workqueue: carry cpu number in work data once execution starts
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
1da177e4 37
c8e55f36 38enum {
db7bccf4
TH
39 /* global_cwq flags */
40 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
41
c8e55f36
TH
42 /* worker flags */
43 WORKER_STARTED = 1 << 0, /* started */
44 WORKER_DIE = 1 << 1, /* die die die */
45 WORKER_IDLE = 1 << 2, /* is idle */
db7bccf4
TH
46 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
47
48 /* gcwq->trustee_state */
49 TRUSTEE_START = 0, /* start */
50 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
51 TRUSTEE_BUTCHER = 2, /* butcher workers */
52 TRUSTEE_RELEASE = 3, /* release workers */
53 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
54
55 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
56 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
57 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4
TH
58
59 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
c8e55f36
TH
60};
61
4690c4ab
TH
62/*
63 * Structure fields follow one of the following exclusion rules.
64 *
65 * I: Set during initialization and read-only afterwards.
66 *
8b03ae3c 67 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 68 *
73f53c4a
TH
69 * F: wq->flush_mutex protected.
70 *
4690c4ab
TH
71 * W: workqueue_lock protected.
72 */
73
8b03ae3c 74struct global_cwq;
c34056a3
TH
75struct cpu_workqueue_struct;
76
77struct worker {
c8e55f36
TH
78 /* on idle list while idle, on busy hash table while busy */
79 union {
80 struct list_head entry; /* L: while idle */
81 struct hlist_node hentry; /* L: while busy */
82 };
83
c34056a3 84 struct work_struct *current_work; /* L: work being processed */
8cca0eea 85 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 86 struct list_head scheduled; /* L: scheduled works */
c34056a3 87 struct task_struct *task; /* I: worker task */
8b03ae3c 88 struct global_cwq *gcwq; /* I: the associated gcwq */
c34056a3 89 struct cpu_workqueue_struct *cwq; /* I: the associated cwq */
c8e55f36 90 unsigned int flags; /* L: flags */
c34056a3
TH
91 int id; /* I: worker id */
92};
93
8b03ae3c
TH
94/*
95 * Global per-cpu workqueue.
96 */
97struct global_cwq {
98 spinlock_t lock; /* the gcwq lock */
99 unsigned int cpu; /* I: the associated cpu */
db7bccf4 100 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
101
102 int nr_workers; /* L: total number of workers */
103 int nr_idle; /* L: currently idle ones */
104
105 /* workers are chained either in the idle_list or busy_hash */
106 struct list_head idle_list; /* L: list of idle workers */
107 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
108 /* L: hash of busy workers */
109
8b03ae3c 110 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
111
112 struct task_struct *trustee; /* L: for gcwq shutdown */
113 unsigned int trustee_state; /* L: trustee state */
114 wait_queue_head_t trustee_wait; /* trustee wait */
8b03ae3c
TH
115} ____cacheline_aligned_in_smp;
116
1da177e4 117/*
502ca9d8 118 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
119 * work_struct->data are used for flags and thus cwqs need to be
120 * aligned at two's power of the number of flag bits.
1da177e4
LT
121 */
122struct cpu_workqueue_struct {
8b03ae3c 123 struct global_cwq *gcwq; /* I: the associated gcwq */
1da177e4 124 struct list_head worklist;
c34056a3 125 struct worker *worker;
4690c4ab 126 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
127 int work_color; /* L: current color */
128 int flush_color; /* L: flushing color */
129 int nr_in_flight[WORK_NR_COLORS];
130 /* L: nr of in_flight works */
1e19ffc6 131 int nr_active; /* L: nr of active works */
a0a1a5fd 132 int max_active; /* L: max active works */
1e19ffc6 133 struct list_head delayed_works; /* L: delayed works */
0f900049 134};
1da177e4 135
73f53c4a
TH
136/*
137 * Structure used to wait for workqueue flush.
138 */
139struct wq_flusher {
140 struct list_head list; /* F: list of flushers */
141 int flush_color; /* F: flush color waiting for */
142 struct completion done; /* flush completion */
143};
144
1da177e4
LT
145/*
146 * The externally visible workqueue abstraction is an array of
147 * per-CPU workqueues:
148 */
149struct workqueue_struct {
97e37d7b 150 unsigned int flags; /* I: WQ_* flags */
4690c4ab
TH
151 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
152 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
153
154 struct mutex flush_mutex; /* protects wq flushing */
155 int work_color; /* F: current work color */
156 int flush_color; /* F: current flush color */
157 atomic_t nr_cwqs_to_flush; /* flush in progress */
158 struct wq_flusher *first_flusher; /* F: first flusher */
159 struct list_head flusher_queue; /* F: flush waiters */
160 struct list_head flusher_overflow; /* F: flush overflow list */
161
502ca9d8
TH
162 unsigned long single_cpu; /* cpu for single cpu wq */
163
a0a1a5fd 164 int saved_max_active; /* I: saved cwq max_active */
4690c4ab 165 const char *name; /* I: workqueue name */
4e6045f1 166#ifdef CONFIG_LOCKDEP
4690c4ab 167 struct lockdep_map lockdep_map;
4e6045f1 168#endif
1da177e4
LT
169};
170
db7bccf4
TH
171#define for_each_busy_worker(worker, i, pos, gcwq) \
172 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
173 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
174
dc186ad7
TG
175#ifdef CONFIG_DEBUG_OBJECTS_WORK
176
177static struct debug_obj_descr work_debug_descr;
178
179/*
180 * fixup_init is called when:
181 * - an active object is initialized
182 */
183static int work_fixup_init(void *addr, enum debug_obj_state state)
184{
185 struct work_struct *work = addr;
186
187 switch (state) {
188 case ODEBUG_STATE_ACTIVE:
189 cancel_work_sync(work);
190 debug_object_init(work, &work_debug_descr);
191 return 1;
192 default:
193 return 0;
194 }
195}
196
197/*
198 * fixup_activate is called when:
199 * - an active object is activated
200 * - an unknown object is activated (might be a statically initialized object)
201 */
202static int work_fixup_activate(void *addr, enum debug_obj_state state)
203{
204 struct work_struct *work = addr;
205
206 switch (state) {
207
208 case ODEBUG_STATE_NOTAVAILABLE:
209 /*
210 * This is not really a fixup. The work struct was
211 * statically initialized. We just make sure that it
212 * is tracked in the object tracker.
213 */
22df02bb 214 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
215 debug_object_init(work, &work_debug_descr);
216 debug_object_activate(work, &work_debug_descr);
217 return 0;
218 }
219 WARN_ON_ONCE(1);
220 return 0;
221
222 case ODEBUG_STATE_ACTIVE:
223 WARN_ON(1);
224
225 default:
226 return 0;
227 }
228}
229
230/*
231 * fixup_free is called when:
232 * - an active object is freed
233 */
234static int work_fixup_free(void *addr, enum debug_obj_state state)
235{
236 struct work_struct *work = addr;
237
238 switch (state) {
239 case ODEBUG_STATE_ACTIVE:
240 cancel_work_sync(work);
241 debug_object_free(work, &work_debug_descr);
242 return 1;
243 default:
244 return 0;
245 }
246}
247
248static struct debug_obj_descr work_debug_descr = {
249 .name = "work_struct",
250 .fixup_init = work_fixup_init,
251 .fixup_activate = work_fixup_activate,
252 .fixup_free = work_fixup_free,
253};
254
255static inline void debug_work_activate(struct work_struct *work)
256{
257 debug_object_activate(work, &work_debug_descr);
258}
259
260static inline void debug_work_deactivate(struct work_struct *work)
261{
262 debug_object_deactivate(work, &work_debug_descr);
263}
264
265void __init_work(struct work_struct *work, int onstack)
266{
267 if (onstack)
268 debug_object_init_on_stack(work, &work_debug_descr);
269 else
270 debug_object_init(work, &work_debug_descr);
271}
272EXPORT_SYMBOL_GPL(__init_work);
273
274void destroy_work_on_stack(struct work_struct *work)
275{
276 debug_object_free(work, &work_debug_descr);
277}
278EXPORT_SYMBOL_GPL(destroy_work_on_stack);
279
280#else
281static inline void debug_work_activate(struct work_struct *work) { }
282static inline void debug_work_deactivate(struct work_struct *work) { }
283#endif
284
95402b38
GS
285/* Serializes the accesses to the list of workqueues. */
286static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 287static LIST_HEAD(workqueues);
a0a1a5fd 288static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 289
8b03ae3c
TH
290static DEFINE_PER_CPU(struct global_cwq, global_cwq);
291
c34056a3 292static int worker_thread(void *__worker);
1da177e4 293
8b03ae3c
TH
294static struct global_cwq *get_gcwq(unsigned int cpu)
295{
296 return &per_cpu(global_cwq, cpu);
297}
298
1537663f
TH
299static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
300 struct workqueue_struct *wq)
b1f4ec17 301{
1537663f 302 return per_cpu_ptr(wq->cpu_wq, cpu);
b1f4ec17
ON
303}
304
73f53c4a
TH
305static unsigned int work_color_to_flags(int color)
306{
307 return color << WORK_STRUCT_COLOR_SHIFT;
308}
309
310static int get_work_color(struct work_struct *work)
311{
312 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
313 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
314}
315
316static int work_next_color(int color)
317{
318 return (color + 1) % WORK_NR_COLORS;
319}
320
4594bf15 321/*
7a22ad75
TH
322 * Work data points to the cwq while a work is on queue. Once
323 * execution starts, it points to the cpu the work was last on. This
324 * can be distinguished by comparing the data value against
325 * PAGE_OFFSET.
326 *
327 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
328 * cwq, cpu or clear work->data. These functions should only be
329 * called while the work is owned - ie. while the PENDING bit is set.
330 *
331 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
332 * corresponding to a work. gcwq is available once the work has been
333 * queued anywhere after initialization. cwq is available only from
334 * queueing until execution starts.
