workqueue: introduce NR_WORKER_POOLS and for_each_worker_pool()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
db7bccf4 48 /* global_cwq flags */
11ebea50
TH
49 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
50 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
51
52 /* pool flags */
53 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
54 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
55 POOL_HIGHPRI_PENDING = 1 << 2, /* highpri works on queue */
db7bccf4 56
c8e55f36
TH
57 /* worker flags */
58 WORKER_STARTED = 1 << 0, /* started */
59 WORKER_DIE = 1 << 1, /* die die die */
60 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 61 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 62 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78 63 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 64 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 65 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 66
fb0e7beb 67 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
f3421797 68 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
db7bccf4
TH
69
70 /* gcwq->trustee_state */
71 TRUSTEE_START = 0, /* start */
72 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
73 TRUSTEE_BUTCHER = 2, /* butcher workers */
74 TRUSTEE_RELEASE = 3, /* release workers */
75 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36 76
4ce62e9e
TH
77 NR_WORKER_POOLS = 1, /* # worker pools per gcwq */
78
c8e55f36
TH
79 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
80 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
81 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 82
e22bee78
TH
83 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
84 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
85
3233cdbd
TH
86 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
87 /* call for help after 10ms
88 (min two ticks) */
e22bee78
TH
89 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
90 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 91 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
92
93 /*
94 * Rescue workers are used only on emergencies and shared by
95 * all cpus. Give -20.
96 */
97 RESCUER_NICE_LEVEL = -20,
c8e55f36 98};
1da177e4
LT
99
100/*
4690c4ab
TH
101 * Structure fields follow one of the following exclusion rules.
102 *
e41e704b
TH
103 * I: Modifiable by initialization/destruction paths and read-only for
104 * everyone else.
4690c4ab 105 *
e22bee78
TH
106 * P: Preemption protected. Disabling preemption is enough and should
107 * only be modified and accessed from the local cpu.
108 *
8b03ae3c 109 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 110 *
e22bee78
TH
111 * X: During normal operation, modification requires gcwq->lock and
112 * should be done only from local cpu. Either disabling preemption
113 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 114 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 115 *
73f53c4a
TH
116 * F: wq->flush_mutex protected.
117 *
4690c4ab 118 * W: workqueue_lock protected.
1da177e4 119 */
1da177e4 120
8b03ae3c 121struct global_cwq;
bd7bdd43 122struct worker_pool;
1da177e4 123
e22bee78
TH
124/*
125 * The poor guys doing the actual heavy lifting. All on-duty workers
126 * are either serving the manager role, on idle list or on busy hash.
127 */
c34056a3 128struct worker {
c8e55f36
TH
129 /* on idle list while idle, on busy hash table while busy */
130 union {
131 struct list_head entry; /* L: while idle */
132 struct hlist_node hentry; /* L: while busy */
133 };
1da177e4 134
c34056a3 135 struct work_struct *current_work; /* L: work being processed */
8cca0eea 136 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 137 struct list_head scheduled; /* L: scheduled works */
c34056a3 138 struct task_struct *task; /* I: worker task */
bd7bdd43 139 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
140 /* 64 bytes boundary on 64bit, 32 on 32bit */
141 unsigned long last_active; /* L: last active timestamp */
142 unsigned int flags; /* X: flags */
c34056a3 143 int id; /* I: worker id */
e22bee78 144 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
145};
146
bd7bdd43
TH
147struct worker_pool {
148 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43
TH
150
151 struct list_head worklist; /* L: list of pending works */
152 int nr_workers; /* L: total number of workers */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 struct ida worker_ida; /* L: for worker IDs */
160 struct worker *first_idle; /* L: first idle worker */
161};
162
8b03ae3c 163/*
e22bee78
TH
164 * Global per-cpu workqueue. There's one and only one for each cpu
165 * and all works are queued and processed here regardless of their
166 * target workqueues.
8b03ae3c
TH
167 */
168struct global_cwq {
169 spinlock_t lock; /* the gcwq lock */
170 unsigned int cpu; /* I: the associated cpu */
db7bccf4 171 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 172
bd7bdd43 173 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
174 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
175 /* L: hash of busy workers */
176
bd7bdd43 177 struct worker_pool pool; /* the worker pools */
db7bccf4
TH
178
179 struct task_struct *trustee; /* L: for gcwq shutdown */
180 unsigned int trustee_state; /* L: trustee state */
181 wait_queue_head_t trustee_wait; /* trustee wait */
8b03ae3c
TH
182} ____cacheline_aligned_in_smp;
183
1da177e4 184/*
502ca9d8 185 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
186 * work_struct->data are used for flags and thus cwqs need to be
187 * aligned at two's power of the number of flag bits.
1da177e4
LT
188 */
189struct cpu_workqueue_struct {
bd7bdd43 190 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 191 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
192 int work_color; /* L: current color */
193 int flush_color; /* L: flushing color */
194 int nr_in_flight[WORK_NR_COLORS];
195 /* L: nr of in_flight works */
1e19ffc6 196 int nr_active; /* L: nr of active works */
a0a1a5fd 197 int max_active; /* L: max active works */
1e19ffc6 198 struct list_head delayed_works; /* L: delayed works */
0f900049 199};
1da177e4 200
73f53c4a
TH
201/*
202 * Structure used to wait for workqueue flush.
203 */
204struct wq_flusher {
205 struct list_head list; /* F: list of flushers */
206 int flush_color; /* F: flush color waiting for */
207 struct completion done; /* flush completion */
208};
209
f2e005aa
TH
210/*
211 * All cpumasks are assumed to be always set on UP and thus can't be
212 * used to determine whether there's something to be done.
213 */
214#ifdef CONFIG_SMP
215typedef cpumask_var_t mayday_mask_t;
216#define mayday_test_and_set_cpu(cpu, mask) \
217 cpumask_test_and_set_cpu((cpu), (mask))
218#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
219#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 220#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
221#define free_mayday_mask(mask) free_cpumask_var((mask))
222#else
223typedef unsigned long mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
225#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
226#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
227#define alloc_mayday_mask(maskp, gfp) true
228#define free_mayday_mask(mask) do { } while (0)
229#endif
1da177e4
LT
230
231/*
232 * The externally visible workqueue abstraction is an array of
233 * per-CPU workqueues:
234 */
235struct workqueue_struct {
9c5a2ba7 236 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
237 union {
238 struct cpu_workqueue_struct __percpu *pcpu;
239 struct cpu_workqueue_struct *single;
240 unsigned long v;
241 } cpu_wq; /* I: cwq's */
4690c4ab 242 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
243
244 struct mutex flush_mutex; /* protects wq flushing */
245 int work_color; /* F: current work color */
246 int flush_color; /* F: current flush color */
247 atomic_t nr_cwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* F: first flusher */
249 struct list_head flusher_queue; /* F: flush waiters */
250 struct list_head flusher_overflow; /* F: flush overflow list */
251
f2e005aa 252 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
253 struct worker *rescuer; /* I: rescue worker */
254
9c5a2ba7 255 int nr_drainers; /* W: drain in progress */
dcd989cb 256 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 257#ifdef CONFIG_LOCKDEP
4690c4ab 258 struct lockdep_map lockdep_map;
4e6045f1 259#endif
b196be89 260 char name[]; /* I: workqueue name */
1da177e4
LT
261};
262
d320c038
TH
263struct workqueue_struct *system_wq __read_mostly;
264struct workqueue_struct *system_long_wq __read_mostly;
265struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 266struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 267struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 268struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
269EXPORT_SYMBOL_GPL(system_wq);
270EXPORT_SYMBOL_GPL(system_long_wq);
271EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 272EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 273EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 274EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 275
97bd2347
TH
276#define CREATE_TRACE_POINTS
277#include <trace/events/workqueue.h>
278
4ce62e9e
TH
279#define for_each_worker_pool(pool, gcwq) \
280 for ((pool) = &(gcwq)->pool; (pool); (pool) = NULL)
281
db7bccf4
TH
282#define for_each_busy_worker(worker, i, pos, gcwq) \
283 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
284 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
285
f3421797
TH
286static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
287 unsigned int sw)
288{
289 if (cpu < nr_cpu_ids) {
290 if (sw & 1) {
291 cpu = cpumask_next(cpu, mask);
292 if (cpu < nr_cpu_ids)
293 return cpu;
294 }
295 if (sw & 2)
296 return WORK_CPU_UNBOUND;
297 }
298 return WORK_CPU_NONE;
299}
300
301static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
302 struct workqueue_struct *wq)
303{
304 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
305}
306
09884951
TH
307/*
308 * CPU iterators
309 *
310 * An extra gcwq is defined for an invalid cpu number
311 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
312 * specific CPU. The following iterators are similar to
313 * for_each_*_cpu() iterators but also considers the unbound gcwq.
314 *
315 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
316 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
317 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
318 * WORK_CPU_UNBOUND for unbound workqueues
319 */
f3421797
TH
320#define for_each_gcwq_cpu(cpu) \
321 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
322 (cpu) < WORK_CPU_NONE; \
323 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
324
325#define for_each_online_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
329
330#define for_each_cwq_cpu(cpu, wq) \
331 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
334
dc186ad7
TG
335#ifdef CONFIG_DEBUG_OBJECTS_WORK
336
337static struct debug_obj_descr work_debug_descr;
338
99777288
SG
339static void *work_debug_hint(void *addr)
340{
341 return ((struct work_struct *) addr)->func;
342}
343
dc186ad7
TG
344/*
345 * fixup_init is called when:
346 * - an active object is initialized
347 */
348static int work_fixup_init(void *addr, enum debug_obj_state state)
349{
350 struct work_struct *work = addr;
351
352 switch (state) {
353 case ODEBUG_STATE_ACTIVE:
354 cancel_work_sync(work);
355 debug_object_init(work, &work_debug_descr);
356 return 1;
357 default:
358 return 0;
359 }
360}
361
362/*
363 * fixup_activate is called when:
364 * - an active object is activated
365 * - an unknown object is activated (might be a statically initialized object)
366 */
367static int work_fixup_activate(void *addr, enum debug_obj_state state)
368{
369 struct work_struct *work = addr;
370
371 switch (state) {
372
373 case ODEBUG_STATE_NOTAVAILABLE:
374 /*
375 * This is not really a fixup. The work struct was
376 * statically initialized. We just make sure that it
377 * is tracked in the object tracker.
378 */
22df02bb 379 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
380 debug_object_init(work, &work_debug_descr);
381 debug_object_activate(work, &work_debug_descr);
382 return 0;
383 }
384 WARN_ON_ONCE(1);
385 return 0;
386
387 case ODEBUG_STATE_ACTIVE:
388 WARN_ON(1);
389
390 default:
391 return 0;
392 }
393}
394
395/*
396 * fixup_free is called when:
397 * - an active object is freed
398 */
399static int work_fixup_free(void *addr, enum debug_obj_state state)
400{
401 struct work_struct *work = addr;
402
403 switch (state) {
404 case ODEBUG_STATE_ACTIVE:
405 cancel_work_sync(work);
406 debug_object_free(work, &work_debug_descr);
407 return 1;
408 default:
409 return 0;
410 }
411}
412
413static struct debug_obj_descr work_debug_descr = {
414 .name = "work_struct",
99777288 415 .debug_hint = work_debug_hint,
dc186ad7
TG
416 .fixup_init = work_fixup_init,
417 .fixup_activate = work_fixup_activate,
418 .fixup_free = work_fixup_free,
419};
420
421static inline void debug_work_activate(struct work_struct *work)
422{
423 debug_object_activate(work, &work_debug_descr);
424}
425
426static inline void debug_work_deactivate(struct work_struct *work)
427{
428 debug_object_deactivate(work, &work_debug_descr);
429}
430
431void __init_work(struct work_struct *work, int onstack)
432{
433 if (onstack)
434 debug_object_init_on_stack(work, &work_debug_descr);
435 else
436 debug_object_init(work, &work_debug_descr);
437}
438EXPORT_SYMBOL_GPL(__init_work);
439
440void destroy_work_on_stack(struct work_struct *work)
441{
442 debug_object_free(work, &work_debug_descr);
443}
444EXPORT_SYMBOL_GPL(destroy_work_on_stack);
445
446#else
447static inline void debug_work_activate(struct work_struct *work) { }
448static inline void debug_work_deactivate(struct work_struct *work) { }
449#endif
450
95402b38
GS
451/* Serializes the accesses to the list of workqueues. */
452static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 453static LIST_HEAD(workqueues);
a0a1a5fd 454static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 455
e22bee78
TH
456/*
457 * The almighty global cpu workqueues. nr_running is the only field
458 * which is expected to be used frequently by other cpus via
459 * try_to_wake_up(). Put it in a separate cacheline.
460 */
8b03ae3c 461static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 462static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 463
f3421797
TH
464/*
465 * Global cpu workqueue and nr_running counter for unbound gcwq. The
466 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
467 * workers have WORKER_UNBOUND set.
468 */
469static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
470static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
471 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
472};
f3421797 473
c34056a3 474static int worker_thread(void *__worker);
1da177e4 475
8b03ae3c
TH
476static struct global_cwq *get_gcwq(unsigned int cpu)
477{
f3421797
TH
478 if (cpu != WORK_CPU_UNBOUND)
479 return &per_cpu(global_cwq, cpu);
480 else
481 return &unbound_global_cwq;
8b03ae3c
TH
482}
483
63d95a91 484static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 485{
63d95a91 486 int cpu = pool->gcwq->cpu;
4ce62e9e 487 int idx = 0;
63d95a91 488
f3421797 489 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 490 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 491 else
4ce62e9e 492 return &unbound_pool_nr_running[idx];
e22bee78
TH
493}
494
1537663f
TH
495static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
496 struct workqueue_struct *wq)
b1f4ec17 497{
f3421797 498 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 499 if (likely(cpu < nr_cpu_ids))
f3421797 500 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
501 } else if (likely(cpu == WORK_CPU_UNBOUND))
502 return wq->cpu_wq.single;
503 return NULL;
b1f4ec17
ON
504}
505
73f53c4a
TH
506static unsigned int work_color_to_flags(int color)
507{
508 return color << WORK_STRUCT_COLOR_SHIFT;
509}
510
511static int get_work_color(struct work_struct *work)
512{
513 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
514 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
515}
516
517static int work_next_color(int color)
518{
519 return (color + 1) % WORK_NR_COLORS;
520}
1da177e4 521
14441960 522/*
e120153d
TH
523 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
524 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
525 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
526 *
527 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
528 * cwq, cpu or clear work->data. These functions should only be
529 * called while the work is owned - ie. while the PENDING bit is set.
530 *
531 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
532 * corresponding to a work. gcwq is available once the work has been
533 * queued anywhere after initialization. cwq is available only from
534 * queueing until execution starts.
14441960 535 */
7a22ad75
TH
536static inline void set_work_data(struct work_struct *work, unsigned long data,
537 unsigned long flags)
365970a1 538{
4594bf15 539 BUG_ON(!work_pending(work));
7a22ad75
TH
540 atomic_long_set(&work->data, data | flags | work_static(work));
541}
365970a1 542
7a22ad75
TH
543static void set_work_cwq(struct work_struct *work,
544 struct cpu_workqueue_struct *cwq,
545 unsigned long extra_flags)
546{
547 set_work_data(work, (unsigned long)cwq,
e120153d 548 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
549}
550
7a22ad75
TH
551static void set_work_cpu(struct work_struct *work, unsigned int cpu)
552{
553 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
554}
f756d5e2 555
7a22ad75 556static void clear_work_data(struct work_struct *work)
1da177e4 557{
7a22ad75 558 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
559}
560
7a22ad75 561static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 562{
e120153d 563 unsigned long data = atomic_long_read(&work->data);
7a22ad75 564
e120153d
TH
565 if (data & WORK_STRUCT_CWQ)
566 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
567 else
568 return NULL;
4d707b9f
ON
569}
570
7a22ad75 571static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 572{
e120153d 573 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
574 unsigned int cpu;
575
e120153d
TH
576 if (data & WORK_STRUCT_CWQ)
577 return ((struct cpu_workqueue_struct *)
bd7bdd43 578 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
579
580 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 581 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
582 return NULL;
583
f3421797 584 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 585 return get_gcwq(cpu);
b1f4ec17
ON
586}
587
e22bee78
TH
588/*
589 * Policy functions. These define the policies on how the global
590 * worker pool is managed. Unless noted otherwise, these functions
591 * assume that they're being called with gcwq->lock held.
