workqueue: make work->data point to pool after try_to_grab_pending()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
8b03ae3c
TH
147} ____cacheline_aligned_in_smp;
148
1da177e4 149/*
502ca9d8 150 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
151 * work_struct->data are used for flags and thus cwqs need to be
152 * aligned at two's power of the number of flag bits.
1da177e4
LT
153 */
154struct cpu_workqueue_struct {
bd7bdd43 155 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 156 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
157 int work_color; /* L: current color */
158 int flush_color; /* L: flushing color */
159 int nr_in_flight[WORK_NR_COLORS];
160 /* L: nr of in_flight works */
1e19ffc6 161 int nr_active; /* L: nr of active works */
a0a1a5fd 162 int max_active; /* L: max active works */
1e19ffc6 163 struct list_head delayed_works; /* L: delayed works */
0f900049 164};
1da177e4 165
73f53c4a
TH
166/*
167 * Structure used to wait for workqueue flush.
168 */
169struct wq_flusher {
170 struct list_head list; /* F: list of flushers */
171 int flush_color; /* F: flush color waiting for */
172 struct completion done; /* flush completion */
173};
174
f2e005aa
TH
175/*
176 * All cpumasks are assumed to be always set on UP and thus can't be
177 * used to determine whether there's something to be done.
178 */
179#ifdef CONFIG_SMP
180typedef cpumask_var_t mayday_mask_t;
181#define mayday_test_and_set_cpu(cpu, mask) \
182 cpumask_test_and_set_cpu((cpu), (mask))
183#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
184#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 185#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
186#define free_mayday_mask(mask) free_cpumask_var((mask))
187#else
188typedef unsigned long mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
190#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
191#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
192#define alloc_mayday_mask(maskp, gfp) true
193#define free_mayday_mask(mask) do { } while (0)
194#endif
1da177e4
LT
195
196/*
197 * The externally visible workqueue abstraction is an array of
198 * per-CPU workqueues:
199 */
200struct workqueue_struct {
9c5a2ba7 201 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
202 union {
203 struct cpu_workqueue_struct __percpu *pcpu;
204 struct cpu_workqueue_struct *single;
205 unsigned long v;
206 } cpu_wq; /* I: cwq's */
4690c4ab 207 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
208
209 struct mutex flush_mutex; /* protects wq flushing */
210 int work_color; /* F: current work color */
211 int flush_color; /* F: current flush color */
212 atomic_t nr_cwqs_to_flush; /* flush in progress */
213 struct wq_flusher *first_flusher; /* F: first flusher */
214 struct list_head flusher_queue; /* F: flush waiters */
215 struct list_head flusher_overflow; /* F: flush overflow list */
216
f2e005aa 217 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
218 struct worker *rescuer; /* I: rescue worker */
219
9c5a2ba7 220 int nr_drainers; /* W: drain in progress */
dcd989cb 221 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 222#ifdef CONFIG_LOCKDEP
4690c4ab 223 struct lockdep_map lockdep_map;
4e6045f1 224#endif
b196be89 225 char name[]; /* I: workqueue name */
1da177e4
LT
226};
227
d320c038 228struct workqueue_struct *system_wq __read_mostly;
d320c038 229EXPORT_SYMBOL_GPL(system_wq);
044c782c 230struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 231EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 232struct workqueue_struct *system_long_wq __read_mostly;
d320c038 233EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 234struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 235EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 236struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 237EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 238
97bd2347
TH
239#define CREATE_TRACE_POINTS
240#include <trace/events/workqueue.h>
241
38db41d9 242#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
243 for ((pool) = &std_worker_pools(cpu)[0]; \
244 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 245
c9e7cf27
TH
246#define for_each_busy_worker(worker, i, pos, pool) \
247 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 248
706026c2
TH
249static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
250 unsigned int sw)
f3421797
TH
251{
252 if (cpu < nr_cpu_ids) {
253 if (sw & 1) {
254 cpu = cpumask_next(cpu, mask);
255 if (cpu < nr_cpu_ids)
256 return cpu;
257 }
258 if (sw & 2)
259 return WORK_CPU_UNBOUND;
260 }
6be19588 261 return WORK_CPU_END;
f3421797
TH
262}
263
706026c2
TH
264static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
265 struct workqueue_struct *wq)
f3421797 266{
706026c2 267 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
268}
269
09884951
TH
270/*
271 * CPU iterators
272 *
706026c2 273 * An extra cpu number is defined using an invalid cpu number
09884951 274 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
275 * specific CPU. The following iterators are similar to for_each_*_cpu()
276 * iterators but also considers the unbound CPU.
09884951 277 *
706026c2
TH
278 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
279 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
280 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
281 * WORK_CPU_UNBOUND for unbound workqueues
282 */
706026c2
TH
283#define for_each_wq_cpu(cpu) \
284 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 285 (cpu) < WORK_CPU_END; \
706026c2 286 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 287
706026c2
TH
288#define for_each_online_wq_cpu(cpu) \
289 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 290 (cpu) < WORK_CPU_END; \
706026c2 291 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
292
293#define for_each_cwq_cpu(cpu, wq) \
706026c2 294 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 295 (cpu) < WORK_CPU_END; \
706026c2 296 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 297
dc186ad7
TG
298#ifdef CONFIG_DEBUG_OBJECTS_WORK
299
300static struct debug_obj_descr work_debug_descr;
301
99777288
SG
302static void *work_debug_hint(void *addr)
303{
304 return ((struct work_struct *) addr)->func;
305}
306
dc186ad7
TG
307/*
308 * fixup_init is called when:
309 * - an active object is initialized
310 */
311static int work_fixup_init(void *addr, enum debug_obj_state state)
312{
313 struct work_struct *work = addr;
314
315 switch (state) {
316 case ODEBUG_STATE_ACTIVE:
317 cancel_work_sync(work);
318 debug_object_init(work, &work_debug_descr);
319 return 1;
320 default:
321 return 0;
322 }
323}
324
325/*
326 * fixup_activate is called when:
327 * - an active object is activated
328 * - an unknown object is activated (might be a statically initialized object)
329 */
330static int work_fixup_activate(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335
336 case ODEBUG_STATE_NOTAVAILABLE:
337 /*
338 * This is not really a fixup. The work struct was
339 * statically initialized. We just make sure that it
340 * is tracked in the object tracker.
341 */
22df02bb 342 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
343 debug_object_init(work, &work_debug_descr);
344 debug_object_activate(work, &work_debug_descr);
345 return 0;
346 }
347 WARN_ON_ONCE(1);
348 return 0;
349
350 case ODEBUG_STATE_ACTIVE:
351 WARN_ON(1);
352
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_free is called when:
360 * - an active object is freed
361 */
362static int work_fixup_free(void *addr, enum debug_obj_state state)
363{
364 struct work_struct *work = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 cancel_work_sync(work);
369 debug_object_free(work, &work_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376static struct debug_obj_descr work_debug_descr = {
377 .name = "work_struct",
99777288 378 .debug_hint = work_debug_hint,
dc186ad7
TG
379 .fixup_init = work_fixup_init,
380 .fixup_activate = work_fixup_activate,
381 .fixup_free = work_fixup_free,
382};
383
384static inline void debug_work_activate(struct work_struct *work)
385{
386 debug_object_activate(work, &work_debug_descr);
387}
388
389static inline void debug_work_deactivate(struct work_struct *work)
390{
391 debug_object_deactivate(work, &work_debug_descr);
392}
393
394void __init_work(struct work_struct *work, int onstack)
395{
396 if (onstack)
397 debug_object_init_on_stack(work, &work_debug_descr);
398 else
399 debug_object_init(work, &work_debug_descr);
400}
401EXPORT_SYMBOL_GPL(__init_work);
402
403void destroy_work_on_stack(struct work_struct *work)
404{
405 debug_object_free(work, &work_debug_descr);
406}
407EXPORT_SYMBOL_GPL(destroy_work_on_stack);
408
409#else
410static inline void debug_work_activate(struct work_struct *work) { }
411static inline void debug_work_deactivate(struct work_struct *work) { }
412#endif
413
95402b38
GS
414/* Serializes the accesses to the list of workqueues. */
415static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 416static LIST_HEAD(workqueues);
a0a1a5fd 417static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 418
e22bee78 419/*
a60dc39c
TH
420 * The CPU standard worker pools. nr_running is the only field which is
421 * expected to be used frequently by other cpus via try_to_wake_up(). Put
422 * it in a separate cacheline.
e22bee78 423 */
a60dc39c
TH
424static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
425 cpu_std_worker_pools);
e6e380ed
TH
426static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
427 cpu_std_pool_nr_running);
8b03ae3c 428
f3421797 429/*
a60dc39c
TH
430 * Standard worker pools and nr_running counter for unbound CPU. The pools
431 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
f3421797 432 */
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
e6e380ed 434static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
e34cdddb 435 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 436};
f3421797 437
9daf9e67
TH
438/* idr of all pools */
439static DEFINE_MUTEX(worker_pool_idr_mutex);
440static DEFINE_IDR(worker_pool_idr);
441
c34056a3 442static int worker_thread(void *__worker);
1da177e4 443
a60dc39c 444static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 445{
f3421797 446 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 447 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 448 else
a60dc39c 449 return unbound_std_worker_pools;
8b03ae3c
TH
450}
451
4e8f0a60
TH
452static int std_worker_pool_pri(struct worker_pool *pool)
453{
a60dc39c 454 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
455}
456
9daf9e67
TH
457/* allocate ID and assign it to @pool */
458static int worker_pool_assign_id(struct worker_pool *pool)
459{
460 int ret;
461
462 mutex_lock(&worker_pool_idr_mutex);
463 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 mutex_unlock(&worker_pool_idr_mutex);
466
467 return ret;
468}
469
7c3eed5c
TH
470/*
471 * Lookup worker_pool by id. The idr currently is built during boot and
472 * never modified. Don't worry about locking for now.
473 */
474static struct worker_pool *worker_pool_by_id(int pool_id)
475{
476 return idr_find(&worker_pool_idr, pool_id);
477}
478
d565ed63
TH
479static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
480{
a60dc39c 481 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 482
a60dc39c 483 return &pools[highpri];
d565ed63
TH
484}
485
63d95a91 486static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 487{
ec22ca5e 488 int cpu = pool->cpu;
e34cdddb 489 int idx = std_worker_pool_pri(pool);
63d95a91 490
f3421797 491 if (cpu != WORK_CPU_UNBOUND)
e6e380ed 492 return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
f3421797 493 else
e6e380ed 494 return &unbound_std_pool_nr_running[idx];
e22bee78
TH
495}
496
1537663f
TH
497static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
498 struct workqueue_struct *wq)
b1f4ec17 499{
f3421797 500 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 501 if (likely(cpu < nr_cpu_ids))
f3421797 502 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
503 } else if (likely(cpu == WORK_CPU_UNBOUND))
504 return wq->cpu_wq.single;
505 return NULL;
b1f4ec17
ON
506}
507
73f53c4a
TH
508static unsigned int work_color_to_flags(int color)
509{
510 return color << WORK_STRUCT_COLOR_SHIFT;
511}
512
513static int get_work_color(struct work_struct *work)
514{
515 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
516 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
517}
518
519static int work_next_color(int color)
520{
521 return (color + 1) % WORK_NR_COLORS;
522}
1da177e4 523
14441960 524/*
b5490077
TH
525 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
526 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 527 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 528 *
7c3eed5c
TH
529 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
530 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
531 * work->data. These functions should only be called while the work is
532 * owned - ie. while the PENDING bit is set.
7a22ad75 533 *
7c3eed5c
TH
534 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
535 * corresponding to a work. Pool is available once the work has been
536 * queued anywhere after initialization until it is sync canceled. cwq is
537 * available only while the work item is queued.
7a22ad75 538 *
bbb68dfa
TH
539 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
540 * canceled. While being canceled, a work item may have its PENDING set
541 * but stay off timer and worklist for arbitrarily long and nobody should
542 * try to steal the PENDING bit.
14441960 543 */
7a22ad75
TH
544static inline void set_work_data(struct work_struct *work, unsigned long data,
545 unsigned long flags)
365970a1 546{
4594bf15 547 BUG_ON(!work_pending(work));
7a22ad75
TH
548 atomic_long_set(&work->data, data | flags | work_static(work));
549}
365970a1 550
7a22ad75
TH
551static void set_work_cwq(struct work_struct *work,
552 struct cpu_workqueue_struct *cwq,
553 unsigned long extra_flags)
554{
555 set_work_data(work, (unsigned long)cwq,
e120153d 556 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
557}
558
4468a00f
LJ
559static void set_work_pool_and_keep_pending(struct work_struct *work,
560 int pool_id)
561{
562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
563 WORK_STRUCT_PENDING);
564}
565
7c3eed5c
TH
566static void set_work_pool_and_clear_pending(struct work_struct *work,
567 int pool_id)
7a22ad75 568{
23657bb1
TH
569 /*
570 * The following wmb is paired with the implied mb in
571 * test_and_set_bit(PENDING) and ensures all updates to @work made
572 * here are visible to and precede any updates by the next PENDING
573 * owner.
574 */
575 smp_wmb();
7c3eed5c 576 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 577}
f756d5e2 578
7a22ad75 579static void clear_work_data(struct work_struct *work)
1da177e4 580{
7c3eed5c
TH
581 smp_wmb(); /* see set_work_pool_and_clear_pending() */
582 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
583}
584
7a22ad75 585static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7a22ad75 588
e120153d
TH
589 if (data & WORK_STRUCT_CWQ)
590 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
591 else
592 return NULL;
4d707b9f
ON
593}
594
7c3eed5c
TH
595/**
596 * get_work_pool - return the worker_pool a given work was associated with
597 * @work: the work item of interest
598 *
599 * Return the worker_pool @work was last associated with. %NULL if none.
600 */
601static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 602{
e120153d 603 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
604 struct worker_pool *pool;
605 int pool_id;
7a22ad75 606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
7c3eed5c 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 610
7c3eed5c
TH
611 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
612 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
613 return NULL;
614
7c3eed5c
TH
615 pool = worker_pool_by_id(pool_id);
616 WARN_ON_ONCE(!pool);
617 return pool;
618}
619
620/**
621 * get_work_pool_id - return the worker pool ID a given work is associated with
622 * @work: the work item of interest
623 *
624 * Return the worker_pool ID @work was last associated with.
625 * %WORK_OFFQ_POOL_NONE if none.
626 */
627static int get_work_pool_id(struct work_struct *work)
628{
629 struct worker_pool *pool = get_work_pool(work);
630
631 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
632}
633
bbb68dfa
TH
634static void mark_work_canceling(struct work_struct *work)
635{
7c3eed5c 636 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 637
7c3eed5c
TH
638 pool_id <<= WORK_OFFQ_POOL_SHIFT;
639 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
640}
641
642static bool work_is_canceling(struct work_struct *work)
643{
644 unsigned long data = atomic_long_read(&work->data);
645
646 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
647}
648
e22bee78 649/*
3270476a
TH
650 * Policy functions. These define the policies on how the global worker
651 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 652 * they're being called with pool->lock held.
e22bee78
TH
653 */
654
63d95a91 655static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 656{
3270476a 657 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
658}
659
4594bf15 660/*
e22bee78
TH
661 * Need to wake up a worker? Called from anything but currently
662 * running workers.
