workqueue: swap set_cpus_allowed_ptr() and PF_NO_SETAFFINITY
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36
TH
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
3270476a 106 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
822d8405
TH
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
68e13a67 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 133 *
3c25a55d
LJ
134 * WQ: wq->mutex protected.
135 *
b5927605 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
137 *
138 * MD: wq_mayday_lock protected.
1da177e4 139 */
1da177e4 140
2eaebdb3 141/* struct worker is defined in workqueue_internal.h */
c34056a3 142
bd7bdd43 143struct worker_pool {
d565ed63 144 spinlock_t lock; /* the pool lock */
d84ff051 145 int cpu; /* I: the associated cpu */
f3f90ad4 146 int node; /* I: the associated node ID */
9daf9e67 147 int id; /* I: pool ID */
11ebea50 148 unsigned int flags; /* X: flags */
bd7bdd43
TH
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
152
153 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
c5aa87bb 160 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
bc3a1afc 164 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 165 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 166 struct mutex manager_mutex; /* manager exclusion */
822d8405 167 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 234 struct list_head list; /* PL: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
265};
266
e904e6c2
TH
267static struct kmem_cache *pwq_cache;
268
bce90380
TH
269static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
d55262c4
TH
273static bool wq_disable_numa;
274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
cee22a15
VK
276/* see the comment above the definition of WQ_POWER_EFFICIENT */
277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278static bool wq_power_efficient = true;
279#else
280static bool wq_power_efficient;
281#endif
282
283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
bce90380
TH
285static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
4c16bd32
TH
287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
68e13a67 290static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 291static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 292
68e13a67
LJ
293static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
295
296/* the per-cpu worker pools */
297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
68e13a67 300static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 301
68e13a67 302/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
c5aa87bb 305/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
d320c038 308struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 309EXPORT_SYMBOL(system_wq);
044c782c 310struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 311EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 312struct workqueue_struct *system_long_wq __read_mostly;
d320c038 313EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 314struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 315EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 316struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 317EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
318struct workqueue_struct *system_power_efficient_wq __read_mostly;
319EXPORT_SYMBOL_GPL(system_power_efficient_wq);
320struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 322
7d19c5ce
TH
323static int worker_thread(void *__worker);
324static void copy_workqueue_attrs(struct workqueue_attrs *to,
325 const struct workqueue_attrs *from);
326
97bd2347
TH
327#define CREATE_TRACE_POINTS
328#include <trace/events/workqueue.h>
329
68e13a67 330#define assert_rcu_or_pool_mutex() \
5bcab335 331 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
332 lockdep_is_held(&wq_pool_mutex), \
333 "sched RCU or wq_pool_mutex should be held")
5bcab335 334
b09f4fd3 335#define assert_rcu_or_wq_mutex(wq) \
76af4d93 336 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 337 lockdep_is_held(&wq->mutex), \
b09f4fd3 338 "sched RCU or wq->mutex should be held")
76af4d93 339
822d8405
TH
340#ifdef CONFIG_LOCKDEP
341#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
342 WARN_ONCE(debug_locks && \
343 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
344 !lockdep_is_held(&(pool)->lock), \
345 "pool->manager_mutex or ->lock should be held")
346#else
347#define assert_manager_or_pool_lock(pool) do { } while (0)
348#endif
349
f02ae73a
TH
350#define for_each_cpu_worker_pool(pool, cpu) \
351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 353 (pool)++)
4ce62e9e 354
17116969
TH
355/**
356 * for_each_pool - iterate through all worker_pools in the system
357 * @pool: iteration cursor
611c92a0 358 * @pi: integer used for iteration
fa1b54e6 359 *
68e13a67
LJ
360 * This must be called either with wq_pool_mutex held or sched RCU read
361 * locked. If the pool needs to be used beyond the locking in effect, the
362 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
17116969 366 */
611c92a0
TH
367#define for_each_pool(pool, pi) \
368 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 370 else
17116969 371
822d8405
TH
372/**
373 * for_each_pool_worker - iterate through all workers of a worker_pool
374 * @worker: iteration cursor
375 * @wi: integer used for iteration
376 * @pool: worker_pool to iterate workers of
377 *
378 * This must be called with either @pool->manager_mutex or ->lock held.
379 *
380 * The if/else clause exists only for the lockdep assertion and can be
381 * ignored.
382 */
383#define for_each_pool_worker(worker, wi, pool) \
384 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
385 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
386 else
387
49e3cf44
TH
388/**
389 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
390 * @pwq: iteration cursor
391 * @wq: the target workqueue
76af4d93 392 *
b09f4fd3 393 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
394 * If the pwq needs to be used beyond the locking in effect, the caller is
395 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
396 *
397 * The if/else clause exists only for the lockdep assertion and can be
398 * ignored.
49e3cf44
TH
399 */
400#define for_each_pwq(pwq, wq) \
76af4d93 401 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 402 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 403 else
f3421797 404
dc186ad7
TG
405#ifdef CONFIG_DEBUG_OBJECTS_WORK
406
407static struct debug_obj_descr work_debug_descr;
408
99777288
SG
409static void *work_debug_hint(void *addr)
410{
411 return ((struct work_struct *) addr)->func;
412}
413
dc186ad7
TG
414/*
415 * fixup_init is called when:
416 * - an active object is initialized
417 */
418static int work_fixup_init(void *addr, enum debug_obj_state state)
419{
420 struct work_struct *work = addr;
421
422 switch (state) {
423 case ODEBUG_STATE_ACTIVE:
424 cancel_work_sync(work);
425 debug_object_init(work, &work_debug_descr);
426 return 1;
427 default:
428 return 0;
429 }
430}
431
432/*
433 * fixup_activate is called when:
434 * - an active object is activated
435 * - an unknown object is activated (might be a statically initialized object)
436 */
437static int work_fixup_activate(void *addr, enum debug_obj_state state)
438{
439 struct work_struct *work = addr;
440
441 switch (state) {
442
443 case ODEBUG_STATE_NOTAVAILABLE:
444 /*
445 * This is not really a fixup. The work struct was
446 * statically initialized. We just make sure that it
447 * is tracked in the object tracker.
448 */
22df02bb 449 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
450 debug_object_init(work, &work_debug_descr);
451 debug_object_activate(work, &work_debug_descr);
452 return 0;
453 }
454 WARN_ON_ONCE(1);
455 return 0;
456
457 case ODEBUG_STATE_ACTIVE:
458 WARN_ON(1);
459
460 default:
461 return 0;
462 }
463}
464
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469static int work_fixup_free(void *addr, enum debug_obj_state state)
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return 1;
478 default:
479 return 0;
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
99777288 485 .debug_hint = work_debug_hint,
dc186ad7
TG
486 .fixup_init = work_fixup_init,
487 .fixup_activate = work_fixup_activate,
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516#else
517static inline void debug_work_activate(struct work_struct *work) { }
518static inline void debug_work_deactivate(struct work_struct *work) { }
519#endif
520
9daf9e67
TH
521/* allocate ID and assign it to @pool */
522static int worker_pool_assign_id(struct worker_pool *pool)
523{
524 int ret;
525
68e13a67 526 lockdep_assert_held(&wq_pool_mutex);
5bcab335 527
e68035fb 528 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 529 if (ret >= 0) {
e68035fb 530 pool->id = ret;
229641a6
TH
531 return 0;
532 }
fa1b54e6 533 return ret;
7c3eed5c
TH
534}
535
df2d5ae4
TH
536/**
537 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
538 * @wq: the target workqueue
539 * @node: the node ID
540 *
541 * This must be called either with pwq_lock held or sched RCU read locked.
542 * If the pwq needs to be used beyond the locking in effect, the caller is
543 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
544 *
545 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
546 */
547static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
548 int node)
549{
550 assert_rcu_or_wq_mutex(wq);
551 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
552}
553
73f53c4a
TH
554static unsigned int work_color_to_flags(int color)
555{
556 return color << WORK_STRUCT_COLOR_SHIFT;
557}
558
559static int get_work_color(struct work_struct *work)
560{
561 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
562 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
563}
564
565static int work_next_color(int color)
566{
567 return (color + 1) % WORK_NR_COLORS;
568}
1da177e4 569
14441960 570/*
112202d9
TH
571 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
572 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 573 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 574 *
112202d9
TH
575 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
576 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
577 * work->data. These functions should only be called while the work is
578 * owned - ie. while the PENDING bit is set.
7a22ad75 579 *
112202d9 580 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 581 * corresponding to a work. Pool is available once the work has been
112202d9 582 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 583 * available only while the work item is queued.
7a22ad75 584 *
bbb68dfa
TH
585 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
586 * canceled. While being canceled, a work item may have its PENDING set
587 * but stay off timer and worklist for arbitrarily long and nobody should
588 * try to steal the PENDING bit.
14441960 589 */
7a22ad75
TH
590static inline void set_work_data(struct work_struct *work, unsigned long data,
591 unsigned long flags)
365970a1 592{
6183c009 593 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
594 atomic_long_set(&work->data, data | flags | work_static(work));
595}
365970a1 596
112202d9 597static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
598 unsigned long extra_flags)
599{
112202d9
TH
600 set_work_data(work, (unsigned long)pwq,
601 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
602}
603
4468a00f
LJ
604static void set_work_pool_and_keep_pending(struct work_struct *work,
605 int pool_id)
606{
607 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
608 WORK_STRUCT_PENDING);
609}
610
7c3eed5c
TH
611static void set_work_pool_and_clear_pending(struct work_struct *work,
612 int pool_id)
7a22ad75 613{
23657bb1
TH
614 /*
615 * The following wmb is paired with the implied mb in
616 * test_and_set_bit(PENDING) and ensures all updates to @work made
617 * here are visible to and precede any updates by the next PENDING
618 * owner.
619 */
620 smp_wmb();
7c3eed5c 621 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 622}
f756d5e2 623
7a22ad75 624static void clear_work_data(struct work_struct *work)
1da177e4 625{
7c3eed5c
TH
626 smp_wmb(); /* see set_work_pool_and_clear_pending() */
627 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
628}
629
112202d9 630static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 631{
e120153d 632 unsigned long data = atomic_long_read(&work->data);
7a22ad75 633
112202d9 634 if (data & WORK_STRUCT_PWQ)
e120153d
TH
635 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
636 else
637 return NULL;
4d707b9f
ON
638}
639
7c3eed5c
TH
640/**
641 * get_work_pool - return the worker_pool a given work was associated with
642 * @work: the work item of interest
643 *
68e13a67
LJ
644 * Pools are created and destroyed under wq_pool_mutex, and allows read
645 * access under sched-RCU read lock. As such, this function should be
646 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
647 *
648 * All fields of the returned pool are accessible as long as the above
649 * mentioned locking is in effect. If the returned pool needs to be used
650 * beyond the critical section, the caller is responsible for ensuring the
651 * returned pool is and stays online.
d185af30
YB
652 *
653 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
654 */
655static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 656{
e120153d 657 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 658 int pool_id;
7a22ad75 659
68e13a67 660 assert_rcu_or_pool_mutex();
fa1b54e6 661
112202d9
TH
662 if (data & WORK_STRUCT_PWQ)
663 return ((struct pool_workqueue *)
7c3eed5c 664 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 665
7c3eed5c
TH
666 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
667 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
668 return NULL;
669
fa1b54e6 670 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
671}
672
673/**
674 * get_work_pool_id - return the worker pool ID a given work is associated with
675 * @work: the work item of interest
676 *
d185af30 677 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
678 * %WORK_OFFQ_POOL_NONE if none.
679 */
680static int get_work_pool_id(struct work_struct *work)
681{
54d5b7d0
LJ
682 unsigned long data = atomic_long_read(&work->data);
683
112202d9
TH
684 if (data & WORK_STRUCT_PWQ)
685 return ((struct pool_workqueue *)
54d5b7d0 686 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 687
54d5b7d0 688 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
689}
690
bbb68dfa
TH
691static void mark_work_canceling(struct work_struct *work)
692{
7c3eed5c 693 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 694
7c3eed5c
TH
695 pool_id <<= WORK_OFFQ_POOL_SHIFT;
696 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
697}
698
699static bool work_is_canceling(struct work_struct *work)
700{
701 unsigned long data = atomic_long_read(&work->data);
702
112202d9 703 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
704}
705
e22bee78 706/*
3270476a
TH
707 * Policy functions. These define the policies on how the global worker
708 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 709 * they're being called with pool->lock held.
e22bee78
TH
710 */
711
63d95a91 712static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 713{
e19e397a 714 return !atomic_read(&pool->nr_running);
a848e3b6
ON
715}
716
4594bf15 717/*
e22bee78
TH
718 * Need to wake up a worker? Called from anything but currently
719 * running workers.
974271c4
TH
720 *
721 * Note that, because unbound workers never contribute to nr_running, this
706026c2 722 * function will always return %true for unbound pools as long as the
974271c4 723 * worklist isn't empty.
4594bf15 724 */
63d95a91 725static bool need_more_worker(struct worker_pool *pool)
365970a1 726{
63d95a91 727 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 728}
4594bf15 729
e22bee78 730/* Can I start working? Called from busy but !running workers. */
63d95a91 731static bool may_start_working(struct worker_pool *pool)
e22bee78 732{
63d95a91 733 return pool->nr_idle;
e22bee78
TH
734}
735
736/* Do I need to keep working? Called from currently running workers. */
63d95a91 737static bool keep_working(struct worker_pool *pool)
e22bee78 738{
e19e397a
TH
739 return !list_empty(&pool->worklist) &&
740 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
741}
742
743/* Do we need a new worker? Called from manager. */
63d95a91 744static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 745{
63d95a91 746 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 747}
365970a1 748
e22bee78 749/* Do I need to be the manager? */
63d95a91 750static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 751{
63d95a91 752 return need_to_create_worker(pool) ||
11ebea50 753 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
754}
755
756/* Do we have too many workers and should some go away? */
63d95a91 757static bool too_many_workers(struct worker_pool *pool)
e22bee78 758{
34a06bd6 759 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
760 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
761 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 762
ea1abd61
LJ
763 /*
764 * nr_idle and idle_list may disagree if idle rebinding is in
765 * progress. Never return %true if idle_list is empty.
766 */
767 if (list_empty(&pool->idle_list))
768 return false;
769
e22bee78 770 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
771}
772
4d707b9f 773/*
e22bee78
TH
774 * Wake up functions.
775 */
776
7e11629d 777/* Return the first worker. Safe with preemption disabled */
63d95a91 778static struct worker *first_worker(struct worker_pool *pool)
7e11629d 779{
63d95a91 780 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
781 return NULL;
782
63d95a91 783 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
784}
785
786/**
787 * wake_up_worker - wake up an idle worker
63d95a91 788 * @pool: worker pool to wake worker from
7e11629d 789 *
63d95a91 790 * Wake up the first idle worker of @pool.
7e11629d
TH
791 *
792 * CONTEXT:
d565ed63 793 * spin_lock_irq(pool->lock).
7e11629d 794 */
63d95a91 795static void wake_up_worker(struct worker_pool *pool)
7e11629d 796{
63d95a91 797 struct worker *worker = first_worker(pool);
7e11629d
TH
798
799 if (likely(worker))
800 wake_up_process(worker->task);
801}
802
d302f017 803/**
e22bee78
TH
804 * wq_worker_waking_up - a worker is waking up
805 * @task: task waking up
806 * @cpu: CPU @task is waking up to
807 *
808 * This function is called during try_to_wake_up() when a worker is
809 * being awoken.
810 *
811 * CONTEXT:
812 * spin_lock_irq(rq->lock)
813 */
d84ff051 814void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
815{
816 struct worker *worker = kthread_data(task);
817
36576000 818 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 819 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 820 atomic_inc(&worker->pool->nr_running);
36576000 821 }
e22bee78
TH
822}
823
824/**
825 * wq_worker_sleeping - a worker is going to sleep
826 * @task: task going to sleep
827 * @cpu: CPU in question, must be the current CPU number
828 *
829 * This function is called during schedule() when a busy worker is
830 * going to sleep. Worker on the same cpu can be woken up by
831 * returning pointer to its task.
832 *
833 * CONTEXT:
834 * spin_lock_irq(rq->lock)
835 *
d185af30 836 * Return:
e22bee78
TH
837 * Worker task on @cpu to wake up, %NULL if none.
838 */
d84ff051 839struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
840{
841 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 842 struct worker_pool *pool;
e22bee78 843
111c225a
TH
844 /*
845 * Rescuers, which may not have all the fields set up like normal
846 * workers, also reach here, let's not access anything before
847 * checking NOT_RUNNING.
848 */
2d64672e 849 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
850 return NULL;
851
111c225a 852 pool = worker->pool;
111c225a 853
e22bee78 854 /* this can only happen on the local cpu */
6183c009
TH
855 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
856 return NULL;
e22bee78
TH
857
858 /*
859 * The counterpart of the following dec_and_test, implied mb,
860 * worklist not empty test sequence is in insert_work().
861 * Please read comment there.
862 *
628c78e7
TH
863 * NOT_RUNNING is clear. This means that we're bound to and
864 * running on the local cpu w/ rq lock held and preemption
865 * disabled, which in turn means that none else could be
d565ed63 866 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 867 * lock is safe.
e22bee78 868 */
e19e397a
TH
869 if (atomic_dec_and_test(&pool->nr_running) &&
870 !list_empty(&pool->worklist))
63d95a91 871 to_wakeup = first_worker(pool);
e22bee78
TH
872 return to_wakeup ? to_wakeup->task : NULL;
873}
874
875/**
876 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 877 * @worker: self
d302f017
TH
878 * @flags: flags to set
879 * @wakeup: wakeup an idle worker if necessary
880 *
e22bee78
TH
881 * Set @flags in @worker->flags and adjust nr_running accordingly. If
882 * nr_running becomes zero and @wakeup is %true, an idle worker is
883 * woken up.
d302f017 884 *
cb444766 885 * CONTEXT:
d565ed63 886 * spin_lock_irq(pool->lock)
d302f017
TH
887 */
888static inline void worker_set_flags(struct worker *worker, unsigned int flags,
889 bool wakeup)
890{
bd7bdd43 891 struct worker_pool *pool = worker->pool;
e22bee78 892
cb444766
TH
893 WARN_ON_ONCE(worker->task != current);
894
e22bee78
TH
895 /*
896 * If transitioning into NOT_RUNNING, adjust nr_running and
897 * wake up an idle worker as necessary if requested by
898 * @wakeup.
899 */
900 if ((flags & WORKER_NOT_RUNNING) &&
901 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 902 if (wakeup) {
e19e397a 903 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 904 !list_empty(&pool->worklist))
63d95a91 905 wake_up_worker(pool);
e22bee78 906 } else
e19e397a 907 atomic_dec(&pool->nr_running);
e22bee78
TH
908 }
909
d302f017
TH
910 worker->flags |= flags;
911}
912
913/**
e22bee78 914 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 915 * @worker: self
d302f017
TH
916 * @flags: flags to clear
917 *
e22bee78 918 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 919 *
cb444766 920 * CONTEXT:
d565ed63 921 * spin_lock_irq(pool->lock)
d302f017
TH
922 */
923static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
924{
63d95a91 925 struct worker_pool *pool = worker->pool;
e22bee78
TH
926 unsigned int oflags = worker->flags;
927
cb444766
TH
928 WARN_ON_ONCE(worker->task != current);
929
d302f017 930 worker->flags &= ~flags;
e22bee78 931
42c025f3
TH
932 /*
933 * If transitioning out of NOT_RUNNING, increment nr_running. Note
934 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
935 * of multiple flags, not a single flag.
