workqueue: misc/cosmetic updates
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
fb39125f
Z
36#define CREATE_TRACE_POINTS
37#include <trace/events/workqueue.h>
1da177e4 38
4690c4ab
TH
39/*
40 * Structure fields follow one of the following exclusion rules.
41 *
42 * I: Set during initialization and read-only afterwards.
43 *
44 * L: cwq->lock protected. Access with cwq->lock held.
45 *
46 * W: workqueue_lock protected.
47 */
48
1da177e4 49/*
f756d5e2
NL
50 * The per-CPU workqueue (if single thread, we always use the first
51 * possible cpu).
1da177e4
LT
52 */
53struct cpu_workqueue_struct {
54
55 spinlock_t lock;
56
1da177e4
LT
57 struct list_head worklist;
58 wait_queue_head_t more_work;
3af24433 59 struct work_struct *current_work;
1da177e4 60
4690c4ab
TH
61 struct workqueue_struct *wq; /* I: the owning workqueue */
62 struct task_struct *thread;
1da177e4
LT
63} ____cacheline_aligned;
64
65/*
66 * The externally visible workqueue abstraction is an array of
67 * per-CPU workqueues:
68 */
69struct workqueue_struct {
4690c4ab
TH
70 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
71 struct list_head list; /* W: list of all workqueues */
72 const char *name; /* I: workqueue name */
cce1a165 73 int singlethread;
319c2a98 74 int freezeable; /* Freeze threads during suspend */
4e6045f1 75#ifdef CONFIG_LOCKDEP
4690c4ab 76 struct lockdep_map lockdep_map;
4e6045f1 77#endif
1da177e4
LT
78};
79
dc186ad7
TG
80#ifdef CONFIG_DEBUG_OBJECTS_WORK
81
82static struct debug_obj_descr work_debug_descr;
83
84/*
85 * fixup_init is called when:
86 * - an active object is initialized
87 */
88static int work_fixup_init(void *addr, enum debug_obj_state state)
89{
90 struct work_struct *work = addr;
91
92 switch (state) {
93 case ODEBUG_STATE_ACTIVE:
94 cancel_work_sync(work);
95 debug_object_init(work, &work_debug_descr);
96 return 1;
97 default:
98 return 0;
99 }
100}
101
102/*
103 * fixup_activate is called when:
104 * - an active object is activated
105 * - an unknown object is activated (might be a statically initialized object)
106 */
107static int work_fixup_activate(void *addr, enum debug_obj_state state)
108{
109 struct work_struct *work = addr;
110
111 switch (state) {
112
113 case ODEBUG_STATE_NOTAVAILABLE:
114 /*
115 * This is not really a fixup. The work struct was
116 * statically initialized. We just make sure that it
117 * is tracked in the object tracker.
118 */
119 if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) {
120 debug_object_init(work, &work_debug_descr);
121 debug_object_activate(work, &work_debug_descr);
122 return 0;
123 }
124 WARN_ON_ONCE(1);
125 return 0;
126
127 case ODEBUG_STATE_ACTIVE:
128 WARN_ON(1);
129
130 default:
131 return 0;
132 }
133}
134
135/*
136 * fixup_free is called when:
137 * - an active object is freed
138 */
139static int work_fixup_free(void *addr, enum debug_obj_state state)
140{
141 struct work_struct *work = addr;
142
143 switch (state) {
144 case ODEBUG_STATE_ACTIVE:
145 cancel_work_sync(work);
146 debug_object_free(work, &work_debug_descr);
147 return 1;
148 default:
149 return 0;
150 }
151}
152
153static struct debug_obj_descr work_debug_descr = {
154 .name = "work_struct",
155 .fixup_init = work_fixup_init,
156 .fixup_activate = work_fixup_activate,
157 .fixup_free = work_fixup_free,
158};
159
160static inline void debug_work_activate(struct work_struct *work)
161{
162 debug_object_activate(work, &work_debug_descr);
163}
164
165static inline void debug_work_deactivate(struct work_struct *work)
166{
167 debug_object_deactivate(work, &work_debug_descr);
168}
169
170void __init_work(struct work_struct *work, int onstack)
171{
172 if (onstack)
173 debug_object_init_on_stack(work, &work_debug_descr);
174 else
175 debug_object_init(work, &work_debug_descr);
176}
177EXPORT_SYMBOL_GPL(__init_work);
178
179void destroy_work_on_stack(struct work_struct *work)
180{
181 debug_object_free(work, &work_debug_descr);
182}
183EXPORT_SYMBOL_GPL(destroy_work_on_stack);
184
185#else
186static inline void debug_work_activate(struct work_struct *work) { }
187static inline void debug_work_deactivate(struct work_struct *work) { }
188#endif
189
95402b38
GS
190/* Serializes the accesses to the list of workqueues. */
191static DEFINE_SPINLOCK(workqueue_lock);
1da177e4
LT
192static LIST_HEAD(workqueues);
193
3af24433 194static int singlethread_cpu __read_mostly;
e7577c50 195static const struct cpumask *cpu_singlethread_map __read_mostly;
14441960
ON
196/*
197 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
198 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
199 * which comes in between can't use for_each_online_cpu(). We could
200 * use cpu_possible_map, the cpumask below is more a documentation
201 * than optimization.