974271c4
TH
663 *
664 * Note that, because unbound workers never contribute to nr_running, this
706026c2 665 * function will always return %true for unbound pools as long as the
974271c4 666 * worklist isn't empty.
4594bf15 667 */
63d95a91 668static bool need_more_worker(struct worker_pool *pool)
365970a1 669{
63d95a91 670 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 671}
4594bf15 672
e22bee78 673/* Can I start working? Called from busy but !running workers. */
63d95a91 674static bool may_start_working(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return pool->nr_idle;
e22bee78
TH
677}
678
679/* Do I need to keep working? Called from currently running workers. */
63d95a91 680static bool keep_working(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 683
3270476a 684 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
685}
686
687/* Do we need a new worker? Called from manager. */
63d95a91 688static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 689{
63d95a91 690 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 691}
365970a1 692
e22bee78 693/* Do I need to be the manager? */
63d95a91 694static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 695{
63d95a91 696 return need_to_create_worker(pool) ||
11ebea50 697 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
698}
699
700/* Do we have too many workers and should some go away? */
63d95a91 701static bool too_many_workers(struct worker_pool *pool)
e22bee78 702{
552a37e9 703 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
704 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
705 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 706
ea1abd61
LJ
707 /*
708 * nr_idle and idle_list may disagree if idle rebinding is in
709 * progress. Never return %true if idle_list is empty.
710 */
711 if (list_empty(&pool->idle_list))
712 return false;
713
e22bee78 714 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
715}
716
4d707b9f 717/*
e22bee78
TH
718 * Wake up functions.
719 */
720
7e11629d 721/* Return the first worker. Safe with preemption disabled */
63d95a91 722static struct worker *first_worker(struct worker_pool *pool)
7e11629d 723{
63d95a91 724 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
725 return NULL;
726
63d95a91 727 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
728}
729
730/**
731 * wake_up_worker - wake up an idle worker
63d95a91 732 * @pool: worker pool to wake worker from
7e11629d 733 *
63d95a91 734 * Wake up the first idle worker of @pool.
7e11629d
TH
735 *
736 * CONTEXT:
d565ed63 737 * spin_lock_irq(pool->lock).
7e11629d 738 */
63d95a91 739static void wake_up_worker(struct worker_pool *pool)
7e11629d 740{
63d95a91 741 struct worker *worker = first_worker(pool);
7e11629d
TH
742
743 if (likely(worker))
744 wake_up_process(worker->task);
745}
746
d302f017 747/**
e22bee78
TH
748 * wq_worker_waking_up - a worker is waking up
749 * @task: task waking up
750 * @cpu: CPU @task is waking up to
751 *
752 * This function is called during try_to_wake_up() when a worker is
753 * being awoken.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 */
758void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
759{
760 struct worker *worker = kthread_data(task);
761
36576000 762 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 763 WARN_ON_ONCE(worker->pool->cpu != cpu);
63d95a91 764 atomic_inc(get_pool_nr_running(worker->pool));
36576000 765 }
e22bee78
TH
766}
767
768/**
769 * wq_worker_sleeping - a worker is going to sleep
770 * @task: task going to sleep
771 * @cpu: CPU in question, must be the current CPU number
772 *
773 * This function is called during schedule() when a busy worker is
774 * going to sleep. Worker on the same cpu can be woken up by
775 * returning pointer to its task.
776 *
777 * CONTEXT:
778 * spin_lock_irq(rq->lock)
779 *
780 * RETURNS:
781 * Worker task on @cpu to wake up, %NULL if none.
782 */
783struct task_struct *wq_worker_sleeping(struct task_struct *task,
784 unsigned int cpu)
785{
786 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
787 struct worker_pool *pool;
788 atomic_t *nr_running;
e22bee78 789
111c225a
TH
790 /*
791 * Rescuers, which may not have all the fields set up like normal
792 * workers, also reach here, let's not access anything before
793 * checking NOT_RUNNING.
794 */
2d64672e 795 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
796 return NULL;
797
111c225a
TH
798 pool = worker->pool;
799 nr_running = get_pool_nr_running(pool);
800
e22bee78
TH
801 /* this can only happen on the local cpu */
802 BUG_ON(cpu != raw_smp_processor_id());
803
804 /*
805 * The counterpart of the following dec_and_test, implied mb,
806 * worklist not empty test sequence is in insert_work().
807 * Please read comment there.
808 *
628c78e7
TH
809 * NOT_RUNNING is clear. This means that we're bound to and
810 * running on the local cpu w/ rq lock held and preemption
811 * disabled, which in turn means that none else could be
d565ed63 812 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 813 * lock is safe.
e22bee78 814 */
bd7bdd43 815 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 816 to_wakeup = first_worker(pool);
e22bee78
TH
817 return to_wakeup ? to_wakeup->task : NULL;
818}
819
820/**
821 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 822 * @worker: self
d302f017
TH
823 * @flags: flags to set
824 * @wakeup: wakeup an idle worker if necessary
825 *
e22bee78
TH
826 * Set @flags in @worker->flags and adjust nr_running accordingly. If
827 * nr_running becomes zero and @wakeup is %true, an idle worker is
828 * woken up.
d302f017 829 *
cb444766 830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock)
d302f017
TH
832 */
833static inline void worker_set_flags(struct worker *worker, unsigned int flags,
834 bool wakeup)
835{
bd7bdd43 836 struct worker_pool *pool = worker->pool;
e22bee78 837
cb444766
TH
838 WARN_ON_ONCE(worker->task != current);
839
e22bee78
TH
840 /*
841 * If transitioning into NOT_RUNNING, adjust nr_running and
842 * wake up an idle worker as necessary if requested by
843 * @wakeup.
844 */
845 if ((flags & WORKER_NOT_RUNNING) &&
846 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 847 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
848
849 if (wakeup) {
850 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 851 !list_empty(&pool->worklist))
63d95a91 852 wake_up_worker(pool);
e22bee78
TH
853 } else
854 atomic_dec(nr_running);
855 }
856
d302f017
TH
857 worker->flags |= flags;
858}
859
860/**
e22bee78 861 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 862 * @worker: self
d302f017
TH
863 * @flags: flags to clear
864 *
e22bee78 865 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 866 *
cb444766 867 * CONTEXT:
d565ed63 868 * spin_lock_irq(pool->lock)
d302f017
TH
869 */
870static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
871{
63d95a91 872 struct worker_pool *pool = worker->pool;
e22bee78
TH
873 unsigned int oflags = worker->flags;
874
cb444766
TH
875 WARN_ON_ONCE(worker->task != current);
876
d302f017 877 worker->flags &= ~flags;
e22bee78 878
42c025f3
TH
879 /*
880 * If transitioning out of NOT_RUNNING, increment nr_running. Note
881 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
882 * of multiple flags, not a single flag.
883 */
e22bee78
TH
884 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
885 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 886 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
887}
888
8cca0eea
TH
889/**
890 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 891 * @pool: pool of interest
8cca0eea
TH
892 * @work: work to find worker for
893 *
c9e7cf27
TH
894 * Find a worker which is executing @work on @pool by searching
895 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
896 * to match, its current execution should match the address of @work and
897 * its work function. This is to avoid unwanted dependency between
898 * unrelated work executions through a work item being recycled while still
899 * being executed.
900 *
901 * This is a bit tricky. A work item may be freed once its execution
902 * starts and nothing prevents the freed area from being recycled for
903 * another work item. If the same work item address ends up being reused
904 * before the original execution finishes, workqueue will identify the
905 * recycled work item as currently executing and make it wait until the
906 * current execution finishes, introducing an unwanted dependency.
907 *
908 * This function checks the work item address, work function and workqueue
909 * to avoid false positives. Note that this isn't complete as one may
910 * construct a work function which can introduce dependency onto itself
911 * through a recycled work item. Well, if somebody wants to shoot oneself
912 * in the foot that badly, there's only so much we can do, and if such
913 * deadlock actually occurs, it should be easy to locate the culprit work
914 * function.
8cca0eea
TH
915 *
916 * CONTEXT:
d565ed63 917 * spin_lock_irq(pool->lock).
8cca0eea
TH
918 *
919 * RETURNS:
920 * Pointer to worker which is executing @work if found, NULL
921 * otherwise.
4d707b9f 922 */
c9e7cf27 923static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 924 struct work_struct *work)
4d707b9f 925{
42f8570f
SL
926 struct worker *worker;
927 struct hlist_node *tmp;
928
c9e7cf27 929 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
930 (unsigned long)work)
931 if (worker->current_work == work &&
932 worker->current_func == work->func)
42f8570f
SL
933 return worker;
934
935 return NULL;
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
d565ed63 953 * spin_lock_irq(pool->lock).
bf4ede01
TH
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
3aa62497 979static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 980{
3aa62497 981 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
982
983 trace_workqueue_activate_work(work);
984 move_linked_works(work, &cwq->pool->worklist, NULL);
985 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
986 cwq->nr_active++;
987}
988
3aa62497
LJ
989static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
990{
991 struct work_struct *work = list_first_entry(&cwq->delayed_works,
992 struct work_struct, entry);
993
994 cwq_activate_delayed_work(work);
995}
996
bf4ede01
TH
997/**
998 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
999 * @cwq: cwq of interest
1000 * @color: color of work which left the queue
bf4ede01
TH
1001 *
1002 * A work either has completed or is removed from pending queue,
1003 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1004 *
1005 * CONTEXT:
d565ed63 1006 * spin_lock_irq(pool->lock).
bf4ede01 1007 */
b3f9f405 1008static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1009{
1010 /* ignore uncolored works */
1011 if (color == WORK_NO_COLOR)
1012 return;
1013
1014 cwq->nr_in_flight[color]--;
1015
b3f9f405
LJ
1016 cwq->nr_active--;
1017 if (!list_empty(&cwq->delayed_works)) {
1018 /* one down, submit a delayed one */
1019 if (cwq->nr_active < cwq->max_active)
1020 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1021 }
1022
1023 /* is flush in progress and are we at the flushing tip? */
1024 if (likely(cwq->flush_color != color))
1025 return;
1026
1027 /* are there still in-flight works? */
1028 if (cwq->nr_in_flight[color])
1029 return;
1030
1031 /* this cwq is done, clear flush_color */
1032 cwq->flush_color = -1;
1033
1034 /*
1035 * If this was the last cwq, wake up the first flusher. It
1036 * will handle the rest.
1037 */
1038 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1039 complete(&cwq->wq->first_flusher->done);
1040}
1041
36e227d2 1042/**
bbb68dfa 1043 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1044 * @work: work item to steal
1045 * @is_dwork: @work is a delayed_work
bbb68dfa 1046 * @flags: place to store irq state
36e227d2
TH
1047 *
1048 * Try to grab PENDING bit of @work. This function can handle @work in any
1049 * stable state - idle, on timer or on worklist. Return values are
1050 *
1051 * 1 if @work was pending and we successfully stole PENDING
1052 * 0 if @work was idle and we claimed PENDING
1053 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1054 * -ENOENT if someone else is canceling @work, this state may persist
1055 * for arbitrarily long
36e227d2 1056 *
bbb68dfa 1057 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1058 * interrupted while holding PENDING and @work off queue, irq must be
1059 * disabled on entry. This, combined with delayed_work->timer being
1060 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1061 *
1062 * On successful return, >= 0, irq is disabled and the caller is
1063 * responsible for releasing it using local_irq_restore(*@flags).
1064 *
e0aecdd8 1065 * This function is safe to call from any context including IRQ handler.
bf4ede01 1066 */
bbb68dfa
TH
1067static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1068 unsigned long *flags)
bf4ede01 1069{
d565ed63 1070 struct worker_pool *pool;
bf4ede01 1071
bbb68dfa
TH
1072 local_irq_save(*flags);
1073
36e227d2
TH
1074 /* try to steal the timer if it exists */
1075 if (is_dwork) {
1076 struct delayed_work *dwork = to_delayed_work(work);
1077
e0aecdd8
TH
1078 /*
1079 * dwork->timer is irqsafe. If del_timer() fails, it's
1080 * guaranteed that the timer is not queued anywhere and not
1081 * running on the local CPU.
1082 */
36e227d2
TH
1083 if (likely(del_timer(&dwork->timer)))
1084 return 1;
1085 }
1086
1087 /* try to claim PENDING the normal way */
bf4ede01
TH
1088 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1089 return 0;
1090
1091 /*
1092 * The queueing is in progress, or it is already queued. Try to
1093 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1094 */
d565ed63
TH
1095 pool = get_work_pool(work);
1096 if (!pool)
bbb68dfa 1097 goto fail;
bf4ede01 1098
d565ed63 1099 spin_lock(&pool->lock);
bf4ede01
TH
1100 if (!list_empty(&work->entry)) {
1101 /*
d565ed63
TH
1102 * This work is queued, but perhaps we locked the wrong
1103 * pool. In that case we must see the new value after
1104 * rmb(), see insert_work()->wmb().
bf4ede01
TH
1105 */
1106 smp_rmb();
d565ed63 1107 if (pool == get_work_pool(work)) {
bf4ede01 1108 debug_work_deactivate(work);
3aa62497
LJ
1109
1110 /*
1111 * A delayed work item cannot be grabbed directly
1112 * because it might have linked NO_COLOR work items
1113 * which, if left on the delayed_list, will confuse
1114 * cwq->nr_active management later on and cause
1115 * stall. Make sure the work item is activated
1116 * before grabbing.
1117 */
1118 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1119 cwq_activate_delayed_work(work);
1120
bf4ede01
TH
1121 list_del_init(&work->entry);
1122 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1123 get_work_color(work));
36e227d2 1124
4468a00f
LJ
1125 /* work->data points to cwq iff queued, point to pool */
1126 set_work_pool_and_keep_pending(work, pool->id);
1127
d565ed63 1128 spin_unlock(&pool->lock);
36e227d2 1129 return 1;
bf4ede01
TH
1130 }
1131 }
d565ed63 1132 spin_unlock(&pool->lock);
bbb68dfa
TH
1133fail:
1134 local_irq_restore(*flags);
1135 if (work_is_canceling(work))
1136 return -ENOENT;
1137 cpu_relax();
36e227d2 1138 return -EAGAIN;
bf4ede01
TH
1139}
1140
4690c4ab 1141/**
706026c2 1142 * insert_work - insert a work into a pool
4690c4ab
TH
1143 * @cwq: cwq @work belongs to
1144 * @work: work to insert
1145 * @head: insertion point
1146 * @extra_flags: extra WORK_STRUCT_* flags to set
1147 *
706026c2
TH
1148 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1149 * work_struct flags.
4690c4ab
TH
1150 *
1151 * CONTEXT:
d565ed63 1152 * spin_lock_irq(pool->lock).
