workqueue: inline trivial wrappers
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c5aa87bb 148 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
34a06bd6 152 struct mutex manager_arb; /* manager arbitration */
24647570 153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 154 struct ida worker_ida; /* L: for worker IDs */
e19e397a 155
7a4e344c 156 struct workqueue_attrs *attrs; /* I: worker attributes */
c5aa87bb
TH
157 struct hlist_node hash_node; /* W: unbound_pool_hash node */
158 int refcnt; /* W: refcnt for unbound pools */
7a4e344c 159
e19e397a
TH
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
8b03ae3c
TH
172} ____cacheline_aligned_in_smp;
173
1da177e4 174/*
112202d9
TH
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
1da177e4 179 */
112202d9 180struct pool_workqueue {
bd7bdd43 181 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 182 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
8864b4e5 185 int refcnt; /* L: reference count */
73f53c4a
TH
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
1e19ffc6 188 int nr_active; /* L: nr of active works */
a0a1a5fd 189 int max_active; /* L: max active works */
1e19ffc6 190 struct list_head delayed_works; /* L: delayed works */
75ccf595 191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 192 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
e904e6c2 202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 203
73f53c4a
TH
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
226223ab
TH
213struct wq_device;
214
1da177e4 215/*
c5aa87bb
TH
216 * The externally visible workqueue. It relays the issued work items to
217 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
218 */
219struct workqueue_struct {
9c5a2ba7 220 unsigned int flags; /* W: WQ_* flags */
420c0ddb 221 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 222 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 223 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
112202d9 228 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
493a1724 233 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
234 struct worker *rescuer; /* I: rescue worker */
235
9c5a2ba7 236 int nr_drainers; /* W: drain in progress */
112202d9 237 int saved_max_active; /* W: saved pwq max_active */
226223ab
TH
238
239#ifdef CONFIG_SYSFS
240 struct wq_device *wq_dev; /* I: for sysfs interface */
241#endif
4e6045f1 242#ifdef CONFIG_LOCKDEP
4690c4ab 243 struct lockdep_map lockdep_map;
4e6045f1 244#endif
b196be89 245 char name[]; /* I: workqueue name */
1da177e4
LT
246};
247
e904e6c2
TH
248static struct kmem_cache *pwq_cache;
249
c5aa87bb 250/* W: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
251static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
252
c5aa87bb 253/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
254static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
255
d320c038 256struct workqueue_struct *system_wq __read_mostly;
d320c038 257EXPORT_SYMBOL_GPL(system_wq);
044c782c 258struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 259EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 260struct workqueue_struct *system_long_wq __read_mostly;
d320c038 261EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 262struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 263EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 264struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 265EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 266
97bd2347
TH
267#define CREATE_TRACE_POINTS
268#include <trace/events/workqueue.h>
269
76af4d93
TH
270#define assert_rcu_or_wq_lock() \
271 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
272 lockdep_is_held(&workqueue_lock), \
273 "sched RCU or workqueue lock should be held")
274
f02ae73a
TH
275#define for_each_cpu_worker_pool(pool, cpu) \
276 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
277 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 278 (pool)++)
4ce62e9e 279
b67bfe0d
SL
280#define for_each_busy_worker(worker, i, pool) \
281 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 282
17116969
TH
283/**
284 * for_each_pool - iterate through all worker_pools in the system
285 * @pool: iteration cursor
611c92a0 286 * @pi: integer used for iteration
fa1b54e6
TH
287 *
288 * This must be called either with workqueue_lock held or sched RCU read
289 * locked. If the pool needs to be used beyond the locking in effect, the
290 * caller is responsible for guaranteeing that the pool stays online.
291 *
292 * The if/else clause exists only for the lockdep assertion and can be
293 * ignored.
17116969 294 */
611c92a0
TH
295#define for_each_pool(pool, pi) \
296 idr_for_each_entry(&worker_pool_idr, pool, pi) \
fa1b54e6
TH
297 if (({ assert_rcu_or_wq_lock(); false; })) { } \
298 else
17116969 299
49e3cf44
TH
300/**
301 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
302 * @pwq: iteration cursor
303 * @wq: the target workqueue
76af4d93
TH
304 *
305 * This must be called either with workqueue_lock held or sched RCU read
306 * locked. If the pwq needs to be used beyond the locking in effect, the
307 * caller is responsible for guaranteeing that the pwq stays online.
308 *
309 * The if/else clause exists only for the lockdep assertion and can be
310 * ignored.
49e3cf44
TH
311 */
312#define for_each_pwq(pwq, wq) \
76af4d93
TH
313 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
314 if (({ assert_rcu_or_wq_lock(); false; })) { } \
315 else
f3421797 316
dc186ad7
TG
317#ifdef CONFIG_DEBUG_OBJECTS_WORK
318
319static struct debug_obj_descr work_debug_descr;
320
99777288
SG
321static void *work_debug_hint(void *addr)
322{
323 return ((struct work_struct *) addr)->func;
324}
325
dc186ad7
TG
326/*
327 * fixup_init is called when:
328 * - an active object is initialized
329 */
330static int work_fixup_init(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335 case ODEBUG_STATE_ACTIVE:
336 cancel_work_sync(work);
337 debug_object_init(work, &work_debug_descr);
338 return 1;
339 default:
340 return 0;
341 }
342}
343
344/*
345 * fixup_activate is called when:
346 * - an active object is activated
347 * - an unknown object is activated (might be a statically initialized object)
348 */
349static int work_fixup_activate(void *addr, enum debug_obj_state state)
350{
351 struct work_struct *work = addr;
352
353 switch (state) {
354
355 case ODEBUG_STATE_NOTAVAILABLE:
356 /*
357 * This is not really a fixup. The work struct was
358 * statically initialized. We just make sure that it
359 * is tracked in the object tracker.
360 */
22df02bb 361 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
362 debug_object_init(work, &work_debug_descr);
363 debug_object_activate(work, &work_debug_descr);
364 return 0;
365 }
366 WARN_ON_ONCE(1);
367 return 0;
368
369 case ODEBUG_STATE_ACTIVE:
370 WARN_ON(1);
371
372 default:
373 return 0;
374 }
375}
376
377/*
378 * fixup_free is called when:
379 * - an active object is freed
380 */
381static int work_fixup_free(void *addr, enum debug_obj_state state)
382{
383 struct work_struct *work = addr;
384
385 switch (state) {
386 case ODEBUG_STATE_ACTIVE:
387 cancel_work_sync(work);
388 debug_object_free(work, &work_debug_descr);
389 return 1;
390 default:
391 return 0;
392 }
393}
394
395static struct debug_obj_descr work_debug_descr = {
396 .name = "work_struct",
99777288 397 .debug_hint = work_debug_hint,
dc186ad7
TG
398 .fixup_init = work_fixup_init,
399 .fixup_activate = work_fixup_activate,
400 .fixup_free = work_fixup_free,
401};
402
403static inline void debug_work_activate(struct work_struct *work)
404{
405 debug_object_activate(work, &work_debug_descr);
406}
407
408static inline void debug_work_deactivate(struct work_struct *work)
409{
410 debug_object_deactivate(work, &work_debug_descr);
411}
412
413void __init_work(struct work_struct *work, int onstack)
414{
415 if (onstack)
416 debug_object_init_on_stack(work, &work_debug_descr);
417 else
418 debug_object_init(work, &work_debug_descr);
419}
420EXPORT_SYMBOL_GPL(__init_work);
421
422void destroy_work_on_stack(struct work_struct *work)
423{
424 debug_object_free(work, &work_debug_descr);
425}
426EXPORT_SYMBOL_GPL(destroy_work_on_stack);
427
428#else
429static inline void debug_work_activate(struct work_struct *work) { }
430static inline void debug_work_deactivate(struct work_struct *work) { }
431#endif
432
95402b38
GS
433/* Serializes the accesses to the list of workqueues. */
434static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 435static LIST_HEAD(workqueues);
a0a1a5fd 436static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 437
c5aa87bb 438/* the per-cpu worker pools */
e19e397a 439static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 440 cpu_worker_pools);
f3421797 441
fa1b54e6 442/*
c5aa87bb
TH
443 * R: idr of all pools. Modifications are protected by workqueue_lock.
444 * Read accesses are protected by sched-RCU protected.
fa1b54e6 445 */
9daf9e67
TH
446static DEFINE_IDR(worker_pool_idr);
447
c34056a3 448static int worker_thread(void *__worker);
226223ab
TH
449static void copy_workqueue_attrs(struct workqueue_attrs *to,
450 const struct workqueue_attrs *from);
1da177e4 451
9daf9e67
TH
452/* allocate ID and assign it to @pool */
453static int worker_pool_assign_id(struct worker_pool *pool)
454{
455 int ret;
456
fa1b54e6
TH
457 do {
458 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
459 return -ENOMEM;
9daf9e67 460
fa1b54e6
TH
461 spin_lock_irq(&workqueue_lock);
462 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
463 spin_unlock_irq(&workqueue_lock);
464 } while (ret == -EAGAIN);
9daf9e67 465
fa1b54e6 466 return ret;
7c3eed5c
TH
467}
468
76af4d93
TH
469/**
470 * first_pwq - return the first pool_workqueue of the specified workqueue
471 * @wq: the target workqueue
472 *
473 * This must be called either with workqueue_lock held or sched RCU read
474 * locked. If the pwq needs to be used beyond the locking in effect, the
475 * caller is responsible for guaranteeing that the pwq stays online.
476 */
7fb98ea7 477static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 478{
76af4d93
TH
479 assert_rcu_or_wq_lock();
480 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
481 pwqs_node);
b1f4ec17
ON
482}
483
73f53c4a
TH
484static unsigned int work_color_to_flags(int color)
485{
486 return color << WORK_STRUCT_COLOR_SHIFT;
487}
488
489static int get_work_color(struct work_struct *work)
490{
491 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
492 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
493}
494
495static int work_next_color(int color)
496{
497 return (color + 1) % WORK_NR_COLORS;
498}
1da177e4 499
14441960 500/*
112202d9
TH
501 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
502 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 503 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 504 *
112202d9
TH
505 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
506 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
507 * work->data. These functions should only be called while the work is
508 * owned - ie. while the PENDING bit is set.
7a22ad75 509 *
112202d9 510 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 511 * corresponding to a work. Pool is available once the work has been
112202d9 512 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 513 * available only while the work item is queued.
7a22ad75 514 *
bbb68dfa
TH
515 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
516 * canceled. While being canceled, a work item may have its PENDING set
517 * but stay off timer and worklist for arbitrarily long and nobody should
518 * try to steal the PENDING bit.
14441960 519 */
7a22ad75
TH
520static inline void set_work_data(struct work_struct *work, unsigned long data,
521 unsigned long flags)
365970a1 522{
6183c009 523 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
524 atomic_long_set(&work->data, data | flags | work_static(work));
525}
365970a1 526
112202d9 527static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
528 unsigned long extra_flags)
529{
112202d9
TH
530 set_work_data(work, (unsigned long)pwq,
531 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
532}
533
4468a00f
LJ
534static void set_work_pool_and_keep_pending(struct work_struct *work,
535 int pool_id)
536{
537 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
538 WORK_STRUCT_PENDING);
539}
540
7c3eed5c
TH
541static void set_work_pool_and_clear_pending(struct work_struct *work,
542 int pool_id)
7a22ad75 543{
23657bb1
TH
544 /*
545 * The following wmb is paired with the implied mb in
546 * test_and_set_bit(PENDING) and ensures all updates to @work made
547 * here are visible to and precede any updates by the next PENDING
548 * owner.
549 */
550 smp_wmb();
7c3eed5c 551 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 552}
f756d5e2 553
7a22ad75 554static void clear_work_data(struct work_struct *work)
1da177e4 555{
7c3eed5c
TH
556 smp_wmb(); /* see set_work_pool_and_clear_pending() */
557 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
558}
559
112202d9 560static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 561{
e120153d 562 unsigned long data = atomic_long_read(&work->data);
7a22ad75 563
112202d9 564 if (data & WORK_STRUCT_PWQ)
e120153d
TH
565 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
566 else
567 return NULL;
4d707b9f
ON
568}
569
7c3eed5c
TH
570/**
571 * get_work_pool - return the worker_pool a given work was associated with
572 * @work: the work item of interest
573 *
574 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
575 *
576 * Pools are created and destroyed under workqueue_lock, and allows read
577 * access under sched-RCU read lock. As such, this function should be
578 * called under workqueue_lock or with preemption disabled.
579 *
580 * All fields of the returned pool are accessible as long as the above
581 * mentioned locking is in effect. If the returned pool needs to be used
582 * beyond the critical section, the caller is responsible for ensuring the
583 * returned pool is and stays online.
7c3eed5c
TH
584 */
585static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 588 int pool_id;
7a22ad75 589
fa1b54e6
TH
590 assert_rcu_or_wq_lock();
591
112202d9
TH
592 if (data & WORK_STRUCT_PWQ)
593 return ((struct pool_workqueue *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
fa1b54e6 600 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
601}
602
603/**
604 * get_work_pool_id - return the worker pool ID a given work is associated with
605 * @work: the work item of interest
606 *
607 * Return the worker_pool ID @work was last associated with.
608 * %WORK_OFFQ_POOL_NONE if none.
609 */
610static int get_work_pool_id(struct work_struct *work)
611{
54d5b7d0
LJ
612 unsigned long data = atomic_long_read(&work->data);
613
112202d9
TH
614 if (data & WORK_STRUCT_PWQ)
615 return ((struct pool_workqueue *)
54d5b7d0 616 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 617
54d5b7d0 618 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
619}
620
bbb68dfa
TH
621static void mark_work_canceling(struct work_struct *work)
622{
7c3eed5c 623 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 624
7c3eed5c
TH
625 pool_id <<= WORK_OFFQ_POOL_SHIFT;
626 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
627}
628
629static bool work_is_canceling(struct work_struct *work)
630{
631 unsigned long data = atomic_long_read(&work->data);
632
112202d9 633 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
634}
635
e22bee78 636/*
3270476a
TH
637 * Policy functions. These define the policies on how the global worker
638 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 639 * they're being called with pool->lock held.
e22bee78
TH
640 */
641
63d95a91 642static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 643{
e19e397a 644 return !atomic_read(&pool->nr_running);
a848e3b6
ON
645}
646
4594bf15 647/*
e22bee78
TH
648 * Need to wake up a worker? Called from anything but currently
649 * running workers.
974271c4
TH
650 *
651 * Note that, because unbound workers never contribute to nr_running, this
706026c2 652 * function will always return %true for unbound pools as long as the
974271c4 653 * worklist isn't empty.
4594bf15 654 */
63d95a91 655static bool need_more_worker(struct worker_pool *pool)
365970a1 656{
63d95a91 657 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 658}
4594bf15 659
e22bee78 660/* Can I start working? Called from busy but !running workers. */
63d95a91 661static bool may_start_working(struct worker_pool *pool)
e22bee78 662{
63d95a91 663 return pool->nr_idle;
e22bee78
TH
664}
665
666/* Do I need to keep working? Called from currently running workers. */
63d95a91 667static bool keep_working(struct worker_pool *pool)
e22bee78 668{
e19e397a
TH
669 return !list_empty(&pool->worklist) &&
670 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
671}
672
673/* Do we need a new worker? Called from manager. */
63d95a91 674static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 677}
365970a1 678
e22bee78 679/* Do I need to be the manager? */
63d95a91 680static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_to_create_worker(pool) ||
11ebea50 683 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
684}
685
686/* Do we have too many workers and should some go away? */
63d95a91 687static bool too_many_workers(struct worker_pool *pool)
e22bee78 688{
34a06bd6 689 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 692
ea1abd61
LJ
693 /*
694 * nr_idle and idle_list may disagree if idle rebinding is in
695 * progress. Never return %true if idle_list is empty.
696 */
697 if (list_empty(&pool->idle_list))
698 return false;
699
e22bee78 700 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
701}
702
4d707b9f 703/*
e22bee78
TH
704 * Wake up functions.
705 */
706
7e11629d 707/* Return the first worker. Safe with preemption disabled */
63d95a91 708static struct worker *first_worker(struct worker_pool *pool)
7e11629d 709{
63d95a91 710 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
711 return NULL;
712
63d95a91 713 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
714}
715
716/**
717 * wake_up_worker - wake up an idle worker
63d95a91 718 * @pool: worker pool to wake worker from
7e11629d 719 *
63d95a91 720 * Wake up the first idle worker of @pool.
7e11629d
TH
721 *
722 * CONTEXT:
d565ed63 723 * spin_lock_irq(pool->lock).
7e11629d 724 */
63d95a91 725static void wake_up_worker(struct worker_pool *pool)
7e11629d 726{
63d95a91 727 struct worker *worker = first_worker(pool);
7e11629d
TH
728
729 if (likely(worker))
730 wake_up_process(worker->task);
731}
732
d302f017 733/**
e22bee78
TH
734 * wq_worker_waking_up - a worker is waking up
735 * @task: task waking up
736 * @cpu: CPU @task is waking up to
737 *
738 * This function is called during try_to_wake_up() when a worker is
739 * being awoken.
740 *
741 * CONTEXT:
742 * spin_lock_irq(rq->lock)
743 */
d84ff051 744void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
745{
746 struct worker *worker = kthread_data(task);
747
36576000 748 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 749 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 750 atomic_inc(&worker->pool->nr_running);
36576000 751 }
e22bee78
TH
752}
753
754/**
755 * wq_worker_sleeping - a worker is going to sleep
756 * @task: task going to sleep
757 * @cpu: CPU in question, must be the current CPU number
758 *
759 * This function is called during schedule() when a busy worker is
760 * going to sleep. Worker on the same cpu can be woken up by
761 * returning pointer to its task.