936 */
e22bee78
TH
937 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
938 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 939 atomic_inc(&pool->nr_running);
d302f017
TH
940}
941
8cca0eea
TH
942/**
943 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 944 * @pool: pool of interest
8cca0eea
TH
945 * @work: work to find worker for
946 *
c9e7cf27
TH
947 * Find a worker which is executing @work on @pool by searching
948 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
949 * to match, its current execution should match the address of @work and
950 * its work function. This is to avoid unwanted dependency between
951 * unrelated work executions through a work item being recycled while still
952 * being executed.
953 *
954 * This is a bit tricky. A work item may be freed once its execution
955 * starts and nothing prevents the freed area from being recycled for
956 * another work item. If the same work item address ends up being reused
957 * before the original execution finishes, workqueue will identify the
958 * recycled work item as currently executing and make it wait until the
959 * current execution finishes, introducing an unwanted dependency.
960 *
c5aa87bb
TH
961 * This function checks the work item address and work function to avoid
962 * false positives. Note that this isn't complete as one may construct a
963 * work function which can introduce dependency onto itself through a
964 * recycled work item. Well, if somebody wants to shoot oneself in the
965 * foot that badly, there's only so much we can do, and if such deadlock
966 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
967 *
968 * CONTEXT:
d565ed63 969 * spin_lock_irq(pool->lock).
8cca0eea 970 *
d185af30
YB
971 * Return:
972 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 973 * otherwise.
4d707b9f 974 */
c9e7cf27 975static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 976 struct work_struct *work)
4d707b9f 977{
42f8570f 978 struct worker *worker;
42f8570f 979
b67bfe0d 980 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
981 (unsigned long)work)
982 if (worker->current_work == work &&
983 worker->current_func == work->func)
42f8570f
SL
984 return worker;
985
986 return NULL;
4d707b9f
ON
987}
988
bf4ede01
TH
989/**
990 * move_linked_works - move linked works to a list
991 * @work: start of series of works to be scheduled
992 * @head: target list to append @work to
993 * @nextp: out paramter for nested worklist walking
994 *
995 * Schedule linked works starting from @work to @head. Work series to
996 * be scheduled starts at @work and includes any consecutive work with
997 * WORK_STRUCT_LINKED set in its predecessor.
998 *
999 * If @nextp is not NULL, it's updated to point to the next work of
1000 * the last scheduled work. This allows move_linked_works() to be
1001 * nested inside outer list_for_each_entry_safe().
1002 *
1003 * CONTEXT:
d565ed63 1004 * spin_lock_irq(pool->lock).
bf4ede01
TH
1005 */
1006static void move_linked_works(struct work_struct *work, struct list_head *head,
1007 struct work_struct **nextp)
1008{
1009 struct work_struct *n;
1010
1011 /*
1012 * Linked worklist will always end before the end of the list,
1013 * use NULL for list head.
1014 */
1015 list_for_each_entry_safe_from(work, n, NULL, entry) {
1016 list_move_tail(&work->entry, head);
1017 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1018 break;
1019 }
1020
1021 /*
1022 * If we're already inside safe list traversal and have moved
1023 * multiple works to the scheduled queue, the next position
1024 * needs to be updated.
1025 */
1026 if (nextp)
1027 *nextp = n;
1028}
1029
8864b4e5
TH
1030/**
1031 * get_pwq - get an extra reference on the specified pool_workqueue
1032 * @pwq: pool_workqueue to get
1033 *
1034 * Obtain an extra reference on @pwq. The caller should guarantee that
1035 * @pwq has positive refcnt and be holding the matching pool->lock.
1036 */
1037static void get_pwq(struct pool_workqueue *pwq)
1038{
1039 lockdep_assert_held(&pwq->pool->lock);
1040 WARN_ON_ONCE(pwq->refcnt <= 0);
1041 pwq->refcnt++;
1042}
1043
1044/**
1045 * put_pwq - put a pool_workqueue reference
1046 * @pwq: pool_workqueue to put
1047 *
1048 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1049 * destruction. The caller should be holding the matching pool->lock.
1050 */
1051static void put_pwq(struct pool_workqueue *pwq)
1052{
1053 lockdep_assert_held(&pwq->pool->lock);
1054 if (likely(--pwq->refcnt))
1055 return;
1056 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1057 return;
1058 /*
1059 * @pwq can't be released under pool->lock, bounce to
1060 * pwq_unbound_release_workfn(). This never recurses on the same
1061 * pool->lock as this path is taken only for unbound workqueues and
1062 * the release work item is scheduled on a per-cpu workqueue. To
1063 * avoid lockdep warning, unbound pool->locks are given lockdep
1064 * subclass of 1 in get_unbound_pool().
1065 */
1066 schedule_work(&pwq->unbound_release_work);
1067}
1068
dce90d47
TH
1069/**
1070 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1071 * @pwq: pool_workqueue to put (can be %NULL)
1072 *
1073 * put_pwq() with locking. This function also allows %NULL @pwq.
1074 */
1075static void put_pwq_unlocked(struct pool_workqueue *pwq)
1076{
1077 if (pwq) {
1078 /*
1079 * As both pwqs and pools are sched-RCU protected, the
1080 * following lock operations are safe.
1081 */
1082 spin_lock_irq(&pwq->pool->lock);
1083 put_pwq(pwq);
1084 spin_unlock_irq(&pwq->pool->lock);
1085 }
1086}
1087
112202d9 1088static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1089{
112202d9 1090 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1091
1092 trace_workqueue_activate_work(work);
112202d9 1093 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1094 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1095 pwq->nr_active++;
bf4ede01
TH
1096}
1097
112202d9 1098static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1099{
112202d9 1100 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1101 struct work_struct, entry);
1102
112202d9 1103 pwq_activate_delayed_work(work);
3aa62497
LJ
1104}
1105
bf4ede01 1106/**
112202d9
TH
1107 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1108 * @pwq: pwq of interest
bf4ede01 1109 * @color: color of work which left the queue
bf4ede01
TH
1110 *
1111 * A work either has completed or is removed from pending queue,
112202d9 1112 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1113 *
1114 * CONTEXT:
d565ed63 1115 * spin_lock_irq(pool->lock).
bf4ede01 1116 */
112202d9 1117static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1118{
8864b4e5 1119 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1120 if (color == WORK_NO_COLOR)
8864b4e5 1121 goto out_put;
bf4ede01 1122
112202d9 1123 pwq->nr_in_flight[color]--;
bf4ede01 1124
112202d9
TH
1125 pwq->nr_active--;
1126 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1127 /* one down, submit a delayed one */
112202d9
TH
1128 if (pwq->nr_active < pwq->max_active)
1129 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1130 }
1131
1132 /* is flush in progress and are we at the flushing tip? */
112202d9 1133 if (likely(pwq->flush_color != color))
8864b4e5 1134 goto out_put;
bf4ede01
TH
1135
1136 /* are there still in-flight works? */
112202d9 1137 if (pwq->nr_in_flight[color])
8864b4e5 1138 goto out_put;
bf4ede01 1139
112202d9
TH
1140 /* this pwq is done, clear flush_color */
1141 pwq->flush_color = -1;
bf4ede01
TH
1142
1143 /*
112202d9 1144 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1145 * will handle the rest.
1146 */
112202d9
TH
1147 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1148 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1149out_put:
1150 put_pwq(pwq);
bf4ede01
TH
1151}
1152
36e227d2 1153/**
bbb68dfa 1154 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1155 * @work: work item to steal
1156 * @is_dwork: @work is a delayed_work
bbb68dfa 1157 * @flags: place to store irq state
36e227d2
TH
1158 *
1159 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1160 * stable state - idle, on timer or on worklist.
36e227d2 1161 *
d185af30 1162 * Return:
36e227d2
TH
1163 * 1 if @work was pending and we successfully stole PENDING
1164 * 0 if @work was idle and we claimed PENDING
1165 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1166 * -ENOENT if someone else is canceling @work, this state may persist
1167 * for arbitrarily long
36e227d2 1168 *
d185af30 1169 * Note:
bbb68dfa 1170 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1171 * interrupted while holding PENDING and @work off queue, irq must be
1172 * disabled on entry. This, combined with delayed_work->timer being
1173 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1174 *
1175 * On successful return, >= 0, irq is disabled and the caller is
1176 * responsible for releasing it using local_irq_restore(*@flags).
1177 *
e0aecdd8 1178 * This function is safe to call from any context including IRQ handler.
bf4ede01 1179 */
bbb68dfa
TH
1180static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1181 unsigned long *flags)
bf4ede01 1182{
d565ed63 1183 struct worker_pool *pool;
112202d9 1184 struct pool_workqueue *pwq;
bf4ede01 1185
bbb68dfa
TH
1186 local_irq_save(*flags);
1187
36e227d2
TH
1188 /* try to steal the timer if it exists */
1189 if (is_dwork) {
1190 struct delayed_work *dwork = to_delayed_work(work);
1191
e0aecdd8
TH
1192 /*
1193 * dwork->timer is irqsafe. If del_timer() fails, it's
1194 * guaranteed that the timer is not queued anywhere and not
1195 * running on the local CPU.
1196 */
36e227d2
TH
1197 if (likely(del_timer(&dwork->timer)))
1198 return 1;
1199 }
1200
1201 /* try to claim PENDING the normal way */
bf4ede01
TH
1202 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1203 return 0;
1204
1205 /*
1206 * The queueing is in progress, or it is already queued. Try to
1207 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1208 */
d565ed63
TH
1209 pool = get_work_pool(work);
1210 if (!pool)
bbb68dfa 1211 goto fail;
bf4ede01 1212
d565ed63 1213 spin_lock(&pool->lock);
0b3dae68 1214 /*
112202d9
TH
1215 * work->data is guaranteed to point to pwq only while the work
1216 * item is queued on pwq->wq, and both updating work->data to point
1217 * to pwq on queueing and to pool on dequeueing are done under
1218 * pwq->pool->lock. This in turn guarantees that, if work->data
1219 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1220 * item is currently queued on that pool.
1221 */
112202d9
TH
1222 pwq = get_work_pwq(work);
1223 if (pwq && pwq->pool == pool) {
16062836
TH
1224 debug_work_deactivate(work);
1225
1226 /*
1227 * A delayed work item cannot be grabbed directly because
1228 * it might have linked NO_COLOR work items which, if left
112202d9 1229 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1230 * management later on and cause stall. Make sure the work
1231 * item is activated before grabbing.
1232 */
1233 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1234 pwq_activate_delayed_work(work);
16062836
TH
1235
1236 list_del_init(&work->entry);
112202d9 1237 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1238
112202d9 1239 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1240 set_work_pool_and_keep_pending(work, pool->id);
1241
1242 spin_unlock(&pool->lock);
1243 return 1;
bf4ede01 1244 }
d565ed63 1245 spin_unlock(&pool->lock);
bbb68dfa
TH
1246fail:
1247 local_irq_restore(*flags);
1248 if (work_is_canceling(work))
1249 return -ENOENT;
1250 cpu_relax();
36e227d2 1251 return -EAGAIN;
bf4ede01
TH
1252}
1253
4690c4ab 1254/**
706026c2 1255 * insert_work - insert a work into a pool
112202d9 1256 * @pwq: pwq @work belongs to
4690c4ab
TH
1257 * @work: work to insert
1258 * @head: insertion point
1259 * @extra_flags: extra WORK_STRUCT_* flags to set
1260 *
112202d9 1261 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1262 * work_struct flags.
4690c4ab
TH
1263 *
1264 * CONTEXT:
d565ed63 1265 * spin_lock_irq(pool->lock).
4690c4ab 1266 */
112202d9
TH
1267static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1268 struct list_head *head, unsigned int extra_flags)
b89deed3 1269{
112202d9 1270 struct worker_pool *pool = pwq->pool;
e22bee78 1271
4690c4ab 1272 /* we own @work, set data and link */
112202d9 1273 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1274 list_add_tail(&work->entry, head);
8864b4e5 1275 get_pwq(pwq);
e22bee78
TH
1276
1277 /*
c5aa87bb
TH
1278 * Ensure either wq_worker_sleeping() sees the above
1279 * list_add_tail() or we see zero nr_running to avoid workers lying
1280 * around lazily while there are works to be processed.
e22bee78
TH
1281 */
1282 smp_mb();
1283
63d95a91
TH
1284 if (__need_more_worker(pool))
1285 wake_up_worker(pool);
b89deed3
ON
1286}
1287
c8efcc25
TH
1288/*
1289 * Test whether @work is being queued from another work executing on the
8d03ecfe 1290 * same workqueue.
c8efcc25
TH
1291 */
1292static bool is_chained_work(struct workqueue_struct *wq)
1293{
8d03ecfe
TH
1294 struct worker *worker;
1295
1296 worker = current_wq_worker();
1297 /*
1298 * Return %true iff I'm a worker execuing a work item on @wq. If
1299 * I'm @worker, it's safe to dereference it without locking.
1300 */
112202d9 1301 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1302}
1303
d84ff051 1304static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1305 struct work_struct *work)
1306{
112202d9 1307 struct pool_workqueue *pwq;
c9178087 1308 struct worker_pool *last_pool;
1e19ffc6 1309 struct list_head *worklist;
8a2e8e5d 1310 unsigned int work_flags;
b75cac93 1311 unsigned int req_cpu = cpu;
8930caba
TH
1312
1313 /*
1314 * While a work item is PENDING && off queue, a task trying to
1315 * steal the PENDING will busy-loop waiting for it to either get
1316 * queued or lose PENDING. Grabbing PENDING and queueing should
1317 * happen with IRQ disabled.
1318 */
1319 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1320
dc186ad7 1321 debug_work_activate(work);
1e19ffc6 1322
c8efcc25 1323 /* if dying, only works from the same workqueue are allowed */
618b01eb 1324 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1325 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1326 return;
9e8cd2f5 1327retry:
df2d5ae4
TH
1328 if (req_cpu == WORK_CPU_UNBOUND)
1329 cpu = raw_smp_processor_id();
1330
c9178087 1331 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1332 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1333 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1334 else
1335 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1336
c9178087
TH
1337 /*
1338 * If @work was previously on a different pool, it might still be
1339 * running there, in which case the work needs to be queued on that
1340 * pool to guarantee non-reentrancy.
1341 */
1342 last_pool = get_work_pool(work);
1343 if (last_pool && last_pool != pwq->pool) {
1344 struct worker *worker;
18aa9eff 1345
c9178087 1346 spin_lock(&last_pool->lock);
18aa9eff 1347
c9178087 1348 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1349
c9178087
TH
1350 if (worker && worker->current_pwq->wq == wq) {
1351 pwq = worker->current_pwq;
8930caba 1352 } else {
c9178087
TH
1353 /* meh... not running there, queue here */
1354 spin_unlock(&last_pool->lock);
112202d9 1355 spin_lock(&pwq->pool->lock);
8930caba 1356 }
f3421797 1357 } else {
112202d9 1358 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1359 }
1360
9e8cd2f5
TH
1361 /*
1362 * pwq is determined and locked. For unbound pools, we could have
1363 * raced with pwq release and it could already be dead. If its
1364 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1365 * without another pwq replacing it in the numa_pwq_tbl or while
1366 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1367 * make forward-progress.
1368 */
1369 if (unlikely(!pwq->refcnt)) {
1370 if (wq->flags & WQ_UNBOUND) {
1371 spin_unlock(&pwq->pool->lock);
1372 cpu_relax();
1373 goto retry;
1374 }
1375 /* oops */
1376 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1377 wq->name, cpu);
1378 }
1379
112202d9
TH
1380 /* pwq determined, queue */
1381 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1382
f5b2552b 1383 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1384 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1385 return;
1386 }
1e19ffc6 1387
112202d9
TH
1388 pwq->nr_in_flight[pwq->work_color]++;
1389 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1390
112202d9 1391 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1392 trace_workqueue_activate_work(work);
112202d9
TH
1393 pwq->nr_active++;
1394 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1395 } else {
1396 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1397 worklist = &pwq->delayed_works;
8a2e8e5d 1398 }
1e19ffc6 1399
112202d9 1400 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1401
112202d9 1402 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1403}
1404
0fcb78c2 1405/**
c1a220e7
ZR
1406 * queue_work_on - queue work on specific cpu
1407 * @cpu: CPU number to execute work on
0fcb78c2
REB
1408 * @wq: workqueue to use
1409 * @work: work to queue
1410 *
c1a220e7
ZR
1411 * We queue the work to a specific CPU, the caller must ensure it
1412 * can't go away.
d185af30
YB
1413 *
1414 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1415 */
d4283e93
TH
1416bool queue_work_on(int cpu, struct workqueue_struct *wq,
1417 struct work_struct *work)
1da177e4 1418{
d4283e93 1419 bool ret = false;
8930caba 1420 unsigned long flags;
ef1ca236 1421
8930caba 1422 local_irq_save(flags);
c1a220e7 1423
22df02bb 1424 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1425 __queue_work(cpu, wq, work);
d4283e93 1426 ret = true;
c1a220e7 1427 }
ef1ca236 1428
8930caba 1429 local_irq_restore(flags);
1da177e4
LT
1430 return ret;
1431}
ad7b1f84 1432EXPORT_SYMBOL(queue_work_on);
1da177e4 1433
d8e794df 1434void delayed_work_timer_fn(unsigned long __data)
1da177e4 1435{
52bad64d 1436 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1437
e0aecdd8 1438 /* should have been called from irqsafe timer with irq already off */
60c057bc 1439 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1440}
1438ade5 1441EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1442
7beb2edf
TH
1443static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1444 struct delayed_work *dwork, unsigned long delay)
1da177e4 1445{
7beb2edf
TH
1446 struct timer_list *timer = &dwork->timer;
1447 struct work_struct *work = &dwork->work;
7beb2edf
TH
1448
1449 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1450 timer->data != (unsigned long)dwork);
fc4b514f
TH
1451 WARN_ON_ONCE(timer_pending(timer));
1452 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1453
8852aac2
TH
1454 /*
1455 * If @delay is 0, queue @dwork->work immediately. This is for
1456 * both optimization and correctness. The earliest @timer can
1457 * expire is on the closest next tick and delayed_work users depend
1458 * on that there's no such delay when @delay is 0.
1459 */
1460 if (!delay) {
1461 __queue_work(cpu, wq, &dwork->work);
1462 return;
1463 }
1464
7beb2edf 1465 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1466
60c057bc 1467 dwork->wq = wq;
1265057f 1468 dwork->cpu = cpu;
7beb2edf
TH
1469 timer->expires = jiffies + delay;
1470
1471 if (unlikely(cpu != WORK_CPU_UNBOUND))
1472 add_timer_on(timer, cpu);
1473 else
1474 add_timer(timer);
1da177e4
LT
1475}
1476
0fcb78c2
REB
1477/**
1478 * queue_delayed_work_on - queue work on specific CPU after delay
1479 * @cpu: CPU number to execute work on
1480 * @wq: workqueue to use
af9997e4 1481 * @dwork: work to queue
0fcb78c2
REB
1482 * @delay: number of jiffies to wait before queueing
1483 *
d185af30 1484 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1485 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1486 * execution.
0fcb78c2 1487 */
d4283e93
TH
1488bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1489 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1490{
52bad64d 1491 struct work_struct *work = &dwork->work;
d4283e93 1492 bool ret = false;
8930caba 1493 unsigned long flags;
7a6bc1cd 1494
8930caba
TH
1495 /* read the comment in __queue_work() */
1496 local_irq_save(flags);
7a6bc1cd 1497
22df02bb 1498 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1499 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1500 ret = true;
7a6bc1cd 1501 }
8a3e77cc 1502
8930caba 1503 local_irq_restore(flags);
7a6bc1cd
VP
1504 return ret;
1505}
ad7b1f84 1506EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1507
8376fe22
TH
1508/**
1509 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1510 * @cpu: CPU number to execute work on
1511 * @wq: workqueue to use
1512 * @dwork: work to queue
1513 * @delay: number of jiffies to wait before queueing
1514 *
1515 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1516 * modify @dwork's timer so that it expires after @delay. If @delay is
1517 * zero, @work is guaranteed to be scheduled immediately regardless of its
1518 * current state.