4690c4ab 1153 */
b89deed3 1154static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1155 struct work_struct *work, struct list_head *head,
1156 unsigned int extra_flags)
b89deed3 1157{
63d95a91 1158 struct worker_pool *pool = cwq->pool;
e22bee78 1159
4690c4ab 1160 /* we own @work, set data and link */
7a22ad75 1161 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1162
6e84d644
ON
1163 /*
1164 * Ensure that we get the right work->data if we see the
1165 * result of list_add() below, see try_to_grab_pending().
1166 */
1167 smp_wmb();
4690c4ab 1168
1a4d9b0a 1169 list_add_tail(&work->entry, head);
e22bee78
TH
1170
1171 /*
1172 * Ensure either worker_sched_deactivated() sees the above
1173 * list_add_tail() or we see zero nr_running to avoid workers
1174 * lying around lazily while there are works to be processed.
1175 */
1176 smp_mb();
1177
63d95a91
TH
1178 if (__need_more_worker(pool))
1179 wake_up_worker(pool);
b89deed3
ON
1180}
1181
c8efcc25
TH
1182/*
1183 * Test whether @work is being queued from another work executing on the
1184 * same workqueue. This is rather expensive and should only be used from
1185 * cold paths.
1186 */
1187static bool is_chained_work(struct workqueue_struct *wq)
1188{
1189 unsigned long flags;
1190 unsigned int cpu;
1191
706026c2 1192 for_each_wq_cpu(cpu) {
c9e7cf27
TH
1193 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1194 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1195 struct worker *worker;
1196 struct hlist_node *pos;
1197 int i;
1198
d565ed63 1199 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1200 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1201 if (worker->task != current)
1202 continue;
d565ed63 1203 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1204 /*
1205 * I'm @worker, no locking necessary. See if @work
1206 * is headed to the same workqueue.
1207 */
1208 return worker->current_cwq->wq == wq;
1209 }
d565ed63 1210 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1211 }
1212 return false;
1213}
1214
4690c4ab 1215static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1216 struct work_struct *work)
1217{
d565ed63
TH
1218 bool highpri = wq->flags & WQ_HIGHPRI;
1219 struct worker_pool *pool;
502ca9d8 1220 struct cpu_workqueue_struct *cwq;
1e19ffc6 1221 struct list_head *worklist;
8a2e8e5d 1222 unsigned int work_flags;
b75cac93 1223 unsigned int req_cpu = cpu;
8930caba
TH
1224
1225 /*
1226 * While a work item is PENDING && off queue, a task trying to
1227 * steal the PENDING will busy-loop waiting for it to either get
1228 * queued or lose PENDING. Grabbing PENDING and queueing should
1229 * happen with IRQ disabled.
1230 */
1231 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1232
dc186ad7 1233 debug_work_activate(work);
1e19ffc6 1234
c8efcc25 1235 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1236 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1237 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1238 return;
1239
d565ed63 1240 /* determine pool to use */
c7fc77f7 1241 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1242 struct worker_pool *last_pool;
18aa9eff 1243
57469821 1244 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1245 cpu = raw_smp_processor_id();
1246
18aa9eff 1247 /*
dbf2576e
TH
1248 * It's multi cpu. If @work was previously on a different
1249 * cpu, it might still be running there, in which case the
1250 * work needs to be queued on that cpu to guarantee
1251 * non-reentrancy.
18aa9eff 1252 */
d565ed63 1253 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1254 last_pool = get_work_pool(work);
dbf2576e 1255
d565ed63 1256 if (last_pool && last_pool != pool) {
18aa9eff
TH
1257 struct worker *worker;
1258
d565ed63 1259 spin_lock(&last_pool->lock);
18aa9eff 1260
c9e7cf27 1261 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1262
1263 if (worker && worker->current_cwq->wq == wq)
d565ed63 1264 pool = last_pool;
18aa9eff
TH
1265 else {
1266 /* meh... not running there, queue here */
d565ed63
TH
1267 spin_unlock(&last_pool->lock);
1268 spin_lock(&pool->lock);
18aa9eff 1269 }
8930caba 1270 } else {
d565ed63 1271 spin_lock(&pool->lock);
8930caba 1272 }
f3421797 1273 } else {
d565ed63
TH
1274 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1275 spin_lock(&pool->lock);
502ca9d8
TH
1276 }
1277
d565ed63
TH
1278 /* pool determined, get cwq and queue */
1279 cwq = get_cwq(pool->cpu, wq);
b75cac93 1280 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1281
f5b2552b 1282 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1283 spin_unlock(&pool->lock);
f5b2552b
DC
1284 return;
1285 }
1e19ffc6 1286
73f53c4a 1287 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1288 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1289
1290 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1291 trace_workqueue_activate_work(work);
1e19ffc6 1292 cwq->nr_active++;
3270476a 1293 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1294 } else {
1295 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1296 worklist = &cwq->delayed_works;
8a2e8e5d 1297 }
1e19ffc6 1298
8a2e8e5d 1299 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1300
d565ed63 1301 spin_unlock(&pool->lock);
1da177e4
LT
1302}
1303
0fcb78c2 1304/**
c1a220e7
ZR
1305 * queue_work_on - queue work on specific cpu
1306 * @cpu: CPU number to execute work on
0fcb78c2
REB
1307 * @wq: workqueue to use
1308 * @work: work to queue
1309 *
d4283e93 1310 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1311 *
c1a220e7
ZR
1312 * We queue the work to a specific CPU, the caller must ensure it
1313 * can't go away.
1da177e4 1314 */
d4283e93
TH
1315bool queue_work_on(int cpu, struct workqueue_struct *wq,
1316 struct work_struct *work)
1da177e4 1317{
d4283e93 1318 bool ret = false;
8930caba 1319 unsigned long flags;
ef1ca236 1320
8930caba 1321 local_irq_save(flags);
c1a220e7 1322
22df02bb 1323 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1324 __queue_work(cpu, wq, work);
d4283e93 1325 ret = true;
c1a220e7 1326 }
ef1ca236 1327
8930caba 1328 local_irq_restore(flags);
1da177e4
LT
1329 return ret;
1330}
c1a220e7 1331EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1332
c1a220e7 1333/**
0a13c00e 1334 * queue_work - queue work on a workqueue
c1a220e7
ZR
1335 * @wq: workqueue to use
1336 * @work: work to queue
1337 *
d4283e93 1338 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1339 *
0a13c00e
TH
1340 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1341 * it can be processed by another CPU.
c1a220e7 1342 */
d4283e93 1343bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1344{
57469821 1345 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1346}
0a13c00e 1347EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1348
d8e794df 1349void delayed_work_timer_fn(unsigned long __data)
1da177e4 1350{
52bad64d 1351 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1352
e0aecdd8 1353 /* should have been called from irqsafe timer with irq already off */
60c057bc 1354 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1355}
d8e794df 1356EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1357
7beb2edf
TH
1358static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1359 struct delayed_work *dwork, unsigned long delay)
1da177e4 1360{
7beb2edf
TH
1361 struct timer_list *timer = &dwork->timer;
1362 struct work_struct *work = &dwork->work;
7beb2edf
TH
1363
1364 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1365 timer->data != (unsigned long)dwork);
fc4b514f
TH
1366 WARN_ON_ONCE(timer_pending(timer));
1367 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1368
8852aac2
TH
1369 /*
1370 * If @delay is 0, queue @dwork->work immediately. This is for
1371 * both optimization and correctness. The earliest @timer can
1372 * expire is on the closest next tick and delayed_work users depend
1373 * on that there's no such delay when @delay is 0.
1374 */
1375 if (!delay) {
1376 __queue_work(cpu, wq, &dwork->work);
1377 return;
1378 }
1379
7beb2edf 1380 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1381
60c057bc 1382 dwork->wq = wq;
1265057f 1383 dwork->cpu = cpu;
7beb2edf
TH
1384 timer->expires = jiffies + delay;
1385
1386 if (unlikely(cpu != WORK_CPU_UNBOUND))
1387 add_timer_on(timer, cpu);
1388 else
1389 add_timer(timer);
1da177e4
LT
1390}
1391
0fcb78c2
REB
1392/**
1393 * queue_delayed_work_on - queue work on specific CPU after delay
1394 * @cpu: CPU number to execute work on
1395 * @wq: workqueue to use
af9997e4 1396 * @dwork: work to queue
0fcb78c2
REB
1397 * @delay: number of jiffies to wait before queueing
1398 *
715f1300
TH
1399 * Returns %false if @work was already on a queue, %true otherwise. If
1400 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1401 * execution.
0fcb78c2 1402 */
d4283e93
TH
1403bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1404 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1405{
52bad64d 1406 struct work_struct *work = &dwork->work;
d4283e93 1407 bool ret = false;
8930caba 1408 unsigned long flags;
7a6bc1cd 1409
8930caba
TH
1410 /* read the comment in __queue_work() */
1411 local_irq_save(flags);
7a6bc1cd 1412
22df02bb 1413 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1414 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1415 ret = true;
7a6bc1cd 1416 }
8a3e77cc 1417
8930caba 1418 local_irq_restore(flags);
7a6bc1cd
VP
1419 return ret;
1420}
ae90dd5d 1421EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1422
0a13c00e
TH
1423/**
1424 * queue_delayed_work - queue work on a workqueue after delay
1425 * @wq: workqueue to use
1426 * @dwork: delayable work to queue
1427 * @delay: number of jiffies to wait before queueing
1428 *
715f1300 1429 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1430 */
d4283e93 1431bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1432 struct delayed_work *dwork, unsigned long delay)
1433{
57469821 1434 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1435}
1436EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1437
8376fe22
TH
1438/**
1439 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1440 * @cpu: CPU number to execute work on
1441 * @wq: workqueue to use
1442 * @dwork: work to queue
1443 * @delay: number of jiffies to wait before queueing
1444 *
1445 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1446 * modify @dwork's timer so that it expires after @delay. If @delay is
1447 * zero, @work is guaranteed to be scheduled immediately regardless of its
1448 * current state.
1449 *
1450 * Returns %false if @dwork was idle and queued, %true if @dwork was
1451 * pending and its timer was modified.
1452 *
e0aecdd8 1453 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1454 * See try_to_grab_pending() for details.
1455 */
1456bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1457 struct delayed_work *dwork, unsigned long delay)
1458{
1459 unsigned long flags;
1460 int ret;
c7fc77f7 1461
8376fe22
TH
1462 do {
1463 ret = try_to_grab_pending(&dwork->work, true, &flags);
1464 } while (unlikely(ret == -EAGAIN));
63bc0362 1465
8376fe22
TH
1466 if (likely(ret >= 0)) {
1467 __queue_delayed_work(cpu, wq, dwork, delay);
1468 local_irq_restore(flags);
7a6bc1cd 1469 }
8376fe22
TH
1470
1471 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1472 return ret;
1473}
8376fe22
TH
1474EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1475
1476/**
1477 * mod_delayed_work - modify delay of or queue a delayed work
1478 * @wq: workqueue to use
1479 * @dwork: work to queue
1480 * @delay: number of jiffies to wait before queueing
1481 *
1482 * mod_delayed_work_on() on local CPU.
1483 */
1484bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1485 unsigned long delay)
1486{
1487 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1488}
1489EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1490
c8e55f36
TH
1491/**
1492 * worker_enter_idle - enter idle state
1493 * @worker: worker which is entering idle state
1494 *
1495 * @worker is entering idle state. Update stats and idle timer if
1496 * necessary.
1497 *
1498 * LOCKING:
d565ed63 1499 * spin_lock_irq(pool->lock).
c8e55f36
TH
1500 */
1501static void worker_enter_idle(struct worker *worker)
1da177e4 1502{
bd7bdd43 1503 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1504
1505 BUG_ON(worker->flags & WORKER_IDLE);
1506 BUG_ON(!list_empty(&worker->entry) &&
1507 (worker->hentry.next || worker->hentry.pprev));
1508
cb444766
TH
1509 /* can't use worker_set_flags(), also called from start_worker() */
1510 worker->flags |= WORKER_IDLE;
bd7bdd43 1511 pool->nr_idle++;
e22bee78 1512 worker->last_active = jiffies;
c8e55f36
TH
1513
1514 /* idle_list is LIFO */
bd7bdd43 1515 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1516
628c78e7
TH
1517 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1518 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1519
544ecf31 1520 /*
706026c2 1521 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1522 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1523 * nr_running, the warning may trigger spuriously. Check iff
1524 * unbind is not in progress.
544ecf31 1525 */
24647570 1526 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1527 pool->nr_workers == pool->nr_idle &&
63d95a91 1528 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1529}
1530
1531/**
1532 * worker_leave_idle - leave idle state
1533 * @worker: worker which is leaving idle state
1534 *
1535 * @worker is leaving idle state. Update stats.
1536 *
1537 * LOCKING:
d565ed63 1538 * spin_lock_irq(pool->lock).
c8e55f36
TH
1539 */
1540static void worker_leave_idle(struct worker *worker)
1541{
bd7bdd43 1542 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1543
1544 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1545 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1546 pool->nr_idle--;
c8e55f36
TH
1547 list_del_init(&worker->entry);
1548}
1549
e22bee78 1550/**
706026c2 1551 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1552 * @worker: self
1553 *
1554 * Works which are scheduled while the cpu is online must at least be
1555 * scheduled to a worker which is bound to the cpu so that if they are
1556 * flushed from cpu callbacks while cpu is going down, they are
1557 * guaranteed to execute on the cpu.
1558 *
1559 * This function is to be used by rogue workers and rescuers to bind
1560 * themselves to the target cpu and may race with cpu going down or
1561 * coming online. kthread_bind() can't be used because it may put the
1562 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1563 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1564 * [dis]associated in the meantime.
1565 *
706026c2 1566 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1567 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1568 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1569 * enters idle state or fetches works without dropping lock, it can
1570 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1571 *
1572 * CONTEXT:
d565ed63 1573 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1574 * held.
1575 *
1576 * RETURNS:
706026c2 1577 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1578 * bound), %false if offline.
1579 */
1580static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1581__acquires(&pool->lock)
e22bee78 1582{
24647570 1583 struct worker_pool *pool = worker->pool;
e22bee78
TH
1584 struct task_struct *task = worker->task;
1585
1586 while (true) {
4e6045f1 1587 /*
e22bee78
TH
1588 * The following call may fail, succeed or succeed
1589 * without actually migrating the task to the cpu if
1590 * it races with cpu hotunplug operation. Verify
24647570 1591 * against POOL_DISASSOCIATED.
4e6045f1 1592 */
24647570 1593 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1594 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1595
d565ed63 1596 spin_lock_irq(&pool->lock);
24647570 1597 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1598 return false;
ec22ca5e 1599 if (task_cpu(task) == pool->cpu &&
e22bee78 1600 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1601 get_cpu_mask(pool->cpu)))
e22bee78 1602 return true;
d565ed63 1603 spin_unlock_irq(&pool->lock);
e22bee78 1604
5035b20f
TH
1605 /*
1606 * We've raced with CPU hot[un]plug. Give it a breather
1607 * and retry migration. cond_resched() is required here;
1608 * otherwise, we might deadlock against cpu_stop trying to
1609 * bring down the CPU on non-preemptive kernel.
