workqueue: cleanup flush/cancel functions
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78 44
e36c886a
AV
45#define CREATE_TRACE_POINTS
46#include <trace/events/workqueue.h>
47
e22bee78 48#include "workqueue_sched.h"
1da177e4 49
c8e55f36 50enum {
db7bccf4 51 /* global_cwq flags */
e22bee78
TH
52 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
53 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
54 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 55 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
649027d7 56 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
db7bccf4 57
c8e55f36
TH
58 /* worker flags */
59 WORKER_STARTED = 1 << 0, /* started */
60 WORKER_DIE = 1 << 1, /* die die die */
61 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 62 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 63 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78 64 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 65 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 66 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 67
fb0e7beb 68 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
f3421797 69 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
db7bccf4
TH
70
71 /* gcwq->trustee_state */
72 TRUSTEE_START = 0, /* start */
73 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
74 TRUSTEE_BUTCHER = 2, /* butcher workers */
75 TRUSTEE_RELEASE = 3, /* release workers */
76 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
77
78 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
79 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
80 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 81
e22bee78
TH
82 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
83 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
84
85 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
86 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
87 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 88 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
89
90 /*
91 * Rescue workers are used only on emergencies and shared by
92 * all cpus. Give -20.
93 */
94 RESCUER_NICE_LEVEL = -20,
c8e55f36 95};
1da177e4
LT
96
97/*
4690c4ab
TH
98 * Structure fields follow one of the following exclusion rules.
99 *
e41e704b
TH
100 * I: Modifiable by initialization/destruction paths and read-only for
101 * everyone else.
4690c4ab 102 *
e22bee78
TH
103 * P: Preemption protected. Disabling preemption is enough and should
104 * only be modified and accessed from the local cpu.
105 *
8b03ae3c 106 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 107 *
e22bee78
TH
108 * X: During normal operation, modification requires gcwq->lock and
109 * should be done only from local cpu. Either disabling preemption
110 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 111 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 112 *
73f53c4a
TH
113 * F: wq->flush_mutex protected.
114 *
4690c4ab 115 * W: workqueue_lock protected.
1da177e4 116 */
1da177e4 117
8b03ae3c 118struct global_cwq;
1da177e4 119
e22bee78
TH
120/*
121 * The poor guys doing the actual heavy lifting. All on-duty workers
122 * are either serving the manager role, on idle list or on busy hash.
123 */
c34056a3 124struct worker {
c8e55f36
TH
125 /* on idle list while idle, on busy hash table while busy */
126 union {
127 struct list_head entry; /* L: while idle */
128 struct hlist_node hentry; /* L: while busy */
129 };
1da177e4 130
c34056a3 131 struct work_struct *current_work; /* L: work being processed */
8cca0eea 132 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 133 struct list_head scheduled; /* L: scheduled works */
c34056a3 134 struct task_struct *task; /* I: worker task */
8b03ae3c 135 struct global_cwq *gcwq; /* I: the associated gcwq */
e22bee78
TH
136 /* 64 bytes boundary on 64bit, 32 on 32bit */
137 unsigned long last_active; /* L: last active timestamp */
138 unsigned int flags; /* X: flags */
c34056a3 139 int id; /* I: worker id */
e22bee78 140 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
141};
142
8b03ae3c 143/*
e22bee78
TH
144 * Global per-cpu workqueue. There's one and only one for each cpu
145 * and all works are queued and processed here regardless of their
146 * target workqueues.
8b03ae3c
TH
147 */
148struct global_cwq {
149 spinlock_t lock; /* the gcwq lock */
7e11629d 150 struct list_head worklist; /* L: list of pending works */
8b03ae3c 151 unsigned int cpu; /* I: the associated cpu */
db7bccf4 152 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
153
154 int nr_workers; /* L: total number of workers */
155 int nr_idle; /* L: currently idle ones */
156
157 /* workers are chained either in the idle_list or busy_hash */
e22bee78 158 struct list_head idle_list; /* X: list of idle workers */
c8e55f36
TH
159 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
160 /* L: hash of busy workers */
161
e22bee78
TH
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
164
8b03ae3c 165 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
166
167 struct task_struct *trustee; /* L: for gcwq shutdown */
168 unsigned int trustee_state; /* L: trustee state */
169 wait_queue_head_t trustee_wait; /* trustee wait */
e22bee78 170 struct worker *first_idle; /* L: first idle worker */
8b03ae3c
TH
171} ____cacheline_aligned_in_smp;
172
1da177e4 173/*
502ca9d8 174 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
175 * work_struct->data are used for flags and thus cwqs need to be
176 * aligned at two's power of the number of flag bits.
1da177e4
LT
177 */
178struct cpu_workqueue_struct {
8b03ae3c 179 struct global_cwq *gcwq; /* I: the associated gcwq */
4690c4ab 180 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
181 int work_color; /* L: current color */
182 int flush_color; /* L: flushing color */
183 int nr_in_flight[WORK_NR_COLORS];
184 /* L: nr of in_flight works */
1e19ffc6 185 int nr_active; /* L: nr of active works */
a0a1a5fd 186 int max_active; /* L: max active works */
1e19ffc6 187 struct list_head delayed_works; /* L: delayed works */
0f900049 188};
1da177e4 189
73f53c4a
TH
190/*
191 * Structure used to wait for workqueue flush.
192 */
193struct wq_flusher {
194 struct list_head list; /* F: list of flushers */
195 int flush_color; /* F: flush color waiting for */
196 struct completion done; /* flush completion */
197};
198
f2e005aa
TH
199/*
200 * All cpumasks are assumed to be always set on UP and thus can't be
201 * used to determine whether there's something to be done.
202 */
203#ifdef CONFIG_SMP
204typedef cpumask_var_t mayday_mask_t;
205#define mayday_test_and_set_cpu(cpu, mask) \
206 cpumask_test_and_set_cpu((cpu), (mask))
207#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
208#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 209#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
210#define free_mayday_mask(mask) free_cpumask_var((mask))
211#else
212typedef unsigned long mayday_mask_t;
213#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
214#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
215#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
216#define alloc_mayday_mask(maskp, gfp) true
217#define free_mayday_mask(mask) do { } while (0)
218#endif
1da177e4
LT
219
220/*
221 * The externally visible workqueue abstraction is an array of
222 * per-CPU workqueues:
223 */
224struct workqueue_struct {
97e37d7b 225 unsigned int flags; /* I: WQ_* flags */
bdbc5dd7
TH
226 union {
227 struct cpu_workqueue_struct __percpu *pcpu;
228 struct cpu_workqueue_struct *single;
229 unsigned long v;
230 } cpu_wq; /* I: cwq's */
4690c4ab 231 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
232
233 struct mutex flush_mutex; /* protects wq flushing */
234 int work_color; /* F: current work color */
235 int flush_color; /* F: current flush color */
236 atomic_t nr_cwqs_to_flush; /* flush in progress */
237 struct wq_flusher *first_flusher; /* F: first flusher */
238 struct list_head flusher_queue; /* F: flush waiters */
239 struct list_head flusher_overflow; /* F: flush overflow list */
240
f2e005aa 241 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
242 struct worker *rescuer; /* I: rescue worker */
243
dcd989cb 244 int saved_max_active; /* W: saved cwq max_active */
4690c4ab 245 const char *name; /* I: workqueue name */
4e6045f1 246#ifdef CONFIG_LOCKDEP
4690c4ab 247 struct lockdep_map lockdep_map;
4e6045f1 248#endif
1da177e4
LT
249};
250
d320c038
TH
251struct workqueue_struct *system_wq __read_mostly;
252struct workqueue_struct *system_long_wq __read_mostly;
253struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 254struct workqueue_struct *system_unbound_wq __read_mostly;
d320c038
TH
255EXPORT_SYMBOL_GPL(system_wq);
256EXPORT_SYMBOL_GPL(system_long_wq);
257EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 258EXPORT_SYMBOL_GPL(system_unbound_wq);
d320c038 259
db7bccf4
TH
260#define for_each_busy_worker(worker, i, pos, gcwq) \
261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263
f3421797
TH
264static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 unsigned int sw)
266{
267 if (cpu < nr_cpu_ids) {
268 if (sw & 1) {
269 cpu = cpumask_next(cpu, mask);
270 if (cpu < nr_cpu_ids)
271 return cpu;
272 }
273 if (sw & 2)
274 return WORK_CPU_UNBOUND;
275 }
276 return WORK_CPU_NONE;
277}
278
279static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 struct workqueue_struct *wq)
281{
282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283}
284
09884951
TH
285/*
286 * CPU iterators
287 *
288 * An extra gcwq is defined for an invalid cpu number
289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290 * specific CPU. The following iterators are similar to
291 * for_each_*_cpu() iterators but also considers the unbound gcwq.
292 *
293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
295 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
296 * WORK_CPU_UNBOUND for unbound workqueues
297 */
f3421797
TH
298#define for_each_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302
303#define for_each_online_gcwq_cpu(cpu) \
304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307
308#define for_each_cwq_cpu(cpu, wq) \
309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
310 (cpu) < WORK_CPU_NONE; \
311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312
a25909a4
PM
313#ifdef CONFIG_LOCKDEP
314/**
315 * in_workqueue_context() - in context of specified workqueue?
316 * @wq: the workqueue of interest
317 *
318 * Checks lockdep state to see if the current task is executing from
319 * within a workqueue item. This function exists only if lockdep is
320 * enabled.
321 */
322int in_workqueue_context(struct workqueue_struct *wq)
323{
324 return lock_is_held(&wq->lockdep_map);
325}
326#endif
327
dc186ad7
TG
328#ifdef CONFIG_DEBUG_OBJECTS_WORK
329
330static struct debug_obj_descr work_debug_descr;
331
332/*
333 * fixup_init is called when:
334 * - an active object is initialized
335 */
336static int work_fixup_init(void *addr, enum debug_obj_state state)
337{
338 struct work_struct *work = addr;
339
340 switch (state) {
341 case ODEBUG_STATE_ACTIVE:
342 cancel_work_sync(work);
343 debug_object_init(work, &work_debug_descr);
344 return 1;
345 default:
346 return 0;
347 }
348}
349
350/*
351 * fixup_activate is called when:
352 * - an active object is activated
353 * - an unknown object is activated (might be a statically initialized object)
354 */
355static int work_fixup_activate(void *addr, enum debug_obj_state state)
356{
357 struct work_struct *work = addr;
358
359 switch (state) {
360
361 case ODEBUG_STATE_NOTAVAILABLE:
362 /*
363 * This is not really a fixup. The work struct was
364 * statically initialized. We just make sure that it
365 * is tracked in the object tracker.
366 */
22df02bb 367 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
368 debug_object_init(work, &work_debug_descr);
369 debug_object_activate(work, &work_debug_descr);
370 return 0;
371 }
372 WARN_ON_ONCE(1);
373 return 0;
374
375 case ODEBUG_STATE_ACTIVE:
376 WARN_ON(1);
377
378 default:
379 return 0;
380 }
381}
382
383/*
384 * fixup_free is called when:
385 * - an active object is freed
386 */
387static int work_fixup_free(void *addr, enum debug_obj_state state)
388{
389 struct work_struct *work = addr;
390
391 switch (state) {
392 case ODEBUG_STATE_ACTIVE:
393 cancel_work_sync(work);
394 debug_object_free(work, &work_debug_descr);
395 return 1;
396 default:
397 return 0;
398 }
399}
400
401static struct debug_obj_descr work_debug_descr = {
402 .name = "work_struct",
403 .fixup_init = work_fixup_init,
404 .fixup_activate = work_fixup_activate,
405 .fixup_free = work_fixup_free,
406};
407
408static inline void debug_work_activate(struct work_struct *work)
409{
410 debug_object_activate(work, &work_debug_descr);
411}
412
413static inline void debug_work_deactivate(struct work_struct *work)
414{
415 debug_object_deactivate(work, &work_debug_descr);
416}
417
418void __init_work(struct work_struct *work, int onstack)
419{
420 if (onstack)
421 debug_object_init_on_stack(work, &work_debug_descr);
422 else
423 debug_object_init(work, &work_debug_descr);
424}
425EXPORT_SYMBOL_GPL(__init_work);
426
427void destroy_work_on_stack(struct work_struct *work)
428{
429 debug_object_free(work, &work_debug_descr);
430}
431EXPORT_SYMBOL_GPL(destroy_work_on_stack);
432
433#else
434static inline void debug_work_activate(struct work_struct *work) { }
435static inline void debug_work_deactivate(struct work_struct *work) { }
436#endif
437
95402b38
GS
438/* Serializes the accesses to the list of workqueues. */
439static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 440static LIST_HEAD(workqueues);
a0a1a5fd 441static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 442
e22bee78
TH
443/*
444 * The almighty global cpu workqueues. nr_running is the only field
445 * which is expected to be used frequently by other cpus via
446 * try_to_wake_up(). Put it in a separate cacheline.
447 */
8b03ae3c 448static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e22bee78 449static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
8b03ae3c 450
f3421797
TH
451/*
452 * Global cpu workqueue and nr_running counter for unbound gcwq. The
453 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
454 * workers have WORKER_UNBOUND set.
455 */
456static struct global_cwq unbound_global_cwq;
457static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
458
c34056a3 459static int worker_thread(void *__worker);
1da177e4 460
8b03ae3c
TH
461static struct global_cwq *get_gcwq(unsigned int cpu)
462{
f3421797
TH
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
8b03ae3c
TH
467}
468
e22bee78
TH
469static atomic_t *get_gcwq_nr_running(unsigned int cpu)
470{
f3421797
TH
471 if (cpu != WORK_CPU_UNBOUND)
472 return &per_cpu(gcwq_nr_running, cpu);
473 else
474 return &unbound_gcwq_nr_running;
e22bee78
TH
475}
476
1537663f
TH
477static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
478 struct workqueue_struct *wq)
b1f4ec17 479{
f3421797
TH
480 if (!(wq->flags & WQ_UNBOUND)) {
481 if (likely(cpu < nr_cpu_ids)) {
482#ifdef CONFIG_SMP
483 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
bdbc5dd7 484#else
f3421797 485 return wq->cpu_wq.single;
bdbc5dd7 486#endif
f3421797
TH
487 }
488 } else if (likely(cpu == WORK_CPU_UNBOUND))
489 return wq->cpu_wq.single;
490 return NULL;
b1f4ec17
ON
491}
492
73f53c4a
TH
493static unsigned int work_color_to_flags(int color)
494{
495 return color << WORK_STRUCT_COLOR_SHIFT;
496}
497
498static int get_work_color(struct work_struct *work)
499{
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502}
503
504static int work_next_color(int color)
505{
506 return (color + 1) % WORK_NR_COLORS;
507}
1da177e4 508
14441960 509/*
e120153d
TH
510 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
511 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
512 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
513 *
514 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
515 * cwq, cpu or clear work->data. These functions should only be
516 * called while the work is owned - ie. while the PENDING bit is set.
517 *
518 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
519 * corresponding to a work. gcwq is available once the work has been
520 * queued anywhere after initialization. cwq is available only from
521 * queueing until execution starts.
