workqueue: unify local CPU queueing handling
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
e120153d
TH
536 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
538 * cleared and the work data contains the cpu number it was last on.
7a22ad75 539 *
8930caba
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
541 * can be used to set the cwq, cpu or clear work->data. These functions
542 * should only be called while the work is owned - ie. while the PENDING
543 * bit is set.
7a22ad75
TH
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
8930caba
TH
565static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
7a22ad75 567{
8930caba 568 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, 0);
7a22ad75 569}
f756d5e2 570
7a22ad75 571static void clear_work_data(struct work_struct *work)
1da177e4 572{
7a22ad75 573 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
574}
575
7a22ad75 576static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 577{
e120153d 578 unsigned long data = atomic_long_read(&work->data);
7a22ad75 579
e120153d
TH
580 if (data & WORK_STRUCT_CWQ)
581 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
582 else
583 return NULL;
4d707b9f
ON
584}
585
7a22ad75 586static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
589 unsigned int cpu;
590
e120153d
TH
591 if (data & WORK_STRUCT_CWQ)
592 return ((struct cpu_workqueue_struct *)
bd7bdd43 593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
594
595 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 596 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
597 return NULL;
598
f3421797 599 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 600 return get_gcwq(cpu);
b1f4ec17
ON
601}
602
e22bee78 603/*
3270476a
TH
604 * Policy functions. These define the policies on how the global worker
605 * pools are managed. Unless noted otherwise, these functions assume that
606 * they're being called with gcwq->lock held.
e22bee78
TH
607 */
608
63d95a91 609static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 610{
3270476a 611 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
612}
613
4594bf15 614/*
e22bee78
TH
615 * Need to wake up a worker? Called from anything but currently
616 * running workers.
974271c4
TH
617 *
618 * Note that, because unbound workers never contribute to nr_running, this
619 * function will always return %true for unbound gcwq as long as the
620 * worklist isn't empty.
4594bf15 621 */
63d95a91 622static bool need_more_worker(struct worker_pool *pool)
365970a1 623{
63d95a91 624 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 625}
4594bf15 626
e22bee78 627/* Can I start working? Called from busy but !running workers. */
63d95a91 628static bool may_start_working(struct worker_pool *pool)
e22bee78 629{
63d95a91 630 return pool->nr_idle;
e22bee78
TH
631}
632
633/* Do I need to keep working? Called from currently running workers. */
63d95a91 634static bool keep_working(struct worker_pool *pool)
e22bee78 635{
63d95a91 636 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 637
3270476a 638 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
639}
640
641/* Do we need a new worker? Called from manager. */
63d95a91 642static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 643{
63d95a91 644 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 645}
365970a1 646
e22bee78 647/* Do I need to be the manager? */
63d95a91 648static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 649{
63d95a91 650 return need_to_create_worker(pool) ||
11ebea50 651 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
652}
653
654/* Do we have too many workers and should some go away? */
63d95a91 655static bool too_many_workers(struct worker_pool *pool)
e22bee78 656{
60373152 657 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
658 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
659 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
660
661 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
662}
663
4d707b9f 664/*
e22bee78
TH
665 * Wake up functions.
666 */
667
7e11629d 668/* Return the first worker. Safe with preemption disabled */
63d95a91 669static struct worker *first_worker(struct worker_pool *pool)
7e11629d 670{
63d95a91 671 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
672 return NULL;
673
63d95a91 674 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
675}
676
677/**
678 * wake_up_worker - wake up an idle worker
63d95a91 679 * @pool: worker pool to wake worker from
7e11629d 680 *
63d95a91 681 * Wake up the first idle worker of @pool.
7e11629d
TH
682 *
683 * CONTEXT:
684 * spin_lock_irq(gcwq->lock).
685 */
63d95a91 686static void wake_up_worker(struct worker_pool *pool)
7e11629d 687{
63d95a91 688 struct worker *worker = first_worker(pool);
7e11629d
TH
689
690 if (likely(worker))
691 wake_up_process(worker->task);
692}
693
d302f017 694/**
e22bee78
TH
695 * wq_worker_waking_up - a worker is waking up
696 * @task: task waking up
697 * @cpu: CPU @task is waking up to
698 *
699 * This function is called during try_to_wake_up() when a worker is
700 * being awoken.
701 *
702 * CONTEXT:
703 * spin_lock_irq(rq->lock)
704 */
705void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706{
707 struct worker *worker = kthread_data(task);
708
2d64672e 709 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 710 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
711}
712
713/**
714 * wq_worker_sleeping - a worker is going to sleep
715 * @task: task going to sleep
716 * @cpu: CPU in question, must be the current CPU number
717 *
718 * This function is called during schedule() when a busy worker is
719 * going to sleep. Worker on the same cpu can be woken up by
720 * returning pointer to its task.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 *
725 * RETURNS:
726 * Worker task on @cpu to wake up, %NULL if none.
727 */
728struct task_struct *wq_worker_sleeping(struct task_struct *task,
729 unsigned int cpu)
730{
731 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 732 struct worker_pool *pool = worker->pool;
63d95a91 733 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 734
2d64672e 735 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
736 return NULL;
737
738 /* this can only happen on the local cpu */
739 BUG_ON(cpu != raw_smp_processor_id());
740
741 /*
742 * The counterpart of the following dec_and_test, implied mb,
743 * worklist not empty test sequence is in insert_work().
744 * Please read comment there.
745 *
628c78e7
TH
746 * NOT_RUNNING is clear. This means that we're bound to and
747 * running on the local cpu w/ rq lock held and preemption
748 * disabled, which in turn means that none else could be
749 * manipulating idle_list, so dereferencing idle_list without gcwq
750 * lock is safe.
e22bee78 751 */
bd7bdd43 752 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 753 to_wakeup = first_worker(pool);
e22bee78
TH
754 return to_wakeup ? to_wakeup->task : NULL;
755}
756
757/**
758 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 759 * @worker: self
d302f017
TH
760 * @flags: flags to set
761 * @wakeup: wakeup an idle worker if necessary
762 *
e22bee78
TH
763 * Set @flags in @worker->flags and adjust nr_running accordingly. If
764 * nr_running becomes zero and @wakeup is %true, an idle worker is
765 * woken up.
d302f017 766 *
cb444766
TH
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
d302f017
TH
769 */
770static inline void worker_set_flags(struct worker *worker, unsigned int flags,
771 bool wakeup)
772{
bd7bdd43 773 struct worker_pool *pool = worker->pool;
e22bee78 774
cb444766
TH
775 WARN_ON_ONCE(worker->task != current);
776
e22bee78
TH
777 /*
778 * If transitioning into NOT_RUNNING, adjust nr_running and
779 * wake up an idle worker as necessary if requested by
780 * @wakeup.
781 */
782 if ((flags & WORKER_NOT_RUNNING) &&
783 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 784 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
785
786 if (wakeup) {
787 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 788 !list_empty(&pool->worklist))
63d95a91 789 wake_up_worker(pool);
e22bee78
TH
790 } else
791 atomic_dec(nr_running);
792 }
793
d302f017
TH
794 worker->flags |= flags;
795}
796
797/**
e22bee78 798 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 799 * @worker: self
d302f017
TH
800 * @flags: flags to clear
801 *
e22bee78 802 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 803 *
cb444766
TH
804 * CONTEXT:
805 * spin_lock_irq(gcwq->lock)
d302f017
TH
806 */
807static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808{
63d95a91 809 struct worker_pool *pool = worker->pool;
e22bee78
TH
810 unsigned int oflags = worker->flags;
811
cb444766
TH
812 WARN_ON_ONCE(worker->task != current);
813
d302f017 814 worker->flags &= ~flags;
e22bee78 815
42c025f3
TH
816 /*
817 * If transitioning out of NOT_RUNNING, increment nr_running. Note
818 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
819 * of multiple flags, not a single flag.
820 */
e22bee78
TH
821 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
822 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 823 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
824}
825
c8e55f36
TH
826/**
827 * busy_worker_head - return the busy hash head for a work
828 * @gcwq: gcwq of interest
829 * @work: work to be hashed
830 *
831 * Return hash head of @gcwq for @work.
832 *
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock).
835 *
836 * RETURNS:
837 * Pointer to the hash head.
838 */
839static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
840 struct work_struct *work)
841{
842 const int base_shift = ilog2(sizeof(struct work_struct));
843 unsigned long v = (unsigned long)work;
844
845 /* simple shift and fold hash, do we need something better? */
846 v >>= base_shift;
847 v += v >> BUSY_WORKER_HASH_ORDER;
848 v &= BUSY_WORKER_HASH_MASK;
849
850 return &gcwq->busy_hash[v];
851}
852
8cca0eea
TH
853/**
854 * __find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @bwh: hash head as returned by busy_worker_head()
857 * @work: work to find worker for
858 *
859 * Find a worker which is executing @work on @gcwq. @bwh should be
860 * the hash head obtained by calling busy_worker_head() with the same
861 * work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to worker which is executing @work if found, NULL
868 * otherwise.
869 */
870static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
871 struct hlist_head *bwh,
872 struct work_struct *work)
873{
874 struct worker *worker;
875 struct hlist_node *tmp;
876
877 hlist_for_each_entry(worker, tmp, bwh, hentry)
878 if (worker->current_work == work)
879 return worker;
880 return NULL;
881}
882
883/**
884 * find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. This function is
889 * identical to __find_worker_executing_work() except that this
890 * function calculates @bwh itself.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
4d707b9f 898 */
8cca0eea
TH
899static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
900 struct work_struct *work)
4d707b9f 901{
8cca0eea
TH
902 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
903 work);
4d707b9f
ON
904}
905
4690c4ab 906/**
7e11629d 907 * insert_work - insert a work into gcwq
4690c4ab
TH
908 * @cwq: cwq @work belongs to
909 * @work: work to insert
910 * @head: insertion point
911 * @extra_flags: extra WORK_STRUCT_* flags to set
912 *
7e11629d
TH
913 * Insert @work which belongs to @cwq into @gcwq after @head.
914 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
915 *
916 * CONTEXT:
8b03ae3c 917 * spin_lock_irq(gcwq->lock).
4690c4ab 918 */
b89deed3 919static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
920 struct work_struct *work, struct list_head *head,
921 unsigned int extra_flags)
b89deed3 922{
63d95a91 923 struct worker_pool *pool = cwq->pool;
e22bee78 924
4690c4ab 925 /* we own @work, set data and link */
7a22ad75 926 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 927
6e84d644
ON
928 /*
929 * Ensure that we get the right work->data if we see the
930 * result of list_add() below, see try_to_grab_pending().
931 */
932 smp_wmb();
4690c4ab 933
1a4d9b0a 934 list_add_tail(&work->entry, head);
e22bee78
TH
935
936 /*
937 * Ensure either worker_sched_deactivated() sees the above
938 * list_add_tail() or we see zero nr_running to avoid workers
939 * lying around lazily while there are works to be processed.
940 */
941 smp_mb();
942
63d95a91
TH
943 if (__need_more_worker(pool))
944 wake_up_worker(pool);
b89deed3
ON
945}
946
c8efcc25
TH
947/*
948 * Test whether @work is being queued from another work executing on the
949 * same workqueue. This is rather expensive and should only be used from
950 * cold paths.
951 */
952static bool is_chained_work(struct workqueue_struct *wq)
953{
954 unsigned long flags;
955 unsigned int cpu;
956
957 for_each_gcwq_cpu(cpu) {
958 struct global_cwq *gcwq = get_gcwq(cpu);
959 struct worker *worker;
960 struct hlist_node *pos;
961 int i;
962
963 spin_lock_irqsave(&gcwq->lock, flags);
964 for_each_busy_worker(worker, i, pos, gcwq) {
965 if (worker->task != current)
966 continue;
967 spin_unlock_irqrestore(&gcwq->lock, flags);
968 /*
969 * I'm @worker, no locking necessary. See if @work
970 * is headed to the same workqueue.
971 */
972 return worker->current_cwq->wq == wq;
973 }
974 spin_unlock_irqrestore(&gcwq->lock, flags);
975 }
976 return false;
977}
978
4690c4ab 979static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
980 struct work_struct *work)
981{
502ca9d8
TH
982 struct global_cwq *gcwq;
983 struct cpu_workqueue_struct *cwq;
1e19ffc6 984 struct list_head *worklist;
8a2e8e5d 985 unsigned int work_flags;
8930caba
TH
986
987 /*
988 * While a work item is PENDING && off queue, a task trying to
989 * steal the PENDING will busy-loop waiting for it to either get
990 * queued or lose PENDING. Grabbing PENDING and queueing should
991 * happen with IRQ disabled.
992 */
993 WARN_ON_ONCE(!irqs_disabled());
1da177e4 994
dc186ad7 995 debug_work_activate(work);
1e19ffc6 996
c8efcc25 997 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 998 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 999 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1000 return;
1001
c7fc77f7
TH
1002 /* determine gcwq to use */
1003 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1004 struct global_cwq *last_gcwq;
1005
57469821 1006 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1007 cpu = raw_smp_processor_id();
1008
18aa9eff
TH
1009 /*
1010 * It's multi cpu. If @wq is non-reentrant and @work
1011 * was previously on a different cpu, it might still
1012 * be running there, in which case the work needs to
1013 * be queued on that cpu to guarantee non-reentrance.