1610 */
e22bee78 1611 cpu_relax();
5035b20f 1612 cond_resched();
e22bee78
TH
1613 }
1614}
1615
25511a47 1616/*
ea1abd61 1617 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1618 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1619 */
1620static void idle_worker_rebind(struct worker *worker)
1621{
5f7dabfd
LJ
1622 /* CPU may go down again inbetween, clear UNBOUND only on success */
1623 if (worker_maybe_bind_and_lock(worker))
1624 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1625
ea1abd61
LJ
1626 /* rebind complete, become available again */
1627 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1628 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1629}
1630
e22bee78 1631/*
25511a47 1632 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1633 * the associated cpu which is coming back online. This is scheduled by
1634 * cpu up but can race with other cpu hotplug operations and may be
1635 * executed twice without intervening cpu down.
e22bee78 1636 */
25511a47 1637static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1638{
1639 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1640
eab6d828
LJ
1641 if (worker_maybe_bind_and_lock(worker))
1642 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1643
d565ed63 1644 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1645}
1646
25511a47 1647/**
94cf58bb
TH
1648 * rebind_workers - rebind all workers of a pool to the associated CPU
1649 * @pool: pool of interest
25511a47 1650 *
94cf58bb 1651 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1652 * is different for idle and busy ones.
1653 *
ea1abd61
LJ
1654 * Idle ones will be removed from the idle_list and woken up. They will
1655 * add themselves back after completing rebind. This ensures that the
1656 * idle_list doesn't contain any unbound workers when re-bound busy workers
1657 * try to perform local wake-ups for concurrency management.
25511a47 1658 *
ea1abd61
LJ
1659 * Busy workers can rebind after they finish their current work items.
1660 * Queueing the rebind work item at the head of the scheduled list is
1661 * enough. Note that nr_running will be properly bumped as busy workers
1662 * rebind.
25511a47 1663 *
ea1abd61
LJ
1664 * On return, all non-manager workers are scheduled for rebind - see
1665 * manage_workers() for the manager special case. Any idle worker
1666 * including the manager will not appear on @idle_list until rebind is
1667 * complete, making local wake-ups safe.
25511a47 1668 */
94cf58bb 1669static void rebind_workers(struct worker_pool *pool)
25511a47 1670{
ea1abd61 1671 struct worker *worker, *n;
25511a47
TH
1672 struct hlist_node *pos;
1673 int i;
1674
94cf58bb
TH
1675 lockdep_assert_held(&pool->assoc_mutex);
1676 lockdep_assert_held(&pool->lock);
25511a47 1677
5f7dabfd 1678 /* dequeue and kick idle ones */
94cf58bb
TH
1679 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1680 /*
1681 * idle workers should be off @pool->idle_list until rebind
1682 * is complete to avoid receiving premature local wake-ups.
1683 */
1684 list_del_init(&worker->entry);
25511a47 1685
94cf58bb
TH
1686 /*
1687 * worker_thread() will see the above dequeuing and call
1688 * idle_worker_rebind().
1689 */
1690 wake_up_process(worker->task);
1691 }
25511a47 1692
94cf58bb
TH
1693 /* rebind busy workers */
1694 for_each_busy_worker(worker, i, pos, pool) {
1695 struct work_struct *rebind_work = &worker->rebind_work;
1696 struct workqueue_struct *wq;
25511a47 1697
94cf58bb
TH
1698 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1699 work_data_bits(rebind_work)))
1700 continue;
25511a47 1701
94cf58bb 1702 debug_work_activate(rebind_work);
90beca5d 1703
94cf58bb
TH
1704 /*
1705 * wq doesn't really matter but let's keep @worker->pool
1706 * and @cwq->pool consistent for sanity.
1707 */
1708 if (std_worker_pool_pri(worker->pool))
1709 wq = system_highpri_wq;
1710 else
1711 wq = system_wq;
1712
1713 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1714 worker->scheduled.next,
1715 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1716 }
25511a47
TH
1717}
1718
c34056a3
TH
1719static struct worker *alloc_worker(void)
1720{
1721 struct worker *worker;
1722
1723 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1724 if (worker) {
1725 INIT_LIST_HEAD(&worker->entry);
affee4b2 1726 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1727 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1728 /* on creation a worker is in !idle && prep state */
1729 worker->flags = WORKER_PREP;
c8e55f36 1730 }
c34056a3
TH
1731 return worker;
1732}
1733
1734/**
1735 * create_worker - create a new workqueue worker
63d95a91 1736 * @pool: pool the new worker will belong to
c34056a3 1737 *
63d95a91 1738 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1739 * can be started by calling start_worker() or destroyed using
1740 * destroy_worker().
1741 *
1742 * CONTEXT:
1743 * Might sleep. Does GFP_KERNEL allocations.
1744 *
1745 * RETURNS:
1746 * Pointer to the newly created worker.
1747 */
bc2ae0f5 1748static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1749{
e34cdddb 1750 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1751 struct worker *worker = NULL;
f3421797 1752 int id = -1;
c34056a3 1753
d565ed63 1754 spin_lock_irq(&pool->lock);
bd7bdd43 1755 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1756 spin_unlock_irq(&pool->lock);
bd7bdd43 1757 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1758 goto fail;
d565ed63 1759 spin_lock_irq(&pool->lock);
c34056a3 1760 }
d565ed63 1761 spin_unlock_irq(&pool->lock);
c34056a3
TH
1762
1763 worker = alloc_worker();
1764 if (!worker)
1765 goto fail;
1766
bd7bdd43 1767 worker->pool = pool;
c34056a3
TH
1768 worker->id = id;
1769
ec22ca5e 1770 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1771 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1772 worker, cpu_to_node(pool->cpu),
1773 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1774 else
1775 worker->task = kthread_create(worker_thread, worker,
3270476a 1776 "kworker/u:%d%s", id, pri);
c34056a3
TH
1777 if (IS_ERR(worker->task))
1778 goto fail;
1779
e34cdddb 1780 if (std_worker_pool_pri(pool))
3270476a
TH
1781 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1782
db7bccf4 1783 /*
bc2ae0f5 1784 * Determine CPU binding of the new worker depending on
24647570 1785 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1786 * flag remains stable across this function. See the comments
1787 * above the flag definition for details.
1788 *
1789 * As an unbound worker may later become a regular one if CPU comes
1790 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1791 */
24647570 1792 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1793 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1794 } else {
db7bccf4 1795 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1796 worker->flags |= WORKER_UNBOUND;
f3421797 1797 }
c34056a3
TH
1798
1799 return worker;
1800fail:
1801 if (id >= 0) {
d565ed63 1802 spin_lock_irq(&pool->lock);
bd7bdd43 1803 ida_remove(&pool->worker_ida, id);
d565ed63 1804 spin_unlock_irq(&pool->lock);
c34056a3
TH
1805 }
1806 kfree(worker);
1807 return NULL;
1808}
1809
1810/**
1811 * start_worker - start a newly created worker
1812 * @worker: worker to start
1813 *
706026c2 1814 * Make the pool aware of @worker and start it.
c34056a3
TH
1815 *
1816 * CONTEXT:
d565ed63 1817 * spin_lock_irq(pool->lock).
c34056a3
TH
1818 */
1819static void start_worker(struct worker *worker)
1820{
cb444766 1821 worker->flags |= WORKER_STARTED;
bd7bdd43 1822 worker->pool->nr_workers++;
c8e55f36 1823 worker_enter_idle(worker);
c34056a3
TH
1824 wake_up_process(worker->task);
1825}
1826
1827/**
1828 * destroy_worker - destroy a workqueue worker
1829 * @worker: worker to be destroyed
1830 *
706026c2 1831 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1832 *
1833 * CONTEXT:
d565ed63 1834 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1835 */
1836static void destroy_worker(struct worker *worker)
1837{
bd7bdd43 1838 struct worker_pool *pool = worker->pool;
c34056a3
TH
1839 int id = worker->id;
1840
1841 /* sanity check frenzy */
1842 BUG_ON(worker->current_work);
affee4b2 1843 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1844
c8e55f36 1845 if (worker->flags & WORKER_STARTED)
bd7bdd43 1846 pool->nr_workers--;
c8e55f36 1847 if (worker->flags & WORKER_IDLE)
bd7bdd43 1848 pool->nr_idle--;
c8e55f36
TH
1849
1850 list_del_init(&worker->entry);
cb444766 1851 worker->flags |= WORKER_DIE;
c8e55f36 1852
d565ed63 1853 spin_unlock_irq(&pool->lock);
c8e55f36 1854
c34056a3
TH
1855 kthread_stop(worker->task);
1856 kfree(worker);
1857
d565ed63 1858 spin_lock_irq(&pool->lock);
bd7bdd43 1859 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1860}
1861
63d95a91 1862static void idle_worker_timeout(unsigned long __pool)
e22bee78 1863{
63d95a91 1864 struct worker_pool *pool = (void *)__pool;
e22bee78 1865
d565ed63 1866 spin_lock_irq(&pool->lock);
e22bee78 1867
63d95a91 1868 if (too_many_workers(pool)) {
e22bee78
TH
1869 struct worker *worker;
1870 unsigned long expires;
1871
1872 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1873 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1874 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1875
1876 if (time_before(jiffies, expires))
63d95a91 1877 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1878 else {
1879 /* it's been idle for too long, wake up manager */
11ebea50 1880 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1881 wake_up_worker(pool);
d5abe669 1882 }
e22bee78
TH
1883 }
1884
d565ed63 1885 spin_unlock_irq(&pool->lock);
e22bee78 1886}
d5abe669 1887
e22bee78
TH
1888static bool send_mayday(struct work_struct *work)
1889{
1890 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1891 struct workqueue_struct *wq = cwq->wq;
f3421797 1892 unsigned int cpu;
e22bee78
TH
1893
1894 if (!(wq->flags & WQ_RESCUER))
1895 return false;
1896
1897 /* mayday mayday mayday */
ec22ca5e 1898 cpu = cwq->pool->cpu;
f3421797
TH
1899 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1900 if (cpu == WORK_CPU_UNBOUND)
1901 cpu = 0;
f2e005aa 1902 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1903 wake_up_process(wq->rescuer->task);
1904 return true;
1905}
1906
706026c2 1907static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1908{
63d95a91 1909 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1910 struct work_struct *work;
1911
d565ed63 1912 spin_lock_irq(&pool->lock);
e22bee78 1913
63d95a91 1914 if (need_to_create_worker(pool)) {
e22bee78
TH
1915 /*
1916 * We've been trying to create a new worker but
1917 * haven't been successful. We might be hitting an
1918 * allocation deadlock. Send distress signals to
1919 * rescuers.
1920 */
63d95a91 1921 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1922 send_mayday(work);
1da177e4 1923 }
e22bee78 1924
d565ed63 1925 spin_unlock_irq(&pool->lock);
e22bee78 1926
63d95a91 1927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1928}
1929
e22bee78
TH
1930/**
1931 * maybe_create_worker - create a new worker if necessary
63d95a91 1932 * @pool: pool to create a new worker for
e22bee78 1933 *
63d95a91 1934 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1935 * have at least one idle worker on return from this function. If
1936 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1937 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1938 * possible allocation deadlock.
1939 *
1940 * On return, need_to_create_worker() is guaranteed to be false and
1941 * may_start_working() true.
1942 *
1943 * LOCKING:
d565ed63 1944 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1945 * multiple times. Does GFP_KERNEL allocations. Called only from
1946 * manager.
1947 *
1948 * RETURNS:
d565ed63 1949 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1953__releases(&pool->lock)
1954__acquires(&pool->lock)
1da177e4 1955{
63d95a91 1956 if (!need_to_create_worker(pool))
e22bee78
TH
1957 return false;
1958restart:
d565ed63 1959 spin_unlock_irq(&pool->lock);
9f9c2364 1960
e22bee78 1961 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1963
1964 while (true) {
1965 struct worker *worker;
1966
bc2ae0f5 1967 worker = create_worker(pool);
e22bee78 1968 if (worker) {
63d95a91 1969 del_timer_sync(&pool->mayday_timer);
d565ed63 1970 spin_lock_irq(&pool->lock);
e22bee78 1971 start_worker(worker);
63d95a91 1972 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1973 return true;
1974 }
1975
63d95a91 1976 if (!need_to_create_worker(pool))
e22bee78 1977 break;
1da177e4 1978
e22bee78
TH
1979 __set_current_state(TASK_INTERRUPTIBLE);
1980 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1981
63d95a91 1982 if (!need_to_create_worker(pool))
e22bee78
TH
1983 break;
1984 }
1985
63d95a91 1986 del_timer_sync(&pool->mayday_timer);
d565ed63 1987 spin_lock_irq(&pool->lock);
63d95a91 1988 if (need_to_create_worker(pool))
e22bee78
TH
1989 goto restart;
1990 return true;
1991}
1992
1993/**
1994 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1995 * @pool: pool to destroy workers for
e22bee78 1996 *
63d95a91 1997 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1998 * IDLE_WORKER_TIMEOUT.
1999 *
2000 * LOCKING:
d565ed63 2001 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2002 * multiple times. Called only from manager.
2003 *
2004 * RETURNS:
d565ed63 2005 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2006 * otherwise.
2007 */
63d95a91 2008static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2009{
2010 bool ret = false;
1da177e4 2011
63d95a91 2012 while (too_many_workers(pool)) {
e22bee78
TH
2013 struct worker *worker;
2014 unsigned long expires;
3af24433 2015
63d95a91 2016 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2017 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2018
e22bee78 2019 if (time_before(jiffies, expires)) {
63d95a91 2020 mod_timer(&pool->idle_timer, expires);
3af24433 2021 break;
e22bee78 2022 }
1da177e4 2023
e22bee78
TH
2024 destroy_worker(worker);
2025 ret = true;
1da177e4 2026 }
1e19ffc6 2027
e22bee78 2028 return ret;
1e19ffc6
TH
2029}
2030
73f53c4a 2031/**
e22bee78
TH
2032 * manage_workers - manage worker pool
2033 * @worker: self
73f53c4a 2034 *
706026c2 2035 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2036 * to. At any given time, there can be only zero or one manager per
706026c2 2037 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2038 *
2039 * The caller can safely start processing works on false return. On
2040 * true return, it's guaranteed that need_to_create_worker() is false
2041 * and may_start_working() is true.
73f53c4a
TH
2042 *
2043 * CONTEXT:
d565ed63 2044 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2045 * multiple times. Does GFP_KERNEL allocations.
2046 *
2047 * RETURNS:
d565ed63
TH
2048 * spin_lock_irq(pool->lock) which may be released and regrabbed
2049 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2050 */
e22bee78 2051static bool manage_workers(struct worker *worker)
73f53c4a 2052{
63d95a91 2053 struct worker_pool *pool = worker->pool;
e22bee78 2054 bool ret = false;
73f53c4a 2055
ee378aa4 2056 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2057 return ret;
1e19ffc6 2058
552a37e9 2059 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2060
ee378aa4
LJ
2061 /*
2062 * To simplify both worker management and CPU hotplug, hold off
2063 * management while hotplug is in progress. CPU hotplug path can't
2064 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2065 * lead to idle worker depletion (all become busy thinking someone
2066 * else is managing) which in turn can result in deadlock under
b2eb83d1 2067 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2068 * manager against CPU hotplug.