14441960 522 */
7a22ad75
TH
523static inline void set_work_data(struct work_struct *work, unsigned long data,
524 unsigned long flags)
365970a1 525{
4594bf15 526 BUG_ON(!work_pending(work));
7a22ad75
TH
527 atomic_long_set(&work->data, data | flags | work_static(work));
528}
365970a1 529
7a22ad75
TH
530static void set_work_cwq(struct work_struct *work,
531 struct cpu_workqueue_struct *cwq,
532 unsigned long extra_flags)
533{
534 set_work_data(work, (unsigned long)cwq,
e120153d 535 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
536}
537
7a22ad75
TH
538static void set_work_cpu(struct work_struct *work, unsigned int cpu)
539{
540 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
541}
f756d5e2 542
7a22ad75 543static void clear_work_data(struct work_struct *work)
1da177e4 544{
7a22ad75 545 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
546}
547
7a22ad75 548static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 549{
e120153d 550 unsigned long data = atomic_long_read(&work->data);
7a22ad75 551
e120153d
TH
552 if (data & WORK_STRUCT_CWQ)
553 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
554 else
555 return NULL;
4d707b9f
ON
556}
557
7a22ad75 558static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 559{
e120153d 560 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
561 unsigned int cpu;
562
e120153d
TH
563 if (data & WORK_STRUCT_CWQ)
564 return ((struct cpu_workqueue_struct *)
565 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
7a22ad75
TH
566
567 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 568 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
569 return NULL;
570
f3421797 571 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 572 return get_gcwq(cpu);
b1f4ec17
ON
573}
574
e22bee78
TH
575/*
576 * Policy functions. These define the policies on how the global
577 * worker pool is managed. Unless noted otherwise, these functions
578 * assume that they're being called with gcwq->lock held.
579 */
580
649027d7 581static bool __need_more_worker(struct global_cwq *gcwq)
a848e3b6 582{
649027d7
TH
583 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
584 gcwq->flags & GCWQ_HIGHPRI_PENDING;
a848e3b6
ON
585}
586
4594bf15 587/*
e22bee78
TH
588 * Need to wake up a worker? Called from anything but currently
589 * running workers.
4594bf15 590 */
e22bee78 591static bool need_more_worker(struct global_cwq *gcwq)
365970a1 592{
649027d7 593 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
e22bee78 594}
4594bf15 595
e22bee78
TH
596/* Can I start working? Called from busy but !running workers. */
597static bool may_start_working(struct global_cwq *gcwq)
598{
599 return gcwq->nr_idle;
600}
601
602/* Do I need to keep working? Called from currently running workers. */
603static bool keep_working(struct global_cwq *gcwq)
604{
605 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
606
607 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
608}
609
610/* Do we need a new worker? Called from manager. */
611static bool need_to_create_worker(struct global_cwq *gcwq)
612{
613 return need_more_worker(gcwq) && !may_start_working(gcwq);
614}
365970a1 615
e22bee78
TH
616/* Do I need to be the manager? */
617static bool need_to_manage_workers(struct global_cwq *gcwq)
618{
619 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
620}
621
622/* Do we have too many workers and should some go away? */
623static bool too_many_workers(struct global_cwq *gcwq)
624{
625 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
626 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
627 int nr_busy = gcwq->nr_workers - nr_idle;
628
629 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
630}
631
4d707b9f 632/*
e22bee78
TH
633 * Wake up functions.
634 */
635
7e11629d
TH
636/* Return the first worker. Safe with preemption disabled */
637static struct worker *first_worker(struct global_cwq *gcwq)
638{
639 if (unlikely(list_empty(&gcwq->idle_list)))
640 return NULL;
641
642 return list_first_entry(&gcwq->idle_list, struct worker, entry);
643}
644
645/**
646 * wake_up_worker - wake up an idle worker
647 * @gcwq: gcwq to wake worker for
648 *
649 * Wake up the first idle worker of @gcwq.
650 *
651 * CONTEXT:
652 * spin_lock_irq(gcwq->lock).
653 */
654static void wake_up_worker(struct global_cwq *gcwq)
655{
656 struct worker *worker = first_worker(gcwq);
657
658 if (likely(worker))
659 wake_up_process(worker->task);
660}
661
d302f017 662/**
e22bee78
TH
663 * wq_worker_waking_up - a worker is waking up
664 * @task: task waking up
665 * @cpu: CPU @task is waking up to
666 *
667 * This function is called during try_to_wake_up() when a worker is
668 * being awoken.
669 *
670 * CONTEXT:
671 * spin_lock_irq(rq->lock)
672 */
673void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674{
675 struct worker *worker = kthread_data(task);
676
677 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
678 atomic_inc(get_gcwq_nr_running(cpu));
679}
680
681/**
682 * wq_worker_sleeping - a worker is going to sleep
683 * @task: task going to sleep
684 * @cpu: CPU in question, must be the current CPU number
685 *
686 * This function is called during schedule() when a busy worker is
687 * going to sleep. Worker on the same cpu can be woken up by
688 * returning pointer to its task.
689 *
690 * CONTEXT:
691 * spin_lock_irq(rq->lock)
692 *
693 * RETURNS:
694 * Worker task on @cpu to wake up, %NULL if none.
695 */
696struct task_struct *wq_worker_sleeping(struct task_struct *task,
697 unsigned int cpu)
698{
699 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
700 struct global_cwq *gcwq = get_gcwq(cpu);
701 atomic_t *nr_running = get_gcwq_nr_running(cpu);
702
703 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
704 return NULL;
705
706 /* this can only happen on the local cpu */
707 BUG_ON(cpu != raw_smp_processor_id());
708
709 /*
710 * The counterpart of the following dec_and_test, implied mb,
711 * worklist not empty test sequence is in insert_work().
712 * Please read comment there.
713 *
714 * NOT_RUNNING is clear. This means that trustee is not in
715 * charge and we're running on the local cpu w/ rq lock held
716 * and preemption disabled, which in turn means that none else
717 * could be manipulating idle_list, so dereferencing idle_list
718 * without gcwq lock is safe.
719 */
720 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
721 to_wakeup = first_worker(gcwq);
722 return to_wakeup ? to_wakeup->task : NULL;
723}
724
725/**
726 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 727 * @worker: self
d302f017
TH
728 * @flags: flags to set
729 * @wakeup: wakeup an idle worker if necessary
730 *
e22bee78
TH
731 * Set @flags in @worker->flags and adjust nr_running accordingly. If
732 * nr_running becomes zero and @wakeup is %true, an idle worker is
733 * woken up.
d302f017 734 *
cb444766
TH
735 * CONTEXT:
736 * spin_lock_irq(gcwq->lock)
d302f017
TH
737 */
738static inline void worker_set_flags(struct worker *worker, unsigned int flags,
739 bool wakeup)
740{
e22bee78
TH
741 struct global_cwq *gcwq = worker->gcwq;
742
cb444766
TH
743 WARN_ON_ONCE(worker->task != current);
744
e22bee78
TH
745 /*
746 * If transitioning into NOT_RUNNING, adjust nr_running and
747 * wake up an idle worker as necessary if requested by
748 * @wakeup.
749 */
750 if ((flags & WORKER_NOT_RUNNING) &&
751 !(worker->flags & WORKER_NOT_RUNNING)) {
752 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753
754 if (wakeup) {
755 if (atomic_dec_and_test(nr_running) &&
756 !list_empty(&gcwq->worklist))
757 wake_up_worker(gcwq);
758 } else
759 atomic_dec(nr_running);
760 }
761
d302f017
TH
762 worker->flags |= flags;
763}
764
765/**
e22bee78 766 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 767 * @worker: self
d302f017
TH
768 * @flags: flags to clear
769 *
e22bee78 770 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 771 *
cb444766
TH
772 * CONTEXT:
773 * spin_lock_irq(gcwq->lock)
d302f017
TH
774 */
775static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776{
e22bee78
TH
777 struct global_cwq *gcwq = worker->gcwq;
778 unsigned int oflags = worker->flags;
779
cb444766
TH
780 WARN_ON_ONCE(worker->task != current);
781
d302f017 782 worker->flags &= ~flags;
e22bee78
TH
783
784 /* if transitioning out of NOT_RUNNING, increment nr_running */
785 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
786 if (!(worker->flags & WORKER_NOT_RUNNING))
787 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
d302f017
TH
788}
789
c8e55f36
TH
790/**
791 * busy_worker_head - return the busy hash head for a work
792 * @gcwq: gcwq of interest
793 * @work: work to be hashed
794 *
795 * Return hash head of @gcwq for @work.
796 *
797 * CONTEXT:
798 * spin_lock_irq(gcwq->lock).
799 *
800 * RETURNS:
801 * Pointer to the hash head.
802 */
803static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
804 struct work_struct *work)
805{
806 const int base_shift = ilog2(sizeof(struct work_struct));
807 unsigned long v = (unsigned long)work;
808
809 /* simple shift and fold hash, do we need something better? */
810 v >>= base_shift;
811 v += v >> BUSY_WORKER_HASH_ORDER;
812 v &= BUSY_WORKER_HASH_MASK;
813
814 return &gcwq->busy_hash[v];
815}
816
8cca0eea
TH
817/**
818 * __find_worker_executing_work - find worker which is executing a work
819 * @gcwq: gcwq of interest
820 * @bwh: hash head as returned by busy_worker_head()
821 * @work: work to find worker for
822 *
823 * Find a worker which is executing @work on @gcwq. @bwh should be
824 * the hash head obtained by calling busy_worker_head() with the same
825 * work.
826 *
827 * CONTEXT:
828 * spin_lock_irq(gcwq->lock).
829 *
830 * RETURNS:
831 * Pointer to worker which is executing @work if found, NULL
832 * otherwise.
833 */
834static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
835 struct hlist_head *bwh,
836 struct work_struct *work)
837{
838 struct worker *worker;
839 struct hlist_node *tmp;
840
841 hlist_for_each_entry(worker, tmp, bwh, hentry)
842 if (worker->current_work == work)
843 return worker;
844 return NULL;
845}
846
847/**
848 * find_worker_executing_work - find worker which is executing a work
849 * @gcwq: gcwq of interest
850 * @work: work to find worker for
851 *
852 * Find a worker which is executing @work on @gcwq. This function is
853 * identical to __find_worker_executing_work() except that this
854 * function calculates @bwh itself.
855 *
856 * CONTEXT:
857 * spin_lock_irq(gcwq->lock).
858 *
859 * RETURNS:
860 * Pointer to worker which is executing @work if found, NULL
861 * otherwise.
4d707b9f 862 */
8cca0eea
TH
863static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
864 struct work_struct *work)
4d707b9f 865{
8cca0eea
TH
866 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
867 work);
4d707b9f
ON
868}
869
649027d7
TH
870/**
871 * gcwq_determine_ins_pos - find insertion position
872 * @gcwq: gcwq of interest
873 * @cwq: cwq a work is being queued for
874 *
875 * A work for @cwq is about to be queued on @gcwq, determine insertion
876 * position for the work. If @cwq is for HIGHPRI wq, the work is
877 * queued at the head of the queue but in FIFO order with respect to
878 * other HIGHPRI works; otherwise, at the end of the queue. This
879 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
880 * there are HIGHPRI works pending.
881 *
882 * CONTEXT:
883 * spin_lock_irq(gcwq->lock).
884 *
885 * RETURNS:
886 * Pointer to inserstion position.
887 */
888static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
889 struct cpu_workqueue_struct *cwq)
365970a1 890{
649027d7
TH
891 struct work_struct *twork;
892
893 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
894 return &gcwq->worklist;
895
896 list_for_each_entry(twork, &gcwq->worklist, entry) {
897 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
898
899 if (!(tcwq->wq->flags & WQ_HIGHPRI))
900 break;
901 }
902
903 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
904 return &twork->entry;
365970a1
DH
905}
906
4690c4ab 907/**
7e11629d 908 * insert_work - insert a work into gcwq
4690c4ab
TH
909 * @cwq: cwq @work belongs to
910 * @work: work to insert
911 * @head: insertion point
912 * @extra_flags: extra WORK_STRUCT_* flags to set
913 *
7e11629d
TH
914 * Insert @work which belongs to @cwq into @gcwq after @head.
915 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
916 *
917 * CONTEXT:
8b03ae3c 918 * spin_lock_irq(gcwq->lock).
4690c4ab 919 */
b89deed3 920static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
921 struct work_struct *work, struct list_head *head,
922 unsigned int extra_flags)
b89deed3 923{
e22bee78
TH
924 struct global_cwq *gcwq = cwq->gcwq;
925
4690c4ab 926 /* we own @work, set data and link */
7a22ad75 927 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 928
6e84d644
ON
929 /*
930 * Ensure that we get the right work->data if we see the
931 * result of list_add() below, see try_to_grab_pending().
932 */
933 smp_wmb();
4690c4ab 934
1a4d9b0a 935 list_add_tail(&work->entry, head);
e22bee78
TH
936
937 /*
938 * Ensure either worker_sched_deactivated() sees the above
939 * list_add_tail() or we see zero nr_running to avoid workers
940 * lying around lazily while there are works to be processed.
941 */
942 smp_mb();
943
649027d7 944 if (__need_more_worker(gcwq))
e22bee78 945 wake_up_worker(gcwq);
b89deed3
ON
946}
947
4690c4ab 948static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
949 struct work_struct *work)
950{
502ca9d8
TH
951 struct global_cwq *gcwq;
952 struct cpu_workqueue_struct *cwq;
1e19ffc6 953 struct list_head *worklist;
8a2e8e5d 954 unsigned int work_flags;
1da177e4
LT
955 unsigned long flags;
956
dc186ad7 957 debug_work_activate(work);
1e19ffc6 958
e41e704b
TH
959 if (WARN_ON_ONCE(wq->flags & WQ_DYING))
960 return;
961
c7fc77f7
TH
962 /* determine gcwq to use */
963 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
964 struct global_cwq *last_gcwq;
965
c7fc77f7
TH
966 if (unlikely(cpu == WORK_CPU_UNBOUND))
967 cpu = raw_smp_processor_id();
968
18aa9eff
TH
969 /*
970 * It's multi cpu. If @wq is non-reentrant and @work
971 * was previously on a different cpu, it might still
972 * be running there, in which case the work needs to
973 * be queued on that cpu to guarantee non-reentrance.
974 */
502ca9d8 975 gcwq = get_gcwq(cpu);
18aa9eff
TH
976 if (wq->flags & WQ_NON_REENTRANT &&
977 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
978 struct worker *worker;
979
980 spin_lock_irqsave(&last_gcwq->lock, flags);
981
982 worker = find_worker_executing_work(last_gcwq, work);
983
984 if (worker && worker->current_cwq->wq == wq)
985 gcwq = last_gcwq;
986 else {
987 /* meh... not running there, queue here */
988 spin_unlock_irqrestore(&last_gcwq->lock, flags);
989 spin_lock_irqsave(&gcwq->lock, flags);
990 }
991 } else
992 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
993 } else {
994 gcwq = get_gcwq(WORK_CPU_UNBOUND);
995 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
996 }
997
998 /* gcwq determined, get cwq and queue */
999 cwq = get_cwq(gcwq->cpu, wq);
1000
4690c4ab 1001 BUG_ON(!list_empty(&work->entry));
1e19ffc6 1002
73f53c4a 1003 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1004 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1005
1006 if (likely(cwq->nr_active < cwq->max_active)) {
1007 cwq->nr_active++;
649027d7 1008 worklist = gcwq_determine_ins_pos(gcwq, cwq);
8a2e8e5d
TH
1009 } else {
1010 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1011 worklist = &cwq->delayed_works;
8a2e8e5d 1012 }
1e19ffc6 1013
8a2e8e5d 1014 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1015
8b03ae3c 1016 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1017}
1018
0fcb78c2
REB
1019/**
1020 * queue_work - queue work on a workqueue
1021 * @wq: workqueue to use
1022 * @work: work to queue
1023 *
057647fc 1024 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1025 *
00dfcaf7
ON
1026 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1027 * it can be processed by another CPU.