592 */
593
63d95a91 594static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 595{
63d95a91 596 return !atomic_read(get_pool_nr_running(pool)) ||
11ebea50 597 (pool->flags & POOL_HIGHPRI_PENDING);
a848e3b6
ON
598}
599
4594bf15 600/*
e22bee78
TH
601 * Need to wake up a worker? Called from anything but currently
602 * running workers.
974271c4
TH
603 *
604 * Note that, because unbound workers never contribute to nr_running, this
605 * function will always return %true for unbound gcwq as long as the
606 * worklist isn't empty.
4594bf15 607 */
63d95a91 608static bool need_more_worker(struct worker_pool *pool)
365970a1 609{
63d95a91 610 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 611}
4594bf15 612
e22bee78 613/* Can I start working? Called from busy but !running workers. */
63d95a91 614static bool may_start_working(struct worker_pool *pool)
e22bee78 615{
63d95a91 616 return pool->nr_idle;
e22bee78
TH
617}
618
619/* Do I need to keep working? Called from currently running workers. */
63d95a91 620static bool keep_working(struct worker_pool *pool)
e22bee78 621{
63d95a91 622 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 623
63d95a91 624 return !list_empty(&pool->worklist) &&
30310045 625 (atomic_read(nr_running) <= 1 ||
11ebea50 626 (pool->flags & POOL_HIGHPRI_PENDING));
e22bee78
TH
627}
628
629/* Do we need a new worker? Called from manager. */
63d95a91 630static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 631{
63d95a91 632 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 633}
365970a1 634
e22bee78 635/* Do I need to be the manager? */
63d95a91 636static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 637{
63d95a91 638 return need_to_create_worker(pool) ||
11ebea50 639 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
640}
641
642/* Do we have too many workers and should some go away? */
63d95a91 643static bool too_many_workers(struct worker_pool *pool)
e22bee78 644{
11ebea50 645 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
646 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
647 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
648
649 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
650}
651
4d707b9f 652/*
e22bee78
TH
653 * Wake up functions.
654 */
655
7e11629d 656/* Return the first worker. Safe with preemption disabled */
63d95a91 657static struct worker *first_worker(struct worker_pool *pool)
7e11629d 658{
63d95a91 659 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
660 return NULL;
661
63d95a91 662 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
663}
664
665/**
666 * wake_up_worker - wake up an idle worker
63d95a91 667 * @pool: worker pool to wake worker from
7e11629d 668 *
63d95a91 669 * Wake up the first idle worker of @pool.
7e11629d
TH
670 *
671 * CONTEXT:
672 * spin_lock_irq(gcwq->lock).
673 */
63d95a91 674static void wake_up_worker(struct worker_pool *pool)
7e11629d 675{
63d95a91 676 struct worker *worker = first_worker(pool);
7e11629d
TH
677
678 if (likely(worker))
679 wake_up_process(worker->task);
680}
681
d302f017 682/**
e22bee78
TH
683 * wq_worker_waking_up - a worker is waking up
684 * @task: task waking up
685 * @cpu: CPU @task is waking up to
686 *
687 * This function is called during try_to_wake_up() when a worker is
688 * being awoken.
689 *
690 * CONTEXT:
691 * spin_lock_irq(rq->lock)
692 */
693void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
694{
695 struct worker *worker = kthread_data(task);
696
2d64672e 697 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 698 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
699}
700
701/**
702 * wq_worker_sleeping - a worker is going to sleep
703 * @task: task going to sleep
704 * @cpu: CPU in question, must be the current CPU number
705 *
706 * This function is called during schedule() when a busy worker is
707 * going to sleep. Worker on the same cpu can be woken up by
708 * returning pointer to its task.
709 *
710 * CONTEXT:
711 * spin_lock_irq(rq->lock)
712 *
713 * RETURNS:
714 * Worker task on @cpu to wake up, %NULL if none.
715 */
716struct task_struct *wq_worker_sleeping(struct task_struct *task,
717 unsigned int cpu)
718{
719 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 720 struct worker_pool *pool = worker->pool;
63d95a91 721 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 722
2d64672e 723 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
724 return NULL;
725
726 /* this can only happen on the local cpu */
727 BUG_ON(cpu != raw_smp_processor_id());
728
729 /*
730 * The counterpart of the following dec_and_test, implied mb,
731 * worklist not empty test sequence is in insert_work().
732 * Please read comment there.
733 *
734 * NOT_RUNNING is clear. This means that trustee is not in
735 * charge and we're running on the local cpu w/ rq lock held
736 * and preemption disabled, which in turn means that none else
737 * could be manipulating idle_list, so dereferencing idle_list
738 * without gcwq lock is safe.
739 */
bd7bdd43 740 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 741 to_wakeup = first_worker(pool);
e22bee78
TH
742 return to_wakeup ? to_wakeup->task : NULL;
743}
744
745/**
746 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 747 * @worker: self
d302f017
TH
748 * @flags: flags to set
749 * @wakeup: wakeup an idle worker if necessary
750 *
e22bee78
TH
751 * Set @flags in @worker->flags and adjust nr_running accordingly. If
752 * nr_running becomes zero and @wakeup is %true, an idle worker is
753 * woken up.
d302f017 754 *
cb444766
TH
755 * CONTEXT:
756 * spin_lock_irq(gcwq->lock)
d302f017
TH
757 */
758static inline void worker_set_flags(struct worker *worker, unsigned int flags,
759 bool wakeup)
760{
bd7bdd43 761 struct worker_pool *pool = worker->pool;
e22bee78 762
cb444766
TH
763 WARN_ON_ONCE(worker->task != current);
764
e22bee78
TH
765 /*
766 * If transitioning into NOT_RUNNING, adjust nr_running and
767 * wake up an idle worker as necessary if requested by
768 * @wakeup.
769 */
770 if ((flags & WORKER_NOT_RUNNING) &&
771 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 772 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
773
774 if (wakeup) {
775 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 776 !list_empty(&pool->worklist))
63d95a91 777 wake_up_worker(pool);
e22bee78
TH
778 } else
779 atomic_dec(nr_running);
780 }
781
d302f017
TH
782 worker->flags |= flags;
783}
784
785/**
e22bee78 786 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 787 * @worker: self
d302f017
TH
788 * @flags: flags to clear
789 *
e22bee78 790 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 791 *
cb444766
TH
792 * CONTEXT:
793 * spin_lock_irq(gcwq->lock)
d302f017
TH
794 */
795static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
796{
63d95a91 797 struct worker_pool *pool = worker->pool;
e22bee78
TH
798 unsigned int oflags = worker->flags;
799
cb444766
TH
800 WARN_ON_ONCE(worker->task != current);
801
d302f017 802 worker->flags &= ~flags;
e22bee78 803
42c025f3
TH
804 /*
805 * If transitioning out of NOT_RUNNING, increment nr_running. Note
806 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
807 * of multiple flags, not a single flag.
808 */
e22bee78
TH
809 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
810 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 811 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
812}
813
c8e55f36
TH
814/**
815 * busy_worker_head - return the busy hash head for a work
816 * @gcwq: gcwq of interest
817 * @work: work to be hashed
818 *
819 * Return hash head of @gcwq for @work.
820 *
821 * CONTEXT:
822 * spin_lock_irq(gcwq->lock).
823 *
824 * RETURNS:
825 * Pointer to the hash head.
826 */
827static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
828 struct work_struct *work)
829{
830 const int base_shift = ilog2(sizeof(struct work_struct));
831 unsigned long v = (unsigned long)work;
832
833 /* simple shift and fold hash, do we need something better? */
834 v >>= base_shift;
835 v += v >> BUSY_WORKER_HASH_ORDER;
836 v &= BUSY_WORKER_HASH_MASK;
837
838 return &gcwq->busy_hash[v];
839}
840
8cca0eea
TH
841/**
842 * __find_worker_executing_work - find worker which is executing a work
843 * @gcwq: gcwq of interest
844 * @bwh: hash head as returned by busy_worker_head()
845 * @work: work to find worker for
846 *
847 * Find a worker which is executing @work on @gcwq. @bwh should be
848 * the hash head obtained by calling busy_worker_head() with the same
849 * work.
850 *
851 * CONTEXT:
852 * spin_lock_irq(gcwq->lock).
853 *
854 * RETURNS:
855 * Pointer to worker which is executing @work if found, NULL
856 * otherwise.
857 */
858static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
859 struct hlist_head *bwh,
860 struct work_struct *work)
861{
862 struct worker *worker;
863 struct hlist_node *tmp;
864
865 hlist_for_each_entry(worker, tmp, bwh, hentry)
866 if (worker->current_work == work)
867 return worker;
868 return NULL;
869}
870
871/**
872 * find_worker_executing_work - find worker which is executing a work
873 * @gcwq: gcwq of interest
874 * @work: work to find worker for
875 *
876 * Find a worker which is executing @work on @gcwq. This function is
877 * identical to __find_worker_executing_work() except that this
878 * function calculates @bwh itself.
879 *
880 * CONTEXT:
881 * spin_lock_irq(gcwq->lock).
882 *
883 * RETURNS:
884 * Pointer to worker which is executing @work if found, NULL
885 * otherwise.
4d707b9f 886 */
8cca0eea
TH
887static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
888 struct work_struct *work)
4d707b9f 889{
8cca0eea
TH
890 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
891 work);
4d707b9f
ON
892}
893
649027d7 894/**
63d95a91
TH
895 * pool_determine_ins_pos - find insertion position
896 * @pool: pool of interest
649027d7
TH
897 * @cwq: cwq a work is being queued for
898 *
63d95a91 899 * A work for @cwq is about to be queued on @pool, determine insertion
649027d7
TH
900 * position for the work. If @cwq is for HIGHPRI wq, the work is
901 * queued at the head of the queue but in FIFO order with respect to
902 * other HIGHPRI works; otherwise, at the end of the queue. This
11ebea50 903 * function also sets POOL_HIGHPRI_PENDING flag to hint @pool that
649027d7
TH
904 * there are HIGHPRI works pending.
905 *
906 * CONTEXT:
907 * spin_lock_irq(gcwq->lock).
908 *
909 * RETURNS:
910 * Pointer to inserstion position.
911 */
63d95a91 912static inline struct list_head *pool_determine_ins_pos(struct worker_pool *pool,
649027d7 913 struct cpu_workqueue_struct *cwq)
365970a1 914{
649027d7
TH
915 struct work_struct *twork;
916
917 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
63d95a91 918 return &pool->worklist;
649027d7 919
63d95a91 920 list_for_each_entry(twork, &pool->worklist, entry) {
649027d7
TH
921 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
922
923 if (!(tcwq->wq->flags & WQ_HIGHPRI))
924 break;
925 }
926
11ebea50 927 pool->flags |= POOL_HIGHPRI_PENDING;
649027d7 928 return &twork->entry;
365970a1
DH
929}
930
4690c4ab 931/**
7e11629d 932 * insert_work - insert a work into gcwq
4690c4ab
TH
933 * @cwq: cwq @work belongs to
934 * @work: work to insert
935 * @head: insertion point
936 * @extra_flags: extra WORK_STRUCT_* flags to set
937 *
7e11629d
TH
938 * Insert @work which belongs to @cwq into @gcwq after @head.
939 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
940 *
941 * CONTEXT:
8b03ae3c 942 * spin_lock_irq(gcwq->lock).
4690c4ab 943 */
b89deed3 944static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
945 struct work_struct *work, struct list_head *head,
946 unsigned int extra_flags)
b89deed3 947{
63d95a91 948 struct worker_pool *pool = cwq->pool;
e22bee78 949
4690c4ab 950 /* we own @work, set data and link */
7a22ad75 951 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 952
6e84d644
ON
953 /*
954 * Ensure that we get the right work->data if we see the
955 * result of list_add() below, see try_to_grab_pending().
956 */
957 smp_wmb();
4690c4ab 958
1a4d9b0a 959 list_add_tail(&work->entry, head);
e22bee78
TH
960
961 /*
962 * Ensure either worker_sched_deactivated() sees the above
963 * list_add_tail() or we see zero nr_running to avoid workers
964 * lying around lazily while there are works to be processed.
965 */
966 smp_mb();
967
63d95a91
TH
968 if (__need_more_worker(pool))
969 wake_up_worker(pool);
b89deed3
ON
970}
971
c8efcc25
TH
972/*
973 * Test whether @work is being queued from another work executing on the
974 * same workqueue. This is rather expensive and should only be used from
975 * cold paths.
976 */
977static bool is_chained_work(struct workqueue_struct *wq)
978{
979 unsigned long flags;
980 unsigned int cpu;
981
982 for_each_gcwq_cpu(cpu) {
983 struct global_cwq *gcwq = get_gcwq(cpu);
984 struct worker *worker;
985 struct hlist_node *pos;
986 int i;
987
988 spin_lock_irqsave(&gcwq->lock, flags);
989 for_each_busy_worker(worker, i, pos, gcwq) {
990 if (worker->task != current)
991 continue;
992 spin_unlock_irqrestore(&gcwq->lock, flags);
993 /*
994 * I'm @worker, no locking necessary. See if @work
995 * is headed to the same workqueue.
996 */
997 return worker->current_cwq->wq == wq;
998 }
999 spin_unlock_irqrestore(&gcwq->lock, flags);
1000 }
1001 return false;
1002}
1003
4690c4ab 1004static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1005 struct work_struct *work)
1006{
502ca9d8
TH
1007 struct global_cwq *gcwq;
1008 struct cpu_workqueue_struct *cwq;
1e19ffc6 1009 struct list_head *worklist;
8a2e8e5d 1010 unsigned int work_flags;
1da177e4
LT
1011 unsigned long flags;
1012
dc186ad7 1013 debug_work_activate(work);
1e19ffc6 1014
c8efcc25 1015 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1016 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1017 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1018 return;
1019
c7fc77f7
TH
1020 /* determine gcwq to use */
1021 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1022 struct global_cwq *last_gcwq;
1023
c7fc77f7
TH
1024 if (unlikely(cpu == WORK_CPU_UNBOUND))
1025 cpu = raw_smp_processor_id();
1026
18aa9eff
TH
1027 /*
1028 * It's multi cpu. If @wq is non-reentrant and @work
1029 * was previously on a different cpu, it might still
1030 * be running there, in which case the work needs to
1031 * be queued on that cpu to guarantee non-reentrance.
1032 */
502ca9d8 1033 gcwq = get_gcwq(cpu);
18aa9eff
TH
1034 if (wq->flags & WQ_NON_REENTRANT &&
1035 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1036 struct worker *worker;
1037
1038 spin_lock_irqsave(&last_gcwq->lock, flags);
1039
1040 worker = find_worker_executing_work(last_gcwq, work);
1041
1042 if (worker && worker->current_cwq->wq == wq)
1043 gcwq = last_gcwq;
1044 else {
1045 /* meh... not running there, queue here */
1046 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1047 spin_lock_irqsave(&gcwq->lock, flags);
1048 }
1049 } else
1050 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
1051 } else {
1052 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1053 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
1054 }
1055
1056 /* gcwq determined, get cwq and queue */
1057 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1058 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1059
f5b2552b
DC
1060 if (WARN_ON(!list_empty(&work->entry))) {
1061 spin_unlock_irqrestore(&gcwq->lock, flags);
1062 return;
1063 }
1e19ffc6 1064
73f53c4a 1065 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1066 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1067
1068 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1069 trace_workqueue_activate_work(work);
1e19ffc6 1070 cwq->nr_active++;
63d95a91 1071 worklist = pool_determine_ins_pos(cwq->pool, cwq);
8a2e8e5d
TH
1072 } else {
1073 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1074 worklist = &cwq->delayed_works;
8a2e8e5d 1075 }
1e19ffc6 1076
8a2e8e5d 1077 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1078
8b03ae3c 1079 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1080}
1081
0fcb78c2
REB
1082/**
1083 * queue_work - queue work on a workqueue
1084 * @wq: workqueue to use
1085 * @work: work to queue
1086 *
057647fc 1087 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1088 *
00dfcaf7
ON
1089 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1090 * it can be processed by another CPU.
1da177e4 1091 */
7ad5b3a5 1092int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1093{
ef1ca236
ON
1094 int ret;
1095
1096 ret = queue_work_on(get_cpu(), wq, work);
1097 put_cpu();
1098
1da177e4
LT
1099 return ret;
1100}
ae90dd5d 1101EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1102
c1a220e7
ZR
1103/**
1104 * queue_work_on - queue work on specific cpu
1105 * @cpu: CPU number to execute work on
1106 * @wq: workqueue to use
1107 * @work: work to queue
1108 *
1109 * Returns 0 if @work was already on a queue, non-zero otherwise.
