueue_attrs(attrs);
3343 return NULL;
3344}
3345
29c91e99
TH
3346static void copy_workqueue_attrs(struct workqueue_attrs *to,
3347 const struct workqueue_attrs *from)
3348{
3349 to->nice = from->nice;
3350 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3351 /*
3352 * Unlike hash and equality test, this function doesn't ignore
3353 * ->no_numa as it is used for both pool and wq attrs. Instead,
3354 * get_unbound_pool() explicitly clears ->no_numa after copying.
3355 */
3356 to->no_numa = from->no_numa;
29c91e99
TH
3357}
3358
29c91e99
TH
3359/* hash value of the content of @attr */
3360static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3361{
3362 u32 hash = 0;
3363
3364 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3365 hash = jhash(cpumask_bits(attrs->cpumask),
3366 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3367 return hash;
3368}
3369
3370/* content equality test */
3371static bool wqattrs_equal(const struct workqueue_attrs *a,
3372 const struct workqueue_attrs *b)
3373{
3374 if (a->nice != b->nice)
3375 return false;
3376 if (!cpumask_equal(a->cpumask, b->cpumask))
3377 return false;
3378 return true;
3379}
3380
7a4e344c
TH
3381/**
3382 * init_worker_pool - initialize a newly zalloc'd worker_pool
3383 * @pool: worker_pool to initialize
3384 *
3385 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3386 *
3387 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3388 * inside @pool proper are initialized and put_unbound_pool() can be called
3389 * on @pool safely to release it.
7a4e344c
TH
3390 */
3391static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3392{
3393 spin_lock_init(&pool->lock);
29c91e99
TH
3394 pool->id = -1;
3395 pool->cpu = -1;
f3f90ad4 3396 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3397 pool->flags |= POOL_DISASSOCIATED;
3398 INIT_LIST_HEAD(&pool->worklist);
3399 INIT_LIST_HEAD(&pool->idle_list);
3400 hash_init(pool->busy_hash);
3401
3402 init_timer_deferrable(&pool->idle_timer);
3403 pool->idle_timer.function = idle_worker_timeout;
3404 pool->idle_timer.data = (unsigned long)pool;
3405
3406 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3407 (unsigned long)pool);
3408
3409 mutex_init(&pool->manager_arb);
92f9c5c4 3410 mutex_init(&pool->attach_mutex);
da028469 3411 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3412
7cda9aae 3413 ida_init(&pool->worker_ida);
29c91e99
TH
3414 INIT_HLIST_NODE(&pool->hash_node);
3415 pool->refcnt = 1;
3416
3417 /* shouldn't fail above this point */
7a4e344c
TH
3418 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3419 if (!pool->attrs)
3420 return -ENOMEM;
3421 return 0;
4e1a1f9a
TH
3422}
3423
29c91e99
TH
3424static void rcu_free_pool(struct rcu_head *rcu)
3425{
3426 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3427
7cda9aae 3428 ida_destroy(&pool->worker_ida);
29c91e99
TH
3429 free_workqueue_attrs(pool->attrs);
3430 kfree(pool);
3431}
3432
3433/**
3434 * put_unbound_pool - put a worker_pool
3435 * @pool: worker_pool to put
3436 *
3437 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3438 * safe manner. get_unbound_pool() calls this function on its failure path
3439 * and this function should be able to release pools which went through,
3440 * successfully or not, init_worker_pool().
a892cacc
TH
3441 *
3442 * Should be called with wq_pool_mutex held.
29c91e99
TH
3443 */
3444static void put_unbound_pool(struct worker_pool *pool)
3445{
60f5a4bc 3446 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3447 struct worker *worker;
3448
a892cacc
TH
3449 lockdep_assert_held(&wq_pool_mutex);
3450
3451 if (--pool->refcnt)
29c91e99 3452 return;
29c91e99
TH
3453
3454 /* sanity checks */
61d0fbb4 3455 if (WARN_ON(!(pool->cpu < 0)) ||
a892cacc 3456 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3457 return;
29c91e99
TH
3458
3459 /* release id and unhash */
3460 if (pool->id >= 0)
3461 idr_remove(&worker_pool_idr, pool->id);
3462 hash_del(&pool->hash_node);
3463
c5aa87bb
TH
3464 /*
3465 * Become the manager and destroy all workers. Grabbing
3466 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3467 * attach_mutex.
c5aa87bb 3468 */
29c91e99 3469 mutex_lock(&pool->manager_arb);
29c91e99 3470
60f5a4bc 3471 spin_lock_irq(&pool->lock);
1037de36 3472 while ((worker = first_idle_worker(pool)))
29c91e99
TH
3473 destroy_worker(worker);
3474 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3475 spin_unlock_irq(&pool->lock);
60f5a4bc 3476
92f9c5c4 3477 mutex_lock(&pool->attach_mutex);
da028469 3478 if (!list_empty(&pool->workers))
60f5a4bc 3479 pool->detach_completion = &detach_completion;
92f9c5c4 3480 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3481
3482 if (pool->detach_completion)
3483 wait_for_completion(pool->detach_completion);
3484
29c91e99
TH
3485 mutex_unlock(&pool->manager_arb);
3486
3487 /* shut down the timers */
3488 del_timer_sync(&pool->idle_timer);
3489 del_timer_sync(&pool->mayday_timer);
3490
3491 /* sched-RCU protected to allow dereferences from get_work_pool() */
3492 call_rcu_sched(&pool->rcu, rcu_free_pool);
3493}
3494
3495/**
3496 * get_unbound_pool - get a worker_pool with the specified attributes
3497 * @attrs: the attributes of the worker_pool to get
3498 *
3499 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3500 * reference count and return it. If there already is a matching
3501 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3502 * create a new one.
a892cacc
TH
3503 *
3504 * Should be called with wq_pool_mutex held.
d185af30
YB
3505 *
3506 * Return: On success, a worker_pool with the same attributes as @attrs.
3507 * On failure, %NULL.
29c91e99
TH
3508 */
3509static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3510{
29c91e99
TH
3511 u32 hash = wqattrs_hash(attrs);
3512 struct worker_pool *pool;
f3f90ad4 3513 int node;
29c91e99 3514
a892cacc 3515 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3516
3517 /* do we already have a matching pool? */
29c91e99
TH
3518 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3519 if (wqattrs_equal(pool->attrs, attrs)) {
3520 pool->refcnt++;
3521 goto out_unlock;
3522 }
3523 }
29c91e99
TH
3524
3525 /* nope, create a new one */
3526 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3527 if (!pool || init_worker_pool(pool) < 0)
3528 goto fail;
3529
8864b4e5 3530 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3531 copy_workqueue_attrs(pool->attrs, attrs);
3532
2865a8fb
SL
3533 /*
3534 * no_numa isn't a worker_pool attribute, always clear it. See
3535 * 'struct workqueue_attrs' comments for detail.