762 *
763 * CONTEXT:
764 * spin_lock_irq(rq->lock)
765 *
766 * RETURNS:
767 * Worker task on @cpu to wake up, %NULL if none.
768 */
d84ff051 769struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
770{
771 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 772 struct worker_pool *pool;
e22bee78 773
111c225a
TH
774 /*
775 * Rescuers, which may not have all the fields set up like normal
776 * workers, also reach here, let's not access anything before
777 * checking NOT_RUNNING.
778 */
2d64672e 779 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
780 return NULL;
781
111c225a 782 pool = worker->pool;
111c225a 783
e22bee78 784 /* this can only happen on the local cpu */
6183c009
TH
785 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
786 return NULL;
e22bee78
TH
787
788 /*
789 * The counterpart of the following dec_and_test, implied mb,
790 * worklist not empty test sequence is in insert_work().
791 * Please read comment there.
792 *
628c78e7
TH
793 * NOT_RUNNING is clear. This means that we're bound to and
794 * running on the local cpu w/ rq lock held and preemption
795 * disabled, which in turn means that none else could be
d565ed63 796 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 797 * lock is safe.
e22bee78 798 */
e19e397a
TH
799 if (atomic_dec_and_test(&pool->nr_running) &&
800 !list_empty(&pool->worklist))
63d95a91 801 to_wakeup = first_worker(pool);
e22bee78
TH
802 return to_wakeup ? to_wakeup->task : NULL;
803}
804
805/**
806 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 807 * @worker: self
d302f017
TH
808 * @flags: flags to set
809 * @wakeup: wakeup an idle worker if necessary
810 *
e22bee78
TH
811 * Set @flags in @worker->flags and adjust nr_running accordingly. If
812 * nr_running becomes zero and @wakeup is %true, an idle worker is
813 * woken up.
d302f017 814 *
cb444766 815 * CONTEXT:
d565ed63 816 * spin_lock_irq(pool->lock)
d302f017
TH
817 */
818static inline void worker_set_flags(struct worker *worker, unsigned int flags,
819 bool wakeup)
820{
bd7bdd43 821 struct worker_pool *pool = worker->pool;
e22bee78 822
cb444766
TH
823 WARN_ON_ONCE(worker->task != current);
824
e22bee78
TH
825 /*
826 * If transitioning into NOT_RUNNING, adjust nr_running and
827 * wake up an idle worker as necessary if requested by
828 * @wakeup.
829 */
830 if ((flags & WORKER_NOT_RUNNING) &&
831 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 832 if (wakeup) {
e19e397a 833 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 834 !list_empty(&pool->worklist))
63d95a91 835 wake_up_worker(pool);
e22bee78 836 } else
e19e397a 837 atomic_dec(&pool->nr_running);
e22bee78
TH
838 }
839
d302f017
TH
840 worker->flags |= flags;
841}
842
843/**
e22bee78 844 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 845 * @worker: self
d302f017
TH
846 * @flags: flags to clear
847 *
e22bee78 848 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 849 *
cb444766 850 * CONTEXT:
d565ed63 851 * spin_lock_irq(pool->lock)
d302f017
TH
852 */
853static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
854{
63d95a91 855 struct worker_pool *pool = worker->pool;
e22bee78
TH
856 unsigned int oflags = worker->flags;
857
cb444766
TH
858 WARN_ON_ONCE(worker->task != current);
859
d302f017 860 worker->flags &= ~flags;
e22bee78 861
42c025f3
TH
862 /*
863 * If transitioning out of NOT_RUNNING, increment nr_running. Note
864 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
865 * of multiple flags, not a single flag.
866 */
e22bee78
TH
867 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
868 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 869 atomic_inc(&pool->nr_running);
d302f017
TH
870}
871
8cca0eea
TH
872/**
873 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 874 * @pool: pool of interest
8cca0eea
TH
875 * @work: work to find worker for
876 *
c9e7cf27
TH
877 * Find a worker which is executing @work on @pool by searching
878 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
879 * to match, its current execution should match the address of @work and
880 * its work function. This is to avoid unwanted dependency between
881 * unrelated work executions through a work item being recycled while still
882 * being executed.
883 *
884 * This is a bit tricky. A work item may be freed once its execution
885 * starts and nothing prevents the freed area from being recycled for
886 * another work item. If the same work item address ends up being reused
887 * before the original execution finishes, workqueue will identify the
888 * recycled work item as currently executing and make it wait until the
889 * current execution finishes, introducing an unwanted dependency.
890 *
c5aa87bb
TH
891 * This function checks the work item address and work function to avoid
892 * false positives. Note that this isn't complete as one may construct a
893 * work function which can introduce dependency onto itself through a
894 * recycled work item. Well, if somebody wants to shoot oneself in the
895 * foot that badly, there's only so much we can do, and if such deadlock
896 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
897 *
898 * CONTEXT:
d565ed63 899 * spin_lock_irq(pool->lock).
8cca0eea
TH
900 *
901 * RETURNS:
902 * Pointer to worker which is executing @work if found, NULL
903 * otherwise.
4d707b9f 904 */
c9e7cf27 905static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 906 struct work_struct *work)
4d707b9f 907{
42f8570f 908 struct worker *worker;
42f8570f 909
b67bfe0d 910 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
911 (unsigned long)work)
912 if (worker->current_work == work &&
913 worker->current_func == work->func)
42f8570f
SL
914 return worker;
915
916 return NULL;
4d707b9f
ON
917}
918
bf4ede01
TH
919/**
920 * move_linked_works - move linked works to a list
921 * @work: start of series of works to be scheduled
922 * @head: target list to append @work to
923 * @nextp: out paramter for nested worklist walking
924 *
925 * Schedule linked works starting from @work to @head. Work series to
926 * be scheduled starts at @work and includes any consecutive work with
927 * WORK_STRUCT_LINKED set in its predecessor.
928 *
929 * If @nextp is not NULL, it's updated to point to the next work of
930 * the last scheduled work. This allows move_linked_works() to be
931 * nested inside outer list_for_each_entry_safe().
932 *
933 * CONTEXT:
d565ed63 934 * spin_lock_irq(pool->lock).
bf4ede01
TH
935 */
936static void move_linked_works(struct work_struct *work, struct list_head *head,
937 struct work_struct **nextp)
938{
939 struct work_struct *n;
940
941 /*
942 * Linked worklist will always end before the end of the list,
943 * use NULL for list head.
944 */
945 list_for_each_entry_safe_from(work, n, NULL, entry) {
946 list_move_tail(&work->entry, head);
947 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
948 break;
949 }
950
951 /*
952 * If we're already inside safe list traversal and have moved
953 * multiple works to the scheduled queue, the next position
954 * needs to be updated.
955 */
956 if (nextp)
957 *nextp = n;
958}
959
8864b4e5
TH
960/**
961 * get_pwq - get an extra reference on the specified pool_workqueue
962 * @pwq: pool_workqueue to get
963 *
964 * Obtain an extra reference on @pwq. The caller should guarantee that
965 * @pwq has positive refcnt and be holding the matching pool->lock.
966 */
967static void get_pwq(struct pool_workqueue *pwq)
968{
969 lockdep_assert_held(&pwq->pool->lock);
970 WARN_ON_ONCE(pwq->refcnt <= 0);
971 pwq->refcnt++;
972}
973
974/**
975 * put_pwq - put a pool_workqueue reference
976 * @pwq: pool_workqueue to put
977 *
978 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
979 * destruction. The caller should be holding the matching pool->lock.
980 */
981static void put_pwq(struct pool_workqueue *pwq)
982{
983 lockdep_assert_held(&pwq->pool->lock);
984 if (likely(--pwq->refcnt))
985 return;
986 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
987 return;
988 /*
989 * @pwq can't be released under pool->lock, bounce to
990 * pwq_unbound_release_workfn(). This never recurses on the same
991 * pool->lock as this path is taken only for unbound workqueues and
992 * the release work item is scheduled on a per-cpu workqueue. To
993 * avoid lockdep warning, unbound pool->locks are given lockdep
994 * subclass of 1 in get_unbound_pool().
995 */
996 schedule_work(&pwq->unbound_release_work);
997}
998
112202d9 999static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1000{
112202d9 1001 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1002
1003 trace_workqueue_activate_work(work);
112202d9 1004 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1005 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1006 pwq->nr_active++;
bf4ede01
TH
1007}
1008
112202d9 1009static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1010{
112202d9 1011 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1012 struct work_struct, entry);
1013
112202d9 1014 pwq_activate_delayed_work(work);
3aa62497
LJ
1015}
1016
bf4ede01 1017/**
112202d9
TH
1018 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1019 * @pwq: pwq of interest
bf4ede01 1020 * @color: color of work which left the queue
bf4ede01
TH
1021 *
1022 * A work either has completed or is removed from pending queue,
112202d9 1023 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1024 *
1025 * CONTEXT:
d565ed63 1026 * spin_lock_irq(pool->lock).
bf4ede01 1027 */
112202d9 1028static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1029{
8864b4e5 1030 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1031 if (color == WORK_NO_COLOR)
8864b4e5 1032 goto out_put;
bf4ede01 1033
112202d9 1034 pwq->nr_in_flight[color]--;
bf4ede01 1035
112202d9
TH
1036 pwq->nr_active--;
1037 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1038 /* one down, submit a delayed one */
112202d9
TH
1039 if (pwq->nr_active < pwq->max_active)
1040 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1041 }
1042
1043 /* is flush in progress and are we at the flushing tip? */
112202d9 1044 if (likely(pwq->flush_color != color))
8864b4e5 1045 goto out_put;
bf4ede01
TH
1046
1047 /* are there still in-flight works? */
112202d9 1048 if (pwq->nr_in_flight[color])
8864b4e5 1049 goto out_put;
bf4ede01 1050
112202d9
TH
1051 /* this pwq is done, clear flush_color */
1052 pwq->flush_color = -1;
bf4ede01
TH
1053
1054 /*
112202d9 1055 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1056 * will handle the rest.
1057 */
112202d9
TH
1058 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1059 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1060out_put:
1061 put_pwq(pwq);
bf4ede01
TH
1062}
1063
36e227d2 1064/**
bbb68dfa 1065 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1066 * @work: work item to steal
1067 * @is_dwork: @work is a delayed_work
bbb68dfa 1068 * @flags: place to store irq state
36e227d2
TH
1069 *
1070 * Try to grab PENDING bit of @work. This function can handle @work in any
1071 * stable state - idle, on timer or on worklist. Return values are
1072 *
1073 * 1 if @work was pending and we successfully stole PENDING
1074 * 0 if @work was idle and we claimed PENDING
1075 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1076 * -ENOENT if someone else is canceling @work, this state may persist
1077 * for arbitrarily long
36e227d2 1078 *
bbb68dfa 1079 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1080 * interrupted while holding PENDING and @work off queue, irq must be
1081 * disabled on entry. This, combined with delayed_work->timer being
1082 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1083 *
1084 * On successful return, >= 0, irq is disabled and the caller is
1085 * responsible for releasing it using local_irq_restore(*@flags).
1086 *
e0aecdd8 1087 * This function is safe to call from any context including IRQ handler.
bf4ede01 1088 */
bbb68dfa
TH
1089static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1090 unsigned long *flags)
bf4ede01 1091{
d565ed63 1092 struct worker_pool *pool;
112202d9 1093 struct pool_workqueue *pwq;
bf4ede01 1094
bbb68dfa
TH
1095 local_irq_save(*flags);
1096
36e227d2
TH
1097 /* try to steal the timer if it exists */
1098 if (is_dwork) {
1099 struct delayed_work *dwork = to_delayed_work(work);
1100
e0aecdd8
TH
1101 /*
1102 * dwork->timer is irqsafe. If del_timer() fails, it's
1103 * guaranteed that the timer is not queued anywhere and not
1104 * running on the local CPU.
1105 */
36e227d2
TH
1106 if (likely(del_timer(&dwork->timer)))
1107 return 1;
1108 }
1109
1110 /* try to claim PENDING the normal way */
bf4ede01
TH
1111 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1112 return 0;
1113
1114 /*
1115 * The queueing is in progress, or it is already queued. Try to
1116 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1117 */
d565ed63
TH
1118 pool = get_work_pool(work);
1119 if (!pool)
bbb68dfa 1120 goto fail;
bf4ede01 1121
d565ed63 1122 spin_lock(&pool->lock);
0b3dae68 1123 /*
112202d9
TH
1124 * work->data is guaranteed to point to pwq only while the work
1125 * item is queued on pwq->wq, and both updating work->data to point
1126 * to pwq on queueing and to pool on dequeueing are done under
1127 * pwq->pool->lock. This in turn guarantees that, if work->data
1128 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1129 * item is currently queued on that pool.
1130 */
112202d9
TH
1131 pwq = get_work_pwq(work);
1132 if (pwq && pwq->pool == pool) {
16062836
TH
1133 debug_work_deactivate(work);
1134
1135 /*
1136 * A delayed work item cannot be grabbed directly because
1137 * it might have linked NO_COLOR work items which, if left
112202d9 1138 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1139 * management later on and cause stall. Make sure the work
1140 * item is activated before grabbing.
1141 */
1142 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1143 pwq_activate_delayed_work(work);
16062836
TH
1144
1145 list_del_init(&work->entry);
112202d9 1146 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1147
112202d9 1148 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1149 set_work_pool_and_keep_pending(work, pool->id);
1150
1151 spin_unlock(&pool->lock);
1152 return 1;
bf4ede01 1153 }
d565ed63 1154 spin_unlock(&pool->lock);
bbb68dfa
TH
1155fail:
1156 local_irq_restore(*flags);
1157 if (work_is_canceling(work))
1158 return -ENOENT;
1159 cpu_relax();
36e227d2 1160 return -EAGAIN;
bf4ede01
TH
1161}
1162
4690c4ab 1163/**
706026c2 1164 * insert_work - insert a work into a pool
112202d9 1165 * @pwq: pwq @work belongs to
4690c4ab
TH
1166 * @work: work to insert
1167 * @head: insertion point
1168 * @extra_flags: extra WORK_STRUCT_* flags to set
1169 *
112202d9 1170 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1171 * work_struct flags.
4690c4ab
TH
1172 *
1173 * CONTEXT:
d565ed63 1174 * spin_lock_irq(pool->lock).
4690c4ab 1175 */
112202d9
TH
1176static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1177 struct list_head *head, unsigned int extra_flags)
b89deed3 1178{
112202d9 1179 struct worker_pool *pool = pwq->pool;
e22bee78 1180
4690c4ab 1181 /* we own @work, set data and link */
112202d9 1182 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1183 list_add_tail(&work->entry, head);
8864b4e5 1184 get_pwq(pwq);
e22bee78
TH
1185
1186 /*
c5aa87bb
TH
1187 * Ensure either wq_worker_sleeping() sees the above
1188 * list_add_tail() or we see zero nr_running to avoid workers lying
1189 * around lazily while there are works to be processed.
e22bee78
TH
1190 */
1191 smp_mb();
1192
63d95a91
TH
1193 if (__need_more_worker(pool))
1194 wake_up_worker(pool);
b89deed3
ON
1195}
1196
c8efcc25
TH
1197/*
1198 * Test whether @work is being queued from another work executing on the
8d03ecfe 1199 * same workqueue.
c8efcc25
TH
1200 */
1201static bool is_chained_work(struct workqueue_struct *wq)
1202{
8d03ecfe
TH
1203 struct worker *worker;
1204
1205 worker = current_wq_worker();
1206 /*
1207 * Return %true iff I'm a worker execuing a work item on @wq. If
1208 * I'm @worker, it's safe to dereference it without locking.
1209 */
112202d9 1210 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1211}
1212
d84ff051 1213static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1214 struct work_struct *work)
1215{
112202d9 1216 struct pool_workqueue *pwq;
c9178087 1217 struct worker_pool *last_pool;
1e19ffc6 1218 struct list_head *worklist;
8a2e8e5d 1219 unsigned int work_flags;
b75cac93 1220 unsigned int req_cpu = cpu;
8930caba
TH
1221
1222 /*
1223 * While a work item is PENDING && off queue, a task trying to
1224 * steal the PENDING will busy-loop waiting for it to either get
1225 * queued or lose PENDING. Grabbing PENDING and queueing should
1226 * happen with IRQ disabled.
1227 */
1228 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1229
dc186ad7 1230 debug_work_activate(work);
1e19ffc6 1231
c8efcc25 1232 /* if dying, only works from the same workqueue are allowed */
618b01eb 1233 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1234 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1235 return;
9e8cd2f5 1236retry:
c9178087 1237 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1238 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1239 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1240 cpu = raw_smp_processor_id();
7fb98ea7 1241 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1242 } else {
1243 pwq = first_pwq(wq);
1244 }
dbf2576e 1245
c9178087
TH
1246 /*
1247 * If @work was previously on a different pool, it might still be
1248 * running there, in which case the work needs to be queued on that
1249 * pool to guarantee non-reentrancy.