4594bf15 335 */
7a22ad75
TH
336static inline void set_work_data(struct work_struct *work, unsigned long data,
337 unsigned long flags)
365970a1 338{
4594bf15 339 BUG_ON(!work_pending(work));
7a22ad75
TH
340 atomic_long_set(&work->data, data | flags | work_static(work));
341}
365970a1 342
7a22ad75
TH
343static void set_work_cwq(struct work_struct *work,
344 struct cpu_workqueue_struct *cwq,
345 unsigned long extra_flags)
346{
347 set_work_data(work, (unsigned long)cwq,
348 WORK_STRUCT_PENDING | extra_flags);
365970a1
DH
349}
350
7a22ad75
TH
351static void set_work_cpu(struct work_struct *work, unsigned int cpu)
352{
353 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
354}
355
356static void clear_work_data(struct work_struct *work)
357{
358 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
359}
360
361static inline unsigned long get_work_data(struct work_struct *work)
362{
363 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
364}
365
366static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
4d707b9f 367{
7a22ad75
TH
368 unsigned long data = get_work_data(work);
369
370 return data >= PAGE_OFFSET ? (void *)data : NULL;
4d707b9f
ON
371}
372
7a22ad75 373static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 374{
7a22ad75
TH
375 unsigned long data = get_work_data(work);
376 unsigned int cpu;
377
378 if (data >= PAGE_OFFSET)
379 return ((struct cpu_workqueue_struct *)data)->gcwq;
380
381 cpu = data >> WORK_STRUCT_FLAG_BITS;
382 if (cpu == NR_CPUS)
383 return NULL;
384
385 BUG_ON(cpu >= num_possible_cpus());
386 return get_gcwq(cpu);
365970a1
DH
387}
388
c8e55f36
TH
389/**
390 * busy_worker_head - return the busy hash head for a work
391 * @gcwq: gcwq of interest
392 * @work: work to be hashed
393 *
394 * Return hash head of @gcwq for @work.
395 *
396 * CONTEXT:
397 * spin_lock_irq(gcwq->lock).
398 *
399 * RETURNS:
400 * Pointer to the hash head.
401 */
402static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
403 struct work_struct *work)
404{
405 const int base_shift = ilog2(sizeof(struct work_struct));
406 unsigned long v = (unsigned long)work;
407
408 /* simple shift and fold hash, do we need something better? */
409 v >>= base_shift;
410 v += v >> BUSY_WORKER_HASH_ORDER;
411 v &= BUSY_WORKER_HASH_MASK;
412
413 return &gcwq->busy_hash[v];
414}
415
8cca0eea
TH
416/**
417 * __find_worker_executing_work - find worker which is executing a work
418 * @gcwq: gcwq of interest
419 * @bwh: hash head as returned by busy_worker_head()
420 * @work: work to find worker for
421 *
422 * Find a worker which is executing @work on @gcwq. @bwh should be
423 * the hash head obtained by calling busy_worker_head() with the same
424 * work.
425 *
426 * CONTEXT:
427 * spin_lock_irq(gcwq->lock).
428 *
429 * RETURNS:
430 * Pointer to worker which is executing @work if found, NULL
431 * otherwise.
432 */
433static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
434 struct hlist_head *bwh,
435 struct work_struct *work)
436{
437 struct worker *worker;
438 struct hlist_node *tmp;
439
440 hlist_for_each_entry(worker, tmp, bwh, hentry)
441 if (worker->current_work == work)
442 return worker;
443 return NULL;
444}
445
446/**
447 * find_worker_executing_work - find worker which is executing a work
448 * @gcwq: gcwq of interest
449 * @work: work to find worker for
450 *
451 * Find a worker which is executing @work on @gcwq. This function is
452 * identical to __find_worker_executing_work() except that this
453 * function calculates @bwh itself.
454 *
455 * CONTEXT:
456 * spin_lock_irq(gcwq->lock).
457 *
458 * RETURNS:
459 * Pointer to worker which is executing @work if found, NULL
460 * otherwise.
461 */
462static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
463 struct work_struct *work)
464{
465 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
466 work);
467}
468
4690c4ab
TH
469/**
470 * insert_work - insert a work into cwq
471 * @cwq: cwq @work belongs to
472 * @work: work to insert
473 * @head: insertion point
474 * @extra_flags: extra WORK_STRUCT_* flags to set
475 *
476 * Insert @work into @cwq after @head.
477 *
478 * CONTEXT:
8b03ae3c 479 * spin_lock_irq(gcwq->lock).
4690c4ab 480 */
b89deed3 481static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
482 struct work_struct *work, struct list_head *head,
483 unsigned int extra_flags)
b89deed3 484{
4690c4ab 485 /* we own @work, set data and link */
7a22ad75 486 set_work_cwq(work, cwq, extra_flags);
4690c4ab 487
6e84d644
ON
488 /*
489 * Ensure that we get the right work->data if we see the
490 * result of list_add() below, see try_to_grab_pending().
491 */
492 smp_wmb();
4690c4ab 493
1a4d9b0a 494 list_add_tail(&work->entry, head);
c8e55f36 495 wake_up_process(cwq->worker->task);
b89deed3
ON
496}
497
502ca9d8
TH
498/**
499 * cwq_unbind_single_cpu - unbind cwq from single cpu workqueue processing
500 * @cwq: cwq to unbind
501 *
502 * Try to unbind @cwq from single cpu workqueue processing. If
503 * @cwq->wq is frozen, unbind is delayed till the workqueue is thawed.
504 *
505 * CONTEXT:
506 * spin_lock_irq(gcwq->lock).
507 */
508static void cwq_unbind_single_cpu(struct cpu_workqueue_struct *cwq)
509{
510 struct workqueue_struct *wq = cwq->wq;
511 struct global_cwq *gcwq = cwq->gcwq;
512
513 BUG_ON(wq->single_cpu != gcwq->cpu);
514 /*
515 * Unbind from workqueue if @cwq is not frozen. If frozen,
516 * thaw_workqueues() will either restart processing on this
517 * cpu or unbind if empty. This keeps works queued while
518 * frozen fully ordered and flushable.
519 */
520 if (likely(!(gcwq->flags & GCWQ_FREEZING))) {
521 smp_wmb(); /* paired with cmpxchg() in __queue_work() */
522 wq->single_cpu = NR_CPUS;
523 }
524}
525
4690c4ab 526static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
527 struct work_struct *work)
528{
502ca9d8
TH
529 struct global_cwq *gcwq;
530 struct cpu_workqueue_struct *cwq;
1e19ffc6 531 struct list_head *worklist;
1da177e4 532 unsigned long flags;
502ca9d8 533 bool arbitrate;
1da177e4 534
dc186ad7 535 debug_work_activate(work);
1e19ffc6 536
502ca9d8
TH
537 /* determine gcwq to use */
538 if (!(wq->flags & WQ_SINGLE_CPU)) {
539 /* just use the requested cpu for multicpu workqueues */
540 gcwq = get_gcwq(cpu);
541 spin_lock_irqsave(&gcwq->lock, flags);
542 } else {
543 unsigned int req_cpu = cpu;
544
545 /*
546 * It's a bit more complex for single cpu workqueues.
547 * We first need to determine which cpu is going to be
548 * used. If no cpu is currently serving this
549 * workqueue, arbitrate using atomic accesses to
550 * wq->single_cpu; otherwise, use the current one.
551 */
552 retry:
553 cpu = wq->single_cpu;
554 arbitrate = cpu == NR_CPUS;
555 if (arbitrate)
556 cpu = req_cpu;
557
558 gcwq = get_gcwq(cpu);
559 spin_lock_irqsave(&gcwq->lock, flags);
560
561 /*
562 * The following cmpxchg() is a full barrier paired
563 * with smp_wmb() in cwq_unbind_single_cpu() and
564 * guarantees that all changes to wq->st_* fields are
565 * visible on the new cpu after this point.
566 */
567 if (arbitrate)
568 cmpxchg(&wq->single_cpu, NR_CPUS, cpu);
569
570 if (unlikely(wq->single_cpu != cpu)) {
571 spin_unlock_irqrestore(&gcwq->lock, flags);
572 goto retry;
573 }
574 }
575
576 /* gcwq determined, get cwq and queue */
577 cwq = get_cwq(gcwq->cpu, wq);
578
4690c4ab 579 BUG_ON(!list_empty(&work->entry));
1e19ffc6 580
73f53c4a 581 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
582
583 if (likely(cwq->nr_active < cwq->max_active)) {
584 cwq->nr_active++;
585 worklist = &cwq->worklist;
586 } else
587 worklist = &cwq->delayed_works;
588
589 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
590
8b03ae3c 591 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
592}
593
0fcb78c2
REB
594/**
595 * queue_work - queue work on a workqueue
596 * @wq: workqueue to use
597 * @work: work to queue
598 *
057647fc 599 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 600 *
00dfcaf7
ON
601 * We queue the work to the CPU on which it was submitted, but if the CPU dies
602 * it can be processed by another CPU.
1da177e4 603 */
7ad5b3a5 604int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 605{
ef1ca236
ON
606 int ret;
607
608 ret = queue_work_on(get_cpu(), wq, work);
609 put_cpu();
610
1da177e4
LT
611 return ret;
612}
ae90dd5d 613EXPORT_SYMBOL_GPL(queue_work);
1da177e4 614
c1a220e7
ZR
615/**
616 * queue_work_on - queue work on specific cpu
617 * @cpu: CPU number to execute work on
618 * @wq: workqueue to use
619 * @work: work to queue
620 *
621 * Returns 0 if @work was already on a queue, non-zero otherwise.
622 *
623 * We queue the work to a specific CPU, the caller must ensure it
624 * can't go away.
625 */
626int
627queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
628{
629 int ret = 0;
630
22df02bb 631 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 632 __queue_work(cpu, wq, work);
c1a220e7
ZR
633 ret = 1;
634 }
635 return ret;
636}
637EXPORT_SYMBOL_GPL(queue_work_on);
638
6d141c3f 639static void delayed_work_timer_fn(unsigned long __data)
1da177e4 640{
52bad64d 641 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 642 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 643
4690c4ab 644 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
645}
646
0fcb78c2
REB
647/**
648 * queue_delayed_work - queue work on a workqueue after delay
649 * @wq: workqueue to use
af9997e4 650 * @dwork: delayable work to queue
0fcb78c2
REB
651 * @delay: number of jiffies to wait before queueing
652 *
057647fc 653 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 654 */
7ad5b3a5 655int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 656 struct delayed_work *dwork, unsigned long delay)
1da177e4 657{
52bad64d 658 if (delay == 0)
63bc0362 659 return queue_work(wq, &dwork->work);
1da177e4 660
63bc0362 661 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 662}
ae90dd5d 663EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 664
0fcb78c2
REB
665/**
666 * queue_delayed_work_on - queue work on specific CPU after delay
667 * @cpu: CPU number to execute work on
668 * @wq: workqueue to use
af9997e4 669 * @dwork: work to queue
0fcb78c2
REB
670 * @delay: number of jiffies to wait before queueing
671 *
057647fc 672 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 673 */
7a6bc1cd 674int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 675 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
676{
677 int ret = 0;
52bad64d
DH
678 struct timer_list *timer = &dwork->timer;
679 struct work_struct *work = &dwork->work;
7a6bc1cd 680
22df02bb 681 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7a22ad75
TH
682 struct global_cwq *gcwq = get_work_gcwq(work);
683 unsigned int lcpu = gcwq ? gcwq->cpu : raw_smp_processor_id();
684
7a6bc1cd
VP
685 BUG_ON(timer_pending(timer));
686 BUG_ON(!list_empty(&work->entry));
687
8a3e77cc 688 timer_stats_timer_set_start_info(&dwork->timer);
7a22ad75
TH
689 /*
690 * This stores cwq for the moment, for the timer_fn.