3536 */
3537 pool->attrs->no_numa = false;
3538
f3f90ad4
TH
3539 /* if cpumask is contained inside a NUMA node, we belong to that node */
3540 if (wq_numa_enabled) {
3541 for_each_node(node) {
3542 if (cpumask_subset(pool->attrs->cpumask,
3543 wq_numa_possible_cpumask[node])) {
3544 pool->node = node;
3545 break;
3546 }
3547 }
3548 }
3549
29c91e99
TH
3550 if (worker_pool_assign_id(pool) < 0)
3551 goto fail;
3552
3553 /* create and start the initial worker */
ebf44d16 3554 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3555 goto fail;
3556
29c91e99 3557 /* install */
29c91e99
TH
3558 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3559out_unlock:
29c91e99
TH
3560 return pool;
3561fail:
29c91e99
TH
3562 if (pool)
3563 put_unbound_pool(pool);
3564 return NULL;
3565}
3566
8864b4e5
TH
3567static void rcu_free_pwq(struct rcu_head *rcu)
3568{
3569 kmem_cache_free(pwq_cache,
3570 container_of(rcu, struct pool_workqueue, rcu));
3571}
3572
3573/*
3574 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3575 * and needs to be destroyed.
3576 */
3577static void pwq_unbound_release_workfn(struct work_struct *work)
3578{
3579 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3580 unbound_release_work);
3581 struct workqueue_struct *wq = pwq->wq;
3582 struct worker_pool *pool = pwq->pool;
bc0caf09 3583 bool is_last;
8864b4e5
TH
3584
3585 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3586 return;
3587
75ccf595 3588 /*
3c25a55d 3589 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3590 * necessary on release but do it anyway. It's easier to verify
3591 * and consistent with the linking path.
3592 */
3c25a55d 3593 mutex_lock(&wq->mutex);
8864b4e5 3594 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3595 is_last = list_empty(&wq->pwqs);
3c25a55d 3596 mutex_unlock(&wq->mutex);
8864b4e5 3597
a892cacc 3598 mutex_lock(&wq_pool_mutex);
8864b4e5 3599 put_unbound_pool(pool);
a892cacc
TH
3600 mutex_unlock(&wq_pool_mutex);
3601
8864b4e5
TH
3602 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3603
3604 /*
3605 * If we're the last pwq going away, @wq is already dead and no one
3606 * is gonna access it anymore. Free it.
3607 */
6029a918
TH
3608 if (is_last) {
3609 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3610 kfree(wq);
6029a918 3611 }
8864b4e5
TH
3612}
3613
0fbd95aa 3614/**
699ce097 3615 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3616 * @pwq: target pool_workqueue
0fbd95aa 3617 *
699ce097
TH
3618 * If @pwq isn't freezing, set @pwq->max_active to the associated
3619 * workqueue's saved_max_active and activate delayed work items
3620 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3621 */
699ce097 3622static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3623{
699ce097
TH
3624 struct workqueue_struct *wq = pwq->wq;
3625 bool freezable = wq->flags & WQ_FREEZABLE;
3626
3627 /* for @wq->saved_max_active */
a357fc03 3628 lockdep_assert_held(&wq->mutex);
699ce097
TH
3629
3630 /* fast exit for non-freezable wqs */
3631 if (!freezable && pwq->max_active == wq->saved_max_active)
3632 return;
3633
a357fc03 3634 spin_lock_irq(&pwq->pool->lock);
699ce097 3635
74b414ea
LJ
3636 /*
3637 * During [un]freezing, the caller is responsible for ensuring that
3638 * this function is called at least once after @workqueue_freezing
3639 * is updated and visible.
3640 */
3641 if (!freezable || !workqueue_freezing) {
699ce097 3642 pwq->max_active = wq->saved_max_active;
0fbd95aa 3643
699ce097
TH
3644 while (!list_empty(&pwq->delayed_works) &&
3645 pwq->nr_active < pwq->max_active)
3646 pwq_activate_first_delayed(pwq);
951a078a
LJ
3647
3648 /*
3649 * Need to kick a worker after thawed or an unbound wq's
3650 * max_active is bumped. It's a slow path. Do it always.
3651 */
3652 wake_up_worker(pwq->pool);
699ce097
TH
3653 } else {
3654 pwq->max_active = 0;
3655 }
3656
a357fc03 3657 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3658}
3659
e50aba9a 3660/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3661static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3662 struct worker_pool *pool)
d2c1d404
TH
3663{
3664 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3665
e50aba9a
TH
3666 memset(pwq, 0, sizeof(*pwq));
3667
d2c1d404
TH
3668 pwq->pool = pool;
3669 pwq->wq = wq;
3670 pwq->flush_color = -1;
8864b4e5 3671 pwq->refcnt = 1;
d2c1d404 3672 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3673 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3674 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3675 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3676}
d2c1d404 3677
f147f29e 3678/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3679static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3680{
3681 struct workqueue_struct *wq = pwq->wq;
3682
3683 lockdep_assert_held(&wq->mutex);
75ccf595 3684
1befcf30
TH
3685 /* may be called multiple times, ignore if already linked */
3686 if (!list_empty(&pwq->pwqs_node))
3687 return;
3688
983ca25e
TH
3689 /*
3690 * Set the matching work_color. This is synchronized with
3c25a55d 3691 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3692 */
75ccf595 3693 pwq->work_color = wq->work_color;
983ca25e
TH
3694
3695 /* sync max_active to the current setting */
3696 pwq_adjust_max_active(pwq);
3697
3698 /* link in @pwq */
9e8cd2f5 3699 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3700}
a357fc03 3701
f147f29e
TH
3702/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3703static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3704 const struct workqueue_attrs *attrs)
3705{
3706 struct worker_pool *pool;
3707 struct pool_workqueue *pwq;
3708
3709 lockdep_assert_held(&wq_pool_mutex);
3710
3711 pool = get_unbound_pool(attrs);
3712 if (!pool)
3713 return NULL;
3714
e50aba9a 3715 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3716 if (!pwq) {
3717 put_unbound_pool(pool);
3718 return NULL;
df2d5ae4 3719 }
6029a918 3720
f147f29e
TH
3721 init_pwq(pwq, wq, pool);
3722 return pwq;
d2c1d404
TH
3723}
3724
4c16bd32
TH
3725/* undo alloc_unbound_pwq(), used only in the error path */
3726static void free_unbound_pwq(struct pool_workqueue *pwq)
3727{
3728 lockdep_assert_held(&wq_pool_mutex);
3729
3730 if (pwq) {
3731 put_unbound_pool(pwq->pool);
cece95df 3732 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3733 }
3734}
3735
3736/**
3737 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3738 * @attrs: the wq_attrs of interest
3739 * @node: the target NUMA node
3740 * @cpu_going_down: if >= 0, the CPU to consider as offline
3741 * @cpumask: outarg, the resulting cpumask
3742 *
3743 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3744 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3745 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3746 *
3747 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3748 * enabled and @node has online CPUs requested by @attrs, the returned
3749 * cpumask is the intersection of the possible CPUs of @node and
3750 * @attrs->cpumask.