1014 */
502ca9d8 1015 gcwq = get_gcwq(cpu);
18aa9eff
TH
1016 if (wq->flags & WQ_NON_REENTRANT &&
1017 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1018 struct worker *worker;
1019
8930caba 1020 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1021
1022 worker = find_worker_executing_work(last_gcwq, work);
1023
1024 if (worker && worker->current_cwq->wq == wq)
1025 gcwq = last_gcwq;
1026 else {
1027 /* meh... not running there, queue here */
8930caba
TH
1028 spin_unlock(&last_gcwq->lock);
1029 spin_lock(&gcwq->lock);
18aa9eff 1030 }
8930caba
TH
1031 } else {
1032 spin_lock(&gcwq->lock);
1033 }
f3421797
TH
1034 } else {
1035 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1036 spin_lock(&gcwq->lock);
502ca9d8
TH
1037 }
1038
1039 /* gcwq determined, get cwq and queue */
1040 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1041 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1042
f5b2552b 1043 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1044 spin_unlock(&gcwq->lock);
f5b2552b
DC
1045 return;
1046 }
1e19ffc6 1047
73f53c4a 1048 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1049 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1050
1051 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1052 trace_workqueue_activate_work(work);
1e19ffc6 1053 cwq->nr_active++;
3270476a 1054 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1055 } else {
1056 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1057 worklist = &cwq->delayed_works;
8a2e8e5d 1058 }
1e19ffc6 1059
8a2e8e5d 1060 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1061
8930caba 1062 spin_unlock(&gcwq->lock);
1da177e4
LT
1063}
1064
c1a220e7
ZR
1065/**
1066 * queue_work_on - queue work on specific cpu
1067 * @cpu: CPU number to execute work on
1068 * @wq: workqueue to use
1069 * @work: work to queue
1070 *
d4283e93 1071 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1072 *
1073 * We queue the work to a specific CPU, the caller must ensure it
1074 * can't go away.
1075 */
d4283e93
TH
1076bool queue_work_on(int cpu, struct workqueue_struct *wq,
1077 struct work_struct *work)
c1a220e7 1078{
d4283e93 1079 bool ret = false;
8930caba
TH
1080 unsigned long flags;
1081
1082 local_irq_save(flags);
c1a220e7 1083
22df02bb 1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1085 __queue_work(cpu, wq, work);
d4283e93 1086 ret = true;
c1a220e7 1087 }
8930caba
TH
1088
1089 local_irq_restore(flags);
c1a220e7
ZR
1090 return ret;
1091}
1092EXPORT_SYMBOL_GPL(queue_work_on);
1093
0fcb78c2 1094/**
0a13c00e 1095 * queue_work - queue work on a workqueue
0fcb78c2 1096 * @wq: workqueue to use
0a13c00e 1097 * @work: work to queue
0fcb78c2 1098 *
d4283e93 1099 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1100 *
1101 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1102 * it can be processed by another CPU.
0fcb78c2 1103 */
d4283e93 1104bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1105{
57469821 1106 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1107}
1108EXPORT_SYMBOL_GPL(queue_work);
1109
d8e794df 1110void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1111{
1112 struct delayed_work *dwork = (struct delayed_work *)__data;
1113 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1114
8930caba 1115 local_irq_disable();
57469821 1116 __queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
8930caba 1117 local_irq_enable();
1da177e4 1118}
d8e794df 1119EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1120
0fcb78c2
REB
1121/**
1122 * queue_delayed_work_on - queue work on specific CPU after delay
1123 * @cpu: CPU number to execute work on
1124 * @wq: workqueue to use
af9997e4 1125 * @dwork: work to queue
0fcb78c2
REB
1126 * @delay: number of jiffies to wait before queueing
1127 *
d4283e93 1128 * Returns %false if @work was already on a queue, %true otherwise.
0fcb78c2 1129 */
d4283e93
TH
1130bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1131 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1132{
52bad64d
DH
1133 struct timer_list *timer = &dwork->timer;
1134 struct work_struct *work = &dwork->work;
d4283e93 1135 bool ret = false;
8930caba
TH
1136 unsigned long flags;
1137
1138 /* read the comment in __queue_work() */
1139 local_irq_save(flags);
7a6bc1cd 1140
22df02bb 1141 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1142 unsigned int lcpu;
7a22ad75 1143
d8e794df
TH
1144 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1145 timer->data != (unsigned long)dwork);
7a6bc1cd
VP
1146 BUG_ON(timer_pending(timer));
1147 BUG_ON(!list_empty(&work->entry));
1148
8a3e77cc
AL
1149 timer_stats_timer_set_start_info(&dwork->timer);
1150
7a22ad75
TH
1151 /*
1152 * This stores cwq for the moment, for the timer_fn.
1153 * Note that the work's gcwq is preserved to allow
1154 * reentrance detection for delayed works.
1155 */
c7fc77f7
TH
1156 if (!(wq->flags & WQ_UNBOUND)) {
1157 struct global_cwq *gcwq = get_work_gcwq(work);
1158
1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 lcpu = gcwq->cpu;
1161 else
1162 lcpu = raw_smp_processor_id();
1163 } else
1164 lcpu = WORK_CPU_UNBOUND;
1165
7a22ad75 1166 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1167
7a6bc1cd 1168 timer->expires = jiffies + delay;
63bc0362 1169
57469821 1170 if (unlikely(cpu != WORK_CPU_UNBOUND))
63bc0362
ON
1171 add_timer_on(timer, cpu);
1172 else
1173 add_timer(timer);
d4283e93 1174 ret = true;
7a6bc1cd 1175 }
8930caba
TH
1176
1177 local_irq_restore(flags);
7a6bc1cd
VP
1178 return ret;
1179}
ae90dd5d 1180EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1181
0a13c00e
TH
1182/**
1183 * queue_delayed_work - queue work on a workqueue after delay
1184 * @wq: workqueue to use
1185 * @dwork: delayable work to queue
1186 * @delay: number of jiffies to wait before queueing
1187 *
d4283e93 1188 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e 1189 */
d4283e93 1190bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1191 struct delayed_work *dwork, unsigned long delay)
1192{
1193 if (delay == 0)
1194 return queue_work(wq, &dwork->work);
1195
57469821 1196 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1197}
1198EXPORT_SYMBOL_GPL(queue_delayed_work);
1199
c8e55f36
TH
1200/**
1201 * worker_enter_idle - enter idle state
1202 * @worker: worker which is entering idle state
1203 *
1204 * @worker is entering idle state. Update stats and idle timer if
1205 * necessary.
1206 *
1207 * LOCKING:
1208 * spin_lock_irq(gcwq->lock).
1209 */
1210static void worker_enter_idle(struct worker *worker)
1da177e4 1211{
bd7bdd43
TH
1212 struct worker_pool *pool = worker->pool;
1213 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1214
1215 BUG_ON(worker->flags & WORKER_IDLE);
1216 BUG_ON(!list_empty(&worker->entry) &&
1217 (worker->hentry.next || worker->hentry.pprev));
1218
cb444766
TH
1219 /* can't use worker_set_flags(), also called from start_worker() */
1220 worker->flags |= WORKER_IDLE;
bd7bdd43 1221 pool->nr_idle++;
e22bee78 1222 worker->last_active = jiffies;
c8e55f36
TH
1223
1224 /* idle_list is LIFO */
bd7bdd43 1225 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1226
628c78e7
TH
1227 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1228 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1229
544ecf31 1230 /*
628c78e7
TH
1231 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1232 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1233 * nr_running, the warning may trigger spuriously. Check iff
1234 * unbind is not in progress.
544ecf31 1235 */
628c78e7 1236 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1237 pool->nr_workers == pool->nr_idle &&
63d95a91 1238 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1239}
1240
1241/**
1242 * worker_leave_idle - leave idle state
1243 * @worker: worker which is leaving idle state
1244 *
1245 * @worker is leaving idle state. Update stats.
1246 *
1247 * LOCKING:
1248 * spin_lock_irq(gcwq->lock).
1249 */
1250static void worker_leave_idle(struct worker *worker)
1251{
bd7bdd43 1252 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1253
1254 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1255 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1256 pool->nr_idle--;
c8e55f36
TH
1257 list_del_init(&worker->entry);
1258}
1259
e22bee78
TH
1260/**
1261 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1262 * @worker: self
1263 *
1264 * Works which are scheduled while the cpu is online must at least be
1265 * scheduled to a worker which is bound to the cpu so that if they are
1266 * flushed from cpu callbacks while cpu is going down, they are
1267 * guaranteed to execute on the cpu.
1268 *
1269 * This function is to be used by rogue workers and rescuers to bind
1270 * themselves to the target cpu and may race with cpu going down or
1271 * coming online. kthread_bind() can't be used because it may put the
1272 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1273 * verbatim as it's best effort and blocking and gcwq may be
1274 * [dis]associated in the meantime.
1275 *
f2d5a0ee
TH
1276 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1277 * binding against %GCWQ_DISASSOCIATED which is set during
1278 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1279 * enters idle state or fetches works without dropping lock, it can
1280 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1281 *
1282 * CONTEXT:
1283 * Might sleep. Called without any lock but returns with gcwq->lock
1284 * held.
1285 *
1286 * RETURNS:
1287 * %true if the associated gcwq is online (@worker is successfully
1288 * bound), %false if offline.
1289 */
1290static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1291__acquires(&gcwq->lock)
e22bee78 1292{
bd7bdd43 1293 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1294 struct task_struct *task = worker->task;
1295
1296 while (true) {
4e6045f1 1297 /*
e22bee78
TH
1298 * The following call may fail, succeed or succeed
1299 * without actually migrating the task to the cpu if
1300 * it races with cpu hotunplug operation. Verify
1301 * against GCWQ_DISASSOCIATED.
4e6045f1 1302 */
f3421797
TH
1303 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1304 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1305
1306 spin_lock_irq(&gcwq->lock);
1307 if (gcwq->flags & GCWQ_DISASSOCIATED)
1308 return false;
1309 if (task_cpu(task) == gcwq->cpu &&
1310 cpumask_equal(&current->cpus_allowed,
1311 get_cpu_mask(gcwq->cpu)))
1312 return true;
1313 spin_unlock_irq(&gcwq->lock);
1314
5035b20f
TH
1315 /*
1316 * We've raced with CPU hot[un]plug. Give it a breather
1317 * and retry migration. cond_resched() is required here;
1318 * otherwise, we might deadlock against cpu_stop trying to
1319 * bring down the CPU on non-preemptive kernel.
1320 */
e22bee78 1321 cpu_relax();
5035b20f 1322 cond_resched();
e22bee78
TH
1323 }
1324}
1325
25511a47
TH
1326struct idle_rebind {
1327 int cnt; /* # workers to be rebound */
1328 struct completion done; /* all workers rebound */
1329};
1330
1331/*
1332 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1333 * happen synchronously for idle workers. worker_thread() will test
1334 * %WORKER_REBIND before leaving idle and call this function.
1335 */
1336static void idle_worker_rebind(struct worker *worker)
1337{
1338 struct global_cwq *gcwq = worker->pool->gcwq;
1339
1340 /* CPU must be online at this point */
1341 WARN_ON(!worker_maybe_bind_and_lock(worker));
1342 if (!--worker->idle_rebind->cnt)
1343 complete(&worker->idle_rebind->done);
1344 spin_unlock_irq(&worker->pool->gcwq->lock);
1345
1346 /* we did our part, wait for rebind_workers() to finish up */
1347 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1348}
1349
e22bee78 1350/*
25511a47 1351 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1352 * the associated cpu which is coming back online. This is scheduled by
1353 * cpu up but can race with other cpu hotplug operations and may be
1354 * executed twice without intervening cpu down.
e22bee78 1355 */
25511a47 1356static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1357{
1358 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1359 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1360
1361 if (worker_maybe_bind_and_lock(worker))
1362 worker_clr_flags(worker, WORKER_REBIND);
1363
1364 spin_unlock_irq(&gcwq->lock);
1365}
1366
25511a47
TH
1367/**
1368 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1369 * @gcwq: gcwq of interest
1370 *
1371 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1372 * is different for idle and busy ones.
1373 *
1374 * The idle ones should be rebound synchronously and idle rebinding should
1375 * be complete before any worker starts executing work items with
1376 * concurrency management enabled; otherwise, scheduler may oops trying to
1377 * wake up non-local idle worker from wq_worker_sleeping().
1378 *
1379 * This is achieved by repeatedly requesting rebinding until all idle
1380 * workers are known to have been rebound under @gcwq->lock and holding all
1381 * idle workers from becoming busy until idle rebinding is complete.
1382 *
1383 * Once idle workers are rebound, busy workers can be rebound as they
1384 * finish executing their current work items. Queueing the rebind work at
1385 * the head of their scheduled lists is enough. Note that nr_running will
1386 * be properbly bumped as busy workers rebind.
1387 *
1388 * On return, all workers are guaranteed to either be bound or have rebind
1389 * work item scheduled.
1390 */
1391static void rebind_workers(struct global_cwq *gcwq)
1392 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1393{
1394 struct idle_rebind idle_rebind;
1395 struct worker_pool *pool;
1396 struct worker *worker;
1397 struct hlist_node *pos;
1398 int i;
1399
1400 lockdep_assert_held(&gcwq->lock);
1401
1402 for_each_worker_pool(pool, gcwq)
1403 lockdep_assert_held(&pool->manager_mutex);
1404
1405 /*
1406 * Rebind idle workers. Interlocked both ways. We wait for
1407 * workers to rebind via @idle_rebind.done. Workers will wait for
1408 * us to finish up by watching %WORKER_REBIND.