1da177e4 1028 */
7ad5b3a5 1029int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1030{
ef1ca236
ON
1031 int ret;
1032
1033 ret = queue_work_on(get_cpu(), wq, work);
1034 put_cpu();
1035
1da177e4
LT
1036 return ret;
1037}
ae90dd5d 1038EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1039
c1a220e7
ZR
1040/**
1041 * queue_work_on - queue work on specific cpu
1042 * @cpu: CPU number to execute work on
1043 * @wq: workqueue to use
1044 * @work: work to queue
1045 *
1046 * Returns 0 if @work was already on a queue, non-zero otherwise.
1047 *
1048 * We queue the work to a specific CPU, the caller must ensure it
1049 * can't go away.
1050 */
1051int
1052queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1053{
1054 int ret = 0;
1055
22df02bb 1056 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1057 __queue_work(cpu, wq, work);
c1a220e7
ZR
1058 ret = 1;
1059 }
1060 return ret;
1061}
1062EXPORT_SYMBOL_GPL(queue_work_on);
1063
6d141c3f 1064static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1065{
52bad64d 1066 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1067 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1068
4690c4ab 1069 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1070}
1071
0fcb78c2
REB
1072/**
1073 * queue_delayed_work - queue work on a workqueue after delay
1074 * @wq: workqueue to use
af9997e4 1075 * @dwork: delayable work to queue
0fcb78c2
REB
1076 * @delay: number of jiffies to wait before queueing
1077 *
057647fc 1078 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1079 */
7ad5b3a5 1080int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1081 struct delayed_work *dwork, unsigned long delay)
1da177e4 1082{
52bad64d 1083 if (delay == 0)
63bc0362 1084 return queue_work(wq, &dwork->work);
1da177e4 1085
63bc0362 1086 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1087}
ae90dd5d 1088EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1089
0fcb78c2
REB
1090/**
1091 * queue_delayed_work_on - queue work on specific CPU after delay
1092 * @cpu: CPU number to execute work on
1093 * @wq: workqueue to use
af9997e4 1094 * @dwork: work to queue
0fcb78c2
REB
1095 * @delay: number of jiffies to wait before queueing
1096 *
057647fc 1097 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1098 */
7a6bc1cd 1099int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1100 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1101{
1102 int ret = 0;
52bad64d
DH
1103 struct timer_list *timer = &dwork->timer;
1104 struct work_struct *work = &dwork->work;
7a6bc1cd 1105
22df02bb 1106 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1107 unsigned int lcpu;
7a22ad75 1108
7a6bc1cd
VP
1109 BUG_ON(timer_pending(timer));
1110 BUG_ON(!list_empty(&work->entry));
1111
8a3e77cc
AL
1112 timer_stats_timer_set_start_info(&dwork->timer);
1113
7a22ad75
TH
1114 /*
1115 * This stores cwq for the moment, for the timer_fn.
1116 * Note that the work's gcwq is preserved to allow
1117 * reentrance detection for delayed works.
1118 */
c7fc77f7
TH
1119 if (!(wq->flags & WQ_UNBOUND)) {
1120 struct global_cwq *gcwq = get_work_gcwq(work);
1121
1122 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1123 lcpu = gcwq->cpu;
1124 else
1125 lcpu = raw_smp_processor_id();
1126 } else
1127 lcpu = WORK_CPU_UNBOUND;
1128
7a22ad75 1129 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1130
7a6bc1cd 1131 timer->expires = jiffies + delay;
52bad64d 1132 timer->data = (unsigned long)dwork;
7a6bc1cd 1133 timer->function = delayed_work_timer_fn;
63bc0362
ON
1134
1135 if (unlikely(cpu >= 0))
1136 add_timer_on(timer, cpu);
1137 else
1138 add_timer(timer);
7a6bc1cd
VP
1139 ret = 1;
1140 }
1141 return ret;
1142}
ae90dd5d 1143EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1144
c8e55f36
TH
1145/**
1146 * worker_enter_idle - enter idle state
1147 * @worker: worker which is entering idle state
1148 *
1149 * @worker is entering idle state. Update stats and idle timer if
1150 * necessary.
1151 *
1152 * LOCKING:
1153 * spin_lock_irq(gcwq->lock).
1154 */
1155static void worker_enter_idle(struct worker *worker)
1da177e4 1156{
c8e55f36
TH
1157 struct global_cwq *gcwq = worker->gcwq;
1158
1159 BUG_ON(worker->flags & WORKER_IDLE);
1160 BUG_ON(!list_empty(&worker->entry) &&
1161 (worker->hentry.next || worker->hentry.pprev));
1162
cb444766
TH
1163 /* can't use worker_set_flags(), also called from start_worker() */
1164 worker->flags |= WORKER_IDLE;
c8e55f36 1165 gcwq->nr_idle++;
e22bee78 1166 worker->last_active = jiffies;
c8e55f36
TH
1167
1168 /* idle_list is LIFO */
1169 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4 1170
e22bee78
TH
1171 if (likely(!(worker->flags & WORKER_ROGUE))) {
1172 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1173 mod_timer(&gcwq->idle_timer,
1174 jiffies + IDLE_WORKER_TIMEOUT);
1175 } else
db7bccf4 1176 wake_up_all(&gcwq->trustee_wait);
cb444766
TH
1177
1178 /* sanity check nr_running */
1179 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1180 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
c8e55f36
TH
1181}
1182
1183/**
1184 * worker_leave_idle - leave idle state
1185 * @worker: worker which is leaving idle state
1186 *
1187 * @worker is leaving idle state. Update stats.
1188 *
1189 * LOCKING:
1190 * spin_lock_irq(gcwq->lock).
1191 */
1192static void worker_leave_idle(struct worker *worker)
1193{
1194 struct global_cwq *gcwq = worker->gcwq;
1195
1196 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1197 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
1198 gcwq->nr_idle--;
1199 list_del_init(&worker->entry);
1200}
1201
e22bee78
TH
1202/**
1203 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1204 * @worker: self
1205 *
1206 * Works which are scheduled while the cpu is online must at least be
1207 * scheduled to a worker which is bound to the cpu so that if they are
1208 * flushed from cpu callbacks while cpu is going down, they are
1209 * guaranteed to execute on the cpu.
1210 *
1211 * This function is to be used by rogue workers and rescuers to bind
1212 * themselves to the target cpu and may race with cpu going down or
1213 * coming online. kthread_bind() can't be used because it may put the
1214 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1215 * verbatim as it's best effort and blocking and gcwq may be
1216 * [dis]associated in the meantime.
1217 *
1218 * This function tries set_cpus_allowed() and locks gcwq and verifies
1219 * the binding against GCWQ_DISASSOCIATED which is set during
1220 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1221 * idle state or fetches works without dropping lock, it can guarantee
1222 * the scheduling requirement described in the first paragraph.
1223 *
1224 * CONTEXT:
1225 * Might sleep. Called without any lock but returns with gcwq->lock
1226 * held.
1227 *
1228 * RETURNS:
1229 * %true if the associated gcwq is online (@worker is successfully
1230 * bound), %false if offline.
1231 */
1232static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1233__acquires(&gcwq->lock)
e22bee78
TH
1234{
1235 struct global_cwq *gcwq = worker->gcwq;
1236 struct task_struct *task = worker->task;
1237
1238 while (true) {
4e6045f1 1239 /*
e22bee78
TH
1240 * The following call may fail, succeed or succeed
1241 * without actually migrating the task to the cpu if
1242 * it races with cpu hotunplug operation. Verify
1243 * against GCWQ_DISASSOCIATED.
4e6045f1 1244 */
f3421797
TH
1245 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1246 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1247
1248 spin_lock_irq(&gcwq->lock);
1249 if (gcwq->flags & GCWQ_DISASSOCIATED)
1250 return false;
1251 if (task_cpu(task) == gcwq->cpu &&
1252 cpumask_equal(&current->cpus_allowed,
1253 get_cpu_mask(gcwq->cpu)))
1254 return true;
1255 spin_unlock_irq(&gcwq->lock);
1256
1257 /* CPU has come up inbetween, retry migration */
1258 cpu_relax();
1259 }
1260}
1261
1262/*
1263 * Function for worker->rebind_work used to rebind rogue busy workers
1264 * to the associated cpu which is coming back online. This is
1265 * scheduled by cpu up but can race with other cpu hotplug operations
1266 * and may be executed twice without intervening cpu down.
1267 */
1268static void worker_rebind_fn(struct work_struct *work)
1269{
1270 struct worker *worker = container_of(work, struct worker, rebind_work);
1271 struct global_cwq *gcwq = worker->gcwq;
1272
1273 if (worker_maybe_bind_and_lock(worker))
1274 worker_clr_flags(worker, WORKER_REBIND);
1275
1276 spin_unlock_irq(&gcwq->lock);
1277}
1278
c34056a3
TH
1279static struct worker *alloc_worker(void)
1280{
1281 struct worker *worker;
1282
1283 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1284 if (worker) {
1285 INIT_LIST_HEAD(&worker->entry);
affee4b2 1286 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1287 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1288 /* on creation a worker is in !idle && prep state */
1289 worker->flags = WORKER_PREP;
c8e55f36 1290 }
c34056a3
TH
1291 return worker;
1292}
1293
1294/**
1295 * create_worker - create a new workqueue worker
7e11629d 1296 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
1297 * @bind: whether to set affinity to @cpu or not
1298 *
7e11629d 1299 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
1300 * can be started by calling start_worker() or destroyed using
1301 * destroy_worker().
1302 *
1303 * CONTEXT:
1304 * Might sleep. Does GFP_KERNEL allocations.
1305 *
1306 * RETURNS:
1307 * Pointer to the newly created worker.
1308 */
7e11629d 1309static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3 1310{
f3421797 1311 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
c34056a3 1312 struct worker *worker = NULL;
f3421797 1313 int id = -1;
c34056a3 1314
8b03ae3c
TH
1315 spin_lock_irq(&gcwq->lock);
1316 while (ida_get_new(&gcwq->worker_ida, &id)) {
1317 spin_unlock_irq(&gcwq->lock);
1318 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 1319 goto fail;
8b03ae3c 1320 spin_lock_irq(&gcwq->lock);
c34056a3 1321 }
8b03ae3c 1322 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1323
1324 worker = alloc_worker();
1325 if (!worker)
1326 goto fail;
1327
8b03ae3c 1328 worker->gcwq = gcwq;
c34056a3
TH
1329 worker->id = id;
1330
f3421797
TH
1331 if (!on_unbound_cpu)
1332 worker->task = kthread_create(worker_thread, worker,
1333 "kworker/%u:%d", gcwq->cpu, id);
1334 else
1335 worker->task = kthread_create(worker_thread, worker,
1336 "kworker/u:%d", id);
c34056a3
TH
1337 if (IS_ERR(worker->task))
1338 goto fail;
1339
db7bccf4
TH
1340 /*
1341 * A rogue worker will become a regular one if CPU comes
1342 * online later on. Make sure every worker has
1343 * PF_THREAD_BOUND set.
1344 */
f3421797 1345 if (bind && !on_unbound_cpu)
8b03ae3c 1346 kthread_bind(worker->task, gcwq->cpu);
f3421797 1347 else {
db7bccf4 1348 worker->task->flags |= PF_THREAD_BOUND;
f3421797
TH
1349 if (on_unbound_cpu)
1350 worker->flags |= WORKER_UNBOUND;
1351 }
c34056a3
TH
1352
1353 return worker;
1354fail:
1355 if (id >= 0) {
8b03ae3c
TH
1356 spin_lock_irq(&gcwq->lock);
1357 ida_remove(&gcwq->worker_ida, id);
1358 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1359 }
1360 kfree(worker);
1361 return NULL;
1362}
1363
1364/**
1365 * start_worker - start a newly created worker
1366 * @worker: worker to start
1367 *
c8e55f36 1368 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1369 *
1370 * CONTEXT:
8b03ae3c 1371 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1372 */
1373static void start_worker(struct worker *worker)
1374{
cb444766 1375 worker->flags |= WORKER_STARTED;
c8e55f36
TH
1376 worker->gcwq->nr_workers++;
1377 worker_enter_idle(worker);
c34056a3
TH
1378 wake_up_process(worker->task);
1379}
1380
1381/**
1382 * destroy_worker - destroy a workqueue worker
1383 * @worker: worker to be destroyed
1384 *
c8e55f36
TH
1385 * Destroy @worker and adjust @gcwq stats accordingly.
1386 *
1387 * CONTEXT:
1388 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1389 */
1390static void destroy_worker(struct worker *worker)
1391{
8b03ae3c 1392 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
1393 int id = worker->id;
1394
1395 /* sanity check frenzy */
1396 BUG_ON(worker->current_work);
affee4b2 1397 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1398
c8e55f36
TH
1399 if (worker->flags & WORKER_STARTED)
1400 gcwq->nr_workers--;
1401 if (worker->flags & WORKER_IDLE)
1402 gcwq->nr_idle--;
1403
1404 list_del_init(&worker->entry);
cb444766 1405 worker->flags |= WORKER_DIE;
c8e55f36
TH
1406
1407 spin_unlock_irq(&gcwq->lock);
1408
c34056a3
TH
1409 kthread_stop(worker->task);
1410 kfree(worker);
1411
8b03ae3c
TH
1412 spin_lock_irq(&gcwq->lock);
1413 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
1414}
1415
e22bee78
TH
1416static void idle_worker_timeout(unsigned long __gcwq)
1417{
1418 struct global_cwq *gcwq = (void *)__gcwq;
1419
1420 spin_lock_irq(&gcwq->lock);
1421
1422 if (too_many_workers(gcwq)) {
1423 struct worker *worker;
1424 unsigned long expires;
1425
1426 /* idle_list is kept in LIFO order, check the last one */
1427 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1428 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1429
1430 if (time_before(jiffies, expires))
1431 mod_timer(&gcwq->idle_timer, expires);
1432 else {
1433 /* it's been idle for too long, wake up manager */
1434 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1435 wake_up_worker(gcwq);
d5abe669 1436 }
e22bee78
TH
1437 }
1438
1439 spin_unlock_irq(&gcwq->lock);
1440}
d5abe669 1441
e22bee78
TH
1442static bool send_mayday(struct work_struct *work)
1443{
1444 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1445 struct workqueue_struct *wq = cwq->wq;
f3421797 1446 unsigned int cpu;
e22bee78
TH
1447
1448 if (!(wq->flags & WQ_RESCUER))
1449 return false;
1450
1451 /* mayday mayday mayday */
f3421797
TH
1452 cpu = cwq->gcwq->cpu;
1453 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1454 if (cpu == WORK_CPU_UNBOUND)
1455 cpu = 0;
f2e005aa 1456 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1457 wake_up_process(wq->rescuer->task);
1458 return true;
1459}
1460
1461static void gcwq_mayday_timeout(unsigned long __gcwq)
1462{
1463 struct global_cwq *gcwq = (void *)__gcwq;
1464 struct work_struct *work;
1465
1466 spin_lock_irq(&gcwq->lock);
1467
1468 if (need_to_create_worker(gcwq)) {
1469 /*
1470 * We've been trying to create a new worker but
1471 * haven't been successful. We might be hitting an
1472 * allocation deadlock. Send distress signals to
1473 * rescuers.