3751 *
3752 * The caller is responsible for ensuring that the cpumask of @node stays
3753 * stable.
d185af30
YB
3754 *
3755 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3756 * %false if equal.
4c16bd32
TH
3757 */
3758static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3759 int cpu_going_down, cpumask_t *cpumask)
3760{
d55262c4 3761 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3762 goto use_dfl;
3763
3764 /* does @node have any online CPUs @attrs wants? */
3765 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3766 if (cpu_going_down >= 0)
3767 cpumask_clear_cpu(cpu_going_down, cpumask);
3768
3769 if (cpumask_empty(cpumask))
3770 goto use_dfl;
3771
3772 /* yeap, return possible CPUs in @node that @attrs wants */
3773 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3774 return !cpumask_equal(cpumask, attrs->cpumask);
3775
3776use_dfl:
3777 cpumask_copy(cpumask, attrs->cpumask);
3778 return false;
3779}
3780
1befcf30
TH
3781/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3782static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3783 int node,
3784 struct pool_workqueue *pwq)
3785{
3786 struct pool_workqueue *old_pwq;
3787
3788 lockdep_assert_held(&wq->mutex);
3789
3790 /* link_pwq() can handle duplicate calls */
3791 link_pwq(pwq);
3792
3793 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3794 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3795 return old_pwq;
3796}
3797
9e8cd2f5
TH
3798/**
3799 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3800 * @wq: the target workqueue
3801 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3802 *
4c16bd32
TH
3803 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3804 * machines, this function maps a separate pwq to each NUMA node with
3805 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3806 * NUMA node it was issued on. Older pwqs are released as in-flight work
3807 * items finish. Note that a work item which repeatedly requeues itself
3808 * back-to-back will stay on its current pwq.
9e8cd2f5 3809 *
d185af30
YB
3810 * Performs GFP_KERNEL allocations.
3811 *
3812 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3813 */
3814int apply_workqueue_attrs(struct workqueue_struct *wq,
3815 const struct workqueue_attrs *attrs)
3816{
4c16bd32
TH
3817 struct workqueue_attrs *new_attrs, *tmp_attrs;
3818 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3819 int node, ret;
9e8cd2f5 3820
8719dcea 3821 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3822 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3823 return -EINVAL;
3824
8719dcea
TH
3825 /* creating multiple pwqs breaks ordering guarantee */
3826 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3827 return -EINVAL;
3828
4c16bd32 3829 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3830 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3831 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3832 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3833 goto enomem;
3834
4c16bd32 3835 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3836 copy_workqueue_attrs(new_attrs, attrs);
3837 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3838
4c16bd32
TH
3839 /*
3840 * We may create multiple pwqs with differing cpumasks. Make a
3841 * copy of @new_attrs which will be modified and used to obtain
3842 * pools.
3843 */
3844 copy_workqueue_attrs(tmp_attrs, new_attrs);
3845
3846 /*
3847 * CPUs should stay stable across pwq creations and installations.
3848 * Pin CPUs, determine the target cpumask for each node and create
3849 * pwqs accordingly.
3850 */
3851 get_online_cpus();
3852
a892cacc 3853 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3854
3855 /*
3856 * If something goes wrong during CPU up/down, we'll fall back to
3857 * the default pwq covering whole @attrs->cpumask. Always create
3858 * it even if we don't use it immediately.
3859 */
3860 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3861 if (!dfl_pwq)
3862 goto enomem_pwq;
3863
3864 for_each_node(node) {
3865 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3866 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3867 if (!pwq_tbl[node])
3868 goto enomem_pwq;
3869 } else {
3870 dfl_pwq->refcnt++;
3871 pwq_tbl[node] = dfl_pwq;
3872 }
3873 }
3874
f147f29e 3875 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3876
4c16bd32 3877 /* all pwqs have been created successfully, let's install'em */
f147f29e 3878 mutex_lock(&wq->mutex);
a892cacc 3879
f147f29e 3880 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3881
3882 /* save the previous pwq and install the new one */
f147f29e 3883 for_each_node(node)
4c16bd32
TH
3884 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3885
3886 /* @dfl_pwq might not have been used, ensure it's linked */
3887 link_pwq(dfl_pwq);
3888 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3889
3890 mutex_unlock(&wq->mutex);
9e8cd2f5 3891
4c16bd32
TH
3892 /* put the old pwqs */
3893 for_each_node(node)
3894 put_pwq_unlocked(pwq_tbl[node]);
3895 put_pwq_unlocked(dfl_pwq);
3896
3897 put_online_cpus();
4862125b
TH
3898 ret = 0;
3899 /* fall through */
3900out_free:
4c16bd32 3901 free_workqueue_attrs(tmp_attrs);
4862125b 3902 free_workqueue_attrs(new_attrs);
4c16bd32 3903 kfree(pwq_tbl);
4862125b 3904 return ret;
13e2e556 3905
4c16bd32
TH
3906enomem_pwq:
3907 free_unbound_pwq(dfl_pwq);
3908 for_each_node(node)
3909 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3910 free_unbound_pwq(pwq_tbl[node]);
3911 mutex_unlock(&wq_pool_mutex);
3912 put_online_cpus();
13e2e556 3913enomem:
4862125b
TH
3914 ret = -ENOMEM;
3915 goto out_free;
9e8cd2f5
TH
3916}
3917
4c16bd32
TH
3918/**
3919 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3920 * @wq: the target workqueue
3921 * @cpu: the CPU coming up or going down
3922 * @online: whether @cpu is coming up or going down
3923 *
3924 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3925 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3926 * @wq accordingly.
3927 *
3928 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3929 * falls back to @wq->dfl_pwq which may not be optimal but is always
3930 * correct.
3931 *
3932 * Note that when the last allowed CPU of a NUMA node goes offline for a
3933 * workqueue with a cpumask spanning multiple nodes, the workers which were
3934 * already executing the work items for the workqueue will lose their CPU
3935 * affinity and may execute on any CPU. This is similar to how per-cpu
3936 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3937 * affinity, it's the user's responsibility to flush the work item from
3938 * CPU_DOWN_PREPARE.
3939 */
3940static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3941 bool online)
3942{
3943 int node = cpu_to_node(cpu);
3944 int cpu_off = online ? -1 : cpu;
3945 struct pool_workqueue *old_pwq = NULL, *pwq;
3946 struct workqueue_attrs *target_attrs;
3947 cpumask_t *cpumask;
3948
3949 lockdep_assert_held(&wq_pool_mutex);
3950
3951 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3952 return;
3953
3954 /*
3955 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3956 * Let's use a preallocated one. The following buf is protected by
3957 * CPU hotplug exclusion.