2069 *
b2eb83d1 2070 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2071 * progress. trylock first without dropping @pool->lock.
ee378aa4 2072 */
b2eb83d1 2073 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2074 spin_unlock_irq(&pool->lock);
b2eb83d1 2075 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2076 /*
2077 * CPU hotplug could have happened while we were waiting
b2eb83d1 2078 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2079 * because manager isn't either on idle or busy list, and
706026c2 2080 * @pool's state and ours could have deviated.
ee378aa4 2081 *
b2eb83d1 2082 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2083 * simply try to bind. It will succeed or fail depending
706026c2 2084 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2085 * %WORKER_UNBOUND accordingly.
2086 */
2087 if (worker_maybe_bind_and_lock(worker))
2088 worker->flags &= ~WORKER_UNBOUND;
2089 else
2090 worker->flags |= WORKER_UNBOUND;
73f53c4a 2091
ee378aa4
LJ
2092 ret = true;
2093 }
73f53c4a 2094
11ebea50 2095 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2096
2097 /*
e22bee78
TH
2098 * Destroy and then create so that may_start_working() is true
2099 * on return.
73f53c4a 2100 */
63d95a91
TH
2101 ret |= maybe_destroy_workers(pool);
2102 ret |= maybe_create_worker(pool);
e22bee78 2103
552a37e9 2104 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2105 mutex_unlock(&pool->assoc_mutex);
e22bee78 2106 return ret;
73f53c4a
TH
2107}
2108
a62428c0
TH
2109/**
2110 * process_one_work - process single work
c34056a3 2111 * @worker: self
a62428c0
TH
2112 * @work: work to process
2113 *
2114 * Process @work. This function contains all the logics necessary to
2115 * process a single work including synchronization against and
2116 * interaction with other workers on the same cpu, queueing and
2117 * flushing. As long as context requirement is met, any worker can
2118 * call this function to process a work.
2119 *
2120 * CONTEXT:
d565ed63 2121 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2122 */
c34056a3 2123static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2124__releases(&pool->lock)
2125__acquires(&pool->lock)
a62428c0 2126{
7e11629d 2127 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2128 struct worker_pool *pool = worker->pool;
fb0e7beb 2129 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2130 int work_color;
7e11629d 2131 struct worker *collision;
a62428c0
TH
2132#ifdef CONFIG_LOCKDEP
2133 /*
2134 * It is permissible to free the struct work_struct from
2135 * inside the function that is called from it, this we need to
2136 * take into account for lockdep too. To avoid bogus "held
2137 * lock freed" warnings as well as problems when looking into
2138 * work->lockdep_map, make a copy and use that here.
2139 */
4d82a1de
PZ
2140 struct lockdep_map lockdep_map;
2141
2142 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2143#endif
6fec10a1
TH
2144 /*
2145 * Ensure we're on the correct CPU. DISASSOCIATED test is
2146 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2147 * unbound or a disassociated pool.
6fec10a1 2148 */
5f7dabfd 2149 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2150 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2151 raw_smp_processor_id() != pool->cpu);
25511a47 2152
7e11629d
TH
2153 /*
2154 * A single work shouldn't be executed concurrently by
2155 * multiple workers on a single cpu. Check whether anyone is
2156 * already processing the work. If so, defer the work to the
2157 * currently executing one.
2158 */
c9e7cf27 2159 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2160 if (unlikely(collision)) {
2161 move_linked_works(work, &collision->scheduled, NULL);
2162 return;
2163 }
2164
8930caba 2165 /* claim and dequeue */
a62428c0 2166 debug_work_deactivate(work);
c9e7cf27 2167 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2168 worker->current_work = work;
a2c1c57b 2169 worker->current_func = work->func;
8cca0eea 2170 worker->current_cwq = cwq;
73f53c4a 2171 work_color = get_work_color(work);
7a22ad75 2172
a62428c0
TH
2173 list_del_init(&work->entry);
2174
fb0e7beb
TH
2175 /*
2176 * CPU intensive works don't participate in concurrency
2177 * management. They're the scheduler's responsibility.
2178 */
2179 if (unlikely(cpu_intensive))
2180 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2181
974271c4 2182 /*
d565ed63 2183 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2184 * executed ASAP. Wake up another worker if necessary.
2185 */
63d95a91
TH
2186 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2187 wake_up_worker(pool);
974271c4 2188
8930caba 2189 /*
7c3eed5c 2190 * Record the last pool and clear PENDING which should be the last
d565ed63 2191 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2192 * PENDING and queued state changes happen together while IRQ is
2193 * disabled.
8930caba 2194 */
7c3eed5c 2195 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2196
d565ed63 2197 spin_unlock_irq(&pool->lock);
a62428c0 2198
e159489b 2199 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2200 lock_map_acquire(&lockdep_map);
e36c886a 2201 trace_workqueue_execute_start(work);
a2c1c57b 2202 worker->current_func(work);
e36c886a
AV
2203 /*
2204 * While we must be careful to not use "work" after this, the trace
2205 * point will only record its address.
2206 */
2207 trace_workqueue_execute_end(work);
a62428c0
TH
2208 lock_map_release(&lockdep_map);
2209 lock_map_release(&cwq->wq->lockdep_map);
2210
2211 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2212 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2213 " last function: %pf\n",
a2c1c57b
TH
2214 current->comm, preempt_count(), task_pid_nr(current),
2215 worker->current_func);
a62428c0
TH
2216 debug_show_held_locks(current);
2217 dump_stack();
2218 }
2219
d565ed63 2220 spin_lock_irq(&pool->lock);
a62428c0 2221
fb0e7beb
TH
2222 /* clear cpu intensive status */
2223 if (unlikely(cpu_intensive))
2224 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2225
a62428c0 2226 /* we're done with it, release */
42f8570f 2227 hash_del(&worker->hentry);
c34056a3 2228 worker->current_work = NULL;
a2c1c57b 2229 worker->current_func = NULL;
8cca0eea 2230 worker->current_cwq = NULL;
b3f9f405 2231 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2232}
2233
affee4b2
TH
2234/**
2235 * process_scheduled_works - process scheduled works
2236 * @worker: self
2237 *
2238 * Process all scheduled works. Please note that the scheduled list
2239 * may change while processing a work, so this function repeatedly
2240 * fetches a work from the top and executes it.
2241 *
2242 * CONTEXT:
d565ed63 2243 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2244 * multiple times.
2245 */
2246static void process_scheduled_works(struct worker *worker)
1da177e4 2247{
affee4b2
TH
2248 while (!list_empty(&worker->scheduled)) {
2249 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2250 struct work_struct, entry);
c34056a3 2251 process_one_work(worker, work);
1da177e4 2252 }
1da177e4
LT
2253}
2254
4690c4ab
TH
2255/**
2256 * worker_thread - the worker thread function
c34056a3 2257 * @__worker: self
4690c4ab 2258 *
706026c2
TH
2259 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2260 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2261 * their specific target workqueue. The only exception is works which
2262 * belong to workqueues with a rescuer which will be explained in
2263 * rescuer_thread().
4690c4ab 2264 */
c34056a3 2265static int worker_thread(void *__worker)
1da177e4 2266{
c34056a3 2267 struct worker *worker = __worker;
bd7bdd43 2268 struct worker_pool *pool = worker->pool;
1da177e4 2269
e22bee78
TH
2270 /* tell the scheduler that this is a workqueue worker */
2271 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2272woke_up:
d565ed63 2273 spin_lock_irq(&pool->lock);
1da177e4 2274
5f7dabfd
LJ
2275 /* we are off idle list if destruction or rebind is requested */
2276 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2277 spin_unlock_irq(&pool->lock);
25511a47 2278
5f7dabfd 2279 /* if DIE is set, destruction is requested */
25511a47
TH
2280 if (worker->flags & WORKER_DIE) {
2281 worker->task->flags &= ~PF_WQ_WORKER;
2282 return 0;
2283 }
2284
5f7dabfd 2285 /* otherwise, rebind */
25511a47
TH
2286 idle_worker_rebind(worker);
2287 goto woke_up;
c8e55f36 2288 }
affee4b2 2289
c8e55f36 2290 worker_leave_idle(worker);
db7bccf4 2291recheck:
e22bee78 2292 /* no more worker necessary? */
63d95a91 2293 if (!need_more_worker(pool))
e22bee78
TH
2294 goto sleep;
2295
2296 /* do we need to manage? */
63d95a91 2297 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2298 goto recheck;
2299
c8e55f36
TH
2300 /*
2301 * ->scheduled list can only be filled while a worker is
2302 * preparing to process a work or actually processing it.
2303 * Make sure nobody diddled with it while I was sleeping.
2304 */
2305 BUG_ON(!list_empty(&worker->scheduled));
2306
e22bee78
TH
2307 /*
2308 * When control reaches this point, we're guaranteed to have
2309 * at least one idle worker or that someone else has already
2310 * assumed the manager role.
2311 */
2312 worker_clr_flags(worker, WORKER_PREP);
2313
2314 do {
c8e55f36 2315 struct work_struct *work =
bd7bdd43 2316 list_first_entry(&pool->worklist,
c8e55f36
TH
2317 struct work_struct, entry);
2318
2319 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2320 /* optimization path, not strictly necessary */
2321 process_one_work(worker, work);
2322 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2323 process_scheduled_works(worker);
c8e55f36
TH
2324 } else {
2325 move_linked_works(work, &worker->scheduled, NULL);
2326 process_scheduled_works(worker);
affee4b2 2327 }
63d95a91 2328 } while (keep_working(pool));
e22bee78
TH
2329
2330 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2331sleep:
63d95a91 2332 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2333 goto recheck;
d313dd85 2334
c8e55f36 2335 /*
d565ed63
TH
2336 * pool->lock is held and there's no work to process and no need to
2337 * manage, sleep. Workers are woken up only while holding
2338 * pool->lock or from local cpu, so setting the current state
2339 * before releasing pool->lock is enough to prevent losing any
2340 * event.
c8e55f36
TH
2341 */
2342 worker_enter_idle(worker);
2343 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2344 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2345 schedule();
2346 goto woke_up;
1da177e4
LT
2347}
2348
e22bee78
TH
2349/**
2350 * rescuer_thread - the rescuer thread function
111c225a 2351 * @__rescuer: self
e22bee78
TH
2352 *
2353 * Workqueue rescuer thread function. There's one rescuer for each
2354 * workqueue which has WQ_RESCUER set.
2355 *
706026c2 2356 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2357 * worker which uses GFP_KERNEL allocation which has slight chance of
2358 * developing into deadlock if some works currently on the same queue
2359 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2360 * the problem rescuer solves.
2361 *
706026c2
TH
2362 * When such condition is possible, the pool summons rescuers of all
2363 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2364 * those works so that forward progress can be guaranteed.
2365 *
2366 * This should happen rarely.
2367 */
111c225a 2368static int rescuer_thread(void *__rescuer)
e22bee78 2369{
111c225a
TH
2370 struct worker *rescuer = __rescuer;
2371 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2372 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2373 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2374 unsigned int cpu;
2375
2376 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2377
2378 /*
2379 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2380 * doesn't participate in concurrency management.
2381 */
2382 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2383repeat:
2384 set_current_state(TASK_INTERRUPTIBLE);
2385
412d32e6
MG
2386 if (kthread_should_stop()) {
2387 __set_current_state(TASK_RUNNING);
111c225a 2388 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2389 return 0;
412d32e6 2390 }
e22bee78 2391
f3421797
TH
2392 /*
2393 * See whether any cpu is asking for help. Unbounded
2394 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2395 */
f2e005aa 2396 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2397 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2398 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2399 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2400 struct work_struct *work, *n;
2401
2402 __set_current_state(TASK_RUNNING);
f2e005aa 2403 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2404
2405 /* migrate to the target cpu if possible */
bd7bdd43 2406 rescuer->pool = pool;
e22bee78
TH
2407 worker_maybe_bind_and_lock(rescuer);
2408
2409 /*
2410 * Slurp in all works issued via this workqueue and
2411 * process'em.
2412 */
2413 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2414 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2415 if (get_work_cwq(work) == cwq)
2416 move_linked_works(work, scheduled, &n);
2417
2418 process_scheduled_works(rescuer);
7576958a
TH
2419
2420 /*
d565ed63 2421 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2422 * regular worker; otherwise, we end up with 0 concurrency
2423 * and stalling the execution.
2424 */
63d95a91
TH
2425 if (keep_working(pool))
2426 wake_up_worker(pool);
7576958a 2427
d565ed63 2428 spin_unlock_irq(&pool->lock);
e22bee78
TH
2429 }
2430
111c225a
TH
2431 /* rescuers should never participate in concurrency management */
2432 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2433 schedule();
2434 goto repeat;
1da177e4
LT
2435}
2436
fc2e4d70
ON
2437struct wq_barrier {
2438 struct work_struct work;
2439 struct completion done;
2440};
2441
2442static void wq_barrier_func(struct work_struct *work)
2443{
2444 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2445 complete(&barr->done);
2446}
2447
4690c4ab
TH
2448/**
2449 * insert_wq_barrier - insert a barrier work
2450 * @cwq: cwq to insert barrier into
2451 * @barr: wq_barrier to insert
affee4b2
TH
2452 * @target: target work to attach @barr to
2453 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2454 *
affee4b2
TH
2455 * @barr is linked to @target such that @barr is completed only after
2456 * @target finishes execution. Please note that the ordering
2457 * guarantee is observed only with respect to @target and on the local
2458 * cpu.
2459 *
2460 * Currently, a queued barrier can't be canceled. This is because
2461 * try_to_grab_pending() can't determine whether the work to be
2462 * grabbed is at the head of the queue and thus can't clear LINKED
2463 * flag of the previous work while there must be a valid next work
2464 * after a work with LINKED flag set.
2465 *
2466 * Note that when @worker is non-NULL, @target may be modified
2467 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2468 *
2469 * CONTEXT:
d565ed63 2470 * spin_lock_irq(pool->lock).
4690c4ab 2471 */
83c22520 2472static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2473 struct wq_barrier *barr,
2474 struct work_struct *target, struct worker *worker)
fc2e4d70 2475{
affee4b2
TH
2476 struct list_head *head;
2477 unsigned int linked = 0;
2478
dc186ad7 2479 /*
d565ed63 2480 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2481 * as we know for sure that this will not trigger any of the
2482 * checks and call back into the fixup functions where we
2483 * might deadlock.
2484 */
ca1cab37 2485 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2486 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2487 init_completion(&barr->done);
83c22520 2488
affee4b2
TH
2489 /*
2490 * If @target is currently being executed, schedule the
2491 * barrier to the worker; otherwise, put it after @target.
2492 */
2493 if (worker)
2494 head = worker->scheduled.next;
2495 else {
2496 unsigned long *bits = work_data_bits(target);
2497
2498 head = target->entry.next;
2499 /* there can already be other linked works, inherit and set */
2500 linked = *bits & WORK_STRUCT_LINKED;
2501 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2502 }
2503
dc186ad7 2504 debug_work_activate(&barr->work);
affee4b2
TH
2505 insert_work(cwq, &barr->work, head,
2506 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2507}
2508
73f53c4a
TH
2509/**
2510 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2511 * @wq: workqueue being flushed
2512 * @flush_color: new flush color, < 0 for no-op
2513 * @work_color: new work color, < 0 for no-op
2514 *
2515 * Prepare cwqs for workqueue flushing.