202 */
e7577c50 203static cpumask_var_t cpu_populated_map __read_mostly;
f756d5e2 204
1da177e4 205/* If it's single threaded, it isn't in the list of workqueues. */
6cc88bc4 206static inline int is_wq_single_threaded(struct workqueue_struct *wq)
1da177e4 207{
cce1a165 208 return wq->singlethread;
1da177e4
LT
209}
210
e7577c50 211static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
b1f4ec17 212{
6cc88bc4 213 return is_wq_single_threaded(wq)
e7577c50 214 ? cpu_singlethread_map : cpu_populated_map;
b1f4ec17
ON
215}
216
4690c4ab
TH
217static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
218 struct workqueue_struct *wq)
a848e3b6 219{
6cc88bc4 220 if (unlikely(is_wq_single_threaded(wq)))
a848e3b6
ON
221 cpu = singlethread_cpu;
222 return per_cpu_ptr(wq->cpu_wq, cpu);
223}
224
4594bf15
DH
225/*
226 * Set the workqueue on which a work item is to be run
227 * - Must *only* be called if the pending flag is set
228 */
ed7c0fee 229static inline void set_wq_data(struct work_struct *work,
4690c4ab
TH
230 struct cpu_workqueue_struct *cwq,
231 unsigned long extra_flags)
365970a1 232{
4594bf15 233 BUG_ON(!work_pending(work));
365970a1 234
4690c4ab
TH
235 atomic_long_set(&work->data, (unsigned long)cwq | work_static(work) |
236 (1UL << WORK_STRUCT_PENDING) | extra_flags);
365970a1
DH
237}
238
4d707b9f
ON
239/*
240 * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
241 */
242static inline void clear_wq_data(struct work_struct *work)
243{
4690c4ab 244 atomic_long_set(&work->data, work_static(work));
4d707b9f
ON
245}
246
ed7c0fee
ON
247static inline
248struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
365970a1 249{
a08727ba 250 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
365970a1
DH
251}
252
4690c4ab
TH
253/**
254 * insert_work - insert a work into cwq
255 * @cwq: cwq @work belongs to
256 * @work: work to insert
257 * @head: insertion point
258 * @extra_flags: extra WORK_STRUCT_* flags to set
259 *
260 * Insert @work into @cwq after @head.
261 *
262 * CONTEXT:
263 * spin_lock_irq(cwq->lock).
264 */
b89deed3 265static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
266 struct work_struct *work, struct list_head *head,
267 unsigned int extra_flags)
b89deed3 268{
e1d8aa9f
FW
269 trace_workqueue_insertion(cwq->thread, work);
270
4690c4ab
TH
271 /* we own @work, set data and link */
272 set_wq_data(work, cwq, extra_flags);
273
6e84d644
ON
274 /*
275 * Ensure that we get the right work->data if we see the
276 * result of list_add() below, see try_to_grab_pending().
277 */
278 smp_wmb();
4690c4ab 279
1a4d9b0a 280 list_add_tail(&work->entry, head);
b89deed3
ON
281 wake_up(&cwq->more_work);
282}
283
4690c4ab 284static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
285 struct work_struct *work)
286{
4690c4ab 287 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1da177e4
LT
288 unsigned long flags;
289
dc186ad7 290 debug_work_activate(work);
1da177e4 291 spin_lock_irqsave(&cwq->lock, flags);
4690c4ab
TH
292 BUG_ON(!list_empty(&work->entry));
293 insert_work(cwq, work, &cwq->worklist, 0);
1da177e4
LT
294 spin_unlock_irqrestore(&cwq->lock, flags);
295}
296
0fcb78c2
REB
297/**
298 * queue_work - queue work on a workqueue
299 * @wq: workqueue to use
300 * @work: work to queue
301 *
057647fc 302 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 303 *
00dfcaf7
ON
304 * We queue the work to the CPU on which it was submitted, but if the CPU dies
305 * it can be processed by another CPU.
1da177e4 306 */
7ad5b3a5 307int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 308{
ef1ca236
ON
309 int ret;
310
311 ret = queue_work_on(get_cpu(), wq, work);
312 put_cpu();
313
1da177e4
LT
314 return ret;
315}
ae90dd5d 316EXPORT_SYMBOL_GPL(queue_work);
1da177e4 317
c1a220e7
ZR
318/**
319 * queue_work_on - queue work on specific cpu
320 * @cpu: CPU number to execute work on
321 * @wq: workqueue to use
322 * @work: work to queue
323 *
324 * Returns 0 if @work was already on a queue, non-zero otherwise.
325 *
326 * We queue the work to a specific CPU, the caller must ensure it
327 * can't go away.