1474 */
1475 list_for_each_entry(work, &gcwq->worklist, entry)
1476 send_mayday(work);
1da177e4 1477 }
e22bee78
TH
1478
1479 spin_unlock_irq(&gcwq->lock);
1480
1481 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1482}
1483
e22bee78
TH
1484/**
1485 * maybe_create_worker - create a new worker if necessary
1486 * @gcwq: gcwq to create a new worker for
1487 *
1488 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1489 * have at least one idle worker on return from this function. If
1490 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1491 * sent to all rescuers with works scheduled on @gcwq to resolve
1492 * possible allocation deadlock.
1493 *
1494 * On return, need_to_create_worker() is guaranteed to be false and
1495 * may_start_working() true.
1496 *
1497 * LOCKING:
1498 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1499 * multiple times. Does GFP_KERNEL allocations. Called only from
1500 * manager.
1501 *
1502 * RETURNS:
1503 * false if no action was taken and gcwq->lock stayed locked, true
1504 * otherwise.
1505 */
1506static bool maybe_create_worker(struct global_cwq *gcwq)
06bd6ebf
NK
1507__releases(&gcwq->lock)
1508__acquires(&gcwq->lock)
1da177e4 1509{
e22bee78
TH
1510 if (!need_to_create_worker(gcwq))
1511 return false;
1512restart:
9f9c2364
TH
1513 spin_unlock_irq(&gcwq->lock);
1514
e22bee78
TH
1515 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1516 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1517
1518 while (true) {
1519 struct worker *worker;
1520
e22bee78
TH
1521 worker = create_worker(gcwq, true);
1522 if (worker) {
1523 del_timer_sync(&gcwq->mayday_timer);
1524 spin_lock_irq(&gcwq->lock);
1525 start_worker(worker);
1526 BUG_ON(need_to_create_worker(gcwq));
1527 return true;
1528 }
1529
1530 if (!need_to_create_worker(gcwq))
1531 break;
1da177e4 1532
e22bee78
TH
1533 __set_current_state(TASK_INTERRUPTIBLE);
1534 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1535
e22bee78
TH
1536 if (!need_to_create_worker(gcwq))
1537 break;
1538 }
1539
e22bee78
TH
1540 del_timer_sync(&gcwq->mayday_timer);
1541 spin_lock_irq(&gcwq->lock);
1542 if (need_to_create_worker(gcwq))
1543 goto restart;
1544 return true;
1545}
1546
1547/**
1548 * maybe_destroy_worker - destroy workers which have been idle for a while
1549 * @gcwq: gcwq to destroy workers for
1550 *
1551 * Destroy @gcwq workers which have been idle for longer than
1552 * IDLE_WORKER_TIMEOUT.
1553 *
1554 * LOCKING:
1555 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1556 * multiple times. Called only from manager.
1557 *
1558 * RETURNS:
1559 * false if no action was taken and gcwq->lock stayed locked, true
1560 * otherwise.
1561 */
1562static bool maybe_destroy_workers(struct global_cwq *gcwq)
1563{
1564 bool ret = false;
1da177e4 1565
e22bee78
TH
1566 while (too_many_workers(gcwq)) {
1567 struct worker *worker;
1568 unsigned long expires;
3af24433 1569
e22bee78
TH
1570 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1571 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1572
e22bee78
TH
1573 if (time_before(jiffies, expires)) {
1574 mod_timer(&gcwq->idle_timer, expires);
3af24433 1575 break;
e22bee78 1576 }
1da177e4 1577
e22bee78
TH
1578 destroy_worker(worker);
1579 ret = true;
1da177e4 1580 }
3af24433 1581
e22bee78
TH
1582 return ret;
1583}
1584
1585/**
1586 * manage_workers - manage worker pool
1587 * @worker: self
1588 *
1589 * Assume the manager role and manage gcwq worker pool @worker belongs
1590 * to. At any given time, there can be only zero or one manager per
1591 * gcwq. The exclusion is handled automatically by this function.
1592 *
1593 * The caller can safely start processing works on false return. On
1594 * true return, it's guaranteed that need_to_create_worker() is false
1595 * and may_start_working() is true.
1596 *
1597 * CONTEXT:
1598 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1599 * multiple times. Does GFP_KERNEL allocations.
1600 *
1601 * RETURNS:
1602 * false if no action was taken and gcwq->lock stayed locked, true if
1603 * some action was taken.
1604 */
1605static bool manage_workers(struct worker *worker)
1606{
1607 struct global_cwq *gcwq = worker->gcwq;
1608 bool ret = false;
1609
1610 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1611 return ret;
1612
1613 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1614 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1615
1616 /*
1617 * Destroy and then create so that may_start_working() is true
1618 * on return.
1619 */
1620 ret |= maybe_destroy_workers(gcwq);
1621 ret |= maybe_create_worker(gcwq);
1622
1623 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1624
1625 /*
1626 * The trustee might be waiting to take over the manager
1627 * position, tell it we're done.
1628 */
1629 if (unlikely(gcwq->trustee))
1630 wake_up_all(&gcwq->trustee_wait);
1631
1632 return ret;
1633}
1634
affee4b2
TH
1635/**
1636 * move_linked_works - move linked works to a list
1637 * @work: start of series of works to be scheduled
1638 * @head: target list to append @work to
1639 * @nextp: out paramter for nested worklist walking
1640 *
1641 * Schedule linked works starting from @work to @head. Work series to
1642 * be scheduled starts at @work and includes any consecutive work with
1643 * WORK_STRUCT_LINKED set in its predecessor.
1644 *
1645 * If @nextp is not NULL, it's updated to point to the next work of
1646 * the last scheduled work. This allows move_linked_works() to be
1647 * nested inside outer list_for_each_entry_safe().
1648 *
1649 * CONTEXT:
8b03ae3c 1650 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1651 */
1652static void move_linked_works(struct work_struct *work, struct list_head *head,
1653 struct work_struct **nextp)
1654{
1655 struct work_struct *n;
1656
1657 /*
1658 * Linked worklist will always end before the end of the list,
1659 * use NULL for list head.
1660 */
1661 list_for_each_entry_safe_from(work, n, NULL, entry) {
1662 list_move_tail(&work->entry, head);
1663 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1664 break;
1665 }
1666
1667 /*
1668 * If we're already inside safe list traversal and have moved
1669 * multiple works to the scheduled queue, the next position
1670 * needs to be updated.
1671 */
1672 if (nextp)
1673 *nextp = n;
1674}
1675
1e19ffc6
TH
1676static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1677{
1678 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1679 struct work_struct, entry);
649027d7 1680 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1e19ffc6 1681
649027d7 1682 move_linked_works(work, pos, NULL);
8a2e8e5d 1683 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1684 cwq->nr_active++;
1685}
1686
73f53c4a
TH
1687/**
1688 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1689 * @cwq: cwq of interest
1690 * @color: color of work which left the queue
8a2e8e5d 1691 * @delayed: for a delayed work
73f53c4a
TH
1692 *
1693 * A work either has completed or is removed from pending queue,
1694 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1695 *
1696 * CONTEXT:
8b03ae3c 1697 * spin_lock_irq(gcwq->lock).
73f53c4a 1698 */
8a2e8e5d
TH
1699static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1700 bool delayed)
73f53c4a
TH
1701{
1702 /* ignore uncolored works */
1703 if (color == WORK_NO_COLOR)
1704 return;
1705
1706 cwq->nr_in_flight[color]--;
1e19ffc6 1707
8a2e8e5d
TH
1708 if (!delayed) {
1709 cwq->nr_active--;
1710 if (!list_empty(&cwq->delayed_works)) {
1711 /* one down, submit a delayed one */
1712 if (cwq->nr_active < cwq->max_active)
1713 cwq_activate_first_delayed(cwq);
1714 }
502ca9d8 1715 }
73f53c4a
TH
1716
1717 /* is flush in progress and are we at the flushing tip? */
1718 if (likely(cwq->flush_color != color))
1719 return;
1720
1721 /* are there still in-flight works? */
1722 if (cwq->nr_in_flight[color])
1723 return;
1724
1725 /* this cwq is done, clear flush_color */
1726 cwq->flush_color = -1;
1727
1728 /*
1729 * If this was the last cwq, wake up the first flusher. It
1730 * will handle the rest.
1731 */
1732 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1733 complete(&cwq->wq->first_flusher->done);
1734}
1735
a62428c0
TH
1736/**
1737 * process_one_work - process single work
c34056a3 1738 * @worker: self
a62428c0
TH
1739 * @work: work to process
1740 *
1741 * Process @work. This function contains all the logics necessary to
1742 * process a single work including synchronization against and
1743 * interaction with other workers on the same cpu, queueing and
1744 * flushing. As long as context requirement is met, any worker can
1745 * call this function to process a work.
1746 *
1747 * CONTEXT:
8b03ae3c 1748 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1749 */
c34056a3 1750static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1751__releases(&gcwq->lock)
1752__acquires(&gcwq->lock)
a62428c0 1753{
7e11629d 1754 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1755 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1756 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1757 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1758 work_func_t f = work->func;
73f53c4a 1759 int work_color;
7e11629d 1760 struct worker *collision;
a62428c0
TH
1761#ifdef CONFIG_LOCKDEP
1762 /*
1763 * It is permissible to free the struct work_struct from
1764 * inside the function that is called from it, this we need to
1765 * take into account for lockdep too. To avoid bogus "held
1766 * lock freed" warnings as well as problems when looking into
1767 * work->lockdep_map, make a copy and use that here.
1768 */
1769 struct lockdep_map lockdep_map = work->lockdep_map;
1770#endif
7e11629d
TH
1771 /*
1772 * A single work shouldn't be executed concurrently by
1773 * multiple workers on a single cpu. Check whether anyone is
1774 * already processing the work. If so, defer the work to the
1775 * currently executing one.
1776 */
1777 collision = __find_worker_executing_work(gcwq, bwh, work);
1778 if (unlikely(collision)) {
1779 move_linked_works(work, &collision->scheduled, NULL);
1780 return;
1781 }
1782
a62428c0 1783 /* claim and process */
a62428c0 1784 debug_work_deactivate(work);
c8e55f36 1785 hlist_add_head(&worker->hentry, bwh);
c34056a3 1786 worker->current_work = work;
8cca0eea 1787 worker->current_cwq = cwq;
73f53c4a 1788 work_color = get_work_color(work);
7a22ad75 1789
7a22ad75
TH
1790 /* record the current cpu number in the work data and dequeue */
1791 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1792 list_del_init(&work->entry);
1793
649027d7
TH
1794 /*
1795 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1796 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1797 */
1798 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1799 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1800 struct work_struct, entry);
1801
1802 if (!list_empty(&gcwq->worklist) &&
1803 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1804 wake_up_worker(gcwq);
1805 else
1806 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1807 }
1808
fb0e7beb
TH
1809 /*
1810 * CPU intensive works don't participate in concurrency
1811 * management. They're the scheduler's responsibility.
1812 */
1813 if (unlikely(cpu_intensive))
1814 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1815
8b03ae3c 1816 spin_unlock_irq(&gcwq->lock);
a62428c0 1817
a62428c0
TH
1818 work_clear_pending(work);
1819 lock_map_acquire(&cwq->wq->lockdep_map);
1820 lock_map_acquire(&lockdep_map);
e36c886a 1821 trace_workqueue_execute_start(work);
a62428c0 1822 f(work);
e36c886a
AV
1823 /*
1824 * While we must be careful to not use "work" after this, the trace
1825 * point will only record its address.
1826 */
1827 trace_workqueue_execute_end(work);
a62428c0
TH
1828 lock_map_release(&lockdep_map);
1829 lock_map_release(&cwq->wq->lockdep_map);
1830
1831 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1832 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1833 "%s/0x%08x/%d\n",
1834 current->comm, preempt_count(), task_pid_nr(current));
1835 printk(KERN_ERR " last function: ");
1836 print_symbol("%s\n", (unsigned long)f);
1837 debug_show_held_locks(current);
1838 dump_stack();
1839 }
1840
8b03ae3c 1841 spin_lock_irq(&gcwq->lock);
a62428c0 1842
fb0e7beb
TH
1843 /* clear cpu intensive status */
1844 if (unlikely(cpu_intensive))
1845 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1846
a62428c0 1847 /* we're done with it, release */
c8e55f36 1848 hlist_del_init(&worker->hentry);
c34056a3 1849 worker->current_work = NULL;
8cca0eea 1850 worker->current_cwq = NULL;
8a2e8e5d 1851 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
1852}
1853
affee4b2
TH
1854/**
1855 * process_scheduled_works - process scheduled works
1856 * @worker: self
1857 *
1858 * Process all scheduled works. Please note that the scheduled list
1859 * may change while processing a work, so this function repeatedly
1860 * fetches a work from the top and executes it.
1861 *
1862 * CONTEXT:
8b03ae3c 1863 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1864 * multiple times.
1865 */
1866static void process_scheduled_works(struct worker *worker)
1da177e4 1867{
affee4b2
TH
1868 while (!list_empty(&worker->scheduled)) {
1869 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1870 struct work_struct, entry);
c34056a3 1871 process_one_work(worker, work);
1da177e4 1872 }
1da177e4
LT
1873}
1874
4690c4ab
TH
1875/**
1876 * worker_thread - the worker thread function
c34056a3 1877 * @__worker: self
4690c4ab 1878 *
e22bee78
TH
1879 * The gcwq worker thread function. There's a single dynamic pool of
1880 * these per each cpu. These workers process all works regardless of
1881 * their specific target workqueue. The only exception is works which
1882 * belong to workqueues with a rescuer which will be explained in
1883 * rescuer_thread().
4690c4ab 1884 */
c34056a3 1885static int worker_thread(void *__worker)
1da177e4 1886{
c34056a3 1887 struct worker *worker = __worker;
8b03ae3c 1888 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1889
e22bee78
TH
1890 /* tell the scheduler that this is a workqueue worker */
1891 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1892woke_up:
c8e55f36 1893 spin_lock_irq(&gcwq->lock);
1da177e4 1894
c8e55f36
TH
1895 /* DIE can be set only while we're idle, checking here is enough */
1896 if (worker->flags & WORKER_DIE) {
1897 spin_unlock_irq(&gcwq->lock);
e22bee78 1898 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1899 return 0;
1900 }
affee4b2 1901
c8e55f36 1902 worker_leave_idle(worker);
db7bccf4 1903recheck:
e22bee78
TH
1904 /* no more worker necessary? */
1905 if (!need_more_worker(gcwq))
1906 goto sleep;
1907
1908 /* do we need to manage? */
1909 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1910 goto recheck;
1911
c8e55f36
TH
1912 /*
1913 * ->scheduled list can only be filled while a worker is
1914 * preparing to process a work or actually processing it.