1110 *
1111 * We queue the work to a specific CPU, the caller must ensure it
1112 * can't go away.
1113 */
1114int
1115queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1116{
1117 int ret = 0;
1118
22df02bb 1119 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1120 __queue_work(cpu, wq, work);
c1a220e7
ZR
1121 ret = 1;
1122 }
1123 return ret;
1124}
1125EXPORT_SYMBOL_GPL(queue_work_on);
1126
6d141c3f 1127static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1128{
52bad64d 1129 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1130 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1131
4690c4ab 1132 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1133}
1134
0fcb78c2
REB
1135/**
1136 * queue_delayed_work - queue work on a workqueue after delay
1137 * @wq: workqueue to use
af9997e4 1138 * @dwork: delayable work to queue
0fcb78c2
REB
1139 * @delay: number of jiffies to wait before queueing
1140 *
057647fc 1141 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1142 */
7ad5b3a5 1143int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1144 struct delayed_work *dwork, unsigned long delay)
1da177e4 1145{
52bad64d 1146 if (delay == 0)
63bc0362 1147 return queue_work(wq, &dwork->work);
1da177e4 1148
63bc0362 1149 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1150}
ae90dd5d 1151EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1152
0fcb78c2
REB
1153/**
1154 * queue_delayed_work_on - queue work on specific CPU after delay
1155 * @cpu: CPU number to execute work on
1156 * @wq: workqueue to use
af9997e4 1157 * @dwork: work to queue
0fcb78c2
REB
1158 * @delay: number of jiffies to wait before queueing
1159 *
057647fc 1160 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1161 */
7a6bc1cd 1162int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1163 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1164{
1165 int ret = 0;
52bad64d
DH
1166 struct timer_list *timer = &dwork->timer;
1167 struct work_struct *work = &dwork->work;
7a6bc1cd 1168
22df02bb 1169 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1170 unsigned int lcpu;
7a22ad75 1171
7a6bc1cd
VP
1172 BUG_ON(timer_pending(timer));
1173 BUG_ON(!list_empty(&work->entry));
1174
8a3e77cc
AL
1175 timer_stats_timer_set_start_info(&dwork->timer);
1176
7a22ad75
TH
1177 /*
1178 * This stores cwq for the moment, for the timer_fn.
1179 * Note that the work's gcwq is preserved to allow
1180 * reentrance detection for delayed works.
1181 */
c7fc77f7
TH
1182 if (!(wq->flags & WQ_UNBOUND)) {
1183 struct global_cwq *gcwq = get_work_gcwq(work);
1184
1185 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1186 lcpu = gcwq->cpu;
1187 else
1188 lcpu = raw_smp_processor_id();
1189 } else
1190 lcpu = WORK_CPU_UNBOUND;
1191
7a22ad75 1192 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1193
7a6bc1cd 1194 timer->expires = jiffies + delay;
52bad64d 1195 timer->data = (unsigned long)dwork;
7a6bc1cd 1196 timer->function = delayed_work_timer_fn;
63bc0362
ON
1197
1198 if (unlikely(cpu >= 0))
1199 add_timer_on(timer, cpu);
1200 else
1201 add_timer(timer);
7a6bc1cd
VP
1202 ret = 1;
1203 }
1204 return ret;
1205}
ae90dd5d 1206EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1207
c8e55f36
TH
1208/**
1209 * worker_enter_idle - enter idle state
1210 * @worker: worker which is entering idle state
1211 *
1212 * @worker is entering idle state. Update stats and idle timer if
1213 * necessary.
1214 *
1215 * LOCKING:
1216 * spin_lock_irq(gcwq->lock).
1217 */
1218static void worker_enter_idle(struct worker *worker)
1da177e4 1219{
bd7bdd43
TH
1220 struct worker_pool *pool = worker->pool;
1221 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1222
1223 BUG_ON(worker->flags & WORKER_IDLE);
1224 BUG_ON(!list_empty(&worker->entry) &&
1225 (worker->hentry.next || worker->hentry.pprev));
1226
cb444766
TH
1227 /* can't use worker_set_flags(), also called from start_worker() */
1228 worker->flags |= WORKER_IDLE;
bd7bdd43 1229 pool->nr_idle++;
e22bee78 1230 worker->last_active = jiffies;
c8e55f36
TH
1231
1232 /* idle_list is LIFO */
bd7bdd43 1233 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1234
e22bee78 1235 if (likely(!(worker->flags & WORKER_ROGUE))) {
63d95a91 1236 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
bd7bdd43 1237 mod_timer(&pool->idle_timer,
e22bee78
TH
1238 jiffies + IDLE_WORKER_TIMEOUT);
1239 } else
db7bccf4 1240 wake_up_all(&gcwq->trustee_wait);
cb444766 1241
544ecf31
TH
1242 /*
1243 * Sanity check nr_running. Because trustee releases gcwq->lock
1244 * between setting %WORKER_ROGUE and zapping nr_running, the
1245 * warning may trigger spuriously. Check iff trustee is idle.
1246 */
1247 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
bd7bdd43 1248 pool->nr_workers == pool->nr_idle &&
63d95a91 1249 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1250}
1251
1252/**
1253 * worker_leave_idle - leave idle state
1254 * @worker: worker which is leaving idle state
1255 *
1256 * @worker is leaving idle state. Update stats.
1257 *
1258 * LOCKING:
1259 * spin_lock_irq(gcwq->lock).
1260 */
1261static void worker_leave_idle(struct worker *worker)
1262{
bd7bdd43 1263 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1264
1265 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1266 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1267 pool->nr_idle--;
c8e55f36
TH
1268 list_del_init(&worker->entry);
1269}
1270
e22bee78
TH
1271/**
1272 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1273 * @worker: self
1274 *
1275 * Works which are scheduled while the cpu is online must at least be
1276 * scheduled to a worker which is bound to the cpu so that if they are
1277 * flushed from cpu callbacks while cpu is going down, they are
1278 * guaranteed to execute on the cpu.
1279 *
1280 * This function is to be used by rogue workers and rescuers to bind
1281 * themselves to the target cpu and may race with cpu going down or
1282 * coming online. kthread_bind() can't be used because it may put the
1283 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1284 * verbatim as it's best effort and blocking and gcwq may be
1285 * [dis]associated in the meantime.
1286 *
1287 * This function tries set_cpus_allowed() and locks gcwq and verifies
1288 * the binding against GCWQ_DISASSOCIATED which is set during
1289 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1290 * idle state or fetches works without dropping lock, it can guarantee
1291 * the scheduling requirement described in the first paragraph.
1292 *
1293 * CONTEXT:
1294 * Might sleep. Called without any lock but returns with gcwq->lock
1295 * held.
1296 *
1297 * RETURNS:
1298 * %true if the associated gcwq is online (@worker is successfully
1299 * bound), %false if offline.
1300 */
1301static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1302__acquires(&gcwq->lock)
e22bee78 1303{
bd7bdd43 1304 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1305 struct task_struct *task = worker->task;
1306
1307 while (true) {
4e6045f1 1308 /*
e22bee78
TH
1309 * The following call may fail, succeed or succeed
1310 * without actually migrating the task to the cpu if
1311 * it races with cpu hotunplug operation. Verify
1312 * against GCWQ_DISASSOCIATED.
4e6045f1 1313 */
f3421797
TH
1314 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1315 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1316
1317 spin_lock_irq(&gcwq->lock);
1318 if (gcwq->flags & GCWQ_DISASSOCIATED)
1319 return false;
1320 if (task_cpu(task) == gcwq->cpu &&
1321 cpumask_equal(&current->cpus_allowed,
1322 get_cpu_mask(gcwq->cpu)))
1323 return true;
1324 spin_unlock_irq(&gcwq->lock);
1325
5035b20f
TH
1326 /*
1327 * We've raced with CPU hot[un]plug. Give it a breather
1328 * and retry migration. cond_resched() is required here;
1329 * otherwise, we might deadlock against cpu_stop trying to
1330 * bring down the CPU on non-preemptive kernel.
1331 */
e22bee78 1332 cpu_relax();
5035b20f 1333 cond_resched();
e22bee78
TH
1334 }
1335}
1336
1337/*
1338 * Function for worker->rebind_work used to rebind rogue busy workers
1339 * to the associated cpu which is coming back online. This is
1340 * scheduled by cpu up but can race with other cpu hotplug operations
1341 * and may be executed twice without intervening cpu down.
1342 */
1343static void worker_rebind_fn(struct work_struct *work)
1344{
1345 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1346 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1347
1348 if (worker_maybe_bind_and_lock(worker))
1349 worker_clr_flags(worker, WORKER_REBIND);
1350
1351 spin_unlock_irq(&gcwq->lock);
1352}
1353
c34056a3
TH
1354static struct worker *alloc_worker(void)
1355{
1356 struct worker *worker;
1357
1358 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1359 if (worker) {
1360 INIT_LIST_HEAD(&worker->entry);
affee4b2 1361 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1362 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1363 /* on creation a worker is in !idle && prep state */
1364 worker->flags = WORKER_PREP;
c8e55f36 1365 }
c34056a3
TH
1366 return worker;
1367}
1368
1369/**
1370 * create_worker - create a new workqueue worker
63d95a91 1371 * @pool: pool the new worker will belong to
c34056a3
TH
1372 * @bind: whether to set affinity to @cpu or not
1373 *
63d95a91 1374 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1375 * can be started by calling start_worker() or destroyed using
1376 * destroy_worker().
1377 *
1378 * CONTEXT:
1379 * Might sleep. Does GFP_KERNEL allocations.
1380 *
1381 * RETURNS:
1382 * Pointer to the newly created worker.
1383 */
63d95a91 1384static struct worker *create_worker(struct worker_pool *pool, bool bind)
c34056a3 1385{
63d95a91 1386 struct global_cwq *gcwq = pool->gcwq;
f3421797 1387 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
c34056a3 1388 struct worker *worker = NULL;
f3421797 1389 int id = -1;
c34056a3 1390
8b03ae3c 1391 spin_lock_irq(&gcwq->lock);
bd7bdd43 1392 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1393 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1394 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1395 goto fail;
8b03ae3c 1396 spin_lock_irq(&gcwq->lock);
c34056a3 1397 }
8b03ae3c 1398 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1399
1400 worker = alloc_worker();
1401 if (!worker)
1402 goto fail;
1403
bd7bdd43 1404 worker->pool = pool;
c34056a3
TH
1405 worker->id = id;
1406
f3421797 1407 if (!on_unbound_cpu)
94dcf29a
ED
1408 worker->task = kthread_create_on_node(worker_thread,
1409 worker,
1410 cpu_to_node(gcwq->cpu),
1411 "kworker/%u:%d", gcwq->cpu, id);
f3421797
TH
1412 else
1413 worker->task = kthread_create(worker_thread, worker,
1414 "kworker/u:%d", id);
c34056a3
TH
1415 if (IS_ERR(worker->task))
1416 goto fail;
1417
db7bccf4
TH
1418 /*
1419 * A rogue worker will become a regular one if CPU comes
1420 * online later on. Make sure every worker has
1421 * PF_THREAD_BOUND set.
1422 */
f3421797 1423 if (bind && !on_unbound_cpu)
8b03ae3c 1424 kthread_bind(worker->task, gcwq->cpu);
f3421797 1425 else {
db7bccf4 1426 worker->task->flags |= PF_THREAD_BOUND;
f3421797
TH
1427 if (on_unbound_cpu)
1428 worker->flags |= WORKER_UNBOUND;
1429 }
c34056a3
TH
1430
1431 return worker;
1432fail:
1433 if (id >= 0) {
8b03ae3c 1434 spin_lock_irq(&gcwq->lock);
bd7bdd43 1435 ida_remove(&pool->worker_ida, id);
8b03ae3c 1436 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1437 }
1438 kfree(worker);
1439 return NULL;
1440}
1441
1442/**
1443 * start_worker - start a newly created worker
1444 * @worker: worker to start
1445 *
c8e55f36 1446 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1447 *
1448 * CONTEXT:
8b03ae3c 1449 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1450 */
1451static void start_worker(struct worker *worker)
1452{
cb444766 1453 worker->flags |= WORKER_STARTED;
bd7bdd43 1454 worker->pool->nr_workers++;
c8e55f36 1455 worker_enter_idle(worker);
c34056a3
TH
1456 wake_up_process(worker->task);
1457}
1458
1459/**
1460 * destroy_worker - destroy a workqueue worker
1461 * @worker: worker to be destroyed
1462 *
c8e55f36
TH
1463 * Destroy @worker and adjust @gcwq stats accordingly.
1464 *
1465 * CONTEXT:
1466 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1467 */
1468static void destroy_worker(struct worker *worker)
1469{
bd7bdd43
TH
1470 struct worker_pool *pool = worker->pool;
1471 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1472 int id = worker->id;
1473
1474 /* sanity check frenzy */
1475 BUG_ON(worker->current_work);
affee4b2 1476 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1477
c8e55f36 1478 if (worker->flags & WORKER_STARTED)
bd7bdd43 1479 pool->nr_workers--;
c8e55f36 1480 if (worker->flags & WORKER_IDLE)
bd7bdd43 1481 pool->nr_idle--;
c8e55f36
TH
1482
1483 list_del_init(&worker->entry);
cb444766 1484 worker->flags |= WORKER_DIE;
c8e55f36
TH
1485
1486 spin_unlock_irq(&gcwq->lock);
1487
c34056a3
TH
1488 kthread_stop(worker->task);
1489 kfree(worker);
1490
8b03ae3c 1491 spin_lock_irq(&gcwq->lock);
bd7bdd43 1492 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1493}
1494
63d95a91 1495static void idle_worker_timeout(unsigned long __pool)
e22bee78 1496{
63d95a91
TH
1497 struct worker_pool *pool = (void *)__pool;
1498 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1499
1500 spin_lock_irq(&gcwq->lock);
1501
63d95a91 1502 if (too_many_workers(pool)) {
e22bee78
TH
1503 struct worker *worker;
1504 unsigned long expires;
1505
1506 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1507 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1508 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1509
1510 if (time_before(jiffies, expires))
63d95a91 1511 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1512 else {
1513 /* it's been idle for too long, wake up manager */
11ebea50 1514 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1515 wake_up_worker(pool);
d5abe669 1516 }
e22bee78
TH
1517 }
1518
1519 spin_unlock_irq(&gcwq->lock);
1520}
d5abe669 1521
e22bee78
TH
1522static bool send_mayday(struct work_struct *work)
1523{
1524 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1525 struct workqueue_struct *wq = cwq->wq;
f3421797 1526 unsigned int cpu;
e22bee78
TH
1527
1528 if (!(wq->flags & WQ_RESCUER))
1529 return false;
1530
1531 /* mayday mayday mayday */
bd7bdd43 1532 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1533 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1534 if (cpu == WORK_CPU_UNBOUND)
1535 cpu = 0;
f2e005aa 1536 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1537 wake_up_process(wq->rescuer->task);
1538 return true;
1539}
1540
63d95a91 1541static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1542{
63d95a91
TH
1543 struct worker_pool *pool = (void *)__pool;
1544 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1545 struct work_struct *work;
1546
1547 spin_lock_irq(&gcwq->lock);
1548
63d95a91 1549 if (need_to_create_worker(pool)) {
e22bee78
TH
1550 /*
1551 * We've been trying to create a new worker but
1552 * haven't been successful. We might be hitting an
1553 * allocation deadlock. Send distress signals to
1554 * rescuers.
1555 */
63d95a91 1556 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1557 send_mayday(work);
1da177e4 1558 }
e22bee78
TH
1559
1560 spin_unlock_irq(&gcwq->lock);
1561
63d95a91 1562 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1563}
1564
e22bee78
TH
1565/**
1566 * maybe_create_worker - create a new worker if necessary
63d95a91 1567 * @pool: pool to create a new worker for
e22bee78 1568 *
63d95a91 1569 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1570 * have at least one idle worker on return from this function. If
1571 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1572 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1573 * possible allocation deadlock.
1574 *
1575 * On return, need_to_create_worker() is guaranteed to be false and
1576 * may_start_working() true.
1577 *
1578 * LOCKING:
1579 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1580 * multiple times. Does GFP_KERNEL allocations. Called only from
1581 * manager.
1582 *
1583 * RETURNS:
1584 * false if no action was taken and gcwq->lock stayed locked, true
1585 * otherwise.