1519 *
d185af30 1520 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1521 * pending and its timer was modified.
1522 *
e0aecdd8 1523 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1524 * See try_to_grab_pending() for details.
1525 */
1526bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1527 struct delayed_work *dwork, unsigned long delay)
1528{
1529 unsigned long flags;
1530 int ret;
c7fc77f7 1531
8376fe22
TH
1532 do {
1533 ret = try_to_grab_pending(&dwork->work, true, &flags);
1534 } while (unlikely(ret == -EAGAIN));
63bc0362 1535
8376fe22
TH
1536 if (likely(ret >= 0)) {
1537 __queue_delayed_work(cpu, wq, dwork, delay);
1538 local_irq_restore(flags);
7a6bc1cd 1539 }
8376fe22
TH
1540
1541 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1542 return ret;
1543}
8376fe22
TH
1544EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1545
c8e55f36
TH
1546/**
1547 * worker_enter_idle - enter idle state
1548 * @worker: worker which is entering idle state
1549 *
1550 * @worker is entering idle state. Update stats and idle timer if
1551 * necessary.
1552 *
1553 * LOCKING:
d565ed63 1554 * spin_lock_irq(pool->lock).
c8e55f36
TH
1555 */
1556static void worker_enter_idle(struct worker *worker)
1da177e4 1557{
bd7bdd43 1558 struct worker_pool *pool = worker->pool;
c8e55f36 1559
6183c009
TH
1560 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1561 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1562 (worker->hentry.next || worker->hentry.pprev)))
1563 return;
c8e55f36 1564
cb444766
TH
1565 /* can't use worker_set_flags(), also called from start_worker() */
1566 worker->flags |= WORKER_IDLE;
bd7bdd43 1567 pool->nr_idle++;
e22bee78 1568 worker->last_active = jiffies;
c8e55f36
TH
1569
1570 /* idle_list is LIFO */
bd7bdd43 1571 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1572
628c78e7
TH
1573 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1574 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1575
544ecf31 1576 /*
706026c2 1577 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1578 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1579 * nr_running, the warning may trigger spuriously. Check iff
1580 * unbind is not in progress.
544ecf31 1581 */
24647570 1582 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1583 pool->nr_workers == pool->nr_idle &&
e19e397a 1584 atomic_read(&pool->nr_running));
c8e55f36
TH
1585}
1586
1587/**
1588 * worker_leave_idle - leave idle state
1589 * @worker: worker which is leaving idle state
1590 *
1591 * @worker is leaving idle state. Update stats.
1592 *
1593 * LOCKING:
d565ed63 1594 * spin_lock_irq(pool->lock).
c8e55f36
TH
1595 */
1596static void worker_leave_idle(struct worker *worker)
1597{
bd7bdd43 1598 struct worker_pool *pool = worker->pool;
c8e55f36 1599
6183c009
TH
1600 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1601 return;
d302f017 1602 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1603 pool->nr_idle--;
c8e55f36
TH
1604 list_del_init(&worker->entry);
1605}
1606
e22bee78 1607/**
f36dc67b
LJ
1608 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1609 * @pool: target worker_pool
1610 *
1611 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1612 *
1613 * Works which are scheduled while the cpu is online must at least be
1614 * scheduled to a worker which is bound to the cpu so that if they are
1615 * flushed from cpu callbacks while cpu is going down, they are
1616 * guaranteed to execute on the cpu.
1617 *
f5faa077 1618 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1619 * themselves to the target cpu and may race with cpu going down or
1620 * coming online. kthread_bind() can't be used because it may put the
1621 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1622 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1623 * [dis]associated in the meantime.
1624 *
706026c2 1625 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1626 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1627 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1628 * enters idle state or fetches works without dropping lock, it can
1629 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1630 *
1631 * CONTEXT:
d565ed63 1632 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1633 * held.
1634 *
d185af30 1635 * Return:
706026c2 1636 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1637 * bound), %false if offline.
1638 */
f36dc67b 1639static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1640__acquires(&pool->lock)
e22bee78 1641{
e22bee78 1642 while (true) {
4e6045f1 1643 /*
e22bee78
TH
1644 * The following call may fail, succeed or succeed
1645 * without actually migrating the task to the cpu if
1646 * it races with cpu hotunplug operation. Verify
24647570 1647 * against POOL_DISASSOCIATED.
4e6045f1 1648 */
24647570 1649 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1650 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1651
d565ed63 1652 spin_lock_irq(&pool->lock);
24647570 1653 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1654 return false;
f5faa077 1655 if (task_cpu(current) == pool->cpu &&
7a4e344c 1656 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1657 return true;
d565ed63 1658 spin_unlock_irq(&pool->lock);
e22bee78 1659
5035b20f
TH
1660 /*
1661 * We've raced with CPU hot[un]plug. Give it a breather
1662 * and retry migration. cond_resched() is required here;
1663 * otherwise, we might deadlock against cpu_stop trying to
1664 * bring down the CPU on non-preemptive kernel.
1665 */
e22bee78 1666 cpu_relax();
5035b20f 1667 cond_resched();
e22bee78
TH
1668 }
1669}
1670
c34056a3
TH
1671static struct worker *alloc_worker(void)
1672{
1673 struct worker *worker;
1674
1675 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1676 if (worker) {
1677 INIT_LIST_HEAD(&worker->entry);
affee4b2 1678 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1679 /* on creation a worker is in !idle && prep state */
1680 worker->flags = WORKER_PREP;
c8e55f36 1681 }
c34056a3
TH
1682 return worker;
1683}
1684
1685/**
1686 * create_worker - create a new workqueue worker
63d95a91 1687 * @pool: pool the new worker will belong to
c34056a3 1688 *
63d95a91 1689 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1690 * can be started by calling start_worker() or destroyed using
1691 * destroy_worker().
1692 *
1693 * CONTEXT:
1694 * Might sleep. Does GFP_KERNEL allocations.
1695 *
d185af30 1696 * Return:
c34056a3
TH
1697 * Pointer to the newly created worker.
1698 */
bc2ae0f5 1699static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1700{
c34056a3 1701 struct worker *worker = NULL;
f3421797 1702 int id = -1;
e3c916a4 1703 char id_buf[16];
c34056a3 1704
cd549687
TH
1705 lockdep_assert_held(&pool->manager_mutex);
1706
822d8405
TH
1707 /*
1708 * ID is needed to determine kthread name. Allocate ID first
1709 * without installing the pointer.
1710 */
1711 idr_preload(GFP_KERNEL);
d565ed63 1712 spin_lock_irq(&pool->lock);
822d8405
TH
1713
1714 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1715
d565ed63 1716 spin_unlock_irq(&pool->lock);
822d8405
TH
1717 idr_preload_end();
1718 if (id < 0)
1719 goto fail;
c34056a3
TH
1720
1721 worker = alloc_worker();
1722 if (!worker)
1723 goto fail;
1724
bd7bdd43 1725 worker->pool = pool;
c34056a3
TH
1726 worker->id = id;
1727
29c91e99 1728 if (pool->cpu >= 0)
e3c916a4
TH
1729 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1730 pool->attrs->nice < 0 ? "H" : "");
f3421797 1731 else
e3c916a4
TH
1732 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1733
f3f90ad4 1734 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1735 "kworker/%s", id_buf);
c34056a3
TH
1736 if (IS_ERR(worker->task))
1737 goto fail;
1738
91151228
ON
1739 set_user_nice(worker->task, pool->attrs->nice);
1740
1741 /* prevent userland from meddling with cpumask of workqueue workers */
1742 worker->task->flags |= PF_NO_SETAFFINITY;
1743
c5aa87bb
TH
1744 /*
1745 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1746 * online CPUs. It'll be re-applied when any of the CPUs come up.
1747 */
7a4e344c 1748 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1749
7a4e344c
TH
1750 /*
1751 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1752 * remains stable across this function. See the comments above the
1753 * flag definition for details.
1754 */
1755 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1756 worker->flags |= WORKER_UNBOUND;
c34056a3 1757
822d8405
TH
1758 /* successful, commit the pointer to idr */
1759 spin_lock_irq(&pool->lock);
1760 idr_replace(&pool->worker_idr, worker, worker->id);
1761 spin_unlock_irq(&pool->lock);
1762
c34056a3 1763 return worker;
822d8405 1764
c34056a3
TH
1765fail:
1766 if (id >= 0) {
d565ed63 1767 spin_lock_irq(&pool->lock);
822d8405 1768 idr_remove(&pool->worker_idr, id);
d565ed63 1769 spin_unlock_irq(&pool->lock);
c34056a3
TH
1770 }
1771 kfree(worker);
1772 return NULL;
1773}
1774
1775/**
1776 * start_worker - start a newly created worker
1777 * @worker: worker to start
1778 *
706026c2 1779 * Make the pool aware of @worker and start it.
c34056a3
TH
1780 *
1781 * CONTEXT:
d565ed63 1782 * spin_lock_irq(pool->lock).
c34056a3
TH
1783 */
1784static void start_worker(struct worker *worker)
1785{
cb444766 1786 worker->flags |= WORKER_STARTED;
bd7bdd43 1787 worker->pool->nr_workers++;
c8e55f36 1788 worker_enter_idle(worker);
c34056a3
TH
1789 wake_up_process(worker->task);
1790}
1791
ebf44d16
TH
1792/**
1793 * create_and_start_worker - create and start a worker for a pool
1794 * @pool: the target pool
1795 *
cd549687 1796 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1797 *
1798 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1799 */
1800static int create_and_start_worker(struct worker_pool *pool)
1801{
1802 struct worker *worker;
1803
cd549687
TH
1804 mutex_lock(&pool->manager_mutex);
1805
ebf44d16
TH
1806 worker = create_worker(pool);
1807 if (worker) {
1808 spin_lock_irq(&pool->lock);
1809 start_worker(worker);
1810 spin_unlock_irq(&pool->lock);
1811 }
1812
cd549687
TH
1813 mutex_unlock(&pool->manager_mutex);
1814
ebf44d16
TH
1815 return worker ? 0 : -ENOMEM;
1816}
1817
c34056a3
TH
1818/**
1819 * destroy_worker - destroy a workqueue worker
1820 * @worker: worker to be destroyed
1821 *
706026c2 1822 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1823 *
1824 * CONTEXT:
d565ed63 1825 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1826 */
1827static void destroy_worker(struct worker *worker)
1828{
bd7bdd43 1829 struct worker_pool *pool = worker->pool;
c34056a3 1830
cd549687
TH
1831 lockdep_assert_held(&pool->manager_mutex);
1832 lockdep_assert_held(&pool->lock);
1833
c34056a3 1834 /* sanity check frenzy */
6183c009
TH
1835 if (WARN_ON(worker->current_work) ||
1836 WARN_ON(!list_empty(&worker->scheduled)))
1837 return;
c34056a3 1838
c8e55f36 1839 if (worker->flags & WORKER_STARTED)
bd7bdd43 1840 pool->nr_workers--;
c8e55f36 1841 if (worker->flags & WORKER_IDLE)
bd7bdd43 1842 pool->nr_idle--;
c8e55f36
TH
1843
1844 list_del_init(&worker->entry);
cb444766 1845 worker->flags |= WORKER_DIE;
c8e55f36 1846
822d8405
TH
1847 idr_remove(&pool->worker_idr, worker->id);
1848
d565ed63 1849 spin_unlock_irq(&pool->lock);
c8e55f36 1850
c34056a3
TH
1851 kthread_stop(worker->task);
1852 kfree(worker);
1853
d565ed63 1854 spin_lock_irq(&pool->lock);
c34056a3
TH
1855}
1856
63d95a91 1857static void idle_worker_timeout(unsigned long __pool)
e22bee78 1858{
63d95a91 1859 struct worker_pool *pool = (void *)__pool;
e22bee78 1860
d565ed63 1861 spin_lock_irq(&pool->lock);
e22bee78 1862
63d95a91 1863 if (too_many_workers(pool)) {
e22bee78
TH
1864 struct worker *worker;
1865 unsigned long expires;
1866
1867 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1868 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1869 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1870
1871 if (time_before(jiffies, expires))
63d95a91 1872 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1873 else {
1874 /* it's been idle for too long, wake up manager */
11ebea50 1875 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1876 wake_up_worker(pool);
d5abe669 1877 }
e22bee78
TH
1878 }
1879
d565ed63 1880 spin_unlock_irq(&pool->lock);
e22bee78 1881}
d5abe669 1882
493a1724 1883static void send_mayday(struct work_struct *work)
e22bee78 1884{
112202d9
TH
1885 struct pool_workqueue *pwq = get_work_pwq(work);
1886 struct workqueue_struct *wq = pwq->wq;
493a1724 1887
2e109a28 1888 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1889
493008a8 1890 if (!wq->rescuer)
493a1724 1891 return;
e22bee78
TH
1892
1893 /* mayday mayday mayday */
493a1724
TH
1894 if (list_empty(&pwq->mayday_node)) {
1895 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1896 wake_up_process(wq->rescuer->task);
493a1724 1897 }
e22bee78
TH
1898}
1899
706026c2 1900static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1901{
63d95a91 1902 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1903 struct work_struct *work;
1904
2e109a28 1905 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1906 spin_lock(&pool->lock);
e22bee78 1907
63d95a91 1908 if (need_to_create_worker(pool)) {
e22bee78
TH
1909 /*
1910 * We've been trying to create a new worker but
1911 * haven't been successful. We might be hitting an
1912 * allocation deadlock. Send distress signals to
1913 * rescuers.
1914 */
63d95a91 1915 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1916 send_mayday(work);
1da177e4 1917 }
e22bee78 1918
493a1724 1919 spin_unlock(&pool->lock);
2e109a28 1920 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1921
63d95a91 1922 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1923}
1924
e22bee78
TH
1925/**
1926 * maybe_create_worker - create a new worker if necessary
63d95a91 1927 * @pool: pool to create a new worker for
e22bee78 1928 *
63d95a91 1929 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1930 * have at least one idle worker on return from this function. If
1931 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1932 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1933 * possible allocation deadlock.
1934 *
c5aa87bb
TH
1935 * On return, need_to_create_worker() is guaranteed to be %false and
1936 * may_start_working() %true.
e22bee78
TH
1937 *
1938 * LOCKING:
d565ed63 1939 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1940 * multiple times. Does GFP_KERNEL allocations. Called only from
1941 * manager.
1942 *
d185af30 1943 * Return:
c5aa87bb 1944 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1945 * otherwise.
1946 */
63d95a91 1947static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1948__releases(&pool->lock)
1949__acquires(&pool->lock)
1da177e4 1950{
63d95a91 1951 if (!need_to_create_worker(pool))
e22bee78
TH
1952 return false;
1953restart:
d565ed63 1954 spin_unlock_irq(&pool->lock);
9f9c2364 1955
e22bee78 1956 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1957 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1958
1959 while (true) {
1960 struct worker *worker;
1961
bc2ae0f5 1962 worker = create_worker(pool);
e22bee78 1963 if (worker) {
63d95a91 1964 del_timer_sync(&pool->mayday_timer);
d565ed63 1965 spin_lock_irq(&pool->lock);
e22bee78 1966 start_worker(worker);
6183c009
TH
1967 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1968 goto restart;
e22bee78
TH
1969 return true;
1970 }
1971
63d95a91 1972 if (!need_to_create_worker(pool))
e22bee78 1973 break;
1da177e4 1974
e22bee78
TH
1975 __set_current_state(TASK_INTERRUPTIBLE);
1976 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1977
63d95a91 1978 if (!need_to_create_worker(pool))
e22bee78
TH
1979 break;
1980 }
1981
63d95a91 1982 del_timer_sync(&pool->mayday_timer);
d565ed63 1983 spin_lock_irq(&pool->lock);
63d95a91 1984 if (need_to_create_worker(pool))
e22bee78
TH
1985 goto restart;
1986 return true;
1987}
1988
1989/**
1990 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1991 * @pool: pool to destroy workers for
e22bee78 1992 *
63d95a91 1993 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1994 * IDLE_WORKER_TIMEOUT.
1995 *
1996 * LOCKING:
d565ed63 1997 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1998 * multiple times. Called only from manager.
1999 *
d185af30 2000 * Return:
c5aa87bb 2001 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2002 * otherwise.
2003 */
63d95a91 2004static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2005{
2006 bool ret = false;
1da177e4 2007
63d95a91 2008 while (too_many_workers(pool)) {
e22bee78
TH
2009 struct worker *worker;
2010 unsigned long expires;
3af24433 2011
63d95a91 2012 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2013 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2014
e22bee78 2015 if (time_before(jiffies, expires)) {
63d95a91 2016 mod_timer(&pool->idle_timer, expires);
3af24433 2017 break;
e22bee78 2018 }
1da177e4 2019
e22bee78
TH
2020 destroy_worker(worker);
2021 ret = true;
1da177e4 2022 }
1e19ffc6 2023
e22bee78 2024 return ret;
1e19ffc6
TH
2025}
2026
73f53c4a 2027/**
e22bee78
TH
2028 * manage_workers - manage worker pool
2029 * @worker: self
73f53c4a 2030 *
706026c2 2031 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2032 * to. At any given time, there can be only zero or one manager per
706026c2 2033 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2034 *
2035 * The caller can safely start processing works on false return. On
2036 * true return, it's guaranteed that need_to_create_worker() is false
2037 * and may_start_working() is true.
73f53c4a
TH
2038 *
2039 * CONTEXT:
d565ed63 2040 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2041 * multiple times. Does GFP_KERNEL allocations.
2042 *
d185af30 2043 * Return:
2d498db9
L
2044 * %false if the pool don't need management and the caller can safely start
2045 * processing works, %true indicates that the function released pool->lock
2046 * and reacquired it to perform some management function and that the
2047 * conditions that the caller verified while holding the lock before
2048 * calling the function might no longer be true.
73f53c4a 2049 */
e22bee78 2050static bool manage_workers(struct worker *worker)
73f53c4a 2051{
63d95a91 2052 struct worker_pool *pool = worker->pool;
e22bee78 2053 bool ret = false;
73f53c4a 2054
bc3a1afc
TH
2055 /*
2056 * Managership is governed by two mutexes - manager_arb and
2057 * manager_mutex. manager_arb handles arbitration of manager role.
2058 * Anyone who successfully grabs manager_arb wins the arbitration
2059 * and becomes the manager. mutex_trylock() on pool->manager_arb
2060 * failure while holding pool->lock reliably indicates that someone
2061 * else is managing the pool and the worker which failed trylock
2062 * can proceed to executing work items. This means that anyone
2063 * grabbing manager_arb is responsible for actually performing
2064 * manager duties. If manager_arb is grabbed and released without
2065 * actual management, the pool may stall indefinitely.
2066 *
2067 * manager_mutex is used for exclusion of actual management
2068 * operations. The holder of manager_mutex can be sure that none
2069 * of management operations, including creation and destruction of
2070 * workers, won't take place until the mutex is released. Because
2071 * manager_mutex doesn't interfere with manager role arbitration,
2072 * it is guaranteed that the pool's management, while may be
2073 * delayed, won't be disturbed by someone else grabbing
2074 * manager_mutex.