1250 */
1251 last_pool = get_work_pool(work);
1252 if (last_pool && last_pool != pwq->pool) {
1253 struct worker *worker;
18aa9eff 1254
c9178087 1255 spin_lock(&last_pool->lock);
18aa9eff 1256
c9178087 1257 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1258
c9178087
TH
1259 if (worker && worker->current_pwq->wq == wq) {
1260 pwq = worker->current_pwq;
8930caba 1261 } else {
c9178087
TH
1262 /* meh... not running there, queue here */
1263 spin_unlock(&last_pool->lock);
112202d9 1264 spin_lock(&pwq->pool->lock);
8930caba 1265 }
f3421797 1266 } else {
112202d9 1267 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1268 }
1269
9e8cd2f5
TH
1270 /*
1271 * pwq is determined and locked. For unbound pools, we could have
1272 * raced with pwq release and it could already be dead. If its
1273 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1274 * without another pwq replacing it as the first pwq or while a
1275 * work item is executing on it, so the retying is guaranteed to
1276 * make forward-progress.
1277 */
1278 if (unlikely(!pwq->refcnt)) {
1279 if (wq->flags & WQ_UNBOUND) {
1280 spin_unlock(&pwq->pool->lock);
1281 cpu_relax();
1282 goto retry;
1283 }
1284 /* oops */
1285 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1286 wq->name, cpu);
1287 }
1288
112202d9
TH
1289 /* pwq determined, queue */
1290 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1291
f5b2552b 1292 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1293 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1294 return;
1295 }
1e19ffc6 1296
112202d9
TH
1297 pwq->nr_in_flight[pwq->work_color]++;
1298 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1299
112202d9 1300 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1301 trace_workqueue_activate_work(work);
112202d9
TH
1302 pwq->nr_active++;
1303 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1304 } else {
1305 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1306 worklist = &pwq->delayed_works;
8a2e8e5d 1307 }
1e19ffc6 1308
112202d9 1309 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1310
112202d9 1311 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1312}
1313
0fcb78c2 1314/**
c1a220e7
ZR
1315 * queue_work_on - queue work on specific cpu
1316 * @cpu: CPU number to execute work on
0fcb78c2
REB
1317 * @wq: workqueue to use
1318 * @work: work to queue
1319 *
d4283e93 1320 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1321 *
c1a220e7
ZR
1322 * We queue the work to a specific CPU, the caller must ensure it
1323 * can't go away.
1da177e4 1324 */
d4283e93
TH
1325bool queue_work_on(int cpu, struct workqueue_struct *wq,
1326 struct work_struct *work)
1da177e4 1327{
d4283e93 1328 bool ret = false;
8930caba 1329 unsigned long flags;
ef1ca236 1330
8930caba 1331 local_irq_save(flags);
c1a220e7 1332
22df02bb 1333 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1334 __queue_work(cpu, wq, work);
d4283e93 1335 ret = true;
c1a220e7 1336 }
ef1ca236 1337
8930caba 1338 local_irq_restore(flags);
1da177e4
LT
1339 return ret;
1340}
c1a220e7 1341EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1342
d8e794df 1343void delayed_work_timer_fn(unsigned long __data)
1da177e4 1344{
52bad64d 1345 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1346
e0aecdd8 1347 /* should have been called from irqsafe timer with irq already off */
60c057bc 1348 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1349}
1438ade5 1350EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1351
7beb2edf
TH
1352static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1353 struct delayed_work *dwork, unsigned long delay)
1da177e4 1354{
7beb2edf
TH
1355 struct timer_list *timer = &dwork->timer;
1356 struct work_struct *work = &dwork->work;
7beb2edf
TH
1357
1358 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1359 timer->data != (unsigned long)dwork);
fc4b514f
TH
1360 WARN_ON_ONCE(timer_pending(timer));
1361 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1362
8852aac2
TH
1363 /*
1364 * If @delay is 0, queue @dwork->work immediately. This is for
1365 * both optimization and correctness. The earliest @timer can
1366 * expire is on the closest next tick and delayed_work users depend
1367 * on that there's no such delay when @delay is 0.
1368 */
1369 if (!delay) {
1370 __queue_work(cpu, wq, &dwork->work);
1371 return;
1372 }
1373
7beb2edf 1374 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1375
60c057bc 1376 dwork->wq = wq;
1265057f 1377 dwork->cpu = cpu;
7beb2edf
TH
1378 timer->expires = jiffies + delay;
1379
1380 if (unlikely(cpu != WORK_CPU_UNBOUND))
1381 add_timer_on(timer, cpu);
1382 else
1383 add_timer(timer);
1da177e4
LT
1384}
1385
0fcb78c2
REB
1386/**
1387 * queue_delayed_work_on - queue work on specific CPU after delay
1388 * @cpu: CPU number to execute work on
1389 * @wq: workqueue to use
af9997e4 1390 * @dwork: work to queue
0fcb78c2
REB
1391 * @delay: number of jiffies to wait before queueing
1392 *
715f1300
TH
1393 * Returns %false if @work was already on a queue, %true otherwise. If
1394 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1395 * execution.
0fcb78c2 1396 */
d4283e93
TH
1397bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1398 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1399{
52bad64d 1400 struct work_struct *work = &dwork->work;
d4283e93 1401 bool ret = false;
8930caba 1402 unsigned long flags;
7a6bc1cd 1403
8930caba
TH
1404 /* read the comment in __queue_work() */
1405 local_irq_save(flags);
7a6bc1cd 1406
22df02bb 1407 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1408 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1409 ret = true;
7a6bc1cd 1410 }
8a3e77cc 1411
8930caba 1412 local_irq_restore(flags);
7a6bc1cd
VP
1413 return ret;
1414}
ae90dd5d 1415EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1416
8376fe22
TH
1417/**
1418 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1419 * @cpu: CPU number to execute work on
1420 * @wq: workqueue to use
1421 * @dwork: work to queue
1422 * @delay: number of jiffies to wait before queueing
1423 *
1424 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1425 * modify @dwork's timer so that it expires after @delay. If @delay is
1426 * zero, @work is guaranteed to be scheduled immediately regardless of its
1427 * current state.
1428 *
1429 * Returns %false if @dwork was idle and queued, %true if @dwork was
1430 * pending and its timer was modified.
1431 *
e0aecdd8 1432 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1433 * See try_to_grab_pending() for details.
1434 */
1435bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1436 struct delayed_work *dwork, unsigned long delay)
1437{
1438 unsigned long flags;
1439 int ret;
c7fc77f7 1440
8376fe22
TH
1441 do {
1442 ret = try_to_grab_pending(&dwork->work, true, &flags);
1443 } while (unlikely(ret == -EAGAIN));
63bc0362 1444
8376fe22
TH
1445 if (likely(ret >= 0)) {
1446 __queue_delayed_work(cpu, wq, dwork, delay);
1447 local_irq_restore(flags);
7a6bc1cd 1448 }
8376fe22
TH
1449
1450 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1451 return ret;
1452}
8376fe22
TH
1453EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1454
c8e55f36
TH
1455/**
1456 * worker_enter_idle - enter idle state
1457 * @worker: worker which is entering idle state
1458 *
1459 * @worker is entering idle state. Update stats and idle timer if
1460 * necessary.
1461 *
1462 * LOCKING:
d565ed63 1463 * spin_lock_irq(pool->lock).
c8e55f36
TH
1464 */
1465static void worker_enter_idle(struct worker *worker)
1da177e4 1466{
bd7bdd43 1467 struct worker_pool *pool = worker->pool;
c8e55f36 1468
6183c009
TH
1469 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1470 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1471 (worker->hentry.next || worker->hentry.pprev)))
1472 return;
c8e55f36 1473
cb444766
TH
1474 /* can't use worker_set_flags(), also called from start_worker() */
1475 worker->flags |= WORKER_IDLE;
bd7bdd43 1476 pool->nr_idle++;
e22bee78 1477 worker->last_active = jiffies;
c8e55f36
TH
1478
1479 /* idle_list is LIFO */
bd7bdd43 1480 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1481
628c78e7
TH
1482 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1483 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1484
544ecf31 1485 /*
706026c2 1486 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1487 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1488 * nr_running, the warning may trigger spuriously. Check iff
1489 * unbind is not in progress.
544ecf31 1490 */
24647570 1491 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1492 pool->nr_workers == pool->nr_idle &&
e19e397a 1493 atomic_read(&pool->nr_running));
c8e55f36
TH
1494}
1495
1496/**
1497 * worker_leave_idle - leave idle state
1498 * @worker: worker which is leaving idle state
1499 *
1500 * @worker is leaving idle state. Update stats.
1501 *
1502 * LOCKING:
d565ed63 1503 * spin_lock_irq(pool->lock).
c8e55f36
TH
1504 */
1505static void worker_leave_idle(struct worker *worker)
1506{
bd7bdd43 1507 struct worker_pool *pool = worker->pool;
c8e55f36 1508
6183c009
TH
1509 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1510 return;
d302f017 1511 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1512 pool->nr_idle--;
c8e55f36
TH
1513 list_del_init(&worker->entry);
1514}
1515
e22bee78 1516/**
f36dc67b
LJ
1517 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1518 * @pool: target worker_pool
1519 *
1520 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1521 *
1522 * Works which are scheduled while the cpu is online must at least be
1523 * scheduled to a worker which is bound to the cpu so that if they are
1524 * flushed from cpu callbacks while cpu is going down, they are
1525 * guaranteed to execute on the cpu.
1526 *
f5faa077 1527 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1528 * themselves to the target cpu and may race with cpu going down or
1529 * coming online. kthread_bind() can't be used because it may put the
1530 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1531 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1532 * [dis]associated in the meantime.
1533 *
706026c2 1534 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1535 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1536 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1537 * enters idle state or fetches works without dropping lock, it can
1538 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1539 *
1540 * CONTEXT:
d565ed63 1541 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1542 * held.
1543 *
1544 * RETURNS:
706026c2 1545 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1546 * bound), %false if offline.
1547 */
f36dc67b 1548static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1549__acquires(&pool->lock)
e22bee78 1550{
e22bee78 1551 while (true) {
4e6045f1 1552 /*
e22bee78
TH
1553 * The following call may fail, succeed or succeed
1554 * without actually migrating the task to the cpu if
1555 * it races with cpu hotunplug operation. Verify
24647570 1556 * against POOL_DISASSOCIATED.
4e6045f1 1557 */
24647570 1558 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1559 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1560
d565ed63 1561 spin_lock_irq(&pool->lock);
24647570 1562 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1563 return false;
f5faa077 1564 if (task_cpu(current) == pool->cpu &&
7a4e344c 1565 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1566 return true;
d565ed63 1567 spin_unlock_irq(&pool->lock);
e22bee78 1568
5035b20f
TH
1569 /*
1570 * We've raced with CPU hot[un]plug. Give it a breather
1571 * and retry migration. cond_resched() is required here;
1572 * otherwise, we might deadlock against cpu_stop trying to
1573 * bring down the CPU on non-preemptive kernel.
1574 */
e22bee78 1575 cpu_relax();
5035b20f 1576 cond_resched();
e22bee78
TH
1577 }
1578}
1579
25511a47 1580/*
ea1abd61 1581 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1582 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1583 */
1584static void idle_worker_rebind(struct worker *worker)
1585{
5f7dabfd 1586 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1587 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1588 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1589
ea1abd61
LJ
1590 /* rebind complete, become available again */
1591 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1592 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1593}
1594
e22bee78 1595/*
25511a47 1596 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1597 * the associated cpu which is coming back online. This is scheduled by
1598 * cpu up but can race with other cpu hotplug operations and may be
1599 * executed twice without intervening cpu down.
e22bee78 1600 */
25511a47 1601static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1602{
1603 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1604
f36dc67b 1605 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1606 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1607
d565ed63 1608 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1609}
1610
25511a47 1611/**
94cf58bb
TH
1612 * rebind_workers - rebind all workers of a pool to the associated CPU
1613 * @pool: pool of interest
25511a47 1614 *
94cf58bb 1615 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1616 * is different for idle and busy ones.
1617 *
ea1abd61
LJ
1618 * Idle ones will be removed from the idle_list and woken up. They will
1619 * add themselves back after completing rebind. This ensures that the
1620 * idle_list doesn't contain any unbound workers when re-bound busy workers
1621 * try to perform local wake-ups for concurrency management.
25511a47 1622 *
ea1abd61
LJ
1623 * Busy workers can rebind after they finish their current work items.
1624 * Queueing the rebind work item at the head of the scheduled list is
1625 * enough. Note that nr_running will be properly bumped as busy workers
1626 * rebind.
25511a47 1627 *
ea1abd61
LJ
1628 * On return, all non-manager workers are scheduled for rebind - see
1629 * manage_workers() for the manager special case. Any idle worker
1630 * including the manager will not appear on @idle_list until rebind is
1631 * complete, making local wake-ups safe.
25511a47 1632 */
94cf58bb 1633static void rebind_workers(struct worker_pool *pool)
25511a47 1634{
ea1abd61 1635 struct worker *worker, *n;
25511a47
TH
1636 int i;
1637
94cf58bb
TH
1638 lockdep_assert_held(&pool->assoc_mutex);
1639 lockdep_assert_held(&pool->lock);
25511a47 1640
5f7dabfd 1641 /* dequeue and kick idle ones */
94cf58bb
TH
1642 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1643 /*
1644 * idle workers should be off @pool->idle_list until rebind
1645 * is complete to avoid receiving premature local wake-ups.
1646 */
1647 list_del_init(&worker->entry);
25511a47 1648
94cf58bb
TH
1649 /*
1650 * worker_thread() will see the above dequeuing and call
1651 * idle_worker_rebind().
1652 */
1653 wake_up_process(worker->task);
1654 }
25511a47 1655
94cf58bb 1656 /* rebind busy workers */
b67bfe0d 1657 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1658 struct work_struct *rebind_work = &worker->rebind_work;
1659 struct workqueue_struct *wq;
25511a47 1660
94cf58bb
TH
1661 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1662 work_data_bits(rebind_work)))
1663 continue;
25511a47 1664
94cf58bb 1665 debug_work_activate(rebind_work);
90beca5d 1666
94cf58bb
TH
1667 /*
1668 * wq doesn't really matter but let's keep @worker->pool
112202d9 1669 * and @pwq->pool consistent for sanity.
94cf58bb 1670 */
7a4e344c 1671 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1672 wq = system_highpri_wq;
1673 else
1674 wq = system_wq;
1675
7fb98ea7 1676 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1677 worker->scheduled.next,
1678 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1679 }
25511a47
TH
1680}
1681
c34056a3
TH
1682static struct worker *alloc_worker(void)
1683{
1684 struct worker *worker;
1685
1686 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1687 if (worker) {
1688 INIT_LIST_HEAD(&worker->entry);
affee4b2 1689 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1690 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1691 /* on creation a worker is in !idle && prep state */
1692 worker->flags = WORKER_PREP;
c8e55f36 1693 }
c34056a3
TH
1694 return worker;
1695}
1696
1697/**
1698 * create_worker - create a new workqueue worker
63d95a91 1699 * @pool: pool the new worker will belong to
c34056a3 1700 *
63d95a91 1701 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1702 * can be started by calling start_worker() or destroyed using
1703 * destroy_worker().
1704 *
1705 * CONTEXT:
1706 * Might sleep. Does GFP_KERNEL allocations.
1707 *
1708 * RETURNS:
1709 * Pointer to the newly created worker.
1710 */
bc2ae0f5 1711static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1712{
7a4e344c 1713 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1714 struct worker *worker = NULL;
f3421797 1715 int id = -1;
c34056a3 1716
d565ed63 1717 spin_lock_irq(&pool->lock);
bd7bdd43 1718 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1719 spin_unlock_irq(&pool->lock);
bd7bdd43 1720 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1721 goto fail;
d565ed63 1722 spin_lock_irq(&pool->lock);
c34056a3 1723 }
d565ed63 1724 spin_unlock_irq(&pool->lock);
c34056a3
TH
1725
1726 worker = alloc_worker();
1727 if (!worker)
1728 goto fail;
1729
bd7bdd43 1730 worker->pool = pool;
c34056a3
TH
1731 worker->id = id;
1732
29c91e99 1733 if (pool->cpu >= 0)
94dcf29a 1734 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1735 worker, cpu_to_node(pool->cpu),
d84ff051 1736 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1737 else
1738 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1739 "kworker/u%d:%d%s",
1740 pool->id, id, pri);
c34056a3
TH
1741 if (IS_ERR(worker->task))
1742 goto fail;
1743
c5aa87bb
TH
1744 /*
1745 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1746 * online CPUs. It'll be re-applied when any of the CPUs come up.
1747 */
7a4e344c
TH
1748 set_user_nice(worker->task, pool->attrs->nice);
1749 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1750
db7bccf4 1751 /*
7a4e344c
TH
1752 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1753 * cpumask of workqueue workers. This is an abuse. We need
1754 * %PF_NO_SETAFFINITY.
db7bccf4 1755 */
7a4e344c
TH
1756 worker->task->flags |= PF_THREAD_BOUND;
1757
1758 /*
1759 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1760 * remains stable across this function. See the comments above the
1761 * flag definition for details.