1409 */
1410 init_completion(&idle_rebind.done);
1411retry:
1412 idle_rebind.cnt = 1;
1413 INIT_COMPLETION(idle_rebind.done);
1414
1415 /* set REBIND and kick idle ones, we'll wait for these later */
1416 for_each_worker_pool(pool, gcwq) {
1417 list_for_each_entry(worker, &pool->idle_list, entry) {
1418 if (worker->flags & WORKER_REBIND)
1419 continue;
1420
1421 /* morph UNBOUND to REBIND */
1422 worker->flags &= ~WORKER_UNBOUND;
1423 worker->flags |= WORKER_REBIND;
1424
1425 idle_rebind.cnt++;
1426 worker->idle_rebind = &idle_rebind;
1427
1428 /* worker_thread() will call idle_worker_rebind() */
1429 wake_up_process(worker->task);
1430 }
1431 }
1432
1433 if (--idle_rebind.cnt) {
1434 spin_unlock_irq(&gcwq->lock);
1435 wait_for_completion(&idle_rebind.done);
1436 spin_lock_irq(&gcwq->lock);
1437 /* busy ones might have become idle while waiting, retry */
1438 goto retry;
1439 }
1440
1441 /*
1442 * All idle workers are rebound and waiting for %WORKER_REBIND to
1443 * be cleared inside idle_worker_rebind(). Clear and release.
1444 * Clearing %WORKER_REBIND from this foreign context is safe
1445 * because these workers are still guaranteed to be idle.
1446 */
1447 for_each_worker_pool(pool, gcwq)
1448 list_for_each_entry(worker, &pool->idle_list, entry)
1449 worker->flags &= ~WORKER_REBIND;
1450
1451 wake_up_all(&gcwq->rebind_hold);
1452
1453 /* rebind busy workers */
1454 for_each_busy_worker(worker, i, pos, gcwq) {
1455 struct work_struct *rebind_work = &worker->rebind_work;
1456
1457 /* morph UNBOUND to REBIND */
1458 worker->flags &= ~WORKER_UNBOUND;
1459 worker->flags |= WORKER_REBIND;
1460
1461 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1462 work_data_bits(rebind_work)))
1463 continue;
1464
1465 /* wq doesn't matter, use the default one */
1466 debug_work_activate(rebind_work);
1467 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1468 worker->scheduled.next,
1469 work_color_to_flags(WORK_NO_COLOR));
1470 }
1471}
1472
c34056a3
TH
1473static struct worker *alloc_worker(void)
1474{
1475 struct worker *worker;
1476
1477 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1478 if (worker) {
1479 INIT_LIST_HEAD(&worker->entry);
affee4b2 1480 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1481 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1482 /* on creation a worker is in !idle && prep state */
1483 worker->flags = WORKER_PREP;
c8e55f36 1484 }
c34056a3
TH
1485 return worker;
1486}
1487
1488/**
1489 * create_worker - create a new workqueue worker
63d95a91 1490 * @pool: pool the new worker will belong to
c34056a3 1491 *
63d95a91 1492 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1493 * can be started by calling start_worker() or destroyed using
1494 * destroy_worker().
1495 *
1496 * CONTEXT:
1497 * Might sleep. Does GFP_KERNEL allocations.
1498 *
1499 * RETURNS:
1500 * Pointer to the newly created worker.
1501 */
bc2ae0f5 1502static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1503{
63d95a91 1504 struct global_cwq *gcwq = pool->gcwq;
3270476a 1505 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1506 struct worker *worker = NULL;
f3421797 1507 int id = -1;
c34056a3 1508
8b03ae3c 1509 spin_lock_irq(&gcwq->lock);
bd7bdd43 1510 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1511 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1512 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1513 goto fail;
8b03ae3c 1514 spin_lock_irq(&gcwq->lock);
c34056a3 1515 }
8b03ae3c 1516 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1517
1518 worker = alloc_worker();
1519 if (!worker)
1520 goto fail;
1521
bd7bdd43 1522 worker->pool = pool;
c34056a3
TH
1523 worker->id = id;
1524
bc2ae0f5 1525 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1526 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1527 worker, cpu_to_node(gcwq->cpu),
1528 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1529 else
1530 worker->task = kthread_create(worker_thread, worker,
3270476a 1531 "kworker/u:%d%s", id, pri);
c34056a3
TH
1532 if (IS_ERR(worker->task))
1533 goto fail;
1534
3270476a
TH
1535 if (worker_pool_pri(pool))
1536 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1537
db7bccf4 1538 /*
bc2ae0f5
TH
1539 * Determine CPU binding of the new worker depending on
1540 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1541 * flag remains stable across this function. See the comments
1542 * above the flag definition for details.
1543 *
1544 * As an unbound worker may later become a regular one if CPU comes
1545 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1546 */
bc2ae0f5 1547 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1548 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1549 } else {
db7bccf4 1550 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1551 worker->flags |= WORKER_UNBOUND;
f3421797 1552 }
c34056a3
TH
1553
1554 return worker;
1555fail:
1556 if (id >= 0) {
8b03ae3c 1557 spin_lock_irq(&gcwq->lock);
bd7bdd43 1558 ida_remove(&pool->worker_ida, id);
8b03ae3c 1559 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1560 }
1561 kfree(worker);
1562 return NULL;
1563}
1564
1565/**
1566 * start_worker - start a newly created worker
1567 * @worker: worker to start
1568 *
c8e55f36 1569 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1570 *
1571 * CONTEXT:
8b03ae3c 1572 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1573 */
1574static void start_worker(struct worker *worker)
1575{
cb444766 1576 worker->flags |= WORKER_STARTED;
bd7bdd43 1577 worker->pool->nr_workers++;
c8e55f36 1578 worker_enter_idle(worker);
c34056a3
TH
1579 wake_up_process(worker->task);
1580}
1581
1582/**
1583 * destroy_worker - destroy a workqueue worker
1584 * @worker: worker to be destroyed
1585 *
c8e55f36
TH
1586 * Destroy @worker and adjust @gcwq stats accordingly.
1587 *
1588 * CONTEXT:
1589 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1590 */
1591static void destroy_worker(struct worker *worker)
1592{
bd7bdd43
TH
1593 struct worker_pool *pool = worker->pool;
1594 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1595 int id = worker->id;
1596
1597 /* sanity check frenzy */
1598 BUG_ON(worker->current_work);
affee4b2 1599 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1600
c8e55f36 1601 if (worker->flags & WORKER_STARTED)
bd7bdd43 1602 pool->nr_workers--;
c8e55f36 1603 if (worker->flags & WORKER_IDLE)
bd7bdd43 1604 pool->nr_idle--;
c8e55f36
TH
1605
1606 list_del_init(&worker->entry);
cb444766 1607 worker->flags |= WORKER_DIE;
c8e55f36
TH
1608
1609 spin_unlock_irq(&gcwq->lock);
1610
c34056a3
TH
1611 kthread_stop(worker->task);
1612 kfree(worker);
1613
8b03ae3c 1614 spin_lock_irq(&gcwq->lock);
bd7bdd43 1615 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1616}
1617
63d95a91 1618static void idle_worker_timeout(unsigned long __pool)
e22bee78 1619{
63d95a91
TH
1620 struct worker_pool *pool = (void *)__pool;
1621 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1622
1623 spin_lock_irq(&gcwq->lock);
1624
63d95a91 1625 if (too_many_workers(pool)) {
e22bee78
TH
1626 struct worker *worker;
1627 unsigned long expires;
1628
1629 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1630 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1631 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1632
1633 if (time_before(jiffies, expires))
63d95a91 1634 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1635 else {
1636 /* it's been idle for too long, wake up manager */
11ebea50 1637 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1638 wake_up_worker(pool);
d5abe669 1639 }
e22bee78
TH
1640 }
1641
1642 spin_unlock_irq(&gcwq->lock);
1643}
d5abe669 1644
e22bee78
TH
1645static bool send_mayday(struct work_struct *work)
1646{
1647 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1648 struct workqueue_struct *wq = cwq->wq;
f3421797 1649 unsigned int cpu;
e22bee78
TH
1650
1651 if (!(wq->flags & WQ_RESCUER))
1652 return false;
1653
1654 /* mayday mayday mayday */
bd7bdd43 1655 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1656 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1657 if (cpu == WORK_CPU_UNBOUND)
1658 cpu = 0;
f2e005aa 1659 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1660 wake_up_process(wq->rescuer->task);
1661 return true;
1662}
1663
63d95a91 1664static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1665{
63d95a91
TH
1666 struct worker_pool *pool = (void *)__pool;
1667 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1668 struct work_struct *work;
1669
1670 spin_lock_irq(&gcwq->lock);
1671
63d95a91 1672 if (need_to_create_worker(pool)) {
e22bee78
TH
1673 /*
1674 * We've been trying to create a new worker but
1675 * haven't been successful. We might be hitting an
1676 * allocation deadlock. Send distress signals to
1677 * rescuers.
1678 */
63d95a91 1679 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1680 send_mayday(work);
1da177e4 1681 }
e22bee78
TH
1682
1683 spin_unlock_irq(&gcwq->lock);
1684
63d95a91 1685 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1686}
1687
e22bee78
TH
1688/**
1689 * maybe_create_worker - create a new worker if necessary
63d95a91 1690 * @pool: pool to create a new worker for
e22bee78 1691 *
63d95a91 1692 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1693 * have at least one idle worker on return from this function. If
1694 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1695 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1696 * possible allocation deadlock.
1697 *
1698 * On return, need_to_create_worker() is guaranteed to be false and
1699 * may_start_working() true.
1700 *
1701 * LOCKING:
1702 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1703 * multiple times. Does GFP_KERNEL allocations. Called only from
1704 * manager.
1705 *
1706 * RETURNS:
1707 * false if no action was taken and gcwq->lock stayed locked, true
1708 * otherwise.
1709 */
63d95a91 1710static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1711__releases(&gcwq->lock)
1712__acquires(&gcwq->lock)
1da177e4 1713{
63d95a91
TH
1714 struct global_cwq *gcwq = pool->gcwq;
1715
1716 if (!need_to_create_worker(pool))
e22bee78
TH
1717 return false;
1718restart:
9f9c2364
TH
1719 spin_unlock_irq(&gcwq->lock);
1720
e22bee78 1721 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1722 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1723
1724 while (true) {
1725 struct worker *worker;
1726
bc2ae0f5 1727 worker = create_worker(pool);
e22bee78 1728 if (worker) {
63d95a91 1729 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1730 spin_lock_irq(&gcwq->lock);
1731 start_worker(worker);
63d95a91 1732 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1733 return true;
1734 }
1735
63d95a91 1736 if (!need_to_create_worker(pool))
e22bee78 1737 break;
1da177e4 1738
e22bee78
TH
1739 __set_current_state(TASK_INTERRUPTIBLE);
1740 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1741
63d95a91 1742 if (!need_to_create_worker(pool))
e22bee78
TH
1743 break;
1744 }
1745
63d95a91 1746 del_timer_sync(&pool->mayday_timer);
e22bee78 1747 spin_lock_irq(&gcwq->lock);
63d95a91 1748 if (need_to_create_worker(pool))
e22bee78
TH
1749 goto restart;
1750 return true;
1751}
1752
1753/**
1754 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1755 * @pool: pool to destroy workers for
e22bee78 1756 *
63d95a91 1757 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1758 * IDLE_WORKER_TIMEOUT.
1759 *
1760 * LOCKING:
1761 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1762 * multiple times. Called only from manager.
1763 *
1764 * RETURNS:
1765 * false if no action was taken and gcwq->lock stayed locked, true
1766 * otherwise.
1767 */
63d95a91 1768static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1769{
1770 bool ret = false;
1da177e4 1771
63d95a91 1772 while (too_many_workers(pool)) {
e22bee78
TH
1773 struct worker *worker;
1774 unsigned long expires;
3af24433 1775
63d95a91 1776 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1777 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1778
e22bee78 1779 if (time_before(jiffies, expires)) {
63d95a91 1780 mod_timer(&pool->idle_timer, expires);
3af24433 1781 break;
e22bee78 1782 }
1da177e4 1783
e22bee78
TH
1784 destroy_worker(worker);
1785 ret = true;
1da177e4 1786 }
3af24433 1787
e22bee78
TH
1788 return ret;
1789}
1790
1791/**
1792 * manage_workers - manage worker pool
1793 * @worker: self
1794 *
1795 * Assume the manager role and manage gcwq worker pool @worker belongs
1796 * to. At any given time, there can be only zero or one manager per
1797 * gcwq. The exclusion is handled automatically by this function.
1798 *
1799 * The caller can safely start processing works on false return. On
1800 * true return, it's guaranteed that need_to_create_worker() is false
1801 * and may_start_working() is true.
1802 *
1803 * CONTEXT:
1804 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1805 * multiple times. Does GFP_KERNEL allocations.
1806 *
1807 * RETURNS:
1808 * false if no action was taken and gcwq->lock stayed locked, true if
1809 * some action was taken.