3958 */
3959 target_attrs = wq_update_unbound_numa_attrs_buf;
3960 cpumask = target_attrs->cpumask;
3961
3962 mutex_lock(&wq->mutex);
d55262c4
TH
3963 if (wq->unbound_attrs->no_numa)
3964 goto out_unlock;
4c16bd32
TH
3965
3966 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3967 pwq = unbound_pwq_by_node(wq, node);
3968
3969 /*
3970 * Let's determine what needs to be done. If the target cpumask is
3971 * different from wq's, we need to compare it to @pwq's and create
3972 * a new one if they don't match. If the target cpumask equals
534a3fbb 3973 * wq's, the default pwq should be used.
4c16bd32
TH
3974 */
3975 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3976 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3977 goto out_unlock;
3978 } else {
534a3fbb 3979 goto use_dfl_pwq;
4c16bd32
TH
3980 }
3981
3982 mutex_unlock(&wq->mutex);
3983
3984 /* create a new pwq */
3985 pwq = alloc_unbound_pwq(wq, target_attrs);
3986 if (!pwq) {
2d916033
FF
3987 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3988 wq->name);
77f300b1
DY
3989 mutex_lock(&wq->mutex);
3990 goto use_dfl_pwq;
4c16bd32
TH
3991 }
3992
3993 /*
3994 * Install the new pwq. As this function is called only from CPU
3995 * hotplug callbacks and applying a new attrs is wrapped with
3996 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3997 * inbetween.
3998 */
3999 mutex_lock(&wq->mutex);
4000 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4001 goto out_unlock;
4002
4003use_dfl_pwq:
4004 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4005 get_pwq(wq->dfl_pwq);
4006 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4007 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4008out_unlock:
4009 mutex_unlock(&wq->mutex);
4010 put_pwq_unlocked(old_pwq);
4011}
4012
30cdf249 4013static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4014{
49e3cf44 4015 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4016 int cpu, ret;
30cdf249
TH
4017
4018 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4019 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4020 if (!wq->cpu_pwqs)
30cdf249
TH
4021 return -ENOMEM;
4022
4023 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4024 struct pool_workqueue *pwq =
4025 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4026 struct worker_pool *cpu_pools =
f02ae73a 4027 per_cpu(cpu_worker_pools, cpu);
f3421797 4028
f147f29e
TH
4029 init_pwq(pwq, wq, &cpu_pools[highpri]);
4030
4031 mutex_lock(&wq->mutex);
1befcf30 4032 link_pwq(pwq);
f147f29e 4033 mutex_unlock(&wq->mutex);
30cdf249 4034 }
9e8cd2f5 4035 return 0;
8a2b7538
TH
4036 } else if (wq->flags & __WQ_ORDERED) {
4037 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4038 /* there should only be single pwq for ordering guarantee */
4039 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4040 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4041 "ordering guarantee broken for workqueue %s\n", wq->name);
4042 return ret;
30cdf249 4043 } else {
9e8cd2f5 4044 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4045 }
0f900049
TH
4046}
4047
f3421797
TH
4048static int wq_clamp_max_active(int max_active, unsigned int flags,
4049 const char *name)
b71ab8c2 4050{
f3421797
TH
4051 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4052
4053 if (max_active < 1 || max_active > lim)
044c782c
VI
4054 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4055 max_active, name, 1, lim);
b71ab8c2 4056
f3421797 4057 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4058}
4059
b196be89 4060struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4061 unsigned int flags,
4062 int max_active,
4063 struct lock_class_key *key,
b196be89 4064 const char *lock_name, ...)
1da177e4 4065{
df2d5ae4 4066 size_t tbl_size = 0;
ecf6881f 4067 va_list args;
1da177e4 4068 struct workqueue_struct *wq;
49e3cf44 4069 struct pool_workqueue *pwq;
b196be89 4070
cee22a15
VK
4071 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4072 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4073 flags |= WQ_UNBOUND;
4074
ecf6881f 4075 /* allocate wq and format name */
df2d5ae4
TH
4076 if (flags & WQ_UNBOUND)
4077 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4078
4079 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4080 if (!wq)
d2c1d404 4081 return NULL;
b196be89 4082
6029a918
TH
4083 if (flags & WQ_UNBOUND) {
4084 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4085 if (!wq->unbound_attrs)
4086 goto err_free_wq;
4087 }
4088
ecf6881f
TH
4089 va_start(args, lock_name);
4090 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4091 va_end(args);
1da177e4 4092
d320c038 4093 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4094 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4095
b196be89 4096 /* init wq */
97e37d7b 4097 wq->flags = flags;
a0a1a5fd 4098 wq->saved_max_active = max_active;
3c25a55d 4099 mutex_init(&wq->mutex);
112202d9 4100 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4101 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4102 INIT_LIST_HEAD(&wq->flusher_queue);
4103 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4104 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4105
eb13ba87 4106 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4107 INIT_LIST_HEAD(&wq->list);
3af24433 4108
30cdf249 4109 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4110 goto err_free_wq;
1537663f 4111
493008a8
TH
4112 /*
4113 * Workqueues which may be used during memory reclaim should
4114 * have a rescuer to guarantee forward progress.
4115 */
4116 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4117 struct worker *rescuer;
4118
d2c1d404 4119 rescuer = alloc_worker();
e22bee78 4120 if (!rescuer)
d2c1d404 4121 goto err_destroy;
e22bee78 4122
111c225a
TH
4123 rescuer->rescue_wq = wq;
4124 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4125 wq->name);
d2c1d404
TH
4126 if (IS_ERR(rescuer->task)) {
4127 kfree(rescuer);
4128 goto err_destroy;
4129 }
e22bee78 4130
d2c1d404 4131 wq->rescuer = rescuer;
14a40ffc 4132 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4133 wake_up_process(rescuer->task);
3af24433
ON
4134 }
4135
226223ab
TH
4136 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4137 goto err_destroy;
4138
a0a1a5fd 4139 /*
68e13a67
LJ
4140 * wq_pool_mutex protects global freeze state and workqueues list.
4141 * Grab it, adjust max_active and add the new @wq to workqueues
4142 * list.
a0a1a5fd 4143 */
68e13a67 4144 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4145
a357fc03 4146 mutex_lock(&wq->mutex);
699ce097
TH
4147 for_each_pwq(pwq, wq)
4148 pwq_adjust_max_active(pwq);
a357fc03 4149 mutex_unlock(&wq->mutex);
a0a1a5fd 4150
1537663f 4151 list_add(&wq->list, &workqueues);
a0a1a5fd 4152
68e13a67 4153 mutex_unlock(&wq_pool_mutex);
1537663f 4154
3af24433 4155 return wq;
d2c1d404
TH
4156
4157err_free_wq:
6029a918 4158 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4159 kfree(wq);
4160 return NULL;
4161err_destroy:
4162 destroy_workqueue(wq);
4690c4ab 4163 return NULL;
3af24433 4164}
d320c038 4165EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4166
3af24433
ON
4167/**
4168 * destroy_workqueue - safely terminate a workqueue
4169 * @wq: target workqueue
4170 *
4171 * Safely destroy a workqueue. All work currently pending will be done first.