691 * Note that the work's gcwq is preserved to allow
692 * reentrance detection for delayed works.
693 */
694 set_work_cwq(work, get_cwq(lcpu, wq), 0);
7a6bc1cd 695 timer->expires = jiffies + delay;
52bad64d 696 timer->data = (unsigned long)dwork;
7a6bc1cd 697 timer->function = delayed_work_timer_fn;
63bc0362
ON
698
699 if (unlikely(cpu >= 0))
700 add_timer_on(timer, cpu);
701 else
702 add_timer(timer);
7a6bc1cd
VP
703 ret = 1;
704 }
705 return ret;
706}
ae90dd5d 707EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 708
c8e55f36
TH
709/**
710 * worker_enter_idle - enter idle state
711 * @worker: worker which is entering idle state
712 *
713 * @worker is entering idle state. Update stats and idle timer if
714 * necessary.
715 *
716 * LOCKING:
717 * spin_lock_irq(gcwq->lock).
718 */
719static void worker_enter_idle(struct worker *worker)
720{
721 struct global_cwq *gcwq = worker->gcwq;
722
723 BUG_ON(worker->flags & WORKER_IDLE);
724 BUG_ON(!list_empty(&worker->entry) &&
725 (worker->hentry.next || worker->hentry.pprev));
726
727 worker->flags |= WORKER_IDLE;
728 gcwq->nr_idle++;
729
730 /* idle_list is LIFO */
731 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4
TH
732
733 if (unlikely(worker->flags & WORKER_ROGUE))
734 wake_up_all(&gcwq->trustee_wait);
c8e55f36
TH
735}
736
737/**
738 * worker_leave_idle - leave idle state
739 * @worker: worker which is leaving idle state
740 *
741 * @worker is leaving idle state. Update stats.
742 *
743 * LOCKING:
744 * spin_lock_irq(gcwq->lock).
745 */
746static void worker_leave_idle(struct worker *worker)
747{
748 struct global_cwq *gcwq = worker->gcwq;
749
750 BUG_ON(!(worker->flags & WORKER_IDLE));
751 worker->flags &= ~WORKER_IDLE;
752 gcwq->nr_idle--;
753 list_del_init(&worker->entry);
754}
755
c34056a3
TH
756static struct worker *alloc_worker(void)
757{
758 struct worker *worker;
759
760 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
761 if (worker) {
762 INIT_LIST_HEAD(&worker->entry);
affee4b2 763 INIT_LIST_HEAD(&worker->scheduled);
c8e55f36 764 }
c34056a3
TH
765 return worker;
766}
767
768/**
769 * create_worker - create a new workqueue worker
770 * @cwq: cwq the new worker will belong to
771 * @bind: whether to set affinity to @cpu or not
772 *
773 * Create a new worker which is bound to @cwq. The returned worker
774 * can be started by calling start_worker() or destroyed using
775 * destroy_worker().
776 *
777 * CONTEXT:
778 * Might sleep. Does GFP_KERNEL allocations.
779 *
780 * RETURNS:
781 * Pointer to the newly created worker.
782 */
783static struct worker *create_worker(struct cpu_workqueue_struct *cwq, bool bind)
784{
8b03ae3c 785 struct global_cwq *gcwq = cwq->gcwq;
c34056a3
TH
786 int id = -1;
787 struct worker *worker = NULL;
788
8b03ae3c
TH
789 spin_lock_irq(&gcwq->lock);
790 while (ida_get_new(&gcwq->worker_ida, &id)) {
791 spin_unlock_irq(&gcwq->lock);
792 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 793 goto fail;
8b03ae3c 794 spin_lock_irq(&gcwq->lock);
c34056a3 795 }
8b03ae3c 796 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
797
798 worker = alloc_worker();
799 if (!worker)
800 goto fail;
801
8b03ae3c 802 worker->gcwq = gcwq;
c34056a3
TH
803 worker->cwq = cwq;
804 worker->id = id;
805
806 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
8b03ae3c 807 gcwq->cpu, id);
c34056a3
TH
808 if (IS_ERR(worker->task))
809 goto fail;
810
db7bccf4
TH
811 /*
812 * A rogue worker will become a regular one if CPU comes
813 * online later on. Make sure every worker has
814 * PF_THREAD_BOUND set.
815 */
c34056a3 816 if (bind)
8b03ae3c 817 kthread_bind(worker->task, gcwq->cpu);
db7bccf4
TH
818 else
819 worker->task->flags |= PF_THREAD_BOUND;
c34056a3
TH
820
821 return worker;
822fail:
823 if (id >= 0) {
8b03ae3c
TH
824 spin_lock_irq(&gcwq->lock);
825 ida_remove(&gcwq->worker_ida, id);
826 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
827 }
828 kfree(worker);
829 return NULL;
830}
831
832/**
833 * start_worker - start a newly created worker
834 * @worker: worker to start
835 *
c8e55f36 836 * Make the gcwq aware of @worker and start it.
c34056a3
TH
837 *
838 * CONTEXT:
8b03ae3c 839 * spin_lock_irq(gcwq->lock).
c34056a3
TH
840 */
841static void start_worker(struct worker *worker)
842{
c8e55f36
TH
843 worker->flags |= WORKER_STARTED;
844 worker->gcwq->nr_workers++;
845 worker_enter_idle(worker);
c34056a3
TH
846 wake_up_process(worker->task);
847}
848
849/**
850 * destroy_worker - destroy a workqueue worker
851 * @worker: worker to be destroyed
852 *
c8e55f36
TH
853 * Destroy @worker and adjust @gcwq stats accordingly.
854 *
855 * CONTEXT:
856 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
857 */
858static void destroy_worker(struct worker *worker)
859{
8b03ae3c 860 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
861 int id = worker->id;
862
863 /* sanity check frenzy */
864 BUG_ON(worker->current_work);
affee4b2 865 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 866
c8e55f36
TH
867 if (worker->flags & WORKER_STARTED)
868 gcwq->nr_workers--;
869 if (worker->flags & WORKER_IDLE)
870 gcwq->nr_idle--;
871
872 list_del_init(&worker->entry);
873 worker->flags |= WORKER_DIE;
874
875 spin_unlock_irq(&gcwq->lock);
876
c34056a3
TH
877 kthread_stop(worker->task);
878 kfree(worker);
879
8b03ae3c
TH
880 spin_lock_irq(&gcwq->lock);
881 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
882}
883
affee4b2
TH
884/**
885 * move_linked_works - move linked works to a list
886 * @work: start of series of works to be scheduled
887 * @head: target list to append @work to
888 * @nextp: out paramter for nested worklist walking
889 *
890 * Schedule linked works starting from @work to @head. Work series to
891 * be scheduled starts at @work and includes any consecutive work with
892 * WORK_STRUCT_LINKED set in its predecessor.
893 *
894 * If @nextp is not NULL, it's updated to point to the next work of
895 * the last scheduled work. This allows move_linked_works() to be
896 * nested inside outer list_for_each_entry_safe().
897 *
898 * CONTEXT:
8b03ae3c 899 * spin_lock_irq(gcwq->lock).
affee4b2
TH
900 */
901static void move_linked_works(struct work_struct *work, struct list_head *head,
902 struct work_struct **nextp)
903{
904 struct work_struct *n;
905
906 /*
907 * Linked worklist will always end before the end of the list,
908 * use NULL for list head.
909 */
910 list_for_each_entry_safe_from(work, n, NULL, entry) {
911 list_move_tail(&work->entry, head);
912 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
913 break;
914 }
915
916 /*
917 * If we're already inside safe list traversal and have moved
918 * multiple works to the scheduled queue, the next position
919 * needs to be updated.
920 */
921 if (nextp)
922 *nextp = n;
923}
924
1e19ffc6
TH
925static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
926{
927 struct work_struct *work = list_first_entry(&cwq->delayed_works,
928 struct work_struct, entry);
929
930 move_linked_works(work, &cwq->worklist, NULL);
931 cwq->nr_active++;
932}
933
73f53c4a
TH
934/**
935 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
936 * @cwq: cwq of interest
937 * @color: color of work which left the queue
938 *
939 * A work either has completed or is removed from pending queue,
940 * decrement nr_in_flight of its cwq and handle workqueue flushing.
941 *
942 * CONTEXT:
8b03ae3c 943 * spin_lock_irq(gcwq->lock).
73f53c4a
TH
944 */
945static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
946{
947 /* ignore uncolored works */
948 if (color == WORK_NO_COLOR)
949 return;
950
951 cwq->nr_in_flight[color]--;
1e19ffc6
TH
952 cwq->nr_active--;
953
502ca9d8
TH
954 if (!list_empty(&cwq->delayed_works)) {
955 /* one down, submit a delayed one */
956 if (cwq->nr_active < cwq->max_active)
957 cwq_activate_first_delayed(cwq);
958 } else if (!cwq->nr_active && cwq->wq->flags & WQ_SINGLE_CPU) {
959 /* this was the last work, unbind from single cpu */
960 cwq_unbind_single_cpu(cwq);
961 }
73f53c4a
TH
962
963 /* is flush in progress and are we at the flushing tip? */
964 if (likely(cwq->flush_color != color))
965 return;
966
967 /* are there still in-flight works? */
968 if (cwq->nr_in_flight[color])
969 return;
970
971 /* this cwq is done, clear flush_color */
972 cwq->flush_color = -1;
973
974 /*
975 * If this was the last cwq, wake up the first flusher. It
976 * will handle the rest.
977 */
978 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
979 complete(&cwq->wq->first_flusher->done);
980}
981
a62428c0
TH
982/**
983 * process_one_work - process single work
c34056a3 984 * @worker: self
a62428c0
TH
985 * @work: work to process
986 *
987 * Process @work. This function contains all the logics necessary to
988 * process a single work including synchronization against and
989 * interaction with other workers on the same cpu, queueing and
990 * flushing. As long as context requirement is met, any worker can
991 * call this function to process a work.