328 */
329int
330queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
331{
332 int ret = 0;
333
334 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
4690c4ab 335 __queue_work(cpu, wq, work);
c1a220e7
ZR
336 ret = 1;
337 }
338 return ret;
339}
340EXPORT_SYMBOL_GPL(queue_work_on);
341
6d141c3f 342static void delayed_work_timer_fn(unsigned long __data)
1da177e4 343{
52bad64d 344 struct delayed_work *dwork = (struct delayed_work *)__data;
ed7c0fee 345 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
1da177e4 346
4690c4ab 347 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
348}
349
0fcb78c2
REB
350/**
351 * queue_delayed_work - queue work on a workqueue after delay
352 * @wq: workqueue to use
af9997e4 353 * @dwork: delayable work to queue
0fcb78c2
REB
354 * @delay: number of jiffies to wait before queueing
355 *
057647fc 356 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 357 */
7ad5b3a5 358int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 359 struct delayed_work *dwork, unsigned long delay)
1da177e4 360{
52bad64d 361 if (delay == 0)
63bc0362 362 return queue_work(wq, &dwork->work);
1da177e4 363
63bc0362 364 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 365}
ae90dd5d 366EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 367
0fcb78c2
REB
368/**
369 * queue_delayed_work_on - queue work on specific CPU after delay
370 * @cpu: CPU number to execute work on
371 * @wq: workqueue to use
af9997e4 372 * @dwork: work to queue
0fcb78c2
REB
373 * @delay: number of jiffies to wait before queueing
374 *
057647fc 375 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 376 */
7a6bc1cd 377int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 378 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
379{
380 int ret = 0;
52bad64d
DH
381 struct timer_list *timer = &dwork->timer;
382 struct work_struct *work = &dwork->work;
7a6bc1cd 383
a08727ba 384 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
7a6bc1cd
VP
385 BUG_ON(timer_pending(timer));
386 BUG_ON(!list_empty(&work->entry));
387
8a3e77cc
AL
388 timer_stats_timer_set_start_info(&dwork->timer);
389
ed7c0fee 390 /* This stores cwq for the moment, for the timer_fn */
4690c4ab 391 set_wq_data(work, get_cwq(raw_smp_processor_id(), wq), 0);
7a6bc1cd 392 timer->expires = jiffies + delay;
52bad64d 393 timer->data = (unsigned long)dwork;
7a6bc1cd 394 timer->function = delayed_work_timer_fn;
63bc0362
ON
395
396 if (unlikely(cpu >= 0))
397 add_timer_on(timer, cpu);
398 else
399 add_timer(timer);
7a6bc1cd
VP
400 ret = 1;
401 }
402 return ret;
403}
ae90dd5d 404EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 405
858119e1 406static void run_workqueue(struct cpu_workqueue_struct *cwq)
1da177e4 407{
f293ea92 408 spin_lock_irq(&cwq->lock);
1da177e4
LT
409 while (!list_empty(&cwq->worklist)) {
410 struct work_struct *work = list_entry(cwq->worklist.next,
411 struct work_struct, entry);
6bb49e59 412 work_func_t f = work->func;
4e6045f1
JB
413#ifdef CONFIG_LOCKDEP
414 /*
415 * It is permissible to free the struct work_struct
416 * from inside the function that is called from it,
417 * this we need to take into account for lockdep too.
418 * To avoid bogus "held lock freed" warnings as well
419 * as problems when looking into work->lockdep_map,
420 * make a copy and use that here.
421 */
422 struct lockdep_map lockdep_map = work->lockdep_map;
423#endif
e1d8aa9f 424 trace_workqueue_execution(cwq->thread, work);
dc186ad7 425 debug_work_deactivate(work);
b89deed3 426 cwq->current_work = work;
1da177e4 427 list_del_init(cwq->worklist.next);
f293ea92 428 spin_unlock_irq(&cwq->lock);
1da177e4 429
365970a1 430 BUG_ON(get_wq_data(work) != cwq);
23b2e599 431 work_clear_pending(work);
3295f0ef
IM
432 lock_map_acquire(&cwq->wq->lockdep_map);
433 lock_map_acquire(&lockdep_map);
65f27f38 434 f(work);
3295f0ef
IM
435 lock_map_release(&lockdep_map);
436 lock_map_release(&cwq->wq->lockdep_map);
1da177e4 437
d5abe669
PZ
438 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
439 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
440 "%s/0x%08x/%d\n",
441 current->comm, preempt_count(),
ba25f9dc 442 task_pid_nr(current));
d5abe669
PZ
443 printk(KERN_ERR " last function: ");
444 print_symbol("%s\n", (unsigned long)f);
445 debug_show_held_locks(current);
446 dump_stack();
447 }
448
f293ea92 449 spin_lock_irq(&cwq->lock);
b89deed3 450 cwq->current_work = NULL;
1da177e4 451 }
f293ea92 452 spin_unlock_irq(&cwq->lock);
1da177e4
LT
453}
454
4690c4ab
TH
455/**
456 * worker_thread - the worker thread function
457 * @__cwq: cwq to serve
458 *
459 * The cwq worker thread function.
460 */
1da177e4
LT
461static int worker_thread(void *__cwq)
462{
463 struct cpu_workqueue_struct *cwq = __cwq;
3af24433 464 DEFINE_WAIT(wait);
1da177e4 465
83144186
RW
466 if (cwq->wq->freezeable)
467 set_freezable();
1da177e4 468
3af24433 469 for (;;) {
3af24433 470 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
14441960
ON
471 if (!freezing(current) &&
472 !kthread_should_stop() &&
473 list_empty(&cwq->worklist))
1da177e4 474 schedule();
3af24433
ON
475 finish_wait(&cwq->more_work, &wait);
476
85f4186a
ON
477 try_to_freeze();
478
14441960 479 if (kthread_should_stop())
3af24433 480 break;
1da177e4 481
3af24433 482 run_workqueue(cwq);
1da177e4 483 }
3af24433 484
1da177e4
LT
485 return 0;
486}
487
fc2e4d70
ON
488struct wq_barrier {
489 struct work_struct work;
490 struct completion done;
491};
492
493static void wq_barrier_func(struct work_struct *work)
494{
495 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
496 complete(&barr->done);
497}
498
4690c4ab
TH
499/**
500 * insert_wq_barrier - insert a barrier work
501 * @cwq: cwq to insert barrier into
502 * @barr: wq_barrier to insert
503 * @head: insertion point
504 *
505 * Insert barrier @barr into @cwq before @head.