4172 */
4173void destroy_workqueue(struct workqueue_struct *wq)
4174{
49e3cf44 4175 struct pool_workqueue *pwq;
4c16bd32 4176 int node;
3af24433 4177
9c5a2ba7
TH
4178 /* drain it before proceeding with destruction */
4179 drain_workqueue(wq);
c8efcc25 4180
6183c009 4181 /* sanity checks */
b09f4fd3 4182 mutex_lock(&wq->mutex);
49e3cf44 4183 for_each_pwq(pwq, wq) {
6183c009
TH
4184 int i;
4185
76af4d93
TH
4186 for (i = 0; i < WORK_NR_COLORS; i++) {
4187 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4188 mutex_unlock(&wq->mutex);
6183c009 4189 return;
76af4d93
TH
4190 }
4191 }
4192
5c529597 4193 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4194 WARN_ON(pwq->nr_active) ||
76af4d93 4195 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4196 mutex_unlock(&wq->mutex);
6183c009 4197 return;
76af4d93 4198 }
6183c009 4199 }
b09f4fd3 4200 mutex_unlock(&wq->mutex);
6183c009 4201
a0a1a5fd
TH
4202 /*
4203 * wq list is used to freeze wq, remove from list after
4204 * flushing is complete in case freeze races us.
4205 */
68e13a67 4206 mutex_lock(&wq_pool_mutex);
d2c1d404 4207 list_del_init(&wq->list);
68e13a67 4208 mutex_unlock(&wq_pool_mutex);
3af24433 4209
226223ab
TH
4210 workqueue_sysfs_unregister(wq);
4211
493008a8 4212 if (wq->rescuer) {
e22bee78 4213 kthread_stop(wq->rescuer->task);
8d9df9f0 4214 kfree(wq->rescuer);
493008a8 4215 wq->rescuer = NULL;
e22bee78
TH
4216 }
4217
8864b4e5
TH
4218 if (!(wq->flags & WQ_UNBOUND)) {
4219 /*
4220 * The base ref is never dropped on per-cpu pwqs. Directly
4221 * free the pwqs and wq.
4222 */
4223 free_percpu(wq->cpu_pwqs);
4224 kfree(wq);
4225 } else {
4226 /*
4227 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4228 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4229 * @wq will be freed when the last pwq is released.
8864b4e5 4230 */
4c16bd32
TH
4231 for_each_node(node) {
4232 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4233 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4234 put_pwq_unlocked(pwq);
4235 }
4236
4237 /*
4238 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4239 * put. Don't access it afterwards.
4240 */
4241 pwq = wq->dfl_pwq;
4242 wq->dfl_pwq = NULL;
dce90d47 4243 put_pwq_unlocked(pwq);
29c91e99 4244 }
3af24433
ON
4245}
4246EXPORT_SYMBOL_GPL(destroy_workqueue);
4247
dcd989cb
TH
4248/**
4249 * workqueue_set_max_active - adjust max_active of a workqueue
4250 * @wq: target workqueue
4251 * @max_active: new max_active value.
4252 *
4253 * Set max_active of @wq to @max_active.
4254 *
4255 * CONTEXT:
4256 * Don't call from IRQ context.
4257 */
4258void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4259{
49e3cf44 4260 struct pool_workqueue *pwq;
dcd989cb 4261
8719dcea
TH
4262 /* disallow meddling with max_active for ordered workqueues */
4263 if (WARN_ON(wq->flags & __WQ_ORDERED))
4264 return;
4265
f3421797 4266 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4267
a357fc03 4268 mutex_lock(&wq->mutex);
dcd989cb
TH
4269
4270 wq->saved_max_active = max_active;
4271
699ce097
TH
4272 for_each_pwq(pwq, wq)
4273 pwq_adjust_max_active(pwq);
93981800 4274
a357fc03 4275 mutex_unlock(&wq->mutex);
15316ba8 4276}
dcd989cb 4277EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4278
e6267616
TH
4279/**
4280 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4281 *
4282 * Determine whether %current is a workqueue rescuer. Can be used from
4283 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4284 *
4285 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4286 */
4287bool current_is_workqueue_rescuer(void)
4288{
4289 struct worker *worker = current_wq_worker();
4290
6a092dfd 4291 return worker && worker->rescue_wq;
e6267616
TH
4292}
4293
eef6a7d5 4294/**
dcd989cb
TH
4295 * workqueue_congested - test whether a workqueue is congested
4296 * @cpu: CPU in question
4297 * @wq: target workqueue
eef6a7d5 4298 *
dcd989cb
TH
4299 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4300 * no synchronization around this function and the test result is
4301 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4302 *
d3251859
TH
4303 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4304 * Note that both per-cpu and unbound workqueues may be associated with
4305 * multiple pool_workqueues which have separate congested states. A
4306 * workqueue being congested on one CPU doesn't mean the workqueue is also
4307 * contested on other CPUs / NUMA nodes.
4308 *
d185af30 4309 * Return:
dcd989cb 4310 * %true if congested, %false otherwise.
eef6a7d5 4311 */
d84ff051 4312bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4313{
7fb98ea7 4314 struct pool_workqueue *pwq;
76af4d93
TH
4315 bool ret;
4316
88109453 4317 rcu_read_lock_sched();
7fb98ea7 4318
d3251859
TH
4319 if (cpu == WORK_CPU_UNBOUND)
4320 cpu = smp_processor_id();
4321
7fb98ea7
TH
4322 if (!(wq->flags & WQ_UNBOUND))
4323 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4324 else
df2d5ae4 4325 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4326
76af4d93 4327 ret = !list_empty(&pwq->delayed_works);
88109453 4328 rcu_read_unlock_sched();
76af4d93
TH
4329
4330 return ret;
1da177e4 4331}
dcd989cb 4332EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4333
dcd989cb
TH
4334/**
4335 * work_busy - test whether a work is currently pending or running
4336 * @work: the work to be tested
4337 *
4338 * Test whether @work is currently pending or running. There is no
4339 * synchronization around this function and the test result is
4340 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4341 *
d185af30 4342 * Return:
dcd989cb
TH
4343 * OR'd bitmask of WORK_BUSY_* bits.