1762 */
1763 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1764 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1765
1766 return worker;
1767fail:
1768 if (id >= 0) {
d565ed63 1769 spin_lock_irq(&pool->lock);
bd7bdd43 1770 ida_remove(&pool->worker_ida, id);
d565ed63 1771 spin_unlock_irq(&pool->lock);
c34056a3
TH
1772 }
1773 kfree(worker);
1774 return NULL;
1775}
1776
1777/**
1778 * start_worker - start a newly created worker
1779 * @worker: worker to start
1780 *
706026c2 1781 * Make the pool aware of @worker and start it.
c34056a3
TH
1782 *
1783 * CONTEXT:
d565ed63 1784 * spin_lock_irq(pool->lock).
c34056a3
TH
1785 */
1786static void start_worker(struct worker *worker)
1787{
cb444766 1788 worker->flags |= WORKER_STARTED;
bd7bdd43 1789 worker->pool->nr_workers++;
c8e55f36 1790 worker_enter_idle(worker);
c34056a3
TH
1791 wake_up_process(worker->task);
1792}
1793
1794/**
1795 * destroy_worker - destroy a workqueue worker
1796 * @worker: worker to be destroyed
1797 *
706026c2 1798 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1799 *
1800 * CONTEXT:
d565ed63 1801 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1802 */
1803static void destroy_worker(struct worker *worker)
1804{
bd7bdd43 1805 struct worker_pool *pool = worker->pool;
c34056a3
TH
1806 int id = worker->id;
1807
1808 /* sanity check frenzy */
6183c009
TH
1809 if (WARN_ON(worker->current_work) ||
1810 WARN_ON(!list_empty(&worker->scheduled)))
1811 return;
c34056a3 1812
c8e55f36 1813 if (worker->flags & WORKER_STARTED)
bd7bdd43 1814 pool->nr_workers--;
c8e55f36 1815 if (worker->flags & WORKER_IDLE)
bd7bdd43 1816 pool->nr_idle--;
c8e55f36
TH
1817
1818 list_del_init(&worker->entry);
cb444766 1819 worker->flags |= WORKER_DIE;
c8e55f36 1820
d565ed63 1821 spin_unlock_irq(&pool->lock);
c8e55f36 1822
c34056a3
TH
1823 kthread_stop(worker->task);
1824 kfree(worker);
1825
d565ed63 1826 spin_lock_irq(&pool->lock);
bd7bdd43 1827 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1828}
1829
63d95a91 1830static void idle_worker_timeout(unsigned long __pool)
e22bee78 1831{
63d95a91 1832 struct worker_pool *pool = (void *)__pool;
e22bee78 1833
d565ed63 1834 spin_lock_irq(&pool->lock);
e22bee78 1835
63d95a91 1836 if (too_many_workers(pool)) {
e22bee78
TH
1837 struct worker *worker;
1838 unsigned long expires;
1839
1840 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1841 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1842 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1843
1844 if (time_before(jiffies, expires))
63d95a91 1845 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1846 else {
1847 /* it's been idle for too long, wake up manager */
11ebea50 1848 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1849 wake_up_worker(pool);
d5abe669 1850 }
e22bee78
TH
1851 }
1852
d565ed63 1853 spin_unlock_irq(&pool->lock);
e22bee78 1854}
d5abe669 1855
493a1724 1856static void send_mayday(struct work_struct *work)
e22bee78 1857{
112202d9
TH
1858 struct pool_workqueue *pwq = get_work_pwq(work);
1859 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1860
1861 lockdep_assert_held(&workqueue_lock);
e22bee78 1862
493008a8 1863 if (!wq->rescuer)
493a1724 1864 return;
e22bee78
TH
1865
1866 /* mayday mayday mayday */
493a1724
TH
1867 if (list_empty(&pwq->mayday_node)) {
1868 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1869 wake_up_process(wq->rescuer->task);
493a1724 1870 }
e22bee78
TH
1871}
1872
706026c2 1873static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1874{
63d95a91 1875 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1876 struct work_struct *work;
1877
493a1724
TH
1878 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1879 spin_lock(&pool->lock);
e22bee78 1880
63d95a91 1881 if (need_to_create_worker(pool)) {
e22bee78
TH
1882 /*
1883 * We've been trying to create a new worker but
1884 * haven't been successful. We might be hitting an
1885 * allocation deadlock. Send distress signals to
1886 * rescuers.
1887 */
63d95a91 1888 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1889 send_mayday(work);
1da177e4 1890 }
e22bee78 1891
493a1724
TH
1892 spin_unlock(&pool->lock);
1893 spin_unlock_irq(&workqueue_lock);
e22bee78 1894
63d95a91 1895 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1896}
1897
e22bee78
TH
1898/**
1899 * maybe_create_worker - create a new worker if necessary
63d95a91 1900 * @pool: pool to create a new worker for
e22bee78 1901 *
63d95a91 1902 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1903 * have at least one idle worker on return from this function. If
1904 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1905 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1906 * possible allocation deadlock.
1907 *
c5aa87bb
TH
1908 * On return, need_to_create_worker() is guaranteed to be %false and
1909 * may_start_working() %true.
e22bee78
TH
1910 *
1911 * LOCKING:
d565ed63 1912 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1913 * multiple times. Does GFP_KERNEL allocations. Called only from
1914 * manager.
1915 *
1916 * RETURNS:
c5aa87bb 1917 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1918 * otherwise.
1919 */
63d95a91 1920static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1921__releases(&pool->lock)
1922__acquires(&pool->lock)
1da177e4 1923{
63d95a91 1924 if (!need_to_create_worker(pool))
e22bee78
TH
1925 return false;
1926restart:
d565ed63 1927 spin_unlock_irq(&pool->lock);
9f9c2364 1928
e22bee78 1929 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1931
1932 while (true) {
1933 struct worker *worker;
1934
bc2ae0f5 1935 worker = create_worker(pool);
e22bee78 1936 if (worker) {
63d95a91 1937 del_timer_sync(&pool->mayday_timer);
d565ed63 1938 spin_lock_irq(&pool->lock);
e22bee78 1939 start_worker(worker);
6183c009
TH
1940 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1941 goto restart;
e22bee78
TH
1942 return true;
1943 }
1944
63d95a91 1945 if (!need_to_create_worker(pool))
e22bee78 1946 break;
1da177e4 1947
e22bee78
TH
1948 __set_current_state(TASK_INTERRUPTIBLE);
1949 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1950
63d95a91 1951 if (!need_to_create_worker(pool))
e22bee78
TH
1952 break;
1953 }
1954
63d95a91 1955 del_timer_sync(&pool->mayday_timer);
d565ed63 1956 spin_lock_irq(&pool->lock);
63d95a91 1957 if (need_to_create_worker(pool))
e22bee78
TH
1958 goto restart;
1959 return true;
1960}
1961
1962/**
1963 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1964 * @pool: pool to destroy workers for
e22bee78 1965 *
63d95a91 1966 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1967 * IDLE_WORKER_TIMEOUT.
1968 *
1969 * LOCKING:
d565ed63 1970 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1971 * multiple times. Called only from manager.
1972 *
1973 * RETURNS:
c5aa87bb 1974 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1975 * otherwise.
1976 */
63d95a91 1977static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1978{
1979 bool ret = false;
1da177e4 1980
63d95a91 1981 while (too_many_workers(pool)) {
e22bee78
TH
1982 struct worker *worker;
1983 unsigned long expires;
3af24433 1984
63d95a91 1985 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1986 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1987
e22bee78 1988 if (time_before(jiffies, expires)) {
63d95a91 1989 mod_timer(&pool->idle_timer, expires);
3af24433 1990 break;
e22bee78 1991 }
1da177e4 1992
e22bee78
TH
1993 destroy_worker(worker);
1994 ret = true;
1da177e4 1995 }
1e19ffc6 1996
e22bee78 1997 return ret;
1e19ffc6
TH
1998}
1999
73f53c4a 2000/**
e22bee78
TH
2001 * manage_workers - manage worker pool
2002 * @worker: self
73f53c4a 2003 *
706026c2 2004 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2005 * to. At any given time, there can be only zero or one manager per
706026c2 2006 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2007 *
2008 * The caller can safely start processing works on false return. On
2009 * true return, it's guaranteed that need_to_create_worker() is false
2010 * and may_start_working() is true.
73f53c4a
TH
2011 *
2012 * CONTEXT:
d565ed63 2013 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2014 * multiple times. Does GFP_KERNEL allocations.
2015 *
2016 * RETURNS:
d565ed63
TH
2017 * spin_lock_irq(pool->lock) which may be released and regrabbed
2018 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2019 */
e22bee78 2020static bool manage_workers(struct worker *worker)
73f53c4a 2021{
63d95a91 2022 struct worker_pool *pool = worker->pool;
e22bee78 2023 bool ret = false;
73f53c4a 2024
34a06bd6 2025 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2026 return ret;
1e19ffc6 2027
ee378aa4
LJ
2028 /*
2029 * To simplify both worker management and CPU hotplug, hold off
2030 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2031 * grab @pool->manager_arb to achieve this because that can lead to
2032 * idle worker depletion (all become busy thinking someone else is
2033 * managing) which in turn can result in deadlock under extreme
2034 * circumstances. Use @pool->assoc_mutex to synchronize manager
2035 * against CPU hotplug.
ee378aa4 2036 *
b2eb83d1 2037 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2038 * progress. trylock first without dropping @pool->lock.
ee378aa4 2039 */
b2eb83d1 2040 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2041 spin_unlock_irq(&pool->lock);
b2eb83d1 2042 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2043 /*
2044 * CPU hotplug could have happened while we were waiting
b2eb83d1 2045 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2046 * because manager isn't either on idle or busy list, and
706026c2 2047 * @pool's state and ours could have deviated.
ee378aa4 2048 *
b2eb83d1 2049 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2050 * simply try to bind. It will succeed or fail depending
706026c2 2051 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2052 * %WORKER_UNBOUND accordingly.
2053 */
f36dc67b 2054 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2055 worker->flags &= ~WORKER_UNBOUND;
2056 else
2057 worker->flags |= WORKER_UNBOUND;
73f53c4a 2058
ee378aa4
LJ
2059 ret = true;
2060 }
73f53c4a 2061
11ebea50 2062 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2063
2064 /*
e22bee78
TH
2065 * Destroy and then create so that may_start_working() is true
2066 * on return.
73f53c4a 2067 */
63d95a91
TH
2068 ret |= maybe_destroy_workers(pool);
2069 ret |= maybe_create_worker(pool);
e22bee78 2070
b2eb83d1 2071 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2072 mutex_unlock(&pool->manager_arb);
e22bee78 2073 return ret;
73f53c4a
TH
2074}
2075
a62428c0
TH
2076/**
2077 * process_one_work - process single work
c34056a3 2078 * @worker: self
a62428c0
TH
2079 * @work: work to process
2080 *
2081 * Process @work. This function contains all the logics necessary to
2082 * process a single work including synchronization against and
2083 * interaction with other workers on the same cpu, queueing and
2084 * flushing. As long as context requirement is met, any worker can
2085 * call this function to process a work.
2086 *
2087 * CONTEXT:
d565ed63 2088 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2089 */
c34056a3 2090static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2091__releases(&pool->lock)
2092__acquires(&pool->lock)
a62428c0 2093{
112202d9 2094 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2095 struct worker_pool *pool = worker->pool;
112202d9 2096 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2097 int work_color;
7e11629d 2098 struct worker *collision;
a62428c0
TH
2099#ifdef CONFIG_LOCKDEP
2100 /*
2101 * It is permissible to free the struct work_struct from
2102 * inside the function that is called from it, this we need to
2103 * take into account for lockdep too. To avoid bogus "held
2104 * lock freed" warnings as well as problems when looking into
2105 * work->lockdep_map, make a copy and use that here.
2106 */
4d82a1de
PZ
2107 struct lockdep_map lockdep_map;
2108
2109 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2110#endif
6fec10a1
TH
2111 /*
2112 * Ensure we're on the correct CPU. DISASSOCIATED test is
2113 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2114 * unbound or a disassociated pool.
6fec10a1 2115 */
5f7dabfd 2116 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2117 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2118 raw_smp_processor_id() != pool->cpu);
25511a47 2119
7e11629d
TH
2120 /*
2121 * A single work shouldn't be executed concurrently by
2122 * multiple workers on a single cpu. Check whether anyone is
2123 * already processing the work. If so, defer the work to the
2124 * currently executing one.
2125 */
c9e7cf27 2126 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2127 if (unlikely(collision)) {
2128 move_linked_works(work, &collision->scheduled, NULL);
2129 return;
2130 }
2131
8930caba 2132 /* claim and dequeue */
a62428c0 2133 debug_work_deactivate(work);
c9e7cf27 2134 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2135 worker->current_work = work;
a2c1c57b 2136 worker->current_func = work->func;
112202d9 2137 worker->current_pwq = pwq;
73f53c4a 2138 work_color = get_work_color(work);
7a22ad75 2139
a62428c0
TH
2140 list_del_init(&work->entry);
2141
fb0e7beb
TH
2142 /*
2143 * CPU intensive works don't participate in concurrency
2144 * management. They're the scheduler's responsibility.
2145 */
2146 if (unlikely(cpu_intensive))
2147 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2148
974271c4 2149 /*
d565ed63 2150 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2151 * executed ASAP. Wake up another worker if necessary.
2152 */
63d95a91
TH
2153 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2154 wake_up_worker(pool);
974271c4 2155
8930caba 2156 /*
7c3eed5c 2157 * Record the last pool and clear PENDING which should be the last
d565ed63 2158 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2159 * PENDING and queued state changes happen together while IRQ is
2160 * disabled.
8930caba 2161 */
7c3eed5c 2162 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2163
d565ed63 2164 spin_unlock_irq(&pool->lock);
a62428c0 2165
112202d9 2166 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2167 lock_map_acquire(&lockdep_map);
e36c886a 2168 trace_workqueue_execute_start(work);
a2c1c57b 2169 worker->current_func(work);
e36c886a
AV
2170 /*
2171 * While we must be careful to not use "work" after this, the trace
2172 * point will only record its address.
2173 */
2174 trace_workqueue_execute_end(work);
a62428c0 2175 lock_map_release(&lockdep_map);
112202d9 2176 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2177
2178 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2179 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2180 " last function: %pf\n",
a2c1c57b
TH
2181 current->comm, preempt_count(), task_pid_nr(current),
2182 worker->current_func);
a62428c0
TH
2183 debug_show_held_locks(current);
2184 dump_stack();
2185 }
2186
d565ed63 2187 spin_lock_irq(&pool->lock);
a62428c0 2188
fb0e7beb
TH
2189 /* clear cpu intensive status */
2190 if (unlikely(cpu_intensive))
2191 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2192
a62428c0 2193 /* we're done with it, release */
42f8570f 2194 hash_del(&worker->hentry);
c34056a3 2195 worker->current_work = NULL;
a2c1c57b 2196 worker->current_func = NULL;
112202d9
TH
2197 worker->current_pwq = NULL;
2198 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2199}
2200
affee4b2
TH
2201/**
2202 * process_scheduled_works - process scheduled works
2203 * @worker: self
2204 *
2205 * Process all scheduled works. Please note that the scheduled list
2206 * may change while processing a work, so this function repeatedly
2207 * fetches a work from the top and executes it.
2208 *
2209 * CONTEXT:
d565ed63 2210 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2211 * multiple times.
2212 */
2213static void process_scheduled_works(struct worker *worker)
1da177e4 2214{
affee4b2
TH
2215 while (!list_empty(&worker->scheduled)) {
2216 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2217 struct work_struct, entry);
c34056a3 2218 process_one_work(worker, work);
1da177e4 2219 }
1da177e4
LT
2220}
2221
4690c4ab
TH
2222/**
2223 * worker_thread - the worker thread function
c34056a3 2224 * @__worker: self
4690c4ab 2225 *
c5aa87bb
TH
2226 * The worker thread function. All workers belong to a worker_pool -
2227 * either a per-cpu one or dynamic unbound one. These workers process all
2228 * work items regardless of their specific target workqueue. The only
2229 * exception is work items which belong to workqueues with a rescuer which
2230 * will be explained in rescuer_thread().
4690c4ab 2231 */
c34056a3 2232static int worker_thread(void *__worker)
1da177e4 2233{
c34056a3 2234 struct worker *worker = __worker;
bd7bdd43 2235 struct worker_pool *pool = worker->pool;
1da177e4 2236
e22bee78
TH
2237 /* tell the scheduler that this is a workqueue worker */
2238 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2239woke_up:
d565ed63 2240 spin_lock_irq(&pool->lock);
1da177e4 2241
5f7dabfd
LJ
2242 /* we are off idle list if destruction or rebind is requested */
2243 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2244 spin_unlock_irq(&pool->lock);
25511a47 2245
5f7dabfd 2246 /* if DIE is set, destruction is requested */
25511a47
TH
2247 if (worker->flags & WORKER_DIE) {
2248 worker->task->flags &= ~PF_WQ_WORKER;
2249 return 0;
2250 }
2251
5f7dabfd 2252 /* otherwise, rebind */
25511a47
TH
2253 idle_worker_rebind(worker);
2254 goto woke_up;
c8e55f36 2255 }
affee4b2 2256
c8e55f36 2257 worker_leave_idle(worker);
db7bccf4 2258recheck:
e22bee78 2259 /* no more worker necessary? */
63d95a91 2260 if (!need_more_worker(pool))
e22bee78
TH
2261 goto sleep;
2262
2263 /* do we need to manage? */
63d95a91 2264 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2265 goto recheck;
2266
c8e55f36
TH
2267 /*
2268 * ->scheduled list can only be filled while a worker is
2269 * preparing to process a work or actually processing it.
2270 * Make sure nobody diddled with it while I was sleeping.
2271 */
6183c009 2272 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2273
e22bee78
TH
2274 /*
2275 * When control reaches this point, we're guaranteed to have
2276 * at least one idle worker or that someone else has already
2277 * assumed the manager role.