506 *
507 * CONTEXT:
508 * spin_lock_irq(cwq->lock).
509 */
83c22520 510static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1a4d9b0a 511 struct wq_barrier *barr, struct list_head *head)
fc2e4d70 512{
dc186ad7
TG
513 /*
514 * debugobject calls are safe here even with cwq->lock locked
515 * as we know for sure that this will not trigger any of the
516 * checks and call back into the fixup functions where we
517 * might deadlock.
518 */
519 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
fc2e4d70 520 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
fc2e4d70 521 init_completion(&barr->done);
83c22520 522
dc186ad7 523 debug_work_activate(&barr->work);
4690c4ab 524 insert_work(cwq, &barr->work, head, 0);
fc2e4d70
ON
525}
526
14441960 527static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
1da177e4 528{
2355b70f
LJ
529 int active = 0;
530 struct wq_barrier barr;
1da177e4 531
2355b70f 532 WARN_ON(cwq->thread == current);
1da177e4 533
2355b70f
LJ
534 spin_lock_irq(&cwq->lock);
535 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
536 insert_wq_barrier(cwq, &barr, &cwq->worklist);
537 active = 1;
1da177e4 538 }
2355b70f
LJ
539 spin_unlock_irq(&cwq->lock);
540
dc186ad7 541 if (active) {
2355b70f 542 wait_for_completion(&barr.done);
dc186ad7
TG
543 destroy_work_on_stack(&barr.work);
544 }
14441960
ON
545
546 return active;
1da177e4
LT
547}
548
0fcb78c2 549/**
1da177e4 550 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 551 * @wq: workqueue to flush
1da177e4
LT
552 *
553 * Forces execution of the workqueue and blocks until its completion.
554 * This is typically used in driver shutdown handlers.
555 *
fc2e4d70
ON
556 * We sleep until all works which were queued on entry have been handled,
557 * but we are not livelocked by new incoming ones.
1da177e4 558 */
7ad5b3a5 559void flush_workqueue(struct workqueue_struct *wq)
1da177e4 560{
e7577c50 561 const struct cpumask *cpu_map = wq_cpu_map(wq);
cce1a165 562 int cpu;
1da177e4 563
b1f4ec17 564 might_sleep();
3295f0ef
IM
565 lock_map_acquire(&wq->lockdep_map);
566 lock_map_release(&wq->lockdep_map);
aa85ea5b 567 for_each_cpu(cpu, cpu_map)
b1f4ec17 568 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
1da177e4 569}
ae90dd5d 570EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 571
db700897
ON
572/**
573 * flush_work - block until a work_struct's callback has terminated
574 * @work: the work which is to be flushed
575 *
a67da70d
ON
576 * Returns false if @work has already terminated.
577 *
db700897
ON
578 * It is expected that, prior to calling flush_work(), the caller has
579 * arranged for the work to not be requeued, otherwise it doesn't make
580 * sense to use this function.
581 */
582int flush_work(struct work_struct *work)
583{
584 struct cpu_workqueue_struct *cwq;
585 struct list_head *prev;
586 struct wq_barrier barr;
587
588 might_sleep();
589 cwq = get_wq_data(work);
590 if (!cwq)
591 return 0;
592
3295f0ef
IM
593 lock_map_acquire(&cwq->wq->lockdep_map);
594 lock_map_release(&cwq->wq->lockdep_map);
a67da70d 595
db700897
ON
596 spin_lock_irq(&cwq->lock);
597 if (!list_empty(&work->entry)) {
598 /*
599 * See the comment near try_to_grab_pending()->smp_rmb().
600 * If it was re-queued under us we are not going to wait.
601 */
602 smp_rmb();
603 if (unlikely(cwq != get_wq_data(work)))
4690c4ab 604 goto already_gone;
db700897
ON
605 prev = &work->entry;
606 } else {
607 if (cwq->current_work != work)
4690c4ab 608 goto already_gone;
db700897
ON
609 prev = &cwq->worklist;
610 }
611 insert_wq_barrier(cwq, &barr, prev->next);
db700897 612
4690c4ab 613 spin_unlock_irq(&cwq->lock);
db700897 614 wait_for_completion(&barr.done);
dc186ad7 615 destroy_work_on_stack(&barr.work);
db700897 616 return 1;
4690c4ab
TH
617already_gone:
618 spin_unlock_irq(&cwq->lock);
619 return 0;
db700897
ON
620}
621EXPORT_SYMBOL_GPL(flush_work);
622
6e84d644 623/*
1f1f642e 624 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
625 * so this work can't be re-armed in any way.
626 */
627static int try_to_grab_pending(struct work_struct *work)
628{
629 struct cpu_workqueue_struct *cwq;
1f1f642e 630 int ret = -1;
6e84d644
ON
631
632 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
1f1f642e 633 return 0;
6e84d644
ON
634
635 /*
636 * The queueing is in progress, or it is already queued. Try to
637 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
638 */
639
640 cwq = get_wq_data(work);
641 if (!cwq)
642 return ret;
643
644 spin_lock_irq(&cwq->lock);
645 if (!list_empty(&work->entry)) {
646 /*
647 * This work is queued, but perhaps we locked the wrong cwq.