1810 */
1811static bool manage_workers(struct worker *worker)
1812{
63d95a91 1813 struct worker_pool *pool = worker->pool;
e22bee78
TH
1814 bool ret = false;
1815
60373152 1816 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1817 return ret;
1818
11ebea50 1819 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1820
1821 /*
1822 * Destroy and then create so that may_start_working() is true
1823 * on return.
1824 */
63d95a91
TH
1825 ret |= maybe_destroy_workers(pool);
1826 ret |= maybe_create_worker(pool);
e22bee78 1827
60373152 1828 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1829 return ret;
1830}
1831
affee4b2
TH
1832/**
1833 * move_linked_works - move linked works to a list
1834 * @work: start of series of works to be scheduled
1835 * @head: target list to append @work to
1836 * @nextp: out paramter for nested worklist walking
1837 *
1838 * Schedule linked works starting from @work to @head. Work series to
1839 * be scheduled starts at @work and includes any consecutive work with
1840 * WORK_STRUCT_LINKED set in its predecessor.
1841 *
1842 * If @nextp is not NULL, it's updated to point to the next work of
1843 * the last scheduled work. This allows move_linked_works() to be
1844 * nested inside outer list_for_each_entry_safe().
1845 *
1846 * CONTEXT:
8b03ae3c 1847 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1848 */
1849static void move_linked_works(struct work_struct *work, struct list_head *head,
1850 struct work_struct **nextp)
1851{
1852 struct work_struct *n;
1853
1854 /*
1855 * Linked worklist will always end before the end of the list,
1856 * use NULL for list head.
1857 */
1858 list_for_each_entry_safe_from(work, n, NULL, entry) {
1859 list_move_tail(&work->entry, head);
1860 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1861 break;
1862 }
1863
1864 /*
1865 * If we're already inside safe list traversal and have moved
1866 * multiple works to the scheduled queue, the next position
1867 * needs to be updated.
1868 */
1869 if (nextp)
1870 *nextp = n;
1871}
1872
1e19ffc6
TH
1873static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1874{
1875 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1876 struct work_struct, entry);
1877
cdadf009 1878 trace_workqueue_activate_work(work);
3270476a 1879 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1880 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1881 cwq->nr_active++;
1882}
1883
73f53c4a
TH
1884/**
1885 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1886 * @cwq: cwq of interest
1887 * @color: color of work which left the queue
8a2e8e5d 1888 * @delayed: for a delayed work
73f53c4a
TH
1889 *
1890 * A work either has completed or is removed from pending queue,
1891 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1892 *
1893 * CONTEXT:
8b03ae3c 1894 * spin_lock_irq(gcwq->lock).
73f53c4a 1895 */
8a2e8e5d
TH
1896static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1897 bool delayed)
73f53c4a
TH
1898{
1899 /* ignore uncolored works */
1900 if (color == WORK_NO_COLOR)
1901 return;
1902
1903 cwq->nr_in_flight[color]--;
1e19ffc6 1904
8a2e8e5d
TH
1905 if (!delayed) {
1906 cwq->nr_active--;
1907 if (!list_empty(&cwq->delayed_works)) {
1908 /* one down, submit a delayed one */
1909 if (cwq->nr_active < cwq->max_active)
1910 cwq_activate_first_delayed(cwq);
1911 }
502ca9d8 1912 }
73f53c4a
TH
1913
1914 /* is flush in progress and are we at the flushing tip? */
1915 if (likely(cwq->flush_color != color))
1916 return;
1917
1918 /* are there still in-flight works? */
1919 if (cwq->nr_in_flight[color])
1920 return;
1921
1922 /* this cwq is done, clear flush_color */
1923 cwq->flush_color = -1;
1924
1925 /*
1926 * If this was the last cwq, wake up the first flusher. It
1927 * will handle the rest.
1928 */
1929 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1930 complete(&cwq->wq->first_flusher->done);
1931}
1932
a62428c0
TH
1933/**
1934 * process_one_work - process single work
c34056a3 1935 * @worker: self
a62428c0
TH
1936 * @work: work to process
1937 *
1938 * Process @work. This function contains all the logics necessary to
1939 * process a single work including synchronization against and
1940 * interaction with other workers on the same cpu, queueing and
1941 * flushing. As long as context requirement is met, any worker can
1942 * call this function to process a work.
1943 *
1944 * CONTEXT:
8b03ae3c 1945 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1946 */
c34056a3 1947static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1948__releases(&gcwq->lock)
1949__acquires(&gcwq->lock)
a62428c0 1950{
7e11629d 1951 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1952 struct worker_pool *pool = worker->pool;
1953 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1954 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1955 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1956 work_func_t f = work->func;
73f53c4a 1957 int work_color;
7e11629d 1958 struct worker *collision;
a62428c0
TH
1959#ifdef CONFIG_LOCKDEP
1960 /*
1961 * It is permissible to free the struct work_struct from
1962 * inside the function that is called from it, this we need to
1963 * take into account for lockdep too. To avoid bogus "held
1964 * lock freed" warnings as well as problems when looking into
1965 * work->lockdep_map, make a copy and use that here.
1966 */
4d82a1de
PZ
1967 struct lockdep_map lockdep_map;
1968
1969 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1970#endif
6fec10a1
TH
1971 /*
1972 * Ensure we're on the correct CPU. DISASSOCIATED test is
1973 * necessary to avoid spurious warnings from rescuers servicing the
1974 * unbound or a disassociated gcwq.
1975 */
25511a47 1976 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 1977 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
1978 raw_smp_processor_id() != gcwq->cpu);
1979
7e11629d
TH
1980 /*
1981 * A single work shouldn't be executed concurrently by
1982 * multiple workers on a single cpu. Check whether anyone is
1983 * already processing the work. If so, defer the work to the
1984 * currently executing one.
1985 */
1986 collision = __find_worker_executing_work(gcwq, bwh, work);
1987 if (unlikely(collision)) {
1988 move_linked_works(work, &collision->scheduled, NULL);
1989 return;
1990 }
1991
8930caba 1992 /* claim and dequeue */
a62428c0 1993 debug_work_deactivate(work);
c8e55f36 1994 hlist_add_head(&worker->hentry, bwh);
c34056a3 1995 worker->current_work = work;
8cca0eea 1996 worker->current_cwq = cwq;
73f53c4a 1997 work_color = get_work_color(work);
7a22ad75 1998
a62428c0
TH
1999 list_del_init(&work->entry);
2000
fb0e7beb
TH
2001 /*
2002 * CPU intensive works don't participate in concurrency
2003 * management. They're the scheduler's responsibility.
2004 */
2005 if (unlikely(cpu_intensive))
2006 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2007
974271c4
TH
2008 /*
2009 * Unbound gcwq isn't concurrency managed and work items should be
2010 * executed ASAP. Wake up another worker if necessary.
2011 */
63d95a91
TH
2012 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2013 wake_up_worker(pool);
974271c4 2014
8930caba
TH
2015 /*
2016 * Record the last CPU and clear PENDING. The following wmb is
2017 * paired with the implied mb in test_and_set_bit(PENDING) and
2018 * ensures all updates to @work made here are visible to and
2019 * precede any updates by the next PENDING owner. Also, clear
2020 * PENDING inside @gcwq->lock so that PENDING and queued state
2021 * changes happen together while IRQ is disabled.
2022 */
2023 smp_wmb();
2024 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2025
8930caba 2026 spin_unlock_irq(&gcwq->lock);
959d1af8 2027
e159489b 2028 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2029 lock_map_acquire(&lockdep_map);
e36c886a 2030 trace_workqueue_execute_start(work);
a62428c0 2031 f(work);
e36c886a
AV
2032 /*
2033 * While we must be careful to not use "work" after this, the trace
2034 * point will only record its address.
2035 */
2036 trace_workqueue_execute_end(work);
a62428c0
TH
2037 lock_map_release(&lockdep_map);
2038 lock_map_release(&cwq->wq->lockdep_map);
2039
2040 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2041 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2042 "%s/0x%08x/%d\n",
2043 current->comm, preempt_count(), task_pid_nr(current));
2044 printk(KERN_ERR " last function: ");
2045 print_symbol("%s\n", (unsigned long)f);
2046 debug_show_held_locks(current);
2047 dump_stack();
2048 }
2049
8b03ae3c 2050 spin_lock_irq(&gcwq->lock);
a62428c0 2051
fb0e7beb
TH
2052 /* clear cpu intensive status */
2053 if (unlikely(cpu_intensive))
2054 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2055
a62428c0 2056 /* we're done with it, release */
c8e55f36 2057 hlist_del_init(&worker->hentry);
c34056a3 2058 worker->current_work = NULL;
8cca0eea 2059 worker->current_cwq = NULL;
8a2e8e5d 2060 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2061}
2062
affee4b2
TH
2063/**
2064 * process_scheduled_works - process scheduled works
2065 * @worker: self
2066 *
2067 * Process all scheduled works. Please note that the scheduled list
2068 * may change while processing a work, so this function repeatedly
2069 * fetches a work from the top and executes it.
2070 *
2071 * CONTEXT:
8b03ae3c 2072 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2073 * multiple times.
2074 */
2075static void process_scheduled_works(struct worker *worker)
1da177e4 2076{
affee4b2
TH
2077 while (!list_empty(&worker->scheduled)) {
2078 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2079 struct work_struct, entry);
c34056a3 2080 process_one_work(worker, work);
1da177e4 2081 }
1da177e4
LT
2082}
2083
4690c4ab
TH
2084/**
2085 * worker_thread - the worker thread function
c34056a3 2086 * @__worker: self
4690c4ab 2087 *
e22bee78
TH
2088 * The gcwq worker thread function. There's a single dynamic pool of
2089 * these per each cpu. These workers process all works regardless of
2090 * their specific target workqueue. The only exception is works which
2091 * belong to workqueues with a rescuer which will be explained in
2092 * rescuer_thread().
4690c4ab 2093 */
c34056a3 2094static int worker_thread(void *__worker)
1da177e4 2095{
c34056a3 2096 struct worker *worker = __worker;
bd7bdd43
TH
2097 struct worker_pool *pool = worker->pool;
2098 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2099
e22bee78
TH
2100 /* tell the scheduler that this is a workqueue worker */
2101 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2102woke_up:
c8e55f36 2103 spin_lock_irq(&gcwq->lock);
1da177e4 2104
25511a47
TH
2105 /*
2106 * DIE can be set only while idle and REBIND set while busy has
2107 * @worker->rebind_work scheduled. Checking here is enough.
2108 */
2109 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2110 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2111
2112 if (worker->flags & WORKER_DIE) {
2113 worker->task->flags &= ~PF_WQ_WORKER;
2114 return 0;
2115 }
2116
2117 idle_worker_rebind(worker);
2118 goto woke_up;
c8e55f36 2119 }
affee4b2 2120
c8e55f36 2121 worker_leave_idle(worker);
db7bccf4 2122recheck:
e22bee78 2123 /* no more worker necessary? */
63d95a91 2124 if (!need_more_worker(pool))
e22bee78
TH
2125 goto sleep;
2126
2127 /* do we need to manage? */
63d95a91 2128 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2129 goto recheck;
2130
c8e55f36
TH
2131 /*
2132 * ->scheduled list can only be filled while a worker is
2133 * preparing to process a work or actually processing it.
2134 * Make sure nobody diddled with it while I was sleeping.
2135 */
2136 BUG_ON(!list_empty(&worker->scheduled));
2137
e22bee78
TH
2138 /*
2139 * When control reaches this point, we're guaranteed to have
2140 * at least one idle worker or that someone else has already
2141 * assumed the manager role.
2142 */
2143 worker_clr_flags(worker, WORKER_PREP);
2144
2145 do {
c8e55f36 2146 struct work_struct *work =
bd7bdd43 2147 list_first_entry(&pool->worklist,
c8e55f36
TH
2148 struct work_struct, entry);
2149
2150 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2151 /* optimization path, not strictly necessary */
2152 process_one_work(worker, work);
2153 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2154 process_scheduled_works(worker);
c8e55f36
TH
2155 } else {
2156 move_linked_works(work, &worker->scheduled, NULL);
2157 process_scheduled_works(worker);
affee4b2 2158 }
63d95a91 2159 } while (keep_working(pool));
e22bee78
TH
2160
2161 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2162sleep:
63d95a91 2163 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2164 goto recheck;
d313dd85 2165
c8e55f36 2166 /*
e22bee78
TH
2167 * gcwq->lock is held and there's no work to process and no
2168 * need to manage, sleep. Workers are woken up only while
2169 * holding gcwq->lock or from local cpu, so setting the
2170 * current state before releasing gcwq->lock is enough to
2171 * prevent losing any event.
c8e55f36
TH
2172 */
2173 worker_enter_idle(worker);
2174 __set_current_state(TASK_INTERRUPTIBLE);
2175 spin_unlock_irq(&gcwq->lock);
2176 schedule();
2177 goto woke_up;
1da177e4
LT
2178}
2179
e22bee78
TH
2180/**
2181 * rescuer_thread - the rescuer thread function
2182 * @__wq: the associated workqueue
2183 *
2184 * Workqueue rescuer thread function. There's one rescuer for each
2185 * workqueue which has WQ_RESCUER set.