2075 */
34a06bd6 2076 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2077 return ret;
1e19ffc6 2078
ee378aa4 2079 /*
bc3a1afc
TH
2080 * With manager arbitration won, manager_mutex would be free in
2081 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2082 */
bc3a1afc 2083 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2084 spin_unlock_irq(&pool->lock);
bc3a1afc 2085 mutex_lock(&pool->manager_mutex);
8f174b11 2086 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2087 ret = true;
2088 }
73f53c4a 2089
11ebea50 2090 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2091
2092 /*
e22bee78
TH
2093 * Destroy and then create so that may_start_working() is true
2094 * on return.
73f53c4a 2095 */
63d95a91
TH
2096 ret |= maybe_destroy_workers(pool);
2097 ret |= maybe_create_worker(pool);
e22bee78 2098
bc3a1afc 2099 mutex_unlock(&pool->manager_mutex);
34a06bd6 2100 mutex_unlock(&pool->manager_arb);
e22bee78 2101 return ret;
73f53c4a
TH
2102}
2103
a62428c0
TH
2104/**
2105 * process_one_work - process single work
c34056a3 2106 * @worker: self
a62428c0
TH
2107 * @work: work to process
2108 *
2109 * Process @work. This function contains all the logics necessary to
2110 * process a single work including synchronization against and
2111 * interaction with other workers on the same cpu, queueing and
2112 * flushing. As long as context requirement is met, any worker can
2113 * call this function to process a work.
2114 *
2115 * CONTEXT:
d565ed63 2116 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2117 */
c34056a3 2118static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2119__releases(&pool->lock)
2120__acquires(&pool->lock)
a62428c0 2121{
112202d9 2122 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2123 struct worker_pool *pool = worker->pool;
112202d9 2124 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2125 int work_color;
7e11629d 2126 struct worker *collision;
a62428c0
TH
2127#ifdef CONFIG_LOCKDEP
2128 /*
2129 * It is permissible to free the struct work_struct from
2130 * inside the function that is called from it, this we need to
2131 * take into account for lockdep too. To avoid bogus "held
2132 * lock freed" warnings as well as problems when looking into
2133 * work->lockdep_map, make a copy and use that here.
2134 */
4d82a1de
PZ
2135 struct lockdep_map lockdep_map;
2136
2137 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2138#endif
6fec10a1
TH
2139 /*
2140 * Ensure we're on the correct CPU. DISASSOCIATED test is
2141 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2142 * unbound or a disassociated pool.
6fec10a1 2143 */
5f7dabfd 2144 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2145 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2146 raw_smp_processor_id() != pool->cpu);
25511a47 2147
7e11629d
TH
2148 /*
2149 * A single work shouldn't be executed concurrently by
2150 * multiple workers on a single cpu. Check whether anyone is
2151 * already processing the work. If so, defer the work to the
2152 * currently executing one.
2153 */
c9e7cf27 2154 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2155 if (unlikely(collision)) {
2156 move_linked_works(work, &collision->scheduled, NULL);
2157 return;
2158 }
2159
8930caba 2160 /* claim and dequeue */
a62428c0 2161 debug_work_deactivate(work);
c9e7cf27 2162 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2163 worker->current_work = work;
a2c1c57b 2164 worker->current_func = work->func;
112202d9 2165 worker->current_pwq = pwq;
73f53c4a 2166 work_color = get_work_color(work);
7a22ad75 2167
a62428c0
TH
2168 list_del_init(&work->entry);
2169
fb0e7beb
TH
2170 /*
2171 * CPU intensive works don't participate in concurrency
2172 * management. They're the scheduler's responsibility.
2173 */
2174 if (unlikely(cpu_intensive))
2175 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2176
974271c4 2177 /*
d565ed63 2178 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2179 * executed ASAP. Wake up another worker if necessary.
2180 */
63d95a91
TH
2181 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2182 wake_up_worker(pool);
974271c4 2183
8930caba 2184 /*
7c3eed5c 2185 * Record the last pool and clear PENDING which should be the last
d565ed63 2186 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2187 * PENDING and queued state changes happen together while IRQ is
2188 * disabled.
8930caba 2189 */
7c3eed5c 2190 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2191
d565ed63 2192 spin_unlock_irq(&pool->lock);
a62428c0 2193
112202d9 2194 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2195 lock_map_acquire(&lockdep_map);
e36c886a 2196 trace_workqueue_execute_start(work);
a2c1c57b 2197 worker->current_func(work);
e36c886a
AV
2198 /*
2199 * While we must be careful to not use "work" after this, the trace
2200 * point will only record its address.
2201 */
2202 trace_workqueue_execute_end(work);
a62428c0 2203 lock_map_release(&lockdep_map);
112202d9 2204 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2205
2206 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2207 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2208 " last function: %pf\n",
a2c1c57b
TH
2209 current->comm, preempt_count(), task_pid_nr(current),
2210 worker->current_func);
a62428c0
TH
2211 debug_show_held_locks(current);
2212 dump_stack();
2213 }
2214
b22ce278
TH
2215 /*
2216 * The following prevents a kworker from hogging CPU on !PREEMPT
2217 * kernels, where a requeueing work item waiting for something to
2218 * happen could deadlock with stop_machine as such work item could
2219 * indefinitely requeue itself while all other CPUs are trapped in
2220 * stop_machine.
2221 */
2222 cond_resched();
2223
d565ed63 2224 spin_lock_irq(&pool->lock);
a62428c0 2225
fb0e7beb
TH
2226 /* clear cpu intensive status */
2227 if (unlikely(cpu_intensive))
2228 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2229
a62428c0 2230 /* we're done with it, release */
42f8570f 2231 hash_del(&worker->hentry);
c34056a3 2232 worker->current_work = NULL;
a2c1c57b 2233 worker->current_func = NULL;
112202d9 2234 worker->current_pwq = NULL;
3d1cb205 2235 worker->desc_valid = false;
112202d9 2236 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2237}
2238
affee4b2
TH
2239/**
2240 * process_scheduled_works - process scheduled works
2241 * @worker: self
2242 *
2243 * Process all scheduled works. Please note that the scheduled list
2244 * may change while processing a work, so this function repeatedly
2245 * fetches a work from the top and executes it.
2246 *
2247 * CONTEXT:
d565ed63 2248 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2249 * multiple times.
2250 */
2251static void process_scheduled_works(struct worker *worker)
1da177e4 2252{
affee4b2
TH
2253 while (!list_empty(&worker->scheduled)) {
2254 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2255 struct work_struct, entry);
c34056a3 2256 process_one_work(worker, work);
1da177e4 2257 }
1da177e4
LT
2258}
2259
4690c4ab
TH
2260/**
2261 * worker_thread - the worker thread function
c34056a3 2262 * @__worker: self
4690c4ab 2263 *
c5aa87bb
TH
2264 * The worker thread function. All workers belong to a worker_pool -
2265 * either a per-cpu one or dynamic unbound one. These workers process all
2266 * work items regardless of their specific target workqueue. The only
2267 * exception is work items which belong to workqueues with a rescuer which
2268 * will be explained in rescuer_thread().
d185af30
YB
2269 *
2270 * Return: 0
4690c4ab 2271 */
c34056a3 2272static int worker_thread(void *__worker)
1da177e4 2273{
c34056a3 2274 struct worker *worker = __worker;
bd7bdd43 2275 struct worker_pool *pool = worker->pool;
1da177e4 2276
e22bee78
TH
2277 /* tell the scheduler that this is a workqueue worker */
2278 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2279woke_up:
d565ed63 2280 spin_lock_irq(&pool->lock);
1da177e4 2281
a9ab775b
TH
2282 /* am I supposed to die? */
2283 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2284 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2285 WARN_ON_ONCE(!list_empty(&worker->entry));
2286 worker->task->flags &= ~PF_WQ_WORKER;
2287 return 0;
c8e55f36 2288 }
affee4b2 2289
c8e55f36 2290 worker_leave_idle(worker);
db7bccf4 2291recheck:
e22bee78 2292 /* no more worker necessary? */
63d95a91 2293 if (!need_more_worker(pool))
e22bee78
TH
2294 goto sleep;
2295
2296 /* do we need to manage? */
63d95a91 2297 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2298 goto recheck;
2299
c8e55f36
TH
2300 /*
2301 * ->scheduled list can only be filled while a worker is
2302 * preparing to process a work or actually processing it.
2303 * Make sure nobody diddled with it while I was sleeping.
2304 */
6183c009 2305 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2306
e22bee78 2307 /*
a9ab775b
TH
2308 * Finish PREP stage. We're guaranteed to have at least one idle
2309 * worker or that someone else has already assumed the manager
2310 * role. This is where @worker starts participating in concurrency
2311 * management if applicable and concurrency management is restored
2312 * after being rebound. See rebind_workers() for details.
e22bee78 2313 */
a9ab775b 2314 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2315
2316 do {
c8e55f36 2317 struct work_struct *work =
bd7bdd43 2318 list_first_entry(&pool->worklist,
c8e55f36
TH
2319 struct work_struct, entry);
2320
2321 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2322 /* optimization path, not strictly necessary */
2323 process_one_work(worker, work);
2324 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2325 process_scheduled_works(worker);
c8e55f36
TH
2326 } else {
2327 move_linked_works(work, &worker->scheduled, NULL);
2328 process_scheduled_works(worker);
affee4b2 2329 }
63d95a91 2330 } while (keep_working(pool));
e22bee78
TH
2331
2332 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2333sleep:
63d95a91 2334 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2335 goto recheck;
d313dd85 2336
c8e55f36 2337 /*
d565ed63
TH
2338 * pool->lock is held and there's no work to process and no need to
2339 * manage, sleep. Workers are woken up only while holding
2340 * pool->lock or from local cpu, so setting the current state
2341 * before releasing pool->lock is enough to prevent losing any
2342 * event.
c8e55f36
TH
2343 */
2344 worker_enter_idle(worker);
2345 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2346 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2347 schedule();
2348 goto woke_up;
1da177e4
LT
2349}
2350
e22bee78
TH
2351/**
2352 * rescuer_thread - the rescuer thread function
111c225a 2353 * @__rescuer: self
e22bee78
TH
2354 *
2355 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2356 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2357 *
706026c2 2358 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2359 * worker which uses GFP_KERNEL allocation which has slight chance of
2360 * developing into deadlock if some works currently on the same queue
2361 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2362 * the problem rescuer solves.
2363 *
706026c2
TH
2364 * When such condition is possible, the pool summons rescuers of all
2365 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2366 * those works so that forward progress can be guaranteed.
2367 *
2368 * This should happen rarely.
d185af30
YB
2369 *
2370 * Return: 0
e22bee78 2371 */
111c225a 2372static int rescuer_thread(void *__rescuer)
e22bee78 2373{
111c225a
TH
2374 struct worker *rescuer = __rescuer;
2375 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2376 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2377
2378 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2379
2380 /*
2381 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2382 * doesn't participate in concurrency management.
2383 */
2384 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2385repeat:
2386 set_current_state(TASK_INTERRUPTIBLE);
2387
412d32e6
MG
2388 if (kthread_should_stop()) {
2389 __set_current_state(TASK_RUNNING);
111c225a 2390 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2391 return 0;
412d32e6 2392 }
e22bee78 2393
493a1724 2394 /* see whether any pwq is asking for help */
2e109a28 2395 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2396
2397 while (!list_empty(&wq->maydays)) {
2398 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2399 struct pool_workqueue, mayday_node);
112202d9 2400 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2401 struct work_struct *work, *n;
2402
2403 __set_current_state(TASK_RUNNING);
493a1724
TH
2404 list_del_init(&pwq->mayday_node);
2405
2e109a28 2406 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2407
2408 /* migrate to the target cpu if possible */
f36dc67b 2409 worker_maybe_bind_and_lock(pool);
b3104104 2410 rescuer->pool = pool;
e22bee78
TH
2411
2412 /*
2413 * Slurp in all works issued via this workqueue and
2414 * process'em.
2415 */
6183c009 2416 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2417 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2418 if (get_work_pwq(work) == pwq)
e22bee78
TH
2419 move_linked_works(work, scheduled, &n);
2420
2421 process_scheduled_works(rescuer);
7576958a
TH
2422
2423 /*
d565ed63 2424 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2425 * regular worker; otherwise, we end up with 0 concurrency
2426 * and stalling the execution.
2427 */
63d95a91
TH
2428 if (keep_working(pool))
2429 wake_up_worker(pool);
7576958a 2430
b3104104 2431 rescuer->pool = NULL;
493a1724 2432 spin_unlock(&pool->lock);
2e109a28 2433 spin_lock(&wq_mayday_lock);
e22bee78
TH
2434 }
2435
2e109a28 2436 spin_unlock_irq(&wq_mayday_lock);
493a1724 2437
111c225a
TH
2438 /* rescuers should never participate in concurrency management */
2439 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2440 schedule();
2441 goto repeat;
1da177e4
LT
2442}
2443
fc2e4d70
ON
2444struct wq_barrier {
2445 struct work_struct work;
2446 struct completion done;
2447};
2448
2449static void wq_barrier_func(struct work_struct *work)
2450{
2451 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2452 complete(&barr->done);
2453}
2454
4690c4ab
TH
2455/**
2456 * insert_wq_barrier - insert a barrier work
112202d9 2457 * @pwq: pwq to insert barrier into
4690c4ab 2458 * @barr: wq_barrier to insert
affee4b2
TH
2459 * @target: target work to attach @barr to
2460 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2461 *
affee4b2
TH
2462 * @barr is linked to @target such that @barr is completed only after
2463 * @target finishes execution. Please note that the ordering
2464 * guarantee is observed only with respect to @target and on the local
2465 * cpu.
2466 *
2467 * Currently, a queued barrier can't be canceled. This is because
2468 * try_to_grab_pending() can't determine whether the work to be
2469 * grabbed is at the head of the queue and thus can't clear LINKED
2470 * flag of the previous work while there must be a valid next work
2471 * after a work with LINKED flag set.
2472 *
2473 * Note that when @worker is non-NULL, @target may be modified
112202d9 2474 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2475 *
2476 * CONTEXT:
d565ed63 2477 * spin_lock_irq(pool->lock).
4690c4ab 2478 */
112202d9 2479static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2480 struct wq_barrier *barr,
2481 struct work_struct *target, struct worker *worker)
fc2e4d70 2482{
affee4b2
TH
2483 struct list_head *head;
2484 unsigned int linked = 0;
2485
dc186ad7 2486 /*
d565ed63 2487 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2488 * as we know for sure that this will not trigger any of the
2489 * checks and call back into the fixup functions where we
2490 * might deadlock.
2491 */
ca1cab37 2492 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2493 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2494 init_completion(&barr->done);
83c22520 2495
affee4b2
TH
2496 /*
2497 * If @target is currently being executed, schedule the
2498 * barrier to the worker; otherwise, put it after @target.
2499 */
2500 if (worker)
2501 head = worker->scheduled.next;
2502 else {
2503 unsigned long *bits = work_data_bits(target);
2504
2505 head = target->entry.next;
2506 /* there can already be other linked works, inherit and set */
2507 linked = *bits & WORK_STRUCT_LINKED;
2508 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2509 }
2510
dc186ad7 2511 debug_work_activate(&barr->work);
112202d9 2512 insert_work(pwq, &barr->work, head,
affee4b2 2513 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2514}
2515
73f53c4a 2516/**
112202d9 2517 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2518 * @wq: workqueue being flushed
2519 * @flush_color: new flush color, < 0 for no-op
2520 * @work_color: new work color, < 0 for no-op
2521 *
112202d9 2522 * Prepare pwqs for workqueue flushing.
73f53c4a 2523 *
112202d9
TH
2524 * If @flush_color is non-negative, flush_color on all pwqs should be
2525 * -1. If no pwq has in-flight commands at the specified color, all
2526 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2527 * has in flight commands, its pwq->flush_color is set to
2528 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2529 * wakeup logic is armed and %true is returned.
2530 *
2531 * The caller should have initialized @wq->first_flusher prior to
2532 * calling this function with non-negative @flush_color. If
2533 * @flush_color is negative, no flush color update is done and %false
2534 * is returned.
2535 *
112202d9 2536 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2537 * work_color which is previous to @work_color and all will be
2538 * advanced to @work_color.
2539 *
2540 * CONTEXT:
3c25a55d 2541 * mutex_lock(wq->mutex).
73f53c4a 2542 *
d185af30 2543 * Return:
73f53c4a
TH
2544 * %true if @flush_color >= 0 and there's something to flush. %false
2545 * otherwise.
2546 */
112202d9 2547static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2548 int flush_color, int work_color)
1da177e4 2549{
73f53c4a 2550 bool wait = false;
49e3cf44 2551 struct pool_workqueue *pwq;
1da177e4 2552
73f53c4a 2553 if (flush_color >= 0) {
6183c009 2554 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2555 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2556 }
2355b70f 2557
49e3cf44 2558 for_each_pwq(pwq, wq) {
112202d9 2559 struct worker_pool *pool = pwq->pool;
fc2e4d70 2560
b09f4fd3 2561 spin_lock_irq(&pool->lock);
83c22520 2562
73f53c4a 2563 if (flush_color >= 0) {
6183c009 2564 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2565
112202d9
TH
2566 if (pwq->nr_in_flight[flush_color]) {
2567 pwq->flush_color = flush_color;
2568 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2569 wait = true;
2570 }
2571 }
1da177e4 2572
73f53c4a 2573 if (work_color >= 0) {
6183c009 2574 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2575 pwq->work_color = work_color;
73f53c4a 2576 }
1da177e4 2577
b09f4fd3 2578 spin_unlock_irq(&pool->lock);
1da177e4 2579 }
2355b70f 2580
112202d9 2581 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2582 complete(&wq->first_flusher->done);
14441960 2583
73f53c4a 2584 return wait;
1da177e4
LT
2585}
2586
0fcb78c2 2587/**
1da177e4 2588 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2589 * @wq: workqueue to flush
1da177e4 2590 *
c5aa87bb
TH
2591 * This function sleeps until all work items which were queued on entry
2592 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2593 */
7ad5b3a5 2594void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2595{
73f53c4a
TH
2596 struct wq_flusher this_flusher = {
2597 .list = LIST_HEAD_INIT(this_flusher.list),
2598 .flush_color = -1,
2599 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2600 };
2601 int next_color;
1da177e4 2602
3295f0ef
IM
2603 lock_map_acquire(&wq->lockdep_map);
2604 lock_map_release(&wq->lockdep_map);
73f53c4a 2605
3c25a55d 2606 mutex_lock(&wq->mutex);
73f53c4a
TH
2607
2608 /*
2609 * Start-to-wait phase
2610 */
2611 next_color = work_next_color(wq->work_color);
2612
2613 if (next_color != wq->flush_color) {
2614 /*
2615 * Color space is not full. The current work_color
2616 * becomes our flush_color and work_color is advanced
2617 * by one.
2618 */
6183c009 2619 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2620 this_flusher.flush_color = wq->work_color;
2621 wq->work_color = next_color;
2622
2623 if (!wq->first_flusher) {
2624 /* no flush in progress, become the first flusher */
6183c009 2625 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2626
2627 wq->first_flusher = &this_flusher;
2628
112202d9 2629 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2630 wq->work_color)) {
2631 /* nothing to flush, done */
2632 wq->flush_color = next_color;
2633 wq->first_flusher = NULL;
2634 goto out_unlock;
2635 }
2636 } else {
2637 /* wait in queue */
6183c009 2638 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2639 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2640 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2641 }
2642 } else {
2643 /*
2644 * Oops, color space is full, wait on overflow queue.
2645 * The next flush completion will assign us
2646 * flush_color and transfer to flusher_queue.
2647 */
2648 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2649 }
2650
3c25a55d 2651 mutex_unlock(&wq->mutex);
73f53c4a
TH
2652
2653 wait_for_completion(&this_flusher.done);
2654
2655 /*
2656 * Wake-up-and-cascade phase
2657 *
2658 * First flushers are responsible for cascading flushes and
2659 * handling overflow. Non-first flushers can simply return.