1915 * Make sure nobody diddled with it while I was sleeping.
1916 */
1917 BUG_ON(!list_empty(&worker->scheduled));
1918
e22bee78
TH
1919 /*
1920 * When control reaches this point, we're guaranteed to have
1921 * at least one idle worker or that someone else has already
1922 * assumed the manager role.
1923 */
1924 worker_clr_flags(worker, WORKER_PREP);
1925
1926 do {
c8e55f36 1927 struct work_struct *work =
7e11629d 1928 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1929 struct work_struct, entry);
1930
1931 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1932 /* optimization path, not strictly necessary */
1933 process_one_work(worker, work);
1934 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1935 process_scheduled_works(worker);
c8e55f36
TH
1936 } else {
1937 move_linked_works(work, &worker->scheduled, NULL);
1938 process_scheduled_works(worker);
affee4b2 1939 }
e22bee78
TH
1940 } while (keep_working(gcwq));
1941
1942 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 1943sleep:
e22bee78
TH
1944 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1945 goto recheck;
d313dd85 1946
c8e55f36 1947 /*
e22bee78
TH
1948 * gcwq->lock is held and there's no work to process and no
1949 * need to manage, sleep. Workers are woken up only while
1950 * holding gcwq->lock or from local cpu, so setting the
1951 * current state before releasing gcwq->lock is enough to
1952 * prevent losing any event.
c8e55f36
TH
1953 */
1954 worker_enter_idle(worker);
1955 __set_current_state(TASK_INTERRUPTIBLE);
1956 spin_unlock_irq(&gcwq->lock);
1957 schedule();
1958 goto woke_up;
1da177e4
LT
1959}
1960
e22bee78
TH
1961/**
1962 * rescuer_thread - the rescuer thread function
1963 * @__wq: the associated workqueue
1964 *
1965 * Workqueue rescuer thread function. There's one rescuer for each
1966 * workqueue which has WQ_RESCUER set.
1967 *
1968 * Regular work processing on a gcwq may block trying to create a new
1969 * worker which uses GFP_KERNEL allocation which has slight chance of
1970 * developing into deadlock if some works currently on the same queue
1971 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1972 * the problem rescuer solves.
1973 *
1974 * When such condition is possible, the gcwq summons rescuers of all
1975 * workqueues which have works queued on the gcwq and let them process
1976 * those works so that forward progress can be guaranteed.
1977 *
1978 * This should happen rarely.
1979 */
1980static int rescuer_thread(void *__wq)
1981{
1982 struct workqueue_struct *wq = __wq;
1983 struct worker *rescuer = wq->rescuer;
1984 struct list_head *scheduled = &rescuer->scheduled;
f3421797 1985 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
1986 unsigned int cpu;
1987
1988 set_user_nice(current, RESCUER_NICE_LEVEL);
1989repeat:
1990 set_current_state(TASK_INTERRUPTIBLE);
1991
1992 if (kthread_should_stop())
1993 return 0;
1994
f3421797
TH
1995 /*
1996 * See whether any cpu is asking for help. Unbounded
1997 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1998 */
f2e005aa 1999 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2000 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2001 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
e22bee78
TH
2002 struct global_cwq *gcwq = cwq->gcwq;
2003 struct work_struct *work, *n;
2004
2005 __set_current_state(TASK_RUNNING);
f2e005aa 2006 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2007
2008 /* migrate to the target cpu if possible */
2009 rescuer->gcwq = gcwq;
2010 worker_maybe_bind_and_lock(rescuer);
2011
2012 /*
2013 * Slurp in all works issued via this workqueue and
2014 * process'em.
2015 */
2016 BUG_ON(!list_empty(&rescuer->scheduled));
2017 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2018 if (get_work_cwq(work) == cwq)
2019 move_linked_works(work, scheduled, &n);
2020
2021 process_scheduled_works(rescuer);
2022 spin_unlock_irq(&gcwq->lock);
2023 }
2024
2025 schedule();
2026 goto repeat;
1da177e4
LT
2027}
2028
fc2e4d70
ON
2029struct wq_barrier {
2030 struct work_struct work;
2031 struct completion done;
2032};
2033
2034static void wq_barrier_func(struct work_struct *work)
2035{
2036 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2037 complete(&barr->done);
2038}
2039
4690c4ab
TH
2040/**
2041 * insert_wq_barrier - insert a barrier work
2042 * @cwq: cwq to insert barrier into
2043 * @barr: wq_barrier to insert
affee4b2
TH
2044 * @target: target work to attach @barr to
2045 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2046 *
affee4b2
TH
2047 * @barr is linked to @target such that @barr is completed only after
2048 * @target finishes execution. Please note that the ordering
2049 * guarantee is observed only with respect to @target and on the local
2050 * cpu.
2051 *
2052 * Currently, a queued barrier can't be canceled. This is because
2053 * try_to_grab_pending() can't determine whether the work to be
2054 * grabbed is at the head of the queue and thus can't clear LINKED
2055 * flag of the previous work while there must be a valid next work
2056 * after a work with LINKED flag set.
2057 *
2058 * Note that when @worker is non-NULL, @target may be modified
2059 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2060 *
2061 * CONTEXT:
8b03ae3c 2062 * spin_lock_irq(gcwq->lock).
4690c4ab 2063 */
83c22520 2064static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2065 struct wq_barrier *barr,
2066 struct work_struct *target, struct worker *worker)
fc2e4d70 2067{
affee4b2
TH
2068 struct list_head *head;
2069 unsigned int linked = 0;
2070
dc186ad7 2071 /*
8b03ae3c 2072 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2073 * as we know for sure that this will not trigger any of the
2074 * checks and call back into the fixup functions where we
2075 * might deadlock.
2076 */
2077 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 2078 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2079 init_completion(&barr->done);
83c22520 2080
affee4b2
TH
2081 /*
2082 * If @target is currently being executed, schedule the
2083 * barrier to the worker; otherwise, put it after @target.
2084 */
2085 if (worker)
2086 head = worker->scheduled.next;
2087 else {
2088 unsigned long *bits = work_data_bits(target);
2089
2090 head = target->entry.next;
2091 /* there can already be other linked works, inherit and set */
2092 linked = *bits & WORK_STRUCT_LINKED;
2093 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2094 }
2095
dc186ad7 2096 debug_work_activate(&barr->work);
affee4b2
TH
2097 insert_work(cwq, &barr->work, head,
2098 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2099}
2100
73f53c4a
TH
2101/**
2102 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2103 * @wq: workqueue being flushed
2104 * @flush_color: new flush color, < 0 for no-op
2105 * @work_color: new work color, < 0 for no-op
2106 *
2107 * Prepare cwqs for workqueue flushing.
2108 *
2109 * If @flush_color is non-negative, flush_color on all cwqs should be
2110 * -1. If no cwq has in-flight commands at the specified color, all
2111 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2112 * has in flight commands, its cwq->flush_color is set to
2113 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2114 * wakeup logic is armed and %true is returned.
2115 *
2116 * The caller should have initialized @wq->first_flusher prior to
2117 * calling this function with non-negative @flush_color. If
2118 * @flush_color is negative, no flush color update is done and %false
2119 * is returned.
2120 *
2121 * If @work_color is non-negative, all cwqs should have the same
2122 * work_color which is previous to @work_color and all will be
2123 * advanced to @work_color.
2124 *
2125 * CONTEXT:
2126 * mutex_lock(wq->flush_mutex).
2127 *
2128 * RETURNS:
2129 * %true if @flush_color >= 0 and there's something to flush. %false
2130 * otherwise.
2131 */
2132static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2133 int flush_color, int work_color)
1da177e4 2134{
73f53c4a
TH
2135 bool wait = false;
2136 unsigned int cpu;
1da177e4 2137
73f53c4a
TH
2138 if (flush_color >= 0) {
2139 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2140 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2141 }
2355b70f 2142
f3421797 2143 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2144 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2145 struct global_cwq *gcwq = cwq->gcwq;
fc2e4d70 2146
8b03ae3c 2147 spin_lock_irq(&gcwq->lock);
83c22520 2148
73f53c4a
TH
2149 if (flush_color >= 0) {
2150 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2151
73f53c4a
TH
2152 if (cwq->nr_in_flight[flush_color]) {
2153 cwq->flush_color = flush_color;
2154 atomic_inc(&wq->nr_cwqs_to_flush);
2155 wait = true;
2156 }
2157 }
1da177e4 2158
73f53c4a
TH
2159 if (work_color >= 0) {
2160 BUG_ON(work_color != work_next_color(cwq->work_color));
2161 cwq->work_color = work_color;
2162 }
1da177e4 2163
8b03ae3c 2164 spin_unlock_irq(&gcwq->lock);
1da177e4 2165 }
2355b70f 2166
73f53c4a
TH
2167 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2168 complete(&wq->first_flusher->done);
14441960 2169
73f53c4a 2170 return wait;
1da177e4
LT
2171}
2172
0fcb78c2 2173/**
1da177e4 2174 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2175 * @wq: workqueue to flush
1da177e4
LT
2176 *
2177 * Forces execution of the workqueue and blocks until its completion.
2178 * This is typically used in driver shutdown handlers.
2179 *
fc2e4d70
ON
2180 * We sleep until all works which were queued on entry have been handled,
2181 * but we are not livelocked by new incoming ones.
1da177e4 2182 */
7ad5b3a5 2183void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2184{
73f53c4a
TH
2185 struct wq_flusher this_flusher = {
2186 .list = LIST_HEAD_INIT(this_flusher.list),
2187 .flush_color = -1,
2188 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2189 };
2190 int next_color;
1da177e4 2191
3295f0ef
IM
2192 lock_map_acquire(&wq->lockdep_map);
2193 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2194
2195 mutex_lock(&wq->flush_mutex);
2196
2197 /*
2198 * Start-to-wait phase
2199 */
2200 next_color = work_next_color(wq->work_color);
2201
2202 if (next_color != wq->flush_color) {
2203 /*
2204 * Color space is not full. The current work_color
2205 * becomes our flush_color and work_color is advanced
2206 * by one.
2207 */
2208 BUG_ON(!list_empty(&wq->flusher_overflow));
2209 this_flusher.flush_color = wq->work_color;
2210 wq->work_color = next_color;
2211
2212 if (!wq->first_flusher) {
2213 /* no flush in progress, become the first flusher */
2214 BUG_ON(wq->flush_color != this_flusher.flush_color);
2215
2216 wq->first_flusher = &this_flusher;
2217
2218 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2219 wq->work_color)) {
2220 /* nothing to flush, done */
2221 wq->flush_color = next_color;
2222 wq->first_flusher = NULL;
2223 goto out_unlock;
2224 }
2225 } else {
2226 /* wait in queue */
2227 BUG_ON(wq->flush_color == this_flusher.flush_color);
2228 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2229 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2230 }
2231 } else {
2232 /*
2233 * Oops, color space is full, wait on overflow queue.
2234 * The next flush completion will assign us
2235 * flush_color and transfer to flusher_queue.
2236 */
2237 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2238 }
2239
2240 mutex_unlock(&wq->flush_mutex);
2241
2242 wait_for_completion(&this_flusher.done);
2243
2244 /*
2245 * Wake-up-and-cascade phase
2246 *
2247 * First flushers are responsible for cascading flushes and
2248 * handling overflow. Non-first flushers can simply return.
2249 */
2250 if (wq->first_flusher != &this_flusher)
2251 return;
2252
2253 mutex_lock(&wq->flush_mutex);
2254
4ce48b37
TH
2255 /* we might have raced, check again with mutex held */
2256 if (wq->first_flusher != &this_flusher)
2257 goto out_unlock;
2258
73f53c4a
TH
2259 wq->first_flusher = NULL;
2260
2261 BUG_ON(!list_empty(&this_flusher.list));
2262 BUG_ON(wq->flush_color != this_flusher.flush_color);
2263
2264 while (true) {
2265 struct wq_flusher *next, *tmp;
2266
2267 /* complete all the flushers sharing the current flush color */
2268 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2269 if (next->flush_color != wq->flush_color)
2270 break;
2271 list_del_init(&next->list);
2272 complete(&next->done);
2273 }
2274
2275 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2276 wq->flush_color != work_next_color(wq->work_color));
2277
2278 /* this flush_color is finished, advance by one */
2279 wq->flush_color = work_next_color(wq->flush_color);
2280
2281 /* one color has been freed, handle overflow queue */
2282 if (!list_empty(&wq->flusher_overflow)) {
2283 /*
2284 * Assign the same color to all overflowed
2285 * flushers, advance work_color and append to
2286 * flusher_queue. This is the start-to-wait
2287 * phase for these overflowed flushers.
2288 */
2289 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2290 tmp->flush_color = wq->work_color;
2291
2292 wq->work_color = work_next_color(wq->work_color);
2293
2294 list_splice_tail_init(&wq->flusher_overflow,
2295 &wq->flusher_queue);
2296 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2297 }
2298
2299 if (list_empty(&wq->flusher_queue)) {
2300 BUG_ON(wq->flush_color != wq->work_color);
2301 break;
2302 }
2303
2304 /*
2305 * Need to flush more colors. Make the next flusher
2306 * the new first flusher and arm cwqs.
2307 */
2308 BUG_ON(wq->flush_color == wq->work_color);
2309 BUG_ON(wq->flush_color != next->flush_color);
2310
2311 list_del_init(&next->list);
2312 wq->first_flusher = next;
2313
2314 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2315 break;
2316
2317 /*
2318 * Meh... this color is already done, clear first
2319 * flusher and repeat cascading.
2320 */
2321 wq->first_flusher = NULL;
2322 }
2323
2324out_unlock:
2325 mutex_unlock(&wq->flush_mutex);
1da177e4 2326}
ae90dd5d 2327EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2328
db700897 2329/**
401a8d04
TH
2330 * flush_work - wait for a work to finish executing the last queueing instance
2331 * @work: the work to flush
db700897 2332 *
401a8d04
TH
2333 * Wait until @work has finished execution. This function considers
2334 * only the last queueing instance of @work. If @work has been
2335 * enqueued across different CPUs on a non-reentrant workqueue or on
2336 * multiple workqueues, @work might still be executing on return on
2337 * some of the CPUs from earlier queueing.
a67da70d 2338 *
401a8d04
TH
2339 * If @work was queued only on a non-reentrant, ordered or unbound
2340 * workqueue, @work is guaranteed to be idle on return if it hasn't
2341 * been requeued since flush started.