1586 */
63d95a91 1587static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1588__releases(&gcwq->lock)
1589__acquires(&gcwq->lock)
1da177e4 1590{
63d95a91
TH
1591 struct global_cwq *gcwq = pool->gcwq;
1592
1593 if (!need_to_create_worker(pool))
e22bee78
TH
1594 return false;
1595restart:
9f9c2364
TH
1596 spin_unlock_irq(&gcwq->lock);
1597
e22bee78 1598 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1599 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1600
1601 while (true) {
1602 struct worker *worker;
1603
63d95a91 1604 worker = create_worker(pool, true);
e22bee78 1605 if (worker) {
63d95a91 1606 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1607 spin_lock_irq(&gcwq->lock);
1608 start_worker(worker);
63d95a91 1609 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1610 return true;
1611 }
1612
63d95a91 1613 if (!need_to_create_worker(pool))
e22bee78 1614 break;
1da177e4 1615
e22bee78
TH
1616 __set_current_state(TASK_INTERRUPTIBLE);
1617 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1618
63d95a91 1619 if (!need_to_create_worker(pool))
e22bee78
TH
1620 break;
1621 }
1622
63d95a91 1623 del_timer_sync(&pool->mayday_timer);
e22bee78 1624 spin_lock_irq(&gcwq->lock);
63d95a91 1625 if (need_to_create_worker(pool))
e22bee78
TH
1626 goto restart;
1627 return true;
1628}
1629
1630/**
1631 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1632 * @pool: pool to destroy workers for
e22bee78 1633 *
63d95a91 1634 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1635 * IDLE_WORKER_TIMEOUT.
1636 *
1637 * LOCKING:
1638 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1639 * multiple times. Called only from manager.
1640 *
1641 * RETURNS:
1642 * false if no action was taken and gcwq->lock stayed locked, true
1643 * otherwise.
1644 */
63d95a91 1645static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1646{
1647 bool ret = false;
1da177e4 1648
63d95a91 1649 while (too_many_workers(pool)) {
e22bee78
TH
1650 struct worker *worker;
1651 unsigned long expires;
3af24433 1652
63d95a91 1653 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1654 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1655
e22bee78 1656 if (time_before(jiffies, expires)) {
63d95a91 1657 mod_timer(&pool->idle_timer, expires);
3af24433 1658 break;
e22bee78 1659 }
1da177e4 1660
e22bee78
TH
1661 destroy_worker(worker);
1662 ret = true;
1da177e4 1663 }
3af24433 1664
e22bee78
TH
1665 return ret;
1666}
1667
1668/**
1669 * manage_workers - manage worker pool
1670 * @worker: self
1671 *
1672 * Assume the manager role and manage gcwq worker pool @worker belongs
1673 * to. At any given time, there can be only zero or one manager per
1674 * gcwq. The exclusion is handled automatically by this function.
1675 *
1676 * The caller can safely start processing works on false return. On
1677 * true return, it's guaranteed that need_to_create_worker() is false
1678 * and may_start_working() is true.
1679 *
1680 * CONTEXT:
1681 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1682 * multiple times. Does GFP_KERNEL allocations.
1683 *
1684 * RETURNS:
1685 * false if no action was taken and gcwq->lock stayed locked, true if
1686 * some action was taken.
1687 */
1688static bool manage_workers(struct worker *worker)
1689{
63d95a91
TH
1690 struct worker_pool *pool = worker->pool;
1691 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1692 bool ret = false;
1693
11ebea50 1694 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78
TH
1695 return ret;
1696
11ebea50
TH
1697 pool->flags &= ~POOL_MANAGE_WORKERS;
1698 pool->flags |= POOL_MANAGING_WORKERS;
e22bee78
TH
1699
1700 /*
1701 * Destroy and then create so that may_start_working() is true
1702 * on return.
1703 */
63d95a91
TH
1704 ret |= maybe_destroy_workers(pool);
1705 ret |= maybe_create_worker(pool);
e22bee78 1706
11ebea50 1707 pool->flags &= ~POOL_MANAGING_WORKERS;
e22bee78
TH
1708
1709 /*
1710 * The trustee might be waiting to take over the manager
1711 * position, tell it we're done.
1712 */
1713 if (unlikely(gcwq->trustee))
1714 wake_up_all(&gcwq->trustee_wait);
1715
1716 return ret;
1717}
1718
affee4b2
TH
1719/**
1720 * move_linked_works - move linked works to a list
1721 * @work: start of series of works to be scheduled
1722 * @head: target list to append @work to
1723 * @nextp: out paramter for nested worklist walking
1724 *
1725 * Schedule linked works starting from @work to @head. Work series to
1726 * be scheduled starts at @work and includes any consecutive work with
1727 * WORK_STRUCT_LINKED set in its predecessor.
1728 *
1729 * If @nextp is not NULL, it's updated to point to the next work of
1730 * the last scheduled work. This allows move_linked_works() to be
1731 * nested inside outer list_for_each_entry_safe().
1732 *
1733 * CONTEXT:
8b03ae3c 1734 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1735 */
1736static void move_linked_works(struct work_struct *work, struct list_head *head,
1737 struct work_struct **nextp)
1738{
1739 struct work_struct *n;
1740
1741 /*
1742 * Linked worklist will always end before the end of the list,
1743 * use NULL for list head.
1744 */
1745 list_for_each_entry_safe_from(work, n, NULL, entry) {
1746 list_move_tail(&work->entry, head);
1747 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1748 break;
1749 }
1750
1751 /*
1752 * If we're already inside safe list traversal and have moved
1753 * multiple works to the scheduled queue, the next position
1754 * needs to be updated.
1755 */
1756 if (nextp)
1757 *nextp = n;
1758}
1759
1e19ffc6
TH
1760static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1761{
1762 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1763 struct work_struct, entry);
63d95a91 1764 struct list_head *pos = pool_determine_ins_pos(cwq->pool, cwq);
1e19ffc6 1765
cdadf009 1766 trace_workqueue_activate_work(work);
649027d7 1767 move_linked_works(work, pos, NULL);
8a2e8e5d 1768 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1769 cwq->nr_active++;
1770}
1771
73f53c4a
TH
1772/**
1773 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1774 * @cwq: cwq of interest
1775 * @color: color of work which left the queue
8a2e8e5d 1776 * @delayed: for a delayed work
73f53c4a
TH
1777 *
1778 * A work either has completed or is removed from pending queue,
1779 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1780 *
1781 * CONTEXT:
8b03ae3c 1782 * spin_lock_irq(gcwq->lock).
73f53c4a 1783 */
8a2e8e5d
TH
1784static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1785 bool delayed)
73f53c4a
TH
1786{
1787 /* ignore uncolored works */
1788 if (color == WORK_NO_COLOR)
1789 return;
1790
1791 cwq->nr_in_flight[color]--;
1e19ffc6 1792
8a2e8e5d
TH
1793 if (!delayed) {
1794 cwq->nr_active--;
1795 if (!list_empty(&cwq->delayed_works)) {
1796 /* one down, submit a delayed one */
1797 if (cwq->nr_active < cwq->max_active)
1798 cwq_activate_first_delayed(cwq);
1799 }
502ca9d8 1800 }
73f53c4a
TH
1801
1802 /* is flush in progress and are we at the flushing tip? */
1803 if (likely(cwq->flush_color != color))
1804 return;
1805
1806 /* are there still in-flight works? */
1807 if (cwq->nr_in_flight[color])
1808 return;
1809
1810 /* this cwq is done, clear flush_color */
1811 cwq->flush_color = -1;
1812
1813 /*
1814 * If this was the last cwq, wake up the first flusher. It
1815 * will handle the rest.
1816 */
1817 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1818 complete(&cwq->wq->first_flusher->done);
1819}
1820
a62428c0
TH
1821/**
1822 * process_one_work - process single work
c34056a3 1823 * @worker: self
a62428c0
TH
1824 * @work: work to process
1825 *
1826 * Process @work. This function contains all the logics necessary to
1827 * process a single work including synchronization against and
1828 * interaction with other workers on the same cpu, queueing and
1829 * flushing. As long as context requirement is met, any worker can
1830 * call this function to process a work.
1831 *
1832 * CONTEXT:
8b03ae3c 1833 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1834 */
c34056a3 1835static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1836__releases(&gcwq->lock)
1837__acquires(&gcwq->lock)
a62428c0 1838{
7e11629d 1839 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1840 struct worker_pool *pool = worker->pool;
1841 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1842 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1843 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1844 work_func_t f = work->func;
73f53c4a 1845 int work_color;
7e11629d 1846 struct worker *collision;
a62428c0
TH
1847#ifdef CONFIG_LOCKDEP
1848 /*
1849 * It is permissible to free the struct work_struct from
1850 * inside the function that is called from it, this we need to
1851 * take into account for lockdep too. To avoid bogus "held
1852 * lock freed" warnings as well as problems when looking into
1853 * work->lockdep_map, make a copy and use that here.
1854 */
4d82a1de
PZ
1855 struct lockdep_map lockdep_map;
1856
1857 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1858#endif
7e11629d
TH
1859 /*
1860 * A single work shouldn't be executed concurrently by
1861 * multiple workers on a single cpu. Check whether anyone is
1862 * already processing the work. If so, defer the work to the
1863 * currently executing one.
1864 */
1865 collision = __find_worker_executing_work(gcwq, bwh, work);
1866 if (unlikely(collision)) {
1867 move_linked_works(work, &collision->scheduled, NULL);
1868 return;
1869 }
1870
a62428c0 1871 /* claim and process */
a62428c0 1872 debug_work_deactivate(work);
c8e55f36 1873 hlist_add_head(&worker->hentry, bwh);
c34056a3 1874 worker->current_work = work;
8cca0eea 1875 worker->current_cwq = cwq;
73f53c4a 1876 work_color = get_work_color(work);
7a22ad75 1877
7a22ad75
TH
1878 /* record the current cpu number in the work data and dequeue */
1879 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1880 list_del_init(&work->entry);
1881
649027d7
TH
1882 /*
1883 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1884 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1885 */
11ebea50 1886 if (unlikely(pool->flags & POOL_HIGHPRI_PENDING)) {
bd7bdd43
TH
1887 struct work_struct *nwork = list_first_entry(&pool->worklist,
1888 struct work_struct, entry);
649027d7 1889
bd7bdd43 1890 if (!list_empty(&pool->worklist) &&
649027d7 1891 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
63d95a91 1892 wake_up_worker(pool);
649027d7 1893 else
11ebea50 1894 pool->flags &= ~POOL_HIGHPRI_PENDING;
649027d7
TH
1895 }
1896
fb0e7beb
TH
1897 /*
1898 * CPU intensive works don't participate in concurrency
1899 * management. They're the scheduler's responsibility.
1900 */
1901 if (unlikely(cpu_intensive))
1902 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1903
974271c4
TH
1904 /*
1905 * Unbound gcwq isn't concurrency managed and work items should be
1906 * executed ASAP. Wake up another worker if necessary.
1907 */
63d95a91
TH
1908 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
1909 wake_up_worker(pool);
974271c4 1910
8b03ae3c 1911 spin_unlock_irq(&gcwq->lock);
a62428c0 1912
a62428c0 1913 work_clear_pending(work);
e159489b 1914 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 1915 lock_map_acquire(&lockdep_map);
e36c886a 1916 trace_workqueue_execute_start(work);
a62428c0 1917 f(work);
e36c886a
AV
1918 /*
1919 * While we must be careful to not use "work" after this, the trace
1920 * point will only record its address.
1921 */
1922 trace_workqueue_execute_end(work);
a62428c0
TH
1923 lock_map_release(&lockdep_map);
1924 lock_map_release(&cwq->wq->lockdep_map);
1925
1926 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1927 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1928 "%s/0x%08x/%d\n",
1929 current->comm, preempt_count(), task_pid_nr(current));
1930 printk(KERN_ERR " last function: ");
1931 print_symbol("%s\n", (unsigned long)f);
1932 debug_show_held_locks(current);
1933 dump_stack();
1934 }
1935
8b03ae3c 1936 spin_lock_irq(&gcwq->lock);
a62428c0 1937
fb0e7beb
TH
1938 /* clear cpu intensive status */
1939 if (unlikely(cpu_intensive))
1940 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1941
a62428c0 1942 /* we're done with it, release */
c8e55f36 1943 hlist_del_init(&worker->hentry);
c34056a3 1944 worker->current_work = NULL;
8cca0eea 1945 worker->current_cwq = NULL;
8a2e8e5d 1946 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
1947}
1948
affee4b2
TH
1949/**
1950 * process_scheduled_works - process scheduled works
1951 * @worker: self
1952 *
1953 * Process all scheduled works. Please note that the scheduled list
1954 * may change while processing a work, so this function repeatedly
1955 * fetches a work from the top and executes it.
1956 *
1957 * CONTEXT:
8b03ae3c 1958 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1959 * multiple times.
1960 */
1961static void process_scheduled_works(struct worker *worker)
1da177e4 1962{
affee4b2
TH
1963 while (!list_empty(&worker->scheduled)) {
1964 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1965 struct work_struct, entry);
c34056a3 1966 process_one_work(worker, work);
1da177e4 1967 }
1da177e4
LT
1968}
1969
4690c4ab
TH
1970/**
1971 * worker_thread - the worker thread function
c34056a3 1972 * @__worker: self
4690c4ab 1973 *
e22bee78
TH
1974 * The gcwq worker thread function. There's a single dynamic pool of
1975 * these per each cpu. These workers process all works regardless of
1976 * their specific target workqueue. The only exception is works which
1977 * belong to workqueues with a rescuer which will be explained in
1978 * rescuer_thread().
4690c4ab 1979 */
c34056a3 1980static int worker_thread(void *__worker)
1da177e4 1981{
c34056a3 1982 struct worker *worker = __worker;
bd7bdd43
TH
1983 struct worker_pool *pool = worker->pool;
1984 struct global_cwq *gcwq = pool->gcwq;
1da177e4 1985
e22bee78
TH
1986 /* tell the scheduler that this is a workqueue worker */
1987 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1988woke_up:
c8e55f36 1989 spin_lock_irq(&gcwq->lock);
1da177e4 1990
c8e55f36
TH
1991 /* DIE can be set only while we're idle, checking here is enough */
1992 if (worker->flags & WORKER_DIE) {
1993 spin_unlock_irq(&gcwq->lock);
e22bee78 1994 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1995 return 0;
1996 }
affee4b2 1997
c8e55f36 1998 worker_leave_idle(worker);
db7bccf4 1999recheck:
e22bee78 2000 /* no more worker necessary? */
63d95a91 2001 if (!need_more_worker(pool))
e22bee78
TH
2002 goto sleep;
2003
2004 /* do we need to manage? */
63d95a91 2005 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2006 goto recheck;
2007
c8e55f36
TH
2008 /*
2009 * ->scheduled list can only be filled while a worker is
2010 * preparing to process a work or actually processing it.
2011 * Make sure nobody diddled with it while I was sleeping.
2012 */
2013 BUG_ON(!list_empty(&worker->scheduled));
2014
e22bee78
TH
2015 /*
2016 * When control reaches this point, we're guaranteed to have
2017 * at least one idle worker or that someone else has already
2018 * assumed the manager role.
2019 */
2020 worker_clr_flags(worker, WORKER_PREP);
2021
2022 do {
c8e55f36 2023 struct work_struct *work =
bd7bdd43 2024 list_first_entry(&pool->worklist,
c8e55f36
TH
2025 struct work_struct, entry);
2026
2027 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2028 /* optimization path, not strictly necessary */
2029 process_one_work(worker, work);
2030 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2031 process_scheduled_works(worker);
c8e55f36
TH
2032 } else {
2033 move_linked_works(work, &worker->scheduled, NULL);
2034 process_scheduled_works(worker);
affee4b2 2035 }
63d95a91 2036 } while (keep_working(pool));
e22bee78
TH
2037
2038 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2039sleep:
63d95a91 2040 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2041 goto recheck;
d313dd85 2042
c8e55f36 2043 /*
e22bee78
TH
2044 * gcwq->lock is held and there's no work to process and no
2045 * need to manage, sleep. Workers are woken up only while
2046 * holding gcwq->lock or from local cpu, so setting the
2047 * current state before releasing gcwq->lock is enough to
2048 * prevent losing any event.
c8e55f36
TH
2049 */
2050 worker_enter_idle(worker);
2051 __set_current_state(TASK_INTERRUPTIBLE);
2052 spin_unlock_irq(&gcwq->lock);
2053 schedule();
2054 goto woke_up;
1da177e4
LT
2055}
2056
e22bee78
TH
2057/**
2058 * rescuer_thread - the rescuer thread function
2059 * @__wq: the associated workqueue
2060 *
2061 * Workqueue rescuer thread function. There's one rescuer for each
2062 * workqueue which has WQ_RESCUER set.