648 * In that case we must see the new value after rmb(), see
649 * insert_work()->wmb().
650 */
651 smp_rmb();
652 if (cwq == get_wq_data(work)) {
dc186ad7 653 debug_work_deactivate(work);
6e84d644
ON
654 list_del_init(&work->entry);
655 ret = 1;
656 }
657 }
658 spin_unlock_irq(&cwq->lock);
659
660 return ret;
661}
662
663static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
b89deed3
ON
664 struct work_struct *work)
665{
666 struct wq_barrier barr;
667 int running = 0;
668
669 spin_lock_irq(&cwq->lock);
670 if (unlikely(cwq->current_work == work)) {
1a4d9b0a 671 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
b89deed3
ON
672 running = 1;
673 }
674 spin_unlock_irq(&cwq->lock);
675
dc186ad7 676 if (unlikely(running)) {
b89deed3 677 wait_for_completion(&barr.done);
dc186ad7
TG
678 destroy_work_on_stack(&barr.work);
679 }
b89deed3
ON
680}
681
6e84d644 682static void wait_on_work(struct work_struct *work)
b89deed3
ON
683{
684 struct cpu_workqueue_struct *cwq;
28e53bdd 685 struct workqueue_struct *wq;
e7577c50 686 const struct cpumask *cpu_map;
b1f4ec17 687 int cpu;
b89deed3 688
f293ea92
ON
689 might_sleep();
690
3295f0ef
IM
691 lock_map_acquire(&work->lockdep_map);
692 lock_map_release(&work->lockdep_map);
4e6045f1 693
b89deed3 694 cwq = get_wq_data(work);
b89deed3 695 if (!cwq)
3af24433 696 return;
b89deed3 697
28e53bdd
ON
698 wq = cwq->wq;
699 cpu_map = wq_cpu_map(wq);
700
aa85ea5b 701 for_each_cpu(cpu, cpu_map)
4690c4ab 702 wait_on_cpu_work(get_cwq(cpu, wq), work);
6e84d644
ON
703}
704
1f1f642e
ON
705static int __cancel_work_timer(struct work_struct *work,
706 struct timer_list* timer)
707{
708 int ret;
709
710 do {
711 ret = (timer && likely(del_timer(timer)));
712 if (!ret)
713 ret = try_to_grab_pending(work);
714 wait_on_work(work);
715 } while (unlikely(ret < 0));
716
4d707b9f 717 clear_wq_data(work);
1f1f642e
ON
718 return ret;
719}
720
6e84d644
ON
721/**
722 * cancel_work_sync - block until a work_struct's callback has terminated
723 * @work: the work which is to be flushed
724 *
1f1f642e
ON
725 * Returns true if @work was pending.
726 *
6e84d644
ON
727 * cancel_work_sync() will cancel the work if it is queued. If the work's
728 * callback appears to be running, cancel_work_sync() will block until it
729 * has completed.
730 *
731 * It is possible to use this function if the work re-queues itself. It can
732 * cancel the work even if it migrates to another workqueue, however in that
733 * case it only guarantees that work->func() has completed on the last queued
734 * workqueue.
735 *
736 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
737 * pending, otherwise it goes into a busy-wait loop until the timer expires.
738 *
739 * The caller must ensure that workqueue_struct on which this work was last
740 * queued can't be destroyed before this function returns.
741 */
1f1f642e 742int cancel_work_sync(struct work_struct *work)
6e84d644 743{
1f1f642e 744 return __cancel_work_timer(work, NULL);
b89deed3 745}
28e53bdd 746EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 747
6e84d644 748/**
f5a421a4 749 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
750 * @dwork: the delayed work struct
751 *
1f1f642e
ON
752 * Returns true if @dwork was pending.
753 *
6e84d644
ON
754 * It is possible to use this function if @dwork rearms itself via queue_work()
755 * or queue_delayed_work(). See also the comment for cancel_work_sync().
756 */
1f1f642e 757int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 758{
1f1f642e 759 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 760}
f5a421a4 761EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 762
6e84d644 763static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 764
0fcb78c2
REB
765/**
766 * schedule_work - put work task in global workqueue
767 * @work: job to be done
768 *
5b0f437d
BVA
769 * Returns zero if @work was already on the kernel-global workqueue and
770 * non-zero otherwise.
771 *
772 * This puts a job in the kernel-global workqueue if it was not already
773 * queued and leaves it in the same position on the kernel-global
774 * workqueue otherwise.
0fcb78c2 775 */
7ad5b3a5 776int schedule_work(struct work_struct *work)
1da177e4
LT
777{
778 return queue_work(keventd_wq, work);
779}
ae90dd5d 780EXPORT_SYMBOL(schedule_work);
1da177e4 781
c1a220e7
ZR
782/*
783 * schedule_work_on - put work task on a specific cpu
784 * @cpu: cpu to put the work task on
785 * @work: job to be done
786 *
787 * This puts a job on a specific cpu
788 */
789int schedule_work_on(int cpu, struct work_struct *work)
790{
791 return queue_work_on(cpu, keventd_wq, work);
792}
793EXPORT_SYMBOL(schedule_work_on);
794
0fcb78c2
REB
795/**
796 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
797 * @dwork: job to be done
798 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
799 *
800 * After waiting for a given time this puts a job in the kernel-global
801 * workqueue.