2186 *
2187 * Regular work processing on a gcwq may block trying to create a new
2188 * worker which uses GFP_KERNEL allocation which has slight chance of
2189 * developing into deadlock if some works currently on the same queue
2190 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2191 * the problem rescuer solves.
2192 *
2193 * When such condition is possible, the gcwq summons rescuers of all
2194 * workqueues which have works queued on the gcwq and let them process
2195 * those works so that forward progress can be guaranteed.
2196 *
2197 * This should happen rarely.
2198 */
2199static int rescuer_thread(void *__wq)
2200{
2201 struct workqueue_struct *wq = __wq;
2202 struct worker *rescuer = wq->rescuer;
2203 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2204 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2205 unsigned int cpu;
2206
2207 set_user_nice(current, RESCUER_NICE_LEVEL);
2208repeat:
2209 set_current_state(TASK_INTERRUPTIBLE);
2210
2211 if (kthread_should_stop())
2212 return 0;
2213
f3421797
TH
2214 /*
2215 * See whether any cpu is asking for help. Unbounded
2216 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2217 */
f2e005aa 2218 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2219 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2220 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2221 struct worker_pool *pool = cwq->pool;
2222 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2223 struct work_struct *work, *n;
2224
2225 __set_current_state(TASK_RUNNING);
f2e005aa 2226 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2227
2228 /* migrate to the target cpu if possible */
bd7bdd43 2229 rescuer->pool = pool;
e22bee78
TH
2230 worker_maybe_bind_and_lock(rescuer);
2231
2232 /*
2233 * Slurp in all works issued via this workqueue and
2234 * process'em.
2235 */
2236 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2237 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2238 if (get_work_cwq(work) == cwq)
2239 move_linked_works(work, scheduled, &n);
2240
2241 process_scheduled_works(rescuer);
7576958a
TH
2242
2243 /*
2244 * Leave this gcwq. If keep_working() is %true, notify a
2245 * regular worker; otherwise, we end up with 0 concurrency
2246 * and stalling the execution.
2247 */
63d95a91
TH
2248 if (keep_working(pool))
2249 wake_up_worker(pool);
7576958a 2250
e22bee78
TH
2251 spin_unlock_irq(&gcwq->lock);
2252 }
2253
2254 schedule();
2255 goto repeat;
1da177e4
LT
2256}
2257
fc2e4d70
ON
2258struct wq_barrier {
2259 struct work_struct work;
2260 struct completion done;
2261};
2262
2263static void wq_barrier_func(struct work_struct *work)
2264{
2265 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2266 complete(&barr->done);
2267}
2268
4690c4ab
TH
2269/**
2270 * insert_wq_barrier - insert a barrier work
2271 * @cwq: cwq to insert barrier into
2272 * @barr: wq_barrier to insert
affee4b2
TH
2273 * @target: target work to attach @barr to
2274 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2275 *
affee4b2
TH
2276 * @barr is linked to @target such that @barr is completed only after
2277 * @target finishes execution. Please note that the ordering
2278 * guarantee is observed only with respect to @target and on the local
2279 * cpu.
2280 *
2281 * Currently, a queued barrier can't be canceled. This is because
2282 * try_to_grab_pending() can't determine whether the work to be
2283 * grabbed is at the head of the queue and thus can't clear LINKED
2284 * flag of the previous work while there must be a valid next work
2285 * after a work with LINKED flag set.
2286 *
2287 * Note that when @worker is non-NULL, @target may be modified
2288 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2289 *
2290 * CONTEXT:
8b03ae3c 2291 * spin_lock_irq(gcwq->lock).
4690c4ab 2292 */
83c22520 2293static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2294 struct wq_barrier *barr,
2295 struct work_struct *target, struct worker *worker)
fc2e4d70 2296{
affee4b2
TH
2297 struct list_head *head;
2298 unsigned int linked = 0;
2299
dc186ad7 2300 /*
8b03ae3c 2301 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2302 * as we know for sure that this will not trigger any of the
2303 * checks and call back into the fixup functions where we
2304 * might deadlock.
2305 */
ca1cab37 2306 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2307 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2308 init_completion(&barr->done);
83c22520 2309
affee4b2
TH
2310 /*
2311 * If @target is currently being executed, schedule the
2312 * barrier to the worker; otherwise, put it after @target.
2313 */
2314 if (worker)
2315 head = worker->scheduled.next;
2316 else {
2317 unsigned long *bits = work_data_bits(target);
2318
2319 head = target->entry.next;
2320 /* there can already be other linked works, inherit and set */
2321 linked = *bits & WORK_STRUCT_LINKED;
2322 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2323 }
2324
dc186ad7 2325 debug_work_activate(&barr->work);
affee4b2
TH
2326 insert_work(cwq, &barr->work, head,
2327 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2328}
2329
73f53c4a
TH
2330/**
2331 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2332 * @wq: workqueue being flushed
2333 * @flush_color: new flush color, < 0 for no-op
2334 * @work_color: new work color, < 0 for no-op
2335 *
2336 * Prepare cwqs for workqueue flushing.
2337 *
2338 * If @flush_color is non-negative, flush_color on all cwqs should be
2339 * -1. If no cwq has in-flight commands at the specified color, all
2340 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2341 * has in flight commands, its cwq->flush_color is set to
2342 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2343 * wakeup logic is armed and %true is returned.
2344 *
2345 * The caller should have initialized @wq->first_flusher prior to
2346 * calling this function with non-negative @flush_color. If
2347 * @flush_color is negative, no flush color update is done and %false
2348 * is returned.
2349 *
2350 * If @work_color is non-negative, all cwqs should have the same
2351 * work_color which is previous to @work_color and all will be
2352 * advanced to @work_color.
2353 *
2354 * CONTEXT:
2355 * mutex_lock(wq->flush_mutex).
2356 *
2357 * RETURNS:
2358 * %true if @flush_color >= 0 and there's something to flush. %false
2359 * otherwise.
2360 */
2361static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2362 int flush_color, int work_color)
1da177e4 2363{
73f53c4a
TH
2364 bool wait = false;
2365 unsigned int cpu;
1da177e4 2366
73f53c4a
TH
2367 if (flush_color >= 0) {
2368 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2369 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2370 }
2355b70f 2371
f3421797 2372 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2373 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2374 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2375
8b03ae3c 2376 spin_lock_irq(&gcwq->lock);
83c22520 2377
73f53c4a
TH
2378 if (flush_color >= 0) {
2379 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2380
73f53c4a
TH
2381 if (cwq->nr_in_flight[flush_color]) {
2382 cwq->flush_color = flush_color;
2383 atomic_inc(&wq->nr_cwqs_to_flush);
2384 wait = true;
2385 }
2386 }
1da177e4 2387
73f53c4a
TH
2388 if (work_color >= 0) {
2389 BUG_ON(work_color != work_next_color(cwq->work_color));
2390 cwq->work_color = work_color;
2391 }
1da177e4 2392
8b03ae3c 2393 spin_unlock_irq(&gcwq->lock);
1da177e4 2394 }
2355b70f 2395
73f53c4a
TH
2396 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2397 complete(&wq->first_flusher->done);
14441960 2398
73f53c4a 2399 return wait;
1da177e4
LT
2400}
2401
0fcb78c2 2402/**
1da177e4 2403 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2404 * @wq: workqueue to flush
1da177e4
LT
2405 *
2406 * Forces execution of the workqueue and blocks until its completion.
2407 * This is typically used in driver shutdown handlers.
2408 *
fc2e4d70
ON
2409 * We sleep until all works which were queued on entry have been handled,
2410 * but we are not livelocked by new incoming ones.
1da177e4 2411 */
7ad5b3a5 2412void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2413{
73f53c4a
TH
2414 struct wq_flusher this_flusher = {
2415 .list = LIST_HEAD_INIT(this_flusher.list),
2416 .flush_color = -1,
2417 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2418 };
2419 int next_color;
1da177e4 2420
3295f0ef
IM
2421 lock_map_acquire(&wq->lockdep_map);
2422 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2423
2424 mutex_lock(&wq->flush_mutex);
2425
2426 /*
2427 * Start-to-wait phase
2428 */
2429 next_color = work_next_color(wq->work_color);
2430
2431 if (next_color != wq->flush_color) {
2432 /*
2433 * Color space is not full. The current work_color
2434 * becomes our flush_color and work_color is advanced
2435 * by one.
2436 */
2437 BUG_ON(!list_empty(&wq->flusher_overflow));
2438 this_flusher.flush_color = wq->work_color;
2439 wq->work_color = next_color;
2440
2441 if (!wq->first_flusher) {
2442 /* no flush in progress, become the first flusher */
2443 BUG_ON(wq->flush_color != this_flusher.flush_color);
2444
2445 wq->first_flusher = &this_flusher;
2446
2447 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2448 wq->work_color)) {
2449 /* nothing to flush, done */
2450 wq->flush_color = next_color;
2451 wq->first_flusher = NULL;
2452 goto out_unlock;
2453 }
2454 } else {
2455 /* wait in queue */
2456 BUG_ON(wq->flush_color == this_flusher.flush_color);
2457 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2458 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2459 }
2460 } else {
2461 /*
2462 * Oops, color space is full, wait on overflow queue.
2463 * The next flush completion will assign us
2464 * flush_color and transfer to flusher_queue.
2465 */
2466 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2467 }
2468
2469 mutex_unlock(&wq->flush_mutex);
2470
2471 wait_for_completion(&this_flusher.done);
2472
2473 /*
2474 * Wake-up-and-cascade phase
2475 *
2476 * First flushers are responsible for cascading flushes and
2477 * handling overflow. Non-first flushers can simply return.
2478 */
2479 if (wq->first_flusher != &this_flusher)
2480 return;
2481
2482 mutex_lock(&wq->flush_mutex);
2483
4ce48b37
TH
2484 /* we might have raced, check again with mutex held */
2485 if (wq->first_flusher != &this_flusher)
2486 goto out_unlock;
2487
73f53c4a
TH
2488 wq->first_flusher = NULL;
2489
2490 BUG_ON(!list_empty(&this_flusher.list));
2491 BUG_ON(wq->flush_color != this_flusher.flush_color);
2492
2493 while (true) {
2494 struct wq_flusher *next, *tmp;
2495
2496 /* complete all the flushers sharing the current flush color */
2497 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2498 if (next->flush_color != wq->flush_color)
2499 break;
2500 list_del_init(&next->list);
2501 complete(&next->done);
2502 }
2503
2504 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2505 wq->flush_color != work_next_color(wq->work_color));
2506
2507 /* this flush_color is finished, advance by one */
2508 wq->flush_color = work_next_color(wq->flush_color);
2509
2510 /* one color has been freed, handle overflow queue */
2511 if (!list_empty(&wq->flusher_overflow)) {
2512 /*
2513 * Assign the same color to all overflowed
2514 * flushers, advance work_color and append to
2515 * flusher_queue. This is the start-to-wait
2516 * phase for these overflowed flushers.
2517 */
2518 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2519 tmp->flush_color = wq->work_color;
2520
2521 wq->work_color = work_next_color(wq->work_color);
2522
2523 list_splice_tail_init(&wq->flusher_overflow,
2524 &wq->flusher_queue);
2525 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2526 }
2527
2528 if (list_empty(&wq->flusher_queue)) {
2529 BUG_ON(wq->flush_color != wq->work_color);
2530 break;
2531 }
2532
2533 /*
2534 * Need to flush more colors. Make the next flusher
2535 * the new first flusher and arm cwqs.
2536 */
2537 BUG_ON(wq->flush_color == wq->work_color);
2538 BUG_ON(wq->flush_color != next->flush_color);
2539
2540 list_del_init(&next->list);
2541 wq->first_flusher = next;
2542
2543 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2544 break;
2545
2546 /*
2547 * Meh... this color is already done, clear first
2548 * flusher and repeat cascading.
2549 */
2550 wq->first_flusher = NULL;
2551 }
2552
2553out_unlock:
2554 mutex_unlock(&wq->flush_mutex);
1da177e4 2555}
ae90dd5d 2556EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2557
9c5a2ba7
TH
2558/**
2559 * drain_workqueue - drain a workqueue
2560 * @wq: workqueue to drain
2561 *
2562 * Wait until the workqueue becomes empty. While draining is in progress,
2563 * only chain queueing is allowed. IOW, only currently pending or running
2564 * work items on @wq can queue further work items on it. @wq is flushed
2565 * repeatedly until it becomes empty. The number of flushing is detemined
2566 * by the depth of chaining and should be relatively short. Whine if it
2567 * takes too long.
2568 */
2569void drain_workqueue(struct workqueue_struct *wq)
2570{
2571 unsigned int flush_cnt = 0;
2572 unsigned int cpu;
2573
2574 /*
2575 * __queue_work() needs to test whether there are drainers, is much
2576 * hotter than drain_workqueue() and already looks at @wq->flags.