992 *
993 * CONTEXT:
8b03ae3c 994 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 995 */
c34056a3 996static void process_one_work(struct worker *worker, struct work_struct *work)
a62428c0 997{
c34056a3 998 struct cpu_workqueue_struct *cwq = worker->cwq;
8b03ae3c 999 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1000 struct hlist_head *bwh = busy_worker_head(gcwq, work);
a62428c0 1001 work_func_t f = work->func;
73f53c4a 1002 int work_color;
a62428c0
TH
1003#ifdef CONFIG_LOCKDEP
1004 /*
1005 * It is permissible to free the struct work_struct from
1006 * inside the function that is called from it, this we need to
1007 * take into account for lockdep too. To avoid bogus "held
1008 * lock freed" warnings as well as problems when looking into
1009 * work->lockdep_map, make a copy and use that here.
1010 */
1011 struct lockdep_map lockdep_map = work->lockdep_map;
1012#endif
1013 /* claim and process */
a62428c0 1014 debug_work_deactivate(work);
c8e55f36 1015 hlist_add_head(&worker->hentry, bwh);
c34056a3 1016 worker->current_work = work;
8cca0eea 1017 worker->current_cwq = cwq;
73f53c4a 1018 work_color = get_work_color(work);
7a22ad75
TH
1019
1020 BUG_ON(get_work_cwq(work) != cwq);
1021 /* record the current cpu number in the work data and dequeue */
1022 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1023 list_del_init(&work->entry);
1024
8b03ae3c 1025 spin_unlock_irq(&gcwq->lock);
a62428c0 1026
a62428c0
TH
1027 work_clear_pending(work);
1028 lock_map_acquire(&cwq->wq->lockdep_map);
1029 lock_map_acquire(&lockdep_map);
1030 f(work);
1031 lock_map_release(&lockdep_map);
1032 lock_map_release(&cwq->wq->lockdep_map);
1033
1034 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1035 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1036 "%s/0x%08x/%d\n",
1037 current->comm, preempt_count(), task_pid_nr(current));
1038 printk(KERN_ERR " last function: ");
1039 print_symbol("%s\n", (unsigned long)f);
1040 debug_show_held_locks(current);
1041 dump_stack();
1042 }
1043
8b03ae3c 1044 spin_lock_irq(&gcwq->lock);
a62428c0
TH
1045
1046 /* we're done with it, release */
c8e55f36 1047 hlist_del_init(&worker->hentry);
c34056a3 1048 worker->current_work = NULL;
8cca0eea 1049 worker->current_cwq = NULL;
73f53c4a 1050 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
1051}
1052
affee4b2
TH
1053/**
1054 * process_scheduled_works - process scheduled works
1055 * @worker: self
1056 *
1057 * Process all scheduled works. Please note that the scheduled list
1058 * may change while processing a work, so this function repeatedly
1059 * fetches a work from the top and executes it.
1060 *
1061 * CONTEXT:
8b03ae3c 1062 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1063 * multiple times.
1064 */
1065static void process_scheduled_works(struct worker *worker)
1da177e4 1066{
affee4b2
TH
1067 while (!list_empty(&worker->scheduled)) {
1068 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1069 struct work_struct, entry);
c34056a3 1070 process_one_work(worker, work);
1da177e4 1071 }
1da177e4
LT
1072}
1073
4690c4ab
TH
1074/**
1075 * worker_thread - the worker thread function
c34056a3 1076 * @__worker: self
4690c4ab
TH
1077 *
1078 * The cwq worker thread function.
1079 */
c34056a3 1080static int worker_thread(void *__worker)
1da177e4 1081{
c34056a3 1082 struct worker *worker = __worker;
8b03ae3c 1083 struct global_cwq *gcwq = worker->gcwq;
c34056a3 1084 struct cpu_workqueue_struct *cwq = worker->cwq;
1da177e4 1085
c8e55f36 1086woke_up:
c8e55f36 1087 spin_lock_irq(&gcwq->lock);
1da177e4 1088
c8e55f36
TH
1089 /* DIE can be set only while we're idle, checking here is enough */
1090 if (worker->flags & WORKER_DIE) {
1091 spin_unlock_irq(&gcwq->lock);
1092 return 0;
1093 }
affee4b2 1094
c8e55f36 1095 worker_leave_idle(worker);
db7bccf4 1096recheck:
c8e55f36
TH
1097 /*
1098 * ->scheduled list can only be filled while a worker is
1099 * preparing to process a work or actually processing it.
1100 * Make sure nobody diddled with it while I was sleeping.
1101 */
1102 BUG_ON(!list_empty(&worker->scheduled));
1103
1104 while (!list_empty(&cwq->worklist)) {
1105 struct work_struct *work =
1106 list_first_entry(&cwq->worklist,
1107 struct work_struct, entry);
1108
db7bccf4
TH
1109 /*
1110 * The following is a rather inefficient way to close
1111 * race window against cpu hotplug operations. Will
1112 * be replaced soon.
1113 */
1114 if (unlikely(!(worker->flags & WORKER_ROGUE) &&
1115 !cpumask_equal(&worker->task->cpus_allowed,
1116 get_cpu_mask(gcwq->cpu)))) {
1117 spin_unlock_irq(&gcwq->lock);
1118 set_cpus_allowed_ptr(worker->task,
1119 get_cpu_mask(gcwq->cpu));
1120 cpu_relax();
1121 spin_lock_irq(&gcwq->lock);
1122 goto recheck;
1123 }
1124
c8e55f36
TH
1125 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1126 /* optimization path, not strictly necessary */
1127 process_one_work(worker, work);
1128 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1129 process_scheduled_works(worker);
c8e55f36
TH
1130 } else {
1131 move_linked_works(work, &worker->scheduled, NULL);
1132 process_scheduled_works(worker);
affee4b2 1133 }
1da177e4 1134 }
3af24433 1135
c8e55f36
TH
1136 /*
1137 * gcwq->lock is held and there's no work to process, sleep.
1138 * Workers are woken up only while holding gcwq->lock, so
1139 * setting the current state before releasing gcwq->lock is
1140 * enough to prevent losing any event.
1141 */
1142 worker_enter_idle(worker);
1143 __set_current_state(TASK_INTERRUPTIBLE);
1144 spin_unlock_irq(&gcwq->lock);
1145 schedule();
1146 goto woke_up;
1da177e4
LT
1147}
1148
fc2e4d70
ON
1149struct wq_barrier {
1150 struct work_struct work;
1151 struct completion done;
1152};
1153
1154static void wq_barrier_func(struct work_struct *work)
1155{
1156 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1157 complete(&barr->done);
1158}
1159
4690c4ab
TH
1160/**
1161 * insert_wq_barrier - insert a barrier work
1162 * @cwq: cwq to insert barrier into
1163 * @barr: wq_barrier to insert
affee4b2
TH
1164 * @target: target work to attach @barr to
1165 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 1166 *
affee4b2
TH
1167 * @barr is linked to @target such that @barr is completed only after
1168 * @target finishes execution. Please note that the ordering
1169 * guarantee is observed only with respect to @target and on the local
1170 * cpu.
1171 *
1172 * Currently, a queued barrier can't be canceled. This is because
1173 * try_to_grab_pending() can't determine whether the work to be
1174 * grabbed is at the head of the queue and thus can't clear LINKED
1175 * flag of the previous work while there must be a valid next work
1176 * after a work with LINKED flag set.
1177 *
1178 * Note that when @worker is non-NULL, @target may be modified
1179 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
1180 *
1181 * CONTEXT:
8b03ae3c 1182 * spin_lock_irq(gcwq->lock).
4690c4ab 1183 */
83c22520 1184static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
1185 struct wq_barrier *barr,
1186 struct work_struct *target, struct worker *worker)
fc2e4d70 1187{
affee4b2
TH
1188 struct list_head *head;
1189 unsigned int linked = 0;
1190
dc186ad7 1191 /*
8b03ae3c 1192 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
1193 * as we know for sure that this will not trigger any of the
1194 * checks and call back into the fixup functions where we
1195 * might deadlock.
1196 */
1197 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 1198 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 1199 init_completion(&barr->done);
83c22520 1200
affee4b2
TH
1201 /*
1202 * If @target is currently being executed, schedule the
1203 * barrier to the worker; otherwise, put it after @target.
1204 */
1205 if (worker)
1206 head = worker->scheduled.next;
1207 else {
1208 unsigned long *bits = work_data_bits(target);
1209
1210 head = target->entry.next;
1211 /* there can already be other linked works, inherit and set */
1212 linked = *bits & WORK_STRUCT_LINKED;
1213 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
1214 }
1215
dc186ad7 1216 debug_work_activate(&barr->work);
affee4b2
TH
1217 insert_work(cwq, &barr->work, head,
1218 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
1219}
1220
73f53c4a
TH
1221/**
1222 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
1223 * @wq: workqueue being flushed
1224 * @flush_color: new flush color, < 0 for no-op
1225 * @work_color: new work color, < 0 for no-op
1226 *
1227 * Prepare cwqs for workqueue flushing.
1228 *
1229 * If @flush_color is non-negative, flush_color on all cwqs should be
1230 * -1. If no cwq has in-flight commands at the specified color, all
1231 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
1232 * has in flight commands, its cwq->flush_color is set to
1233 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
1234 * wakeup logic is armed and %true is returned.
1235 *
1236 * The caller should have initialized @wq->first_flusher prior to
1237 * calling this function with non-negative @flush_color. If
1238 * @flush_color is negative, no flush color update is done and %false
1239 * is returned.
1240 *
1241 * If @work_color is non-negative, all cwqs should have the same
1242 * work_color which is previous to @work_color and all will be
1243 * advanced to @work_color.
1244 *
1245 * CONTEXT:
1246 * mutex_lock(wq->flush_mutex).
1247 *
1248 * RETURNS:
1249 * %true if @flush_color >= 0 and there's something to flush. %false
1250 * otherwise.
1251 */
1252static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
1253 int flush_color, int work_color)
1da177e4 1254{
73f53c4a
TH
1255 bool wait = false;
1256 unsigned int cpu;
1da177e4 1257
73f53c4a
TH
1258 if (flush_color >= 0) {
1259 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
1260 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 1261 }
2355b70f 1262
73f53c4a
TH
1263 for_each_possible_cpu(cpu) {
1264 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1265 struct global_cwq *gcwq = cwq->gcwq;
73f53c4a 1266
8b03ae3c 1267 spin_lock_irq(&gcwq->lock);
73f53c4a
TH
1268
1269 if (flush_color >= 0) {
1270 BUG_ON(cwq->flush_color != -1);
1271
1272 if (cwq->nr_in_flight[flush_color]) {
1273 cwq->flush_color = flush_color;
1274 atomic_inc(&wq->nr_cwqs_to_flush);
1275 wait = true;
1276 }
1277 }
1278
1279 if (work_color >= 0) {
1280 BUG_ON(work_color != work_next_color(cwq->work_color));
1281 cwq->work_color = work_color;
1282 }
1283
8b03ae3c 1284 spin_unlock_irq(&gcwq->lock);
dc186ad7 1285 }
14441960 1286
73f53c4a
TH
1287 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
1288 complete(&wq->first_flusher->done);
1289
1290 return wait;
1da177e4
LT
1291}
1292
0fcb78c2 1293/**
1da177e4 1294 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 1295 * @wq: workqueue to flush
1da177e4
LT
1296 *
1297 * Forces execution of the workqueue and blocks until its completion.