2063 *
2064 * Regular work processing on a gcwq may block trying to create a new
2065 * worker which uses GFP_KERNEL allocation which has slight chance of
2066 * developing into deadlock if some works currently on the same queue
2067 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2068 * the problem rescuer solves.
2069 *
2070 * When such condition is possible, the gcwq summons rescuers of all
2071 * workqueues which have works queued on the gcwq and let them process
2072 * those works so that forward progress can be guaranteed.
2073 *
2074 * This should happen rarely.
2075 */
2076static int rescuer_thread(void *__wq)
2077{
2078 struct workqueue_struct *wq = __wq;
2079 struct worker *rescuer = wq->rescuer;
2080 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2081 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2082 unsigned int cpu;
2083
2084 set_user_nice(current, RESCUER_NICE_LEVEL);
2085repeat:
2086 set_current_state(TASK_INTERRUPTIBLE);
2087
2088 if (kthread_should_stop())
2089 return 0;
2090
f3421797
TH
2091 /*
2092 * See whether any cpu is asking for help. Unbounded
2093 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2094 */
f2e005aa 2095 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2096 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2097 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2098 struct worker_pool *pool = cwq->pool;
2099 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2100 struct work_struct *work, *n;
2101
2102 __set_current_state(TASK_RUNNING);
f2e005aa 2103 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2104
2105 /* migrate to the target cpu if possible */
bd7bdd43 2106 rescuer->pool = pool;
e22bee78
TH
2107 worker_maybe_bind_and_lock(rescuer);
2108
2109 /*
2110 * Slurp in all works issued via this workqueue and
2111 * process'em.
2112 */
2113 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2114 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2115 if (get_work_cwq(work) == cwq)
2116 move_linked_works(work, scheduled, &n);
2117
2118 process_scheduled_works(rescuer);
7576958a
TH
2119
2120 /*
2121 * Leave this gcwq. If keep_working() is %true, notify a
2122 * regular worker; otherwise, we end up with 0 concurrency
2123 * and stalling the execution.
2124 */
63d95a91
TH
2125 if (keep_working(pool))
2126 wake_up_worker(pool);
7576958a 2127
e22bee78
TH
2128 spin_unlock_irq(&gcwq->lock);
2129 }
2130
2131 schedule();
2132 goto repeat;
1da177e4
LT
2133}
2134
fc2e4d70
ON
2135struct wq_barrier {
2136 struct work_struct work;
2137 struct completion done;
2138};
2139
2140static void wq_barrier_func(struct work_struct *work)
2141{
2142 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2143 complete(&barr->done);
2144}
2145
4690c4ab
TH
2146/**
2147 * insert_wq_barrier - insert a barrier work
2148 * @cwq: cwq to insert barrier into
2149 * @barr: wq_barrier to insert
affee4b2
TH
2150 * @target: target work to attach @barr to
2151 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2152 *
affee4b2
TH
2153 * @barr is linked to @target such that @barr is completed only after
2154 * @target finishes execution. Please note that the ordering
2155 * guarantee is observed only with respect to @target and on the local
2156 * cpu.
2157 *
2158 * Currently, a queued barrier can't be canceled. This is because
2159 * try_to_grab_pending() can't determine whether the work to be
2160 * grabbed is at the head of the queue and thus can't clear LINKED
2161 * flag of the previous work while there must be a valid next work
2162 * after a work with LINKED flag set.
2163 *
2164 * Note that when @worker is non-NULL, @target may be modified
2165 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2166 *
2167 * CONTEXT:
8b03ae3c 2168 * spin_lock_irq(gcwq->lock).
4690c4ab 2169 */
83c22520 2170static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2171 struct wq_barrier *barr,
2172 struct work_struct *target, struct worker *worker)
fc2e4d70 2173{
affee4b2
TH
2174 struct list_head *head;
2175 unsigned int linked = 0;
2176
dc186ad7 2177 /*
8b03ae3c 2178 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2179 * as we know for sure that this will not trigger any of the
2180 * checks and call back into the fixup functions where we
2181 * might deadlock.
2182 */
ca1cab37 2183 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2184 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2185 init_completion(&barr->done);
83c22520 2186
affee4b2
TH
2187 /*
2188 * If @target is currently being executed, schedule the
2189 * barrier to the worker; otherwise, put it after @target.
2190 */
2191 if (worker)
2192 head = worker->scheduled.next;
2193 else {
2194 unsigned long *bits = work_data_bits(target);
2195
2196 head = target->entry.next;
2197 /* there can already be other linked works, inherit and set */
2198 linked = *bits & WORK_STRUCT_LINKED;
2199 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2200 }
2201
dc186ad7 2202 debug_work_activate(&barr->work);
affee4b2
TH
2203 insert_work(cwq, &barr->work, head,
2204 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2205}
2206
73f53c4a
TH
2207/**
2208 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2209 * @wq: workqueue being flushed
2210 * @flush_color: new flush color, < 0 for no-op
2211 * @work_color: new work color, < 0 for no-op
2212 *
2213 * Prepare cwqs for workqueue flushing.
2214 *
2215 * If @flush_color is non-negative, flush_color on all cwqs should be
2216 * -1. If no cwq has in-flight commands at the specified color, all
2217 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2218 * has in flight commands, its cwq->flush_color is set to
2219 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2220 * wakeup logic is armed and %true is returned.
2221 *
2222 * The caller should have initialized @wq->first_flusher prior to
2223 * calling this function with non-negative @flush_color. If
2224 * @flush_color is negative, no flush color update is done and %false
2225 * is returned.
2226 *
2227 * If @work_color is non-negative, all cwqs should have the same
2228 * work_color which is previous to @work_color and all will be
2229 * advanced to @work_color.
2230 *
2231 * CONTEXT:
2232 * mutex_lock(wq->flush_mutex).
2233 *
2234 * RETURNS:
2235 * %true if @flush_color >= 0 and there's something to flush. %false
2236 * otherwise.
2237 */
2238static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2239 int flush_color, int work_color)
1da177e4 2240{
73f53c4a
TH
2241 bool wait = false;
2242 unsigned int cpu;
1da177e4 2243
73f53c4a
TH
2244 if (flush_color >= 0) {
2245 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2246 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2247 }
2355b70f 2248
f3421797 2249 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2250 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2251 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2252
8b03ae3c 2253 spin_lock_irq(&gcwq->lock);
83c22520 2254
73f53c4a
TH
2255 if (flush_color >= 0) {
2256 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2257
73f53c4a
TH
2258 if (cwq->nr_in_flight[flush_color]) {
2259 cwq->flush_color = flush_color;
2260 atomic_inc(&wq->nr_cwqs_to_flush);
2261 wait = true;
2262 }
2263 }
1da177e4 2264
73f53c4a
TH
2265 if (work_color >= 0) {
2266 BUG_ON(work_color != work_next_color(cwq->work_color));
2267 cwq->work_color = work_color;
2268 }
1da177e4 2269
8b03ae3c 2270 spin_unlock_irq(&gcwq->lock);
1da177e4 2271 }
2355b70f 2272
73f53c4a
TH
2273 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2274 complete(&wq->first_flusher->done);
14441960 2275
73f53c4a 2276 return wait;
1da177e4
LT
2277}
2278
0fcb78c2 2279/**
1da177e4 2280 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2281 * @wq: workqueue to flush
1da177e4
LT
2282 *
2283 * Forces execution of the workqueue and blocks until its completion.
2284 * This is typically used in driver shutdown handlers.
2285 *
fc2e4d70
ON
2286 * We sleep until all works which were queued on entry have been handled,
2287 * but we are not livelocked by new incoming ones.
1da177e4 2288 */
7ad5b3a5 2289void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2290{
73f53c4a
TH
2291 struct wq_flusher this_flusher = {
2292 .list = LIST_HEAD_INIT(this_flusher.list),
2293 .flush_color = -1,
2294 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2295 };
2296 int next_color;
1da177e4 2297
3295f0ef
IM
2298 lock_map_acquire(&wq->lockdep_map);
2299 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2300
2301 mutex_lock(&wq->flush_mutex);
2302
2303 /*
2304 * Start-to-wait phase
2305 */
2306 next_color = work_next_color(wq->work_color);
2307
2308 if (next_color != wq->flush_color) {
2309 /*
2310 * Color space is not full. The current work_color
2311 * becomes our flush_color and work_color is advanced
2312 * by one.
2313 */
2314 BUG_ON(!list_empty(&wq->flusher_overflow));
2315 this_flusher.flush_color = wq->work_color;
2316 wq->work_color = next_color;
2317
2318 if (!wq->first_flusher) {
2319 /* no flush in progress, become the first flusher */
2320 BUG_ON(wq->flush_color != this_flusher.flush_color);
2321
2322 wq->first_flusher = &this_flusher;
2323
2324 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2325 wq->work_color)) {
2326 /* nothing to flush, done */
2327 wq->flush_color = next_color;
2328 wq->first_flusher = NULL;
2329 goto out_unlock;
2330 }
2331 } else {
2332 /* wait in queue */
2333 BUG_ON(wq->flush_color == this_flusher.flush_color);
2334 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2335 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2336 }
2337 } else {
2338 /*
2339 * Oops, color space is full, wait on overflow queue.
2340 * The next flush completion will assign us
2341 * flush_color and transfer to flusher_queue.
2342 */
2343 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2344 }
2345
2346 mutex_unlock(&wq->flush_mutex);
2347
2348 wait_for_completion(&this_flusher.done);
2349
2350 /*
2351 * Wake-up-and-cascade phase
2352 *
2353 * First flushers are responsible for cascading flushes and
2354 * handling overflow. Non-first flushers can simply return.
2355 */
2356 if (wq->first_flusher != &this_flusher)
2357 return;
2358
2359 mutex_lock(&wq->flush_mutex);
2360
4ce48b37
TH
2361 /* we might have raced, check again with mutex held */
2362 if (wq->first_flusher != &this_flusher)
2363 goto out_unlock;
2364
73f53c4a
TH
2365 wq->first_flusher = NULL;
2366
2367 BUG_ON(!list_empty(&this_flusher.list));
2368 BUG_ON(wq->flush_color != this_flusher.flush_color);
2369
2370 while (true) {
2371 struct wq_flusher *next, *tmp;
2372
2373 /* complete all the flushers sharing the current flush color */
2374 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2375 if (next->flush_color != wq->flush_color)
2376 break;
2377 list_del_init(&next->list);
2378 complete(&next->done);
2379 }
2380
2381 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2382 wq->flush_color != work_next_color(wq->work_color));
2383
2384 /* this flush_color is finished, advance by one */
2385 wq->flush_color = work_next_color(wq->flush_color);
2386
2387 /* one color has been freed, handle overflow queue */
2388 if (!list_empty(&wq->flusher_overflow)) {
2389 /*
2390 * Assign the same color to all overflowed
2391 * flushers, advance work_color and append to
2392 * flusher_queue. This is the start-to-wait
2393 * phase for these overflowed flushers.
2394 */
2395 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2396 tmp->flush_color = wq->work_color;
2397
2398 wq->work_color = work_next_color(wq->work_color);
2399
2400 list_splice_tail_init(&wq->flusher_overflow,
2401 &wq->flusher_queue);
2402 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2403 }
2404
2405 if (list_empty(&wq->flusher_queue)) {
2406 BUG_ON(wq->flush_color != wq->work_color);
2407 break;
2408 }
2409
2410 /*
2411 * Need to flush more colors. Make the next flusher
2412 * the new first flusher and arm cwqs.
2413 */
2414 BUG_ON(wq->flush_color == wq->work_color);
2415 BUG_ON(wq->flush_color != next->flush_color);
2416
2417 list_del_init(&next->list);
2418 wq->first_flusher = next;
2419
2420 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2421 break;
2422
2423 /*
2424 * Meh... this color is already done, clear first
2425 * flusher and repeat cascading.
2426 */
2427 wq->first_flusher = NULL;
2428 }
2429
2430out_unlock:
2431 mutex_unlock(&wq->flush_mutex);
1da177e4 2432}
ae90dd5d 2433EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2434
9c5a2ba7
TH
2435/**
2436 * drain_workqueue - drain a workqueue
2437 * @wq: workqueue to drain
2438 *
2439 * Wait until the workqueue becomes empty. While draining is in progress,
2440 * only chain queueing is allowed. IOW, only currently pending or running
2441 * work items on @wq can queue further work items on it. @wq is flushed
2442 * repeatedly until it becomes empty. The number of flushing is detemined
2443 * by the depth of chaining and should be relatively short. Whine if it
2444 * takes too long.
2445 */
2446void drain_workqueue(struct workqueue_struct *wq)
2447{
2448 unsigned int flush_cnt = 0;
2449 unsigned int cpu;
2450
2451 /*
2452 * __queue_work() needs to test whether there are drainers, is much
2453 * hotter than drain_workqueue() and already looks at @wq->flags.
2454 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2455 */
2456 spin_lock(&workqueue_lock);
2457 if (!wq->nr_drainers++)
2458 wq->flags |= WQ_DRAINING;
2459 spin_unlock(&workqueue_lock);
2460reflush:
2461 flush_workqueue(wq);
2462
2463 for_each_cwq_cpu(cpu, wq) {
2464 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2465 bool drained;
9c5a2ba7 2466
bd7bdd43 2467 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2468 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2469 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2470
2471 if (drained)
9c5a2ba7
TH
2472 continue;
2473
2474 if (++flush_cnt == 10 ||
2475 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2476 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2477 wq->name, flush_cnt);
2478 goto reflush;
2479 }
2480
2481 spin_lock(&workqueue_lock);
2482 if (!--wq->nr_drainers)
2483 wq->flags &= ~WQ_DRAINING;
2484 spin_unlock(&workqueue_lock);
2485}
2486EXPORT_SYMBOL_GPL(drain_workqueue);
2487
baf59022
TH
2488static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2489 bool wait_executing)
db700897 2490{
affee4b2 2491 struct worker *worker = NULL;
8b03ae3c 2492 struct global_cwq *gcwq;
db700897 2493 struct cpu_workqueue_struct *cwq;
db700897
ON
2494
2495 might_sleep();
7a22ad75
TH
2496 gcwq = get_work_gcwq(work);
2497 if (!gcwq)
baf59022 2498 return false;
db700897 2499
8b03ae3c 2500 spin_lock_irq(&gcwq->lock);
db700897
ON
2501 if (!list_empty(&work->entry)) {
2502 /*
2503 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2504 * If it was re-queued to a different gcwq under us, we
2505 * are not going to wait.
db700897
ON
2506 */
2507 smp_rmb();
7a22ad75 2508 cwq = get_work_cwq(work);
bd7bdd43 2509 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2510 goto already_gone;
baf59022 2511 } else if (wait_executing) {
7a22ad75 2512 worker = find_worker_executing_work(gcwq, work);
affee4b2 2513 if (!worker)
4690c4ab 2514 goto already_gone;
7a22ad75 2515 cwq = worker->current_cwq;
baf59022
TH
2516 } else
2517 goto already_gone;
db700897 2518
baf59022 2519 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2520 spin_unlock_irq(&gcwq->lock);
7a22ad75 2521
e159489b
TH
2522 /*
2523 * If @max_active is 1 or rescuer is in use, flushing another work
2524 * item on the same workqueue may lead to deadlock. Make sure the
2525 * flusher is not running on the same workqueue by verifying write
2526 * access.
2527 */
2528 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2529 lock_map_acquire(&cwq->wq->lockdep_map);
2530 else
2531 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2532 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2533
401a8d04 2534 return true;
4690c4ab 2535already_gone:
8b03ae3c 2536 spin_unlock_irq(&gcwq->lock);
401a8d04 2537 return false;
db700897 2538}
baf59022
TH
2539
2540/**
2541 * flush_work - wait for a work to finish executing the last queueing instance
2542 * @work: the work to flush
2543 *
2544 * Wait until @work has finished execution. This function considers
2545 * only the last queueing instance of @work. If @work has been
2546 * enqueued across different CPUs on a non-reentrant workqueue or on
2547 * multiple workqueues, @work might still be executing on return on
2548 * some of the CPUs from earlier queueing.