4344 */
4345unsigned int work_busy(struct work_struct *work)
1da177e4 4346{
fa1b54e6 4347 struct worker_pool *pool;
dcd989cb
TH
4348 unsigned long flags;
4349 unsigned int ret = 0;
1da177e4 4350
dcd989cb
TH
4351 if (work_pending(work))
4352 ret |= WORK_BUSY_PENDING;
1da177e4 4353
fa1b54e6
TH
4354 local_irq_save(flags);
4355 pool = get_work_pool(work);
038366c5 4356 if (pool) {
fa1b54e6 4357 spin_lock(&pool->lock);
038366c5
LJ
4358 if (find_worker_executing_work(pool, work))
4359 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4360 spin_unlock(&pool->lock);
038366c5 4361 }
fa1b54e6 4362 local_irq_restore(flags);
1da177e4 4363
dcd989cb 4364 return ret;
1da177e4 4365}
dcd989cb 4366EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4367
3d1cb205
TH
4368/**
4369 * set_worker_desc - set description for the current work item
4370 * @fmt: printf-style format string
4371 * @...: arguments for the format string
4372 *
4373 * This function can be called by a running work function to describe what
4374 * the work item is about. If the worker task gets dumped, this
4375 * information will be printed out together to help debugging. The
4376 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4377 */
4378void set_worker_desc(const char *fmt, ...)
4379{
4380 struct worker *worker = current_wq_worker();
4381 va_list args;
4382
4383 if (worker) {
4384 va_start(args, fmt);
4385 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4386 va_end(args);
4387 worker->desc_valid = true;
4388 }
4389}
4390
4391/**
4392 * print_worker_info - print out worker information and description
4393 * @log_lvl: the log level to use when printing
4394 * @task: target task
4395 *
4396 * If @task is a worker and currently executing a work item, print out the
4397 * name of the workqueue being serviced and worker description set with
4398 * set_worker_desc() by the currently executing work item.
4399 *
4400 * This function can be safely called on any task as long as the
4401 * task_struct itself is accessible. While safe, this function isn't
4402 * synchronized and may print out mixups or garbages of limited length.
4403 */
4404void print_worker_info(const char *log_lvl, struct task_struct *task)
4405{
4406 work_func_t *fn = NULL;
4407 char name[WQ_NAME_LEN] = { };
4408 char desc[WORKER_DESC_LEN] = { };
4409 struct pool_workqueue *pwq = NULL;
4410 struct workqueue_struct *wq = NULL;
4411 bool desc_valid = false;
4412 struct worker *worker;
4413
4414 if (!(task->flags & PF_WQ_WORKER))
4415 return;
4416
4417 /*
4418 * This function is called without any synchronization and @task
4419 * could be in any state. Be careful with dereferences.
4420 */
4421 worker = probe_kthread_data(task);
4422
4423 /*
4424 * Carefully copy the associated workqueue's workfn and name. Keep
4425 * the original last '\0' in case the original contains garbage.
4426 */
4427 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4428 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4429 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4430 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4431
4432 /* copy worker description */
4433 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4434 if (desc_valid)
4435 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4436
4437 if (fn || name[0] || desc[0]) {
4438 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4439 if (desc[0])
4440 pr_cont(" (%s)", desc);
4441 pr_cont("\n");
4442 }
4443}
4444
db7bccf4
TH
4445/*
4446 * CPU hotplug.
4447 *
e22bee78 4448 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4449 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4450 * pool which make migrating pending and scheduled works very
e22bee78 4451 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4452 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4453 * blocked draining impractical.
4454 *
24647570 4455 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4456 * running as an unbound one and allowing it to be reattached later if the
4457 * cpu comes back online.
db7bccf4 4458 */
1da177e4 4459
706026c2 4460static void wq_unbind_fn(struct work_struct *work)
3af24433 4461{
38db41d9 4462 int cpu = smp_processor_id();
4ce62e9e 4463 struct worker_pool *pool;
db7bccf4 4464 struct worker *worker;
3af24433 4465
f02ae73a 4466 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4467 mutex_lock(&pool->attach_mutex);
94cf58bb 4468 spin_lock_irq(&pool->lock);
3af24433 4469
94cf58bb 4470 /*
92f9c5c4 4471 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4472 * unbound and set DISASSOCIATED. Before this, all workers
4473 * except for the ones which are still executing works from
4474 * before the last CPU down must be on the cpu. After
4475 * this, they may become diasporas.
4476 */
da028469 4477 for_each_pool_worker(worker, pool)
c9e7cf27 4478 worker->flags |= WORKER_UNBOUND;
06ba38a9 4479
24647570 4480 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4481
94cf58bb 4482 spin_unlock_irq(&pool->lock);
92f9c5c4 4483 mutex_unlock(&pool->attach_mutex);
628c78e7 4484
eb283428
LJ
4485 /*
4486 * Call schedule() so that we cross rq->lock and thus can
4487 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4488 * This is necessary as scheduler callbacks may be invoked
4489 * from other cpus.
4490 */
4491 schedule();
06ba38a9 4492
eb283428
LJ
4493 /*
4494 * Sched callbacks are disabled now. Zap nr_running.
4495 * After this, nr_running stays zero and need_more_worker()
4496 * and keep_working() are always true as long as the
4497 * worklist is not empty. This pool now behaves as an
4498 * unbound (in terms of concurrency management) pool which
4499 * are served by workers tied to the pool.
4500 */
e19e397a 4501 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4502
4503 /*
4504 * With concurrency management just turned off, a busy
4505 * worker blocking could lead to lengthy stalls. Kick off
4506 * unbound chain execution of currently pending work items.
4507 */
4508 spin_lock_irq(&pool->lock);
4509 wake_up_worker(pool);
4510 spin_unlock_irq(&pool->lock);
4511 }
3af24433 4512}
3af24433 4513
bd7c089e
TH
4514/**
4515 * rebind_workers - rebind all workers of a pool to the associated CPU
4516 * @pool: pool of interest
4517 *
a9ab775b 4518 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4519 */
4520static void rebind_workers(struct worker_pool *pool)
4521{
a9ab775b 4522 struct worker *worker;
bd7c089e 4523
92f9c5c4 4524 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4525
a9ab775b
TH
4526 /*
4527 * Restore CPU affinity of all workers. As all idle workers should
4528 * be on the run-queue of the associated CPU before any local
4529 * wake-ups for concurrency management happen, restore CPU affinty
4530 * of all workers first and then clear UNBOUND. As we're called
4531 * from CPU_ONLINE, the following shouldn't fail.
4532 */
da028469 4533 for_each_pool_worker(worker, pool)
a9ab775b
TH
4534 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4535 pool->attrs->cpumask) < 0);
bd7c089e 4536
a9ab775b 4537 spin_lock_irq(&pool->lock);
bd7c089e 4538
da028469 4539 for_each_pool_worker(worker, pool) {
a9ab775b 4540 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4541
4542 /*
a9ab775b
TH
4543 * A bound idle worker should actually be on the runqueue
4544 * of the associated CPU for local wake-ups targeting it to
4545 * work. Kick all idle workers so that they migrate to the
4546 * associated CPU. Doing this in the same loop as
4547 * replacing UNBOUND with REBOUND is safe as no worker will
4548 * be bound before @pool->lock is released.
bd7c089e 4549 */
a9ab775b
TH
4550 if (worker_flags & WORKER_IDLE)
4551 wake_up_process(worker->task);
bd7c089e 4552
a9ab775b
TH
4553 /*
4554 * We want to clear UNBOUND but can't directly call
4555 * worker_clr_flags() or adjust nr_running. Atomically
4556 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4557 * @worker will clear REBOUND using worker_clr_flags() when
4558 * it initiates the next execution cycle thus restoring
4559 * concurrency management. Note that when or whether
4560 * @worker clears REBOUND doesn't affect correctness.