1298 * This is typically used in driver shutdown handlers.
1299 *
fc2e4d70
ON
1300 * We sleep until all works which were queued on entry have been handled,
1301 * but we are not livelocked by new incoming ones.
1da177e4 1302 */
7ad5b3a5 1303void flush_workqueue(struct workqueue_struct *wq)
1da177e4 1304{
73f53c4a
TH
1305 struct wq_flusher this_flusher = {
1306 .list = LIST_HEAD_INIT(this_flusher.list),
1307 .flush_color = -1,
1308 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
1309 };
1310 int next_color;
1da177e4 1311
3295f0ef
IM
1312 lock_map_acquire(&wq->lockdep_map);
1313 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
1314
1315 mutex_lock(&wq->flush_mutex);
1316
1317 /*
1318 * Start-to-wait phase
1319 */
1320 next_color = work_next_color(wq->work_color);
1321
1322 if (next_color != wq->flush_color) {
1323 /*
1324 * Color space is not full. The current work_color
1325 * becomes our flush_color and work_color is advanced
1326 * by one.
1327 */
1328 BUG_ON(!list_empty(&wq->flusher_overflow));
1329 this_flusher.flush_color = wq->work_color;
1330 wq->work_color = next_color;
1331
1332 if (!wq->first_flusher) {
1333 /* no flush in progress, become the first flusher */
1334 BUG_ON(wq->flush_color != this_flusher.flush_color);
1335
1336 wq->first_flusher = &this_flusher;
1337
1338 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
1339 wq->work_color)) {
1340 /* nothing to flush, done */
1341 wq->flush_color = next_color;
1342 wq->first_flusher = NULL;
1343 goto out_unlock;
1344 }
1345 } else {
1346 /* wait in queue */
1347 BUG_ON(wq->flush_color == this_flusher.flush_color);
1348 list_add_tail(&this_flusher.list, &wq->flusher_queue);
1349 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1350 }
1351 } else {
1352 /*
1353 * Oops, color space is full, wait on overflow queue.
1354 * The next flush completion will assign us
1355 * flush_color and transfer to flusher_queue.
1356 */
1357 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
1358 }
1359
1360 mutex_unlock(&wq->flush_mutex);
1361
1362 wait_for_completion(&this_flusher.done);
1363
1364 /*
1365 * Wake-up-and-cascade phase
1366 *
1367 * First flushers are responsible for cascading flushes and
1368 * handling overflow. Non-first flushers can simply return.
1369 */
1370 if (wq->first_flusher != &this_flusher)
1371 return;
1372
1373 mutex_lock(&wq->flush_mutex);
1374
1375 wq->first_flusher = NULL;
1376
1377 BUG_ON(!list_empty(&this_flusher.list));
1378 BUG_ON(wq->flush_color != this_flusher.flush_color);
1379
1380 while (true) {
1381 struct wq_flusher *next, *tmp;
1382
1383 /* complete all the flushers sharing the current flush color */
1384 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
1385 if (next->flush_color != wq->flush_color)
1386 break;
1387 list_del_init(&next->list);
1388 complete(&next->done);
1389 }
1390
1391 BUG_ON(!list_empty(&wq->flusher_overflow) &&
1392 wq->flush_color != work_next_color(wq->work_color));
1393
1394 /* this flush_color is finished, advance by one */
1395 wq->flush_color = work_next_color(wq->flush_color);
1396
1397 /* one color has been freed, handle overflow queue */
1398 if (!list_empty(&wq->flusher_overflow)) {
1399 /*
1400 * Assign the same color to all overflowed
1401 * flushers, advance work_color and append to
1402 * flusher_queue. This is the start-to-wait
1403 * phase for these overflowed flushers.
1404 */
1405 list_for_each_entry(tmp, &wq->flusher_overflow, list)
1406 tmp->flush_color = wq->work_color;
1407
1408 wq->work_color = work_next_color(wq->work_color);
1409
1410 list_splice_tail_init(&wq->flusher_overflow,
1411 &wq->flusher_queue);
1412 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1413 }
1414
1415 if (list_empty(&wq->flusher_queue)) {
1416 BUG_ON(wq->flush_color != wq->work_color);
1417 break;
1418 }
1419
1420 /*
1421 * Need to flush more colors. Make the next flusher
1422 * the new first flusher and arm cwqs.
1423 */
1424 BUG_ON(wq->flush_color == wq->work_color);
1425 BUG_ON(wq->flush_color != next->flush_color);
1426
1427 list_del_init(&next->list);
1428 wq->first_flusher = next;
1429
1430 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
1431 break;
1432
1433 /*
1434 * Meh... this color is already done, clear first
1435 * flusher and repeat cascading.
1436 */
1437 wq->first_flusher = NULL;
1438 }
1439
1440out_unlock:
1441 mutex_unlock(&wq->flush_mutex);
1da177e4 1442}
ae90dd5d 1443EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 1444
db700897
ON
1445/**
1446 * flush_work - block until a work_struct's callback has terminated
1447 * @work: the work which is to be flushed
1448 *
a67da70d
ON
1449 * Returns false if @work has already terminated.
1450 *
db700897
ON
1451 * It is expected that, prior to calling flush_work(), the caller has
1452 * arranged for the work to not be requeued, otherwise it doesn't make
1453 * sense to use this function.
1454 */
1455int flush_work(struct work_struct *work)
1456{
affee4b2 1457 struct worker *worker = NULL;
8b03ae3c 1458 struct global_cwq *gcwq;
7a22ad75 1459 struct cpu_workqueue_struct *cwq;
db700897
ON
1460 struct wq_barrier barr;
1461
1462 might_sleep();
7a22ad75
TH
1463 gcwq = get_work_gcwq(work);
1464 if (!gcwq)
db700897 1465 return 0;
a67da70d 1466
8b03ae3c 1467 spin_lock_irq(&gcwq->lock);
db700897
ON
1468 if (!list_empty(&work->entry)) {
1469 /*
1470 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
1471 * If it was re-queued to a different gcwq under us, we
1472 * are not going to wait.
db700897
ON
1473 */
1474 smp_rmb();
7a22ad75
TH
1475 cwq = get_work_cwq(work);
1476 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 1477 goto already_gone;
db700897 1478 } else {
7a22ad75 1479 worker = find_worker_executing_work(gcwq, work);
affee4b2 1480 if (!worker)
4690c4ab 1481 goto already_gone;
7a22ad75 1482 cwq = worker->current_cwq;
db700897 1483 }
db700897 1484
affee4b2 1485 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 1486 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
1487
1488 lock_map_acquire(&cwq->wq->lockdep_map);
1489 lock_map_release(&cwq->wq->lockdep_map);
1490
db700897 1491 wait_for_completion(&barr.done);
dc186ad7 1492 destroy_work_on_stack(&barr.work);
db700897 1493 return 1;
4690c4ab 1494already_gone:
8b03ae3c 1495 spin_unlock_irq(&gcwq->lock);
4690c4ab 1496 return 0;
db700897
ON
1497}
1498EXPORT_SYMBOL_GPL(flush_work);
1499
6e84d644 1500/*
1f1f642e 1501 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
1502 * so this work can't be re-armed in any way.
1503 */
1504static int try_to_grab_pending(struct work_struct *work)
1505{
8b03ae3c 1506 struct global_cwq *gcwq;
1f1f642e 1507 int ret = -1;
6e84d644 1508
22df02bb 1509 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 1510 return 0;
6e84d644
ON
1511
1512 /*
1513 * The queueing is in progress, or it is already queued. Try to
1514 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1515 */
7a22ad75
TH
1516 gcwq = get_work_gcwq(work);
1517 if (!gcwq)
6e84d644
ON
1518 return ret;
1519
8b03ae3c 1520 spin_lock_irq(&gcwq->lock);
6e84d644
ON
1521 if (!list_empty(&work->entry)) {
1522 /*
7a22ad75 1523 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
1524 * In that case we must see the new value after rmb(), see
1525 * insert_work()->wmb().
1526 */
1527 smp_rmb();
7a22ad75 1528 if (gcwq == get_work_gcwq(work)) {
dc186ad7 1529 debug_work_deactivate(work);
6e84d644 1530 list_del_init(&work->entry);
7a22ad75
TH
1531 cwq_dec_nr_in_flight(get_work_cwq(work),
1532 get_work_color(work));
6e84d644
ON
1533 ret = 1;
1534 }
1535 }
8b03ae3c 1536 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
1537
1538 return ret;
1539}
1540
7a22ad75 1541static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
b89deed3
ON
1542{
1543 struct wq_barrier barr;
affee4b2 1544 struct worker *worker;
b89deed3 1545
8b03ae3c 1546 spin_lock_irq(&gcwq->lock);
affee4b2 1547
7a22ad75
TH
1548 worker = find_worker_executing_work(gcwq, work);
1549 if (unlikely(worker))
1550 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
affee4b2 1551
8b03ae3c 1552 spin_unlock_irq(&gcwq->lock);
b89deed3 1553
affee4b2 1554 if (unlikely(worker)) {
b89deed3 1555 wait_for_completion(&barr.done);
dc186ad7
TG
1556 destroy_work_on_stack(&barr.work);
1557 }
b89deed3
ON
1558}
1559
6e84d644 1560static void wait_on_work(struct work_struct *work)
b89deed3 1561{
b1f4ec17 1562 int cpu;
b89deed3 1563
f293ea92
ON
1564 might_sleep();
1565
3295f0ef
IM
1566 lock_map_acquire(&work->lockdep_map);
1567 lock_map_release(&work->lockdep_map);
4e6045f1 1568
1537663f 1569 for_each_possible_cpu(cpu)
7a22ad75 1570 wait_on_cpu_work(get_gcwq(cpu), work);
6e84d644
ON
1571}
1572
1f1f642e
ON
1573static int __cancel_work_timer(struct work_struct *work,
1574 struct timer_list* timer)
1575{
1576 int ret;
1577
1578 do {
1579 ret = (timer && likely(del_timer(timer)));
1580 if (!ret)
1581 ret = try_to_grab_pending(work);
1582 wait_on_work(work);
1583 } while (unlikely(ret < 0));
1584
7a22ad75 1585 clear_work_data(work);
1f1f642e
ON
1586 return ret;
1587}
1588
6e84d644
ON
1589/**
1590 * cancel_work_sync - block until a work_struct's callback has terminated
1591 * @work: the work which is to be flushed
1592 *
1f1f642e
ON
1593 * Returns true if @work was pending.