2278 */
2279 worker_clr_flags(worker, WORKER_PREP);
2280
2281 do {
c8e55f36 2282 struct work_struct *work =
bd7bdd43 2283 list_first_entry(&pool->worklist,
c8e55f36
TH
2284 struct work_struct, entry);
2285
2286 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2287 /* optimization path, not strictly necessary */
2288 process_one_work(worker, work);
2289 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2290 process_scheduled_works(worker);
c8e55f36
TH
2291 } else {
2292 move_linked_works(work, &worker->scheduled, NULL);
2293 process_scheduled_works(worker);
affee4b2 2294 }
63d95a91 2295 } while (keep_working(pool));
e22bee78
TH
2296
2297 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2298sleep:
63d95a91 2299 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2300 goto recheck;
d313dd85 2301
c8e55f36 2302 /*
d565ed63
TH
2303 * pool->lock is held and there's no work to process and no need to
2304 * manage, sleep. Workers are woken up only while holding
2305 * pool->lock or from local cpu, so setting the current state
2306 * before releasing pool->lock is enough to prevent losing any
2307 * event.
c8e55f36
TH
2308 */
2309 worker_enter_idle(worker);
2310 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2311 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2312 schedule();
2313 goto woke_up;
1da177e4
LT
2314}
2315
e22bee78
TH
2316/**
2317 * rescuer_thread - the rescuer thread function
111c225a 2318 * @__rescuer: self
e22bee78
TH
2319 *
2320 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2321 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2322 *
706026c2 2323 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2324 * worker which uses GFP_KERNEL allocation which has slight chance of
2325 * developing into deadlock if some works currently on the same queue
2326 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2327 * the problem rescuer solves.
2328 *
706026c2
TH
2329 * When such condition is possible, the pool summons rescuers of all
2330 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2331 * those works so that forward progress can be guaranteed.
2332 *
2333 * This should happen rarely.
2334 */
111c225a 2335static int rescuer_thread(void *__rescuer)
e22bee78 2336{
111c225a
TH
2337 struct worker *rescuer = __rescuer;
2338 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2339 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2340
2341 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2342
2343 /*
2344 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2345 * doesn't participate in concurrency management.
2346 */
2347 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2348repeat:
2349 set_current_state(TASK_INTERRUPTIBLE);
2350
412d32e6
MG
2351 if (kthread_should_stop()) {
2352 __set_current_state(TASK_RUNNING);
111c225a 2353 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2354 return 0;
412d32e6 2355 }
e22bee78 2356
493a1724
TH
2357 /* see whether any pwq is asking for help */
2358 spin_lock_irq(&workqueue_lock);
2359
2360 while (!list_empty(&wq->maydays)) {
2361 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2362 struct pool_workqueue, mayday_node);
112202d9 2363 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2364 struct work_struct *work, *n;
2365
2366 __set_current_state(TASK_RUNNING);
493a1724
TH
2367 list_del_init(&pwq->mayday_node);
2368
2369 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2370
2371 /* migrate to the target cpu if possible */
f36dc67b 2372 worker_maybe_bind_and_lock(pool);
b3104104 2373 rescuer->pool = pool;
e22bee78
TH
2374
2375 /*
2376 * Slurp in all works issued via this workqueue and
2377 * process'em.
2378 */
6183c009 2379 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2380 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2381 if (get_work_pwq(work) == pwq)
e22bee78
TH
2382 move_linked_works(work, scheduled, &n);
2383
2384 process_scheduled_works(rescuer);
7576958a
TH
2385
2386 /*
d565ed63 2387 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2388 * regular worker; otherwise, we end up with 0 concurrency
2389 * and stalling the execution.
2390 */
63d95a91
TH
2391 if (keep_working(pool))
2392 wake_up_worker(pool);
7576958a 2393
b3104104 2394 rescuer->pool = NULL;
493a1724
TH
2395 spin_unlock(&pool->lock);
2396 spin_lock(&workqueue_lock);
e22bee78
TH
2397 }
2398
493a1724
TH
2399 spin_unlock_irq(&workqueue_lock);
2400
111c225a
TH
2401 /* rescuers should never participate in concurrency management */
2402 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2403 schedule();
2404 goto repeat;
1da177e4
LT
2405}
2406
fc2e4d70
ON
2407struct wq_barrier {
2408 struct work_struct work;
2409 struct completion done;
2410};
2411
2412static void wq_barrier_func(struct work_struct *work)
2413{
2414 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2415 complete(&barr->done);
2416}
2417
4690c4ab
TH
2418/**
2419 * insert_wq_barrier - insert a barrier work
112202d9 2420 * @pwq: pwq to insert barrier into
4690c4ab 2421 * @barr: wq_barrier to insert
affee4b2
TH
2422 * @target: target work to attach @barr to
2423 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2424 *
affee4b2
TH
2425 * @barr is linked to @target such that @barr is completed only after
2426 * @target finishes execution. Please note that the ordering
2427 * guarantee is observed only with respect to @target and on the local
2428 * cpu.
2429 *
2430 * Currently, a queued barrier can't be canceled. This is because
2431 * try_to_grab_pending() can't determine whether the work to be
2432 * grabbed is at the head of the queue and thus can't clear LINKED
2433 * flag of the previous work while there must be a valid next work
2434 * after a work with LINKED flag set.
2435 *
2436 * Note that when @worker is non-NULL, @target may be modified
112202d9 2437 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2438 *
2439 * CONTEXT:
d565ed63 2440 * spin_lock_irq(pool->lock).
4690c4ab 2441 */
112202d9 2442static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2443 struct wq_barrier *barr,
2444 struct work_struct *target, struct worker *worker)
fc2e4d70 2445{
affee4b2
TH
2446 struct list_head *head;
2447 unsigned int linked = 0;
2448
dc186ad7 2449 /*
d565ed63 2450 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2451 * as we know for sure that this will not trigger any of the
2452 * checks and call back into the fixup functions where we
2453 * might deadlock.
2454 */
ca1cab37 2455 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2456 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2457 init_completion(&barr->done);
83c22520 2458
affee4b2
TH
2459 /*
2460 * If @target is currently being executed, schedule the
2461 * barrier to the worker; otherwise, put it after @target.
2462 */
2463 if (worker)
2464 head = worker->scheduled.next;
2465 else {
2466 unsigned long *bits = work_data_bits(target);
2467
2468 head = target->entry.next;
2469 /* there can already be other linked works, inherit and set */
2470 linked = *bits & WORK_STRUCT_LINKED;
2471 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2472 }
2473
dc186ad7 2474 debug_work_activate(&barr->work);
112202d9 2475 insert_work(pwq, &barr->work, head,
affee4b2 2476 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2477}
2478
73f53c4a 2479/**
112202d9 2480 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2481 * @wq: workqueue being flushed
2482 * @flush_color: new flush color, < 0 for no-op
2483 * @work_color: new work color, < 0 for no-op
2484 *
112202d9 2485 * Prepare pwqs for workqueue flushing.
73f53c4a 2486 *
112202d9
TH
2487 * If @flush_color is non-negative, flush_color on all pwqs should be
2488 * -1. If no pwq has in-flight commands at the specified color, all
2489 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2490 * has in flight commands, its pwq->flush_color is set to
2491 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2492 * wakeup logic is armed and %true is returned.
2493 *
2494 * The caller should have initialized @wq->first_flusher prior to
2495 * calling this function with non-negative @flush_color. If
2496 * @flush_color is negative, no flush color update is done and %false
2497 * is returned.
2498 *
112202d9 2499 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2500 * work_color which is previous to @work_color and all will be
2501 * advanced to @work_color.
2502 *
2503 * CONTEXT:
2504 * mutex_lock(wq->flush_mutex).
2505 *
2506 * RETURNS:
2507 * %true if @flush_color >= 0 and there's something to flush. %false
2508 * otherwise.
2509 */
112202d9 2510static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2511 int flush_color, int work_color)
1da177e4 2512{
73f53c4a 2513 bool wait = false;
49e3cf44 2514 struct pool_workqueue *pwq;
1da177e4 2515
73f53c4a 2516 if (flush_color >= 0) {
6183c009 2517 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2518 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2519 }
2355b70f 2520
76af4d93
TH
2521 local_irq_disable();
2522
49e3cf44 2523 for_each_pwq(pwq, wq) {
112202d9 2524 struct worker_pool *pool = pwq->pool;
fc2e4d70 2525
76af4d93 2526 spin_lock(&pool->lock);
83c22520 2527
73f53c4a 2528 if (flush_color >= 0) {
6183c009 2529 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2530
112202d9
TH
2531 if (pwq->nr_in_flight[flush_color]) {
2532 pwq->flush_color = flush_color;
2533 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2534 wait = true;
2535 }
2536 }
1da177e4 2537
73f53c4a 2538 if (work_color >= 0) {
6183c009 2539 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2540 pwq->work_color = work_color;
73f53c4a 2541 }
1da177e4 2542
76af4d93 2543 spin_unlock(&pool->lock);
1da177e4 2544 }
2355b70f 2545
76af4d93
TH
2546 local_irq_enable();
2547
112202d9 2548 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2549 complete(&wq->first_flusher->done);
14441960 2550
73f53c4a 2551 return wait;
1da177e4
LT
2552}
2553
0fcb78c2 2554/**
1da177e4 2555 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2556 * @wq: workqueue to flush
1da177e4 2557 *
c5aa87bb
TH
2558 * This function sleeps until all work items which were queued on entry
2559 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2560 */
7ad5b3a5 2561void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2562{
73f53c4a
TH
2563 struct wq_flusher this_flusher = {
2564 .list = LIST_HEAD_INIT(this_flusher.list),
2565 .flush_color = -1,
2566 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2567 };
2568 int next_color;
1da177e4 2569
3295f0ef
IM
2570 lock_map_acquire(&wq->lockdep_map);
2571 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2572
2573 mutex_lock(&wq->flush_mutex);
2574
2575 /*
2576 * Start-to-wait phase
2577 */
2578 next_color = work_next_color(wq->work_color);
2579
2580 if (next_color != wq->flush_color) {
2581 /*
2582 * Color space is not full. The current work_color
2583 * becomes our flush_color and work_color is advanced
2584 * by one.
2585 */
6183c009 2586 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2587 this_flusher.flush_color = wq->work_color;
2588 wq->work_color = next_color;
2589
2590 if (!wq->first_flusher) {
2591 /* no flush in progress, become the first flusher */
6183c009 2592 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2593
2594 wq->first_flusher = &this_flusher;
2595
112202d9 2596 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2597 wq->work_color)) {
2598 /* nothing to flush, done */
2599 wq->flush_color = next_color;
2600 wq->first_flusher = NULL;
2601 goto out_unlock;
2602 }
2603 } else {
2604 /* wait in queue */
6183c009 2605 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2606 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2607 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2608 }
2609 } else {
2610 /*
2611 * Oops, color space is full, wait on overflow queue.
2612 * The next flush completion will assign us
2613 * flush_color and transfer to flusher_queue.
2614 */
2615 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2616 }
2617
2618 mutex_unlock(&wq->flush_mutex);
2619
2620 wait_for_completion(&this_flusher.done);
2621
2622 /*
2623 * Wake-up-and-cascade phase
2624 *
2625 * First flushers are responsible for cascading flushes and
2626 * handling overflow. Non-first flushers can simply return.
2627 */
2628 if (wq->first_flusher != &this_flusher)
2629 return;
2630
2631 mutex_lock(&wq->flush_mutex);
2632
4ce48b37
TH
2633 /* we might have raced, check again with mutex held */
2634 if (wq->first_flusher != &this_flusher)
2635 goto out_unlock;
2636
73f53c4a
TH
2637 wq->first_flusher = NULL;
2638
6183c009
TH
2639 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2640 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2641
2642 while (true) {
2643 struct wq_flusher *next, *tmp;
2644
2645 /* complete all the flushers sharing the current flush color */
2646 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2647 if (next->flush_color != wq->flush_color)
2648 break;
2649 list_del_init(&next->list);
2650 complete(&next->done);
2651 }
2652
6183c009
TH
2653 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2654 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2655
2656 /* this flush_color is finished, advance by one */
2657 wq->flush_color = work_next_color(wq->flush_color);
2658
2659 /* one color has been freed, handle overflow queue */
2660 if (!list_empty(&wq->flusher_overflow)) {
2661 /*
2662 * Assign the same color to all overflowed
2663 * flushers, advance work_color and append to
2664 * flusher_queue. This is the start-to-wait
2665 * phase for these overflowed flushers.
2666 */
2667 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2668 tmp->flush_color = wq->work_color;
2669
2670 wq->work_color = work_next_color(wq->work_color);
2671
2672 list_splice_tail_init(&wq->flusher_overflow,
2673 &wq->flusher_queue);
112202d9 2674 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2675 }
2676
2677 if (list_empty(&wq->flusher_queue)) {
6183c009 2678 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2679 break;
2680 }
2681
2682 /*
2683 * Need to flush more colors. Make the next flusher
112202d9 2684 * the new first flusher and arm pwqs.
73f53c4a 2685 */
6183c009
TH
2686 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2687 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2688
2689 list_del_init(&next->list);
2690 wq->first_flusher = next;
2691
112202d9 2692 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2693 break;
2694
2695 /*
2696 * Meh... this color is already done, clear first
2697 * flusher and repeat cascading.
2698 */
2699 wq->first_flusher = NULL;
2700 }
2701
2702out_unlock:
2703 mutex_unlock(&wq->flush_mutex);
1da177e4 2704}
ae90dd5d 2705EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2706
9c5a2ba7
TH
2707/**
2708 * drain_workqueue - drain a workqueue
2709 * @wq: workqueue to drain
2710 *
2711 * Wait until the workqueue becomes empty. While draining is in progress,
2712 * only chain queueing is allowed. IOW, only currently pending or running
2713 * work items on @wq can queue further work items on it. @wq is flushed
2714 * repeatedly until it becomes empty. The number of flushing is detemined
2715 * by the depth of chaining and should be relatively short. Whine if it
2716 * takes too long.
2717 */
2718void drain_workqueue(struct workqueue_struct *wq)
2719{
2720 unsigned int flush_cnt = 0;
49e3cf44 2721 struct pool_workqueue *pwq;
9c5a2ba7
TH
2722
2723 /*
2724 * __queue_work() needs to test whether there are drainers, is much
2725 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2726 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2727 */
e98d5b16 2728 spin_lock_irq(&workqueue_lock);
9c5a2ba7 2729 if (!wq->nr_drainers++)
618b01eb 2730 wq->flags |= __WQ_DRAINING;
e98d5b16 2731 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2732reflush:
2733 flush_workqueue(wq);
2734
76af4d93
TH
2735 local_irq_disable();
2736
49e3cf44 2737 for_each_pwq(pwq, wq) {
fa2563e4 2738 bool drained;
9c5a2ba7 2739
76af4d93 2740 spin_lock(&pwq->pool->lock);
112202d9 2741 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2742 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2743
2744 if (drained)
9c5a2ba7
TH
2745 continue;
2746
2747 if (++flush_cnt == 10 ||
2748 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2749 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2750 wq->name, flush_cnt);
76af4d93
TH
2751
2752 local_irq_enable();
9c5a2ba7
TH
2753 goto reflush;
2754 }
2755
76af4d93 2756 spin_lock(&workqueue_lock);
9c5a2ba7 2757 if (!--wq->nr_drainers)
618b01eb 2758 wq->flags &= ~__WQ_DRAINING;
76af4d93
TH
2759 spin_unlock(&workqueue_lock);
2760
2761 local_irq_enable();
9c5a2ba7
TH
2762}
2763EXPORT_SYMBOL_GPL(drain_workqueue);
2764
606a5020 2765static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2766{
affee4b2 2767 struct worker *worker = NULL;
c9e7cf27 2768 struct worker_pool *pool;
112202d9 2769 struct pool_workqueue *pwq;
db700897
ON
2770
2771 might_sleep();
fa1b54e6
TH
2772
2773 local_irq_disable();
c9e7cf27 2774 pool = get_work_pool(work);
fa1b54e6
TH
2775 if (!pool) {
2776 local_irq_enable();
baf59022 2777 return false;
fa1b54e6 2778 }
db700897 2779
fa1b54e6 2780 spin_lock(&pool->lock);
0b3dae68 2781 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2782 pwq = get_work_pwq(work);
2783 if (pwq) {
2784 if (unlikely(pwq->pool != pool))
4690c4ab 2785 goto already_gone;
606a5020 2786 } else {
c9e7cf27 2787 worker = find_worker_executing_work(pool, work);
affee4b2 2788 if (!worker)
4690c4ab 2789 goto already_gone;
112202d9 2790 pwq = worker->current_pwq;
606a5020 2791 }
db700897 2792
112202d9 2793 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2794 spin_unlock_irq(&pool->lock);
7a22ad75 2795
e159489b
TH
2796 /*
2797 * If @max_active is 1 or rescuer is in use, flushing another work
2798 * item on the same workqueue may lead to deadlock. Make sure the
2799 * flusher is not running on the same workqueue by verifying write
2800 * access.
2801 */
493008a8 2802 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2803 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2804 else
112202d9
TH
2805 lock_map_acquire_read(&pwq->wq->lockdep_map);
2806 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2807
401a8d04 2808 return true;
4690c4ab 2809already_gone:
d565ed63 2810 spin_unlock_irq(&pool->lock);
401a8d04 2811 return false;
db700897 2812}
baf59022
TH
2813
2814/**
2815 * flush_work - wait for a work to finish executing the last queueing instance
2816 * @work: the work to flush
2817 *
606a5020
TH
2818 * Wait until @work has finished execution. @work is guaranteed to be idle
2819 * on return if it hasn't been requeued since flush started.
baf59022
TH
2820 *
2821 * RETURNS:
2822 * %true if flush_work() waited for the work to finish execution,
2823 * %false if it was already idle.