2660 */
2661 if (wq->first_flusher != &this_flusher)
2662 return;
2663
3c25a55d 2664 mutex_lock(&wq->mutex);
73f53c4a 2665
4ce48b37
TH
2666 /* we might have raced, check again with mutex held */
2667 if (wq->first_flusher != &this_flusher)
2668 goto out_unlock;
2669
73f53c4a
TH
2670 wq->first_flusher = NULL;
2671
6183c009
TH
2672 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2673 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2674
2675 while (true) {
2676 struct wq_flusher *next, *tmp;
2677
2678 /* complete all the flushers sharing the current flush color */
2679 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2680 if (next->flush_color != wq->flush_color)
2681 break;
2682 list_del_init(&next->list);
2683 complete(&next->done);
2684 }
2685
6183c009
TH
2686 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2687 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2688
2689 /* this flush_color is finished, advance by one */
2690 wq->flush_color = work_next_color(wq->flush_color);
2691
2692 /* one color has been freed, handle overflow queue */
2693 if (!list_empty(&wq->flusher_overflow)) {
2694 /*
2695 * Assign the same color to all overflowed
2696 * flushers, advance work_color and append to
2697 * flusher_queue. This is the start-to-wait
2698 * phase for these overflowed flushers.
2699 */
2700 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2701 tmp->flush_color = wq->work_color;
2702
2703 wq->work_color = work_next_color(wq->work_color);
2704
2705 list_splice_tail_init(&wq->flusher_overflow,
2706 &wq->flusher_queue);
112202d9 2707 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2708 }
2709
2710 if (list_empty(&wq->flusher_queue)) {
6183c009 2711 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2712 break;
2713 }
2714
2715 /*
2716 * Need to flush more colors. Make the next flusher
112202d9 2717 * the new first flusher and arm pwqs.
73f53c4a 2718 */
6183c009
TH
2719 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2720 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2721
2722 list_del_init(&next->list);
2723 wq->first_flusher = next;
2724
112202d9 2725 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2726 break;
2727
2728 /*
2729 * Meh... this color is already done, clear first
2730 * flusher and repeat cascading.
2731 */
2732 wq->first_flusher = NULL;
2733 }
2734
2735out_unlock:
3c25a55d 2736 mutex_unlock(&wq->mutex);
1da177e4 2737}
ae90dd5d 2738EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2739
9c5a2ba7
TH
2740/**
2741 * drain_workqueue - drain a workqueue
2742 * @wq: workqueue to drain
2743 *
2744 * Wait until the workqueue becomes empty. While draining is in progress,
2745 * only chain queueing is allowed. IOW, only currently pending or running
2746 * work items on @wq can queue further work items on it. @wq is flushed
2747 * repeatedly until it becomes empty. The number of flushing is detemined
2748 * by the depth of chaining and should be relatively short. Whine if it
2749 * takes too long.
2750 */
2751void drain_workqueue(struct workqueue_struct *wq)
2752{
2753 unsigned int flush_cnt = 0;
49e3cf44 2754 struct pool_workqueue *pwq;
9c5a2ba7
TH
2755
2756 /*
2757 * __queue_work() needs to test whether there are drainers, is much
2758 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2759 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2760 */
87fc741e 2761 mutex_lock(&wq->mutex);
9c5a2ba7 2762 if (!wq->nr_drainers++)
618b01eb 2763 wq->flags |= __WQ_DRAINING;
87fc741e 2764 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2765reflush:
2766 flush_workqueue(wq);
2767
b09f4fd3 2768 mutex_lock(&wq->mutex);
76af4d93 2769
49e3cf44 2770 for_each_pwq(pwq, wq) {
fa2563e4 2771 bool drained;
9c5a2ba7 2772
b09f4fd3 2773 spin_lock_irq(&pwq->pool->lock);
112202d9 2774 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2775 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2776
2777 if (drained)
9c5a2ba7
TH
2778 continue;
2779
2780 if (++flush_cnt == 10 ||
2781 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2782 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2783 wq->name, flush_cnt);
76af4d93 2784
b09f4fd3 2785 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2786 goto reflush;
2787 }
2788
9c5a2ba7 2789 if (!--wq->nr_drainers)
618b01eb 2790 wq->flags &= ~__WQ_DRAINING;
87fc741e 2791 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2792}
2793EXPORT_SYMBOL_GPL(drain_workqueue);
2794
606a5020 2795static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2796{
affee4b2 2797 struct worker *worker = NULL;
c9e7cf27 2798 struct worker_pool *pool;
112202d9 2799 struct pool_workqueue *pwq;
db700897
ON
2800
2801 might_sleep();
fa1b54e6
TH
2802
2803 local_irq_disable();
c9e7cf27 2804 pool = get_work_pool(work);
fa1b54e6
TH
2805 if (!pool) {
2806 local_irq_enable();
baf59022 2807 return false;
fa1b54e6 2808 }
db700897 2809
fa1b54e6 2810 spin_lock(&pool->lock);
0b3dae68 2811 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2812 pwq = get_work_pwq(work);
2813 if (pwq) {
2814 if (unlikely(pwq->pool != pool))
4690c4ab 2815 goto already_gone;
606a5020 2816 } else {
c9e7cf27 2817 worker = find_worker_executing_work(pool, work);
affee4b2 2818 if (!worker)
4690c4ab 2819 goto already_gone;
112202d9 2820 pwq = worker->current_pwq;
606a5020 2821 }
db700897 2822
112202d9 2823 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2824 spin_unlock_irq(&pool->lock);
7a22ad75 2825
e159489b
TH
2826 /*
2827 * If @max_active is 1 or rescuer is in use, flushing another work
2828 * item on the same workqueue may lead to deadlock. Make sure the
2829 * flusher is not running on the same workqueue by verifying write
2830 * access.
2831 */
493008a8 2832 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2833 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2834 else
112202d9
TH
2835 lock_map_acquire_read(&pwq->wq->lockdep_map);
2836 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2837
401a8d04 2838 return true;
4690c4ab 2839already_gone:
d565ed63 2840 spin_unlock_irq(&pool->lock);
401a8d04 2841 return false;
db700897 2842}
baf59022 2843
c2fda509
LJ
2844static bool __flush_work(struct work_struct *work)
2845{
2846 struct wq_barrier barr;
2847
2848 if (start_flush_work(work, &barr)) {
2849 wait_for_completion(&barr.done);
2850 destroy_work_on_stack(&barr.work);
2851 return true;
2852 } else {
2853 return false;
2854 }
2855}
2856
baf59022
TH
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
606a5020
TH
2861 * Wait until @work has finished execution. @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
baf59022 2863 *
d185af30 2864 * Return:
baf59022
TH
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868bool flush_work(struct work_struct *work)
2869{
0976dfc1
SB
2870 lock_map_acquire(&work->lockdep_map);
2871 lock_map_release(&work->lockdep_map);
2872
c2fda509 2873 return __flush_work(work);
6e84d644 2874}
606a5020 2875EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2876
36e227d2 2877static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2878{
bbb68dfa 2879 unsigned long flags;
1f1f642e
ON
2880 int ret;
2881
2882 do {
bbb68dfa
TH
2883 ret = try_to_grab_pending(work, is_dwork, &flags);
2884 /*
2885 * If someone else is canceling, wait for the same event it
2886 * would be waiting for before retrying.
2887 */
2888 if (unlikely(ret == -ENOENT))
606a5020 2889 flush_work(work);
1f1f642e
ON
2890 } while (unlikely(ret < 0));
2891
bbb68dfa
TH
2892 /* tell other tasks trying to grab @work to back off */
2893 mark_work_canceling(work);
2894 local_irq_restore(flags);
2895
606a5020 2896 flush_work(work);
7a22ad75 2897 clear_work_data(work);
1f1f642e
ON
2898 return ret;
2899}
2900
6e84d644 2901/**
401a8d04
TH
2902 * cancel_work_sync - cancel a work and wait for it to finish
2903 * @work: the work to cancel
6e84d644 2904 *
401a8d04
TH
2905 * Cancel @work and wait for its execution to finish. This function
2906 * can be used even if the work re-queues itself or migrates to
2907 * another workqueue. On return from this function, @work is
2908 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2909 *
401a8d04
TH
2910 * cancel_work_sync(&delayed_work->work) must not be used for
2911 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2912 *
401a8d04 2913 * The caller must ensure that the workqueue on which @work was last
6e84d644 2914 * queued can't be destroyed before this function returns.
401a8d04 2915 *
d185af30 2916 * Return:
401a8d04 2917 * %true if @work was pending, %false otherwise.
6e84d644 2918 */
401a8d04 2919bool cancel_work_sync(struct work_struct *work)
6e84d644 2920{
36e227d2 2921 return __cancel_work_timer(work, false);
b89deed3 2922}
28e53bdd 2923EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2924
6e84d644 2925/**
401a8d04
TH
2926 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2927 * @dwork: the delayed work to flush
6e84d644 2928 *
401a8d04
TH
2929 * Delayed timer is cancelled and the pending work is queued for
2930 * immediate execution. Like flush_work(), this function only
2931 * considers the last queueing instance of @dwork.
1f1f642e 2932 *
d185af30 2933 * Return:
401a8d04
TH
2934 * %true if flush_work() waited for the work to finish execution,
2935 * %false if it was already idle.
6e84d644 2936 */
401a8d04
TH
2937bool flush_delayed_work(struct delayed_work *dwork)
2938{
8930caba 2939 local_irq_disable();
401a8d04 2940 if (del_timer_sync(&dwork->timer))
60c057bc 2941 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2942 local_irq_enable();
401a8d04
TH
2943 return flush_work(&dwork->work);
2944}
2945EXPORT_SYMBOL(flush_delayed_work);
2946
09383498 2947/**
57b30ae7
TH
2948 * cancel_delayed_work - cancel a delayed work
2949 * @dwork: delayed_work to cancel
09383498 2950 *
d185af30
YB
2951 * Kill off a pending delayed_work.
2952 *
2953 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2954 * pending.
2955 *
2956 * Note:
2957 * The work callback function may still be running on return, unless
2958 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2959 * use cancel_delayed_work_sync() to wait on it.
09383498 2960 *
57b30ae7 2961 * This function is safe to call from any context including IRQ handler.
09383498 2962 */
57b30ae7 2963bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2964{
57b30ae7
TH
2965 unsigned long flags;
2966 int ret;
2967
2968 do {
2969 ret = try_to_grab_pending(&dwork->work, true, &flags);
2970 } while (unlikely(ret == -EAGAIN));
2971
2972 if (unlikely(ret < 0))
2973 return false;
2974
7c3eed5c
TH
2975 set_work_pool_and_clear_pending(&dwork->work,
2976 get_work_pool_id(&dwork->work));
57b30ae7 2977 local_irq_restore(flags);
c0158ca6 2978 return ret;
09383498 2979}
57b30ae7 2980EXPORT_SYMBOL(cancel_delayed_work);
09383498 2981
401a8d04
TH
2982/**
2983 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2984 * @dwork: the delayed work cancel
2985 *
2986 * This is cancel_work_sync() for delayed works.
2987 *
d185af30 2988 * Return:
401a8d04
TH
2989 * %true if @dwork was pending, %false otherwise.
2990 */
2991bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2992{
36e227d2 2993 return __cancel_work_timer(&dwork->work, true);
6e84d644 2994}
f5a421a4 2995EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2996
b6136773 2997/**
31ddd871 2998 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2999 * @func: the function to call
b6136773 3000 *
31ddd871
TH
3001 * schedule_on_each_cpu() executes @func on each online CPU using the
3002 * system workqueue and blocks until all CPUs have completed.
b6136773 3003 * schedule_on_each_cpu() is very slow.
31ddd871 3004 *
d185af30 3005 * Return:
31ddd871 3006 * 0 on success, -errno on failure.
b6136773 3007 */
65f27f38 3008int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3009{
3010 int cpu;
38f51568 3011 struct work_struct __percpu *works;
15316ba8 3012
b6136773
AM
3013 works = alloc_percpu(struct work_struct);
3014 if (!works)
15316ba8 3015 return -ENOMEM;
b6136773 3016
93981800
TH
3017 get_online_cpus();
3018
15316ba8 3019 for_each_online_cpu(cpu) {
9bfb1839
IM
3020 struct work_struct *work = per_cpu_ptr(works, cpu);
3021
3022 INIT_WORK(work, func);
b71ab8c2 3023 schedule_work_on(cpu, work);
65a64464 3024 }
93981800
TH
3025
3026 for_each_online_cpu(cpu)
3027 flush_work(per_cpu_ptr(works, cpu));
3028
95402b38 3029 put_online_cpus();
b6136773 3030 free_percpu(works);
15316ba8
CL
3031 return 0;
3032}
3033
eef6a7d5
AS
3034/**
3035 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3036 *
3037 * Forces execution of the kernel-global workqueue and blocks until its
3038 * completion.
3039 *
3040 * Think twice before calling this function! It's very easy to get into
3041 * trouble if you don't take great care. Either of the following situations
3042 * will lead to deadlock:
3043 *
3044 * One of the work items currently on the workqueue needs to acquire
3045 * a lock held by your code or its caller.
3046 *
3047 * Your code is running in the context of a work routine.
3048 *
3049 * They will be detected by lockdep when they occur, but the first might not
3050 * occur very often. It depends on what work items are on the workqueue and
3051 * what locks they need, which you have no control over.
3052 *
3053 * In most situations flushing the entire workqueue is overkill; you merely
3054 * need to know that a particular work item isn't queued and isn't running.
3055 * In such cases you should use cancel_delayed_work_sync() or
3056 * cancel_work_sync() instead.
3057 */
1da177e4
LT
3058void flush_scheduled_work(void)
3059{
d320c038 3060 flush_workqueue(system_wq);
1da177e4 3061}
ae90dd5d 3062EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3063
1fa44eca
JB
3064/**
3065 * execute_in_process_context - reliably execute the routine with user context
3066 * @fn: the function to execute
1fa44eca
JB
3067 * @ew: guaranteed storage for the execute work structure (must
3068 * be available when the work executes)
3069 *
3070 * Executes the function immediately if process context is available,
3071 * otherwise schedules the function for delayed execution.
3072 *
d185af30 3073 * Return: 0 - function was executed
1fa44eca
JB
3074 * 1 - function was scheduled for execution
3075 */
65f27f38 3076int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3077{
3078 if (!in_interrupt()) {
65f27f38 3079 fn(&ew->work);
1fa44eca
JB
3080 return 0;
3081 }
3082
65f27f38 3083 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3084 schedule_work(&ew->work);
3085
3086 return 1;
3087}
3088EXPORT_SYMBOL_GPL(execute_in_process_context);
3089
226223ab
TH
3090#ifdef CONFIG_SYSFS
3091/*
3092 * Workqueues with WQ_SYSFS flag set is visible to userland via
3093 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3094 * following attributes.
3095 *
3096 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3097 * max_active RW int : maximum number of in-flight work items
3098 *
3099 * Unbound workqueues have the following extra attributes.
3100 *
3101 * id RO int : the associated pool ID
3102 * nice RW int : nice value of the workers
3103 * cpumask RW mask : bitmask of allowed CPUs for the workers
3104 */
3105struct wq_device {
3106 struct workqueue_struct *wq;
3107 struct device dev;
3108};
3109
3110static struct workqueue_struct *dev_to_wq(struct device *dev)
3111{
3112 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3113
3114 return wq_dev->wq;
3115}
3116
1a6661da
GKH
3117static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3118 char *buf)
226223ab
TH
3119{
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121
3122 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3123}
1a6661da 3124static DEVICE_ATTR_RO(per_cpu);
226223ab 3125
1a6661da
GKH
3126static ssize_t max_active_show(struct device *dev,
3127 struct device_attribute *attr, char *buf)
226223ab
TH
3128{
3129 struct workqueue_struct *wq = dev_to_wq(dev);
3130
3131 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3132}
3133
1a6661da
GKH
3134static ssize_t max_active_store(struct device *dev,
3135 struct device_attribute *attr, const char *buf,
3136 size_t count)
226223ab
TH
3137{
3138 struct workqueue_struct *wq = dev_to_wq(dev);
3139 int val;
3140
3141 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3142 return -EINVAL;
3143
3144 workqueue_set_max_active(wq, val);
3145 return count;
3146}
1a6661da 3147static DEVICE_ATTR_RW(max_active);
226223ab 3148
1a6661da
GKH
3149static struct attribute *wq_sysfs_attrs[] = {
3150 &dev_attr_per_cpu.attr,
3151 &dev_attr_max_active.attr,
3152 NULL,
226223ab 3153};
1a6661da 3154ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3155
d55262c4
TH
3156static ssize_t wq_pool_ids_show(struct device *dev,
3157 struct device_attribute *attr, char *buf)
226223ab
TH
3158{
3159 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3160 const char *delim = "";
3161 int node, written = 0;
226223ab
TH
3162
3163 rcu_read_lock_sched();
d55262c4
TH
3164 for_each_node(node) {
3165 written += scnprintf(buf + written, PAGE_SIZE - written,
3166 "%s%d:%d", delim, node,
3167 unbound_pwq_by_node(wq, node)->pool->id);
3168 delim = " ";
3169 }
3170 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3171 rcu_read_unlock_sched();
3172
3173 return written;
3174}
3175
3176static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3177 char *buf)
3178{
3179 struct workqueue_struct *wq = dev_to_wq(dev);
3180 int written;
3181
6029a918
TH
3182 mutex_lock(&wq->mutex);
3183 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3184 mutex_unlock(&wq->mutex);
226223ab
TH
3185
3186 return written;
3187}
3188
3189/* prepare workqueue_attrs for sysfs store operations */
3190static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3191{
3192 struct workqueue_attrs *attrs;
3193
3194 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3195 if (!attrs)
3196 return NULL;
3197
6029a918
TH
3198 mutex_lock(&wq->mutex);
3199 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3200 mutex_unlock(&wq->mutex);
226223ab
TH
3201 return attrs;
3202}
3203
3204static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3205 const char *buf, size_t count)
3206{
3207 struct workqueue_struct *wq = dev_to_wq(dev);
3208 struct workqueue_attrs *attrs;
3209 int ret;
3210
3211 attrs = wq_sysfs_prep_attrs(wq);
3212 if (!attrs)
3213 return -ENOMEM;
3214
3215 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3216 attrs->nice >= -20 && attrs->nice <= 19)
3217 ret = apply_workqueue_attrs(wq, attrs);
3218 else
3219 ret = -EINVAL;
3220
3221 free_workqueue_attrs(attrs);
3222 return ret ?: count;
3223}
3224
3225static ssize_t wq_cpumask_show(struct device *dev,
3226 struct device_attribute *attr, char *buf)
3227{
3228 struct workqueue_struct *wq = dev_to_wq(dev);
3229 int written;
3230
6029a918
TH
3231 mutex_lock(&wq->mutex);
3232 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3233 mutex_unlock(&wq->mutex);
226223ab
TH
3234
3235 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3236 return written;
3237}
3238
3239static ssize_t wq_cpumask_store(struct device *dev,
3240 struct device_attribute *attr,
3241 const char *buf, size_t count)
3242{
3243 struct workqueue_struct *wq = dev_to_wq(dev);
3244 struct workqueue_attrs *attrs;
3245 int ret;
3246
3247 attrs = wq_sysfs_prep_attrs(wq);
3248 if (!attrs)
3249 return -ENOMEM;
3250
3251 ret = cpumask_parse(buf, attrs->cpumask);
3252 if (!ret)
3253 ret = apply_workqueue_attrs(wq, attrs);
3254
3255 free_workqueue_attrs(attrs);
3256 return ret ?: count;
3257}
3258
d55262c4
TH
3259static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3260 char *buf)
3261{
3262 struct workqueue_struct *wq = dev_to_wq(dev);
3263 int written;
3264
3265 mutex_lock(&wq->mutex);
3266 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3267 !wq->unbound_attrs->no_numa);
3268 mutex_unlock(&wq->mutex);
3269
3270 return written;
3271}
3272
3273static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3274 const char *buf, size_t count)
3275{
3276 struct workqueue_struct *wq = dev_to_wq(dev);
3277 struct workqueue_attrs *attrs;
3278 int v, ret;
3279
3280 attrs = wq_sysfs_prep_attrs(wq);
3281 if (!attrs)
3282 return -ENOMEM;
3283
3284 ret = -EINVAL;
3285 if (sscanf(buf, "%d", &v) == 1) {
3286 attrs->no_numa = !v;
3287 ret = apply_workqueue_attrs(wq, attrs);
3288 }
3289
3290 free_workqueue_attrs(attrs);
3291 return ret ?: count;
3292}
3293
226223ab 3294static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3295 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3296 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3297 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3298 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3299 __ATTR_NULL,
3300};
3301
3302static struct bus_type wq_subsys = {
3303 .name = "workqueue",
1a6661da 3304 .dev_groups = wq_sysfs_groups,
226223ab
TH
3305};
3306
3307static int __init wq_sysfs_init(void)
3308{
3309 return subsys_virtual_register(&wq_subsys, NULL);
3310}
3311core_initcall(wq_sysfs_init);
3312
3313static void wq_device_release(struct device *dev)
3314{
3315 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3316
3317 kfree(wq_dev);
3318}
3319
3320/**
3321 * workqueue_sysfs_register - make a workqueue visible in sysfs
3322 * @wq: the workqueue to register
3323 *
3324 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3325 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3326 * which is the preferred method.