1594 *
6e84d644
ON
1595 * cancel_work_sync() will cancel the work if it is queued. If the work's
1596 * callback appears to be running, cancel_work_sync() will block until it
1597 * has completed.
1598 *
1599 * It is possible to use this function if the work re-queues itself. It can
1600 * cancel the work even if it migrates to another workqueue, however in that
1601 * case it only guarantees that work->func() has completed on the last queued
1602 * workqueue.
1603 *
1604 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
1605 * pending, otherwise it goes into a busy-wait loop until the timer expires.
1606 *
1607 * The caller must ensure that workqueue_struct on which this work was last
1608 * queued can't be destroyed before this function returns.
1609 */
1f1f642e 1610int cancel_work_sync(struct work_struct *work)
6e84d644 1611{
1f1f642e 1612 return __cancel_work_timer(work, NULL);
b89deed3 1613}
28e53bdd 1614EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 1615
6e84d644 1616/**
f5a421a4 1617 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
1618 * @dwork: the delayed work struct
1619 *
1f1f642e
ON
1620 * Returns true if @dwork was pending.
1621 *
6e84d644
ON
1622 * It is possible to use this function if @dwork rearms itself via queue_work()
1623 * or queue_delayed_work(). See also the comment for cancel_work_sync().
1624 */
1f1f642e 1625int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 1626{
1f1f642e 1627 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 1628}
f5a421a4 1629EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 1630
6e84d644 1631static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 1632
0fcb78c2
REB
1633/**
1634 * schedule_work - put work task in global workqueue
1635 * @work: job to be done
1636 *
5b0f437d
BVA
1637 * Returns zero if @work was already on the kernel-global workqueue and
1638 * non-zero otherwise.
1639 *
1640 * This puts a job in the kernel-global workqueue if it was not already
1641 * queued and leaves it in the same position on the kernel-global
1642 * workqueue otherwise.
0fcb78c2 1643 */
7ad5b3a5 1644int schedule_work(struct work_struct *work)
1da177e4
LT
1645{
1646 return queue_work(keventd_wq, work);
1647}
ae90dd5d 1648EXPORT_SYMBOL(schedule_work);
1da177e4 1649
c1a220e7
ZR
1650/*
1651 * schedule_work_on - put work task on a specific cpu
1652 * @cpu: cpu to put the work task on
1653 * @work: job to be done
1654 *
1655 * This puts a job on a specific cpu
1656 */
1657int schedule_work_on(int cpu, struct work_struct *work)
1658{
1659 return queue_work_on(cpu, keventd_wq, work);
1660}
1661EXPORT_SYMBOL(schedule_work_on);
1662
0fcb78c2
REB
1663/**
1664 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
1665 * @dwork: job to be done
1666 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
1667 *
1668 * After waiting for a given time this puts a job in the kernel-global
1669 * workqueue.
1670 */
7ad5b3a5 1671int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 1672 unsigned long delay)
1da177e4 1673{
52bad64d 1674 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 1675}
ae90dd5d 1676EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 1677
8c53e463
LT
1678/**
1679 * flush_delayed_work - block until a dwork_struct's callback has terminated
1680 * @dwork: the delayed work which is to be flushed
1681 *
1682 * Any timeout is cancelled, and any pending work is run immediately.
1683 */
1684void flush_delayed_work(struct delayed_work *dwork)
1685{
1686 if (del_timer_sync(&dwork->timer)) {
7a22ad75 1687 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
4690c4ab 1688 &dwork->work);
8c53e463
LT
1689 put_cpu();
1690 }
1691 flush_work(&dwork->work);
1692}
1693EXPORT_SYMBOL(flush_delayed_work);
1694
0fcb78c2
REB
1695/**
1696 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
1697 * @cpu: cpu to use
52bad64d 1698 * @dwork: job to be done
0fcb78c2
REB
1699 * @delay: number of jiffies to wait
1700 *
1701 * After waiting for a given time this puts a job in the kernel-global
1702 * workqueue on the specified CPU.
1703 */
1da177e4 1704int schedule_delayed_work_on(int cpu,
52bad64d 1705 struct delayed_work *dwork, unsigned long delay)
1da177e4 1706{
52bad64d 1707 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 1708}
ae90dd5d 1709EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 1710
b6136773
AM
1711/**
1712 * schedule_on_each_cpu - call a function on each online CPU from keventd
1713 * @func: the function to call
b6136773
AM
1714 *
1715 * Returns zero on success.
1716 * Returns -ve errno on failure.
1717 *
b6136773
AM
1718 * schedule_on_each_cpu() is very slow.
1719 */
65f27f38 1720int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
1721{
1722 int cpu;
65a64464 1723 int orig = -1;
b6136773 1724 struct work_struct *works;
15316ba8 1725
b6136773
AM
1726 works = alloc_percpu(struct work_struct);
1727 if (!works)
15316ba8 1728 return -ENOMEM;
b6136773 1729
93981800
TH
1730 get_online_cpus();
1731
65a64464 1732 /*
93981800
TH
1733 * When running in keventd don't schedule a work item on
1734 * itself. Can just call directly because the work queue is
1735 * already bound. This also is faster.
65a64464 1736 */
93981800 1737 if (current_is_keventd())
65a64464 1738 orig = raw_smp_processor_id();
65a64464 1739
15316ba8 1740 for_each_online_cpu(cpu) {
9bfb1839
IM
1741 struct work_struct *work = per_cpu_ptr(works, cpu);
1742
1743 INIT_WORK(work, func);
65a64464 1744 if (cpu != orig)
93981800 1745 schedule_work_on(cpu, work);
65a64464 1746 }
93981800
TH
1747 if (orig >= 0)
1748 func(per_cpu_ptr(works, orig));
1749
1750 for_each_online_cpu(cpu)
1751 flush_work(per_cpu_ptr(works, cpu));
1752
95402b38 1753 put_online_cpus();
b6136773 1754 free_percpu(works);
15316ba8
CL
1755 return 0;
1756}
1757
eef6a7d5
AS
1758/**
1759 * flush_scheduled_work - ensure that any scheduled work has run to completion.
1760 *
1761 * Forces execution of the kernel-global workqueue and blocks until its
1762 * completion.
1763 *
1764 * Think twice before calling this function! It's very easy to get into
1765 * trouble if you don't take great care. Either of the following situations
1766 * will lead to deadlock:
1767 *
1768 * One of the work items currently on the workqueue needs to acquire
1769 * a lock held by your code or its caller.
1770 *
1771 * Your code is running in the context of a work routine.
1772 *
1773 * They will be detected by lockdep when they occur, but the first might not
1774 * occur very often. It depends on what work items are on the workqueue and
1775 * what locks they need, which you have no control over.
1776 *
1777 * In most situations flushing the entire workqueue is overkill; you merely
1778 * need to know that a particular work item isn't queued and isn't running.
1779 * In such cases you should use cancel_delayed_work_sync() or
1780 * cancel_work_sync() instead.
1781 */
1da177e4
LT
1782void flush_scheduled_work(void)
1783{
1784 flush_workqueue(keventd_wq);
1785}
ae90dd5d 1786EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 1787
1fa44eca
JB
1788/**
1789 * execute_in_process_context - reliably execute the routine with user context
1790 * @fn: the function to execute
1fa44eca
JB
1791 * @ew: guaranteed storage for the execute work structure (must
1792 * be available when the work executes)
1793 *
1794 * Executes the function immediately if process context is available,
1795 * otherwise schedules the function for delayed execution.
1796 *
1797 * Returns: 0 - function was executed
1798 * 1 - function was scheduled for execution
1799 */
65f27f38 1800int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
1801{
1802 if (!in_interrupt()) {
65f27f38 1803 fn(&ew->work);
1fa44eca
JB
1804 return 0;
1805 }
1806
65f27f38 1807 INIT_WORK(&ew->work, fn);
1fa44eca
JB
1808 schedule_work(&ew->work);
1809
1810 return 1;
1811}
1812EXPORT_SYMBOL_GPL(execute_in_process_context);
1813
1da177e4
LT
1814int keventd_up(void)
1815{
1816 return keventd_wq != NULL;
1817}
1818
1819int current_is_keventd(void)
1820{
1821 struct cpu_workqueue_struct *cwq;
d243769d 1822 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
1da177e4
LT
1823 int ret = 0;
1824
1825 BUG_ON(!keventd_wq);
1826
1537663f 1827 cwq = get_cwq(cpu, keventd_wq);
c34056a3 1828 if (current == cwq->worker->task)
1da177e4
LT
1829 ret = 1;
1830
1831 return ret;
1832
1833}
1834
0f900049
TH
1835static struct cpu_workqueue_struct *alloc_cwqs(void)
1836{
1837 /*
1838 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
1839 * Make sure that the alignment isn't lower than that of
1840 * unsigned long long.
1841 */
1842 const size_t size = sizeof(struct cpu_workqueue_struct);
1843 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
1844 __alignof__(unsigned long long));
1845 struct cpu_workqueue_struct *cwqs;
1846#ifndef CONFIG_SMP
1847 void *ptr;
1848
1849 /*
1850 * On UP, percpu allocator doesn't honor alignment parameter
1851 * and simply uses arch-dependent default. Allocate enough
1852 * room to align cwq and put an extra pointer at the end
1853 * pointing back to the originally allocated pointer which
1854 * will be used for free.
1855 *
1856 * FIXME: This really belongs to UP percpu code. Update UP
1857 * percpu code to honor alignment and remove this ugliness.