2824 */
2825bool flush_work(struct work_struct *work)
2826{
2827 struct wq_barrier barr;
2828
0976dfc1
SB
2829 lock_map_acquire(&work->lockdep_map);
2830 lock_map_release(&work->lockdep_map);
2831
606a5020 2832 if (start_flush_work(work, &barr)) {
401a8d04
TH
2833 wait_for_completion(&barr.done);
2834 destroy_work_on_stack(&barr.work);
2835 return true;
606a5020 2836 } else {
401a8d04 2837 return false;
6e84d644 2838 }
6e84d644 2839}
606a5020 2840EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2841
36e227d2 2842static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2843{
bbb68dfa 2844 unsigned long flags;
1f1f642e
ON
2845 int ret;
2846
2847 do {
bbb68dfa
TH
2848 ret = try_to_grab_pending(work, is_dwork, &flags);
2849 /*
2850 * If someone else is canceling, wait for the same event it
2851 * would be waiting for before retrying.
2852 */
2853 if (unlikely(ret == -ENOENT))
606a5020 2854 flush_work(work);
1f1f642e
ON
2855 } while (unlikely(ret < 0));
2856
bbb68dfa
TH
2857 /* tell other tasks trying to grab @work to back off */
2858 mark_work_canceling(work);
2859 local_irq_restore(flags);
2860
606a5020 2861 flush_work(work);
7a22ad75 2862 clear_work_data(work);
1f1f642e
ON
2863 return ret;
2864}
2865
6e84d644 2866/**
401a8d04
TH
2867 * cancel_work_sync - cancel a work and wait for it to finish
2868 * @work: the work to cancel
6e84d644 2869 *
401a8d04
TH
2870 * Cancel @work and wait for its execution to finish. This function
2871 * can be used even if the work re-queues itself or migrates to
2872 * another workqueue. On return from this function, @work is
2873 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2874 *
401a8d04
TH
2875 * cancel_work_sync(&delayed_work->work) must not be used for
2876 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2877 *
401a8d04 2878 * The caller must ensure that the workqueue on which @work was last
6e84d644 2879 * queued can't be destroyed before this function returns.
401a8d04
TH
2880 *
2881 * RETURNS:
2882 * %true if @work was pending, %false otherwise.
6e84d644 2883 */
401a8d04 2884bool cancel_work_sync(struct work_struct *work)
6e84d644 2885{
36e227d2 2886 return __cancel_work_timer(work, false);
b89deed3 2887}
28e53bdd 2888EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2889
6e84d644 2890/**
401a8d04
TH
2891 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2892 * @dwork: the delayed work to flush
6e84d644 2893 *
401a8d04
TH
2894 * Delayed timer is cancelled and the pending work is queued for
2895 * immediate execution. Like flush_work(), this function only
2896 * considers the last queueing instance of @dwork.
1f1f642e 2897 *
401a8d04
TH
2898 * RETURNS:
2899 * %true if flush_work() waited for the work to finish execution,
2900 * %false if it was already idle.
6e84d644 2901 */
401a8d04
TH
2902bool flush_delayed_work(struct delayed_work *dwork)
2903{
8930caba 2904 local_irq_disable();
401a8d04 2905 if (del_timer_sync(&dwork->timer))
60c057bc 2906 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2907 local_irq_enable();
401a8d04
TH
2908 return flush_work(&dwork->work);
2909}
2910EXPORT_SYMBOL(flush_delayed_work);
2911
09383498 2912/**
57b30ae7
TH
2913 * cancel_delayed_work - cancel a delayed work
2914 * @dwork: delayed_work to cancel
09383498 2915 *
57b30ae7
TH
2916 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2917 * and canceled; %false if wasn't pending. Note that the work callback
2918 * function may still be running on return, unless it returns %true and the
2919 * work doesn't re-arm itself. Explicitly flush or use
2920 * cancel_delayed_work_sync() to wait on it.
09383498 2921 *
57b30ae7 2922 * This function is safe to call from any context including IRQ handler.
09383498 2923 */
57b30ae7 2924bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2925{
57b30ae7
TH
2926 unsigned long flags;
2927 int ret;
2928
2929 do {
2930 ret = try_to_grab_pending(&dwork->work, true, &flags);
2931 } while (unlikely(ret == -EAGAIN));
2932
2933 if (unlikely(ret < 0))
2934 return false;
2935
7c3eed5c
TH
2936 set_work_pool_and_clear_pending(&dwork->work,
2937 get_work_pool_id(&dwork->work));
57b30ae7 2938 local_irq_restore(flags);
c0158ca6 2939 return ret;
09383498 2940}
57b30ae7 2941EXPORT_SYMBOL(cancel_delayed_work);
09383498 2942
401a8d04
TH
2943/**
2944 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2945 * @dwork: the delayed work cancel
2946 *
2947 * This is cancel_work_sync() for delayed works.
2948 *
2949 * RETURNS:
2950 * %true if @dwork was pending, %false otherwise.
2951 */
2952bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2953{
36e227d2 2954 return __cancel_work_timer(&dwork->work, true);
6e84d644 2955}
f5a421a4 2956EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2957
b6136773 2958/**
31ddd871 2959 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2960 * @func: the function to call
b6136773 2961 *
31ddd871
TH
2962 * schedule_on_each_cpu() executes @func on each online CPU using the
2963 * system workqueue and blocks until all CPUs have completed.
b6136773 2964 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2965 *
2966 * RETURNS:
2967 * 0 on success, -errno on failure.
b6136773 2968 */
65f27f38 2969int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2970{
2971 int cpu;
38f51568 2972 struct work_struct __percpu *works;
15316ba8 2973
b6136773
AM
2974 works = alloc_percpu(struct work_struct);
2975 if (!works)
15316ba8 2976 return -ENOMEM;
b6136773 2977
93981800
TH
2978 get_online_cpus();
2979
15316ba8 2980 for_each_online_cpu(cpu) {
9bfb1839
IM
2981 struct work_struct *work = per_cpu_ptr(works, cpu);
2982
2983 INIT_WORK(work, func);
b71ab8c2 2984 schedule_work_on(cpu, work);
65a64464 2985 }
93981800
TH
2986
2987 for_each_online_cpu(cpu)
2988 flush_work(per_cpu_ptr(works, cpu));
2989
95402b38 2990 put_online_cpus();
b6136773 2991 free_percpu(works);
15316ba8
CL
2992 return 0;
2993}
2994
eef6a7d5
AS
2995/**
2996 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2997 *
2998 * Forces execution of the kernel-global workqueue and blocks until its
2999 * completion.
3000 *
3001 * Think twice before calling this function! It's very easy to get into
3002 * trouble if you don't take great care. Either of the following situations
3003 * will lead to deadlock:
3004 *
3005 * One of the work items currently on the workqueue needs to acquire
3006 * a lock held by your code or its caller.
3007 *
3008 * Your code is running in the context of a work routine.
3009 *
3010 * They will be detected by lockdep when they occur, but the first might not
3011 * occur very often. It depends on what work items are on the workqueue and
3012 * what locks they need, which you have no control over.
3013 *
3014 * In most situations flushing the entire workqueue is overkill; you merely
3015 * need to know that a particular work item isn't queued and isn't running.
3016 * In such cases you should use cancel_delayed_work_sync() or
3017 * cancel_work_sync() instead.
3018 */
1da177e4
LT
3019void flush_scheduled_work(void)
3020{
d320c038 3021 flush_workqueue(system_wq);
1da177e4 3022}
ae90dd5d 3023EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3024
1fa44eca
JB
3025/**
3026 * execute_in_process_context - reliably execute the routine with user context
3027 * @fn: the function to execute
1fa44eca
JB
3028 * @ew: guaranteed storage for the execute work structure (must
3029 * be available when the work executes)
3030 *
3031 * Executes the function immediately if process context is available,
3032 * otherwise schedules the function for delayed execution.
3033 *
3034 * Returns: 0 - function was executed
3035 * 1 - function was scheduled for execution
3036 */
65f27f38 3037int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3038{
3039 if (!in_interrupt()) {
65f27f38 3040 fn(&ew->work);
1fa44eca
JB
3041 return 0;
3042 }
3043
65f27f38 3044 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3045 schedule_work(&ew->work);
3046
3047 return 1;
3048}
3049EXPORT_SYMBOL_GPL(execute_in_process_context);
3050
226223ab
TH
3051#ifdef CONFIG_SYSFS
3052/*
3053 * Workqueues with WQ_SYSFS flag set is visible to userland via
3054 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3055 * following attributes.
3056 *
3057 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3058 * max_active RW int : maximum number of in-flight work items
3059 *
3060 * Unbound workqueues have the following extra attributes.
3061 *
3062 * id RO int : the associated pool ID
3063 * nice RW int : nice value of the workers
3064 * cpumask RW mask : bitmask of allowed CPUs for the workers
3065 */
3066struct wq_device {
3067 struct workqueue_struct *wq;
3068 struct device dev;
3069};
3070
3071static struct workqueue_struct *dev_to_wq(struct device *dev)
3072{
3073 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3074
3075 return wq_dev->wq;
3076}
3077
3078static ssize_t wq_per_cpu_show(struct device *dev,
3079 struct device_attribute *attr, char *buf)
3080{
3081 struct workqueue_struct *wq = dev_to_wq(dev);
3082
3083 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3084}
3085
3086static ssize_t wq_max_active_show(struct device *dev,
3087 struct device_attribute *attr, char *buf)
3088{
3089 struct workqueue_struct *wq = dev_to_wq(dev);
3090
3091 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3092}
3093
3094static ssize_t wq_max_active_store(struct device *dev,
3095 struct device_attribute *attr,
3096 const char *buf, size_t count)
3097{
3098 struct workqueue_struct *wq = dev_to_wq(dev);
3099 int val;
3100
3101 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3102 return -EINVAL;
3103
3104 workqueue_set_max_active(wq, val);
3105 return count;
3106}
3107
3108static struct device_attribute wq_sysfs_attrs[] = {
3109 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3110 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3111 __ATTR_NULL,
3112};
3113
3114static ssize_t wq_pool_id_show(struct device *dev,
3115 struct device_attribute *attr, char *buf)
3116{
3117 struct workqueue_struct *wq = dev_to_wq(dev);
3118 struct worker_pool *pool;
3119 int written;
3120
3121 rcu_read_lock_sched();
3122 pool = first_pwq(wq)->pool;
3123 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3124 rcu_read_unlock_sched();
3125
3126 return written;
3127}
3128
3129static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3130 char *buf)
3131{
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133 int written;
3134
3135 rcu_read_lock_sched();
3136 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3137 first_pwq(wq)->pool->attrs->nice);
3138 rcu_read_unlock_sched();
3139
3140 return written;
3141}
3142
3143/* prepare workqueue_attrs for sysfs store operations */
3144static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3145{
3146 struct workqueue_attrs *attrs;
3147
3148 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3149 if (!attrs)
3150 return NULL;
3151
3152 rcu_read_lock_sched();
3153 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3154 rcu_read_unlock_sched();
3155 return attrs;
3156}
3157
3158static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3159 const char *buf, size_t count)
3160{
3161 struct workqueue_struct *wq = dev_to_wq(dev);
3162 struct workqueue_attrs *attrs;
3163 int ret;
3164
3165 attrs = wq_sysfs_prep_attrs(wq);
3166 if (!attrs)
3167 return -ENOMEM;
3168
3169 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3170 attrs->nice >= -20 && attrs->nice <= 19)
3171 ret = apply_workqueue_attrs(wq, attrs);
3172 else
3173 ret = -EINVAL;
3174
3175 free_workqueue_attrs(attrs);
3176 return ret ?: count;
3177}
3178
3179static ssize_t wq_cpumask_show(struct device *dev,
3180 struct device_attribute *attr, char *buf)
3181{
3182 struct workqueue_struct *wq = dev_to_wq(dev);
3183 int written;
3184
3185 rcu_read_lock_sched();
3186 written = cpumask_scnprintf(buf, PAGE_SIZE,
3187 first_pwq(wq)->pool->attrs->cpumask);
3188 rcu_read_unlock_sched();
3189
3190 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3191 return written;
3192}
3193
3194static ssize_t wq_cpumask_store(struct device *dev,
3195 struct device_attribute *attr,
3196 const char *buf, size_t count)
3197{
3198 struct workqueue_struct *wq = dev_to_wq(dev);
3199 struct workqueue_attrs *attrs;
3200 int ret;
3201
3202 attrs = wq_sysfs_prep_attrs(wq);
3203 if (!attrs)
3204 return -ENOMEM;
3205
3206 ret = cpumask_parse(buf, attrs->cpumask);
3207 if (!ret)
3208 ret = apply_workqueue_attrs(wq, attrs);
3209
3210 free_workqueue_attrs(attrs);
3211 return ret ?: count;
3212}
3213
3214static struct device_attribute wq_sysfs_unbound_attrs[] = {
3215 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3216 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3217 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3218 __ATTR_NULL,
3219};
3220
3221static struct bus_type wq_subsys = {
3222 .name = "workqueue",
3223 .dev_attrs = wq_sysfs_attrs,
3224};
3225
3226static int __init wq_sysfs_init(void)
3227{
3228 return subsys_virtual_register(&wq_subsys, NULL);
3229}
3230core_initcall(wq_sysfs_init);
3231
3232static void wq_device_release(struct device *dev)
3233{
3234 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3235
3236 kfree(wq_dev);
3237}
3238
3239/**
3240 * workqueue_sysfs_register - make a workqueue visible in sysfs
3241 * @wq: the workqueue to register
3242 *
3243 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3244 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3245 * which is the preferred method.
3246 *
3247 * Workqueue user should use this function directly iff it wants to apply
3248 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3249 * apply_workqueue_attrs() may race against userland updating the
3250 * attributes.
3251 *
3252 * Returns 0 on success, -errno on failure.
3253 */
3254int workqueue_sysfs_register(struct workqueue_struct *wq)
3255{
3256 struct wq_device *wq_dev;
3257 int ret;
3258
3259 /*
3260 * Adjusting max_active or creating new pwqs by applyting
3261 * attributes breaks ordering guarantee. Disallow exposing ordered
3262 * workqueues.
3263 */
3264 if (WARN_ON(wq->flags & __WQ_ORDERED))
3265 return -EINVAL;
3266
3267 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3268 if (!wq_dev)
3269 return -ENOMEM;
3270
3271 wq_dev->wq = wq;
3272 wq_dev->dev.bus = &wq_subsys;
3273 wq_dev->dev.init_name = wq->name;
3274 wq_dev->dev.release = wq_device_release;
3275
3276 /*
3277 * unbound_attrs are created separately. Suppress uevent until
3278 * everything is ready.
3279 */
3280 dev_set_uevent_suppress(&wq_dev->dev, true);
3281
3282 ret = device_register(&wq_dev->dev);
3283 if (ret) {
3284 kfree(wq_dev);
3285 wq->wq_dev = NULL;
3286 return ret;
3287 }
3288
3289 if (wq->flags & WQ_UNBOUND) {
3290 struct device_attribute *attr;
3291
3292 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3293 ret = device_create_file(&wq_dev->dev, attr);
3294 if (ret) {
3295 device_unregister(&wq_dev->dev);
3296 wq->wq_dev = NULL;
3297 return ret;
3298 }
3299 }
3300 }
3301
3302 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3303 return 0;
3304}
3305
3306/**
3307 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3308 * @wq: the workqueue to unregister
3309 *
3310 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3311 */
3312static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3313{
3314 struct wq_device *wq_dev = wq->wq_dev;
3315
3316 if (!wq->wq_dev)
3317 return;
3318
3319 wq->wq_dev = NULL;
3320 device_unregister(&wq_dev->dev);
3321}
3322#else /* CONFIG_SYSFS */
3323static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3324#endif /* CONFIG_SYSFS */
3325
7a4e344c
TH
3326/**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
3329 *
3330 * Undo alloc_workqueue_attrs().
3331 */
3332void free_workqueue_attrs(struct workqueue_attrs *attrs)
3333{
3334 if (attrs) {
3335 free_cpumask_var(attrs->cpumask);
3336 kfree(attrs);
3337 }
3338}
3339
3340/**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
3342 * @gfp_mask: allocation mask to use
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it. Returns NULL on failure.
3346 */
3347struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3348{
3349 struct workqueue_attrs *attrs;
3350
3351 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3352 if (!attrs)
3353 goto fail;
3354 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3355 goto fail;
3356
3357 cpumask_setall(attrs->cpumask);
3358 return attrs;
3359fail:
3360 free_workqueue_attrs(attrs);
3361 return NULL;
3362}
3363
29c91e99
TH
3364static void copy_workqueue_attrs(struct workqueue_attrs *to,
3365 const struct workqueue_attrs *from)
3366{
3367 to->nice = from->nice;
3368 cpumask_copy(to->cpumask, from->cpumask);
3369}
3370
3371/*
3372 * Hacky implementation of jhash of bitmaps which only considers the
3373 * specified number of bits. We probably want a proper implementation in
3374 * include/linux/jhash.h.