2516 *
2517 * If @flush_color is non-negative, flush_color on all cwqs should be
2518 * -1. If no cwq has in-flight commands at the specified color, all
2519 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2520 * has in flight commands, its cwq->flush_color is set to
2521 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2522 * wakeup logic is armed and %true is returned.
2523 *
2524 * The caller should have initialized @wq->first_flusher prior to
2525 * calling this function with non-negative @flush_color. If
2526 * @flush_color is negative, no flush color update is done and %false
2527 * is returned.
2528 *
2529 * If @work_color is non-negative, all cwqs should have the same
2530 * work_color which is previous to @work_color and all will be
2531 * advanced to @work_color.
2532 *
2533 * CONTEXT:
2534 * mutex_lock(wq->flush_mutex).
2535 *
2536 * RETURNS:
2537 * %true if @flush_color >= 0 and there's something to flush. %false
2538 * otherwise.
2539 */
2540static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2541 int flush_color, int work_color)
1da177e4 2542{
73f53c4a
TH
2543 bool wait = false;
2544 unsigned int cpu;
1da177e4 2545
73f53c4a
TH
2546 if (flush_color >= 0) {
2547 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2548 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2549 }
2355b70f 2550
f3421797 2551 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2552 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2553 struct worker_pool *pool = cwq->pool;
fc2e4d70 2554
d565ed63 2555 spin_lock_irq(&pool->lock);
83c22520 2556
73f53c4a
TH
2557 if (flush_color >= 0) {
2558 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2559
73f53c4a
TH
2560 if (cwq->nr_in_flight[flush_color]) {
2561 cwq->flush_color = flush_color;
2562 atomic_inc(&wq->nr_cwqs_to_flush);
2563 wait = true;
2564 }
2565 }
1da177e4 2566
73f53c4a
TH
2567 if (work_color >= 0) {
2568 BUG_ON(work_color != work_next_color(cwq->work_color));
2569 cwq->work_color = work_color;
2570 }
1da177e4 2571
d565ed63 2572 spin_unlock_irq(&pool->lock);
1da177e4 2573 }
2355b70f 2574
73f53c4a
TH
2575 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2576 complete(&wq->first_flusher->done);
14441960 2577
73f53c4a 2578 return wait;
1da177e4
LT
2579}
2580
0fcb78c2 2581/**
1da177e4 2582 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2583 * @wq: workqueue to flush
1da177e4
LT
2584 *
2585 * Forces execution of the workqueue and blocks until its completion.
2586 * This is typically used in driver shutdown handlers.
2587 *
fc2e4d70
ON
2588 * We sleep until all works which were queued on entry have been handled,
2589 * but we are not livelocked by new incoming ones.
1da177e4 2590 */
7ad5b3a5 2591void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2592{
73f53c4a
TH
2593 struct wq_flusher this_flusher = {
2594 .list = LIST_HEAD_INIT(this_flusher.list),
2595 .flush_color = -1,
2596 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2597 };
2598 int next_color;
1da177e4 2599
3295f0ef
IM
2600 lock_map_acquire(&wq->lockdep_map);
2601 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2602
2603 mutex_lock(&wq->flush_mutex);
2604
2605 /*
2606 * Start-to-wait phase
2607 */
2608 next_color = work_next_color(wq->work_color);
2609
2610 if (next_color != wq->flush_color) {
2611 /*
2612 * Color space is not full. The current work_color
2613 * becomes our flush_color and work_color is advanced
2614 * by one.
2615 */
2616 BUG_ON(!list_empty(&wq->flusher_overflow));
2617 this_flusher.flush_color = wq->work_color;
2618 wq->work_color = next_color;
2619
2620 if (!wq->first_flusher) {
2621 /* no flush in progress, become the first flusher */
2622 BUG_ON(wq->flush_color != this_flusher.flush_color);
2623
2624 wq->first_flusher = &this_flusher;
2625
2626 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2627 wq->work_color)) {
2628 /* nothing to flush, done */
2629 wq->flush_color = next_color;
2630 wq->first_flusher = NULL;
2631 goto out_unlock;
2632 }
2633 } else {
2634 /* wait in queue */
2635 BUG_ON(wq->flush_color == this_flusher.flush_color);
2636 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2637 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2638 }
2639 } else {
2640 /*
2641 * Oops, color space is full, wait on overflow queue.
2642 * The next flush completion will assign us
2643 * flush_color and transfer to flusher_queue.
2644 */
2645 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2646 }
2647
2648 mutex_unlock(&wq->flush_mutex);
2649
2650 wait_for_completion(&this_flusher.done);
2651
2652 /*
2653 * Wake-up-and-cascade phase
2654 *
2655 * First flushers are responsible for cascading flushes and
2656 * handling overflow. Non-first flushers can simply return.
2657 */
2658 if (wq->first_flusher != &this_flusher)
2659 return;
2660
2661 mutex_lock(&wq->flush_mutex);
2662
4ce48b37
TH
2663 /* we might have raced, check again with mutex held */
2664 if (wq->first_flusher != &this_flusher)
2665 goto out_unlock;
2666
73f53c4a
TH
2667 wq->first_flusher = NULL;
2668
2669 BUG_ON(!list_empty(&this_flusher.list));
2670 BUG_ON(wq->flush_color != this_flusher.flush_color);
2671
2672 while (true) {
2673 struct wq_flusher *next, *tmp;
2674
2675 /* complete all the flushers sharing the current flush color */
2676 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2677 if (next->flush_color != wq->flush_color)
2678 break;
2679 list_del_init(&next->list);
2680 complete(&next->done);
2681 }
2682
2683 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2684 wq->flush_color != work_next_color(wq->work_color));
2685
2686 /* this flush_color is finished, advance by one */
2687 wq->flush_color = work_next_color(wq->flush_color);
2688
2689 /* one color has been freed, handle overflow queue */
2690 if (!list_empty(&wq->flusher_overflow)) {
2691 /*
2692 * Assign the same color to all overflowed
2693 * flushers, advance work_color and append to
2694 * flusher_queue. This is the start-to-wait
2695 * phase for these overflowed flushers.
2696 */
2697 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2698 tmp->flush_color = wq->work_color;
2699
2700 wq->work_color = work_next_color(wq->work_color);
2701
2702 list_splice_tail_init(&wq->flusher_overflow,
2703 &wq->flusher_queue);
2704 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2705 }
2706
2707 if (list_empty(&wq->flusher_queue)) {
2708 BUG_ON(wq->flush_color != wq->work_color);
2709 break;
2710 }
2711
2712 /*
2713 * Need to flush more colors. Make the next flusher
2714 * the new first flusher and arm cwqs.
2715 */
2716 BUG_ON(wq->flush_color == wq->work_color);
2717 BUG_ON(wq->flush_color != next->flush_color);
2718
2719 list_del_init(&next->list);
2720 wq->first_flusher = next;
2721
2722 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2723 break;
2724
2725 /*
2726 * Meh... this color is already done, clear first
2727 * flusher and repeat cascading.
2728 */
2729 wq->first_flusher = NULL;
2730 }
2731
2732out_unlock:
2733 mutex_unlock(&wq->flush_mutex);
1da177e4 2734}
ae90dd5d 2735EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2736
9c5a2ba7
TH
2737/**
2738 * drain_workqueue - drain a workqueue
2739 * @wq: workqueue to drain
2740 *
2741 * Wait until the workqueue becomes empty. While draining is in progress,
2742 * only chain queueing is allowed. IOW, only currently pending or running
2743 * work items on @wq can queue further work items on it. @wq is flushed
2744 * repeatedly until it becomes empty. The number of flushing is detemined
2745 * by the depth of chaining and should be relatively short. Whine if it
2746 * takes too long.
2747 */
2748void drain_workqueue(struct workqueue_struct *wq)
2749{
2750 unsigned int flush_cnt = 0;
2751 unsigned int cpu;
2752
2753 /*
2754 * __queue_work() needs to test whether there are drainers, is much
2755 * hotter than drain_workqueue() and already looks at @wq->flags.
2756 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2757 */
2758 spin_lock(&workqueue_lock);
2759 if (!wq->nr_drainers++)
2760 wq->flags |= WQ_DRAINING;
2761 spin_unlock(&workqueue_lock);
2762reflush:
2763 flush_workqueue(wq);
2764
2765 for_each_cwq_cpu(cpu, wq) {
2766 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2767 bool drained;
9c5a2ba7 2768
d565ed63 2769 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2770 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2771 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2772
2773 if (drained)
9c5a2ba7
TH
2774 continue;
2775
2776 if (++flush_cnt == 10 ||
2777 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2778 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2779 wq->name, flush_cnt);
9c5a2ba7
TH
2780 goto reflush;
2781 }
2782
2783 spin_lock(&workqueue_lock);
2784 if (!--wq->nr_drainers)
2785 wq->flags &= ~WQ_DRAINING;
2786 spin_unlock(&workqueue_lock);
2787}
2788EXPORT_SYMBOL_GPL(drain_workqueue);
2789
606a5020 2790static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2791{
affee4b2 2792 struct worker *worker = NULL;
c9e7cf27 2793 struct worker_pool *pool;
db700897 2794 struct cpu_workqueue_struct *cwq;
db700897
ON
2795
2796 might_sleep();
c9e7cf27
TH
2797 pool = get_work_pool(work);
2798 if (!pool)
baf59022 2799 return false;
db700897 2800
d565ed63 2801 spin_lock_irq(&pool->lock);
db700897
ON
2802 if (!list_empty(&work->entry)) {
2803 /*
2804 * See the comment near try_to_grab_pending()->smp_rmb().
d565ed63 2805 * If it was re-queued to a different pool under us, we
7a22ad75 2806 * are not going to wait.
db700897
ON
2807 */
2808 smp_rmb();
7a22ad75 2809 cwq = get_work_cwq(work);
d565ed63 2810 if (unlikely(!cwq || pool != cwq->pool))
4690c4ab 2811 goto already_gone;
606a5020 2812 } else {
c9e7cf27 2813 worker = find_worker_executing_work(pool, work);
affee4b2 2814 if (!worker)
4690c4ab 2815 goto already_gone;
7a22ad75 2816 cwq = worker->current_cwq;
606a5020 2817 }
db700897 2818
baf59022 2819 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2820 spin_unlock_irq(&pool->lock);
7a22ad75 2821
e159489b
TH
2822 /*
2823 * If @max_active is 1 or rescuer is in use, flushing another work
2824 * item on the same workqueue may lead to deadlock. Make sure the
2825 * flusher is not running on the same workqueue by verifying write
2826 * access.
2827 */
2828 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2829 lock_map_acquire(&cwq->wq->lockdep_map);
2830 else
2831 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2832 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2833
401a8d04 2834 return true;
4690c4ab 2835already_gone:
d565ed63 2836 spin_unlock_irq(&pool->lock);
401a8d04 2837 return false;
db700897 2838}
baf59022
TH
2839
2840/**
2841 * flush_work - wait for a work to finish executing the last queueing instance
2842 * @work: the work to flush
2843 *
606a5020
TH
2844 * Wait until @work has finished execution. @work is guaranteed to be idle
2845 * on return if it hasn't been requeued since flush started.
baf59022
TH
2846 *
2847 * RETURNS:
2848 * %true if flush_work() waited for the work to finish execution,
2849 * %false if it was already idle.
2850 */
2851bool flush_work(struct work_struct *work)
2852{
2853 struct wq_barrier barr;
2854
0976dfc1
SB
2855 lock_map_acquire(&work->lockdep_map);
2856 lock_map_release(&work->lockdep_map);
2857
606a5020 2858 if (start_flush_work(work, &barr)) {
401a8d04
TH
2859 wait_for_completion(&barr.done);
2860 destroy_work_on_stack(&barr.work);
2861 return true;
606a5020 2862 } else {
401a8d04 2863 return false;
6e84d644 2864 }
6e84d644 2865}
606a5020 2866EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2867
36e227d2 2868static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2869{
bbb68dfa 2870 unsigned long flags;
1f1f642e
ON
2871 int ret;
2872
2873 do {
bbb68dfa
TH
2874 ret = try_to_grab_pending(work, is_dwork, &flags);
2875 /*
2876 * If someone else is canceling, wait for the same event it
2877 * would be waiting for before retrying.
2878 */
2879 if (unlikely(ret == -ENOENT))
606a5020 2880 flush_work(work);
1f1f642e
ON
2881 } while (unlikely(ret < 0));
2882
bbb68dfa
TH
2883 /* tell other tasks trying to grab @work to back off */
2884 mark_work_canceling(work);
2885 local_irq_restore(flags);
2886
606a5020 2887 flush_work(work);
7a22ad75 2888 clear_work_data(work);
1f1f642e
ON
2889 return ret;
2890}
2891
6e84d644 2892/**
401a8d04
TH
2893 * cancel_work_sync - cancel a work and wait for it to finish
2894 * @work: the work to cancel
6e84d644 2895 *
401a8d04
TH
2896 * Cancel @work and wait for its execution to finish. This function
2897 * can be used even if the work re-queues itself or migrates to
2898 * another workqueue. On return from this function, @work is
2899 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2900 *
401a8d04
TH
2901 * cancel_work_sync(&delayed_work->work) must not be used for
2902 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2903 *
401a8d04 2904 * The caller must ensure that the workqueue on which @work was last
6e84d644 2905 * queued can't be destroyed before this function returns.
401a8d04
TH
2906 *
2907 * RETURNS:
2908 * %true if @work was pending, %false otherwise.
6e84d644 2909 */
401a8d04 2910bool cancel_work_sync(struct work_struct *work)
6e84d644 2911{
36e227d2 2912 return __cancel_work_timer(work, false);
b89deed3 2913}
28e53bdd 2914EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2915
6e84d644 2916/**
401a8d04
TH
2917 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2918 * @dwork: the delayed work to flush
6e84d644 2919 *
401a8d04
TH
2920 * Delayed timer is cancelled and the pending work is queued for
2921 * immediate execution. Like flush_work(), this function only
2922 * considers the last queueing instance of @dwork.
1f1f642e 2923 *
401a8d04
TH
2924 * RETURNS:
2925 * %true if flush_work() waited for the work to finish execution,
2926 * %false if it was already idle.
6e84d644 2927 */
401a8d04
TH
2928bool flush_delayed_work(struct delayed_work *dwork)
2929{
8930caba 2930 local_irq_disable();
401a8d04 2931 if (del_timer_sync(&dwork->timer))
60c057bc 2932 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2933 local_irq_enable();
401a8d04
TH
2934 return flush_work(&dwork->work);
2935}
2936EXPORT_SYMBOL(flush_delayed_work);
2937
09383498 2938/**
57b30ae7
TH
2939 * cancel_delayed_work - cancel a delayed work
2940 * @dwork: delayed_work to cancel
09383498 2941 *
57b30ae7
TH
2942 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2943 * and canceled; %false if wasn't pending. Note that the work callback
2944 * function may still be running on return, unless it returns %true and the
2945 * work doesn't re-arm itself. Explicitly flush or use
2946 * cancel_delayed_work_sync() to wait on it.