2342 *
2343 * RETURNS:
2344 * %true if flush_work() waited for the work to finish execution,
2345 * %false if it was already idle.
db700897 2346 */
401a8d04 2347bool flush_work(struct work_struct *work)
db700897 2348{
affee4b2 2349 struct worker *worker = NULL;
8b03ae3c 2350 struct global_cwq *gcwq;
db700897 2351 struct cpu_workqueue_struct *cwq;
db700897
ON
2352 struct wq_barrier barr;
2353
2354 might_sleep();
7a22ad75
TH
2355 gcwq = get_work_gcwq(work);
2356 if (!gcwq)
db700897
ON
2357 return 0;
2358
8b03ae3c 2359 spin_lock_irq(&gcwq->lock);
db700897
ON
2360 if (!list_empty(&work->entry)) {
2361 /*
2362 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2363 * If it was re-queued to a different gcwq under us, we
2364 * are not going to wait.
db700897
ON
2365 */
2366 smp_rmb();
7a22ad75
TH
2367 cwq = get_work_cwq(work);
2368 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 2369 goto already_gone;
db700897 2370 } else {
7a22ad75 2371 worker = find_worker_executing_work(gcwq, work);
affee4b2 2372 if (!worker)
4690c4ab 2373 goto already_gone;
7a22ad75 2374 cwq = worker->current_cwq;
db700897 2375 }
db700897 2376
affee4b2 2377 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 2378 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
2379
2380 lock_map_acquire(&cwq->wq->lockdep_map);
2381 lock_map_release(&cwq->wq->lockdep_map);
db700897
ON
2382
2383 wait_for_completion(&barr.done);
dc186ad7 2384 destroy_work_on_stack(&barr.work);
401a8d04 2385 return true;
4690c4ab 2386already_gone:
8b03ae3c 2387 spin_unlock_irq(&gcwq->lock);
401a8d04 2388 return false;
db700897
ON
2389}
2390EXPORT_SYMBOL_GPL(flush_work);
2391
401a8d04
TH
2392static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2393{
2394 struct wq_barrier barr;
2395 struct worker *worker;
2396
2397 spin_lock_irq(&gcwq->lock);
2398
2399 worker = find_worker_executing_work(gcwq, work);
2400 if (unlikely(worker))
2401 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2402
2403 spin_unlock_irq(&gcwq->lock);
2404
2405 if (unlikely(worker)) {
2406 wait_for_completion(&barr.done);
2407 destroy_work_on_stack(&barr.work);
2408 return true;
2409 } else
2410 return false;
2411}
2412
2413static bool wait_on_work(struct work_struct *work)
2414{
2415 bool ret = false;
2416 int cpu;
2417
2418 might_sleep();
2419
2420 lock_map_acquire(&work->lockdep_map);
2421 lock_map_release(&work->lockdep_map);
2422
2423 for_each_gcwq_cpu(cpu)
2424 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2425 return ret;
2426}
2427
6e84d644 2428/*
1f1f642e 2429 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2430 * so this work can't be re-armed in any way.
2431 */
2432static int try_to_grab_pending(struct work_struct *work)
2433{
8b03ae3c 2434 struct global_cwq *gcwq;
1f1f642e 2435 int ret = -1;
6e84d644 2436
22df02bb 2437 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2438 return 0;
6e84d644
ON
2439
2440 /*
2441 * The queueing is in progress, or it is already queued. Try to
2442 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2443 */
7a22ad75
TH
2444 gcwq = get_work_gcwq(work);
2445 if (!gcwq)
6e84d644
ON
2446 return ret;
2447
8b03ae3c 2448 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2449 if (!list_empty(&work->entry)) {
2450 /*
7a22ad75 2451 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2452 * In that case we must see the new value after rmb(), see
2453 * insert_work()->wmb().
2454 */
2455 smp_rmb();
7a22ad75 2456 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2457 debug_work_deactivate(work);
6e84d644 2458 list_del_init(&work->entry);
7a22ad75 2459 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2460 get_work_color(work),
2461 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2462 ret = 1;
2463 }
2464 }
8b03ae3c 2465 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2466
2467 return ret;
2468}
2469
401a8d04 2470static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2471 struct timer_list* timer)
2472{
2473 int ret;
2474
2475 do {
2476 ret = (timer && likely(del_timer(timer)));
2477 if (!ret)
2478 ret = try_to_grab_pending(work);
2479 wait_on_work(work);
2480 } while (unlikely(ret < 0));
2481
7a22ad75 2482 clear_work_data(work);
1f1f642e
ON
2483 return ret;
2484}
2485
6e84d644 2486/**
401a8d04
TH
2487 * cancel_work_sync - cancel a work and wait for it to finish
2488 * @work: the work to cancel
6e84d644 2489 *
401a8d04
TH
2490 * Cancel @work and wait for its execution to finish. This function
2491 * can be used even if the work re-queues itself or migrates to
2492 * another workqueue. On return from this function, @work is
2493 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2494 *
401a8d04
TH
2495 * cancel_work_sync(&delayed_work->work) must not be used for
2496 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2497 *
401a8d04 2498 * The caller must ensure that the workqueue on which @work was last
6e84d644 2499 * queued can't be destroyed before this function returns.
401a8d04
TH
2500 *
2501 * RETURNS:
2502 * %true if @work was pending, %false otherwise.
6e84d644 2503 */
401a8d04 2504bool cancel_work_sync(struct work_struct *work)
6e84d644 2505{
1f1f642e 2506 return __cancel_work_timer(work, NULL);
b89deed3 2507}
28e53bdd 2508EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2509
6e84d644 2510/**
401a8d04
TH
2511 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2512 * @dwork: the delayed work to flush
6e84d644 2513 *
401a8d04
TH
2514 * Delayed timer is cancelled and the pending work is queued for
2515 * immediate execution. Like flush_work(), this function only
2516 * considers the last queueing instance of @dwork.
1f1f642e 2517 *
401a8d04
TH
2518 * RETURNS:
2519 * %true if flush_work() waited for the work to finish execution,
2520 * %false if it was already idle.
6e84d644 2521 */
401a8d04
TH
2522bool flush_delayed_work(struct delayed_work *dwork)
2523{
2524 if (del_timer_sync(&dwork->timer))
2525 __queue_work(raw_smp_processor_id(),
2526 get_work_cwq(&dwork->work)->wq, &dwork->work);
2527 return flush_work(&dwork->work);
2528}
2529EXPORT_SYMBOL(flush_delayed_work);
2530
2531/**
2532 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2533 * @dwork: the delayed work cancel
2534 *
2535 * This is cancel_work_sync() for delayed works.
2536 *
2537 * RETURNS:
2538 * %true if @dwork was pending, %false otherwise.
2539 */
2540bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2541{
1f1f642e 2542 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2543}
f5a421a4 2544EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2545
0fcb78c2
REB
2546/**
2547 * schedule_work - put work task in global workqueue
2548 * @work: job to be done
2549 *
5b0f437d
BVA
2550 * Returns zero if @work was already on the kernel-global workqueue and
2551 * non-zero otherwise.
2552 *
2553 * This puts a job in the kernel-global workqueue if it was not already
2554 * queued and leaves it in the same position on the kernel-global
2555 * workqueue otherwise.
0fcb78c2 2556 */
7ad5b3a5 2557int schedule_work(struct work_struct *work)
1da177e4 2558{
d320c038 2559 return queue_work(system_wq, work);
1da177e4 2560}
ae90dd5d 2561EXPORT_SYMBOL(schedule_work);
1da177e4 2562
c1a220e7
ZR
2563/*
2564 * schedule_work_on - put work task on a specific cpu
2565 * @cpu: cpu to put the work task on
2566 * @work: job to be done
2567 *
2568 * This puts a job on a specific cpu
2569 */
2570int schedule_work_on(int cpu, struct work_struct *work)
2571{
d320c038 2572 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2573}
2574EXPORT_SYMBOL(schedule_work_on);
2575
0fcb78c2
REB
2576/**
2577 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2578 * @dwork: job to be done
2579 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2580 *
2581 * After waiting for a given time this puts a job in the kernel-global
2582 * workqueue.
2583 */
7ad5b3a5 2584int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2585 unsigned long delay)
1da177e4 2586{
d320c038 2587 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2588}
ae90dd5d 2589EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2590
0fcb78c2
REB
2591/**
2592 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2593 * @cpu: cpu to use
52bad64d 2594 * @dwork: job to be done
0fcb78c2
REB
2595 * @delay: number of jiffies to wait
2596 *
2597 * After waiting for a given time this puts a job in the kernel-global
2598 * workqueue on the specified CPU.
2599 */
1da177e4 2600int schedule_delayed_work_on(int cpu,
52bad64d 2601 struct delayed_work *dwork, unsigned long delay)
1da177e4 2602{
d320c038 2603 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2604}
ae90dd5d 2605EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2606
b6136773
AM
2607/**
2608 * schedule_on_each_cpu - call a function on each online CPU from keventd
2609 * @func: the function to call
b6136773
AM
2610 *
2611 * Returns zero on success.
2612 * Returns -ve errno on failure.
2613 *
b6136773
AM
2614 * schedule_on_each_cpu() is very slow.
2615 */
65f27f38 2616int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2617{
2618 int cpu;
38f51568 2619 struct work_struct __percpu *works;
15316ba8 2620
b6136773
AM
2621 works = alloc_percpu(struct work_struct);
2622 if (!works)
15316ba8 2623 return -ENOMEM;
b6136773 2624
93981800
TH
2625 get_online_cpus();
2626
15316ba8 2627 for_each_online_cpu(cpu) {
9bfb1839
IM
2628 struct work_struct *work = per_cpu_ptr(works, cpu);
2629
2630 INIT_WORK(work, func);
b71ab8c2 2631 schedule_work_on(cpu, work);
65a64464 2632 }
93981800
TH
2633
2634 for_each_online_cpu(cpu)
2635 flush_work(per_cpu_ptr(works, cpu));
2636
95402b38 2637 put_online_cpus();
b6136773 2638 free_percpu(works);
15316ba8
CL
2639 return 0;
2640}
2641
eef6a7d5
AS
2642/**
2643 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2644 *
2645 * Forces execution of the kernel-global workqueue and blocks until its
2646 * completion.
2647 *
2648 * Think twice before calling this function! It's very easy to get into
2649 * trouble if you don't take great care. Either of the following situations
2650 * will lead to deadlock:
2651 *
2652 * One of the work items currently on the workqueue needs to acquire
2653 * a lock held by your code or its caller.
2654 *
2655 * Your code is running in the context of a work routine.
2656 *
2657 * They will be detected by lockdep when they occur, but the first might not
2658 * occur very often. It depends on what work items are on the workqueue and
2659 * what locks they need, which you have no control over.
2660 *
2661 * In most situations flushing the entire workqueue is overkill; you merely
2662 * need to know that a particular work item isn't queued and isn't running.
2663 * In such cases you should use cancel_delayed_work_sync() or
2664 * cancel_work_sync() instead.
2665 */
1da177e4
LT
2666void flush_scheduled_work(void)
2667{
d320c038 2668 flush_workqueue(system_wq);
1da177e4 2669}
ae90dd5d 2670EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2671
1fa44eca
JB
2672/**
2673 * execute_in_process_context - reliably execute the routine with user context
2674 * @fn: the function to execute
1fa44eca
JB
2675 * @ew: guaranteed storage for the execute work structure (must
2676 * be available when the work executes)
2677 *
2678 * Executes the function immediately if process context is available,
2679 * otherwise schedules the function for delayed execution.
2680 *
2681 * Returns: 0 - function was executed
2682 * 1 - function was scheduled for execution
2683 */
65f27f38 2684int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2685{
2686 if (!in_interrupt()) {
65f27f38 2687 fn(&ew->work);
1fa44eca
JB
2688 return 0;
2689 }
2690
65f27f38 2691 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2692 schedule_work(&ew->work);
2693
2694 return 1;
2695}
2696EXPORT_SYMBOL_GPL(execute_in_process_context);
2697
1da177e4
LT
2698int keventd_up(void)
2699{
d320c038 2700 return system_wq != NULL;
1da177e4
LT
2701}
2702
bdbc5dd7 2703static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 2704{
65a64464 2705 /*
0f900049
TH
2706 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2707 * Make sure that the alignment isn't lower than that of
2708 * unsigned long long.
65a64464 2709 */
0f900049
TH
2710 const size_t size = sizeof(struct cpu_workqueue_struct);
2711 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2712 __alignof__(unsigned long long));
931ac77e
TH
2713#ifdef CONFIG_SMP
2714 bool percpu = !(wq->flags & WQ_UNBOUND);
2715#else
2716 bool percpu = false;
2717#endif
65a64464 2718
931ac77e 2719 if (percpu)
f3421797 2720 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 2721 else {
f3421797
TH
2722 void *ptr;
2723
2724 /*
2725 * Allocate enough room to align cwq and put an extra
2726 * pointer at the end pointing back to the originally
2727 * allocated pointer which will be used for free.
2728 */
2729 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2730 if (ptr) {
2731 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2732 *(void **)(wq->cpu_wq.single + 1) = ptr;
2733 }
bdbc5dd7 2734 }
f3421797 2735
0f900049 2736 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
2737 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2738 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
2739}
2740
bdbc5dd7 2741static void free_cwqs(struct workqueue_struct *wq)
0f900049 2742{
931ac77e
TH
2743#ifdef CONFIG_SMP
2744 bool percpu = !(wq->flags & WQ_UNBOUND);
2745#else
2746 bool percpu = false;
2747#endif
2748
2749 if (percpu)
f3421797
TH
2750 free_percpu(wq->cpu_wq.pcpu);
2751 else if (wq->cpu_wq.single) {
2752 /* the pointer to free is stored right after the cwq */
bdbc5dd7 2753 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 2754 }
0f900049
TH
2755}
2756
f3421797
TH
2757static int wq_clamp_max_active(int max_active, unsigned int flags,
2758 const char *name)
b71ab8c2 2759{
f3421797
TH
2760 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2761
2762 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
2763 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2764 "is out of range, clamping between %d and %d\n",
f3421797 2765 max_active, name, 1, lim);
b71ab8c2 2766
f3421797 2767 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
2768}
2769
d320c038
TH
2770struct workqueue_struct *__alloc_workqueue_key(const char *name,
2771 unsigned int flags,
2772 int max_active,
2773 struct lock_class_key *key,
2774 const char *lock_name)
1da177e4 2775{
1da177e4 2776 struct workqueue_struct *wq;
c34056a3 2777 unsigned int cpu;
1da177e4 2778
f3421797
TH
2779 /*
2780 * Unbound workqueues aren't concurrency managed and should be
2781 * dispatched to workers immediately.