2577 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2578 */
2579 spin_lock(&workqueue_lock);
2580 if (!wq->nr_drainers++)
2581 wq->flags |= WQ_DRAINING;
2582 spin_unlock(&workqueue_lock);
2583reflush:
2584 flush_workqueue(wq);
2585
2586 for_each_cwq_cpu(cpu, wq) {
2587 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2588 bool drained;
9c5a2ba7 2589
bd7bdd43 2590 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2591 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2592 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2593
2594 if (drained)
9c5a2ba7
TH
2595 continue;
2596
2597 if (++flush_cnt == 10 ||
2598 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2599 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2600 wq->name, flush_cnt);
2601 goto reflush;
2602 }
2603
2604 spin_lock(&workqueue_lock);
2605 if (!--wq->nr_drainers)
2606 wq->flags &= ~WQ_DRAINING;
2607 spin_unlock(&workqueue_lock);
2608}
2609EXPORT_SYMBOL_GPL(drain_workqueue);
2610
baf59022
TH
2611static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2612 bool wait_executing)
db700897 2613{
affee4b2 2614 struct worker *worker = NULL;
8b03ae3c 2615 struct global_cwq *gcwq;
db700897 2616 struct cpu_workqueue_struct *cwq;
db700897
ON
2617
2618 might_sleep();
7a22ad75
TH
2619 gcwq = get_work_gcwq(work);
2620 if (!gcwq)
baf59022 2621 return false;
db700897 2622
8b03ae3c 2623 spin_lock_irq(&gcwq->lock);
db700897
ON
2624 if (!list_empty(&work->entry)) {
2625 /*
2626 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2627 * If it was re-queued to a different gcwq under us, we
2628 * are not going to wait.
db700897
ON
2629 */
2630 smp_rmb();
7a22ad75 2631 cwq = get_work_cwq(work);
bd7bdd43 2632 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2633 goto already_gone;
baf59022 2634 } else if (wait_executing) {
7a22ad75 2635 worker = find_worker_executing_work(gcwq, work);
affee4b2 2636 if (!worker)
4690c4ab 2637 goto already_gone;
7a22ad75 2638 cwq = worker->current_cwq;
baf59022
TH
2639 } else
2640 goto already_gone;
db700897 2641
baf59022 2642 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2643 spin_unlock_irq(&gcwq->lock);
7a22ad75 2644
e159489b
TH
2645 /*
2646 * If @max_active is 1 or rescuer is in use, flushing another work
2647 * item on the same workqueue may lead to deadlock. Make sure the
2648 * flusher is not running on the same workqueue by verifying write
2649 * access.
2650 */
2651 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2652 lock_map_acquire(&cwq->wq->lockdep_map);
2653 else
2654 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2655 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2656
401a8d04 2657 return true;
4690c4ab 2658already_gone:
8b03ae3c 2659 spin_unlock_irq(&gcwq->lock);
401a8d04 2660 return false;
db700897 2661}
baf59022
TH
2662
2663/**
2664 * flush_work - wait for a work to finish executing the last queueing instance
2665 * @work: the work to flush
2666 *
2667 * Wait until @work has finished execution. This function considers
2668 * only the last queueing instance of @work. If @work has been
2669 * enqueued across different CPUs on a non-reentrant workqueue or on
2670 * multiple workqueues, @work might still be executing on return on
2671 * some of the CPUs from earlier queueing.
2672 *
2673 * If @work was queued only on a non-reentrant, ordered or unbound
2674 * workqueue, @work is guaranteed to be idle on return if it hasn't
2675 * been requeued since flush started.
2676 *
2677 * RETURNS:
2678 * %true if flush_work() waited for the work to finish execution,
2679 * %false if it was already idle.
2680 */
2681bool flush_work(struct work_struct *work)
2682{
2683 struct wq_barrier barr;
2684
0976dfc1
SB
2685 lock_map_acquire(&work->lockdep_map);
2686 lock_map_release(&work->lockdep_map);
2687
baf59022
TH
2688 if (start_flush_work(work, &barr, true)) {
2689 wait_for_completion(&barr.done);
2690 destroy_work_on_stack(&barr.work);
2691 return true;
2692 } else
2693 return false;
2694}
db700897
ON
2695EXPORT_SYMBOL_GPL(flush_work);
2696
401a8d04
TH
2697static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2698{
2699 struct wq_barrier barr;
2700 struct worker *worker;
2701
2702 spin_lock_irq(&gcwq->lock);
2703
2704 worker = find_worker_executing_work(gcwq, work);
2705 if (unlikely(worker))
2706 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2707
2708 spin_unlock_irq(&gcwq->lock);
2709
2710 if (unlikely(worker)) {
2711 wait_for_completion(&barr.done);
2712 destroy_work_on_stack(&barr.work);
2713 return true;
2714 } else
2715 return false;
2716}
2717
2718static bool wait_on_work(struct work_struct *work)
2719{
2720 bool ret = false;
2721 int cpu;
2722
2723 might_sleep();
2724
2725 lock_map_acquire(&work->lockdep_map);
2726 lock_map_release(&work->lockdep_map);
2727
2728 for_each_gcwq_cpu(cpu)
2729 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2730 return ret;
2731}
2732
09383498
TH
2733/**
2734 * flush_work_sync - wait until a work has finished execution
2735 * @work: the work to flush
2736 *
2737 * Wait until @work has finished execution. On return, it's
2738 * guaranteed that all queueing instances of @work which happened
2739 * before this function is called are finished. In other words, if
2740 * @work hasn't been requeued since this function was called, @work is
2741 * guaranteed to be idle on return.
2742 *
2743 * RETURNS:
2744 * %true if flush_work_sync() waited for the work to finish execution,
2745 * %false if it was already idle.
2746 */
2747bool flush_work_sync(struct work_struct *work)
2748{
2749 struct wq_barrier barr;
2750 bool pending, waited;
2751
2752 /* we'll wait for executions separately, queue barr only if pending */
2753 pending = start_flush_work(work, &barr, false);
2754
2755 /* wait for executions to finish */
2756 waited = wait_on_work(work);
2757
2758 /* wait for the pending one */
2759 if (pending) {
2760 wait_for_completion(&barr.done);
2761 destroy_work_on_stack(&barr.work);
2762 }
2763
2764 return pending || waited;
2765}
2766EXPORT_SYMBOL_GPL(flush_work_sync);
2767
6e84d644 2768/*
1f1f642e 2769 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2770 * so this work can't be re-armed in any way.
2771 */
2772static int try_to_grab_pending(struct work_struct *work)
2773{
8b03ae3c 2774 struct global_cwq *gcwq;
1f1f642e 2775 int ret = -1;
6e84d644 2776
22df02bb 2777 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2778 return 0;
6e84d644
ON
2779
2780 /*
2781 * The queueing is in progress, or it is already queued. Try to
2782 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2783 */
7a22ad75
TH
2784 gcwq = get_work_gcwq(work);
2785 if (!gcwq)
6e84d644
ON
2786 return ret;
2787
8b03ae3c 2788 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2789 if (!list_empty(&work->entry)) {
2790 /*
7a22ad75 2791 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2792 * In that case we must see the new value after rmb(), see
2793 * insert_work()->wmb().
2794 */
2795 smp_rmb();
7a22ad75 2796 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2797 debug_work_deactivate(work);
6e84d644 2798 list_del_init(&work->entry);
7a22ad75 2799 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2800 get_work_color(work),
2801 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2802 ret = 1;
2803 }
2804 }
8b03ae3c 2805 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2806
2807 return ret;
2808}
2809
401a8d04 2810static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2811 struct timer_list* timer)
2812{
2813 int ret;
2814
2815 do {
2816 ret = (timer && likely(del_timer(timer)));
2817 if (!ret)
2818 ret = try_to_grab_pending(work);
2819 wait_on_work(work);
2820 } while (unlikely(ret < 0));
2821
7a22ad75 2822 clear_work_data(work);
1f1f642e
ON
2823 return ret;
2824}
2825
6e84d644 2826/**
401a8d04
TH
2827 * cancel_work_sync - cancel a work and wait for it to finish
2828 * @work: the work to cancel
6e84d644 2829 *
401a8d04
TH
2830 * Cancel @work and wait for its execution to finish. This function
2831 * can be used even if the work re-queues itself or migrates to
2832 * another workqueue. On return from this function, @work is
2833 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2834 *
401a8d04
TH
2835 * cancel_work_sync(&delayed_work->work) must not be used for
2836 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2837 *
401a8d04 2838 * The caller must ensure that the workqueue on which @work was last
6e84d644 2839 * queued can't be destroyed before this function returns.
401a8d04
TH
2840 *
2841 * RETURNS:
2842 * %true if @work was pending, %false otherwise.
6e84d644 2843 */
401a8d04 2844bool cancel_work_sync(struct work_struct *work)
6e84d644 2845{
1f1f642e 2846 return __cancel_work_timer(work, NULL);
b89deed3 2847}
28e53bdd 2848EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2849
6e84d644 2850/**
401a8d04
TH
2851 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2852 * @dwork: the delayed work to flush
6e84d644 2853 *
401a8d04
TH
2854 * Delayed timer is cancelled and the pending work is queued for
2855 * immediate execution. Like flush_work(), this function only
2856 * considers the last queueing instance of @dwork.
1f1f642e 2857 *
401a8d04
TH
2858 * RETURNS:
2859 * %true if flush_work() waited for the work to finish execution,
2860 * %false if it was already idle.
6e84d644 2861 */
401a8d04
TH
2862bool flush_delayed_work(struct delayed_work *dwork)
2863{
8930caba 2864 local_irq_disable();
401a8d04 2865 if (del_timer_sync(&dwork->timer))
57469821 2866 __queue_work(WORK_CPU_UNBOUND,
401a8d04 2867 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2868 local_irq_enable();
401a8d04
TH
2869 return flush_work(&dwork->work);
2870}
2871EXPORT_SYMBOL(flush_delayed_work);
2872
09383498
TH
2873/**
2874 * flush_delayed_work_sync - wait for a dwork to finish
2875 * @dwork: the delayed work to flush
2876 *
2877 * Delayed timer is cancelled and the pending work is queued for
2878 * execution immediately. Other than timer handling, its behavior
2879 * is identical to flush_work_sync().
2880 *
2881 * RETURNS:
2882 * %true if flush_work_sync() waited for the work to finish execution,
2883 * %false if it was already idle.
2884 */
2885bool flush_delayed_work_sync(struct delayed_work *dwork)
2886{
8930caba 2887 local_irq_disable();
09383498 2888 if (del_timer_sync(&dwork->timer))
57469821 2889 __queue_work(WORK_CPU_UNBOUND,
09383498 2890 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2891 local_irq_enable();
09383498
TH
2892 return flush_work_sync(&dwork->work);
2893}
2894EXPORT_SYMBOL(flush_delayed_work_sync);
2895
401a8d04
TH
2896/**
2897 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2898 * @dwork: the delayed work cancel
2899 *
2900 * This is cancel_work_sync() for delayed works.
2901 *
2902 * RETURNS:
2903 * %true if @dwork was pending, %false otherwise.
2904 */
2905bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2906{
1f1f642e 2907 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2908}
f5a421a4 2909EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2910
d4283e93 2911/**
0a13c00e
TH
2912 * schedule_work_on - put work task on a specific cpu
2913 * @cpu: cpu to put the work task on
2914 * @work: job to be done
2915 *
2916 * This puts a job on a specific cpu
2917 */
d4283e93 2918bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
2919{
2920 return queue_work_on(cpu, system_wq, work);
2921}
2922EXPORT_SYMBOL(schedule_work_on);
2923
0fcb78c2
REB
2924/**
2925 * schedule_work - put work task in global workqueue
2926 * @work: job to be done
2927 *
d4283e93
TH
2928 * Returns %false if @work was already on the kernel-global workqueue and
2929 * %true otherwise.
5b0f437d
BVA
2930 *
2931 * This puts a job in the kernel-global workqueue if it was not already
2932 * queued and leaves it in the same position on the kernel-global
2933 * workqueue otherwise.
0fcb78c2 2934 */
d4283e93 2935bool schedule_work(struct work_struct *work)
1da177e4 2936{
d320c038 2937 return queue_work(system_wq, work);
1da177e4 2938}
ae90dd5d 2939EXPORT_SYMBOL(schedule_work);
1da177e4 2940
0a13c00e
TH
2941/**
2942 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2943 * @cpu: cpu to use
2944 * @dwork: job to be done
2945 * @delay: number of jiffies to wait
c1a220e7 2946 *
0a13c00e
TH
2947 * After waiting for a given time this puts a job in the kernel-global
2948 * workqueue on the specified CPU.
c1a220e7 2949 */
d4283e93
TH
2950bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2951 unsigned long delay)
c1a220e7 2952{
0a13c00e 2953 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 2954}
0a13c00e 2955EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 2956
0fcb78c2
REB
2957/**
2958 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2959 * @dwork: job to be done
2960 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2961 *
2962 * After waiting for a given time this puts a job in the kernel-global
2963 * workqueue.
2964 */
d4283e93 2965bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2966{
d320c038 2967 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2968}
ae90dd5d 2969EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2970
b6136773 2971/**
31ddd871 2972 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2973 * @func: the function to call
b6136773 2974 *
31ddd871
TH
2975 * schedule_on_each_cpu() executes @func on each online CPU using the
2976 * system workqueue and blocks until all CPUs have completed.
b6136773 2977 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2978 *
2979 * RETURNS:
2980 * 0 on success, -errno on failure.
b6136773 2981 */
65f27f38 2982int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2983{
2984 int cpu;
38f51568 2985 struct work_struct __percpu *works;
15316ba8 2986
b6136773
AM
2987 works = alloc_percpu(struct work_struct);
2988 if (!works)
15316ba8 2989 return -ENOMEM;
b6136773 2990
93981800
TH
2991 get_online_cpus();
2992
15316ba8 2993 for_each_online_cpu(cpu) {
9bfb1839
IM
2994 struct work_struct *work = per_cpu_ptr(works, cpu);
2995
2996 INIT_WORK(work, func);
b71ab8c2 2997 schedule_work_on(cpu, work);
65a64464 2998 }
93981800
TH
2999
3000 for_each_online_cpu(cpu)
3001 flush_work(per_cpu_ptr(works, cpu));
3002
95402b38 3003 put_online_cpus();
b6136773 3004 free_percpu(works);
15316ba8
CL
3005 return 0;
3006}
3007
eef6a7d5
AS
3008/**
3009 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3010 *
3011 * Forces execution of the kernel-global workqueue and blocks until its
3012 * completion.