802 */
7ad5b3a5 803int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 804 unsigned long delay)
1da177e4 805{
52bad64d 806 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 807}
ae90dd5d 808EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 809
8c53e463
LT
810/**
811 * flush_delayed_work - block until a dwork_struct's callback has terminated
812 * @dwork: the delayed work which is to be flushed
813 *
814 * Any timeout is cancelled, and any pending work is run immediately.
815 */
816void flush_delayed_work(struct delayed_work *dwork)
817{
818 if (del_timer_sync(&dwork->timer)) {
4690c4ab
TH
819 __queue_work(get_cpu(), get_wq_data(&dwork->work)->wq,
820 &dwork->work);
8c53e463
LT
821 put_cpu();
822 }
823 flush_work(&dwork->work);
824}
825EXPORT_SYMBOL(flush_delayed_work);
826
0fcb78c2
REB
827/**
828 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
829 * @cpu: cpu to use
52bad64d 830 * @dwork: job to be done
0fcb78c2
REB
831 * @delay: number of jiffies to wait
832 *
833 * After waiting for a given time this puts a job in the kernel-global
834 * workqueue on the specified CPU.
835 */
1da177e4 836int schedule_delayed_work_on(int cpu,
52bad64d 837 struct delayed_work *dwork, unsigned long delay)
1da177e4 838{
52bad64d 839 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 840}
ae90dd5d 841EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 842
b6136773
AM
843/**
844 * schedule_on_each_cpu - call a function on each online CPU from keventd
845 * @func: the function to call
b6136773
AM
846 *
847 * Returns zero on success.
848 * Returns -ve errno on failure.
849 *
b6136773
AM
850 * schedule_on_each_cpu() is very slow.
851 */
65f27f38 852int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
853{
854 int cpu;
65a64464 855 int orig = -1;
b6136773 856 struct work_struct *works;
15316ba8 857
b6136773
AM
858 works = alloc_percpu(struct work_struct);
859 if (!works)
15316ba8 860 return -ENOMEM;
b6136773 861
93981800
TH
862 get_online_cpus();
863
65a64464 864 /*
93981800
TH
865 * When running in keventd don't schedule a work item on
866 * itself. Can just call directly because the work queue is
867 * already bound. This also is faster.
65a64464 868 */
93981800 869 if (current_is_keventd())
65a64464 870 orig = raw_smp_processor_id();
65a64464 871
15316ba8 872 for_each_online_cpu(cpu) {
9bfb1839
IM
873 struct work_struct *work = per_cpu_ptr(works, cpu);
874
875 INIT_WORK(work, func);
65a64464 876 if (cpu != orig)
93981800 877 schedule_work_on(cpu, work);
65a64464 878 }
93981800
TH
879 if (orig >= 0)
880 func(per_cpu_ptr(works, orig));
881
882 for_each_online_cpu(cpu)
883 flush_work(per_cpu_ptr(works, cpu));
884
95402b38 885 put_online_cpus();
b6136773 886 free_percpu(works);
15316ba8
CL
887 return 0;
888}
889
eef6a7d5
AS
890/**
891 * flush_scheduled_work - ensure that any scheduled work has run to completion.
892 *
893 * Forces execution of the kernel-global workqueue and blocks until its
894 * completion.
895 *
896 * Think twice before calling this function! It's very easy to get into
897 * trouble if you don't take great care. Either of the following situations
898 * will lead to deadlock:
899 *
900 * One of the work items currently on the workqueue needs to acquire
901 * a lock held by your code or its caller.
902 *
903 * Your code is running in the context of a work routine.
904 *
905 * They will be detected by lockdep when they occur, but the first might not
906 * occur very often. It depends on what work items are on the workqueue and
907 * what locks they need, which you have no control over.
908 *
909 * In most situations flushing the entire workqueue is overkill; you merely
910 * need to know that a particular work item isn't queued and isn't running.
911 * In such cases you should use cancel_delayed_work_sync() or
912 * cancel_work_sync() instead.
913 */
1da177e4
LT
914void flush_scheduled_work(void)
915{
916 flush_workqueue(keventd_wq);
917}
ae90dd5d 918EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 919
1fa44eca
JB
920/**
921 * execute_in_process_context - reliably execute the routine with user context
922 * @fn: the function to execute
1fa44eca
JB
923 * @ew: guaranteed storage for the execute work structure (must
924 * be available when the work executes)
925 *
926 * Executes the function immediately if process context is available,
927 * otherwise schedules the function for delayed execution.
928 *
929 * Returns: 0 - function was executed
930 * 1 - function was scheduled for execution
931 */
65f27f38 932int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
933{
934 if (!in_interrupt()) {
65f27f38 935 fn(&ew->work);
1fa44eca
JB
936 return 0;
937 }
938
65f27f38 939 INIT_WORK(&ew->work, fn);
1fa44eca
JB
940 schedule_work(&ew->work);
941
942 return 1;
943}
944EXPORT_SYMBOL_GPL(execute_in_process_context);
945
1da177e4
LT
946int keventd_up(void)
947{
948 return keventd_wq != NULL;
949}
950
951int current_is_keventd(void)
952{
953 struct cpu_workqueue_struct *cwq;
d243769d 954 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
1da177e4
LT
955 int ret = 0;
956
957 BUG_ON(!keventd_wq);
958
89ada679 959 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
1da177e4
LT
960 if (current == cwq->thread)
961 ret = 1;
962
963 return ret;
964
965}
966
3af24433
ON
967static struct cpu_workqueue_struct *
968init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
1da177e4 969{
89ada679 970 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1da177e4 971
3af24433
ON
972 cwq->wq = wq;
973 spin_lock_init(&cwq->lock);
974 INIT_LIST_HEAD(&cwq->worklist);
975 init_waitqueue_head(&cwq->more_work);
976
977 return cwq;
1da177e4
LT
978}
979
3af24433
ON
980static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
981{
982 struct workqueue_struct *wq = cwq->wq;
6cc88bc4 983 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
3af24433
ON
984 struct task_struct *p;
985
986 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
987 /*
988 * Nobody can add the work_struct to this cwq,
989 * if (caller is __create_workqueue)
990 * nobody should see this wq
991 * else // caller is CPU_UP_PREPARE
992 * cpu is not on cpu_online_map
993 * so we can abort safely.