4561 *
4562 * ACCESS_ONCE() is necessary because @worker->flags may be
4563 * tested without holding any lock in
4564 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4565 * fail incorrectly leading to premature concurrency
4566 * management operations.
4567 */
4568 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4569 worker_flags |= WORKER_REBOUND;
4570 worker_flags &= ~WORKER_UNBOUND;
4571 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4572 }
a9ab775b
TH
4573
4574 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4575}
4576
7dbc725e
TH
4577/**
4578 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4579 * @pool: unbound pool of interest
4580 * @cpu: the CPU which is coming up
4581 *
4582 * An unbound pool may end up with a cpumask which doesn't have any online
4583 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4584 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4585 * online CPU before, cpus_allowed of all its workers should be restored.
4586 */
4587static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4588{
4589 static cpumask_t cpumask;
4590 struct worker *worker;
7dbc725e 4591
92f9c5c4 4592 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4593
4594 /* is @cpu allowed for @pool? */
4595 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4596 return;
4597
4598 /* is @cpu the only online CPU? */
4599 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4600 if (cpumask_weight(&cpumask) != 1)
4601 return;
4602
4603 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4604 for_each_pool_worker(worker, pool)
7dbc725e
TH
4605 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4606 pool->attrs->cpumask) < 0);
4607}
4608
8db25e78
TH
4609/*
4610 * Workqueues should be brought up before normal priority CPU notifiers.
4611 * This will be registered high priority CPU notifier.
4612 */
0db0628d 4613static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4614 unsigned long action,
4615 void *hcpu)
3af24433 4616{
d84ff051 4617 int cpu = (unsigned long)hcpu;
4ce62e9e 4618 struct worker_pool *pool;
4c16bd32 4619 struct workqueue_struct *wq;
7dbc725e 4620 int pi;
3ce63377 4621
8db25e78 4622 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4623 case CPU_UP_PREPARE:
f02ae73a 4624 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4625 if (pool->nr_workers)
4626 continue;
ebf44d16 4627 if (create_and_start_worker(pool) < 0)
3ce63377 4628 return NOTIFY_BAD;
3af24433 4629 }
8db25e78 4630 break;
3af24433 4631
db7bccf4
TH
4632 case CPU_DOWN_FAILED:
4633 case CPU_ONLINE:
68e13a67 4634 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4635
4636 for_each_pool(pool, pi) {
92f9c5c4 4637 mutex_lock(&pool->attach_mutex);
94cf58bb 4638
7dbc725e
TH
4639 if (pool->cpu == cpu) {
4640 spin_lock_irq(&pool->lock);
4641 pool->flags &= ~POOL_DISASSOCIATED;
4642 spin_unlock_irq(&pool->lock);
a9ab775b 4643
7dbc725e
TH
4644 rebind_workers(pool);
4645 } else if (pool->cpu < 0) {
4646 restore_unbound_workers_cpumask(pool, cpu);
4647 }
94cf58bb 4648
92f9c5c4 4649 mutex_unlock(&pool->attach_mutex);
94cf58bb 4650 }
7dbc725e 4651
4c16bd32
TH
4652 /* update NUMA affinity of unbound workqueues */
4653 list_for_each_entry(wq, &workqueues, list)
4654 wq_update_unbound_numa(wq, cpu, true);
4655
68e13a67 4656 mutex_unlock(&wq_pool_mutex);
db7bccf4 4657 break;
00dfcaf7 4658 }
65758202
TH
4659 return NOTIFY_OK;
4660}
4661
4662/*
4663 * Workqueues should be brought down after normal priority CPU notifiers.
4664 * This will be registered as low priority CPU notifier.
4665 */
0db0628d 4666static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4667 unsigned long action,
4668 void *hcpu)
4669{
d84ff051 4670 int cpu = (unsigned long)hcpu;
8db25e78 4671 struct work_struct unbind_work;
4c16bd32 4672 struct workqueue_struct *wq;
8db25e78 4673
65758202
TH
4674 switch (action & ~CPU_TASKS_FROZEN) {
4675 case CPU_DOWN_PREPARE:
4c16bd32 4676 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4677 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4678 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4679
4680 /* update NUMA affinity of unbound workqueues */
4681 mutex_lock(&wq_pool_mutex);
4682 list_for_each_entry(wq, &workqueues, list)
4683 wq_update_unbound_numa(wq, cpu, false);
4684 mutex_unlock(&wq_pool_mutex);
4685
4686 /* wait for per-cpu unbinding to finish */
8db25e78 4687 flush_work(&unbind_work);
440a1136 4688 destroy_work_on_stack(&unbind_work);
8db25e78 4689 break;
65758202
TH
4690 }
4691 return NOTIFY_OK;
4692}
4693
2d3854a3 4694#ifdef CONFIG_SMP
8ccad40d 4695
2d3854a3 4696struct work_for_cpu {
ed48ece2 4697 struct work_struct work;
2d3854a3
RR
4698 long (*fn)(void *);
4699 void *arg;
4700 long ret;
4701};
4702
ed48ece2 4703static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4704{
ed48ece2
TH
4705 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4706
2d3854a3
RR
4707 wfc->ret = wfc->fn(wfc->arg);
4708}
4709
4710/**
4711 * work_on_cpu - run a function in user context on a particular cpu
4712 * @cpu: the cpu to run on
4713 * @fn: the function to run
4714 * @arg: the function arg
4715 *
31ad9081 4716 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4717 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4718 *
4719 * Return: The value @fn returns.
2d3854a3 4720 */
d84ff051 4721long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4722{
ed48ece2 4723 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4724
ed48ece2
TH
4725 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4726 schedule_work_on(cpu, &wfc.work);
12997d1a 4727 flush_work(&wfc.work);
440a1136 4728 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4729 return wfc.ret;
4730}
4731EXPORT_SYMBOL_GPL(work_on_cpu);
4732#endif /* CONFIG_SMP */
4733
a0a1a5fd
TH
4734#ifdef CONFIG_FREEZER
4735
4736/**
4737 * freeze_workqueues_begin - begin freezing workqueues
4738 *
58a69cb4 4739 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4740 * workqueues will queue new works to their delayed_works list instead of
706026c2 4741 * pool->worklist.
a0a1a5fd
TH
4742 *
4743 * CONTEXT:
a357fc03 4744 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4745 */
4746void freeze_workqueues_begin(void)
4747{
24b8a847
TH
4748 struct workqueue_struct *wq;
4749 struct pool_workqueue *pwq;
a0a1a5fd 4750
68e13a67 4751 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4752
6183c009 4753 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4754 workqueue_freezing = true;
4755
24b8a847 4756 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4757 mutex_lock(&wq->mutex);
699ce097
TH
4758 for_each_pwq(pwq, wq)
4759 pwq_adjust_max_active(pwq);
a357fc03 4760 mutex_unlock(&wq->mutex);
a0a1a5fd 4761 }
5bcab335 4762
68e13a67 4763 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4764}
4765
4766/**
58a69cb4 4767 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4768 *
4769 * Check whether freezing is complete. This function must be called
4770 * between freeze_workqueues_begin() and thaw_workqueues().