3013 *
3014 * Think twice before calling this function! It's very easy to get into
3015 * trouble if you don't take great care. Either of the following situations
3016 * will lead to deadlock:
3017 *
3018 * One of the work items currently on the workqueue needs to acquire
3019 * a lock held by your code or its caller.
3020 *
3021 * Your code is running in the context of a work routine.
3022 *
3023 * They will be detected by lockdep when they occur, but the first might not
3024 * occur very often. It depends on what work items are on the workqueue and
3025 * what locks they need, which you have no control over.
3026 *
3027 * In most situations flushing the entire workqueue is overkill; you merely
3028 * need to know that a particular work item isn't queued and isn't running.
3029 * In such cases you should use cancel_delayed_work_sync() or
3030 * cancel_work_sync() instead.
3031 */
1da177e4
LT
3032void flush_scheduled_work(void)
3033{
d320c038 3034 flush_workqueue(system_wq);
1da177e4 3035}
ae90dd5d 3036EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3037
1fa44eca
JB
3038/**
3039 * execute_in_process_context - reliably execute the routine with user context
3040 * @fn: the function to execute
1fa44eca
JB
3041 * @ew: guaranteed storage for the execute work structure (must
3042 * be available when the work executes)
3043 *
3044 * Executes the function immediately if process context is available,
3045 * otherwise schedules the function for delayed execution.
3046 *
3047 * Returns: 0 - function was executed
3048 * 1 - function was scheduled for execution
3049 */
65f27f38 3050int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3051{
3052 if (!in_interrupt()) {
65f27f38 3053 fn(&ew->work);
1fa44eca
JB
3054 return 0;
3055 }
3056
65f27f38 3057 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3058 schedule_work(&ew->work);
3059
3060 return 1;
3061}
3062EXPORT_SYMBOL_GPL(execute_in_process_context);
3063
1da177e4
LT
3064int keventd_up(void)
3065{
d320c038 3066 return system_wq != NULL;
1da177e4
LT
3067}
3068
bdbc5dd7 3069static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3070{
65a64464 3071 /*
0f900049
TH
3072 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3073 * Make sure that the alignment isn't lower than that of
3074 * unsigned long long.
65a64464 3075 */
0f900049
TH
3076 const size_t size = sizeof(struct cpu_workqueue_struct);
3077 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3078 __alignof__(unsigned long long));
65a64464 3079
e06ffa1e 3080 if (!(wq->flags & WQ_UNBOUND))
f3421797 3081 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3082 else {
f3421797
TH
3083 void *ptr;
3084
3085 /*
3086 * Allocate enough room to align cwq and put an extra
3087 * pointer at the end pointing back to the originally
3088 * allocated pointer which will be used for free.
3089 */
3090 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3091 if (ptr) {
3092 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3093 *(void **)(wq->cpu_wq.single + 1) = ptr;
3094 }
bdbc5dd7 3095 }
f3421797 3096
0415b00d 3097 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3098 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3099 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3100}
3101
bdbc5dd7 3102static void free_cwqs(struct workqueue_struct *wq)
0f900049 3103{
e06ffa1e 3104 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3105 free_percpu(wq->cpu_wq.pcpu);
3106 else if (wq->cpu_wq.single) {
3107 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3108 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3109 }
0f900049
TH
3110}
3111
f3421797
TH
3112static int wq_clamp_max_active(int max_active, unsigned int flags,
3113 const char *name)
b71ab8c2 3114{
f3421797
TH
3115 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3116
3117 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3118 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3119 "is out of range, clamping between %d and %d\n",
f3421797 3120 max_active, name, 1, lim);
b71ab8c2 3121
f3421797 3122 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3123}
3124
b196be89 3125struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3126 unsigned int flags,
3127 int max_active,
3128 struct lock_class_key *key,
b196be89 3129 const char *lock_name, ...)
1da177e4 3130{
b196be89 3131 va_list args, args1;
1da177e4 3132 struct workqueue_struct *wq;
c34056a3 3133 unsigned int cpu;
b196be89
TH
3134 size_t namelen;
3135
3136 /* determine namelen, allocate wq and format name */
3137 va_start(args, lock_name);
3138 va_copy(args1, args);
3139 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3140
3141 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3142 if (!wq)
3143 goto err;
3144
3145 vsnprintf(wq->name, namelen, fmt, args1);
3146 va_end(args);
3147 va_end(args1);
1da177e4 3148
6370a6ad
TH
3149 /*
3150 * Workqueues which may be used during memory reclaim should
3151 * have a rescuer to guarantee forward progress.
3152 */
3153 if (flags & WQ_MEM_RECLAIM)
3154 flags |= WQ_RESCUER;
3155
d320c038 3156 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3157 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3158
b196be89 3159 /* init wq */
97e37d7b 3160 wq->flags = flags;
a0a1a5fd 3161 wq->saved_max_active = max_active;
73f53c4a
TH
3162 mutex_init(&wq->flush_mutex);
3163 atomic_set(&wq->nr_cwqs_to_flush, 0);
3164 INIT_LIST_HEAD(&wq->flusher_queue);
3165 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3166
eb13ba87 3167 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3168 INIT_LIST_HEAD(&wq->list);
3af24433 3169
bdbc5dd7
TH
3170 if (alloc_cwqs(wq) < 0)
3171 goto err;
3172
f3421797 3173 for_each_cwq_cpu(cpu, wq) {
1537663f 3174 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3175 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3176 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3177
0f900049 3178 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3179 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3180 cwq->wq = wq;
73f53c4a 3181 cwq->flush_color = -1;
1e19ffc6 3182 cwq->max_active = max_active;
1e19ffc6 3183 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3184 }
1537663f 3185
e22bee78
TH
3186 if (flags & WQ_RESCUER) {
3187 struct worker *rescuer;
3188
f2e005aa 3189 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3190 goto err;
3191
3192 wq->rescuer = rescuer = alloc_worker();
3193 if (!rescuer)
3194 goto err;
3195
b196be89
TH
3196 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3197 wq->name);
e22bee78
TH
3198 if (IS_ERR(rescuer->task))
3199 goto err;
3200
e22bee78
TH
3201 rescuer->task->flags |= PF_THREAD_BOUND;
3202 wake_up_process(rescuer->task);
3af24433
ON
3203 }
3204
a0a1a5fd
TH
3205 /*
3206 * workqueue_lock protects global freeze state and workqueues
3207 * list. Grab it, set max_active accordingly and add the new
3208 * workqueue to workqueues list.
3209 */
1537663f 3210 spin_lock(&workqueue_lock);
a0a1a5fd 3211
58a69cb4 3212 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3213 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3214 get_cwq(cpu, wq)->max_active = 0;
3215
1537663f 3216 list_add(&wq->list, &workqueues);
a0a1a5fd 3217
1537663f
TH
3218 spin_unlock(&workqueue_lock);
3219
3af24433 3220 return wq;
4690c4ab
TH
3221err:
3222 if (wq) {
bdbc5dd7 3223 free_cwqs(wq);
f2e005aa 3224 free_mayday_mask(wq->mayday_mask);
e22bee78 3225 kfree(wq->rescuer);
4690c4ab
TH
3226 kfree(wq);
3227 }
3228 return NULL;
3af24433 3229}
d320c038 3230EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3231
3af24433
ON
3232/**
3233 * destroy_workqueue - safely terminate a workqueue
3234 * @wq: target workqueue
3235 *
3236 * Safely destroy a workqueue. All work currently pending will be done first.
3237 */
3238void destroy_workqueue(struct workqueue_struct *wq)
3239{
c8e55f36 3240 unsigned int cpu;
3af24433 3241
9c5a2ba7
TH
3242 /* drain it before proceeding with destruction */
3243 drain_workqueue(wq);
c8efcc25 3244
a0a1a5fd
TH
3245 /*
3246 * wq list is used to freeze wq, remove from list after
3247 * flushing is complete in case freeze races us.
3248 */
95402b38 3249 spin_lock(&workqueue_lock);
b1f4ec17 3250 list_del(&wq->list);
95402b38 3251 spin_unlock(&workqueue_lock);
3af24433 3252
e22bee78 3253 /* sanity check */
f3421797 3254 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3255 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3256 int i;
3257
73f53c4a
TH
3258 for (i = 0; i < WORK_NR_COLORS; i++)
3259 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3260 BUG_ON(cwq->nr_active);
3261 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3262 }
9b41ea72 3263
e22bee78
TH
3264 if (wq->flags & WQ_RESCUER) {
3265 kthread_stop(wq->rescuer->task);
f2e005aa 3266 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3267 kfree(wq->rescuer);
e22bee78
TH
3268 }
3269
bdbc5dd7 3270 free_cwqs(wq);
3af24433
ON
3271 kfree(wq);
3272}
3273EXPORT_SYMBOL_GPL(destroy_workqueue);
3274
dcd989cb
TH
3275/**
3276 * workqueue_set_max_active - adjust max_active of a workqueue
3277 * @wq: target workqueue
3278 * @max_active: new max_active value.
3279 *
3280 * Set max_active of @wq to @max_active.
3281 *
3282 * CONTEXT:
3283 * Don't call from IRQ context.
3284 */
3285void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3286{
3287 unsigned int cpu;
3288
f3421797 3289 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3290
3291 spin_lock(&workqueue_lock);
3292
3293 wq->saved_max_active = max_active;
3294
f3421797 3295 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3296 struct global_cwq *gcwq = get_gcwq(cpu);
3297
3298 spin_lock_irq(&gcwq->lock);
3299
58a69cb4 3300 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3301 !(gcwq->flags & GCWQ_FREEZING))
3302 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3303
dcd989cb 3304 spin_unlock_irq(&gcwq->lock);
65a64464 3305 }
93981800 3306
dcd989cb 3307 spin_unlock(&workqueue_lock);
15316ba8 3308}
dcd989cb 3309EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3310
eef6a7d5 3311/**
dcd989cb
TH
3312 * workqueue_congested - test whether a workqueue is congested
3313 * @cpu: CPU in question
3314 * @wq: target workqueue
eef6a7d5 3315 *
dcd989cb
TH
3316 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3317 * no synchronization around this function and the test result is
3318 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3319 *
dcd989cb
TH
3320 * RETURNS:
3321 * %true if congested, %false otherwise.
eef6a7d5 3322 */
dcd989cb 3323bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3324{
dcd989cb
TH
3325 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3326
3327 return !list_empty(&cwq->delayed_works);
1da177e4 3328}
dcd989cb 3329EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3330
1fa44eca 3331/**
dcd989cb
TH
3332 * work_cpu - return the last known associated cpu for @work
3333 * @work: the work of interest
1fa44eca 3334 *
dcd989cb 3335 * RETURNS:
bdbc5dd7 3336 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3337 */
dcd989cb 3338unsigned int work_cpu(struct work_struct *work)
1fa44eca 3339{
dcd989cb 3340 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3341
bdbc5dd7 3342 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3343}
dcd989cb 3344EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3345
dcd989cb
TH
3346/**
3347 * work_busy - test whether a work is currently pending or running
3348 * @work: the work to be tested
3349 *
3350 * Test whether @work is currently pending or running. There is no
3351 * synchronization around this function and the test result is
3352 * unreliable and only useful as advisory hints or for debugging.
3353 * Especially for reentrant wqs, the pending state might hide the
3354 * running state.
3355 *
3356 * RETURNS:
3357 * OR'd bitmask of WORK_BUSY_* bits.
3358 */
3359unsigned int work_busy(struct work_struct *work)
1da177e4 3360{
dcd989cb
TH
3361 struct global_cwq *gcwq = get_work_gcwq(work);
3362 unsigned long flags;
3363 unsigned int ret = 0;
1da177e4 3364
dcd989cb
TH
3365 if (!gcwq)
3366 return false;
1da177e4 3367
dcd989cb 3368 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3369
dcd989cb
TH
3370 if (work_pending(work))
3371 ret |= WORK_BUSY_PENDING;
3372 if (find_worker_executing_work(gcwq, work))
3373 ret |= WORK_BUSY_RUNNING;
1da177e4 3374
dcd989cb 3375 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3376
dcd989cb 3377 return ret;
1da177e4 3378}
dcd989cb 3379EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3380
db7bccf4
TH
3381/*
3382 * CPU hotplug.
3383 *
e22bee78
TH
3384 * There are two challenges in supporting CPU hotplug. Firstly, there
3385 * are a lot of assumptions on strong associations among work, cwq and
3386 * gcwq which make migrating pending and scheduled works very
3387 * difficult to implement without impacting hot paths. Secondly,
3388 * gcwqs serve mix of short, long and very long running works making
3389 * blocked draining impractical.