3327 *
3328 * Workqueue user should use this function directly iff it wants to apply
3329 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3330 * apply_workqueue_attrs() may race against userland updating the
3331 * attributes.
3332 *
d185af30 3333 * Return: 0 on success, -errno on failure.
226223ab
TH
3334 */
3335int workqueue_sysfs_register(struct workqueue_struct *wq)
3336{
3337 struct wq_device *wq_dev;
3338 int ret;
3339
3340 /*
3341 * Adjusting max_active or creating new pwqs by applyting
3342 * attributes breaks ordering guarantee. Disallow exposing ordered
3343 * workqueues.
3344 */
3345 if (WARN_ON(wq->flags & __WQ_ORDERED))
3346 return -EINVAL;
3347
3348 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3349 if (!wq_dev)
3350 return -ENOMEM;
3351
3352 wq_dev->wq = wq;
3353 wq_dev->dev.bus = &wq_subsys;
3354 wq_dev->dev.init_name = wq->name;
3355 wq_dev->dev.release = wq_device_release;
3356
3357 /*
3358 * unbound_attrs are created separately. Suppress uevent until
3359 * everything is ready.
3360 */
3361 dev_set_uevent_suppress(&wq_dev->dev, true);
3362
3363 ret = device_register(&wq_dev->dev);
3364 if (ret) {
3365 kfree(wq_dev);
3366 wq->wq_dev = NULL;
3367 return ret;
3368 }
3369
3370 if (wq->flags & WQ_UNBOUND) {
3371 struct device_attribute *attr;
3372
3373 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3374 ret = device_create_file(&wq_dev->dev, attr);
3375 if (ret) {
3376 device_unregister(&wq_dev->dev);
3377 wq->wq_dev = NULL;
3378 return ret;
3379 }
3380 }
3381 }
3382
3383 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3384 return 0;
3385}
3386
3387/**
3388 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3389 * @wq: the workqueue to unregister
3390 *
3391 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3392 */
3393static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3394{
3395 struct wq_device *wq_dev = wq->wq_dev;
3396
3397 if (!wq->wq_dev)
3398 return;
3399
3400 wq->wq_dev = NULL;
3401 device_unregister(&wq_dev->dev);
3402}
3403#else /* CONFIG_SYSFS */
3404static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3405#endif /* CONFIG_SYSFS */
3406
7a4e344c
TH
3407/**
3408 * free_workqueue_attrs - free a workqueue_attrs
3409 * @attrs: workqueue_attrs to free
3410 *
3411 * Undo alloc_workqueue_attrs().
3412 */
3413void free_workqueue_attrs(struct workqueue_attrs *attrs)
3414{
3415 if (attrs) {
3416 free_cpumask_var(attrs->cpumask);
3417 kfree(attrs);
3418 }
3419}
3420
3421/**
3422 * alloc_workqueue_attrs - allocate a workqueue_attrs
3423 * @gfp_mask: allocation mask to use
3424 *
3425 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3426 * return it.
3427 *
3428 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3429 */
3430struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3431{
3432 struct workqueue_attrs *attrs;
3433
3434 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3435 if (!attrs)
3436 goto fail;
3437 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3438 goto fail;
3439
13e2e556 3440 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3441 return attrs;
3442fail:
3443 free_workqueue_attrs(attrs);
3444 return NULL;
3445}
3446
29c91e99
TH
3447static void copy_workqueue_attrs(struct workqueue_attrs *to,
3448 const struct workqueue_attrs *from)
3449{
3450 to->nice = from->nice;
3451 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3452 /*
3453 * Unlike hash and equality test, this function doesn't ignore
3454 * ->no_numa as it is used for both pool and wq attrs. Instead,
3455 * get_unbound_pool() explicitly clears ->no_numa after copying.
3456 */
3457 to->no_numa = from->no_numa;
29c91e99
TH
3458}
3459
29c91e99
TH
3460/* hash value of the content of @attr */
3461static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3462{
3463 u32 hash = 0;
3464
3465 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3466 hash = jhash(cpumask_bits(attrs->cpumask),
3467 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3468 return hash;
3469}
3470
3471/* content equality test */
3472static bool wqattrs_equal(const struct workqueue_attrs *a,
3473 const struct workqueue_attrs *b)
3474{
3475 if (a->nice != b->nice)
3476 return false;
3477 if (!cpumask_equal(a->cpumask, b->cpumask))
3478 return false;
3479 return true;
3480}
3481
7a4e344c
TH
3482/**
3483 * init_worker_pool - initialize a newly zalloc'd worker_pool
3484 * @pool: worker_pool to initialize
3485 *
3486 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3487 *
3488 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3489 * inside @pool proper are initialized and put_unbound_pool() can be called
3490 * on @pool safely to release it.
7a4e344c
TH
3491 */
3492static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3493{
3494 spin_lock_init(&pool->lock);
29c91e99
TH
3495 pool->id = -1;
3496 pool->cpu = -1;
f3f90ad4 3497 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3498 pool->flags |= POOL_DISASSOCIATED;
3499 INIT_LIST_HEAD(&pool->worklist);
3500 INIT_LIST_HEAD(&pool->idle_list);
3501 hash_init(pool->busy_hash);
3502
3503 init_timer_deferrable(&pool->idle_timer);
3504 pool->idle_timer.function = idle_worker_timeout;
3505 pool->idle_timer.data = (unsigned long)pool;
3506
3507 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3508 (unsigned long)pool);
3509
3510 mutex_init(&pool->manager_arb);
bc3a1afc 3511 mutex_init(&pool->manager_mutex);
822d8405 3512 idr_init(&pool->worker_idr);
7a4e344c 3513
29c91e99
TH
3514 INIT_HLIST_NODE(&pool->hash_node);
3515 pool->refcnt = 1;
3516
3517 /* shouldn't fail above this point */
7a4e344c
TH
3518 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3519 if (!pool->attrs)
3520 return -ENOMEM;
3521 return 0;
4e1a1f9a
TH
3522}
3523
29c91e99
TH
3524static void rcu_free_pool(struct rcu_head *rcu)
3525{
3526 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3527
822d8405 3528 idr_destroy(&pool->worker_idr);
29c91e99
TH
3529 free_workqueue_attrs(pool->attrs);
3530 kfree(pool);
3531}
3532
3533/**
3534 * put_unbound_pool - put a worker_pool
3535 * @pool: worker_pool to put
3536 *
3537 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3538 * safe manner. get_unbound_pool() calls this function on its failure path
3539 * and this function should be able to release pools which went through,
3540 * successfully or not, init_worker_pool().
a892cacc
TH
3541 *
3542 * Should be called with wq_pool_mutex held.
29c91e99
TH
3543 */
3544static void put_unbound_pool(struct worker_pool *pool)
3545{
3546 struct worker *worker;
3547
a892cacc
TH
3548 lockdep_assert_held(&wq_pool_mutex);
3549
3550 if (--pool->refcnt)
29c91e99 3551 return;
29c91e99
TH
3552
3553 /* sanity checks */
3554 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3555 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3556 return;
29c91e99
TH
3557
3558 /* release id and unhash */
3559 if (pool->id >= 0)
3560 idr_remove(&worker_pool_idr, pool->id);
3561 hash_del(&pool->hash_node);
3562
c5aa87bb
TH
3563 /*
3564 * Become the manager and destroy all workers. Grabbing
3565 * manager_arb prevents @pool's workers from blocking on
3566 * manager_mutex.
3567 */
29c91e99 3568 mutex_lock(&pool->manager_arb);
cd549687 3569 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3570 spin_lock_irq(&pool->lock);
3571
3572 while ((worker = first_worker(pool)))
3573 destroy_worker(worker);
3574 WARN_ON(pool->nr_workers || pool->nr_idle);
3575
3576 spin_unlock_irq(&pool->lock);
cd549687 3577 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3578 mutex_unlock(&pool->manager_arb);
3579
3580 /* shut down the timers */
3581 del_timer_sync(&pool->idle_timer);
3582 del_timer_sync(&pool->mayday_timer);
3583
3584 /* sched-RCU protected to allow dereferences from get_work_pool() */
3585 call_rcu_sched(&pool->rcu, rcu_free_pool);
3586}
3587
3588/**
3589 * get_unbound_pool - get a worker_pool with the specified attributes
3590 * @attrs: the attributes of the worker_pool to get
3591 *
3592 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3593 * reference count and return it. If there already is a matching
3594 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3595 * create a new one.
a892cacc
TH
3596 *
3597 * Should be called with wq_pool_mutex held.
d185af30
YB
3598 *
3599 * Return: On success, a worker_pool with the same attributes as @attrs.
3600 * On failure, %NULL.
29c91e99
TH
3601 */
3602static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3603{
29c91e99
TH
3604 u32 hash = wqattrs_hash(attrs);
3605 struct worker_pool *pool;
f3f90ad4 3606 int node;
29c91e99 3607
a892cacc 3608 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3609
3610 /* do we already have a matching pool? */
29c91e99
TH
3611 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3612 if (wqattrs_equal(pool->attrs, attrs)) {
3613 pool->refcnt++;
3614 goto out_unlock;
3615 }
3616 }
29c91e99
TH
3617
3618 /* nope, create a new one */
3619 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3620 if (!pool || init_worker_pool(pool) < 0)
3621 goto fail;
3622
12ee4fc6
LJ
3623 if (workqueue_freezing)
3624 pool->flags |= POOL_FREEZING;
3625
8864b4e5 3626 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3627 copy_workqueue_attrs(pool->attrs, attrs);
3628
2865a8fb
SL
3629 /*
3630 * no_numa isn't a worker_pool attribute, always clear it. See
3631 * 'struct workqueue_attrs' comments for detail.
3632 */
3633 pool->attrs->no_numa = false;
3634
f3f90ad4
TH
3635 /* if cpumask is contained inside a NUMA node, we belong to that node */
3636 if (wq_numa_enabled) {
3637 for_each_node(node) {
3638 if (cpumask_subset(pool->attrs->cpumask,
3639 wq_numa_possible_cpumask[node])) {
3640 pool->node = node;
3641 break;
3642 }
3643 }
3644 }
3645
29c91e99
TH
3646 if (worker_pool_assign_id(pool) < 0)
3647 goto fail;
3648
3649 /* create and start the initial worker */
ebf44d16 3650 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3651 goto fail;
3652
29c91e99 3653 /* install */
29c91e99
TH
3654 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655out_unlock:
29c91e99
TH
3656 return pool;
3657fail:
29c91e99
TH
3658 if (pool)
3659 put_unbound_pool(pool);
3660 return NULL;
3661}
3662
8864b4e5
TH
3663static void rcu_free_pwq(struct rcu_head *rcu)
3664{
3665 kmem_cache_free(pwq_cache,
3666 container_of(rcu, struct pool_workqueue, rcu));
3667}
3668
3669/*
3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671 * and needs to be destroyed.
3672 */
3673static void pwq_unbound_release_workfn(struct work_struct *work)
3674{
3675 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676 unbound_release_work);
3677 struct workqueue_struct *wq = pwq->wq;
3678 struct worker_pool *pool = pwq->pool;
bc0caf09 3679 bool is_last;
8864b4e5
TH
3680
3681 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3682 return;
3683
75ccf595 3684 /*
3c25a55d 3685 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3686 * necessary on release but do it anyway. It's easier to verify
3687 * and consistent with the linking path.
3688 */
3c25a55d 3689 mutex_lock(&wq->mutex);
8864b4e5 3690 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3691 is_last = list_empty(&wq->pwqs);
3c25a55d 3692 mutex_unlock(&wq->mutex);
8864b4e5 3693
a892cacc 3694 mutex_lock(&wq_pool_mutex);
8864b4e5 3695 put_unbound_pool(pool);
a892cacc
TH
3696 mutex_unlock(&wq_pool_mutex);
3697
8864b4e5
TH
3698 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3699
3700 /*
3701 * If we're the last pwq going away, @wq is already dead and no one
3702 * is gonna access it anymore. Free it.
3703 */
6029a918
TH
3704 if (is_last) {
3705 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3706 kfree(wq);
6029a918 3707 }
8864b4e5
TH
3708}
3709
0fbd95aa 3710/**
699ce097 3711 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3712 * @pwq: target pool_workqueue
0fbd95aa 3713 *
699ce097
TH
3714 * If @pwq isn't freezing, set @pwq->max_active to the associated
3715 * workqueue's saved_max_active and activate delayed work items
3716 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3717 */
699ce097 3718static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3719{
699ce097
TH
3720 struct workqueue_struct *wq = pwq->wq;
3721 bool freezable = wq->flags & WQ_FREEZABLE;
3722
3723 /* for @wq->saved_max_active */
a357fc03 3724 lockdep_assert_held(&wq->mutex);
699ce097
TH
3725
3726 /* fast exit for non-freezable wqs */
3727 if (!freezable && pwq->max_active == wq->saved_max_active)
3728 return;
3729
a357fc03 3730 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3731
3732 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3733 pwq->max_active = wq->saved_max_active;
0fbd95aa 3734
699ce097
TH
3735 while (!list_empty(&pwq->delayed_works) &&
3736 pwq->nr_active < pwq->max_active)
3737 pwq_activate_first_delayed(pwq);
951a078a
LJ
3738
3739 /*
3740 * Need to kick a worker after thawed or an unbound wq's
3741 * max_active is bumped. It's a slow path. Do it always.
3742 */
3743 wake_up_worker(pwq->pool);
699ce097
TH
3744 } else {
3745 pwq->max_active = 0;
3746 }
3747
a357fc03 3748 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3749}
3750
e50aba9a 3751/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3752static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3753 struct worker_pool *pool)
d2c1d404
TH
3754{
3755 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3756
e50aba9a
TH
3757 memset(pwq, 0, sizeof(*pwq));
3758
d2c1d404
TH
3759 pwq->pool = pool;
3760 pwq->wq = wq;
3761 pwq->flush_color = -1;
8864b4e5 3762 pwq->refcnt = 1;
d2c1d404 3763 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3764 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3765 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3766 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3767}
d2c1d404 3768
f147f29e 3769/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3770static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3771{
3772 struct workqueue_struct *wq = pwq->wq;
3773
3774 lockdep_assert_held(&wq->mutex);
75ccf595 3775
1befcf30
TH
3776 /* may be called multiple times, ignore if already linked */
3777 if (!list_empty(&pwq->pwqs_node))
3778 return;
3779
983ca25e
TH
3780 /*
3781 * Set the matching work_color. This is synchronized with
3c25a55d 3782 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3783 */
75ccf595 3784 pwq->work_color = wq->work_color;
983ca25e
TH
3785
3786 /* sync max_active to the current setting */
3787 pwq_adjust_max_active(pwq);
3788
3789 /* link in @pwq */
9e8cd2f5 3790 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3791}
a357fc03 3792
f147f29e
TH
3793/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3794static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3795 const struct workqueue_attrs *attrs)
3796{
3797 struct worker_pool *pool;
3798 struct pool_workqueue *pwq;
3799
3800 lockdep_assert_held(&wq_pool_mutex);
3801
3802 pool = get_unbound_pool(attrs);
3803 if (!pool)
3804 return NULL;
3805
e50aba9a 3806 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3807 if (!pwq) {
3808 put_unbound_pool(pool);
3809 return NULL;
df2d5ae4 3810 }
6029a918 3811
f147f29e
TH
3812 init_pwq(pwq, wq, pool);
3813 return pwq;
d2c1d404
TH
3814}
3815
4c16bd32
TH
3816/* undo alloc_unbound_pwq(), used only in the error path */
3817static void free_unbound_pwq(struct pool_workqueue *pwq)
3818{
3819 lockdep_assert_held(&wq_pool_mutex);
3820
3821 if (pwq) {
3822 put_unbound_pool(pwq->pool);
cece95df 3823 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3824 }
3825}
3826
3827/**
3828 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3829 * @attrs: the wq_attrs of interest
3830 * @node: the target NUMA node
3831 * @cpu_going_down: if >= 0, the CPU to consider as offline
3832 * @cpumask: outarg, the resulting cpumask
3833 *
3834 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3835 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3836 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3837 *
3838 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3839 * enabled and @node has online CPUs requested by @attrs, the returned
3840 * cpumask is the intersection of the possible CPUs of @node and
3841 * @attrs->cpumask.
3842 *
3843 * The caller is responsible for ensuring that the cpumask of @node stays
3844 * stable.
d185af30
YB
3845 *
3846 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3847 * %false if equal.
4c16bd32
TH
3848 */
3849static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3850 int cpu_going_down, cpumask_t *cpumask)
3851{
d55262c4 3852 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3853 goto use_dfl;
3854
3855 /* does @node have any online CPUs @attrs wants? */
3856 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3857 if (cpu_going_down >= 0)
3858 cpumask_clear_cpu(cpu_going_down, cpumask);
3859
3860 if (cpumask_empty(cpumask))
3861 goto use_dfl;
3862
3863 /* yeap, return possible CPUs in @node that @attrs wants */
3864 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3865 return !cpumask_equal(cpumask, attrs->cpumask);
3866
3867use_dfl:
3868 cpumask_copy(cpumask, attrs->cpumask);
3869 return false;
3870}
3871
1befcf30
TH
3872/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3873static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3874 int node,
3875 struct pool_workqueue *pwq)
3876{
3877 struct pool_workqueue *old_pwq;
3878
3879 lockdep_assert_held(&wq->mutex);
3880
3881 /* link_pwq() can handle duplicate calls */
3882 link_pwq(pwq);
3883
3884 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3885 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3886 return old_pwq;
3887}
3888
9e8cd2f5
TH
3889/**
3890 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3891 * @wq: the target workqueue
3892 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3893 *
4c16bd32
TH
3894 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3895 * machines, this function maps a separate pwq to each NUMA node with
3896 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3897 * NUMA node it was issued on. Older pwqs are released as in-flight work
3898 * items finish. Note that a work item which repeatedly requeues itself
3899 * back-to-back will stay on its current pwq.