2782 */
2783 if (flags & WQ_UNBOUND)
2784 flags |= WQ_HIGHPRI;
2785
d320c038 2786 max_active = max_active ?: WQ_DFL_ACTIVE;
f3421797 2787 max_active = wq_clamp_max_active(max_active, flags, name);
1e19ffc6 2788
3af24433
ON
2789 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2790 if (!wq)
4690c4ab 2791 goto err;
3af24433 2792
97e37d7b 2793 wq->flags = flags;
a0a1a5fd 2794 wq->saved_max_active = max_active;
73f53c4a
TH
2795 mutex_init(&wq->flush_mutex);
2796 atomic_set(&wq->nr_cwqs_to_flush, 0);
2797 INIT_LIST_HEAD(&wq->flusher_queue);
2798 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 2799
3af24433 2800 wq->name = name;
eb13ba87 2801 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 2802 INIT_LIST_HEAD(&wq->list);
3af24433 2803
bdbc5dd7
TH
2804 if (alloc_cwqs(wq) < 0)
2805 goto err;
2806
f3421797 2807 for_each_cwq_cpu(cpu, wq) {
1537663f 2808 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2809 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 2810
0f900049 2811 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 2812 cwq->gcwq = gcwq;
c34056a3 2813 cwq->wq = wq;
73f53c4a 2814 cwq->flush_color = -1;
1e19ffc6 2815 cwq->max_active = max_active;
1e19ffc6 2816 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 2817 }
1537663f 2818
e22bee78
TH
2819 if (flags & WQ_RESCUER) {
2820 struct worker *rescuer;
2821
f2e005aa 2822 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
2823 goto err;
2824
2825 wq->rescuer = rescuer = alloc_worker();
2826 if (!rescuer)
2827 goto err;
2828
2829 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2830 if (IS_ERR(rescuer->task))
2831 goto err;
2832
e22bee78
TH
2833 rescuer->task->flags |= PF_THREAD_BOUND;
2834 wake_up_process(rescuer->task);
3af24433
ON
2835 }
2836
a0a1a5fd
TH
2837 /*
2838 * workqueue_lock protects global freeze state and workqueues
2839 * list. Grab it, set max_active accordingly and add the new
2840 * workqueue to workqueues list.
2841 */
1537663f 2842 spin_lock(&workqueue_lock);
a0a1a5fd
TH
2843
2844 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
f3421797 2845 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
2846 get_cwq(cpu, wq)->max_active = 0;
2847
1537663f 2848 list_add(&wq->list, &workqueues);
a0a1a5fd 2849
1537663f
TH
2850 spin_unlock(&workqueue_lock);
2851
3af24433 2852 return wq;
4690c4ab
TH
2853err:
2854 if (wq) {
bdbc5dd7 2855 free_cwqs(wq);
f2e005aa 2856 free_mayday_mask(wq->mayday_mask);
e22bee78 2857 kfree(wq->rescuer);
4690c4ab
TH
2858 kfree(wq);
2859 }
2860 return NULL;
3af24433 2861}
d320c038 2862EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 2863
3af24433
ON
2864/**
2865 * destroy_workqueue - safely terminate a workqueue
2866 * @wq: target workqueue
2867 *
2868 * Safely destroy a workqueue. All work currently pending will be done first.
2869 */
2870void destroy_workqueue(struct workqueue_struct *wq)
2871{
c8e55f36 2872 unsigned int cpu;
3af24433 2873
e41e704b 2874 wq->flags |= WQ_DYING;
a0a1a5fd
TH
2875 flush_workqueue(wq);
2876
2877 /*
2878 * wq list is used to freeze wq, remove from list after
2879 * flushing is complete in case freeze races us.
2880 */
95402b38 2881 spin_lock(&workqueue_lock);
b1f4ec17 2882 list_del(&wq->list);
95402b38 2883 spin_unlock(&workqueue_lock);
3af24433 2884
e22bee78 2885 /* sanity check */
f3421797 2886 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
2887 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2888 int i;
2889
73f53c4a
TH
2890 for (i = 0; i < WORK_NR_COLORS; i++)
2891 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2892 BUG_ON(cwq->nr_active);
2893 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2894 }
9b41ea72 2895
e22bee78
TH
2896 if (wq->flags & WQ_RESCUER) {
2897 kthread_stop(wq->rescuer->task);
f2e005aa 2898 free_mayday_mask(wq->mayday_mask);
8d9df9f0 2899 kfree(wq->rescuer);
e22bee78
TH
2900 }
2901
bdbc5dd7 2902 free_cwqs(wq);
3af24433
ON
2903 kfree(wq);
2904}
2905EXPORT_SYMBOL_GPL(destroy_workqueue);
2906
dcd989cb
TH
2907/**
2908 * workqueue_set_max_active - adjust max_active of a workqueue
2909 * @wq: target workqueue
2910 * @max_active: new max_active value.
2911 *
2912 * Set max_active of @wq to @max_active.
2913 *
2914 * CONTEXT:
2915 * Don't call from IRQ context.
2916 */
2917void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2918{
2919 unsigned int cpu;
2920
f3421797 2921 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
2922
2923 spin_lock(&workqueue_lock);
2924
2925 wq->saved_max_active = max_active;
2926
f3421797 2927 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
2928 struct global_cwq *gcwq = get_gcwq(cpu);
2929
2930 spin_lock_irq(&gcwq->lock);
2931
2932 if (!(wq->flags & WQ_FREEZEABLE) ||
2933 !(gcwq->flags & GCWQ_FREEZING))
2934 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 2935
dcd989cb 2936 spin_unlock_irq(&gcwq->lock);
65a64464 2937 }
93981800 2938
dcd989cb 2939 spin_unlock(&workqueue_lock);
15316ba8 2940}
dcd989cb 2941EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 2942
eef6a7d5 2943/**
dcd989cb
TH
2944 * workqueue_congested - test whether a workqueue is congested
2945 * @cpu: CPU in question
2946 * @wq: target workqueue
eef6a7d5 2947 *
dcd989cb
TH
2948 * Test whether @wq's cpu workqueue for @cpu is congested. There is
2949 * no synchronization around this function and the test result is
2950 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 2951 *
dcd989cb
TH
2952 * RETURNS:
2953 * %true if congested, %false otherwise.
eef6a7d5 2954 */
dcd989cb 2955bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 2956{
dcd989cb
TH
2957 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2958
2959 return !list_empty(&cwq->delayed_works);
1da177e4 2960}
dcd989cb 2961EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 2962
1fa44eca 2963/**
dcd989cb
TH
2964 * work_cpu - return the last known associated cpu for @work
2965 * @work: the work of interest
1fa44eca 2966 *
dcd989cb 2967 * RETURNS:
bdbc5dd7 2968 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 2969 */
dcd989cb 2970unsigned int work_cpu(struct work_struct *work)
1fa44eca 2971{
dcd989cb 2972 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 2973
bdbc5dd7 2974 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 2975}
dcd989cb 2976EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 2977
dcd989cb
TH
2978/**
2979 * work_busy - test whether a work is currently pending or running
2980 * @work: the work to be tested
2981 *
2982 * Test whether @work is currently pending or running. There is no
2983 * synchronization around this function and the test result is
2984 * unreliable and only useful as advisory hints or for debugging.
2985 * Especially for reentrant wqs, the pending state might hide the
2986 * running state.
2987 *
2988 * RETURNS:
2989 * OR'd bitmask of WORK_BUSY_* bits.
2990 */
2991unsigned int work_busy(struct work_struct *work)
1da177e4 2992{
dcd989cb
TH
2993 struct global_cwq *gcwq = get_work_gcwq(work);
2994 unsigned long flags;
2995 unsigned int ret = 0;
1da177e4 2996
dcd989cb
TH
2997 if (!gcwq)
2998 return false;
1da177e4 2999
dcd989cb 3000 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3001
dcd989cb
TH
3002 if (work_pending(work))
3003 ret |= WORK_BUSY_PENDING;
3004 if (find_worker_executing_work(gcwq, work))
3005 ret |= WORK_BUSY_RUNNING;
1da177e4 3006
dcd989cb 3007 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3008
dcd989cb 3009 return ret;
1da177e4 3010}
dcd989cb 3011EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3012
db7bccf4
TH
3013/*
3014 * CPU hotplug.
3015 *
e22bee78
TH
3016 * There are two challenges in supporting CPU hotplug. Firstly, there
3017 * are a lot of assumptions on strong associations among work, cwq and
3018 * gcwq which make migrating pending and scheduled works very
3019 * difficult to implement without impacting hot paths. Secondly,
3020 * gcwqs serve mix of short, long and very long running works making
3021 * blocked draining impractical.
3022 *
3023 * This is solved by allowing a gcwq to be detached from CPU, running
3024 * it with unbound (rogue) workers and allowing it to be reattached
3025 * later if the cpu comes back online. A separate thread is created
3026 * to govern a gcwq in such state and is called the trustee of the
3027 * gcwq.
db7bccf4
TH
3028 *
3029 * Trustee states and their descriptions.
3030 *
3031 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3032 * new trustee is started with this state.
3033 *
3034 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
3035 * assuming the manager role and making all existing
3036 * workers rogue. DOWN_PREPARE waits for trustee to
3037 * enter this state. After reaching IN_CHARGE, trustee
3038 * tries to execute the pending worklist until it's empty
3039 * and the state is set to BUTCHER, or the state is set
3040 * to RELEASE.
db7bccf4
TH
3041 *
3042 * BUTCHER Command state which is set by the cpu callback after
3043 * the cpu has went down. Once this state is set trustee
3044 * knows that there will be no new works on the worklist
3045 * and once the worklist is empty it can proceed to
3046 * killing idle workers.
3047 *
3048 * RELEASE Command state which is set by the cpu callback if the
3049 * cpu down has been canceled or it has come online
3050 * again. After recognizing this state, trustee stops
e22bee78
TH
3051 * trying to drain or butcher and clears ROGUE, rebinds
3052 * all remaining workers back to the cpu and releases
3053 * manager role.
db7bccf4
TH
3054 *
3055 * DONE Trustee will enter this state after BUTCHER or RELEASE
3056 * is complete.
3057 *
3058 * trustee CPU draining
3059 * took over down complete
3060 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3061 * | | ^
3062 * | CPU is back online v return workers |
3063 * ----------------> RELEASE --------------
3064 */
1da177e4 3065
db7bccf4
TH
3066/**
3067 * trustee_wait_event_timeout - timed event wait for trustee
3068 * @cond: condition to wait for
3069 * @timeout: timeout in jiffies
3070 *
3071 * wait_event_timeout() for trustee to use. Handles locking and
3072 * checks for RELEASE request.
3073 *
3074 * CONTEXT:
3075 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3076 * multiple times. To be used by trustee.
3077 *
3078 * RETURNS:
3079 * Positive indicating left time if @cond is satisfied, 0 if timed
3080 * out, -1 if canceled.
3081 */
3082#define trustee_wait_event_timeout(cond, timeout) ({ \
3083 long __ret = (timeout); \
3084 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3085 __ret) { \
3086 spin_unlock_irq(&gcwq->lock); \
3087 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3088 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3089 __ret); \
3090 spin_lock_irq(&gcwq->lock); \
3091 } \
3092 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3093})
3af24433 3094
db7bccf4
TH
3095/**
3096 * trustee_wait_event - event wait for trustee
3097 * @cond: condition to wait for
3098 *
3099 * wait_event() for trustee to use. Automatically handles locking and
3100 * checks for CANCEL request.
3101 *
3102 * CONTEXT:
3103 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3104 * multiple times. To be used by trustee.
3105 *
3106 * RETURNS:
3107 * 0 if @cond is satisfied, -1 if canceled.
3108 */
3109#define trustee_wait_event(cond) ({ \
3110 long __ret1; \
3111 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3112 __ret1 < 0 ? -1 : 0; \
3113})
1da177e4 3114
db7bccf4 3115static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3116{
db7bccf4
TH
3117 struct global_cwq *gcwq = __gcwq;
3118 struct worker *worker;
e22bee78 3119 struct work_struct *work;
db7bccf4 3120 struct hlist_node *pos;
e22bee78 3121 long rc;
db7bccf4 3122 int i;
3af24433 3123
db7bccf4
TH
3124 BUG_ON(gcwq->cpu != smp_processor_id());
3125
3126 spin_lock_irq(&gcwq->lock);
3af24433 3127 /*
e22bee78
TH
3128 * Claim the manager position and make all workers rogue.
3129 * Trustee must be bound to the target cpu and can't be
3130 * cancelled.
3af24433 3131 */
db7bccf4 3132 BUG_ON(gcwq->cpu != smp_processor_id());
e22bee78
TH
3133 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3134 BUG_ON(rc < 0);
3af24433 3135
e22bee78 3136 gcwq->flags |= GCWQ_MANAGING_WORKERS;
e1d8aa9f 3137
db7bccf4 3138 list_for_each_entry(worker, &gcwq->idle_list, entry)
cb444766 3139 worker->flags |= WORKER_ROGUE;
3af24433 3140
db7bccf4 3141 for_each_busy_worker(worker, i, pos, gcwq)
cb444766 3142 worker->flags |= WORKER_ROGUE;
06ba38a9 3143
e22bee78
TH
3144 /*
3145 * Call schedule() so that we cross rq->lock and thus can
3146 * guarantee sched callbacks see the rogue flag. This is
3147 * necessary as scheduler callbacks may be invoked from other
3148 * cpus.
3149 */
3150 spin_unlock_irq(&gcwq->lock);
3151 schedule();
3152 spin_lock_irq(&gcwq->lock);
06ba38a9 3153
e22bee78 3154 /*
cb444766
TH
3155 * Sched callbacks are disabled now. Zap nr_running. After
3156 * this, nr_running stays zero and need_more_worker() and
3157 * keep_working() are always true as long as the worklist is
3158 * not empty.
e22bee78 3159 */
cb444766 3160 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
1da177e4 3161
e22bee78
TH
3162 spin_unlock_irq(&gcwq->lock);
3163 del_timer_sync(&gcwq->idle_timer);
3164 spin_lock_irq(&gcwq->lock);
3af24433 3165
db7bccf4
TH
3166 /*
3167 * We're now in charge. Notify and proceed to drain. We need
3168 * to keep the gcwq running during the whole CPU down
3169 * procedure as other cpu hotunplug callbacks may need to
3170 * flush currently running tasks.
3171 */
3172 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3173 wake_up_all(&gcwq->trustee_wait);
3af24433 3174
db7bccf4
TH
3175 /*
3176 * The original cpu is in the process of dying and may go away
3177 * anytime now. When that happens, we and all workers would
e22bee78
TH
3178 * be migrated to other cpus. Try draining any left work. We
3179 * want to get it over with ASAP - spam rescuers, wake up as
3180 * many idlers as necessary and create new ones till the
3181 * worklist is empty. Note that if the gcwq is frozen, there
3182 * may be frozen works in freezeable cwqs. Don't declare
3183 * completion while frozen.
db7bccf4
TH
3184 */
3185 while (gcwq->nr_workers != gcwq->nr_idle ||
3186 gcwq->flags & GCWQ_FREEZING ||
3187 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
e22bee78
TH
3188 int nr_works = 0;
3189
3190 list_for_each_entry(work, &gcwq->worklist, entry) {
3191 send_mayday(work);
3192 nr_works++;
3193 }
3af24433 3194
e22bee78
TH
3195 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3196 if (!nr_works--)
3197 break;
3198 wake_up_process(worker->task);
3199 }
3200
3201 if (need_to_create_worker(gcwq)) {
3202 spin_unlock_irq(&gcwq->lock);
3203 worker = create_worker(gcwq, false);
3204 spin_lock_irq(&gcwq->lock);
3205 if (worker) {
cb444766 3206 worker->flags |= WORKER_ROGUE;
e22bee78
TH
3207 start_worker(worker);
3208 }
1da177e4 3209 }
3af24433 3210
db7bccf4
TH
3211 /* give a breather */
3212 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3213 break;
3af24433 3214 }
1da177e4 3215
14441960 3216 /*
e22bee78
TH
3217 * Either all works have been scheduled and cpu is down, or
3218 * cpu down has already been canceled. Wait for and butcher
3219 * all workers till we're canceled.