1858 */
1859 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
1860 cwqs = PTR_ALIGN(ptr, align);
1861 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
1862#else
1863 /* On SMP, percpu allocator can do it itself */
1864 cwqs = __alloc_percpu(size, align);
1865#endif
1866 /* just in case, make sure it's actually aligned */
1867 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
1868 return cwqs;
1869}
1870
1871static void free_cwqs(struct cpu_workqueue_struct *cwqs)
1872{
1873#ifndef CONFIG_SMP
1874 /* on UP, the pointer to free is stored right after the cwq */
1875 if (cwqs)
1876 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
1877#else
1878 free_percpu(cwqs);
1879#endif
1880}
1881
4e6045f1 1882struct workqueue_struct *__create_workqueue_key(const char *name,
97e37d7b 1883 unsigned int flags,
1e19ffc6 1884 int max_active,
eb13ba87
JB
1885 struct lock_class_key *key,
1886 const char *lock_name)
1da177e4 1887{
1da177e4 1888 struct workqueue_struct *wq;
c34056a3
TH
1889 bool failed = false;
1890 unsigned int cpu;
1da177e4 1891
1e19ffc6
TH
1892 max_active = clamp_val(max_active, 1, INT_MAX);
1893
3af24433
ON
1894 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1895 if (!wq)
4690c4ab 1896 goto err;
3af24433 1897
0f900049 1898 wq->cpu_wq = alloc_cwqs();
4690c4ab
TH
1899 if (!wq->cpu_wq)
1900 goto err;
3af24433 1901
97e37d7b 1902 wq->flags = flags;
a0a1a5fd 1903 wq->saved_max_active = max_active;
73f53c4a
TH
1904 mutex_init(&wq->flush_mutex);
1905 atomic_set(&wq->nr_cwqs_to_flush, 0);
1906 INIT_LIST_HEAD(&wq->flusher_queue);
1907 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8
TH
1908 wq->single_cpu = NR_CPUS;
1909
3af24433 1910 wq->name = name;
eb13ba87 1911 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 1912 INIT_LIST_HEAD(&wq->list);
3af24433 1913
1537663f
TH
1914 cpu_maps_update_begin();
1915 /*
1916 * We must initialize cwqs for each possible cpu even if we
1917 * are going to call destroy_workqueue() finally. Otherwise
1918 * cpu_up() can hit the uninitialized cwq once we drop the
1919 * lock.
1920 */
1921 for_each_possible_cpu(cpu) {
1922 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1923 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 1924
0f900049 1925 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 1926 cwq->gcwq = gcwq;
c34056a3 1927 cwq->wq = wq;
73f53c4a 1928 cwq->flush_color = -1;
1e19ffc6 1929 cwq->max_active = max_active;
1537663f 1930 INIT_LIST_HEAD(&cwq->worklist);
1e19ffc6 1931 INIT_LIST_HEAD(&cwq->delayed_works);
1537663f 1932
c34056a3 1933 if (failed)
1537663f 1934 continue;
502ca9d8 1935 cwq->worker = create_worker(cwq, cpu_online(cpu));
c34056a3
TH
1936 if (cwq->worker)
1937 start_worker(cwq->worker);
1537663f 1938 else
c34056a3 1939 failed = true;
3af24433
ON
1940 }
1941
a0a1a5fd
TH
1942 /*
1943 * workqueue_lock protects global freeze state and workqueues
1944 * list. Grab it, set max_active accordingly and add the new
1945 * workqueue to workqueues list.
1946 */
1537663f 1947 spin_lock(&workqueue_lock);
a0a1a5fd
TH
1948
1949 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
1950 for_each_possible_cpu(cpu)
1951 get_cwq(cpu, wq)->max_active = 0;
1952
1537663f 1953 list_add(&wq->list, &workqueues);
a0a1a5fd 1954
1537663f
TH
1955 spin_unlock(&workqueue_lock);
1956
1957 cpu_maps_update_done();
1958
c34056a3 1959 if (failed) {
3af24433
ON
1960 destroy_workqueue(wq);
1961 wq = NULL;
1962 }
1963 return wq;
4690c4ab
TH
1964err:
1965 if (wq) {
0f900049 1966 free_cwqs(wq->cpu_wq);
4690c4ab
TH
1967 kfree(wq);
1968 }
1969 return NULL;
3af24433 1970}
4e6045f1 1971EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 1972
3af24433
ON
1973/**
1974 * destroy_workqueue - safely terminate a workqueue
1975 * @wq: target workqueue
1976 *
1977 * Safely destroy a workqueue. All work currently pending will be done first.
1978 */
1979void destroy_workqueue(struct workqueue_struct *wq)
1980{
c8e55f36 1981 unsigned int cpu;
3af24433 1982
a0a1a5fd
TH
1983 flush_workqueue(wq);
1984
1985 /*
1986 * wq list is used to freeze wq, remove from list after
1987 * flushing is complete in case freeze races us.
1988 */
3da1c84c 1989 cpu_maps_update_begin();
95402b38 1990 spin_lock(&workqueue_lock);
b1f4ec17 1991 list_del(&wq->list);
95402b38 1992 spin_unlock(&workqueue_lock);
1537663f 1993 cpu_maps_update_done();
3af24433 1994
73f53c4a
TH
1995 for_each_possible_cpu(cpu) {
1996 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1997 int i;
1998
c34056a3 1999 if (cwq->worker) {
c8e55f36 2000 spin_lock_irq(&cwq->gcwq->lock);
c34056a3
TH
2001 destroy_worker(cwq->worker);
2002 cwq->worker = NULL;
c8e55f36 2003 spin_unlock_irq(&cwq->gcwq->lock);
73f53c4a
TH
2004 }
2005
2006 for (i = 0; i < WORK_NR_COLORS; i++)
2007 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2008 BUG_ON(cwq->nr_active);
2009 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2010 }
9b41ea72 2011
0f900049 2012 free_cwqs(wq->cpu_wq);
3af24433
ON
2013 kfree(wq);
2014}
2015EXPORT_SYMBOL_GPL(destroy_workqueue);
2016
db7bccf4
TH
2017/*
2018 * CPU hotplug.
2019 *
2020 * CPU hotplug is implemented by allowing cwqs to be detached from
2021 * CPU, running with unbound workers and allowing them to be
2022 * reattached later if the cpu comes back online. A separate thread
2023 * is created to govern cwqs in such state and is called the trustee.
2024 *
2025 * Trustee states and their descriptions.
2026 *
2027 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2028 * new trustee is started with this state.
2029 *
2030 * IN_CHARGE Once started, trustee will enter this state after
2031 * making all existing workers rogue. DOWN_PREPARE waits
2032 * for trustee to enter this state. After reaching
2033 * IN_CHARGE, trustee tries to execute the pending
2034 * worklist until it's empty and the state is set to
2035 * BUTCHER, or the state is set to RELEASE.
2036 *
2037 * BUTCHER Command state which is set by the cpu callback after
2038 * the cpu has went down. Once this state is set trustee
2039 * knows that there will be no new works on the worklist
2040 * and once the worklist is empty it can proceed to
2041 * killing idle workers.
2042 *
2043 * RELEASE Command state which is set by the cpu callback if the
2044 * cpu down has been canceled or it has come online
2045 * again. After recognizing this state, trustee stops
2046 * trying to drain or butcher and transits to DONE.
2047 *
2048 * DONE Trustee will enter this state after BUTCHER or RELEASE
2049 * is complete.
2050 *
2051 * trustee CPU draining
2052 * took over down complete
2053 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2054 * | | ^
2055 * | CPU is back online v return workers |
2056 * ----------------> RELEASE --------------
2057 */
2058
2059/**
2060 * trustee_wait_event_timeout - timed event wait for trustee
2061 * @cond: condition to wait for
2062 * @timeout: timeout in jiffies
2063 *
2064 * wait_event_timeout() for trustee to use. Handles locking and
2065 * checks for RELEASE request.
2066 *
2067 * CONTEXT:
2068 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2069 * multiple times. To be used by trustee.
2070 *
2071 * RETURNS:
2072 * Positive indicating left time if @cond is satisfied, 0 if timed
2073 * out, -1 if canceled.
2074 */
2075#define trustee_wait_event_timeout(cond, timeout) ({ \
2076 long __ret = (timeout); \
2077 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2078 __ret) { \
2079 spin_unlock_irq(&gcwq->lock); \
2080 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2081 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2082 __ret); \
2083 spin_lock_irq(&gcwq->lock); \
2084 } \
2085 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2086})
2087
2088/**
2089 * trustee_wait_event - event wait for trustee
2090 * @cond: condition to wait for
2091 *
2092 * wait_event() for trustee to use. Automatically handles locking and
2093 * checks for CANCEL request.
2094 *
2095 * CONTEXT:
2096 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2097 * multiple times. To be used by trustee.
2098 *
2099 * RETURNS:
2100 * 0 if @cond is satisfied, -1 if canceled.
2101 */
2102#define trustee_wait_event(cond) ({ \
2103 long __ret1; \
2104 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
2105 __ret1 < 0 ? -1 : 0; \
2106})
2107
2108static int __cpuinit trustee_thread(void *__gcwq)
2109{
2110 struct global_cwq *gcwq = __gcwq;
2111 struct worker *worker;
2112 struct hlist_node *pos;
2113 int i;
2114
2115 BUG_ON(gcwq->cpu != smp_processor_id());
2116
2117 spin_lock_irq(&gcwq->lock);
2118 /*
502ca9d8
TH
2119 * Make all workers rogue. Trustee must be bound to the
2120 * target cpu and can't be cancelled.
db7bccf4
TH
2121 */
2122 BUG_ON(gcwq->cpu != smp_processor_id());
2123
2124 list_for_each_entry(worker, &gcwq->idle_list, entry)
502ca9d8 2125 worker->flags |= WORKER_ROGUE;
db7bccf4
TH
2126
2127 for_each_busy_worker(worker, i, pos, gcwq)
502ca9d8 2128 worker->flags |= WORKER_ROGUE;
db7bccf4
TH
2129
2130 /*
2131 * We're now in charge. Notify and proceed to drain. We need
2132 * to keep the gcwq running during the whole CPU down
2133 * procedure as other cpu hotunplug callbacks may need to
2134 * flush currently running tasks.
2135 */
2136 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
2137 wake_up_all(&gcwq->trustee_wait);
2138
2139 /*
2140 * The original cpu is in the process of dying and may go away
2141 * anytime now. When that happens, we and all workers would
2142 * be migrated to other cpus. Try draining any left work.
2143 * Note that if the gcwq is frozen, there may be frozen works
2144 * in freezeable cwqs. Don't declare completion while frozen.
2145 */
2146 while (gcwq->nr_workers != gcwq->nr_idle ||
2147 gcwq->flags & GCWQ_FREEZING ||
2148 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
2149 /* give a breather */
2150 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
2151 break;
2152 }
2153
2154 /* notify completion */
2155 gcwq->trustee = NULL;
2156 gcwq->trustee_state = TRUSTEE_DONE;
2157 wake_up_all(&gcwq->trustee_wait);
2158 spin_unlock_irq(&gcwq->lock);
2159 return 0;
2160}
2161
2162/**
2163 * wait_trustee_state - wait for trustee to enter the specified state
2164 * @gcwq: gcwq the trustee of interest belongs to
2165 * @state: target state to wait for
2166 *
2167 * Wait for the trustee to reach @state. DONE is already matched.