2549 *
2550 * If @work was queued only on a non-reentrant, ordered or unbound
2551 * workqueue, @work is guaranteed to be idle on return if it hasn't
2552 * been requeued since flush started.
2553 *
2554 * RETURNS:
2555 * %true if flush_work() waited for the work to finish execution,
2556 * %false if it was already idle.
2557 */
2558bool flush_work(struct work_struct *work)
2559{
2560 struct wq_barrier barr;
2561
0976dfc1
SB
2562 lock_map_acquire(&work->lockdep_map);
2563 lock_map_release(&work->lockdep_map);
2564
baf59022
TH
2565 if (start_flush_work(work, &barr, true)) {
2566 wait_for_completion(&barr.done);
2567 destroy_work_on_stack(&barr.work);
2568 return true;
2569 } else
2570 return false;
2571}
db700897
ON
2572EXPORT_SYMBOL_GPL(flush_work);
2573
401a8d04
TH
2574static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2575{
2576 struct wq_barrier barr;
2577 struct worker *worker;
2578
2579 spin_lock_irq(&gcwq->lock);
2580
2581 worker = find_worker_executing_work(gcwq, work);
2582 if (unlikely(worker))
2583 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2584
2585 spin_unlock_irq(&gcwq->lock);
2586
2587 if (unlikely(worker)) {
2588 wait_for_completion(&barr.done);
2589 destroy_work_on_stack(&barr.work);
2590 return true;
2591 } else
2592 return false;
2593}
2594
2595static bool wait_on_work(struct work_struct *work)
2596{
2597 bool ret = false;
2598 int cpu;
2599
2600 might_sleep();
2601
2602 lock_map_acquire(&work->lockdep_map);
2603 lock_map_release(&work->lockdep_map);
2604
2605 for_each_gcwq_cpu(cpu)
2606 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2607 return ret;
2608}
2609
09383498
TH
2610/**
2611 * flush_work_sync - wait until a work has finished execution
2612 * @work: the work to flush
2613 *
2614 * Wait until @work has finished execution. On return, it's
2615 * guaranteed that all queueing instances of @work which happened
2616 * before this function is called are finished. In other words, if
2617 * @work hasn't been requeued since this function was called, @work is
2618 * guaranteed to be idle on return.
2619 *
2620 * RETURNS:
2621 * %true if flush_work_sync() waited for the work to finish execution,
2622 * %false if it was already idle.
2623 */
2624bool flush_work_sync(struct work_struct *work)
2625{
2626 struct wq_barrier barr;
2627 bool pending, waited;
2628
2629 /* we'll wait for executions separately, queue barr only if pending */
2630 pending = start_flush_work(work, &barr, false);
2631
2632 /* wait for executions to finish */
2633 waited = wait_on_work(work);
2634
2635 /* wait for the pending one */
2636 if (pending) {
2637 wait_for_completion(&barr.done);
2638 destroy_work_on_stack(&barr.work);
2639 }
2640
2641 return pending || waited;
2642}
2643EXPORT_SYMBOL_GPL(flush_work_sync);
2644
6e84d644 2645/*
1f1f642e 2646 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2647 * so this work can't be re-armed in any way.
2648 */
2649static int try_to_grab_pending(struct work_struct *work)
2650{
8b03ae3c 2651 struct global_cwq *gcwq;
1f1f642e 2652 int ret = -1;
6e84d644 2653
22df02bb 2654 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2655 return 0;
6e84d644
ON
2656
2657 /*
2658 * The queueing is in progress, or it is already queued. Try to
2659 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2660 */
7a22ad75
TH
2661 gcwq = get_work_gcwq(work);
2662 if (!gcwq)
6e84d644
ON
2663 return ret;
2664
8b03ae3c 2665 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2666 if (!list_empty(&work->entry)) {
2667 /*
7a22ad75 2668 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2669 * In that case we must see the new value after rmb(), see
2670 * insert_work()->wmb().
2671 */
2672 smp_rmb();
7a22ad75 2673 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2674 debug_work_deactivate(work);
6e84d644 2675 list_del_init(&work->entry);
7a22ad75 2676 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2677 get_work_color(work),
2678 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2679 ret = 1;
2680 }
2681 }
8b03ae3c 2682 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2683
2684 return ret;
2685}
2686
401a8d04 2687static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2688 struct timer_list* timer)
2689{
2690 int ret;
2691
2692 do {
2693 ret = (timer && likely(del_timer(timer)));
2694 if (!ret)
2695 ret = try_to_grab_pending(work);
2696 wait_on_work(work);
2697 } while (unlikely(ret < 0));
2698
7a22ad75 2699 clear_work_data(work);
1f1f642e
ON
2700 return ret;
2701}
2702
6e84d644 2703/**
401a8d04
TH
2704 * cancel_work_sync - cancel a work and wait for it to finish
2705 * @work: the work to cancel
6e84d644 2706 *
401a8d04
TH
2707 * Cancel @work and wait for its execution to finish. This function
2708 * can be used even if the work re-queues itself or migrates to
2709 * another workqueue. On return from this function, @work is
2710 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2711 *
401a8d04
TH
2712 * cancel_work_sync(&delayed_work->work) must not be used for
2713 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2714 *
401a8d04 2715 * The caller must ensure that the workqueue on which @work was last
6e84d644 2716 * queued can't be destroyed before this function returns.
401a8d04
TH
2717 *
2718 * RETURNS:
2719 * %true if @work was pending, %false otherwise.
6e84d644 2720 */
401a8d04 2721bool cancel_work_sync(struct work_struct *work)
6e84d644 2722{
1f1f642e 2723 return __cancel_work_timer(work, NULL);
b89deed3 2724}
28e53bdd 2725EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2726
6e84d644 2727/**
401a8d04
TH
2728 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2729 * @dwork: the delayed work to flush
6e84d644 2730 *
401a8d04
TH
2731 * Delayed timer is cancelled and the pending work is queued for
2732 * immediate execution. Like flush_work(), this function only
2733 * considers the last queueing instance of @dwork.
1f1f642e 2734 *
401a8d04
TH
2735 * RETURNS:
2736 * %true if flush_work() waited for the work to finish execution,
2737 * %false if it was already idle.
6e84d644 2738 */
401a8d04
TH
2739bool flush_delayed_work(struct delayed_work *dwork)
2740{
2741 if (del_timer_sync(&dwork->timer))
2742 __queue_work(raw_smp_processor_id(),
2743 get_work_cwq(&dwork->work)->wq, &dwork->work);
2744 return flush_work(&dwork->work);
2745}
2746EXPORT_SYMBOL(flush_delayed_work);
2747
09383498
TH
2748/**
2749 * flush_delayed_work_sync - wait for a dwork to finish
2750 * @dwork: the delayed work to flush
2751 *
2752 * Delayed timer is cancelled and the pending work is queued for
2753 * execution immediately. Other than timer handling, its behavior
2754 * is identical to flush_work_sync().
2755 *
2756 * RETURNS:
2757 * %true if flush_work_sync() waited for the work to finish execution,
2758 * %false if it was already idle.
2759 */
2760bool flush_delayed_work_sync(struct delayed_work *dwork)
2761{
2762 if (del_timer_sync(&dwork->timer))
2763 __queue_work(raw_smp_processor_id(),
2764 get_work_cwq(&dwork->work)->wq, &dwork->work);
2765 return flush_work_sync(&dwork->work);
2766}
2767EXPORT_SYMBOL(flush_delayed_work_sync);
2768
401a8d04
TH
2769/**
2770 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2771 * @dwork: the delayed work cancel
2772 *
2773 * This is cancel_work_sync() for delayed works.
2774 *
2775 * RETURNS:
2776 * %true if @dwork was pending, %false otherwise.
2777 */
2778bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2779{
1f1f642e 2780 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2781}
f5a421a4 2782EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2783
0fcb78c2
REB
2784/**
2785 * schedule_work - put work task in global workqueue
2786 * @work: job to be done
2787 *
5b0f437d
BVA
2788 * Returns zero if @work was already on the kernel-global workqueue and
2789 * non-zero otherwise.
2790 *
2791 * This puts a job in the kernel-global workqueue if it was not already
2792 * queued and leaves it in the same position on the kernel-global
2793 * workqueue otherwise.
0fcb78c2 2794 */
7ad5b3a5 2795int schedule_work(struct work_struct *work)
1da177e4 2796{
d320c038 2797 return queue_work(system_wq, work);
1da177e4 2798}
ae90dd5d 2799EXPORT_SYMBOL(schedule_work);
1da177e4 2800
c1a220e7
ZR
2801/*
2802 * schedule_work_on - put work task on a specific cpu
2803 * @cpu: cpu to put the work task on
2804 * @work: job to be done
2805 *
2806 * This puts a job on a specific cpu
2807 */
2808int schedule_work_on(int cpu, struct work_struct *work)
2809{
d320c038 2810 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2811}
2812EXPORT_SYMBOL(schedule_work_on);
2813
0fcb78c2
REB
2814/**
2815 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2816 * @dwork: job to be done
2817 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2818 *
2819 * After waiting for a given time this puts a job in the kernel-global
2820 * workqueue.
2821 */
7ad5b3a5 2822int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2823 unsigned long delay)
1da177e4 2824{
d320c038 2825 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2826}
ae90dd5d 2827EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2828
0fcb78c2
REB
2829/**
2830 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2831 * @cpu: cpu to use
52bad64d 2832 * @dwork: job to be done
0fcb78c2
REB
2833 * @delay: number of jiffies to wait
2834 *
2835 * After waiting for a given time this puts a job in the kernel-global
2836 * workqueue on the specified CPU.
2837 */
1da177e4 2838int schedule_delayed_work_on(int cpu,
52bad64d 2839 struct delayed_work *dwork, unsigned long delay)
1da177e4 2840{
d320c038 2841 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2842}
ae90dd5d 2843EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2844
b6136773 2845/**
31ddd871 2846 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2847 * @func: the function to call
b6136773 2848 *
31ddd871
TH
2849 * schedule_on_each_cpu() executes @func on each online CPU using the
2850 * system workqueue and blocks until all CPUs have completed.
b6136773 2851 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2852 *
2853 * RETURNS:
2854 * 0 on success, -errno on failure.
b6136773 2855 */
65f27f38 2856int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2857{
2858 int cpu;
38f51568 2859 struct work_struct __percpu *works;
15316ba8 2860
b6136773
AM
2861 works = alloc_percpu(struct work_struct);
2862 if (!works)
15316ba8 2863 return -ENOMEM;
b6136773 2864
93981800
TH
2865 get_online_cpus();
2866
15316ba8 2867 for_each_online_cpu(cpu) {
9bfb1839
IM
2868 struct work_struct *work = per_cpu_ptr(works, cpu);
2869
2870 INIT_WORK(work, func);
b71ab8c2 2871 schedule_work_on(cpu, work);
65a64464 2872 }
93981800
TH
2873
2874 for_each_online_cpu(cpu)
2875 flush_work(per_cpu_ptr(works, cpu));
2876
95402b38 2877 put_online_cpus();
b6136773 2878 free_percpu(works);
15316ba8
CL
2879 return 0;
2880}
2881
eef6a7d5
AS
2882/**
2883 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2884 *
2885 * Forces execution of the kernel-global workqueue and blocks until its
2886 * completion.
2887 *
2888 * Think twice before calling this function! It's very easy to get into
2889 * trouble if you don't take great care. Either of the following situations
2890 * will lead to deadlock:
2891 *
2892 * One of the work items currently on the workqueue needs to acquire
2893 * a lock held by your code or its caller.
2894 *
2895 * Your code is running in the context of a work routine.
2896 *
2897 * They will be detected by lockdep when they occur, but the first might not
2898 * occur very often. It depends on what work items are on the workqueue and
2899 * what locks they need, which you have no control over.
2900 *
2901 * In most situations flushing the entire workqueue is overkill; you merely
2902 * need to know that a particular work item isn't queued and isn't running.
2903 * In such cases you should use cancel_delayed_work_sync() or
2904 * cancel_work_sync() instead.
2905 */
1da177e4
LT
2906void flush_scheduled_work(void)
2907{
d320c038 2908 flush_workqueue(system_wq);
1da177e4 2909}
ae90dd5d 2910EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2911
1fa44eca
JB
2912/**
2913 * execute_in_process_context - reliably execute the routine with user context
2914 * @fn: the function to execute
1fa44eca
JB
2915 * @ew: guaranteed storage for the execute work structure (must
2916 * be available when the work executes)
2917 *
2918 * Executes the function immediately if process context is available,
2919 * otherwise schedules the function for delayed execution.
2920 *
2921 * Returns: 0 - function was executed
2922 * 1 - function was scheduled for execution
2923 */
65f27f38 2924int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2925{
2926 if (!in_interrupt()) {
65f27f38 2927 fn(&ew->work);
1fa44eca
JB
2928 return 0;
2929 }
2930
65f27f38 2931 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2932 schedule_work(&ew->work);
2933
2934 return 1;
2935}
2936EXPORT_SYMBOL_GPL(execute_in_process_context);
2937
1da177e4
LT
2938int keventd_up(void)
2939{
d320c038 2940 return system_wq != NULL;
1da177e4
LT
2941}
2942
bdbc5dd7 2943static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 2944{
65a64464 2945 /*
0f900049
TH
2946 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2947 * Make sure that the alignment isn't lower than that of
2948 * unsigned long long.
65a64464 2949 */
0f900049
TH
2950 const size_t size = sizeof(struct cpu_workqueue_struct);
2951 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2952 __alignof__(unsigned long long));
65a64464 2953
e06ffa1e 2954 if (!(wq->flags & WQ_UNBOUND))
f3421797 2955 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 2956 else {
f3421797
TH
2957 void *ptr;
2958
2959 /*
2960 * Allocate enough room to align cwq and put an extra
2961 * pointer at the end pointing back to the originally
2962 * allocated pointer which will be used for free.
2963 */
2964 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2965 if (ptr) {
2966 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2967 *(void **)(wq->cpu_wq.single + 1) = ptr;
2968 }
bdbc5dd7 2969 }
f3421797 2970
0415b00d 2971 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
2972 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2973 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
2974}
2975
bdbc5dd7 2976static void free_cwqs(struct workqueue_struct *wq)
0f900049 2977{
e06ffa1e 2978 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
2979 free_percpu(wq->cpu_wq.pcpu);
2980 else if (wq->cpu_wq.single) {
2981 /* the pointer to free is stored right after the cwq */
bdbc5dd7 2982 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 2983 }
0f900049
TH
2984}
2985
f3421797
TH
2986static int wq_clamp_max_active(int max_active, unsigned int flags,
2987 const char *name)
b71ab8c2 2988{
f3421797
TH
2989 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2990
2991 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
2992 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2993 "is out of range, clamping between %d and %d\n",
f3421797 2994 max_active, name, 1, lim);
b71ab8c2 2995
f3421797 2996 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
2997}
2998
b196be89 2999struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3000 unsigned int flags,
3001 int max_active,
3002 struct lock_class_key *key,
b196be89 3003 const char *lock_name, ...)
1da177e4 3004{
b196be89 3005 va_list args, args1;
1da177e4 3006 struct workqueue_struct *wq;
c34056a3 3007 unsigned int cpu;
b196be89
TH
3008 size_t namelen;
3009
3010 /* determine namelen, allocate wq and format name */
3011 va_start(args, lock_name);
3012 va_copy(args1, args);
3013 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3014
3015 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3016 if (!wq)
3017 goto err;
3018
3019 vsnprintf(wq->name, namelen, fmt, args1);
3020 va_end(args);
3021 va_end(args1);
1da177e4 3022
6370a6ad
TH
3023 /*
3024 * Workqueues which may be used during memory reclaim should
3025 * have a rescuer to guarantee forward progress.