14441960 3220 */
e22bee78
TH
3221 do {
3222 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3223 while (!list_empty(&gcwq->idle_list))
3224 destroy_worker(list_first_entry(&gcwq->idle_list,
3225 struct worker, entry));
3226 } while (gcwq->nr_workers && rc >= 0);
4e6045f1 3227
14441960 3228 /*
e22bee78
TH
3229 * At this point, either draining has completed and no worker
3230 * is left, or cpu down has been canceled or the cpu is being
3231 * brought back up. There shouldn't be any idle one left.
3232 * Tell the remaining busy ones to rebind once it finishes the
3233 * currently scheduled works by scheduling the rebind_work.
14441960 3234 */
e22bee78
TH
3235 WARN_ON(!list_empty(&gcwq->idle_list));
3236
3237 for_each_busy_worker(worker, i, pos, gcwq) {
3238 struct work_struct *rebind_work = &worker->rebind_work;
3239
3240 /*
3241 * Rebind_work may race with future cpu hotplug
3242 * operations. Use a separate flag to mark that
3243 * rebinding is scheduled.
3244 */
cb444766
TH
3245 worker->flags |= WORKER_REBIND;
3246 worker->flags &= ~WORKER_ROGUE;
e22bee78
TH
3247
3248 /* queue rebind_work, wq doesn't matter, use the default one */
3249 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3250 work_data_bits(rebind_work)))
3251 continue;
3252
3253 debug_work_activate(rebind_work);
d320c038 3254 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
e22bee78
TH
3255 worker->scheduled.next,
3256 work_color_to_flags(WORK_NO_COLOR));
3257 }
3258
3259 /* relinquish manager role */
3260 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3261
db7bccf4
TH
3262 /* notify completion */
3263 gcwq->trustee = NULL;
3264 gcwq->trustee_state = TRUSTEE_DONE;
3265 wake_up_all(&gcwq->trustee_wait);
3266 spin_unlock_irq(&gcwq->lock);
3267 return 0;
3af24433
ON
3268}
3269
3270/**
db7bccf4
TH
3271 * wait_trustee_state - wait for trustee to enter the specified state
3272 * @gcwq: gcwq the trustee of interest belongs to
3273 * @state: target state to wait for
3af24433 3274 *
db7bccf4
TH
3275 * Wait for the trustee to reach @state. DONE is already matched.
3276 *
3277 * CONTEXT:
3278 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3279 * multiple times. To be used by cpu_callback.
3af24433 3280 */
db7bccf4 3281static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3282__releases(&gcwq->lock)
3283__acquires(&gcwq->lock)
3af24433 3284{
db7bccf4
TH
3285 if (!(gcwq->trustee_state == state ||
3286 gcwq->trustee_state == TRUSTEE_DONE)) {
3287 spin_unlock_irq(&gcwq->lock);
3288 __wait_event(gcwq->trustee_wait,
3289 gcwq->trustee_state == state ||
3290 gcwq->trustee_state == TRUSTEE_DONE);
3291 spin_lock_irq(&gcwq->lock);
3292 }
3af24433 3293}
3af24433
ON
3294
3295static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3296 unsigned long action,
3297 void *hcpu)
3298{
3299 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3300 struct global_cwq *gcwq = get_gcwq(cpu);
3301 struct task_struct *new_trustee = NULL;
e22bee78 3302 struct worker *uninitialized_var(new_worker);
db7bccf4 3303 unsigned long flags;
3af24433 3304
8bb78442
RW
3305 action &= ~CPU_TASKS_FROZEN;
3306
3af24433 3307 switch (action) {
db7bccf4
TH
3308 case CPU_DOWN_PREPARE:
3309 new_trustee = kthread_create(trustee_thread, gcwq,
3310 "workqueue_trustee/%d\n", cpu);
3311 if (IS_ERR(new_trustee))
3312 return notifier_from_errno(PTR_ERR(new_trustee));
3313 kthread_bind(new_trustee, cpu);
e22bee78 3314 /* fall through */
3af24433 3315 case CPU_UP_PREPARE:
e22bee78
TH
3316 BUG_ON(gcwq->first_idle);
3317 new_worker = create_worker(gcwq, false);
3318 if (!new_worker) {
3319 if (new_trustee)
3320 kthread_stop(new_trustee);
3321 return NOTIFY_BAD;
3af24433 3322 }
1da177e4
LT
3323 }
3324
db7bccf4
TH
3325 /* some are called w/ irq disabled, don't disturb irq status */
3326 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3327
00dfcaf7 3328 switch (action) {
db7bccf4
TH
3329 case CPU_DOWN_PREPARE:
3330 /* initialize trustee and tell it to acquire the gcwq */
3331 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3332 gcwq->trustee = new_trustee;
3333 gcwq->trustee_state = TRUSTEE_START;
3334 wake_up_process(gcwq->trustee);
3335 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3336 /* fall through */
3337 case CPU_UP_PREPARE:
3338 BUG_ON(gcwq->first_idle);
3339 gcwq->first_idle = new_worker;
3340 break;
3341
3342 case CPU_DYING:
3343 /*
3344 * Before this, the trustee and all workers except for
3345 * the ones which are still executing works from
3346 * before the last CPU down must be on the cpu. After
3347 * this, they'll all be diasporas.
3348 */
3349 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3350 break;
3351
3da1c84c 3352 case CPU_POST_DEAD:
db7bccf4 3353 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3354 /* fall through */
3355 case CPU_UP_CANCELED:
3356 destroy_worker(gcwq->first_idle);
3357 gcwq->first_idle = NULL;
db7bccf4
TH
3358 break;
3359
3360 case CPU_DOWN_FAILED:
3361 case CPU_ONLINE:
e22bee78 3362 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3363 if (gcwq->trustee_state != TRUSTEE_DONE) {
3364 gcwq->trustee_state = TRUSTEE_RELEASE;
3365 wake_up_process(gcwq->trustee);
3366 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3367 }
db7bccf4 3368
e22bee78
TH
3369 /*
3370 * Trustee is done and there might be no worker left.
3371 * Put the first_idle in and request a real manager to
3372 * take a look.
3373 */
3374 spin_unlock_irq(&gcwq->lock);
3375 kthread_bind(gcwq->first_idle->task, cpu);
3376 spin_lock_irq(&gcwq->lock);
3377 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3378 start_worker(gcwq->first_idle);
3379 gcwq->first_idle = NULL;
db7bccf4 3380 break;
00dfcaf7
ON
3381 }
3382
db7bccf4
TH
3383 spin_unlock_irqrestore(&gcwq->lock, flags);
3384
1537663f 3385 return notifier_from_errno(0);
1da177e4 3386}
1da177e4 3387
2d3854a3 3388#ifdef CONFIG_SMP
8ccad40d 3389
2d3854a3 3390struct work_for_cpu {
6b44003e 3391 struct completion completion;
2d3854a3
RR
3392 long (*fn)(void *);
3393 void *arg;
3394 long ret;
3395};
3396
6b44003e 3397static int do_work_for_cpu(void *_wfc)
2d3854a3 3398{
6b44003e 3399 struct work_for_cpu *wfc = _wfc;
2d3854a3 3400 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3401 complete(&wfc->completion);
3402 return 0;
2d3854a3
RR
3403}
3404
3405/**
3406 * work_on_cpu - run a function in user context on a particular cpu
3407 * @cpu: the cpu to run on
3408 * @fn: the function to run
3409 * @arg: the function arg
3410 *
31ad9081
RR
3411 * This will return the value @fn returns.
3412 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3413 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3414 */
3415long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3416{
6b44003e
AM
3417 struct task_struct *sub_thread;
3418 struct work_for_cpu wfc = {
3419 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3420 .fn = fn,
3421 .arg = arg,
3422 };
3423
3424 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3425 if (IS_ERR(sub_thread))
3426 return PTR_ERR(sub_thread);
3427 kthread_bind(sub_thread, cpu);
3428 wake_up_process(sub_thread);
3429 wait_for_completion(&wfc.completion);
2d3854a3
RR
3430 return wfc.ret;
3431}
3432EXPORT_SYMBOL_GPL(work_on_cpu);
3433#endif /* CONFIG_SMP */
3434
a0a1a5fd
TH
3435#ifdef CONFIG_FREEZER
3436
3437/**
3438 * freeze_workqueues_begin - begin freezing workqueues
3439 *
3440 * Start freezing workqueues. After this function returns, all
3441 * freezeable workqueues will queue new works to their frozen_works
7e11629d 3442 * list instead of gcwq->worklist.
a0a1a5fd
TH
3443 *
3444 * CONTEXT:
8b03ae3c 3445 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3446 */
3447void freeze_workqueues_begin(void)
3448{
a0a1a5fd
TH
3449 unsigned int cpu;
3450
3451 spin_lock(&workqueue_lock);
3452
3453 BUG_ON(workqueue_freezing);
3454 workqueue_freezing = true;
3455
f3421797 3456 for_each_gcwq_cpu(cpu) {
8b03ae3c 3457 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3458 struct workqueue_struct *wq;
8b03ae3c
TH
3459
3460 spin_lock_irq(&gcwq->lock);
3461
db7bccf4
TH
3462 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3463 gcwq->flags |= GCWQ_FREEZING;
3464
a0a1a5fd
TH
3465 list_for_each_entry(wq, &workqueues, list) {
3466 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3467
f3421797 3468 if (cwq && wq->flags & WQ_FREEZEABLE)
a0a1a5fd 3469 cwq->max_active = 0;
a0a1a5fd 3470 }
8b03ae3c
TH
3471
3472 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3473 }
3474
3475 spin_unlock(&workqueue_lock);
3476}
3477
3478/**
3479 * freeze_workqueues_busy - are freezeable workqueues still busy?
3480 *
3481 * Check whether freezing is complete. This function must be called
3482 * between freeze_workqueues_begin() and thaw_workqueues().
3483 *
3484 * CONTEXT:
3485 * Grabs and releases workqueue_lock.
3486 *
3487 * RETURNS:
3488 * %true if some freezeable workqueues are still busy. %false if
3489 * freezing is complete.
3490 */
3491bool freeze_workqueues_busy(void)
3492{
a0a1a5fd
TH
3493 unsigned int cpu;
3494 bool busy = false;
3495
3496 spin_lock(&workqueue_lock);
3497
3498 BUG_ON(!workqueue_freezing);
3499
f3421797 3500 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3501 struct workqueue_struct *wq;
a0a1a5fd
TH
3502 /*
3503 * nr_active is monotonically decreasing. It's safe
3504 * to peek without lock.
3505 */
3506 list_for_each_entry(wq, &workqueues, list) {
3507 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3508
f3421797 3509 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3510 continue;
3511
3512 BUG_ON(cwq->nr_active < 0);
3513 if (cwq->nr_active) {
3514 busy = true;
3515 goto out_unlock;
3516 }
3517 }
3518 }
3519out_unlock:
3520 spin_unlock(&workqueue_lock);
3521 return busy;
3522}
3523
3524/**
3525 * thaw_workqueues - thaw workqueues
3526 *
3527 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3528 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3529 *
3530 * CONTEXT:
8b03ae3c 3531 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3532 */
3533void thaw_workqueues(void)
3534{
a0a1a5fd
TH
3535 unsigned int cpu;
3536
3537 spin_lock(&workqueue_lock);
3538
3539 if (!workqueue_freezing)
3540 goto out_unlock;
3541
f3421797 3542 for_each_gcwq_cpu(cpu) {
8b03ae3c 3543 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3544 struct workqueue_struct *wq;
8b03ae3c
TH
3545
3546 spin_lock_irq(&gcwq->lock);
3547
db7bccf4
TH
3548 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3549 gcwq->flags &= ~GCWQ_FREEZING;
3550
a0a1a5fd
TH
3551 list_for_each_entry(wq, &workqueues, list) {
3552 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3553
f3421797 3554 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3555 continue;
3556
a0a1a5fd
TH
3557 /* restore max_active and repopulate worklist */
3558 cwq->max_active = wq->saved_max_active;
3559
3560 while (!list_empty(&cwq->delayed_works) &&
3561 cwq->nr_active < cwq->max_active)
3562 cwq_activate_first_delayed(cwq);
a0a1a5fd 3563 }
8b03ae3c 3564
e22bee78
TH
3565 wake_up_worker(gcwq);
3566
8b03ae3c 3567 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3568 }
3569
3570 workqueue_freezing = false;
3571out_unlock:
3572 spin_unlock(&workqueue_lock);
3573}
3574#endif /* CONFIG_FREEZER */
3575
6ee0578b 3576static int __init init_workqueues(void)
1da177e4 3577{
c34056a3 3578 unsigned int cpu;
c8e55f36 3579 int i;
c34056a3 3580
f6500947 3581 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3582
3583 /* initialize gcwqs */
f3421797 3584 for_each_gcwq_cpu(cpu) {
8b03ae3c
TH
3585 struct global_cwq *gcwq = get_gcwq(cpu);
3586
3587 spin_lock_init(&gcwq->lock);
7e11629d 3588 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c 3589 gcwq->cpu = cpu;
477a3c33 3590 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3591
c8e55f36
TH
3592 INIT_LIST_HEAD(&gcwq->idle_list);
3593 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3594 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3595
e22bee78
TH
3596 init_timer_deferrable(&gcwq->idle_timer);
3597 gcwq->idle_timer.function = idle_worker_timeout;
3598 gcwq->idle_timer.data = (unsigned long)gcwq;
e7577c50 3599
e22bee78
TH
3600 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3601 (unsigned long)gcwq);
3602
8b03ae3c 3603 ida_init(&gcwq->worker_ida);
db7bccf4
TH
3604
3605 gcwq->trustee_state = TRUSTEE_DONE;
3606 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3607 }
3608
e22bee78 3609 /* create the initial worker */
f3421797 3610 for_each_online_gcwq_cpu(cpu) {
e22bee78
TH
3611 struct global_cwq *gcwq = get_gcwq(cpu);
3612 struct worker *worker;
3613
477a3c33
TH
3614 if (cpu != WORK_CPU_UNBOUND)
3615 gcwq->flags &= ~GCWQ_DISASSOCIATED;
e22bee78
TH
3616 worker = create_worker(gcwq, true);
3617 BUG_ON(!worker);
3618 spin_lock_irq(&gcwq->lock);
3619 start_worker(worker);
3620 spin_unlock_irq(&gcwq->lock);
3621 }
3622
d320c038
TH
3623 system_wq = alloc_workqueue("events", 0, 0);
3624 system_long_wq = alloc_workqueue("events_long", 0, 0);
3625 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3626 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3627 WQ_UNBOUND_MAX_ACTIVE);
d320c038 3628 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
6ee0578b 3629 return 0;
1da177e4 3630}
6ee0578b 3631early_initcall(init_workqueues);