3375 */
3376static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3377{
3378 int nr_longs = bits / BITS_PER_LONG;
3379 int nr_leftover = bits % BITS_PER_LONG;
3380 unsigned long leftover = 0;
3381
3382 if (nr_longs)
3383 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3384 if (nr_leftover) {
3385 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3386 hash = jhash(&leftover, sizeof(long), hash);
3387 }
3388 return hash;
3389}
3390
3391/* hash value of the content of @attr */
3392static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3393{
3394 u32 hash = 0;
3395
3396 hash = jhash_1word(attrs->nice, hash);
3397 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3398 return hash;
3399}
3400
3401/* content equality test */
3402static bool wqattrs_equal(const struct workqueue_attrs *a,
3403 const struct workqueue_attrs *b)
3404{
3405 if (a->nice != b->nice)
3406 return false;
3407 if (!cpumask_equal(a->cpumask, b->cpumask))
3408 return false;
3409 return true;
3410}
3411
7a4e344c
TH
3412/**
3413 * init_worker_pool - initialize a newly zalloc'd worker_pool
3414 * @pool: worker_pool to initialize
3415 *
3416 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3417 * Returns 0 on success, -errno on failure. Even on failure, all fields
3418 * inside @pool proper are initialized and put_unbound_pool() can be called
3419 * on @pool safely to release it.
7a4e344c
TH
3420 */
3421static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3422{
3423 spin_lock_init(&pool->lock);
29c91e99
TH
3424 pool->id = -1;
3425 pool->cpu = -1;
4e1a1f9a
TH
3426 pool->flags |= POOL_DISASSOCIATED;
3427 INIT_LIST_HEAD(&pool->worklist);
3428 INIT_LIST_HEAD(&pool->idle_list);
3429 hash_init(pool->busy_hash);
3430
3431 init_timer_deferrable(&pool->idle_timer);
3432 pool->idle_timer.function = idle_worker_timeout;
3433 pool->idle_timer.data = (unsigned long)pool;
3434
3435 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3436 (unsigned long)pool);
3437
3438 mutex_init(&pool->manager_arb);
3439 mutex_init(&pool->assoc_mutex);
3440 ida_init(&pool->worker_ida);
7a4e344c 3441
29c91e99
TH
3442 INIT_HLIST_NODE(&pool->hash_node);
3443 pool->refcnt = 1;
3444
3445 /* shouldn't fail above this point */
7a4e344c
TH
3446 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3447 if (!pool->attrs)
3448 return -ENOMEM;
3449 return 0;
4e1a1f9a
TH
3450}
3451
29c91e99
TH
3452static void rcu_free_pool(struct rcu_head *rcu)
3453{
3454 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3455
3456 ida_destroy(&pool->worker_ida);
3457 free_workqueue_attrs(pool->attrs);
3458 kfree(pool);
3459}
3460
3461/**
3462 * put_unbound_pool - put a worker_pool
3463 * @pool: worker_pool to put
3464 *
3465 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3466 * safe manner. get_unbound_pool() calls this function on its failure path
3467 * and this function should be able to release pools which went through,
3468 * successfully or not, init_worker_pool().
29c91e99
TH
3469 */
3470static void put_unbound_pool(struct worker_pool *pool)
3471{
3472 struct worker *worker;
3473
3474 spin_lock_irq(&workqueue_lock);
3475 if (--pool->refcnt) {
3476 spin_unlock_irq(&workqueue_lock);
3477 return;
3478 }
3479
3480 /* sanity checks */
3481 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3482 WARN_ON(!list_empty(&pool->worklist))) {
3483 spin_unlock_irq(&workqueue_lock);
3484 return;
3485 }
3486
3487 /* release id and unhash */
3488 if (pool->id >= 0)
3489 idr_remove(&worker_pool_idr, pool->id);
3490 hash_del(&pool->hash_node);
3491
3492 spin_unlock_irq(&workqueue_lock);
3493
c5aa87bb
TH
3494 /*
3495 * Become the manager and destroy all workers. Grabbing
3496 * manager_arb prevents @pool's workers from blocking on
3497 * manager_mutex.
3498 */
29c91e99
TH
3499 mutex_lock(&pool->manager_arb);
3500 spin_lock_irq(&pool->lock);
3501
3502 while ((worker = first_worker(pool)))
3503 destroy_worker(worker);
3504 WARN_ON(pool->nr_workers || pool->nr_idle);
3505
3506 spin_unlock_irq(&pool->lock);
3507 mutex_unlock(&pool->manager_arb);
3508
3509 /* shut down the timers */
3510 del_timer_sync(&pool->idle_timer);
3511 del_timer_sync(&pool->mayday_timer);
3512
3513 /* sched-RCU protected to allow dereferences from get_work_pool() */
3514 call_rcu_sched(&pool->rcu, rcu_free_pool);
3515}
3516
3517/**
3518 * get_unbound_pool - get a worker_pool with the specified attributes
3519 * @attrs: the attributes of the worker_pool to get
3520 *
3521 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3522 * reference count and return it. If there already is a matching
3523 * worker_pool, it will be used; otherwise, this function attempts to
3524 * create a new one. On failure, returns NULL.
3525 */
3526static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3527{
3528 static DEFINE_MUTEX(create_mutex);
3529 u32 hash = wqattrs_hash(attrs);
3530 struct worker_pool *pool;
3531 struct worker *worker;
3532
3533 mutex_lock(&create_mutex);
3534
3535 /* do we already have a matching pool? */
3536 spin_lock_irq(&workqueue_lock);
3537 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3538 if (wqattrs_equal(pool->attrs, attrs)) {
3539 pool->refcnt++;
3540 goto out_unlock;
3541 }
3542 }
3543 spin_unlock_irq(&workqueue_lock);
3544
3545 /* nope, create a new one */
3546 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3547 if (!pool || init_worker_pool(pool) < 0)
3548 goto fail;
3549
8864b4e5 3550 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3551 copy_workqueue_attrs(pool->attrs, attrs);
3552
3553 if (worker_pool_assign_id(pool) < 0)
3554 goto fail;
3555
3556 /* create and start the initial worker */
3557 worker = create_worker(pool);
3558 if (!worker)
3559 goto fail;
3560
3561 spin_lock_irq(&pool->lock);
3562 start_worker(worker);
3563 spin_unlock_irq(&pool->lock);
3564
3565 /* install */
3566 spin_lock_irq(&workqueue_lock);
3567 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3568out_unlock:
3569 spin_unlock_irq(&workqueue_lock);
3570 mutex_unlock(&create_mutex);
3571 return pool;
3572fail:
3573 mutex_unlock(&create_mutex);
3574 if (pool)
3575 put_unbound_pool(pool);
3576 return NULL;
3577}
3578
8864b4e5
TH
3579static void rcu_free_pwq(struct rcu_head *rcu)
3580{
3581 kmem_cache_free(pwq_cache,
3582 container_of(rcu, struct pool_workqueue, rcu));
3583}
3584
3585/*
3586 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3587 * and needs to be destroyed.
3588 */
3589static void pwq_unbound_release_workfn(struct work_struct *work)
3590{
3591 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3592 unbound_release_work);
3593 struct workqueue_struct *wq = pwq->wq;
3594 struct worker_pool *pool = pwq->pool;
3595
3596 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3597 return;
3598
75ccf595
TH
3599 /*
3600 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3601 * necessary on release but do it anyway. It's easier to verify
3602 * and consistent with the linking path.
3603 */
3604 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3605 spin_lock_irq(&workqueue_lock);
3606 list_del_rcu(&pwq->pwqs_node);
3607 spin_unlock_irq(&workqueue_lock);
75ccf595 3608 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3609
3610 put_unbound_pool(pool);
3611 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3612
3613 /*
3614 * If we're the last pwq going away, @wq is already dead and no one
3615 * is gonna access it anymore. Free it.
3616 */
3617 if (list_empty(&wq->pwqs))
3618 kfree(wq);
3619}
3620
0fbd95aa 3621/**
699ce097 3622 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3623 * @pwq: target pool_workqueue
0fbd95aa 3624 *
699ce097
TH
3625 * If @pwq isn't freezing, set @pwq->max_active to the associated
3626 * workqueue's saved_max_active and activate delayed work items
3627 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3628 */
699ce097 3629static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3630{
699ce097
TH
3631 struct workqueue_struct *wq = pwq->wq;
3632 bool freezable = wq->flags & WQ_FREEZABLE;
3633
3634 /* for @wq->saved_max_active */
3635 lockdep_assert_held(&workqueue_lock);
3636
3637 /* fast exit for non-freezable wqs */
3638 if (!freezable && pwq->max_active == wq->saved_max_active)
3639 return;
3640
3641 spin_lock(&pwq->pool->lock);
3642
3643 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3644 pwq->max_active = wq->saved_max_active;
0fbd95aa 3645
699ce097
TH
3646 while (!list_empty(&pwq->delayed_works) &&
3647 pwq->nr_active < pwq->max_active)
3648 pwq_activate_first_delayed(pwq);
3649 } else {
3650 pwq->max_active = 0;
3651 }
3652
3653 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3654}
3655
d2c1d404
TH
3656static void init_and_link_pwq(struct pool_workqueue *pwq,
3657 struct workqueue_struct *wq,
9e8cd2f5
TH
3658 struct worker_pool *pool,
3659 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3660{
3661 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3662
3663 pwq->pool = pool;
3664 pwq->wq = wq;
3665 pwq->flush_color = -1;
8864b4e5 3666 pwq->refcnt = 1;
d2c1d404
TH
3667 INIT_LIST_HEAD(&pwq->delayed_works);
3668 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3669 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3670
75ccf595
TH
3671 mutex_lock(&wq->flush_mutex);
3672 spin_lock_irq(&workqueue_lock);
3673
983ca25e
TH
3674 /*
3675 * Set the matching work_color. This is synchronized with
3676 * flush_mutex to avoid confusing flush_workqueue().
3677 */
9e8cd2f5
TH
3678 if (p_last_pwq)
3679 *p_last_pwq = first_pwq(wq);
75ccf595 3680 pwq->work_color = wq->work_color;
983ca25e
TH
3681
3682 /* sync max_active to the current setting */
3683 pwq_adjust_max_active(pwq);
3684
3685 /* link in @pwq */
9e8cd2f5 3686 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3687
3688 spin_unlock_irq(&workqueue_lock);
3689 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3690}
3691
9e8cd2f5
TH
3692/**
3693 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3694 * @wq: the target workqueue
3695 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3696 *
3697 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3698 * current attributes, a new pwq is created and made the first pwq which
3699 * will serve all new work items. Older pwqs are released as in-flight
3700 * work items finish. Note that a work item which repeatedly requeues
3701 * itself back-to-back will stay on its current pwq.
3702 *
3703 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3704 * failure.
3705 */
3706int apply_workqueue_attrs(struct workqueue_struct *wq,
3707 const struct workqueue_attrs *attrs)
3708{
3709 struct pool_workqueue *pwq, *last_pwq;
3710 struct worker_pool *pool;
3711
8719dcea 3712 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3713 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3714 return -EINVAL;
3715
8719dcea
TH
3716 /* creating multiple pwqs breaks ordering guarantee */
3717 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3718 return -EINVAL;
3719
9e8cd2f5
TH
3720 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3721 if (!pwq)
3722 return -ENOMEM;
3723
3724 pool = get_unbound_pool(attrs);
3725 if (!pool) {
3726 kmem_cache_free(pwq_cache, pwq);
3727 return -ENOMEM;
3728 }
3729
3730 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3731 if (last_pwq) {
3732 spin_lock_irq(&last_pwq->pool->lock);
3733 put_pwq(last_pwq);
3734 spin_unlock_irq(&last_pwq->pool->lock);
3735 }
3736
3737 return 0;
3738}
3739
30cdf249 3740static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3741{
49e3cf44 3742 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3743 int cpu;
3744
3745 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3746 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3747 if (!wq->cpu_pwqs)
30cdf249
TH
3748 return -ENOMEM;
3749
3750 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3751 struct pool_workqueue *pwq =
3752 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3753 struct worker_pool *cpu_pools =
f02ae73a 3754 per_cpu(cpu_worker_pools, cpu);
f3421797 3755
9e8cd2f5 3756 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3757 }
9e8cd2f5 3758 return 0;
30cdf249 3759 } else {
9e8cd2f5 3760 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3761 }
0f900049
TH
3762}
3763
f3421797
TH
3764static int wq_clamp_max_active(int max_active, unsigned int flags,
3765 const char *name)
b71ab8c2 3766{
f3421797
TH
3767 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3768
3769 if (max_active < 1 || max_active > lim)
044c782c
VI
3770 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3771 max_active, name, 1, lim);
b71ab8c2 3772
f3421797 3773 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3774}
3775
b196be89 3776struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3777 unsigned int flags,
3778 int max_active,
3779 struct lock_class_key *key,
b196be89 3780 const char *lock_name, ...)
1da177e4 3781{
b196be89 3782 va_list args, args1;
1da177e4 3783 struct workqueue_struct *wq;
49e3cf44 3784 struct pool_workqueue *pwq;
b196be89
TH
3785 size_t namelen;
3786
3787 /* determine namelen, allocate wq and format name */
3788 va_start(args, lock_name);
3789 va_copy(args1, args);
3790 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3791
3792 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3793 if (!wq)
d2c1d404 3794 return NULL;
b196be89
TH
3795
3796 vsnprintf(wq->name, namelen, fmt, args1);
3797 va_end(args);
3798 va_end(args1);
1da177e4 3799
d320c038 3800 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3801 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3802
b196be89 3803 /* init wq */
97e37d7b 3804 wq->flags = flags;
a0a1a5fd 3805 wq->saved_max_active = max_active;
73f53c4a 3806 mutex_init(&wq->flush_mutex);
112202d9 3807 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3808 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3809 INIT_LIST_HEAD(&wq->flusher_queue);
3810 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3811 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3812
eb13ba87 3813 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3814 INIT_LIST_HEAD(&wq->list);
3af24433 3815
30cdf249 3816 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3817 goto err_free_wq;
1537663f 3818
493008a8
TH
3819 /*
3820 * Workqueues which may be used during memory reclaim should
3821 * have a rescuer to guarantee forward progress.
3822 */
3823 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3824 struct worker *rescuer;
3825
d2c1d404 3826 rescuer = alloc_worker();
e22bee78 3827 if (!rescuer)
d2c1d404 3828 goto err_destroy;
e22bee78 3829
111c225a
TH
3830 rescuer->rescue_wq = wq;
3831 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3832 wq->name);
d2c1d404
TH
3833 if (IS_ERR(rescuer->task)) {
3834 kfree(rescuer);
3835 goto err_destroy;
3836 }
e22bee78 3837
d2c1d404 3838 wq->rescuer = rescuer;
e22bee78
TH
3839 rescuer->task->flags |= PF_THREAD_BOUND;
3840 wake_up_process(rescuer->task);
3af24433
ON
3841 }
3842
226223ab
TH
3843 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3844 goto err_destroy;
3845
a0a1a5fd 3846 /*
699ce097
TH
3847 * workqueue_lock protects global freeze state and workqueues list.
3848 * Grab it, adjust max_active and add the new workqueue to
3849 * workqueues list.
a0a1a5fd 3850 */
e98d5b16 3851 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3852
699ce097
TH
3853 for_each_pwq(pwq, wq)
3854 pwq_adjust_max_active(pwq);
a0a1a5fd 3855
1537663f 3856 list_add(&wq->list, &workqueues);
a0a1a5fd 3857
e98d5b16 3858 spin_unlock_irq(&workqueue_lock);
1537663f 3859
3af24433 3860 return wq;
d2c1d404
TH
3861
3862err_free_wq:
3863 kfree(wq);
3864 return NULL;
3865err_destroy:
3866 destroy_workqueue(wq);
4690c4ab 3867 return NULL;
3af24433 3868}
d320c038 3869EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3870
3af24433
ON
3871/**
3872 * destroy_workqueue - safely terminate a workqueue
3873 * @wq: target workqueue
3874 *
3875 * Safely destroy a workqueue. All work currently pending will be done first.
3876 */
3877void destroy_workqueue(struct workqueue_struct *wq)
3878{
49e3cf44 3879 struct pool_workqueue *pwq;
3af24433 3880
9c5a2ba7
TH
3881 /* drain it before proceeding with destruction */
3882 drain_workqueue(wq);
c8efcc25 3883
76af4d93
TH
3884 spin_lock_irq(&workqueue_lock);
3885
6183c009 3886 /* sanity checks */
49e3cf44 3887 for_each_pwq(pwq, wq) {
6183c009
TH
3888 int i;
3889
76af4d93
TH
3890 for (i = 0; i < WORK_NR_COLORS; i++) {
3891 if (WARN_ON(pwq->nr_in_flight[i])) {
3892 spin_unlock_irq(&workqueue_lock);
6183c009 3893 return;
76af4d93
TH
3894 }
3895 }
3896
8864b4e5
TH
3897 if (WARN_ON(pwq->refcnt > 1) ||
3898 WARN_ON(pwq->nr_active) ||
76af4d93
TH
3899 WARN_ON(!list_empty(&pwq->delayed_works))) {
3900 spin_unlock_irq(&workqueue_lock);
6183c009 3901 return;
76af4d93 3902 }
6183c009
TH
3903 }
3904
a0a1a5fd
TH
3905 /*
3906 * wq list is used to freeze wq, remove from list after
3907 * flushing is complete in case freeze races us.