3026 */
3027 if (flags & WQ_MEM_RECLAIM)
3028 flags |= WQ_RESCUER;
3029
d320c038 3030 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3031 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3032
b196be89 3033 /* init wq */
97e37d7b 3034 wq->flags = flags;
a0a1a5fd 3035 wq->saved_max_active = max_active;
73f53c4a
TH
3036 mutex_init(&wq->flush_mutex);
3037 atomic_set(&wq->nr_cwqs_to_flush, 0);
3038 INIT_LIST_HEAD(&wq->flusher_queue);
3039 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3040
eb13ba87 3041 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3042 INIT_LIST_HEAD(&wq->list);
3af24433 3043
bdbc5dd7
TH
3044 if (alloc_cwqs(wq) < 0)
3045 goto err;
3046
f3421797 3047 for_each_cwq_cpu(cpu, wq) {
1537663f 3048 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3049 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 3050
0f900049 3051 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
bd7bdd43 3052 cwq->pool = &gcwq->pool;
c34056a3 3053 cwq->wq = wq;
73f53c4a 3054 cwq->flush_color = -1;
1e19ffc6 3055 cwq->max_active = max_active;
1e19ffc6 3056 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3057 }
1537663f 3058
e22bee78
TH
3059 if (flags & WQ_RESCUER) {
3060 struct worker *rescuer;
3061
f2e005aa 3062 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3063 goto err;
3064
3065 wq->rescuer = rescuer = alloc_worker();
3066 if (!rescuer)
3067 goto err;
3068
b196be89
TH
3069 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3070 wq->name);
e22bee78
TH
3071 if (IS_ERR(rescuer->task))
3072 goto err;
3073
e22bee78
TH
3074 rescuer->task->flags |= PF_THREAD_BOUND;
3075 wake_up_process(rescuer->task);
3af24433
ON
3076 }
3077
a0a1a5fd
TH
3078 /*
3079 * workqueue_lock protects global freeze state and workqueues
3080 * list. Grab it, set max_active accordingly and add the new
3081 * workqueue to workqueues list.
3082 */
1537663f 3083 spin_lock(&workqueue_lock);
a0a1a5fd 3084
58a69cb4 3085 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3086 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3087 get_cwq(cpu, wq)->max_active = 0;
3088
1537663f 3089 list_add(&wq->list, &workqueues);
a0a1a5fd 3090
1537663f
TH
3091 spin_unlock(&workqueue_lock);
3092
3af24433 3093 return wq;
4690c4ab
TH
3094err:
3095 if (wq) {
bdbc5dd7 3096 free_cwqs(wq);
f2e005aa 3097 free_mayday_mask(wq->mayday_mask);
e22bee78 3098 kfree(wq->rescuer);
4690c4ab
TH
3099 kfree(wq);
3100 }
3101 return NULL;
3af24433 3102}
d320c038 3103EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3104
3af24433
ON
3105/**
3106 * destroy_workqueue - safely terminate a workqueue
3107 * @wq: target workqueue
3108 *
3109 * Safely destroy a workqueue. All work currently pending will be done first.
3110 */
3111void destroy_workqueue(struct workqueue_struct *wq)
3112{
c8e55f36 3113 unsigned int cpu;
3af24433 3114
9c5a2ba7
TH
3115 /* drain it before proceeding with destruction */
3116 drain_workqueue(wq);
c8efcc25 3117
a0a1a5fd
TH
3118 /*
3119 * wq list is used to freeze wq, remove from list after
3120 * flushing is complete in case freeze races us.
3121 */
95402b38 3122 spin_lock(&workqueue_lock);
b1f4ec17 3123 list_del(&wq->list);
95402b38 3124 spin_unlock(&workqueue_lock);
3af24433 3125
e22bee78 3126 /* sanity check */
f3421797 3127 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3128 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3129 int i;
3130
73f53c4a
TH
3131 for (i = 0; i < WORK_NR_COLORS; i++)
3132 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3133 BUG_ON(cwq->nr_active);
3134 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3135 }
9b41ea72 3136
e22bee78
TH
3137 if (wq->flags & WQ_RESCUER) {
3138 kthread_stop(wq->rescuer->task);
f2e005aa 3139 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3140 kfree(wq->rescuer);
e22bee78
TH
3141 }
3142
bdbc5dd7 3143 free_cwqs(wq);
3af24433
ON
3144 kfree(wq);
3145}
3146EXPORT_SYMBOL_GPL(destroy_workqueue);
3147
dcd989cb
TH
3148/**
3149 * workqueue_set_max_active - adjust max_active of a workqueue
3150 * @wq: target workqueue
3151 * @max_active: new max_active value.
3152 *
3153 * Set max_active of @wq to @max_active.
3154 *
3155 * CONTEXT:
3156 * Don't call from IRQ context.
3157 */
3158void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3159{
3160 unsigned int cpu;
3161
f3421797 3162 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3163
3164 spin_lock(&workqueue_lock);
3165
3166 wq->saved_max_active = max_active;
3167
f3421797 3168 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3169 struct global_cwq *gcwq = get_gcwq(cpu);
3170
3171 spin_lock_irq(&gcwq->lock);
3172
58a69cb4 3173 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3174 !(gcwq->flags & GCWQ_FREEZING))
3175 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3176
dcd989cb 3177 spin_unlock_irq(&gcwq->lock);
65a64464 3178 }
93981800 3179
dcd989cb 3180 spin_unlock(&workqueue_lock);
15316ba8 3181}
dcd989cb 3182EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3183
eef6a7d5 3184/**
dcd989cb
TH
3185 * workqueue_congested - test whether a workqueue is congested
3186 * @cpu: CPU in question
3187 * @wq: target workqueue
eef6a7d5 3188 *
dcd989cb
TH
3189 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3190 * no synchronization around this function and the test result is
3191 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3192 *
dcd989cb
TH
3193 * RETURNS:
3194 * %true if congested, %false otherwise.
eef6a7d5 3195 */
dcd989cb 3196bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3197{
dcd989cb
TH
3198 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3199
3200 return !list_empty(&cwq->delayed_works);
1da177e4 3201}
dcd989cb 3202EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3203
1fa44eca 3204/**
dcd989cb
TH
3205 * work_cpu - return the last known associated cpu for @work
3206 * @work: the work of interest
1fa44eca 3207 *
dcd989cb 3208 * RETURNS:
bdbc5dd7 3209 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3210 */
dcd989cb 3211unsigned int work_cpu(struct work_struct *work)
1fa44eca 3212{
dcd989cb 3213 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3214
bdbc5dd7 3215 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3216}
dcd989cb 3217EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3218
dcd989cb
TH
3219/**
3220 * work_busy - test whether a work is currently pending or running
3221 * @work: the work to be tested
3222 *
3223 * Test whether @work is currently pending or running. There is no
3224 * synchronization around this function and the test result is
3225 * unreliable and only useful as advisory hints or for debugging.
3226 * Especially for reentrant wqs, the pending state might hide the
3227 * running state.
3228 *
3229 * RETURNS:
3230 * OR'd bitmask of WORK_BUSY_* bits.
3231 */
3232unsigned int work_busy(struct work_struct *work)
1da177e4 3233{
dcd989cb
TH
3234 struct global_cwq *gcwq = get_work_gcwq(work);
3235 unsigned long flags;
3236 unsigned int ret = 0;
1da177e4 3237
dcd989cb
TH
3238 if (!gcwq)
3239 return false;
1da177e4 3240
dcd989cb 3241 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3242
dcd989cb
TH
3243 if (work_pending(work))
3244 ret |= WORK_BUSY_PENDING;
3245 if (find_worker_executing_work(gcwq, work))
3246 ret |= WORK_BUSY_RUNNING;
1da177e4 3247
dcd989cb 3248 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3249
dcd989cb 3250 return ret;
1da177e4 3251}
dcd989cb 3252EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3253
db7bccf4
TH
3254/*
3255 * CPU hotplug.
3256 *
e22bee78
TH
3257 * There are two challenges in supporting CPU hotplug. Firstly, there
3258 * are a lot of assumptions on strong associations among work, cwq and
3259 * gcwq which make migrating pending and scheduled works very
3260 * difficult to implement without impacting hot paths. Secondly,
3261 * gcwqs serve mix of short, long and very long running works making
3262 * blocked draining impractical.
3263 *
3264 * This is solved by allowing a gcwq to be detached from CPU, running
3265 * it with unbound (rogue) workers and allowing it to be reattached
3266 * later if the cpu comes back online. A separate thread is created
3267 * to govern a gcwq in such state and is called the trustee of the
3268 * gcwq.
db7bccf4
TH
3269 *
3270 * Trustee states and their descriptions.
3271 *
3272 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3273 * new trustee is started with this state.
3274 *
3275 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
3276 * assuming the manager role and making all existing
3277 * workers rogue. DOWN_PREPARE waits for trustee to
3278 * enter this state. After reaching IN_CHARGE, trustee
3279 * tries to execute the pending worklist until it's empty
3280 * and the state is set to BUTCHER, or the state is set
3281 * to RELEASE.
db7bccf4
TH
3282 *
3283 * BUTCHER Command state which is set by the cpu callback after
3284 * the cpu has went down. Once this state is set trustee
3285 * knows that there will be no new works on the worklist
3286 * and once the worklist is empty it can proceed to
3287 * killing idle workers.
3288 *
3289 * RELEASE Command state which is set by the cpu callback if the
3290 * cpu down has been canceled or it has come online
3291 * again. After recognizing this state, trustee stops
e22bee78
TH
3292 * trying to drain or butcher and clears ROGUE, rebinds
3293 * all remaining workers back to the cpu and releases
3294 * manager role.
db7bccf4
TH
3295 *
3296 * DONE Trustee will enter this state after BUTCHER or RELEASE
3297 * is complete.
3298 *
3299 * trustee CPU draining
3300 * took over down complete
3301 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3302 * | | ^
3303 * | CPU is back online v return workers |
3304 * ----------------> RELEASE --------------
3305 */
1da177e4 3306
db7bccf4
TH
3307/**
3308 * trustee_wait_event_timeout - timed event wait for trustee
3309 * @cond: condition to wait for
3310 * @timeout: timeout in jiffies
3311 *
3312 * wait_event_timeout() for trustee to use. Handles locking and
3313 * checks for RELEASE request.
3314 *
3315 * CONTEXT:
3316 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3317 * multiple times. To be used by trustee.
3318 *
3319 * RETURNS:
3320 * Positive indicating left time if @cond is satisfied, 0 if timed
3321 * out, -1 if canceled.
3322 */
3323#define trustee_wait_event_timeout(cond, timeout) ({ \
3324 long __ret = (timeout); \
3325 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3326 __ret) { \
3327 spin_unlock_irq(&gcwq->lock); \
3328 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3329 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3330 __ret); \
3331 spin_lock_irq(&gcwq->lock); \
3332 } \
3333 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3334})
3af24433 3335
db7bccf4
TH
3336/**
3337 * trustee_wait_event - event wait for trustee
3338 * @cond: condition to wait for
3339 *
3340 * wait_event() for trustee to use. Automatically handles locking and
3341 * checks for CANCEL request.
3342 *
3343 * CONTEXT:
3344 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3345 * multiple times. To be used by trustee.
3346 *
3347 * RETURNS:
3348 * 0 if @cond is satisfied, -1 if canceled.
3349 */
3350#define trustee_wait_event(cond) ({ \
3351 long __ret1; \
3352 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3353 __ret1 < 0 ? -1 : 0; \
3354})
1da177e4 3355
4ce62e9e
TH
3356static bool gcwq_is_managing_workers(struct global_cwq *gcwq)
3357{
3358 struct worker_pool *pool;
3359
3360 for_each_worker_pool(pool, gcwq)
3361 if (pool->flags & POOL_MANAGING_WORKERS)
3362 return true;
3363 return false;
3364}
3365
3366static bool gcwq_has_idle_workers(struct global_cwq *gcwq)
3367{
3368 struct worker_pool *pool;
3369
3370 for_each_worker_pool(pool, gcwq)
3371 if (!list_empty(&pool->idle_list))
3372 return true;
3373 return false;
3374}
3375
db7bccf4 3376static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3377{
db7bccf4 3378 struct global_cwq *gcwq = __gcwq;
4ce62e9e 3379 struct worker_pool *pool;
db7bccf4 3380 struct worker *worker;
e22bee78 3381 struct work_struct *work;
db7bccf4 3382 struct hlist_node *pos;
e22bee78 3383 long rc;
db7bccf4 3384 int i;
3af24433 3385
db7bccf4
TH
3386 BUG_ON(gcwq->cpu != smp_processor_id());
3387
3388 spin_lock_irq(&gcwq->lock);
3af24433 3389 /*
e22bee78
TH
3390 * Claim the manager position and make all workers rogue.
3391 * Trustee must be bound to the target cpu and can't be
3392 * cancelled.
3af24433 3393 */
db7bccf4 3394 BUG_ON(gcwq->cpu != smp_processor_id());
4ce62e9e 3395 rc = trustee_wait_event(!gcwq_is_managing_workers(gcwq));
e22bee78 3396 BUG_ON(rc < 0);
3af24433 3397
4ce62e9e
TH
3398 for_each_worker_pool(pool, gcwq) {
3399 pool->flags |= POOL_MANAGING_WORKERS;
e1d8aa9f 3400
4ce62e9e
TH
3401 list_for_each_entry(worker, &pool->idle_list, entry)
3402 worker->flags |= WORKER_ROGUE;
3403 }
3af24433 3404
db7bccf4 3405 for_each_busy_worker(worker, i, pos, gcwq)
cb444766 3406 worker->flags |= WORKER_ROGUE;
06ba38a9 3407
e22bee78
TH
3408 /*
3409 * Call schedule() so that we cross rq->lock and thus can
3410 * guarantee sched callbacks see the rogue flag. This is
3411 * necessary as scheduler callbacks may be invoked from other
3412 * cpus.
3413 */
3414 spin_unlock_irq(&gcwq->lock);
3415 schedule();
3416 spin_lock_irq(&gcwq->lock);
06ba38a9 3417
e22bee78 3418 /*
cb444766
TH
3419 * Sched callbacks are disabled now. Zap nr_running. After
3420 * this, nr_running stays zero and need_more_worker() and
3421 * keep_working() are always true as long as the worklist is
3422 * not empty.
e22bee78 3423 */
4ce62e9e
TH
3424 for_each_worker_pool(pool, gcwq)
3425 atomic_set(get_pool_nr_running(pool), 0);
1da177e4 3426
e22bee78 3427 spin_unlock_irq(&gcwq->lock);
4ce62e9e
TH
3428 for_each_worker_pool(pool, gcwq)
3429 del_timer_sync(&pool->idle_timer);
e22bee78 3430 spin_lock_irq(&gcwq->lock);
3af24433 3431
db7bccf4
TH
3432 /*
3433 * We're now in charge. Notify and proceed to drain. We need
3434 * to keep the gcwq running during the whole CPU down
3435 * procedure as other cpu hotunplug callbacks may need to
3436 * flush currently running tasks.
3437 */
3438 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3439 wake_up_all(&gcwq->trustee_wait);
3af24433 3440
db7bccf4
TH
3441 /*
3442 * The original cpu is in the process of dying and may go away
3443 * anytime now. When that happens, we and all workers would
e22bee78
TH
3444 * be migrated to other cpus. Try draining any left work. We
3445 * want to get it over with ASAP - spam rescuers, wake up as
3446 * many idlers as necessary and create new ones till the
3447 * worklist is empty. Note that if the gcwq is frozen, there
58a69cb4 3448 * may be frozen works in freezable cwqs. Don't declare
e22bee78 3449 * completion while frozen.
db7bccf4 3450 */
4ce62e9e
TH
3451 while (true) {
3452 bool busy = false;
e22bee78 3453
4ce62e9e
TH
3454 for_each_worker_pool(pool, gcwq)
3455 busy |= pool->nr_workers != pool->nr_idle;
3af24433 3456
4ce62e9e
TH
3457 if (!busy && !(gcwq->flags & GCWQ_FREEZING) &&
3458 gcwq->trustee_state != TRUSTEE_IN_CHARGE)
3459 break;
e22bee78 3460
4ce62e9e
TH
3461 for_each_worker_pool(pool, gcwq) {
3462 int nr_works = 0;
3463
3464 list_for_each_entry(work, &pool->worklist, entry) {
3465 send_mayday(work);
3466 nr_works++;
3467 }
3468
3469 list_for_each_entry(worker, &pool->idle_list, entry) {
3470 if (!nr_works--)
3471 break;
3472 wake_up_process(worker->task);
3473 }
3474
3475 if (need_to_create_worker(pool)) {
3476 spin_unlock_irq(&gcwq->lock);
3477 worker = create_worker(pool, false);
3478 spin_lock_irq(&gcwq->lock);
3479 if (worker) {
3480 worker->flags |= WORKER_ROGUE;
3481 start_worker(worker);
3482 }
e22bee78 3483 }
1da177e4 3484 }
3af24433 3485
db7bccf4
TH
3486 /* give a breather */
3487 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3488 break;
3af24433 3489 }
1da177e4 3490
14441960 3491 /*
e22bee78
TH
3492 * Either all works have been scheduled and cpu is down, or
3493 * cpu down has already been canceled. Wait for and butcher
3494 * all workers till we're canceled.