2168 *
2169 * CONTEXT:
2170 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2171 * multiple times. To be used by cpu_callback.
2172 */
2173static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
2174{
2175 if (!(gcwq->trustee_state == state ||
2176 gcwq->trustee_state == TRUSTEE_DONE)) {
2177 spin_unlock_irq(&gcwq->lock);
2178 __wait_event(gcwq->trustee_wait,
2179 gcwq->trustee_state == state ||
2180 gcwq->trustee_state == TRUSTEE_DONE);
2181 spin_lock_irq(&gcwq->lock);
2182 }
2183}
2184
3af24433
ON
2185static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
2186 unsigned long action,
2187 void *hcpu)
2188{
2189 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
2190 struct global_cwq *gcwq = get_gcwq(cpu);
2191 struct task_struct *new_trustee = NULL;
2192 struct worker *worker;
2193 struct hlist_node *pos;
2194 unsigned long flags;
2195 int i;
3af24433 2196
8bb78442
RW
2197 action &= ~CPU_TASKS_FROZEN;
2198
db7bccf4
TH
2199 switch (action) {
2200 case CPU_DOWN_PREPARE:
2201 new_trustee = kthread_create(trustee_thread, gcwq,
2202 "workqueue_trustee/%d\n", cpu);
2203 if (IS_ERR(new_trustee))
2204 return notifier_from_errno(PTR_ERR(new_trustee));
2205 kthread_bind(new_trustee, cpu);
2206 }
3af24433 2207
db7bccf4
TH
2208 /* some are called w/ irq disabled, don't disturb irq status */
2209 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 2210
db7bccf4
TH
2211 switch (action) {
2212 case CPU_DOWN_PREPARE:
2213 /* initialize trustee and tell it to acquire the gcwq */
2214 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
2215 gcwq->trustee = new_trustee;
2216 gcwq->trustee_state = TRUSTEE_START;
2217 wake_up_process(gcwq->trustee);
2218 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
2219 break;
2220
2221 case CPU_POST_DEAD:
2222 gcwq->trustee_state = TRUSTEE_BUTCHER;
2223 break;
2224
2225 case CPU_DOWN_FAILED:
2226 case CPU_ONLINE:
2227 if (gcwq->trustee_state != TRUSTEE_DONE) {
2228 gcwq->trustee_state = TRUSTEE_RELEASE;
2229 wake_up_process(gcwq->trustee);
2230 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 2231 }
db7bccf4 2232
502ca9d8 2233 /* clear ROGUE from all workers */
db7bccf4 2234 list_for_each_entry(worker, &gcwq->idle_list, entry)
502ca9d8 2235 worker->flags &= ~WORKER_ROGUE;
db7bccf4
TH
2236
2237 for_each_busy_worker(worker, i, pos, gcwq)
502ca9d8 2238 worker->flags &= ~WORKER_ROGUE;
db7bccf4 2239 break;
1da177e4
LT
2240 }
2241
db7bccf4
TH
2242 spin_unlock_irqrestore(&gcwq->lock, flags);
2243
1537663f 2244 return notifier_from_errno(0);
1da177e4 2245}
1da177e4 2246
2d3854a3 2247#ifdef CONFIG_SMP
8ccad40d 2248
2d3854a3 2249struct work_for_cpu {
6b44003e 2250 struct completion completion;
2d3854a3
RR
2251 long (*fn)(void *);
2252 void *arg;
2253 long ret;
2254};
2255
6b44003e 2256static int do_work_for_cpu(void *_wfc)
2d3854a3 2257{
6b44003e 2258 struct work_for_cpu *wfc = _wfc;
2d3854a3 2259 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
2260 complete(&wfc->completion);
2261 return 0;
2d3854a3
RR
2262}
2263
2264/**
2265 * work_on_cpu - run a function in user context on a particular cpu
2266 * @cpu: the cpu to run on
2267 * @fn: the function to run
2268 * @arg: the function arg
2269 *
31ad9081
RR
2270 * This will return the value @fn returns.
2271 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 2272 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
2273 */
2274long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
2275{
6b44003e
AM
2276 struct task_struct *sub_thread;
2277 struct work_for_cpu wfc = {
2278 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
2279 .fn = fn,
2280 .arg = arg,
2281 };
2282
2283 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
2284 if (IS_ERR(sub_thread))
2285 return PTR_ERR(sub_thread);
2286 kthread_bind(sub_thread, cpu);
2287 wake_up_process(sub_thread);
2288 wait_for_completion(&wfc.completion);
2d3854a3
RR
2289 return wfc.ret;
2290}
2291EXPORT_SYMBOL_GPL(work_on_cpu);
2292#endif /* CONFIG_SMP */
2293
a0a1a5fd
TH
2294#ifdef CONFIG_FREEZER
2295
2296/**
2297 * freeze_workqueues_begin - begin freezing workqueues
2298 *
2299 * Start freezing workqueues. After this function returns, all
2300 * freezeable workqueues will queue new works to their frozen_works
2301 * list instead of the cwq ones.
2302 *
2303 * CONTEXT:
8b03ae3c 2304 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2305 */
2306void freeze_workqueues_begin(void)
2307{
2308 struct workqueue_struct *wq;
2309 unsigned int cpu;
2310
2311 spin_lock(&workqueue_lock);
2312
2313 BUG_ON(workqueue_freezing);
2314 workqueue_freezing = true;
2315
2316 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2317 struct global_cwq *gcwq = get_gcwq(cpu);
2318
2319 spin_lock_irq(&gcwq->lock);
2320
db7bccf4
TH
2321 BUG_ON(gcwq->flags & GCWQ_FREEZING);
2322 gcwq->flags |= GCWQ_FREEZING;
2323
a0a1a5fd
TH
2324 list_for_each_entry(wq, &workqueues, list) {
2325 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2326
a0a1a5fd
TH
2327 if (wq->flags & WQ_FREEZEABLE)
2328 cwq->max_active = 0;
a0a1a5fd 2329 }
8b03ae3c
TH
2330
2331 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2332 }
2333
2334 spin_unlock(&workqueue_lock);
2335}
2336
2337/**
2338 * freeze_workqueues_busy - are freezeable workqueues still busy?
2339 *
2340 * Check whether freezing is complete. This function must be called
2341 * between freeze_workqueues_begin() and thaw_workqueues().
2342 *
2343 * CONTEXT:
2344 * Grabs and releases workqueue_lock.
2345 *
2346 * RETURNS:
2347 * %true if some freezeable workqueues are still busy. %false if
2348 * freezing is complete.
2349 */
2350bool freeze_workqueues_busy(void)
2351{
2352 struct workqueue_struct *wq;
2353 unsigned int cpu;
2354 bool busy = false;
2355
2356 spin_lock(&workqueue_lock);
2357
2358 BUG_ON(!workqueue_freezing);
2359
2360 for_each_possible_cpu(cpu) {
2361 /*
2362 * nr_active is monotonically decreasing. It's safe
2363 * to peek without lock.
2364 */
2365 list_for_each_entry(wq, &workqueues, list) {
2366 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2367
2368 if (!(wq->flags & WQ_FREEZEABLE))
2369 continue;
2370
2371 BUG_ON(cwq->nr_active < 0);
2372 if (cwq->nr_active) {
2373 busy = true;
2374 goto out_unlock;
2375 }
2376 }
2377 }
2378out_unlock:
2379 spin_unlock(&workqueue_lock);
2380 return busy;
2381}
2382
2383/**
2384 * thaw_workqueues - thaw workqueues
2385 *
2386 * Thaw workqueues. Normal queueing is restored and all collected
2387 * frozen works are transferred to their respective cwq worklists.
2388 *
2389 * CONTEXT:
8b03ae3c 2390 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2391 */
2392void thaw_workqueues(void)
2393{
2394 struct workqueue_struct *wq;
2395 unsigned int cpu;
2396
2397 spin_lock(&workqueue_lock);
2398
2399 if (!workqueue_freezing)
2400 goto out_unlock;
2401
2402 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2403 struct global_cwq *gcwq = get_gcwq(cpu);
2404
2405 spin_lock_irq(&gcwq->lock);
2406
db7bccf4
TH
2407 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
2408 gcwq->flags &= ~GCWQ_FREEZING;
2409
a0a1a5fd
TH
2410 list_for_each_entry(wq, &workqueues, list) {
2411 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2412
2413 if (!(wq->flags & WQ_FREEZEABLE))
2414 continue;
2415
a0a1a5fd
TH
2416 /* restore max_active and repopulate worklist */
2417 cwq->max_active = wq->saved_max_active;
2418
2419 while (!list_empty(&cwq->delayed_works) &&
2420 cwq->nr_active < cwq->max_active)
2421 cwq_activate_first_delayed(cwq);
2422
502ca9d8
TH
2423 /* perform delayed unbind from single cpu if empty */
2424 if (wq->single_cpu == gcwq->cpu &&
2425 !cwq->nr_active && list_empty(&cwq->delayed_works))
2426 cwq_unbind_single_cpu(cwq);
2427
c8e55f36 2428 wake_up_process(cwq->worker->task);
a0a1a5fd 2429 }
8b03ae3c
TH
2430
2431 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2432 }
2433
2434 workqueue_freezing = false;
2435out_unlock:
2436 spin_unlock(&workqueue_lock);
2437}
2438#endif /* CONFIG_FREEZER */
2439
c12920d1 2440void __init init_workqueues(void)
1da177e4 2441{
c34056a3 2442 unsigned int cpu;
c8e55f36 2443 int i;
c34056a3 2444
7a22ad75
TH
2445 /*
2446 * The pointer part of work->data is either pointing to the
2447 * cwq or contains the cpu number the work ran last on. Make
2448 * sure cpu number won't overflow into kernel pointer area so
2449 * that they can be distinguished.
2450 */
2451 BUILD_BUG_ON(NR_CPUS << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
2452
db7bccf4 2453 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
2454
2455 /* initialize gcwqs */
2456 for_each_possible_cpu(cpu) {
2457 struct global_cwq *gcwq = get_gcwq(cpu);
2458
2459 spin_lock_init(&gcwq->lock);
2460 gcwq->cpu = cpu;
2461
c8e55f36
TH
2462 INIT_LIST_HEAD(&gcwq->idle_list);
2463 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
2464 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
2465
8b03ae3c 2466 ida_init(&gcwq->worker_ida);
db7bccf4
TH
2467
2468 gcwq->trustee_state = TRUSTEE_DONE;
2469 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
2470 }
2471
1da177e4
LT
2472 keventd_wq = create_workqueue("events");
2473 BUG_ON(!keventd_wq);
2474}