994 */
995 if (IS_ERR(p))
996 return PTR_ERR(p);
3af24433 997 cwq->thread = p;
3af24433 998
e1d8aa9f
FW
999 trace_workqueue_creation(cwq->thread, cpu);
1000
3af24433
ON
1001 return 0;
1002}
1003
06ba38a9
ON
1004static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
1005{
1006 struct task_struct *p = cwq->thread;
1007
1008 if (p != NULL) {
1009 if (cpu >= 0)
1010 kthread_bind(p, cpu);
1011 wake_up_process(p);
1012 }
1013}
1014
4e6045f1
JB
1015struct workqueue_struct *__create_workqueue_key(const char *name,
1016 int singlethread,
1017 int freezeable,
eb13ba87
JB
1018 struct lock_class_key *key,
1019 const char *lock_name)
1da177e4 1020{
1da177e4 1021 struct workqueue_struct *wq;
3af24433
ON
1022 struct cpu_workqueue_struct *cwq;
1023 int err = 0, cpu;
1da177e4 1024
3af24433
ON
1025 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1026 if (!wq)
4690c4ab 1027 goto err;
3af24433
ON
1028
1029 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
4690c4ab
TH
1030 if (!wq->cpu_wq)
1031 goto err;
3af24433
ON
1032
1033 wq->name = name;
eb13ba87 1034 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 1035 wq->singlethread = singlethread;
3af24433 1036 wq->freezeable = freezeable;
cce1a165 1037 INIT_LIST_HEAD(&wq->list);
3af24433
ON
1038
1039 if (singlethread) {
3af24433
ON
1040 cwq = init_cpu_workqueue(wq, singlethread_cpu);
1041 err = create_workqueue_thread(cwq, singlethread_cpu);
06ba38a9 1042 start_workqueue_thread(cwq, -1);
3af24433 1043 } else {
3da1c84c 1044 cpu_maps_update_begin();
6af8bf3d
ON
1045 /*
1046 * We must place this wq on list even if the code below fails.
1047 * cpu_down(cpu) can remove cpu from cpu_populated_map before
1048 * destroy_workqueue() takes the lock, in that case we leak
1049 * cwq[cpu]->thread.
1050 */
95402b38 1051 spin_lock(&workqueue_lock);
3af24433 1052 list_add(&wq->list, &workqueues);
95402b38 1053 spin_unlock(&workqueue_lock);
6af8bf3d
ON
1054 /*
1055 * We must initialize cwqs for each possible cpu even if we
1056 * are going to call destroy_workqueue() finally. Otherwise
1057 * cpu_up() can hit the uninitialized cwq once we drop the
1058 * lock.
1059 */
3af24433
ON
1060 for_each_possible_cpu(cpu) {
1061 cwq = init_cpu_workqueue(wq, cpu);
1062 if (err || !cpu_online(cpu))
1063 continue;
1064 err = create_workqueue_thread(cwq, cpu);
06ba38a9 1065 start_workqueue_thread(cwq, cpu);
1da177e4 1066 }
3da1c84c 1067 cpu_maps_update_done();
3af24433
ON
1068 }
1069
1070 if (err) {
1071 destroy_workqueue(wq);
1072 wq = NULL;
1073 }
1074 return wq;
4690c4ab
TH
1075err:
1076 if (wq) {
1077 free_percpu(wq->cpu_wq);
1078 kfree(wq);
1079 }
1080 return NULL;
3af24433 1081}
4e6045f1 1082EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 1083
1e35eaa2 1084static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
3af24433 1085{
14441960 1086 /*
3da1c84c
ON
1087 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1088 * cpu_add_remove_lock protects cwq->thread.
14441960
ON
1089 */
1090 if (cwq->thread == NULL)
1091 return;
3af24433 1092
3295f0ef
IM
1093 lock_map_acquire(&cwq->wq->lockdep_map);
1094 lock_map_release(&cwq->wq->lockdep_map);
4e6045f1 1095
13c22168 1096 flush_cpu_workqueue(cwq);
14441960 1097 /*
3da1c84c 1098 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
13c22168
ON
1099 * a concurrent flush_workqueue() can insert a barrier after us.
1100 * However, in that case run_workqueue() won't return and check
1101 * kthread_should_stop() until it flushes all work_struct's.
14441960
ON
1102 * When ->worklist becomes empty it is safe to exit because no
1103 * more work_structs can be queued on this cwq: flush_workqueue
1104 * checks list_empty(), and a "normal" queue_work() can't use
1105 * a dead CPU.