4771 *
4772 * CONTEXT:
68e13a67 4773 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4774 *
d185af30 4775 * Return:
58a69cb4
TH
4776 * %true if some freezable workqueues are still busy. %false if freezing
4777 * is complete.
a0a1a5fd
TH
4778 */
4779bool freeze_workqueues_busy(void)
4780{
a0a1a5fd 4781 bool busy = false;
24b8a847
TH
4782 struct workqueue_struct *wq;
4783 struct pool_workqueue *pwq;
a0a1a5fd 4784
68e13a67 4785 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4786
6183c009 4787 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4788
24b8a847
TH
4789 list_for_each_entry(wq, &workqueues, list) {
4790 if (!(wq->flags & WQ_FREEZABLE))
4791 continue;
a0a1a5fd
TH
4792 /*
4793 * nr_active is monotonically decreasing. It's safe
4794 * to peek without lock.
4795 */
88109453 4796 rcu_read_lock_sched();
24b8a847 4797 for_each_pwq(pwq, wq) {
6183c009 4798 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4799 if (pwq->nr_active) {
a0a1a5fd 4800 busy = true;
88109453 4801 rcu_read_unlock_sched();
a0a1a5fd
TH
4802 goto out_unlock;
4803 }
4804 }
88109453 4805 rcu_read_unlock_sched();
a0a1a5fd
TH
4806 }
4807out_unlock:
68e13a67 4808 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4809 return busy;
4810}
4811
4812/**
4813 * thaw_workqueues - thaw workqueues
4814 *
4815 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4816 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4817 *
4818 * CONTEXT:
a357fc03 4819 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4820 */
4821void thaw_workqueues(void)
4822{
24b8a847
TH
4823 struct workqueue_struct *wq;
4824 struct pool_workqueue *pwq;
a0a1a5fd 4825
68e13a67 4826 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4827
4828 if (!workqueue_freezing)
4829 goto out_unlock;
4830
74b414ea 4831 workqueue_freezing = false;
8b03ae3c 4832
24b8a847
TH
4833 /* restore max_active and repopulate worklist */
4834 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4835 mutex_lock(&wq->mutex);
699ce097
TH
4836 for_each_pwq(pwq, wq)
4837 pwq_adjust_max_active(pwq);
a357fc03 4838 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4839 }
4840
a0a1a5fd 4841out_unlock:
68e13a67 4842 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4843}
4844#endif /* CONFIG_FREEZER */
4845
bce90380
TH
4846static void __init wq_numa_init(void)
4847{
4848 cpumask_var_t *tbl;
4849 int node, cpu;
4850
4851 /* determine NUMA pwq table len - highest node id + 1 */
4852 for_each_node(node)
4853 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4854
4855 if (num_possible_nodes() <= 1)
4856 return;
4857
d55262c4
TH
4858 if (wq_disable_numa) {
4859 pr_info("workqueue: NUMA affinity support disabled\n");
4860 return;
4861 }
4862
4c16bd32
TH
4863 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4864 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4865
bce90380
TH
4866 /*
4867 * We want masks of possible CPUs of each node which isn't readily
4868 * available. Build one from cpu_to_node() which should have been
4869 * fully initialized by now.
4870 */
4871 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4872 BUG_ON(!tbl);
4873
4874 for_each_node(node)
1be0c25d
TH
4875 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4876 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4877
4878 for_each_possible_cpu(cpu) {
4879 node = cpu_to_node(cpu);
4880 if (WARN_ON(node == NUMA_NO_NODE)) {
4881 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4882 /* happens iff arch is bonkers, let's just proceed */
4883 return;
4884 }
4885 cpumask_set_cpu(cpu, tbl[node]);
4886 }
4887
4888 wq_numa_possible_cpumask = tbl;
4889 wq_numa_enabled = true;
4890}
4891
6ee0578b 4892static int __init init_workqueues(void)
1da177e4 4893{
7a4e344c
TH
4894 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4895 int i, cpu;
c34056a3 4896
e904e6c2
TH
4897 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4898
4899 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4900
65758202 4901 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4902 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4903
bce90380
TH
4904 wq_numa_init();
4905
706026c2 4906 /* initialize CPU pools */
29c91e99 4907 for_each_possible_cpu(cpu) {
4ce62e9e 4908 struct worker_pool *pool;
8b03ae3c 4909
7a4e344c 4910 i = 0;
f02ae73a 4911 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4912 BUG_ON(init_worker_pool(pool));
ec22ca5e 4913 pool->cpu = cpu;
29c91e99 4914 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4915 pool->attrs->nice = std_nice[i++];
f3f90ad4 4916 pool->node = cpu_to_node(cpu);
7a4e344c 4917
9daf9e67 4918 /* alloc pool ID */
68e13a67 4919 mutex_lock(&wq_pool_mutex);
9daf9e67 4920 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4921 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4922 }
8b03ae3c
TH
4923 }
4924
e22bee78 4925 /* create the initial worker */
29c91e99 4926 for_each_online_cpu(cpu) {
4ce62e9e 4927 struct worker_pool *pool;
e22bee78 4928
f02ae73a 4929 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4930 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4931 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4932 }
e22bee78
TH
4933 }
4934
8a2b7538 4935 /* create default unbound and ordered wq attrs */
29c91e99
TH
4936 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4937 struct workqueue_attrs *attrs;
4938
4939 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4940 attrs->nice = std_nice[i];
29c91e99 4941 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
4942
4943 /*
4944 * An ordered wq should have only one pwq as ordering is
4945 * guaranteed by max_active which is enforced by pwqs.
4946 * Turn off NUMA so that dfl_pwq is used for all nodes.
4947 */
4948 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4949 attrs->nice = std_nice[i];
4950 attrs->no_numa = true;
4951 ordered_wq_attrs[i] = attrs;
29c91e99
TH
4952 }
4953
d320c038 4954 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4955 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4956 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4957 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4958 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4959 system_freezable_wq = alloc_workqueue("events_freezable",
4960 WQ_FREEZABLE, 0);
0668106c
VK
4961 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4962 WQ_POWER_EFFICIENT, 0);
4963 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4964 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4965 0);
1aabe902 4966 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
4967 !system_unbound_wq || !system_freezable_wq ||
4968 !system_power_efficient_wq ||
4969 !system_freezable_power_efficient_wq);
6ee0578b 4970 return 0;
1da177e4 4971}
6ee0578b 4972early_initcall(init_workqueues);