3390 *
628c78e7
TH
3391 * This is solved by allowing a gcwq to be disassociated from the CPU
3392 * running as an unbound one and allowing it to be reattached later if the
3393 * cpu comes back online.
db7bccf4 3394 */
1da177e4 3395
60373152 3396/* claim manager positions of all pools */
8db25e78 3397static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3398{
3399 struct worker_pool *pool;
3400
3401 for_each_worker_pool(pool, gcwq)
3402 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3403 spin_lock_irq(&gcwq->lock);
60373152
TH
3404}
3405
3406/* release manager positions */
8db25e78 3407static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3408{
3409 struct worker_pool *pool;
3410
8db25e78 3411 spin_unlock_irq(&gcwq->lock);
60373152
TH
3412 for_each_worker_pool(pool, gcwq)
3413 mutex_unlock(&pool->manager_mutex);
3414}
3415
628c78e7 3416static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3417{
628c78e7 3418 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3419 struct worker_pool *pool;
db7bccf4
TH
3420 struct worker *worker;
3421 struct hlist_node *pos;
3422 int i;
3af24433 3423
db7bccf4
TH
3424 BUG_ON(gcwq->cpu != smp_processor_id());
3425
8db25e78 3426 gcwq_claim_management_and_lock(gcwq);
3af24433 3427
f2d5a0ee
TH
3428 /*
3429 * We've claimed all manager positions. Make all workers unbound
3430 * and set DISASSOCIATED. Before this, all workers except for the
3431 * ones which are still executing works from before the last CPU
3432 * down must be on the cpu. After this, they may become diasporas.
3433 */
60373152 3434 for_each_worker_pool(pool, gcwq)
4ce62e9e 3435 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3436 worker->flags |= WORKER_UNBOUND;
3af24433 3437
db7bccf4 3438 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3439 worker->flags |= WORKER_UNBOUND;
06ba38a9 3440
f2d5a0ee
TH
3441 gcwq->flags |= GCWQ_DISASSOCIATED;
3442
8db25e78 3443 gcwq_release_management_and_unlock(gcwq);
628c78e7 3444
e22bee78 3445 /*
403c821d 3446 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3447 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3448 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3449 */
e22bee78 3450 schedule();
06ba38a9 3451
e22bee78 3452 /*
628c78e7
TH
3453 * Sched callbacks are disabled now. Zap nr_running. After this,
3454 * nr_running stays zero and need_more_worker() and keep_working()
3455 * are always true as long as the worklist is not empty. @gcwq now
3456 * behaves as unbound (in terms of concurrency management) gcwq
3457 * which is served by workers tied to the CPU.
3458 *
3459 * On return from this function, the current worker would trigger
3460 * unbound chain execution of pending work items if other workers
3461 * didn't already.
e22bee78 3462 */
4ce62e9e
TH
3463 for_each_worker_pool(pool, gcwq)
3464 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3465}
3af24433 3466
8db25e78
TH
3467/*
3468 * Workqueues should be brought up before normal priority CPU notifiers.
3469 * This will be registered high priority CPU notifier.
3470 */
3471static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3472 unsigned long action,
3473 void *hcpu)
3af24433
ON
3474{
3475 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3476 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3477 struct worker_pool *pool;
3ce63377 3478
8db25e78 3479 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3480 case CPU_UP_PREPARE:
4ce62e9e 3481 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3482 struct worker *worker;
3483
3484 if (pool->nr_workers)
3485 continue;
3486
3487 worker = create_worker(pool);
3488 if (!worker)
3489 return NOTIFY_BAD;
3490
3491 spin_lock_irq(&gcwq->lock);
3492 start_worker(worker);
3493 spin_unlock_irq(&gcwq->lock);
3af24433 3494 }
8db25e78 3495 break;
3af24433 3496
db7bccf4
TH
3497 case CPU_DOWN_FAILED:
3498 case CPU_ONLINE:
8db25e78 3499 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3500 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3501 rebind_workers(gcwq);
8db25e78 3502 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3503 break;
00dfcaf7 3504 }
65758202
TH
3505 return NOTIFY_OK;
3506}
3507
3508/*
3509 * Workqueues should be brought down after normal priority CPU notifiers.
3510 * This will be registered as low priority CPU notifier.
3511 */
3512static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3513 unsigned long action,
3514 void *hcpu)
3515{
8db25e78
TH
3516 unsigned int cpu = (unsigned long)hcpu;
3517 struct work_struct unbind_work;
3518
65758202
TH
3519 switch (action & ~CPU_TASKS_FROZEN) {
3520 case CPU_DOWN_PREPARE:
8db25e78
TH
3521 /* unbinding should happen on the local CPU */
3522 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3523 schedule_work_on(cpu, &unbind_work);
3524 flush_work(&unbind_work);
3525 break;
65758202
TH
3526 }
3527 return NOTIFY_OK;
3528}
3529
2d3854a3 3530#ifdef CONFIG_SMP
8ccad40d 3531
2d3854a3 3532struct work_for_cpu {
6b44003e 3533 struct completion completion;
2d3854a3
RR
3534 long (*fn)(void *);
3535 void *arg;
3536 long ret;
3537};
3538
6b44003e 3539static int do_work_for_cpu(void *_wfc)
2d3854a3 3540{
6b44003e 3541 struct work_for_cpu *wfc = _wfc;
2d3854a3 3542 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3543 complete(&wfc->completion);
3544 return 0;
2d3854a3
RR
3545}
3546
3547/**
3548 * work_on_cpu - run a function in user context on a particular cpu
3549 * @cpu: the cpu to run on
3550 * @fn: the function to run
3551 * @arg: the function arg
3552 *
31ad9081
RR
3553 * This will return the value @fn returns.
3554 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3555 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3556 */
3557long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3558{
6b44003e
AM
3559 struct task_struct *sub_thread;
3560 struct work_for_cpu wfc = {
3561 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3562 .fn = fn,
3563 .arg = arg,
3564 };
3565
3566 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3567 if (IS_ERR(sub_thread))
3568 return PTR_ERR(sub_thread);
3569 kthread_bind(sub_thread, cpu);
3570 wake_up_process(sub_thread);
3571 wait_for_completion(&wfc.completion);
2d3854a3
RR
3572 return wfc.ret;
3573}
3574EXPORT_SYMBOL_GPL(work_on_cpu);
3575#endif /* CONFIG_SMP */
3576
a0a1a5fd
TH
3577#ifdef CONFIG_FREEZER
3578
3579/**
3580 * freeze_workqueues_begin - begin freezing workqueues
3581 *
58a69cb4
TH
3582 * Start freezing workqueues. After this function returns, all freezable
3583 * workqueues will queue new works to their frozen_works list instead of
3584 * gcwq->worklist.
a0a1a5fd
TH
3585 *
3586 * CONTEXT:
8b03ae3c 3587 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3588 */
3589void freeze_workqueues_begin(void)
3590{
a0a1a5fd
TH
3591 unsigned int cpu;
3592
3593 spin_lock(&workqueue_lock);
3594
3595 BUG_ON(workqueue_freezing);
3596 workqueue_freezing = true;
3597
f3421797 3598 for_each_gcwq_cpu(cpu) {
8b03ae3c 3599 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3600 struct workqueue_struct *wq;
8b03ae3c
TH
3601
3602 spin_lock_irq(&gcwq->lock);
3603
db7bccf4
TH
3604 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3605 gcwq->flags |= GCWQ_FREEZING;
3606
a0a1a5fd
TH
3607 list_for_each_entry(wq, &workqueues, list) {
3608 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3609
58a69cb4 3610 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3611 cwq->max_active = 0;
a0a1a5fd 3612 }
8b03ae3c
TH
3613
3614 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3615 }
3616
3617 spin_unlock(&workqueue_lock);
3618}
3619
3620/**
58a69cb4 3621 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3622 *
3623 * Check whether freezing is complete. This function must be called
3624 * between freeze_workqueues_begin() and thaw_workqueues().
3625 *
3626 * CONTEXT:
3627 * Grabs and releases workqueue_lock.
3628 *
3629 * RETURNS:
58a69cb4
TH
3630 * %true if some freezable workqueues are still busy. %false if freezing
3631 * is complete.
a0a1a5fd
TH
3632 */
3633bool freeze_workqueues_busy(void)
3634{
a0a1a5fd
TH
3635 unsigned int cpu;
3636 bool busy = false;
3637
3638 spin_lock(&workqueue_lock);
3639
3640 BUG_ON(!workqueue_freezing);
3641
f3421797 3642 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3643 struct workqueue_struct *wq;
a0a1a5fd
TH
3644 /*
3645 * nr_active is monotonically decreasing. It's safe
3646 * to peek without lock.
3647 */
3648 list_for_each_entry(wq, &workqueues, list) {
3649 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3650
58a69cb4 3651 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3652 continue;
3653
3654 BUG_ON(cwq->nr_active < 0);
3655 if (cwq->nr_active) {
3656 busy = true;
3657 goto out_unlock;
3658 }
3659 }
3660 }
3661out_unlock:
3662 spin_unlock(&workqueue_lock);
3663 return busy;
3664}
3665
3666/**
3667 * thaw_workqueues - thaw workqueues
3668 *
3669 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3670 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3671 *
3672 * CONTEXT:
8b03ae3c 3673 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3674 */
3675void thaw_workqueues(void)
3676{
a0a1a5fd
TH
3677 unsigned int cpu;
3678
3679 spin_lock(&workqueue_lock);
3680
3681 if (!workqueue_freezing)
3682 goto out_unlock;
3683
f3421797 3684 for_each_gcwq_cpu(cpu) {
8b03ae3c 3685 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3686 struct worker_pool *pool;
bdbc5dd7 3687 struct workqueue_struct *wq;
8b03ae3c
TH
3688
3689 spin_lock_irq(&gcwq->lock);
3690
db7bccf4
TH
3691 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3692 gcwq->flags &= ~GCWQ_FREEZING;
3693
a0a1a5fd
TH
3694 list_for_each_entry(wq, &workqueues, list) {
3695 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3696
58a69cb4 3697 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3698 continue;
3699
a0a1a5fd
TH
3700 /* restore max_active and repopulate worklist */
3701 cwq->max_active = wq->saved_max_active;
3702
3703 while (!list_empty(&cwq->delayed_works) &&
3704 cwq->nr_active < cwq->max_active)
3705 cwq_activate_first_delayed(cwq);
a0a1a5fd 3706 }
8b03ae3c 3707
4ce62e9e
TH
3708 for_each_worker_pool(pool, gcwq)
3709 wake_up_worker(pool);
e22bee78 3710
8b03ae3c 3711 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3712 }
3713
3714 workqueue_freezing = false;
3715out_unlock:
3716 spin_unlock(&workqueue_lock);
3717}
3718#endif /* CONFIG_FREEZER */
3719
6ee0578b 3720static int __init init_workqueues(void)
1da177e4 3721{
c34056a3 3722 unsigned int cpu;
c8e55f36 3723 int i;
c34056a3 3724
65758202
TH
3725 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3726 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3727
3728 /* initialize gcwqs */
f3421797 3729 for_each_gcwq_cpu(cpu) {
8b03ae3c 3730 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3731 struct worker_pool *pool;
8b03ae3c
TH
3732
3733 spin_lock_init(&gcwq->lock);
3734 gcwq->cpu = cpu;
477a3c33 3735 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3736
c8e55f36
TH
3737 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3738 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3739
4ce62e9e
TH
3740 for_each_worker_pool(pool, gcwq) {
3741 pool->gcwq = gcwq;
3742 INIT_LIST_HEAD(&pool->worklist);
3743 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3744
4ce62e9e
TH
3745 init_timer_deferrable(&pool->idle_timer);
3746 pool->idle_timer.function = idle_worker_timeout;
3747 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3748
4ce62e9e
TH
3749 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3750 (unsigned long)pool);
3751
60373152 3752 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3753 ida_init(&pool->worker_ida);
3754 }
db7bccf4 3755
25511a47 3756 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3757 }
3758
e22bee78 3759 /* create the initial worker */
f3421797 3760 for_each_online_gcwq_cpu(cpu) {
e22bee78 3761 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3762 struct worker_pool *pool;
e22bee78 3763
477a3c33
TH
3764 if (cpu != WORK_CPU_UNBOUND)
3765 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3766
3767 for_each_worker_pool(pool, gcwq) {
3768 struct worker *worker;
3769
bc2ae0f5 3770 worker = create_worker(pool);
4ce62e9e
TH
3771 BUG_ON(!worker);
3772 spin_lock_irq(&gcwq->lock);
3773 start_worker(worker);
3774 spin_unlock_irq(&gcwq->lock);
3775 }
e22bee78
TH
3776 }
3777
d320c038
TH
3778 system_wq = alloc_workqueue("events", 0, 0);
3779 system_long_wq = alloc_workqueue("events_long", 0, 0);
3780 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3781 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3782 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3783 system_freezable_wq = alloc_workqueue("events_freezable",
3784 WQ_FREEZABLE, 0);
62d3c543
AS
3785 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3786 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3787 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3788 !system_unbound_wq || !system_freezable_wq ||
3789 !system_nrt_freezable_wq);
6ee0578b 3790 return 0;
1da177e4 3791}
6ee0578b 3792early_initcall(init_workqueues);