9e8cd2f5 3900 *
d185af30
YB
3901 * Performs GFP_KERNEL allocations.
3902 *
3903 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3904 */
3905int apply_workqueue_attrs(struct workqueue_struct *wq,
3906 const struct workqueue_attrs *attrs)
3907{
4c16bd32
TH
3908 struct workqueue_attrs *new_attrs, *tmp_attrs;
3909 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3910 int node, ret;
9e8cd2f5 3911
8719dcea 3912 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3913 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3914 return -EINVAL;
3915
8719dcea
TH
3916 /* creating multiple pwqs breaks ordering guarantee */
3917 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3918 return -EINVAL;
3919
4c16bd32 3920 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3921 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3922 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3923 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3924 goto enomem;
3925
4c16bd32 3926 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3927 copy_workqueue_attrs(new_attrs, attrs);
3928 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3929
4c16bd32
TH
3930 /*
3931 * We may create multiple pwqs with differing cpumasks. Make a
3932 * copy of @new_attrs which will be modified and used to obtain
3933 * pools.
3934 */
3935 copy_workqueue_attrs(tmp_attrs, new_attrs);
3936
3937 /*
3938 * CPUs should stay stable across pwq creations and installations.
3939 * Pin CPUs, determine the target cpumask for each node and create
3940 * pwqs accordingly.
3941 */
3942 get_online_cpus();
3943
a892cacc 3944 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3945
3946 /*
3947 * If something goes wrong during CPU up/down, we'll fall back to
3948 * the default pwq covering whole @attrs->cpumask. Always create
3949 * it even if we don't use it immediately.
3950 */
3951 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3952 if (!dfl_pwq)
3953 goto enomem_pwq;
3954
3955 for_each_node(node) {
3956 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3957 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3958 if (!pwq_tbl[node])
3959 goto enomem_pwq;
3960 } else {
3961 dfl_pwq->refcnt++;
3962 pwq_tbl[node] = dfl_pwq;
3963 }
3964 }
3965
f147f29e 3966 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3967
4c16bd32 3968 /* all pwqs have been created successfully, let's install'em */
f147f29e 3969 mutex_lock(&wq->mutex);
a892cacc 3970
f147f29e 3971 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3972
3973 /* save the previous pwq and install the new one */
f147f29e 3974 for_each_node(node)
4c16bd32
TH
3975 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3976
3977 /* @dfl_pwq might not have been used, ensure it's linked */
3978 link_pwq(dfl_pwq);
3979 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3980
3981 mutex_unlock(&wq->mutex);
9e8cd2f5 3982
4c16bd32
TH
3983 /* put the old pwqs */
3984 for_each_node(node)
3985 put_pwq_unlocked(pwq_tbl[node]);
3986 put_pwq_unlocked(dfl_pwq);
3987
3988 put_online_cpus();
4862125b
TH
3989 ret = 0;
3990 /* fall through */
3991out_free:
4c16bd32 3992 free_workqueue_attrs(tmp_attrs);
4862125b 3993 free_workqueue_attrs(new_attrs);
4c16bd32 3994 kfree(pwq_tbl);
4862125b 3995 return ret;
13e2e556 3996
4c16bd32
TH
3997enomem_pwq:
3998 free_unbound_pwq(dfl_pwq);
3999 for_each_node(node)
4000 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4001 free_unbound_pwq(pwq_tbl[node]);
4002 mutex_unlock(&wq_pool_mutex);
4003 put_online_cpus();
13e2e556 4004enomem:
4862125b
TH
4005 ret = -ENOMEM;
4006 goto out_free;
9e8cd2f5
TH
4007}
4008
4c16bd32
TH
4009/**
4010 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4011 * @wq: the target workqueue
4012 * @cpu: the CPU coming up or going down
4013 * @online: whether @cpu is coming up or going down
4014 *
4015 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4016 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4017 * @wq accordingly.
4018 *
4019 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4020 * falls back to @wq->dfl_pwq which may not be optimal but is always
4021 * correct.
4022 *
4023 * Note that when the last allowed CPU of a NUMA node goes offline for a
4024 * workqueue with a cpumask spanning multiple nodes, the workers which were
4025 * already executing the work items for the workqueue will lose their CPU
4026 * affinity and may execute on any CPU. This is similar to how per-cpu
4027 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4028 * affinity, it's the user's responsibility to flush the work item from
4029 * CPU_DOWN_PREPARE.
4030 */
4031static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4032 bool online)
4033{
4034 int node = cpu_to_node(cpu);
4035 int cpu_off = online ? -1 : cpu;
4036 struct pool_workqueue *old_pwq = NULL, *pwq;
4037 struct workqueue_attrs *target_attrs;
4038 cpumask_t *cpumask;
4039
4040 lockdep_assert_held(&wq_pool_mutex);
4041
4042 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4043 return;
4044
4045 /*
4046 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4047 * Let's use a preallocated one. The following buf is protected by
4048 * CPU hotplug exclusion.
4049 */
4050 target_attrs = wq_update_unbound_numa_attrs_buf;
4051 cpumask = target_attrs->cpumask;
4052
4053 mutex_lock(&wq->mutex);
d55262c4
TH
4054 if (wq->unbound_attrs->no_numa)
4055 goto out_unlock;
4c16bd32
TH
4056
4057 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4058 pwq = unbound_pwq_by_node(wq, node);
4059
4060 /*
4061 * Let's determine what needs to be done. If the target cpumask is
4062 * different from wq's, we need to compare it to @pwq's and create
4063 * a new one if they don't match. If the target cpumask equals
4064 * wq's, the default pwq should be used. If @pwq is already the
4065 * default one, nothing to do; otherwise, install the default one.
4066 */
4067 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4068 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4069 goto out_unlock;
4070 } else {
4071 if (pwq == wq->dfl_pwq)
4072 goto out_unlock;
4073 else
4074 goto use_dfl_pwq;
4075 }
4076
4077 mutex_unlock(&wq->mutex);
4078
4079 /* create a new pwq */
4080 pwq = alloc_unbound_pwq(wq, target_attrs);
4081 if (!pwq) {
4082 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4083 wq->name);
4084 goto out_unlock;
4085 }
4086
4087 /*
4088 * Install the new pwq. As this function is called only from CPU
4089 * hotplug callbacks and applying a new attrs is wrapped with
4090 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4091 * inbetween.
4092 */
4093 mutex_lock(&wq->mutex);
4094 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4095 goto out_unlock;
4096
4097use_dfl_pwq:
4098 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4099 get_pwq(wq->dfl_pwq);
4100 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4101 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4102out_unlock:
4103 mutex_unlock(&wq->mutex);
4104 put_pwq_unlocked(old_pwq);
4105}
4106
30cdf249 4107static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4108{
49e3cf44 4109 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
4110 int cpu;
4111
4112 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4113 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4114 if (!wq->cpu_pwqs)
30cdf249
TH
4115 return -ENOMEM;
4116
4117 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4118 struct pool_workqueue *pwq =
4119 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4120 struct worker_pool *cpu_pools =
f02ae73a 4121 per_cpu(cpu_worker_pools, cpu);
f3421797 4122
f147f29e
TH
4123 init_pwq(pwq, wq, &cpu_pools[highpri]);
4124
4125 mutex_lock(&wq->mutex);
1befcf30 4126 link_pwq(pwq);
f147f29e 4127 mutex_unlock(&wq->mutex);
30cdf249 4128 }
9e8cd2f5 4129 return 0;
30cdf249 4130 } else {
9e8cd2f5 4131 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4132 }
0f900049
TH
4133}
4134
f3421797
TH
4135static int wq_clamp_max_active(int max_active, unsigned int flags,
4136 const char *name)
b71ab8c2 4137{
f3421797
TH
4138 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4139
4140 if (max_active < 1 || max_active > lim)
044c782c
VI
4141 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4142 max_active, name, 1, lim);
b71ab8c2 4143
f3421797 4144 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4145}
4146
b196be89 4147struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4148 unsigned int flags,
4149 int max_active,
4150 struct lock_class_key *key,
b196be89 4151 const char *lock_name, ...)
1da177e4 4152{
df2d5ae4 4153 size_t tbl_size = 0;
ecf6881f 4154 va_list args;
1da177e4 4155 struct workqueue_struct *wq;
49e3cf44 4156 struct pool_workqueue *pwq;
b196be89 4157
cee22a15
VK
4158 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4159 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4160 flags |= WQ_UNBOUND;
4161
ecf6881f 4162 /* allocate wq and format name */
df2d5ae4
TH
4163 if (flags & WQ_UNBOUND)
4164 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4165
4166 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4167 if (!wq)
d2c1d404 4168 return NULL;
b196be89 4169
6029a918
TH
4170 if (flags & WQ_UNBOUND) {
4171 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4172 if (!wq->unbound_attrs)
4173 goto err_free_wq;
4174 }
4175
ecf6881f
TH
4176 va_start(args, lock_name);
4177 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4178 va_end(args);
1da177e4 4179
d320c038 4180 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4181 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4182
b196be89 4183 /* init wq */
97e37d7b 4184 wq->flags = flags;
a0a1a5fd 4185 wq->saved_max_active = max_active;
3c25a55d 4186 mutex_init(&wq->mutex);
112202d9 4187 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4188 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4189 INIT_LIST_HEAD(&wq->flusher_queue);
4190 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4191 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4192
eb13ba87 4193 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4194 INIT_LIST_HEAD(&wq->list);
3af24433 4195
30cdf249 4196 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4197 goto err_free_wq;
1537663f 4198
493008a8
TH
4199 /*
4200 * Workqueues which may be used during memory reclaim should
4201 * have a rescuer to guarantee forward progress.
4202 */
4203 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4204 struct worker *rescuer;
4205
d2c1d404 4206 rescuer = alloc_worker();
e22bee78 4207 if (!rescuer)
d2c1d404 4208 goto err_destroy;
e22bee78 4209
111c225a
TH
4210 rescuer->rescue_wq = wq;
4211 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4212 wq->name);
d2c1d404
TH
4213 if (IS_ERR(rescuer->task)) {
4214 kfree(rescuer);
4215 goto err_destroy;
4216 }
e22bee78 4217
d2c1d404 4218 wq->rescuer = rescuer;
14a40ffc 4219 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4220 wake_up_process(rescuer->task);
3af24433
ON
4221 }
4222
226223ab
TH
4223 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4224 goto err_destroy;
4225
a0a1a5fd 4226 /*
68e13a67
LJ
4227 * wq_pool_mutex protects global freeze state and workqueues list.
4228 * Grab it, adjust max_active and add the new @wq to workqueues
4229 * list.
a0a1a5fd 4230 */
68e13a67 4231 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4232
a357fc03 4233 mutex_lock(&wq->mutex);
699ce097
TH
4234 for_each_pwq(pwq, wq)
4235 pwq_adjust_max_active(pwq);
a357fc03 4236 mutex_unlock(&wq->mutex);
a0a1a5fd 4237
1537663f 4238 list_add(&wq->list, &workqueues);
a0a1a5fd 4239
68e13a67 4240 mutex_unlock(&wq_pool_mutex);
1537663f 4241
3af24433 4242 return wq;
d2c1d404
TH
4243
4244err_free_wq:
6029a918 4245 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4246 kfree(wq);
4247 return NULL;
4248err_destroy:
4249 destroy_workqueue(wq);
4690c4ab 4250 return NULL;
3af24433 4251}
d320c038 4252EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4253
3af24433
ON
4254/**
4255 * destroy_workqueue - safely terminate a workqueue
4256 * @wq: target workqueue
4257 *
4258 * Safely destroy a workqueue. All work currently pending will be done first.
4259 */
4260void destroy_workqueue(struct workqueue_struct *wq)
4261{
49e3cf44 4262 struct pool_workqueue *pwq;
4c16bd32 4263 int node;
3af24433 4264
9c5a2ba7
TH
4265 /* drain it before proceeding with destruction */
4266 drain_workqueue(wq);
c8efcc25 4267
6183c009 4268 /* sanity checks */
b09f4fd3 4269 mutex_lock(&wq->mutex);
49e3cf44 4270 for_each_pwq(pwq, wq) {
6183c009
TH
4271 int i;
4272
76af4d93
TH
4273 for (i = 0; i < WORK_NR_COLORS; i++) {
4274 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4275 mutex_unlock(&wq->mutex);
6183c009 4276 return;
76af4d93
TH
4277 }
4278 }
4279
5c529597 4280 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4281 WARN_ON(pwq->nr_active) ||
76af4d93 4282 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4283 mutex_unlock(&wq->mutex);
6183c009 4284 return;
76af4d93 4285 }
6183c009 4286 }
b09f4fd3 4287 mutex_unlock(&wq->mutex);
6183c009 4288
a0a1a5fd
TH
4289 /*
4290 * wq list is used to freeze wq, remove from list after
4291 * flushing is complete in case freeze races us.
4292 */
68e13a67 4293 mutex_lock(&wq_pool_mutex);
d2c1d404 4294 list_del_init(&wq->list);
68e13a67 4295 mutex_unlock(&wq_pool_mutex);
3af24433 4296
226223ab
TH
4297 workqueue_sysfs_unregister(wq);
4298
493008a8 4299 if (wq->rescuer) {
e22bee78 4300 kthread_stop(wq->rescuer->task);
8d9df9f0 4301 kfree(wq->rescuer);
493008a8 4302 wq->rescuer = NULL;
e22bee78
TH
4303 }
4304
8864b4e5
TH
4305 if (!(wq->flags & WQ_UNBOUND)) {
4306 /*
4307 * The base ref is never dropped on per-cpu pwqs. Directly
4308 * free the pwqs and wq.
4309 */
4310 free_percpu(wq->cpu_pwqs);
4311 kfree(wq);
4312 } else {
4313 /*
4314 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4315 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4316 * @wq will be freed when the last pwq is released.
8864b4e5 4317 */
4c16bd32
TH
4318 for_each_node(node) {
4319 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4320 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4321 put_pwq_unlocked(pwq);
4322 }
4323
4324 /*
4325 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4326 * put. Don't access it afterwards.
4327 */
4328 pwq = wq->dfl_pwq;
4329 wq->dfl_pwq = NULL;
dce90d47 4330 put_pwq_unlocked(pwq);
29c91e99 4331 }
3af24433
ON
4332}
4333EXPORT_SYMBOL_GPL(destroy_workqueue);
4334
dcd989cb
TH
4335/**
4336 * workqueue_set_max_active - adjust max_active of a workqueue
4337 * @wq: target workqueue
4338 * @max_active: new max_active value.
4339 *
4340 * Set max_active of @wq to @max_active.
4341 *
4342 * CONTEXT:
4343 * Don't call from IRQ context.
4344 */
4345void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4346{
49e3cf44 4347 struct pool_workqueue *pwq;
dcd989cb 4348
8719dcea
TH
4349 /* disallow meddling with max_active for ordered workqueues */
4350 if (WARN_ON(wq->flags & __WQ_ORDERED))
4351 return;
4352
f3421797 4353 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4354
a357fc03 4355 mutex_lock(&wq->mutex);
dcd989cb
TH
4356
4357 wq->saved_max_active = max_active;
4358
699ce097
TH
4359 for_each_pwq(pwq, wq)
4360 pwq_adjust_max_active(pwq);
93981800 4361
a357fc03 4362 mutex_unlock(&wq->mutex);
15316ba8 4363}
dcd989cb 4364EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4365
e6267616
TH
4366/**
4367 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4368 *
4369 * Determine whether %current is a workqueue rescuer. Can be used from
4370 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4371 *
4372 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4373 */
4374bool current_is_workqueue_rescuer(void)
4375{
4376 struct worker *worker = current_wq_worker();
4377
6a092dfd 4378 return worker && worker->rescue_wq;
e6267616
TH
4379}
4380
eef6a7d5 4381/**
dcd989cb
TH
4382 * workqueue_congested - test whether a workqueue is congested
4383 * @cpu: CPU in question
4384 * @wq: target workqueue
eef6a7d5 4385 *
dcd989cb
TH
4386 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4387 * no synchronization around this function and the test result is
4388 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4389 *
d3251859
TH
4390 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4391 * Note that both per-cpu and unbound workqueues may be associated with
4392 * multiple pool_workqueues which have separate congested states. A
4393 * workqueue being congested on one CPU doesn't mean the workqueue is also
4394 * contested on other CPUs / NUMA nodes.
4395 *
d185af30 4396 * Return:
dcd989cb 4397 * %true if congested, %false otherwise.
eef6a7d5 4398 */
d84ff051 4399bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4400{
7fb98ea7 4401 struct pool_workqueue *pwq;
76af4d93
TH
4402 bool ret;
4403
88109453 4404 rcu_read_lock_sched();
7fb98ea7 4405
d3251859
TH
4406 if (cpu == WORK_CPU_UNBOUND)
4407 cpu = smp_processor_id();
4408
7fb98ea7
TH
4409 if (!(wq->flags & WQ_UNBOUND))
4410 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4411 else
df2d5ae4 4412 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4413
76af4d93 4414 ret = !list_empty(&pwq->delayed_works);
88109453 4415 rcu_read_unlock_sched();
76af4d93
TH
4416
4417 return ret;
1da177e4 4418}
dcd989cb 4419EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4420
dcd989cb
TH
4421/**
4422 * work_busy - test whether a work is currently pending or running
4423 * @work: the work to be tested
4424 *
4425 * Test whether @work is currently pending or running. There is no
4426 * synchronization around this function and the test result is
4427 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4428 *
d185af30 4429 * Return:
dcd989cb
TH
4430 * OR'd bitmask of WORK_BUSY_* bits.
4431 */
4432unsigned int work_busy(struct work_struct *work)
1da177e4 4433{
fa1b54e6 4434 struct worker_pool *pool;
dcd989cb
TH
4435 unsigned long flags;
4436 unsigned int ret = 0;
1da177e4 4437
dcd989cb
TH
4438 if (work_pending(work))
4439 ret |= WORK_BUSY_PENDING;
1da177e4 4440
fa1b54e6
TH
4441 local_irq_save(flags);
4442 pool = get_work_pool(work);
038366c5 4443 if (pool) {
fa1b54e6 4444 spin_lock(&pool->lock);
038366c5
LJ
4445 if (find_worker_executing_work(pool, work))
4446 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4447 spin_unlock(&pool->lock);
038366c5 4448 }
fa1b54e6 4449 local_irq_restore(flags);
1da177e4 4450
dcd989cb 4451 return ret;
1da177e4 4452}
dcd989cb 4453EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4454
3d1cb205
TH
4455/**
4456 * set_worker_desc - set description for the current work item
4457 * @fmt: printf-style format string
4458 * @...: arguments for the format string
4459 *
4460 * This function can be called by a running work function to describe what
4461 * the work item is about. If the worker task gets dumped, this
4462 * information will be printed out together to help debugging. The
4463 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4464 */
4465void set_worker_desc(const char *fmt, ...)
4466{
4467 struct worker *worker = current_wq_worker();
4468 va_list args;
4469
4470 if (worker) {
4471 va_start(args, fmt);
4472 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4473 va_end(args);
4474 worker->desc_valid = true;
4475 }
4476}
4477
4478/**
4479 * print_worker_info - print out worker information and description
4480 * @log_lvl: the log level to use when printing
4481 * @task: target task
4482 *
4483 * If @task is a worker and currently executing a work item, print out the
4484 * name of the workqueue being serviced and worker description set with
4485 * set_worker_desc() by the currently executing work item.