14441960 3495 */
e22bee78 3496 do {
4ce62e9e
TH
3497 rc = trustee_wait_event(gcwq_has_idle_workers(gcwq));
3498
3499 i = 0;
3500 for_each_worker_pool(pool, gcwq) {
3501 while (!list_empty(&pool->idle_list)) {
3502 worker = list_first_entry(&pool->idle_list,
3503 struct worker, entry);
3504 destroy_worker(worker);
3505 }
3506 i |= pool->nr_workers;
3507 }
3508 } while (i && rc >= 0);
4e6045f1 3509
14441960 3510 /*
e22bee78
TH
3511 * At this point, either draining has completed and no worker
3512 * is left, or cpu down has been canceled or the cpu is being
3513 * brought back up. There shouldn't be any idle one left.
3514 * Tell the remaining busy ones to rebind once it finishes the
3515 * currently scheduled works by scheduling the rebind_work.
14441960 3516 */
4ce62e9e
TH
3517 for_each_worker_pool(pool, gcwq)
3518 WARN_ON(!list_empty(&pool->idle_list));
e22bee78
TH
3519
3520 for_each_busy_worker(worker, i, pos, gcwq) {
3521 struct work_struct *rebind_work = &worker->rebind_work;
3522
3523 /*
3524 * Rebind_work may race with future cpu hotplug
3525 * operations. Use a separate flag to mark that
3526 * rebinding is scheduled.
3527 */
cb444766
TH
3528 worker->flags |= WORKER_REBIND;
3529 worker->flags &= ~WORKER_ROGUE;
e22bee78
TH
3530
3531 /* queue rebind_work, wq doesn't matter, use the default one */
3532 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3533 work_data_bits(rebind_work)))
3534 continue;
3535
3536 debug_work_activate(rebind_work);
d320c038 3537 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
e22bee78
TH
3538 worker->scheduled.next,
3539 work_color_to_flags(WORK_NO_COLOR));
3540 }
3541
3542 /* relinquish manager role */
4ce62e9e
TH
3543 for_each_worker_pool(pool, gcwq)
3544 pool->flags &= ~POOL_MANAGING_WORKERS;
e22bee78 3545
db7bccf4
TH
3546 /* notify completion */
3547 gcwq->trustee = NULL;
3548 gcwq->trustee_state = TRUSTEE_DONE;
3549 wake_up_all(&gcwq->trustee_wait);
3550 spin_unlock_irq(&gcwq->lock);
3551 return 0;
3af24433
ON
3552}
3553
3554/**
db7bccf4
TH
3555 * wait_trustee_state - wait for trustee to enter the specified state
3556 * @gcwq: gcwq the trustee of interest belongs to
3557 * @state: target state to wait for
3af24433 3558 *
db7bccf4
TH
3559 * Wait for the trustee to reach @state. DONE is already matched.
3560 *
3561 * CONTEXT:
3562 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3563 * multiple times. To be used by cpu_callback.
3af24433 3564 */
db7bccf4 3565static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3566__releases(&gcwq->lock)
3567__acquires(&gcwq->lock)
3af24433 3568{
db7bccf4
TH
3569 if (!(gcwq->trustee_state == state ||
3570 gcwq->trustee_state == TRUSTEE_DONE)) {
3571 spin_unlock_irq(&gcwq->lock);
3572 __wait_event(gcwq->trustee_wait,
3573 gcwq->trustee_state == state ||
3574 gcwq->trustee_state == TRUSTEE_DONE);
3575 spin_lock_irq(&gcwq->lock);
3576 }
3af24433 3577}
3af24433
ON
3578
3579static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3580 unsigned long action,
3581 void *hcpu)
3582{
3583 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3584 struct global_cwq *gcwq = get_gcwq(cpu);
3585 struct task_struct *new_trustee = NULL;
4ce62e9e
TH
3586 struct worker *new_workers[NR_WORKER_POOLS] = { };
3587 struct worker_pool *pool;
db7bccf4 3588 unsigned long flags;
4ce62e9e 3589 int i;
3af24433 3590
8bb78442
RW
3591 action &= ~CPU_TASKS_FROZEN;
3592
3af24433 3593 switch (action) {
db7bccf4
TH
3594 case CPU_DOWN_PREPARE:
3595 new_trustee = kthread_create(trustee_thread, gcwq,
3596 "workqueue_trustee/%d\n", cpu);
3597 if (IS_ERR(new_trustee))
3598 return notifier_from_errno(PTR_ERR(new_trustee));
3599 kthread_bind(new_trustee, cpu);
e22bee78 3600 /* fall through */
3af24433 3601 case CPU_UP_PREPARE:
4ce62e9e
TH
3602 i = 0;
3603 for_each_worker_pool(pool, gcwq) {
3604 BUG_ON(pool->first_idle);
3605 new_workers[i] = create_worker(pool, false);
3606 if (!new_workers[i++])
3607 goto err_destroy;
3af24433 3608 }
1da177e4
LT
3609 }
3610
db7bccf4
TH
3611 /* some are called w/ irq disabled, don't disturb irq status */
3612 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3613
00dfcaf7 3614 switch (action) {
db7bccf4
TH
3615 case CPU_DOWN_PREPARE:
3616 /* initialize trustee and tell it to acquire the gcwq */
3617 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3618 gcwq->trustee = new_trustee;
3619 gcwq->trustee_state = TRUSTEE_START;
3620 wake_up_process(gcwq->trustee);
3621 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3622 /* fall through */
3623 case CPU_UP_PREPARE:
4ce62e9e
TH
3624 i = 0;
3625 for_each_worker_pool(pool, gcwq) {
3626 BUG_ON(pool->first_idle);
3627 pool->first_idle = new_workers[i++];
3628 }
e22bee78
TH
3629 break;
3630
3631 case CPU_DYING:
3632 /*
3633 * Before this, the trustee and all workers except for
3634 * the ones which are still executing works from
3635 * before the last CPU down must be on the cpu. After
3636 * this, they'll all be diasporas.
3637 */
3638 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3639 break;
3640
3da1c84c 3641 case CPU_POST_DEAD:
db7bccf4 3642 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3643 /* fall through */
3644 case CPU_UP_CANCELED:
4ce62e9e
TH
3645 for_each_worker_pool(pool, gcwq) {
3646 destroy_worker(pool->first_idle);
3647 pool->first_idle = NULL;
3648 }
db7bccf4
TH
3649 break;
3650
3651 case CPU_DOWN_FAILED:
3652 case CPU_ONLINE:
e22bee78 3653 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3654 if (gcwq->trustee_state != TRUSTEE_DONE) {
3655 gcwq->trustee_state = TRUSTEE_RELEASE;
3656 wake_up_process(gcwq->trustee);
3657 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3658 }
db7bccf4 3659
e22bee78
TH
3660 /*
3661 * Trustee is done and there might be no worker left.
3662 * Put the first_idle in and request a real manager to
3663 * take a look.
3664 */
4ce62e9e
TH
3665 for_each_worker_pool(pool, gcwq) {
3666 spin_unlock_irq(&gcwq->lock);
3667 kthread_bind(pool->first_idle->task, cpu);
3668 spin_lock_irq(&gcwq->lock);
3669 pool->flags |= POOL_MANAGE_WORKERS;
3670 start_worker(pool->first_idle);
3671 pool->first_idle = NULL;
3672 }
db7bccf4 3673 break;
00dfcaf7
ON
3674 }
3675
db7bccf4
TH
3676 spin_unlock_irqrestore(&gcwq->lock, flags);
3677
1537663f 3678 return notifier_from_errno(0);
4ce62e9e
TH
3679
3680err_destroy:
3681 if (new_trustee)
3682 kthread_stop(new_trustee);
3683
3684 spin_lock_irqsave(&gcwq->lock, flags);
3685 for (i = 0; i < NR_WORKER_POOLS; i++)
3686 if (new_workers[i])
3687 destroy_worker(new_workers[i]);
3688 spin_unlock_irqrestore(&gcwq->lock, flags);
3689
3690 return NOTIFY_BAD;
1da177e4 3691}
1da177e4 3692
2d3854a3 3693#ifdef CONFIG_SMP
8ccad40d 3694
2d3854a3 3695struct work_for_cpu {
6b44003e 3696 struct completion completion;
2d3854a3
RR
3697 long (*fn)(void *);
3698 void *arg;
3699 long ret;
3700};
3701
6b44003e 3702static int do_work_for_cpu(void *_wfc)
2d3854a3 3703{
6b44003e 3704 struct work_for_cpu *wfc = _wfc;
2d3854a3 3705 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3706 complete(&wfc->completion);
3707 return 0;
2d3854a3
RR
3708}
3709
3710/**
3711 * work_on_cpu - run a function in user context on a particular cpu
3712 * @cpu: the cpu to run on
3713 * @fn: the function to run
3714 * @arg: the function arg
3715 *
31ad9081
RR
3716 * This will return the value @fn returns.
3717 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3718 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3719 */
3720long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3721{
6b44003e
AM
3722 struct task_struct *sub_thread;
3723 struct work_for_cpu wfc = {
3724 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3725 .fn = fn,
3726 .arg = arg,
3727 };
3728
3729 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3730 if (IS_ERR(sub_thread))
3731 return PTR_ERR(sub_thread);
3732 kthread_bind(sub_thread, cpu);
3733 wake_up_process(sub_thread);
3734 wait_for_completion(&wfc.completion);
2d3854a3
RR
3735 return wfc.ret;
3736}
3737EXPORT_SYMBOL_GPL(work_on_cpu);
3738#endif /* CONFIG_SMP */
3739
a0a1a5fd
TH
3740#ifdef CONFIG_FREEZER
3741
3742/**
3743 * freeze_workqueues_begin - begin freezing workqueues
3744 *
58a69cb4
TH
3745 * Start freezing workqueues. After this function returns, all freezable
3746 * workqueues will queue new works to their frozen_works list instead of
3747 * gcwq->worklist.
a0a1a5fd
TH
3748 *
3749 * CONTEXT:
8b03ae3c 3750 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3751 */
3752void freeze_workqueues_begin(void)
3753{
a0a1a5fd
TH
3754 unsigned int cpu;
3755
3756 spin_lock(&workqueue_lock);
3757
3758 BUG_ON(workqueue_freezing);
3759 workqueue_freezing = true;
3760
f3421797 3761 for_each_gcwq_cpu(cpu) {
8b03ae3c 3762 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3763 struct workqueue_struct *wq;
8b03ae3c
TH
3764
3765 spin_lock_irq(&gcwq->lock);
3766
db7bccf4
TH
3767 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3768 gcwq->flags |= GCWQ_FREEZING;
3769
a0a1a5fd
TH
3770 list_for_each_entry(wq, &workqueues, list) {
3771 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3772
58a69cb4 3773 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3774 cwq->max_active = 0;
a0a1a5fd 3775 }
8b03ae3c
TH
3776
3777 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3778 }
3779
3780 spin_unlock(&workqueue_lock);
3781}
3782
3783/**
58a69cb4 3784 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3785 *
3786 * Check whether freezing is complete. This function must be called
3787 * between freeze_workqueues_begin() and thaw_workqueues().
3788 *
3789 * CONTEXT:
3790 * Grabs and releases workqueue_lock.
3791 *
3792 * RETURNS:
58a69cb4
TH
3793 * %true if some freezable workqueues are still busy. %false if freezing
3794 * is complete.
a0a1a5fd
TH
3795 */
3796bool freeze_workqueues_busy(void)
3797{
a0a1a5fd
TH
3798 unsigned int cpu;
3799 bool busy = false;
3800
3801 spin_lock(&workqueue_lock);
3802
3803 BUG_ON(!workqueue_freezing);
3804
f3421797 3805 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3806 struct workqueue_struct *wq;
a0a1a5fd
TH
3807 /*
3808 * nr_active is monotonically decreasing. It's safe
3809 * to peek without lock.
3810 */
3811 list_for_each_entry(wq, &workqueues, list) {
3812 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3813
58a69cb4 3814 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3815 continue;
3816
3817 BUG_ON(cwq->nr_active < 0);
3818 if (cwq->nr_active) {
3819 busy = true;
3820 goto out_unlock;
3821 }
3822 }
3823 }
3824out_unlock:
3825 spin_unlock(&workqueue_lock);
3826 return busy;
3827}
3828
3829/**
3830 * thaw_workqueues - thaw workqueues
3831 *
3832 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3833 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3834 *
3835 * CONTEXT:
8b03ae3c 3836 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3837 */
3838void thaw_workqueues(void)
3839{
a0a1a5fd
TH
3840 unsigned int cpu;
3841
3842 spin_lock(&workqueue_lock);
3843
3844 if (!workqueue_freezing)
3845 goto out_unlock;
3846
f3421797 3847 for_each_gcwq_cpu(cpu) {
8b03ae3c 3848 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3849 struct worker_pool *pool;
bdbc5dd7 3850 struct workqueue_struct *wq;
8b03ae3c
TH
3851
3852 spin_lock_irq(&gcwq->lock);
3853
db7bccf4
TH
3854 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3855 gcwq->flags &= ~GCWQ_FREEZING;
3856
a0a1a5fd
TH
3857 list_for_each_entry(wq, &workqueues, list) {
3858 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3859
58a69cb4 3860 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3861 continue;
3862
a0a1a5fd
TH
3863 /* restore max_active and repopulate worklist */
3864 cwq->max_active = wq->saved_max_active;
3865
3866 while (!list_empty(&cwq->delayed_works) &&
3867 cwq->nr_active < cwq->max_active)
3868 cwq_activate_first_delayed(cwq);
a0a1a5fd 3869 }
8b03ae3c 3870
4ce62e9e
TH
3871 for_each_worker_pool(pool, gcwq)
3872 wake_up_worker(pool);
e22bee78 3873
8b03ae3c 3874 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3875 }
3876
3877 workqueue_freezing = false;
3878out_unlock:
3879 spin_unlock(&workqueue_lock);
3880}
3881#endif /* CONFIG_FREEZER */
3882
6ee0578b 3883static int __init init_workqueues(void)
1da177e4 3884{
c34056a3 3885 unsigned int cpu;
c8e55f36 3886 int i;
c34056a3 3887
f6500947 3888 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3889
3890 /* initialize gcwqs */
f3421797 3891 for_each_gcwq_cpu(cpu) {
8b03ae3c 3892 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3893 struct worker_pool *pool;
8b03ae3c
TH
3894
3895 spin_lock_init(&gcwq->lock);
3896 gcwq->cpu = cpu;
477a3c33 3897 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3898
c8e55f36
TH
3899 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3900 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3901
4ce62e9e
TH
3902 for_each_worker_pool(pool, gcwq) {
3903 pool->gcwq = gcwq;
3904 INIT_LIST_HEAD(&pool->worklist);
3905 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3906
4ce62e9e
TH
3907 init_timer_deferrable(&pool->idle_timer);
3908 pool->idle_timer.function = idle_worker_timeout;
3909 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3910
4ce62e9e
TH
3911 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3912 (unsigned long)pool);
3913
3914 ida_init(&pool->worker_ida);
3915 }
db7bccf4
TH
3916
3917 gcwq->trustee_state = TRUSTEE_DONE;
3918 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3919 }
3920
e22bee78 3921 /* create the initial worker */
f3421797 3922 for_each_online_gcwq_cpu(cpu) {
e22bee78 3923 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3924 struct worker_pool *pool;
e22bee78 3925
477a3c33
TH
3926 if (cpu != WORK_CPU_UNBOUND)
3927 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3928
3929 for_each_worker_pool(pool, gcwq) {
3930 struct worker *worker;
3931
3932 worker = create_worker(pool, true);
3933 BUG_ON(!worker);
3934 spin_lock_irq(&gcwq->lock);
3935 start_worker(worker);
3936 spin_unlock_irq(&gcwq->lock);
3937 }
e22bee78
TH
3938 }
3939
d320c038
TH
3940 system_wq = alloc_workqueue("events", 0, 0);
3941 system_long_wq = alloc_workqueue("events_long", 0, 0);
3942 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3943 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3944 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3945 system_freezable_wq = alloc_workqueue("events_freezable",
3946 WQ_FREEZABLE, 0);
62d3c543
AS
3947 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3948 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3949 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3950 !system_unbound_wq || !system_freezable_wq ||
3951 !system_nrt_freezable_wq);
6ee0578b 3952 return 0;
1da177e4 3953}
6ee0578b 3954early_initcall(init_workqueues);