09383498 2947 *
57b30ae7 2948 * This function is safe to call from any context including IRQ handler.
09383498 2949 */
57b30ae7 2950bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2951{
57b30ae7
TH
2952 unsigned long flags;
2953 int ret;
2954
2955 do {
2956 ret = try_to_grab_pending(&dwork->work, true, &flags);
2957 } while (unlikely(ret == -EAGAIN));
2958
2959 if (unlikely(ret < 0))
2960 return false;
2961
7c3eed5c
TH
2962 set_work_pool_and_clear_pending(&dwork->work,
2963 get_work_pool_id(&dwork->work));
57b30ae7 2964 local_irq_restore(flags);
c0158ca6 2965 return ret;
09383498 2966}
57b30ae7 2967EXPORT_SYMBOL(cancel_delayed_work);
09383498 2968
401a8d04
TH
2969/**
2970 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2971 * @dwork: the delayed work cancel
2972 *
2973 * This is cancel_work_sync() for delayed works.
2974 *
2975 * RETURNS:
2976 * %true if @dwork was pending, %false otherwise.
2977 */
2978bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2979{
36e227d2 2980 return __cancel_work_timer(&dwork->work, true);
6e84d644 2981}
f5a421a4 2982EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2983
0fcb78c2 2984/**
c1a220e7
ZR
2985 * schedule_work_on - put work task on a specific cpu
2986 * @cpu: cpu to put the work task on
2987 * @work: job to be done
2988 *
2989 * This puts a job on a specific cpu
2990 */
d4283e93 2991bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2992{
d320c038 2993 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2994}
2995EXPORT_SYMBOL(schedule_work_on);
2996
0fcb78c2 2997/**
0fcb78c2
REB
2998 * schedule_work - put work task in global workqueue
2999 * @work: job to be done
0fcb78c2 3000 *
d4283e93
TH
3001 * Returns %false if @work was already on the kernel-global workqueue and
3002 * %true otherwise.
5b0f437d
BVA
3003 *
3004 * This puts a job in the kernel-global workqueue if it was not already
3005 * queued and leaves it in the same position on the kernel-global
3006 * workqueue otherwise.
0fcb78c2 3007 */
d4283e93 3008bool schedule_work(struct work_struct *work)
1da177e4 3009{
d320c038 3010 return queue_work(system_wq, work);
1da177e4 3011}
ae90dd5d 3012EXPORT_SYMBOL(schedule_work);
1da177e4 3013
0fcb78c2
REB
3014/**
3015 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3016 * @cpu: cpu to use
52bad64d 3017 * @dwork: job to be done
0fcb78c2
REB
3018 * @delay: number of jiffies to wait
3019 *
3020 * After waiting for a given time this puts a job in the kernel-global
3021 * workqueue on the specified CPU.
3022 */
d4283e93
TH
3023bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3024 unsigned long delay)
1da177e4 3025{
d320c038 3026 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3027}
ae90dd5d 3028EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3029
0fcb78c2
REB
3030/**
3031 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3032 * @dwork: job to be done
3033 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3034 *
3035 * After waiting for a given time this puts a job in the kernel-global
3036 * workqueue.
3037 */
d4283e93 3038bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3039{
d320c038 3040 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3041}
ae90dd5d 3042EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3043
b6136773 3044/**
31ddd871 3045 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3046 * @func: the function to call
b6136773 3047 *
31ddd871
TH
3048 * schedule_on_each_cpu() executes @func on each online CPU using the
3049 * system workqueue and blocks until all CPUs have completed.
b6136773 3050 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3051 *
3052 * RETURNS:
3053 * 0 on success, -errno on failure.
b6136773 3054 */
65f27f38 3055int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3056{
3057 int cpu;
38f51568 3058 struct work_struct __percpu *works;
15316ba8 3059
b6136773
AM
3060 works = alloc_percpu(struct work_struct);
3061 if (!works)
15316ba8 3062 return -ENOMEM;
b6136773 3063
93981800
TH
3064 get_online_cpus();
3065
15316ba8 3066 for_each_online_cpu(cpu) {
9bfb1839
IM
3067 struct work_struct *work = per_cpu_ptr(works, cpu);
3068
3069 INIT_WORK(work, func);
b71ab8c2 3070 schedule_work_on(cpu, work);
65a64464 3071 }
93981800
TH
3072
3073 for_each_online_cpu(cpu)
3074 flush_work(per_cpu_ptr(works, cpu));
3075
95402b38 3076 put_online_cpus();
b6136773 3077 free_percpu(works);
15316ba8
CL
3078 return 0;
3079}
3080
eef6a7d5
AS
3081/**
3082 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3083 *
3084 * Forces execution of the kernel-global workqueue and blocks until its
3085 * completion.
3086 *
3087 * Think twice before calling this function! It's very easy to get into
3088 * trouble if you don't take great care. Either of the following situations
3089 * will lead to deadlock:
3090 *
3091 * One of the work items currently on the workqueue needs to acquire
3092 * a lock held by your code or its caller.
3093 *
3094 * Your code is running in the context of a work routine.
3095 *
3096 * They will be detected by lockdep when they occur, but the first might not
3097 * occur very often. It depends on what work items are on the workqueue and
3098 * what locks they need, which you have no control over.
3099 *
3100 * In most situations flushing the entire workqueue is overkill; you merely
3101 * need to know that a particular work item isn't queued and isn't running.
3102 * In such cases you should use cancel_delayed_work_sync() or
3103 * cancel_work_sync() instead.
3104 */
1da177e4
LT
3105void flush_scheduled_work(void)
3106{
d320c038 3107 flush_workqueue(system_wq);
1da177e4 3108}
ae90dd5d 3109EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3110
1fa44eca
JB
3111/**
3112 * execute_in_process_context - reliably execute the routine with user context
3113 * @fn: the function to execute
1fa44eca
JB
3114 * @ew: guaranteed storage for the execute work structure (must
3115 * be available when the work executes)
3116 *
3117 * Executes the function immediately if process context is available,
3118 * otherwise schedules the function for delayed execution.
3119 *
3120 * Returns: 0 - function was executed
3121 * 1 - function was scheduled for execution
3122 */
65f27f38 3123int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3124{
3125 if (!in_interrupt()) {
65f27f38 3126 fn(&ew->work);
1fa44eca
JB
3127 return 0;
3128 }
3129
65f27f38 3130 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3131 schedule_work(&ew->work);
3132
3133 return 1;
3134}
3135EXPORT_SYMBOL_GPL(execute_in_process_context);
3136
1da177e4
LT
3137int keventd_up(void)
3138{
d320c038 3139 return system_wq != NULL;
1da177e4
LT
3140}
3141
bdbc5dd7 3142static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3143{
65a64464 3144 /*
0f900049
TH
3145 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3146 * Make sure that the alignment isn't lower than that of
3147 * unsigned long long.
65a64464 3148 */
0f900049
TH
3149 const size_t size = sizeof(struct cpu_workqueue_struct);
3150 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3151 __alignof__(unsigned long long));
65a64464 3152
e06ffa1e 3153 if (!(wq->flags & WQ_UNBOUND))
f3421797 3154 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3155 else {
f3421797
TH
3156 void *ptr;
3157
3158 /*
3159 * Allocate enough room to align cwq and put an extra
3160 * pointer at the end pointing back to the originally
3161 * allocated pointer which will be used for free.
3162 */
3163 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3164 if (ptr) {
3165 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3166 *(void **)(wq->cpu_wq.single + 1) = ptr;
3167 }
bdbc5dd7 3168 }
f3421797 3169
0415b00d 3170 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3171 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3172 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3173}
3174
bdbc5dd7 3175static void free_cwqs(struct workqueue_struct *wq)
0f900049 3176{
e06ffa1e 3177 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3178 free_percpu(wq->cpu_wq.pcpu);
3179 else if (wq->cpu_wq.single) {
3180 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3181 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3182 }
0f900049
TH
3183}
3184
f3421797
TH
3185static int wq_clamp_max_active(int max_active, unsigned int flags,
3186 const char *name)
b71ab8c2 3187{
f3421797
TH
3188 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3189
3190 if (max_active < 1 || max_active > lim)
044c782c
VI
3191 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3192 max_active, name, 1, lim);
b71ab8c2 3193
f3421797 3194 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3195}
3196
b196be89 3197struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3198 unsigned int flags,
3199 int max_active,
3200 struct lock_class_key *key,
b196be89 3201 const char *lock_name, ...)
1da177e4 3202{
b196be89 3203 va_list args, args1;
1da177e4 3204 struct workqueue_struct *wq;
c34056a3 3205 unsigned int cpu;
b196be89
TH
3206 size_t namelen;
3207
3208 /* determine namelen, allocate wq and format name */
3209 va_start(args, lock_name);
3210 va_copy(args1, args);
3211 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3212
3213 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3214 if (!wq)
3215 goto err;
3216
3217 vsnprintf(wq->name, namelen, fmt, args1);
3218 va_end(args);
3219 va_end(args1);
1da177e4 3220
6370a6ad
TH
3221 /*
3222 * Workqueues which may be used during memory reclaim should
3223 * have a rescuer to guarantee forward progress.
3224 */
3225 if (flags & WQ_MEM_RECLAIM)
3226 flags |= WQ_RESCUER;
3227
d320c038 3228 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3229 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3230
b196be89 3231 /* init wq */
97e37d7b 3232 wq->flags = flags;
a0a1a5fd 3233 wq->saved_max_active = max_active;
73f53c4a
TH
3234 mutex_init(&wq->flush_mutex);
3235 atomic_set(&wq->nr_cwqs_to_flush, 0);
3236 INIT_LIST_HEAD(&wq->flusher_queue);
3237 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3238
eb13ba87 3239 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3240 INIT_LIST_HEAD(&wq->list);
3af24433 3241
bdbc5dd7
TH
3242 if (alloc_cwqs(wq) < 0)
3243 goto err;
3244
f3421797 3245 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3246 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3247
0f900049 3248 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3249 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3250 cwq->wq = wq;
73f53c4a 3251 cwq->flush_color = -1;
1e19ffc6 3252 cwq->max_active = max_active;
1e19ffc6 3253 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3254 }
1537663f 3255
e22bee78
TH
3256 if (flags & WQ_RESCUER) {
3257 struct worker *rescuer;
3258
f2e005aa 3259 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3260 goto err;
3261
3262 wq->rescuer = rescuer = alloc_worker();
3263 if (!rescuer)
3264 goto err;
3265
111c225a
TH
3266 rescuer->rescue_wq = wq;
3267 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3268 wq->name);
e22bee78
TH
3269 if (IS_ERR(rescuer->task))
3270 goto err;
3271
e22bee78
TH
3272 rescuer->task->flags |= PF_THREAD_BOUND;
3273 wake_up_process(rescuer->task);
3af24433
ON
3274 }
3275
a0a1a5fd
TH
3276 /*
3277 * workqueue_lock protects global freeze state and workqueues
3278 * list. Grab it, set max_active accordingly and add the new
3279 * workqueue to workqueues list.
3280 */
1537663f 3281 spin_lock(&workqueue_lock);
a0a1a5fd 3282
58a69cb4 3283 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3284 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3285 get_cwq(cpu, wq)->max_active = 0;
3286
1537663f 3287 list_add(&wq->list, &workqueues);
a0a1a5fd 3288
1537663f
TH
3289 spin_unlock(&workqueue_lock);
3290
3af24433 3291 return wq;
4690c4ab
TH
3292err:
3293 if (wq) {
bdbc5dd7 3294 free_cwqs(wq);
f2e005aa 3295 free_mayday_mask(wq->mayday_mask);
e22bee78 3296 kfree(wq->rescuer);
4690c4ab
TH
3297 kfree(wq);
3298 }
3299 return NULL;
3af24433 3300}
d320c038 3301EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3302
3af24433
ON
3303/**
3304 * destroy_workqueue - safely terminate a workqueue
3305 * @wq: target workqueue
3306 *
3307 * Safely destroy a workqueue. All work currently pending will be done first.
3308 */
3309void destroy_workqueue(struct workqueue_struct *wq)
3310{
c8e55f36 3311 unsigned int cpu;
3af24433 3312
9c5a2ba7
TH
3313 /* drain it before proceeding with destruction */
3314 drain_workqueue(wq);
c8efcc25 3315
a0a1a5fd
TH
3316 /*
3317 * wq list is used to freeze wq, remove from list after
3318 * flushing is complete in case freeze races us.
3319 */
95402b38 3320 spin_lock(&workqueue_lock);
b1f4ec17 3321 list_del(&wq->list);
95402b38 3322 spin_unlock(&workqueue_lock);
3af24433 3323
e22bee78 3324 /* sanity check */
f3421797 3325 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3326 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3327 int i;
3328
73f53c4a
TH
3329 for (i = 0; i < WORK_NR_COLORS; i++)
3330 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3331 BUG_ON(cwq->nr_active);
3332 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3333 }
9b41ea72 3334
e22bee78
TH
3335 if (wq->flags & WQ_RESCUER) {
3336 kthread_stop(wq->rescuer->task);
f2e005aa 3337 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3338 kfree(wq->rescuer);
e22bee78
TH
3339 }
3340
bdbc5dd7 3341 free_cwqs(wq);
3af24433
ON
3342 kfree(wq);
3343}
3344EXPORT_SYMBOL_GPL(destroy_workqueue);
3345
9f4bd4cd
LJ
3346/**
3347 * cwq_set_max_active - adjust max_active of a cwq
3348 * @cwq: target cpu_workqueue_struct
3349 * @max_active: new max_active value.
3350 *
3351 * Set @cwq->max_active to @max_active and activate delayed works if
3352 * increased.
3353 *
3354 * CONTEXT:
d565ed63 3355 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3356 */
3357static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3358{
3359 cwq->max_active = max_active;
3360
3361 while (!list_empty(&cwq->delayed_works) &&
3362 cwq->nr_active < cwq->max_active)
3363 cwq_activate_first_delayed(cwq);
3364}
3365
dcd989cb
TH
3366/**
3367 * workqueue_set_max_active - adjust max_active of a workqueue
3368 * @wq: target workqueue
3369 * @max_active: new max_active value.
3370 *
3371 * Set max_active of @wq to @max_active.
3372 *
3373 * CONTEXT:
3374 * Don't call from IRQ context.