4486 *
4487 * This function can be safely called on any task as long as the
4488 * task_struct itself is accessible. While safe, this function isn't
4489 * synchronized and may print out mixups or garbages of limited length.
4490 */
4491void print_worker_info(const char *log_lvl, struct task_struct *task)
4492{
4493 work_func_t *fn = NULL;
4494 char name[WQ_NAME_LEN] = { };
4495 char desc[WORKER_DESC_LEN] = { };
4496 struct pool_workqueue *pwq = NULL;
4497 struct workqueue_struct *wq = NULL;
4498 bool desc_valid = false;
4499 struct worker *worker;
4500
4501 if (!(task->flags & PF_WQ_WORKER))
4502 return;
4503
4504 /*
4505 * This function is called without any synchronization and @task
4506 * could be in any state. Be careful with dereferences.
4507 */
4508 worker = probe_kthread_data(task);
4509
4510 /*
4511 * Carefully copy the associated workqueue's workfn and name. Keep
4512 * the original last '\0' in case the original contains garbage.
4513 */
4514 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4515 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4516 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4517 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4518
4519 /* copy worker description */
4520 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4521 if (desc_valid)
4522 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4523
4524 if (fn || name[0] || desc[0]) {
4525 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4526 if (desc[0])
4527 pr_cont(" (%s)", desc);
4528 pr_cont("\n");
4529 }
4530}
4531
db7bccf4
TH
4532/*
4533 * CPU hotplug.
4534 *
e22bee78 4535 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4536 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4537 * pool which make migrating pending and scheduled works very
e22bee78 4538 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4539 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4540 * blocked draining impractical.
4541 *
24647570 4542 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4543 * running as an unbound one and allowing it to be reattached later if the
4544 * cpu comes back online.
db7bccf4 4545 */
1da177e4 4546
706026c2 4547static void wq_unbind_fn(struct work_struct *work)
3af24433 4548{
38db41d9 4549 int cpu = smp_processor_id();
4ce62e9e 4550 struct worker_pool *pool;
db7bccf4 4551 struct worker *worker;
a9ab775b 4552 int wi;
3af24433 4553
f02ae73a 4554 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4555 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4556
bc3a1afc 4557 mutex_lock(&pool->manager_mutex);
94cf58bb 4558 spin_lock_irq(&pool->lock);
3af24433 4559
94cf58bb 4560 /*
bc3a1afc 4561 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4562 * unbound and set DISASSOCIATED. Before this, all workers
4563 * except for the ones which are still executing works from
4564 * before the last CPU down must be on the cpu. After
4565 * this, they may become diasporas.
4566 */
a9ab775b 4567 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4568 worker->flags |= WORKER_UNBOUND;
06ba38a9 4569
24647570 4570 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4571
94cf58bb 4572 spin_unlock_irq(&pool->lock);
bc3a1afc 4573 mutex_unlock(&pool->manager_mutex);
628c78e7 4574
eb283428
LJ
4575 /*
4576 * Call schedule() so that we cross rq->lock and thus can
4577 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4578 * This is necessary as scheduler callbacks may be invoked
4579 * from other cpus.
4580 */
4581 schedule();
06ba38a9 4582
eb283428
LJ
4583 /*
4584 * Sched callbacks are disabled now. Zap nr_running.
4585 * After this, nr_running stays zero and need_more_worker()
4586 * and keep_working() are always true as long as the
4587 * worklist is not empty. This pool now behaves as an
4588 * unbound (in terms of concurrency management) pool which
4589 * are served by workers tied to the pool.
4590 */
e19e397a 4591 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4592
4593 /*
4594 * With concurrency management just turned off, a busy
4595 * worker blocking could lead to lengthy stalls. Kick off
4596 * unbound chain execution of currently pending work items.
4597 */
4598 spin_lock_irq(&pool->lock);
4599 wake_up_worker(pool);
4600 spin_unlock_irq(&pool->lock);
4601 }
3af24433 4602}
3af24433 4603
bd7c089e
TH
4604/**
4605 * rebind_workers - rebind all workers of a pool to the associated CPU
4606 * @pool: pool of interest
4607 *
a9ab775b 4608 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4609 */
4610static void rebind_workers(struct worker_pool *pool)
4611{
a9ab775b
TH
4612 struct worker *worker;
4613 int wi;
bd7c089e
TH
4614
4615 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4616
a9ab775b
TH
4617 /*
4618 * Restore CPU affinity of all workers. As all idle workers should
4619 * be on the run-queue of the associated CPU before any local
4620 * wake-ups for concurrency management happen, restore CPU affinty
4621 * of all workers first and then clear UNBOUND. As we're called
4622 * from CPU_ONLINE, the following shouldn't fail.
4623 */
4624 for_each_pool_worker(worker, wi, pool)
4625 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4626 pool->attrs->cpumask) < 0);
bd7c089e 4627
a9ab775b 4628 spin_lock_irq(&pool->lock);
bd7c089e 4629
a9ab775b
TH
4630 for_each_pool_worker(worker, wi, pool) {
4631 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4632
4633 /*
a9ab775b
TH
4634 * A bound idle worker should actually be on the runqueue
4635 * of the associated CPU for local wake-ups targeting it to
4636 * work. Kick all idle workers so that they migrate to the
4637 * associated CPU. Doing this in the same loop as
4638 * replacing UNBOUND with REBOUND is safe as no worker will
4639 * be bound before @pool->lock is released.
bd7c089e 4640 */
a9ab775b
TH
4641 if (worker_flags & WORKER_IDLE)
4642 wake_up_process(worker->task);
bd7c089e 4643
a9ab775b
TH
4644 /*
4645 * We want to clear UNBOUND but can't directly call
4646 * worker_clr_flags() or adjust nr_running. Atomically
4647 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4648 * @worker will clear REBOUND using worker_clr_flags() when
4649 * it initiates the next execution cycle thus restoring
4650 * concurrency management. Note that when or whether
4651 * @worker clears REBOUND doesn't affect correctness.
4652 *
4653 * ACCESS_ONCE() is necessary because @worker->flags may be
4654 * tested without holding any lock in
4655 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4656 * fail incorrectly leading to premature concurrency
4657 * management operations.
4658 */
4659 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4660 worker_flags |= WORKER_REBOUND;
4661 worker_flags &= ~WORKER_UNBOUND;
4662 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4663 }
a9ab775b
TH
4664
4665 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4666}
4667
7dbc725e
TH
4668/**
4669 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4670 * @pool: unbound pool of interest
4671 * @cpu: the CPU which is coming up
4672 *
4673 * An unbound pool may end up with a cpumask which doesn't have any online
4674 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4675 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4676 * online CPU before, cpus_allowed of all its workers should be restored.
4677 */
4678static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4679{
4680 static cpumask_t cpumask;
4681 struct worker *worker;
4682 int wi;
4683
4684 lockdep_assert_held(&pool->manager_mutex);
4685
4686 /* is @cpu allowed for @pool? */
4687 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4688 return;
4689
4690 /* is @cpu the only online CPU? */
4691 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4692 if (cpumask_weight(&cpumask) != 1)
4693 return;
4694
4695 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4696 for_each_pool_worker(worker, wi, pool)
4697 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4698 pool->attrs->cpumask) < 0);
4699}
4700
8db25e78
TH
4701/*
4702 * Workqueues should be brought up before normal priority CPU notifiers.
4703 * This will be registered high priority CPU notifier.
4704 */
0db0628d 4705static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4706 unsigned long action,
4707 void *hcpu)
3af24433 4708{
d84ff051 4709 int cpu = (unsigned long)hcpu;
4ce62e9e 4710 struct worker_pool *pool;
4c16bd32 4711 struct workqueue_struct *wq;
7dbc725e 4712 int pi;
3ce63377 4713
8db25e78 4714 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4715 case CPU_UP_PREPARE:
f02ae73a 4716 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4717 if (pool->nr_workers)
4718 continue;
ebf44d16 4719 if (create_and_start_worker(pool) < 0)
3ce63377 4720 return NOTIFY_BAD;
3af24433 4721 }
8db25e78 4722 break;
3af24433 4723
db7bccf4
TH
4724 case CPU_DOWN_FAILED:
4725 case CPU_ONLINE:
68e13a67 4726 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4727
4728 for_each_pool(pool, pi) {
bc3a1afc 4729 mutex_lock(&pool->manager_mutex);
94cf58bb 4730
7dbc725e
TH
4731 if (pool->cpu == cpu) {
4732 spin_lock_irq(&pool->lock);
4733 pool->flags &= ~POOL_DISASSOCIATED;
4734 spin_unlock_irq(&pool->lock);
a9ab775b 4735
7dbc725e
TH
4736 rebind_workers(pool);
4737 } else if (pool->cpu < 0) {
4738 restore_unbound_workers_cpumask(pool, cpu);
4739 }
94cf58bb 4740
bc3a1afc 4741 mutex_unlock(&pool->manager_mutex);
94cf58bb 4742 }
7dbc725e 4743
4c16bd32
TH
4744 /* update NUMA affinity of unbound workqueues */
4745 list_for_each_entry(wq, &workqueues, list)
4746 wq_update_unbound_numa(wq, cpu, true);
4747
68e13a67 4748 mutex_unlock(&wq_pool_mutex);
db7bccf4 4749 break;
00dfcaf7 4750 }
65758202
TH
4751 return NOTIFY_OK;
4752}
4753
4754/*
4755 * Workqueues should be brought down after normal priority CPU notifiers.
4756 * This will be registered as low priority CPU notifier.
4757 */
0db0628d 4758static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4759 unsigned long action,
4760 void *hcpu)
4761{
d84ff051 4762 int cpu = (unsigned long)hcpu;
8db25e78 4763 struct work_struct unbind_work;
4c16bd32 4764 struct workqueue_struct *wq;
8db25e78 4765
65758202
TH
4766 switch (action & ~CPU_TASKS_FROZEN) {
4767 case CPU_DOWN_PREPARE:
4c16bd32 4768 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4769 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4770 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4771
4772 /* update NUMA affinity of unbound workqueues */
4773 mutex_lock(&wq_pool_mutex);
4774 list_for_each_entry(wq, &workqueues, list)
4775 wq_update_unbound_numa(wq, cpu, false);
4776 mutex_unlock(&wq_pool_mutex);
4777
4778 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4779 flush_work(&unbind_work);
4780 break;
65758202
TH
4781 }
4782 return NOTIFY_OK;
4783}
4784
2d3854a3 4785#ifdef CONFIG_SMP
8ccad40d 4786
2d3854a3 4787struct work_for_cpu {
ed48ece2 4788 struct work_struct work;
2d3854a3
RR
4789 long (*fn)(void *);
4790 void *arg;
4791 long ret;
4792};
4793
ed48ece2 4794static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4795{
ed48ece2
TH
4796 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4797
2d3854a3
RR
4798 wfc->ret = wfc->fn(wfc->arg);
4799}
4800
4801/**
4802 * work_on_cpu - run a function in user context on a particular cpu
4803 * @cpu: the cpu to run on
4804 * @fn: the function to run
4805 * @arg: the function arg
4806 *
31ad9081 4807 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4808 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4809 *
4810 * Return: The value @fn returns.
2d3854a3 4811 */
d84ff051 4812long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4813{
ed48ece2 4814 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4815
ed48ece2
TH
4816 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4817 schedule_work_on(cpu, &wfc.work);
c2fda509
LJ
4818
4819 /*
4820 * The work item is on-stack and can't lead to deadlock through
4821 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4822 * when work_on_cpu()s are nested.
4823 */
4824 __flush_work(&wfc.work);
4825
2d3854a3
RR
4826 return wfc.ret;
4827}
4828EXPORT_SYMBOL_GPL(work_on_cpu);
4829#endif /* CONFIG_SMP */
4830
a0a1a5fd
TH
4831#ifdef CONFIG_FREEZER
4832
4833/**
4834 * freeze_workqueues_begin - begin freezing workqueues
4835 *
58a69cb4 4836 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4837 * workqueues will queue new works to their delayed_works list instead of
706026c2 4838 * pool->worklist.
a0a1a5fd
TH
4839 *
4840 * CONTEXT:
a357fc03 4841 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4842 */
4843void freeze_workqueues_begin(void)
4844{
17116969 4845 struct worker_pool *pool;
24b8a847
TH
4846 struct workqueue_struct *wq;
4847 struct pool_workqueue *pwq;
611c92a0 4848 int pi;
a0a1a5fd 4849
68e13a67 4850 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4851
6183c009 4852 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4853 workqueue_freezing = true;
4854
24b8a847 4855 /* set FREEZING */
611c92a0 4856 for_each_pool(pool, pi) {
5bcab335 4857 spin_lock_irq(&pool->lock);
17116969
TH
4858 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4859 pool->flags |= POOL_FREEZING;
5bcab335 4860 spin_unlock_irq(&pool->lock);
24b8a847 4861 }
a0a1a5fd 4862
24b8a847 4863 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4864 mutex_lock(&wq->mutex);
699ce097
TH
4865 for_each_pwq(pwq, wq)
4866 pwq_adjust_max_active(pwq);
a357fc03 4867 mutex_unlock(&wq->mutex);
a0a1a5fd 4868 }
5bcab335 4869
68e13a67 4870 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4871}
4872
4873/**
58a69cb4 4874 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4875 *
4876 * Check whether freezing is complete. This function must be called
4877 * between freeze_workqueues_begin() and thaw_workqueues().
4878 *
4879 * CONTEXT:
68e13a67 4880 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4881 *
d185af30 4882 * Return:
58a69cb4
TH
4883 * %true if some freezable workqueues are still busy. %false if freezing
4884 * is complete.
a0a1a5fd
TH
4885 */
4886bool freeze_workqueues_busy(void)
4887{
a0a1a5fd 4888 bool busy = false;
24b8a847
TH
4889 struct workqueue_struct *wq;
4890 struct pool_workqueue *pwq;
a0a1a5fd 4891
68e13a67 4892 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4893
6183c009 4894 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4895
24b8a847
TH
4896 list_for_each_entry(wq, &workqueues, list) {
4897 if (!(wq->flags & WQ_FREEZABLE))
4898 continue;
a0a1a5fd
TH
4899 /*
4900 * nr_active is monotonically decreasing. It's safe
4901 * to peek without lock.
4902 */
88109453 4903 rcu_read_lock_sched();
24b8a847 4904 for_each_pwq(pwq, wq) {
6183c009 4905 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4906 if (pwq->nr_active) {
a0a1a5fd 4907 busy = true;
88109453 4908 rcu_read_unlock_sched();
a0a1a5fd
TH
4909 goto out_unlock;
4910 }
4911 }
88109453 4912 rcu_read_unlock_sched();
a0a1a5fd
TH
4913 }
4914out_unlock:
68e13a67 4915 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4916 return busy;
4917}
4918
4919/**
4920 * thaw_workqueues - thaw workqueues
4921 *
4922 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4923 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4924 *
4925 * CONTEXT:
a357fc03 4926 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4927 */
4928void thaw_workqueues(void)
4929{
24b8a847
TH
4930 struct workqueue_struct *wq;
4931 struct pool_workqueue *pwq;
4932 struct worker_pool *pool;
611c92a0 4933 int pi;
a0a1a5fd 4934
68e13a67 4935 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4936
4937 if (!workqueue_freezing)
4938 goto out_unlock;
4939
24b8a847 4940 /* clear FREEZING */
611c92a0 4941 for_each_pool(pool, pi) {
5bcab335 4942 spin_lock_irq(&pool->lock);
24b8a847
TH
4943 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4944 pool->flags &= ~POOL_FREEZING;
5bcab335 4945 spin_unlock_irq(&pool->lock);
24b8a847 4946 }
8b03ae3c 4947
24b8a847
TH
4948 /* restore max_active and repopulate worklist */
4949 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4950 mutex_lock(&wq->mutex);
699ce097
TH
4951 for_each_pwq(pwq, wq)
4952 pwq_adjust_max_active(pwq);
a357fc03 4953 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4954 }
4955
4956 workqueue_freezing = false;
4957out_unlock:
68e13a67 4958 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4959}
4960#endif /* CONFIG_FREEZER */
4961
bce90380
TH
4962static void __init wq_numa_init(void)
4963{
4964 cpumask_var_t *tbl;
4965 int node, cpu;
4966
4967 /* determine NUMA pwq table len - highest node id + 1 */
4968 for_each_node(node)
4969 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4970
4971 if (num_possible_nodes() <= 1)
4972 return;
4973
d55262c4
TH
4974 if (wq_disable_numa) {
4975 pr_info("workqueue: NUMA affinity support disabled\n");
4976 return;
4977 }
4978
4c16bd32
TH
4979 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4980 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4981
bce90380
TH
4982 /*
4983 * We want masks of possible CPUs of each node which isn't readily
4984 * available. Build one from cpu_to_node() which should have been
4985 * fully initialized by now.
4986 */
4987 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4988 BUG_ON(!tbl);
4989
4990 for_each_node(node)
1be0c25d
TH
4991 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4992 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4993
4994 for_each_possible_cpu(cpu) {
4995 node = cpu_to_node(cpu);
4996 if (WARN_ON(node == NUMA_NO_NODE)) {
4997 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4998 /* happens iff arch is bonkers, let's just proceed */
4999 return;
5000 }
5001 cpumask_set_cpu(cpu, tbl[node]);
5002 }
5003
5004 wq_numa_possible_cpumask = tbl;
5005 wq_numa_enabled = true;
5006}
5007
6ee0578b 5008static int __init init_workqueues(void)
1da177e4 5009{
7a4e344c
TH
5010 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5011 int i, cpu;
c34056a3 5012
7c3eed5c
TH
5013 /* make sure we have enough bits for OFFQ pool ID */
5014 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 5015 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 5016
e904e6c2
TH
5017 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5018
5019 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5020
65758202 5021 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5022 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5023
bce90380
TH
5024 wq_numa_init();
5025
706026c2 5026 /* initialize CPU pools */
29c91e99 5027 for_each_possible_cpu(cpu) {
4ce62e9e 5028 struct worker_pool *pool;
8b03ae3c 5029
7a4e344c 5030 i = 0;
f02ae73a 5031 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5032 BUG_ON(init_worker_pool(pool));
ec22ca5e 5033 pool->cpu = cpu;
29c91e99 5034 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5035 pool->attrs->nice = std_nice[i++];
f3f90ad4 5036 pool->node = cpu_to_node(cpu);
7a4e344c 5037
9daf9e67 5038 /* alloc pool ID */
68e13a67 5039 mutex_lock(&wq_pool_mutex);
9daf9e67 5040 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5041 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5042 }
8b03ae3c
TH
5043 }
5044
e22bee78 5045 /* create the initial worker */
29c91e99 5046 for_each_online_cpu(cpu) {
4ce62e9e 5047 struct worker_pool *pool;
e22bee78 5048
f02ae73a 5049 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5050 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5051 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5052 }
e22bee78
TH
5053 }
5054
29c91e99
TH
5055 /* create default unbound wq attrs */
5056 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5057 struct workqueue_attrs *attrs;
5058
5059 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5060 attrs->nice = std_nice[i];
29c91e99
TH
5061 unbound_std_wq_attrs[i] = attrs;
5062 }
5063
d320c038 5064 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5065 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5066 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5067 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5068 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5069 system_freezable_wq = alloc_workqueue("events_freezable",
5070 WQ_FREEZABLE, 0);
0668106c
VK
5071 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5072 WQ_POWER_EFFICIENT, 0);
5073 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5074 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5075 0);
1aabe902 5076 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5077 !system_unbound_wq || !system_freezable_wq ||
5078 !system_power_efficient_wq ||
5079 !system_freezable_power_efficient_wq);
6ee0578b 5080 return 0;
1da177e4 5081}
6ee0578b 5082early_initcall(init_workqueues);