3908 */
d2c1d404 3909 list_del_init(&wq->list);
76af4d93 3910
e98d5b16 3911 spin_unlock_irq(&workqueue_lock);
3af24433 3912
226223ab
TH
3913 workqueue_sysfs_unregister(wq);
3914
493008a8 3915 if (wq->rescuer) {
e22bee78 3916 kthread_stop(wq->rescuer->task);
8d9df9f0 3917 kfree(wq->rescuer);
493008a8 3918 wq->rescuer = NULL;
e22bee78
TH
3919 }
3920
8864b4e5
TH
3921 if (!(wq->flags & WQ_UNBOUND)) {
3922 /*
3923 * The base ref is never dropped on per-cpu pwqs. Directly
3924 * free the pwqs and wq.
3925 */
3926 free_percpu(wq->cpu_pwqs);
3927 kfree(wq);
3928 } else {
3929 /*
3930 * We're the sole accessor of @wq at this point. Directly
3931 * access the first pwq and put the base ref. As both pwqs
3932 * and pools are sched-RCU protected, the lock operations
3933 * are safe. @wq will be freed when the last pwq is
3934 * released.
3935 */
29c91e99
TH
3936 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3937 pwqs_node);
8864b4e5
TH
3938 spin_lock_irq(&pwq->pool->lock);
3939 put_pwq(pwq);
3940 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3941 }
3af24433
ON
3942}
3943EXPORT_SYMBOL_GPL(destroy_workqueue);
3944
dcd989cb
TH
3945/**
3946 * workqueue_set_max_active - adjust max_active of a workqueue
3947 * @wq: target workqueue
3948 * @max_active: new max_active value.
3949 *
3950 * Set max_active of @wq to @max_active.
3951 *
3952 * CONTEXT:
3953 * Don't call from IRQ context.
3954 */
3955void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3956{
49e3cf44 3957 struct pool_workqueue *pwq;
dcd989cb 3958
8719dcea
TH
3959 /* disallow meddling with max_active for ordered workqueues */
3960 if (WARN_ON(wq->flags & __WQ_ORDERED))
3961 return;
3962
f3421797 3963 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3964
e98d5b16 3965 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3966
3967 wq->saved_max_active = max_active;
3968
699ce097
TH
3969 for_each_pwq(pwq, wq)
3970 pwq_adjust_max_active(pwq);
93981800 3971
e98d5b16 3972 spin_unlock_irq(&workqueue_lock);
15316ba8 3973}
dcd989cb 3974EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3975
e6267616
TH
3976/**
3977 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3978 *
3979 * Determine whether %current is a workqueue rescuer. Can be used from
3980 * work functions to determine whether it's being run off the rescuer task.
3981 */
3982bool current_is_workqueue_rescuer(void)
3983{
3984 struct worker *worker = current_wq_worker();
3985
3986 return worker && worker == worker->current_pwq->wq->rescuer;
3987}
3988
eef6a7d5 3989/**
dcd989cb
TH
3990 * workqueue_congested - test whether a workqueue is congested
3991 * @cpu: CPU in question
3992 * @wq: target workqueue
eef6a7d5 3993 *
dcd989cb
TH
3994 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3995 * no synchronization around this function and the test result is
3996 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3997 *
dcd989cb
TH
3998 * RETURNS:
3999 * %true if congested, %false otherwise.
eef6a7d5 4000 */
d84ff051 4001bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4002{
7fb98ea7 4003 struct pool_workqueue *pwq;
76af4d93
TH
4004 bool ret;
4005
4006 preempt_disable();
7fb98ea7
TH
4007
4008 if (!(wq->flags & WQ_UNBOUND))
4009 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4010 else
4011 pwq = first_pwq(wq);
dcd989cb 4012
76af4d93
TH
4013 ret = !list_empty(&pwq->delayed_works);
4014 preempt_enable();
4015
4016 return ret;
1da177e4 4017}
dcd989cb 4018EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4019
dcd989cb
TH
4020/**
4021 * work_busy - test whether a work is currently pending or running
4022 * @work: the work to be tested
4023 *
4024 * Test whether @work is currently pending or running. There is no
4025 * synchronization around this function and the test result is
4026 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4027 *
4028 * RETURNS:
4029 * OR'd bitmask of WORK_BUSY_* bits.
4030 */
4031unsigned int work_busy(struct work_struct *work)
1da177e4 4032{
fa1b54e6 4033 struct worker_pool *pool;
dcd989cb
TH
4034 unsigned long flags;
4035 unsigned int ret = 0;
1da177e4 4036
dcd989cb
TH
4037 if (work_pending(work))
4038 ret |= WORK_BUSY_PENDING;
1da177e4 4039
fa1b54e6
TH
4040 local_irq_save(flags);
4041 pool = get_work_pool(work);
038366c5 4042 if (pool) {
fa1b54e6 4043 spin_lock(&pool->lock);
038366c5
LJ
4044 if (find_worker_executing_work(pool, work))
4045 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4046 spin_unlock(&pool->lock);
038366c5 4047 }
fa1b54e6 4048 local_irq_restore(flags);
1da177e4 4049
dcd989cb 4050 return ret;
1da177e4 4051}
dcd989cb 4052EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4053
db7bccf4
TH
4054/*
4055 * CPU hotplug.
4056 *
e22bee78 4057 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4058 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4059 * pool which make migrating pending and scheduled works very
e22bee78 4060 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4061 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4062 * blocked draining impractical.
4063 *
24647570 4064 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4065 * running as an unbound one and allowing it to be reattached later if the
4066 * cpu comes back online.
db7bccf4 4067 */
1da177e4 4068
706026c2 4069static void wq_unbind_fn(struct work_struct *work)
3af24433 4070{
38db41d9 4071 int cpu = smp_processor_id();
4ce62e9e 4072 struct worker_pool *pool;
db7bccf4 4073 struct worker *worker;
db7bccf4 4074 int i;
3af24433 4075
f02ae73a 4076 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4077 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4078
94cf58bb
TH
4079 mutex_lock(&pool->assoc_mutex);
4080 spin_lock_irq(&pool->lock);
3af24433 4081
94cf58bb
TH
4082 /*
4083 * We've claimed all manager positions. Make all workers
4084 * unbound and set DISASSOCIATED. Before this, all workers
4085 * except for the ones which are still executing works from
4086 * before the last CPU down must be on the cpu. After
4087 * this, they may become diasporas.
4088 */
4ce62e9e 4089 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 4090 worker->flags |= WORKER_UNBOUND;
3af24433 4091
b67bfe0d 4092 for_each_busy_worker(worker, i, pool)
c9e7cf27 4093 worker->flags |= WORKER_UNBOUND;
06ba38a9 4094
24647570 4095 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4096
94cf58bb
TH
4097 spin_unlock_irq(&pool->lock);
4098 mutex_unlock(&pool->assoc_mutex);
4099 }
628c78e7 4100
e22bee78 4101 /*
403c821d 4102 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4103 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4104 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4105 */
e22bee78 4106 schedule();
06ba38a9 4107
e22bee78 4108 /*
628c78e7
TH
4109 * Sched callbacks are disabled now. Zap nr_running. After this,
4110 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4111 * are always true as long as the worklist is not empty. Pools on
4112 * @cpu now behave as unbound (in terms of concurrency management)
4113 * pools which are served by workers tied to the CPU.
628c78e7
TH
4114 *
4115 * On return from this function, the current worker would trigger
4116 * unbound chain execution of pending work items if other workers
4117 * didn't already.
e22bee78 4118 */
f02ae73a 4119 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4120 atomic_set(&pool->nr_running, 0);
3af24433 4121}
3af24433 4122
8db25e78
TH
4123/*
4124 * Workqueues should be brought up before normal priority CPU notifiers.
4125 * This will be registered high priority CPU notifier.
4126 */
9fdf9b73 4127static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4128 unsigned long action,
4129 void *hcpu)
3af24433 4130{
d84ff051 4131 int cpu = (unsigned long)hcpu;
4ce62e9e 4132 struct worker_pool *pool;
3ce63377 4133
8db25e78 4134 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4135 case CPU_UP_PREPARE:
f02ae73a 4136 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4137 struct worker *worker;
4138
4139 if (pool->nr_workers)
4140 continue;
4141
4142 worker = create_worker(pool);
4143 if (!worker)
4144 return NOTIFY_BAD;
4145
d565ed63 4146 spin_lock_irq(&pool->lock);
3ce63377 4147 start_worker(worker);
d565ed63 4148 spin_unlock_irq(&pool->lock);
3af24433 4149 }
8db25e78 4150 break;
3af24433 4151
db7bccf4
TH
4152 case CPU_DOWN_FAILED:
4153 case CPU_ONLINE:
f02ae73a 4154 for_each_cpu_worker_pool(pool, cpu) {
94cf58bb
TH
4155 mutex_lock(&pool->assoc_mutex);
4156 spin_lock_irq(&pool->lock);
4157
24647570 4158 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
4159 rebind_workers(pool);
4160
4161 spin_unlock_irq(&pool->lock);
4162 mutex_unlock(&pool->assoc_mutex);
4163 }
db7bccf4 4164 break;
00dfcaf7 4165 }
65758202
TH
4166 return NOTIFY_OK;
4167}
4168
4169/*
4170 * Workqueues should be brought down after normal priority CPU notifiers.
4171 * This will be registered as low priority CPU notifier.
4172 */
9fdf9b73 4173static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4174 unsigned long action,
4175 void *hcpu)
4176{
d84ff051 4177 int cpu = (unsigned long)hcpu;
8db25e78
TH
4178 struct work_struct unbind_work;
4179
65758202
TH
4180 switch (action & ~CPU_TASKS_FROZEN) {
4181 case CPU_DOWN_PREPARE:
8db25e78 4182 /* unbinding should happen on the local CPU */
706026c2 4183 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4184 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4185 flush_work(&unbind_work);
4186 break;
65758202
TH
4187 }
4188 return NOTIFY_OK;
4189}
4190
2d3854a3 4191#ifdef CONFIG_SMP
8ccad40d 4192
2d3854a3 4193struct work_for_cpu {
ed48ece2 4194 struct work_struct work;
2d3854a3
RR
4195 long (*fn)(void *);
4196 void *arg;
4197 long ret;
4198};
4199
ed48ece2 4200static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4201{
ed48ece2
TH
4202 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4203
2d3854a3
RR
4204 wfc->ret = wfc->fn(wfc->arg);
4205}
4206
4207/**
4208 * work_on_cpu - run a function in user context on a particular cpu
4209 * @cpu: the cpu to run on
4210 * @fn: the function to run
4211 * @arg: the function arg
4212 *
31ad9081
RR
4213 * This will return the value @fn returns.
4214 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4215 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4216 */
d84ff051 4217long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4218{
ed48ece2 4219 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4220
ed48ece2
TH
4221 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4222 schedule_work_on(cpu, &wfc.work);
4223 flush_work(&wfc.work);
2d3854a3
RR
4224 return wfc.ret;
4225}
4226EXPORT_SYMBOL_GPL(work_on_cpu);
4227#endif /* CONFIG_SMP */
4228
a0a1a5fd
TH
4229#ifdef CONFIG_FREEZER
4230
4231/**
4232 * freeze_workqueues_begin - begin freezing workqueues
4233 *
58a69cb4 4234 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4235 * workqueues will queue new works to their delayed_works list instead of
706026c2 4236 * pool->worklist.
a0a1a5fd
TH
4237 *
4238 * CONTEXT:
d565ed63 4239 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4240 */
4241void freeze_workqueues_begin(void)
4242{
17116969 4243 struct worker_pool *pool;
24b8a847
TH
4244 struct workqueue_struct *wq;
4245 struct pool_workqueue *pwq;
611c92a0 4246 int pi;
a0a1a5fd 4247
e98d5b16 4248 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4249
6183c009 4250 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4251 workqueue_freezing = true;
4252
24b8a847 4253 /* set FREEZING */
611c92a0 4254 for_each_pool(pool, pi) {
17116969 4255 spin_lock(&pool->lock);
17116969
TH
4256 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4257 pool->flags |= POOL_FREEZING;
24b8a847
TH
4258 spin_unlock(&pool->lock);
4259 }
a0a1a5fd 4260
24b8a847
TH
4261 /* suppress further executions by setting max_active to zero */
4262 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4263 for_each_pwq(pwq, wq)
4264 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4265 }
4266
e98d5b16 4267 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4268}
4269
4270/**
58a69cb4 4271 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4272 *
4273 * Check whether freezing is complete. This function must be called
4274 * between freeze_workqueues_begin() and thaw_workqueues().
4275 *
4276 * CONTEXT:
4277 * Grabs and releases workqueue_lock.
4278 *
4279 * RETURNS:
58a69cb4
TH
4280 * %true if some freezable workqueues are still busy. %false if freezing
4281 * is complete.
a0a1a5fd
TH
4282 */
4283bool freeze_workqueues_busy(void)
4284{
a0a1a5fd 4285 bool busy = false;
24b8a847
TH
4286 struct workqueue_struct *wq;
4287 struct pool_workqueue *pwq;
a0a1a5fd 4288
e98d5b16 4289 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4290
6183c009 4291 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4292
24b8a847
TH
4293 list_for_each_entry(wq, &workqueues, list) {
4294 if (!(wq->flags & WQ_FREEZABLE))
4295 continue;
a0a1a5fd
TH
4296 /*
4297 * nr_active is monotonically decreasing. It's safe
4298 * to peek without lock.
4299 */
24b8a847 4300 for_each_pwq(pwq, wq) {
6183c009 4301 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4302 if (pwq->nr_active) {
a0a1a5fd
TH
4303 busy = true;
4304 goto out_unlock;
4305 }
4306 }
4307 }
4308out_unlock:
e98d5b16 4309 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4310 return busy;
4311}
4312
4313/**
4314 * thaw_workqueues - thaw workqueues
4315 *
4316 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4317 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4318 *
4319 * CONTEXT:
d565ed63 4320 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4321 */
4322void thaw_workqueues(void)
4323{
24b8a847
TH
4324 struct workqueue_struct *wq;
4325 struct pool_workqueue *pwq;
4326 struct worker_pool *pool;
611c92a0 4327 int pi;
a0a1a5fd 4328
e98d5b16 4329 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4330
4331 if (!workqueue_freezing)
4332 goto out_unlock;
4333
24b8a847 4334 /* clear FREEZING */
611c92a0 4335 for_each_pool(pool, pi) {
24b8a847
TH
4336 spin_lock(&pool->lock);
4337 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4338 pool->flags &= ~POOL_FREEZING;
4339 spin_unlock(&pool->lock);
4340 }
8b03ae3c 4341
24b8a847
TH
4342 /* restore max_active and repopulate worklist */
4343 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4344 for_each_pwq(pwq, wq)
4345 pwq_adjust_max_active(pwq);
a0a1a5fd
TH
4346 }
4347
24b8a847 4348 /* kick workers */
611c92a0 4349 for_each_pool(pool, pi) {
24b8a847
TH
4350 spin_lock(&pool->lock);
4351 wake_up_worker(pool);
4352 spin_unlock(&pool->lock);
4353 }
4354
a0a1a5fd
TH
4355 workqueue_freezing = false;
4356out_unlock:
e98d5b16 4357 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4358}
4359#endif /* CONFIG_FREEZER */
4360
6ee0578b 4361static int __init init_workqueues(void)
1da177e4 4362{
7a4e344c
TH
4363 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4364 int i, cpu;
c34056a3 4365
7c3eed5c
TH
4366 /* make sure we have enough bits for OFFQ pool ID */
4367 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4368 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4369
e904e6c2
TH
4370 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4371
4372 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4373
65758202 4374 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4375 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4376
706026c2 4377 /* initialize CPU pools */
29c91e99 4378 for_each_possible_cpu(cpu) {
4ce62e9e 4379 struct worker_pool *pool;
8b03ae3c 4380
7a4e344c 4381 i = 0;
f02ae73a 4382 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4383 BUG_ON(init_worker_pool(pool));
ec22ca5e 4384 pool->cpu = cpu;
29c91e99 4385 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4386 pool->attrs->nice = std_nice[i++];
4387
9daf9e67
TH
4388 /* alloc pool ID */
4389 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4390 }
8b03ae3c
TH
4391 }
4392
e22bee78 4393 /* create the initial worker */
29c91e99 4394 for_each_online_cpu(cpu) {
4ce62e9e 4395 struct worker_pool *pool;
e22bee78 4396
f02ae73a 4397 for_each_cpu_worker_pool(pool, cpu) {
4ce62e9e
TH
4398 struct worker *worker;
4399
29c91e99 4400 pool->flags &= ~POOL_DISASSOCIATED;
24647570 4401
bc2ae0f5 4402 worker = create_worker(pool);
4ce62e9e 4403 BUG_ON(!worker);
d565ed63 4404 spin_lock_irq(&pool->lock);
4ce62e9e 4405 start_worker(worker);
d565ed63 4406 spin_unlock_irq(&pool->lock);
4ce62e9e 4407 }
e22bee78
TH
4408 }
4409
29c91e99
TH
4410 /* create default unbound wq attrs */
4411 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4412 struct workqueue_attrs *attrs;
4413
4414 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4415
4416 attrs->nice = std_nice[i];
4417 cpumask_setall(attrs->cpumask);
4418
4419 unbound_std_wq_attrs[i] = attrs;
4420 }
4421
d320c038 4422 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4423 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4424 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4425 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4426 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4427 system_freezable_wq = alloc_workqueue("events_freezable",
4428 WQ_FREEZABLE, 0);
1aabe902 4429 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4430 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4431 return 0;
1da177e4 4432}
6ee0578b 4433early_initcall(init_workqueues);