3375 */
3376void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3377{
3378 unsigned int cpu;
3379
f3421797 3380 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3381
3382 spin_lock(&workqueue_lock);
3383
3384 wq->saved_max_active = max_active;
3385
f3421797 3386 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3387 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3388 struct worker_pool *pool = cwq->pool;
dcd989cb 3389
d565ed63 3390 spin_lock_irq(&pool->lock);
dcd989cb 3391
58a69cb4 3392 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3393 !(pool->flags & POOL_FREEZING))
3394 cwq_set_max_active(cwq, max_active);
9bfb1839 3395
d565ed63 3396 spin_unlock_irq(&pool->lock);
65a64464 3397 }
93981800 3398
dcd989cb 3399 spin_unlock(&workqueue_lock);
15316ba8 3400}
dcd989cb 3401EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3402
eef6a7d5 3403/**
dcd989cb
TH
3404 * workqueue_congested - test whether a workqueue is congested
3405 * @cpu: CPU in question
3406 * @wq: target workqueue
eef6a7d5 3407 *
dcd989cb
TH
3408 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3409 * no synchronization around this function and the test result is
3410 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3411 *
dcd989cb
TH
3412 * RETURNS:
3413 * %true if congested, %false otherwise.
eef6a7d5 3414 */
dcd989cb 3415bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3416{
dcd989cb
TH
3417 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3418
3419 return !list_empty(&cwq->delayed_works);
1da177e4 3420}
dcd989cb 3421EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3422
dcd989cb
TH
3423/**
3424 * work_busy - test whether a work is currently pending or running
3425 * @work: the work to be tested
3426 *
3427 * Test whether @work is currently pending or running. There is no
3428 * synchronization around this function and the test result is
3429 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3430 *
3431 * RETURNS:
3432 * OR'd bitmask of WORK_BUSY_* bits.
3433 */
3434unsigned int work_busy(struct work_struct *work)
1da177e4 3435{
c9e7cf27 3436 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3437 unsigned long flags;
3438 unsigned int ret = 0;
1da177e4 3439
dcd989cb
TH
3440 if (work_pending(work))
3441 ret |= WORK_BUSY_PENDING;
1da177e4 3442
038366c5
LJ
3443 if (pool) {
3444 spin_lock_irqsave(&pool->lock, flags);
3445 if (find_worker_executing_work(pool, work))
3446 ret |= WORK_BUSY_RUNNING;
3447 spin_unlock_irqrestore(&pool->lock, flags);
3448 }
1da177e4 3449
dcd989cb 3450 return ret;
1da177e4 3451}
dcd989cb 3452EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3453
db7bccf4
TH
3454/*
3455 * CPU hotplug.
3456 *
e22bee78
TH
3457 * There are two challenges in supporting CPU hotplug. Firstly, there
3458 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3459 * pool which make migrating pending and scheduled works very
e22bee78 3460 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3461 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3462 * blocked draining impractical.
3463 *
24647570 3464 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3465 * running as an unbound one and allowing it to be reattached later if the
3466 * cpu comes back online.
db7bccf4 3467 */
1da177e4 3468
706026c2 3469static void wq_unbind_fn(struct work_struct *work)
3af24433 3470{
38db41d9 3471 int cpu = smp_processor_id();
4ce62e9e 3472 struct worker_pool *pool;
db7bccf4
TH
3473 struct worker *worker;
3474 struct hlist_node *pos;
3475 int i;
3af24433 3476
38db41d9
TH
3477 for_each_std_worker_pool(pool, cpu) {
3478 BUG_ON(cpu != smp_processor_id());
db7bccf4 3479
94cf58bb
TH
3480 mutex_lock(&pool->assoc_mutex);
3481 spin_lock_irq(&pool->lock);
3af24433 3482
94cf58bb
TH
3483 /*
3484 * We've claimed all manager positions. Make all workers
3485 * unbound and set DISASSOCIATED. Before this, all workers
3486 * except for the ones which are still executing works from
3487 * before the last CPU down must be on the cpu. After
3488 * this, they may become diasporas.
3489 */
4ce62e9e 3490 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3491 worker->flags |= WORKER_UNBOUND;
3af24433 3492
c9e7cf27
TH
3493 for_each_busy_worker(worker, i, pos, pool)
3494 worker->flags |= WORKER_UNBOUND;
06ba38a9 3495
24647570 3496 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3497
94cf58bb
TH
3498 spin_unlock_irq(&pool->lock);
3499 mutex_unlock(&pool->assoc_mutex);
3500 }
628c78e7 3501
e22bee78 3502 /*
403c821d 3503 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3504 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3505 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3506 */
e22bee78 3507 schedule();
06ba38a9 3508
e22bee78 3509 /*
628c78e7
TH
3510 * Sched callbacks are disabled now. Zap nr_running. After this,
3511 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3512 * are always true as long as the worklist is not empty. Pools on
3513 * @cpu now behave as unbound (in terms of concurrency management)
3514 * pools which are served by workers tied to the CPU.
628c78e7
TH
3515 *
3516 * On return from this function, the current worker would trigger
3517 * unbound chain execution of pending work items if other workers
3518 * didn't already.
e22bee78 3519 */
38db41d9 3520 for_each_std_worker_pool(pool, cpu)
4ce62e9e 3521 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3522}
3af24433 3523
8db25e78
TH
3524/*
3525 * Workqueues should be brought up before normal priority CPU notifiers.
3526 * This will be registered high priority CPU notifier.
3527 */
9fdf9b73 3528static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3529 unsigned long action,
3530 void *hcpu)
3af24433
ON
3531{
3532 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3533 struct worker_pool *pool;
3ce63377 3534
8db25e78 3535 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3536 case CPU_UP_PREPARE:
38db41d9 3537 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3538 struct worker *worker;
3539
3540 if (pool->nr_workers)
3541 continue;
3542
3543 worker = create_worker(pool);
3544 if (!worker)
3545 return NOTIFY_BAD;
3546
d565ed63 3547 spin_lock_irq(&pool->lock);
3ce63377 3548 start_worker(worker);
d565ed63 3549 spin_unlock_irq(&pool->lock);
3af24433 3550 }
8db25e78 3551 break;
3af24433 3552
db7bccf4
TH
3553 case CPU_DOWN_FAILED:
3554 case CPU_ONLINE:
38db41d9 3555 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3556 mutex_lock(&pool->assoc_mutex);
3557 spin_lock_irq(&pool->lock);
3558
24647570 3559 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3560 rebind_workers(pool);
3561
3562 spin_unlock_irq(&pool->lock);
3563 mutex_unlock(&pool->assoc_mutex);
3564 }
db7bccf4 3565 break;
00dfcaf7 3566 }
65758202
TH
3567 return NOTIFY_OK;
3568}
3569
3570/*
3571 * Workqueues should be brought down after normal priority CPU notifiers.
3572 * This will be registered as low priority CPU notifier.
3573 */
9fdf9b73 3574static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3575 unsigned long action,
3576 void *hcpu)
3577{
8db25e78
TH
3578 unsigned int cpu = (unsigned long)hcpu;
3579 struct work_struct unbind_work;
3580
65758202
TH
3581 switch (action & ~CPU_TASKS_FROZEN) {
3582 case CPU_DOWN_PREPARE:
8db25e78 3583 /* unbinding should happen on the local CPU */
706026c2 3584 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3585 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3586 flush_work(&unbind_work);
3587 break;
65758202
TH
3588 }
3589 return NOTIFY_OK;
3590}
3591
2d3854a3 3592#ifdef CONFIG_SMP
8ccad40d 3593
2d3854a3 3594struct work_for_cpu {
ed48ece2 3595 struct work_struct work;
2d3854a3
RR
3596 long (*fn)(void *);
3597 void *arg;
3598 long ret;
3599};
3600
ed48ece2 3601static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3602{
ed48ece2
TH
3603 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3604
2d3854a3
RR
3605 wfc->ret = wfc->fn(wfc->arg);
3606}
3607
3608/**
3609 * work_on_cpu - run a function in user context on a particular cpu
3610 * @cpu: the cpu to run on
3611 * @fn: the function to run
3612 * @arg: the function arg
3613 *
31ad9081
RR
3614 * This will return the value @fn returns.
3615 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3616 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3617 */
3618long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3619{
ed48ece2 3620 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3621
ed48ece2
TH
3622 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3623 schedule_work_on(cpu, &wfc.work);
3624 flush_work(&wfc.work);
2d3854a3
RR
3625 return wfc.ret;
3626}
3627EXPORT_SYMBOL_GPL(work_on_cpu);
3628#endif /* CONFIG_SMP */
3629
a0a1a5fd
TH
3630#ifdef CONFIG_FREEZER
3631
3632/**
3633 * freeze_workqueues_begin - begin freezing workqueues
3634 *
58a69cb4
TH
3635 * Start freezing workqueues. After this function returns, all freezable
3636 * workqueues will queue new works to their frozen_works list instead of
706026c2 3637 * pool->worklist.
a0a1a5fd
TH
3638 *
3639 * CONTEXT:
d565ed63 3640 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3641 */
3642void freeze_workqueues_begin(void)
3643{
a0a1a5fd
TH
3644 unsigned int cpu;
3645
3646 spin_lock(&workqueue_lock);
3647
3648 BUG_ON(workqueue_freezing);
3649 workqueue_freezing = true;
3650
706026c2 3651 for_each_wq_cpu(cpu) {
35b6bb63 3652 struct worker_pool *pool;
bdbc5dd7 3653 struct workqueue_struct *wq;
8b03ae3c 3654
38db41d9 3655 for_each_std_worker_pool(pool, cpu) {
a1056305 3656 spin_lock_irq(&pool->lock);
d565ed63 3657
35b6bb63
TH
3658 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3659 pool->flags |= POOL_FREEZING;
db7bccf4 3660
a1056305
TH
3661 list_for_each_entry(wq, &workqueues, list) {
3662 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3663
a1056305
TH
3664 if (cwq && cwq->pool == pool &&
3665 (wq->flags & WQ_FREEZABLE))
3666 cwq->max_active = 0;
3667 }
8b03ae3c 3668
a1056305
TH
3669 spin_unlock_irq(&pool->lock);
3670 }
a0a1a5fd
TH
3671 }
3672
3673 spin_unlock(&workqueue_lock);
3674}
3675
3676/**
58a69cb4 3677 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3678 *
3679 * Check whether freezing is complete. This function must be called
3680 * between freeze_workqueues_begin() and thaw_workqueues().
3681 *
3682 * CONTEXT:
3683 * Grabs and releases workqueue_lock.
3684 *
3685 * RETURNS:
58a69cb4
TH
3686 * %true if some freezable workqueues are still busy. %false if freezing
3687 * is complete.
a0a1a5fd
TH
3688 */
3689bool freeze_workqueues_busy(void)
3690{
a0a1a5fd
TH
3691 unsigned int cpu;
3692 bool busy = false;
3693
3694 spin_lock(&workqueue_lock);
3695
3696 BUG_ON(!workqueue_freezing);
3697
706026c2 3698 for_each_wq_cpu(cpu) {
bdbc5dd7 3699 struct workqueue_struct *wq;
a0a1a5fd
TH
3700 /*
3701 * nr_active is monotonically decreasing. It's safe
3702 * to peek without lock.
3703 */
3704 list_for_each_entry(wq, &workqueues, list) {
3705 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3706
58a69cb4 3707 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3708 continue;
3709
3710 BUG_ON(cwq->nr_active < 0);
3711 if (cwq->nr_active) {
3712 busy = true;
3713 goto out_unlock;
3714 }
3715 }
3716 }
3717out_unlock:
3718 spin_unlock(&workqueue_lock);
3719 return busy;
3720}
3721
3722/**
3723 * thaw_workqueues - thaw workqueues
3724 *
3725 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3726 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3727 *
3728 * CONTEXT:
d565ed63 3729 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3730 */
3731void thaw_workqueues(void)
3732{
a0a1a5fd
TH
3733 unsigned int cpu;
3734
3735 spin_lock(&workqueue_lock);
3736
3737 if (!workqueue_freezing)
3738 goto out_unlock;
3739
706026c2 3740 for_each_wq_cpu(cpu) {
4ce62e9e 3741 struct worker_pool *pool;
bdbc5dd7 3742 struct workqueue_struct *wq;
8b03ae3c 3743
38db41d9 3744 for_each_std_worker_pool(pool, cpu) {
a1056305 3745 spin_lock_irq(&pool->lock);
d565ed63 3746
35b6bb63
TH
3747 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3748 pool->flags &= ~POOL_FREEZING;
db7bccf4 3749
a1056305
TH
3750 list_for_each_entry(wq, &workqueues, list) {
3751 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3752
a1056305
TH
3753 if (!cwq || cwq->pool != pool ||
3754 !(wq->flags & WQ_FREEZABLE))
3755 continue;
a0a1a5fd 3756
a1056305
TH
3757 /* restore max_active and repopulate worklist */
3758 cwq_set_max_active(cwq, wq->saved_max_active);
3759 }
8b03ae3c 3760
4ce62e9e 3761 wake_up_worker(pool);
a1056305
TH
3762
3763 spin_unlock_irq(&pool->lock);
d565ed63 3764 }
a0a1a5fd
TH
3765 }
3766
3767 workqueue_freezing = false;
3768out_unlock:
3769 spin_unlock(&workqueue_lock);
3770}
3771#endif /* CONFIG_FREEZER */
3772
6ee0578b 3773static int __init init_workqueues(void)
1da177e4 3774{
c34056a3
TH
3775 unsigned int cpu;
3776
7c3eed5c
TH
3777 /* make sure we have enough bits for OFFQ pool ID */
3778 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3779 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3780
65758202 3781 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3782 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3783
706026c2
TH
3784 /* initialize CPU pools */
3785 for_each_wq_cpu(cpu) {
4ce62e9e 3786 struct worker_pool *pool;
8b03ae3c 3787
38db41d9 3788 for_each_std_worker_pool(pool, cpu) {
d565ed63 3789 spin_lock_init(&pool->lock);
ec22ca5e 3790 pool->cpu = cpu;
24647570 3791 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3792 INIT_LIST_HEAD(&pool->worklist);
3793 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3794 hash_init(pool->busy_hash);
e7577c50 3795
4ce62e9e
TH
3796 init_timer_deferrable(&pool->idle_timer);
3797 pool->idle_timer.function = idle_worker_timeout;
3798 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3799
706026c2 3800 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3801 (unsigned long)pool);
3802
b2eb83d1 3803 mutex_init(&pool->assoc_mutex);
4ce62e9e 3804 ida_init(&pool->worker_ida);
9daf9e67
TH
3805
3806 /* alloc pool ID */
3807 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3808 }
8b03ae3c
TH
3809 }
3810
e22bee78 3811 /* create the initial worker */
706026c2 3812 for_each_online_wq_cpu(cpu) {
4ce62e9e 3813 struct worker_pool *pool;
e22bee78 3814
38db41d9 3815 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3816 struct worker *worker;
3817
24647570
TH
3818 if (cpu != WORK_CPU_UNBOUND)
3819 pool->flags &= ~POOL_DISASSOCIATED;
3820
bc2ae0f5 3821 worker = create_worker(pool);
4ce62e9e 3822 BUG_ON(!worker);
d565ed63 3823 spin_lock_irq(&pool->lock);
4ce62e9e 3824 start_worker(worker);
d565ed63 3825 spin_unlock_irq(&pool->lock);
4ce62e9e 3826 }
e22bee78
TH
3827 }
3828
d320c038 3829 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3830 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3831 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3832 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3833 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3834 system_freezable_wq = alloc_workqueue("events_freezable",
3835 WQ_FREEZABLE, 0);
1aabe902 3836 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3837 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3838 return 0;
1da177e4 3839}
6ee0578b 3840early_initcall(init_workqueues);