1106 */
e1d8aa9f 1107 trace_workqueue_destruction(cwq->thread);
14441960
ON
1108 kthread_stop(cwq->thread);
1109 cwq->thread = NULL;
3af24433
ON
1110}
1111
1112/**
1113 * destroy_workqueue - safely terminate a workqueue
1114 * @wq: target workqueue
1115 *
1116 * Safely destroy a workqueue. All work currently pending will be done first.
1117 */
1118void destroy_workqueue(struct workqueue_struct *wq)
1119{
e7577c50 1120 const struct cpumask *cpu_map = wq_cpu_map(wq);
b1f4ec17 1121 int cpu;
3af24433 1122
3da1c84c 1123 cpu_maps_update_begin();
95402b38 1124 spin_lock(&workqueue_lock);
b1f4ec17 1125 list_del(&wq->list);
95402b38 1126 spin_unlock(&workqueue_lock);
3af24433 1127
aa85ea5b 1128 for_each_cpu(cpu, cpu_map)
1e35eaa2 1129 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
3da1c84c 1130 cpu_maps_update_done();
9b41ea72 1131
3af24433
ON
1132 free_percpu(wq->cpu_wq);
1133 kfree(wq);
1134}
1135EXPORT_SYMBOL_GPL(destroy_workqueue);
1136
1137static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1138 unsigned long action,
1139 void *hcpu)
1140{
1141 unsigned int cpu = (unsigned long)hcpu;
1142 struct cpu_workqueue_struct *cwq;
1143 struct workqueue_struct *wq;
80b5184c 1144 int err = 0;
3af24433 1145
8bb78442
RW
1146 action &= ~CPU_TASKS_FROZEN;
1147
3af24433 1148 switch (action) {
3af24433 1149 case CPU_UP_PREPARE:
e7577c50 1150 cpumask_set_cpu(cpu, cpu_populated_map);
3af24433 1151 }
8448502c 1152undo:
3af24433
ON
1153 list_for_each_entry(wq, &workqueues, list) {
1154 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1155
1156 switch (action) {
1157 case CPU_UP_PREPARE:
80b5184c
AM
1158 err = create_workqueue_thread(cwq, cpu);
1159 if (!err)
3af24433 1160 break;
95402b38
GS
1161 printk(KERN_ERR "workqueue [%s] for %i failed\n",
1162 wq->name, cpu);
8448502c 1163 action = CPU_UP_CANCELED;
80b5184c 1164 err = -ENOMEM;
8448502c 1165 goto undo;
3af24433
ON
1166
1167 case CPU_ONLINE:
06ba38a9 1168 start_workqueue_thread(cwq, cpu);
3af24433
ON
1169 break;
1170
1171 case CPU_UP_CANCELED:
06ba38a9 1172 start_workqueue_thread(cwq, -1);
3da1c84c 1173 case CPU_POST_DEAD:
1e35eaa2 1174 cleanup_workqueue_thread(cwq);
3af24433
ON
1175 break;
1176 }
1da177e4
LT
1177 }
1178
00dfcaf7
ON
1179 switch (action) {
1180 case CPU_UP_CANCELED:
3da1c84c 1181 case CPU_POST_DEAD:
e7577c50 1182 cpumask_clear_cpu(cpu, cpu_populated_map);
00dfcaf7
ON
1183 }
1184
80b5184c 1185 return notifier_from_errno(err);
1da177e4 1186}
1da177e4 1187
2d3854a3 1188#ifdef CONFIG_SMP
8ccad40d 1189
2d3854a3 1190struct work_for_cpu {
6b44003e 1191 struct completion completion;
2d3854a3
RR
1192 long (*fn)(void *);
1193 void *arg;
1194 long ret;
1195};
1196
6b44003e 1197static int do_work_for_cpu(void *_wfc)
2d3854a3 1198{
6b44003e 1199 struct work_for_cpu *wfc = _wfc;
2d3854a3 1200 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
1201 complete(&wfc->completion);
1202 return 0;
2d3854a3
RR
1203}
1204
1205/**
1206 * work_on_cpu - run a function in user context on a particular cpu
1207 * @cpu: the cpu to run on
1208 * @fn: the function to run
1209 * @arg: the function arg
1210 *
31ad9081
RR
1211 * This will return the value @fn returns.
1212 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 1213 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
1214 */
1215long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1216{
6b44003e
AM
1217 struct task_struct *sub_thread;
1218 struct work_for_cpu wfc = {
1219 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1220 .fn = fn,
1221 .arg = arg,
1222 };
1223
1224 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1225 if (IS_ERR(sub_thread))
1226 return PTR_ERR(sub_thread);
1227 kthread_bind(sub_thread, cpu);
1228 wake_up_process(sub_thread);
1229 wait_for_completion(&wfc.completion);
2d3854a3
RR
1230 return wfc.ret;
1231}
1232EXPORT_SYMBOL_GPL(work_on_cpu);
1233#endif /* CONFIG_SMP */
1234
c12920d1 1235void __init init_workqueues(void)
1da177e4 1236{
e7577c50
RR
1237 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1238
1239 cpumask_copy(cpu_populated_map, cpu_online_mask);
1240 singlethread_cpu = cpumask_first(cpu_possible_mask);
1241 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1da177e4
LT
1242 hotcpu_notifier(workqueue_cpu_callback, 0);
1243 keventd_wq = create_workqueue("events");
1244 BUG_ON(!keventd_wq);
1245}